WorldWideScience

Sample records for rab5 inhibits infection

  1. A dominant negative mutant of rab5 inhibits infection of cells by foot-and-mouth disease virus; implications for virus entry

    DEFF Research Database (Denmark)

    Johns, Helen; Berryman, Stephen; Monaghan, Paul;

    2009-01-01

    is also dependent on clathrin-mediate endocytosis and an acidic pH within endosomes. Also, the effect on FMDV infection of dominant-negative (DN) mutants of cellular rab proteins that regulate endosomal traffic was examined. Expression of DN rab5 reduced the number of FMDV-infected cells by 80%, while......Foot-and-mouth disease virus (FMDV) can use a number of different integrins (alphavβ1, alphavβ3, alphavβ6, and alphavβ8) as receptors to initiate infection. Infection mediated by alphavβ6 is known to occur by clathrin-mediated endocytosis and is dependent on the acidic pH within endosomes...

  2. Real-time imaging of Leishmania mexicana-infected early phagosomes: a study using primary macrophages generated from green fluorescent protein-Rab5 transgenic mice

    OpenAIRE

    Lippuner, Christoph; Paape, Daniel; Paterou, Athina; Brand, Janko; Richardson, Melville; Smith, Andrew; Hoffmann, Kirstin; Brinkmann, Volker; Blackburn, Clare; Aebischer, Toni

    2009-01-01

    The small GTPase Rab5 is a key regulator of endosome/phagosome maturation and in intravesicular infections marks a phagosome stage at which decisions over pathogen replication or destruction are integrated. It is currently unclear whether Leishmania-infected phagosomes uniformly pass through a Rab5(+) stage on their intracellular path to compartments with late endosomal/early lysosomal characteristics. Differences in routes and final compartments could have consequences for accessibility to a...

  3. Real-time imaging of Leishmania mexicana-infected early phagosomes: a study using primary macrophages generated from green fluorescent protein-Rab5 transgenic mice

    OpenAIRE

    Lippuner, Christoph; Paape, Daniel; Paterou, Athina; Brand, Janko; Richardson, Melville; Smith, Andrew; Hoffmann, Kirstin; Brinkmann, Volker; Blackburn, Clare; Aebischer, Toni

    2009-01-01

    The small GTPase Rab5 is a key regulator of endosome/phagosome maturation and in intravesicular infections marks a phagosome stage at which decisions over pathogen replication or destruction are integrated. It is currently unclear whether Leishmania-infected phagosomes uniformly pass through a Rab5(+) stage on their intracellular path to compartments with late endosomal/early lysosomal characteristics. Differences in routes and final compartments could have consequences for accessibility to a...

  4. Rab5 Isoforms Specifically Regulate Different Modes of Endocytosis in Leishmania.

    Science.gov (United States)

    Rastogi, Ruchir; Verma, Jitender Kumar; Kapoor, Anjali; Langsley, Gordon; Mukhopadhyay, Amitabha

    2016-07-08

    Differential functions of Rab5 isoforms in endocytosis are not well characterized. Here, we cloned, expressed, and characterized Rab5a and Rab5b from Leishmania and found that both of them are localized in the early endosome. To understand the role of LdRab5 isoforms in different modes of endocytosis in Leishmania, we generated transgenic parasites overexpressing LdRab5a, LdRab5b, or their dominant-positive (LdRab5a:Q93L and LdRab5b:Q80L) or dominant-negative mutants (LdRab5a:N146I and LdRab5b:N133I). Using LdRab5a or its mutants overexpressing parasites, we found that LdRab5a specifically regulates the fluid-phase endocytosis of horseradish peroxidase and also specifically induced the transport of dextran-Texas Red to the lysosomes. In contrast, cells overexpressing LdRab5b or its mutants showed that LdRab5b explicitly controls receptor-mediated endocytosis of hemoglobin, and overexpression of LdRab5b:WT enhanced the transport of internalized Hb to the lysosomes in comparison with control cells. To unequivocally demonstrate the role of Rab5 isoforms in endocytosis in Leishmania, we tried to generate null-mutants of LdRab5a and LdRab5b parasites, but both were lethal indicating their essential functions in parasites. Therefore, we used heterozygous LdRab5a(+/-) and LdRab5b(+/-) cells. LdRab5a(+/-) Leishmania showed 50% inhibition of HRP uptake, but hemoglobin endocytosis was uninterrupted. In contrast, about 50% inhibition of Hb endocytosis was observed in LdRab5b(+/-) cells without any significant effect on HRP uptake. Finally, we tried to identify putative LdRab5a and LdRab5b effectors. We found that LdRab5b interacts with clathrin heavy chain and hemoglobin receptor. However, LdRab5a failed to interact with the clathrin heavy chain, and interaction with hemoglobin receptor was significantly less. Thus, our results showed that LdRab5a and LdRab5b differentially regulate fluid phase and receptor-mediated endocytosis in Leishmania.

  5. Two Rab5 Homologs Are Essential for the Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Cheng D. Yang

    2017-05-01

    Full Text Available The rice blast fungus, Magnaporthe oryzae, infects many economically important cereal crops, particularly rice. It has emerged as an important model organism for studying the growth, development, and pathogenesis of filamentous fungi. RabGTPases are important molecular switches in regulation of intracellular membrane trafficking in all eukaryotes. MoRab5A and MoRab5B are Rab5 homologs in M. oryzae, but their functions in the fungal development and pathogenicity are unknown. In this study, we have employed a genetic approach and demonstrated that both MoRab5A and MoRab5B are crucial for vegetative growth and development, conidiogenesis, melanin synthesis, vacuole fusion, endocytosis, sexual reproduction, and plant pathogenesis in M. oryzae. Moreover, both MoRab5A and MoRab5B show similar localization in hyphae and conidia. To further investigate possible functional redundancy between MoRab5A and MoRab5B, we overexpressed MoRAB5A and MoRAB5B, respectively, in MoRab5B:RNAi and MoRab5A:RNAi strains, but neither could rescue each other’s defects caused by the RNAi. Taken together, we conclude that both MoRab5A and MoRab5B are necessary for the development and pathogenesis of the rice blast fungus, while they may function independently.

  6. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Lin, Mingqun; Liu, Hongyan; Xiong, Qingming; Niu, Hua; Cheng, Zhihui; Yamamoto, Akitsugu; Rikihisa, Yasuko

    2016-11-01

    Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.

  7. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling.

    Science.gov (United States)

    Kenyon, Emma J; Campos, Isabel; Bull, James C; Williams, P Huw; Stemple, Derek L; Clark, Matthew D

    2015-01-15

    The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo.

  8. Rab5-mediated VE-cadherin internalization regulates the barrier function of the lung microvascular endothelium.

    Science.gov (United States)

    Yang, Junjun; Yao, Wei; Qian, Guisheng; Wei, Zhenghua; Wu, Guangyu; Wang, Guansong

    2015-12-01

    The small GTPase Rab5 has been well defined to control the vesicle-mediated plasma membrane protein transport to the endosomal compartment. However, its function in the internalization of vascular endothelial (VE)-cadherin, an important component of adherens junctions, and as a result regulating the endothelial cell polarity and barrier function remain unknown. Here, we demonstrated that lipopolysaccharide (LPS) simulation markedly enhanced the activation and expression of Rab5 in human pulmonary microvascular endothelial cells (HPMECs), which is accompanied by VE-cadherin internalization. In parallel, LPS challenge also induced abnormal cell polarity and dysfunction of the endothelial barrier in HPMECs. LPS stimulation promoted the translocation of VE-cadherin from the plasma membrane to intracellular compartments, and intracellularly expressed VE-cadherin was extensively colocalized with Rab5. Small interfering RNA (siRNA)-mediated depletion of Rab5a expression attenuated the disruption of LPS-induced internalization of VE-cadherin and the disorder of cell polarity. Furthermore, knockdown of Rab5 inhibited the vascular endothelial hyperpermeability and protected endothelial barrier function from LPS injury, both in vitro and in vivo. These results suggest that Rab5 is a critical mediator of LPS-induced endothelial barrier dysfunction, which is likely mediated through regulating VE-cadherin internalization. These findings provide evidence, implicating that Rab5a is a potential therapeutic target for preventing endothelial barrier disruption and vascular inflammation.

  9. RAB5A — EDRN Public Portal

    Science.gov (United States)

    From UniProtKB/Swiss-Prot: The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB5A is required for the fusion of plasma membranes and early endosomes. Contributes to the regulation of filopodia extension.

  10. Vinculin and Rab5 complex is required [correction of requited]for uptake of Staphylococcus aureus and interleukin-6 expression.

    Directory of Open Access Journals (Sweden)

    Makoto Hagiwara

    Full Text Available Vinculin, a 116-kDa membrane cytoskeletal protein, is an important molecule for cell adhesion; however, little is known about its other cellular functions. Here, we demonstrated that vinculin binds to Rab5 and is required for Staphylococcus aureus (S. aureus uptake in cells. Viunculin directly bound to Rab5 and enhanced the activation of S. aureus uptake. Over-expression of active vinculin mutants enhanced S. aureus uptake, whereas over-expression of an inactive vinculin mutant decreased S. aureus uptake. Vinculin bound to Rab5 at the N-terminal region (1-258 of vinculin. Vinculin and Rab5 were involved in the S. aureus-induced phosphorylation of MAP kinases (p38, Erk, and JNK and IL-6 expression. Finally, vinculin and Rab5 knockdown reduced infection of S. aureus, phosphorylation of MAPKs and IL-6 expression in murine lungs. Our results suggest that vinculin binds to Rab5 and that these two molecules cooperatively enhance bacterial infection and the inflammatory response.

  11. Tropheryma whipplei, the agent of Whipple's disease, affects the early to late phagosome transition and survives in a Rab5- and Rab7-positive compartment.

    Directory of Open Access Journals (Sweden)

    Giovanna Mottola

    Full Text Available Tropheryma whipplei, the agent of Whipple's disease, inhibits phago-lysosome biogenesis to create a suitable niche for its survival and replication in macrophages. To understand the mechanism by which it subverts phagosome maturation, we used biochemical and cell biological approaches to purify and characterise the intracellular compartment where Tropheryma whipplei resides using mouse bone-marrow-derived macrophages. We showed that in addition to Lamp-1, the Tropheryma whipplei phagosome is positive for Rab5 and Rab7, two GTPases required for the early to late phagosome transition. Unlike other pathogens, inhibition of PI(3P production was not the mechanism for Rab5 stabilisation at the phagosome. Overexpression of the inactive, GDP-bound form of Rab5 bypassed the pathogen-induced blockade of phago-lysosome biogenesis. This suggests that Tropheryma whipplei blocks the switch from Rab5 to Rab7 by acting on the Rab5 GTPase cycle. A bio-informatic analysis of the Tropheryma whipplei genome revealed a glyceraldehyde-3-phosphate dehydrogenase (GAPDH homologous with the GAPDH of Listeria monocytogenes, and this may be the bacterial protein responsible for blocking Rab5 activity. To our knowledge, Tropheryma whipplei is the first pathogen described to induce a "chimeric" phagosome stably expressing both Rab5 and Rab7, suggesting a novel and specific mechanism for subverting phagosome maturation.

  12. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7

    Science.gov (United States)

    Rojas, Raul; van Vlijmen, Thijs; Mardones, Gonzalo A.; Prabhu, Yogikala; Rojas, Adriana L.; Mohammed, Shabaz; Heck, Albert J.R.; Raposo, Graça; van der Sluijs, Peter; Bonifacino, Juan S.

    2008-01-01

    The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes. PMID:18981234

  13. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricio; Soto, Nicolás [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Jorge [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Mendoza, Pablo [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Natalia [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Quest, Andrew F.G. [Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Torres, Vicente A., E-mail: vatorres@med.uchile.cl [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile)

    2015-08-21

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo.

  14. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis.

    Science.gov (United States)

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F G; Torres, Vicente A

    2016-05-17

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis.

  15. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling

    Institute of Scientific and Technical Information of China (English)

    Chiara Sandri; Guido Serini; Francesca Caccavari; Donatella Valdembri; Chiara Camillo; Stefan Veltel; Martina Santambrogio; Letizia Lanzetti; Fedenco Bussolino; Johanna Ivaska

    2012-01-01

    During developmental and tumor angiogenesis,semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases.R-Ras is mainly expressed in vascular cells,where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms.We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and-angiogenic activity of R-Ras.Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia.Upon binding,GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF)to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes.Here,the R-Ras/RIN2/Rab5 signaling module activates Racl-dependent cell adhesion via TIAM1,a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate.In conclusion,the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Racl.

  16. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia.

    Science.gov (United States)

    Amir, Mohd; Wahiduzzaman; Dar, Mohammad Aasif; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-01

    Ras related protein (Rab5a) is one of the most important member of the Rab family which regulates the early endosome fusion in endocytosis, and it also helps in the regulation of the budding process. Here, for the first time we report a simple and reproducible method for the purification of the Rab5a from a medicinal plant Tinospora cordifolia. We have used weak cation-exchange (CM-Sepharose-FF) followed by gel-filtration chromatography. A purified protein of 22-kDa was observed on SDS-PAGE which was identified as Rab5a using MALDI-TOF/MS. Our purification procedure is fast and simple with high yield. The purified protein was characterized using circular dichroism for the measurement of secondary structure followed by GdmCl- and urea-induced denaturation to calculate the values of Gibbs free energy change (ΔGD), ΔGD°, midpoint of the denaturation Cm, i.e. molar GdmCl [GdmCl] and molar urea [Urea] concentration at which ΔGD=0; and m, the slope (=∂ΔGD/∂[d]) values. Furthermore, thermodynamic properties of Rab5a were also measured by differential scanning calorimeter. Here, using isothermal calorimeteric measurements we further showed that Rab5a binds with the GTP. This is a first report on the purification and biophysical characterization of Rab5a protein from T. cordifolia.

  17. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion.

    Science.gov (United States)

    Díaz, Jorge; Mendoza, Pablo; Ortiz, Rina; Díaz, Natalia; Leyton, Lisette; Stupack, Dwayne; Quest, Andrew F G; Torres, Vicente A

    2014-06-01

    Rab5 is a small GTPase that regulates early endosome trafficking and other cellular processes, including cell adhesion and migration. Specifically, Rab5 promotes Rac1 activation and cancer cell migration, but little is known about the upstream regulators of Rab5. We have previously shown that the scaffolding protein Caveolin-1 (CAV1) promotes Rac1 activation and migration of cancer cells. Here, we hypothesized that CAV1 stimulates Rab5 activation, leading to increased Rac1 activity and cell migration. Expression of CAV1 in B16-F10 mouse melanoma and HT-29(US) human colon adenocarcinoma cells increased the GTP loading of Rab5, whereas shRNA-mediated targeting of endogenous CAV1 in MDA-MB-231 breast cancer cells decreased Rab5-GTP levels. Accordingly, shRNA-mediated downregulation of Rab5 decreased CAV1-mediated Rac1 activation, cell migration and invasion in B16-F10 and HT-29(US) cells. Expression of CAV1 was accompanied by increased recruitment of Tiam1, a Rac1 guanine nucleotide exchange factor (GEF), to Rab5-positive early endosomes. Using the inhibitor NSC23766, Tiam1 was shown to be required for Rac1 activation and cell migration induced by CAV1 and Rab5. Mechanistically, we provide evidence implicating p85α (also known as PIK3R1), a Rab5 GTPase-activating protein (GAP), in CAV1-dependent effects, by showing that CAV1 recruits p85α, precluding p85α-mediated Rab5 inactivation and increasing cell migration. In summary, these studies identify a novel CAV1-Rab5-Rac1 signaling axis, whereby CAV1 prevents Rab5 inactivation, leading to increased Rac1 activity and enhanced tumor cell migration and invasion.

  18. RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin.

    Science.gov (United States)

    Los, Ferdinand C O; Kao, Cheng-Yuan; Smitham, Jane; McDonald, Kent L; Ha, Christine; Peixoto, Christina A; Aroian, Raffi V

    2011-02-17

    Pore-forming toxins (PFTs) secreted by pathogenic bacteria are the most common bacterial protein toxins and are important virulence factors for infection. PFTs punch holes in host cell plasma membranes, and although cells can counteract the resulting membrane damage, the underlying mechanisms at play remain unclear. Using Caenorhabditis elegans as a model, we demonstrate in vivo and in an intact epithelium that intestinal cells respond to PFTs by increasing levels of endocytosis, dependent upon RAB-5 and RAB-11, which are master regulators of endocytic and exocytic events. Furthermore, we find that RAB-5 and RAB-11 are required for protection against PFT and to restore integrity to the plasma membrane. One physical mechanism involved is the RAB-11-dependent expulsion of microvilli from the apical side of the intestinal epithelial cells. Specific vesicle-trafficking pathways thus protect cells against an attack by PFTs on plasma membrane integrity, via altered plasma membrane dynamics.

  19. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a potential mechanism for development of insulin resistance.

    Science.gov (United States)

    Tessneer, Kandice L; Jackson, Robert M; Griesel, Beth A; Olson, Ann Louise

    2014-09-01

    Glucose transporter isoform 4 (GLUT4) is the insulin-responsive glucose transporter mediating glucose uptake in adipose and skeletal muscle. Reduced GLUT4 translocation from intracellular storage compartments to the plasma membrane is a cause of peripheral insulin resistance. Using a chronic hyperinsulinemia (CHI)-induced cell model of insulin resistance and Rab5 mutant overexpression, we determined these manipulations altered endosomal sorting of GLUT4, thus contributing to the development of insulin resistance. We found that CHI induced insulin resistance in 3T3-L1 adipocytes by retaining GLUT4 in a Rab5-activity-dependent compartment that is unable to equilibrate with the cell surface in response to insulin. Furthermore, CHI-mediated retention of GLUT4 in this non-insulin-responsive compartment impaired filling of the transferrin receptor (TfR)-positive and TfR-negative insulin-responsive storage compartments. Our data suggest that hyperinsulinemia may inhibit GLUT4 by chronically maintaining GLUT4 in the Rab5 activity-dependent endosomal pathway and impairing formation of the TfR-negative and TfR-positive insulin-responsive GLUT4 pools. This model suggests that an early event in the development of insulin-resistant glucose transport in adipose tissue is to alter the intracellular localization of GLUT4 to a compartment that does not efficiently equilibrate with the cell surface when insulin levels are elevated for prolonged periods of time.

  20. CED-10/Rac1 regulates endocytic recycling through the RAB-5 GAP TBC-2.

    Directory of Open Access Journals (Sweden)

    Lin Sun

    Full Text Available Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane.

  1. Expression profile of Rab5, Rab7, tryptophan aspartate-containing coat protein, leprae lipoarabinomannan, and phenolic glycolipid-1 on the failure of the phagolysosome process in macrophages of leprosy patients as a viability marker of Mycobacterium leprae

    Directory of Open Access Journals (Sweden)

    Cita Rosita Sigit Prakoeswa

    2016-01-01

    Conclusion: In M. leprae infection, Rab5, Rab7, and Lep-LAM play important roles in the failure of phagolysosome process via a membrane trafficking pathway, while PGL-1 plays a role via blocking lysosomal activities. These inventions might be used for the development of an early diagnostic device in the future.

  2. Knockdown of Rab5a expression decreases cancer cell motility and invasion through integrin-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    Shi Shu-liang

    2011-08-01

    Full Text Available Abstract Background Rab GTPases function as modulators in intracellular transport. Rab5a, a member of the Rab subfamily of small GTPases, is an important regulator of vesicle traffic from the plasma membrane to early endosomes. Recent findings have reported that Rab5a gene was involved in the progression of cancer. In the present study, we investigated the effect of Rab5a on cervical cancer invasion and metastasis and the molecular mechanism underlying the involvement of Rab5a. Methods Rab5a expression was assessed by immunohistochemical analysis on a cervical cancer tissue microarray. RNA interference (RNAi was performed to knock down the endogenous expression of Rab5a gene in HeLa and SiHa cells. Cell motility was evaluated using invasion assay and wound migration assay in vitro. The expression levels of integrin-associated molecules were detected by Western blot and immunofluorescence. Results We found that Rab5a was expressed at a high level in cervical cancer tissues. Silencing of Rab5a expression significantly decreased cancer cell motility and invasiveness. The down-regulation of integrin-associated focal adhesion signaling molecules was further detected in Rab5a knockdown cells. Meanwhile, active GTP-bound Rac1, Cdc42, and RhoA were also down-regulated, accompanied with the reduction in the number and size of filopodia and lamellipodia. Conclusions Taken together, these data suggest that Rab5a functions in regulating the invasion phenotype, and we propose that this regulation may be via integrin-mediated signaling pathway in cervical cancer cells.

  3. Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease.

    Science.gov (United States)

    Matej, Radoslav; Botond, Gergö; László, Lajos; Kopitar-Jerala, Natasa; Rusina, Robert; Budka, Herbert; Kovacs, Gabor G

    2010-09-01

    Sporadic motor neuron disease (MND) is characterized by progressive degeneration of motor neurons and intraneuronal cytoplasmic translocation and deposition of the nuclear protein TDP-43. There is a paucity of data on the subcellular mechanisms of the nuclear-cytoplasmic trafficking of TDP-43, particularly about the precise role of the endosomal-lysosomal system (ELS). In the present study, using a neuron-specific morphometric approach, we examined the expression of the early endosomal marker Rab5 and lysosomal cathepsins B, D, F, and L as well as PAS-stained structures in the anterior horn cells in 11 individuals affected by sporadic MND and 5 age-matched controls. This was compared with the expression of ubiquitin, p62 and TDP-43 and its phosphorylated form. The principal finding was the increased expression of the endosomal marker Rab5 and lysosomal cathepsin D, and of PAS-positive structures in motor neurons of MND cases. Furthermore, the area-portion of Rab5 immunoreactivity correlated well with the intracellular accumulation of ubiquitin, p62 and (phosphorylated) TDP-43. However, double immunolabelling and immunogold electron microscopy excluded colocalization of phosphorylated TDP-43 with the ELS. These data contrast with observations on neuronal cytopathology in Alzheimer's or prion diseases where the disease-specific proteins are processed within endosomes, and suggest a distinct role of the ELS in MND.

  4. Endocytosis of adiponectin receptor 1 through a clathrin-and Rab5-dependent pathway

    Institute of Scientific and Technical Information of China (English)

    Qiurong Ding; Zhenzhen Wang; Yan Chen

    2009-01-01

    In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical roles in the pathogen-esis of diabetes and metabolic syndrome. Here, we analyzed the endocytosis of adiponectin and adiponectin receptor 1 (AdipoR1) and found that they are both internalized into transferrin-positive compartments that follow similar traffic routes. Blocking clathrin-mediated endocytosis by expressing Epsl5 mutants or depleting K+ trapped AdipoRl at the plasma membrane, and K+ depletion abolished adiponectin internalization, indicating that the endocytosis of AdipoRl and adiponectin is clathrin-dependent. Depletion of K+ and overexpression of Eps15 mutants enhance adiponectin-stimulated AMP-activated protein kinase phosphorylation, suggesting that the endocytosis of AdipoR1 might down-regulate adiponectin signaling. In addition, AdipoR1 colocalizes with the small GTPase Rab5, and a dominant negative Rab5 abrogates AdipoR1 endocytosis. These data indicate that AdipoRl is internalized through a clathrin- and Rab5-dependent pathway and that endocytosis may play a role in the regulation of adiponectin signaling.

  5. Expression profile of Rab5, Rab7, tryptophan aspartate-containing coat protein, leprae lipoarabinomannan, and phenolic glycolipid-1 on the failure of the phagolysosome process in macrophages of leprosy patients as a viability marker of Mycobacterium leprae.

    Science.gov (United States)

    Prakoeswa, Cita Rosita Sigit; Wahyuni, Ratna; Iswahyudi; Adriaty, Dinar; Yusuf, Irawan; Sutjipto; Agusni, Indropo; Izumi, Shinzo

    2016-06-01

    Phagolysosome process in macrophage of leprosy patients' is important in the early phase of eliminating Mycobacterium leprae invasion. This study was to clarify the involvement of Rab5, Rab7, and trytophan aspartate-containing coat protein (TACO) from host macrophage and leprae lipoarabinomannan (Lep-LAM) and phenolic glycolipid-1 (PGL-1) from M. leprae cell wall as the reflection of phagolysosome process in relation to 16 subunit ribosomal RNA (16S rRNA) M. leprae as a marker of viability of M. leprae. Using a cross sectional design study, skin biopsies were obtained from 47 newly diagnosed, untreated leprosy at Dr Soetomo Hospital, Surabaya, Indonesia. RNA isolation and complementary DNA synthesis were performed. Samples were divided into two groups: 16S rRNA M. leprae-positive and 16S rRNA M. leprae-negative. The expressions of Rab5, Rab7, TACO, Lep-LAM, and PGL-1 were assessed with an immunohistochemistry technique. Using Mann-Whitney U analysis, a significant difference in the expression profile of Rab5, Rab7, Lep-LAM, and PGL-1 was found (p.05). Spearman analysis revealed that there was a significant correlation between the score of Rab5, Rab7, Lep-LAM, and PGL-1 and the score of 16S rRNA M. leprae (p<.05). In M. leprae infection, Rab5, Rab7, and Lep-LAM play important roles in the failure of phagolysosome process via a membrane trafficking pathway, while PGL-1 plays a role via blocking lysosomal activities. These inventions might be used for the development of an early diagnostic device in the future. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  6. Molecular characterization and expression analysis of a GTP-binding protein (MiRab5) in Mangifera indica.

    Science.gov (United States)

    Liu, Zhao-liang; Luo, Cong; Dong, Long; Van Toan, Can; Wei, Peng-xiao; He, Xin-hua

    2014-04-25

    The Rab family, the largest branch of Ras small GTPases, plays a crucial role in the vesicular transport in plants. The members of Rab family act as molecular switches that regulate the fusion of vesicles with target membranes through conformational changes. However, little is known about the Rab5 gene involved in fruit ripening and stress response. In this study, the MiRab5 gene was isolated from stress-induced Mangifera indica. The full-length cDNA sequence was 984bp and contained an open reading frame of 600bp, which encoded a 200 amino acid protein with a molecular weight of 21.83kDa and a theoretical isoelectric point of 6.99. The deduced amino acid sequence exhibited high homology with tomato (91% similarity) and contains all five characteristic Rab motifs. Real-time quantitative RT-PCR analysis demonstrated that MiRab5 was ubiquitously expressed in various mango tree tissues at different levels. The expression of MiRab5 was up-regulated during later stages of fruit ripening. Moreover, MiRab5 was generally up-regulated in response to various abiotic stresses (cold, salinity, and PEG treatments). Recombinant MiRab5 protein was successfully expressed and purified. SDS-PAGE and western blot analysis indicated that the expressed protein was recognized by the anti-6-His antibody. These results provide insights into the role of the MiRab5 gene family in fruit ripening and stress responses in the mango plant.

  7. Probing E-cadherin endocytosis by morpholino-mediated Rab5 knockdown in zebrafish.

    Science.gov (United States)

    Ulrich, Florian; Heisenberg, Carl-Philipp

    2008-01-01

    The controlled internalization of membrane receptors and lipids is crucial for cells to control signaling pathways and interact with their environment. During clathrin-mediated endocytosis, membrane constituents are transported via endocytic vesicles into early endosomes, from which they are further distributed within the cell. The small guanosine triphosphatase (GTPase) Rab5 is both required and sufficient for the formation of these early endosomes and can be used to experimentally address endocytic processes. Recent evidence shows that endocytic turnover of E-cadherin regulates the migration of mesendodermal cells during zebrafish gastrulation by modulating their adhesive interactions with neighboring cells. This in turn leads to effective and synchronized movement within the embryo. In this review, we discuss techniques to manipulate E-cadherin endocytosis by morpholino-mediated knockdown of rab5 during zebrafish gastrulation. We describe the use of antibodies specifically directed against zebrafish E-cadherin to detect its intracellular localization and of in situ hybridization and primary cell culture to reveal patterns of cell migration and adhesion, respectively.

  8. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta; Katayama, Chisako [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Shinohara, Miki; Shinohara, Akira [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Maekawa, Shohei [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho Nada, Kobe 657-8501 (Japan)

    2013-11-29

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.

  9. Modulation of RAB5A early endosome trafficking in response to KRas mediated macropinocytic fluxes in pancreatic cancer cells.

    Science.gov (United States)

    Teske, Christian; Schweitzer, Christine; Palamidessi, Andrea; Aust, Daniela E; Scita, Giorgio; Weitz, Jürgen; Welsch, Thilo

    2017-09-01

    KRAS is the key mutated gene in pancreatic ductal adenocarcinoma (PDAC). Emerging evidence indicates that KRas modulates endocytic uptake. The present study aimed to explore the fate of early endosomal trafficking under the control of KRas expression in PDAC. Surprisingly, PANC-1 cells lacking KRas exhibited significantly enlarged early and late endosomes containing internalized dextran and epidermal growth factor. Endosome enlargement was accompanied by reduced endosomal degradation. Both KRas silencing and lysosomal blockade caused an upregulation of the master regulator of early endosome biogenesis, RAB5A, which is likely responsible for the expansion of the early endosomal compartment, because simultaneous KRAS/RAB5A knockdown abolished endosome enlargement. In contrast, early endosome shrinkage was seen in MIA PaCa-2 cells despite RAB5A upregulation, indicating that distinct KRas-modulated responses operate in different metabolic subtypes of PDAC. In conclusion, mutant KRAS promotes endosomal degradation in PDAC cell lines, which is impaired by KRAS silencing. Moreover, KRAS silencing activates RAB5A upregulation and drives PDAC subtype-dependent modulation of endosome trafficking. Copyright © 2017. Published by Elsevier Inc.

  10. FGF21 promotes endothelial cell angiogenesis through a dynamin-2 and Rab5 dependent pathway.

    Directory of Open Access Journals (Sweden)

    Usman Yaqoob

    Full Text Available Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling.

  11. FGF21 Promotes Endothelial Cell Angiogenesis through a Dynamin-2 and Rab5 Dependent Pathway

    Science.gov (United States)

    Yaqoob, Usman; Jagavelu, Kumaravelu; Shergill, Uday; de Assuncao, Thiago; Cao, Sheng; Shah, Vijay H.

    2014-01-01

    Binding of angiogenic molecules with cognate receptor tyrosine kinases (RTK) is required for angiogenesis however the precise link between RTK binding, endocytosis, and signaling requires further investigation. Here, we use FGFR1 as a model to test the effects of the large GTPase and endocytosis regulatory molecule dynamin-2 on angiogenic signaling in context of distinct FGF ligands. In vitro, overexpression of dominant negative dynamin-2 (DynK44A) attenuates FGFR1 activation of Erk and tubulogenesis by FGF2. Furthermore, we identify FGF21, a non-classical, FGF ligand implicated in diverse human pathologies as an angiogenic molecule acting through FGFR1 and β-Klotho coreceptor. Disruption of FGFR1 activation of ERK by FGF21 is achieved by perturbation of the function of both dynamin-2 and Rab5 GTPase. In vivo, mice harboring endothelial selective overexpression of DynK44A, show impaired angiogenesis in response to FGF21. In conclusion, dynamin dependent endocytosis of FGFR1 is required for in vitro and in vivo angiogenesis in response to FGF2 and the non-classical FGF ligand, FGF21. These studies extend our understanding of the relationships between RTK binding, internalization, endosomal targeting, and angiogenic signaling. PMID:24848261

  12. DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Aniek van der Vaart

    2015-12-01

    Full Text Available Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL, resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis.

  13. DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans.

    Science.gov (United States)

    van der Vaart, Aniek; Rademakers, Suzanne; Jansen, Gert

    2015-12-01

    Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT) plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL), resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis.

  14. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kajiho

    Full Text Available The Rab family of small guanosine triphosphatases (GTPases plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs. Ras and Rab interactor (or Ras interaction/interference-like (RINL, which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM domain-containing (Anks protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin.

  15. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Yuta [Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Kagiwada, Satoshi [Department of Biological Sciences, Faculty of Science, Nara Women' s University, Kitauoyanishi-machi, Nara 630-8506 (Japan); Shimazu, Sayuri [Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Takegawa, Kaoru [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Noguchi, Tetsuko [Department of Biological Sciences, Faculty of Science, Nara Women' s University, Kitauoyanishi-machi, Nara 630-8506 (Japan); Miyamoto, Masaaki, E-mail: miya@kobe-u.ac.jp [Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Center for Supports to Research and Education Activities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan)

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  16. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  17. Tonoplast targeting of VHA-a3 relies on a Rab5-mediated but Rab7-independent vacuolar trafficking route.

    Science.gov (United States)

    Feng, Qiang-Nan; Zhang, Yan; Li, Sha

    2017-04-01

    Vacuolar trafficking routes and their regulators have recently drawn lots of attention in plant cell biology. A recent study reported the discovery of a plant-specific vacuolar trafficking route, i.e., a direct ER-to-vacuole route, through analysis of VHA-a3 subcellular targeting, a key component for the tonoplast V-ATPases. Our recent findings showed that VHA-a3 targets to the tonoplast through a Rab5-mediated but Rab7-independent pathway, shedding new lights on the unconventional vacuolar trafficking route in plant cells. © 2017 Institute of Botany, Chinese Academy of Sciences.

  18. The Autophagic Process Occurs in Human Bone Metastasis and Implicates Molecular Mechanisms Differently Affected by Rab5a in the Early and Late Stages

    Directory of Open Access Journals (Sweden)

    Paola Maroni

    2016-03-01

    Full Text Available Autophagy favours metastatic growth through fuelling energy and nutrients and resistance to anoikis, typical of disseminated-tumour cells. The autophagic process, mediated by a unique organelle, the autophagosome, which fuses with lysosomes, is divided into three steps. Several stages, especially early omegasome formation and isolation-membrane initiation, remain controversial; molecular mechanisms involve the small-GTPase Rab5a, which regulates vesicle traffic for autophagosome formation. We examined Rab5a involvement in the function of key members of ubiquitin-conjugation systems, Atg7 and LC3-lipidated, interacting with the scaffold-protein p62. Immunohistochemistry of Rab5a was performed in human specimens of bone metastasis and pair-matched breast carcinoma; the autophagic-molecular mechanisms affected by Rab5a were evaluated in human 1833 bone metastatic cells, derived from breast-carcinoma MDA-MB231 cells. To clarify the role of Rab5a, 1833 cells were transfected transiently with Rab5a-dominant negative, and/or stably with the short-hairpin RNA Atg7, were exposed to two inhibitors of autolysosome function, and LC3II and p62 expression was measured. We showed basal autophagy in bone-metastatic cells and the pivotal role of Rab5a together with Beclin 1 between the early stages, elongation of isolation membrane/closed autophagosome mediated by Atg7, and the late-degradative stages. This regulatory network might occur in bone-metastasis and in high-grade dysplastic lesions, preceding invasive-breast carcinoma and conferring phenotypic characteristics for dissemination.

  19. The Autophagic Process Occurs in Human Bone Metastasis and Implicates Molecular Mechanisms Differently Affected by Rab5a in the Early and Late Stages

    Science.gov (United States)

    Maroni, Paola; Bendinelli, Paola; Resnati, Massimo; Matteucci, Emanuela; Milan, Enrico; Desiderio, Maria Alfonsina

    2016-01-01

    Autophagy favours metastatic growth through fuelling energy and nutrients and resistance to anoikis, typical of disseminated-tumour cells. The autophagic process, mediated by a unique organelle, the autophagosome, which fuses with lysosomes, is divided into three steps. Several stages, especially early omegasome formation and isolation-membrane initiation, remain controversial; molecular mechanisms involve the small-GTPase Rab5a, which regulates vesicle traffic for autophagosome formation. We examined Rab5a involvement in the function of key members of ubiquitin-conjugation systems, Atg7 and LC3-lipidated, interacting with the scaffold-protein p62. Immunohistochemistry of Rab5a was performed in human specimens of bone metastasis and pair-matched breast carcinoma; the autophagic-molecular mechanisms affected by Rab5a were evaluated in human 1833 bone metastatic cells, derived from breast-carcinoma MDA-MB231 cells. To clarify the role of Rab5a, 1833 cells were transfected transiently with Rab5a-dominant negative, and/or stably with the short-hairpin RNA Atg7, were exposed to two inhibitors of autolysosome function, and LC3II and p62 expression was measured. We showed basal autophagy in bone-metastatic cells and the pivotal role of Rab5a together with Beclin 1 between the early stages, elongation of isolation membrane/closed autophagosome mediated by Atg7, and the late-degradative stages. This regulatory network might occur in bone-metastasis and in high-grade dysplastic lesions, preceding invasive-breast carcinoma and conferring phenotypic characteristics for dissemination. PMID:27023526

  20. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5·Vps9 system.

    Science.gov (United States)

    Uejima, Tamami; Ihara, Kentaro; Goh, Tatsuaki; Ito, Emi; Sunada, Mariko; Ueda, Takashi; Nakano, Akihiko; Wakatsuki, Soichi

    2010-11-19

    Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg(2+) and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.

  1. GDP-bound and Nucleotide-free Intermediates of the Guanine Nucleotide Exchange in the Rab5·Vps9 System*

    Science.gov (United States)

    Uejima, Tamami; Ihara, Kentaro; Goh, Tatsuaki; Ito, Emi; Sunada, Mariko; Ueda, Takashi; Nakano, Akihiko; Wakatsuki, Soichi

    2010-01-01

    Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg2+ and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction. PMID:20833725

  2. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus

    Science.gov (United States)

    Xu, Kai; Nagy, Peter D.

    2016-01-01

    Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs). The VRCs built by Tomato bushy stunt virus (TBSV) are enriched with phosphatidylethanolamine (PE) through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP)-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5–positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment. PMID:27760128

  3. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  4. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  5. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm.

    Science.gov (United States)

    Wen, Liuying; Fukuda, Masako; Sunada, Mariko; Ishino, Sonoko; Ishino, Yoshizumi; Okita, Thomas W; Ogawa, Masahiro; Ueda, Takashi; Kumamaru, Toshihiro

    2015-10-01

    Rice glutelin polypeptides are initially synthesized on the endoplasmic reticulum (ER) membrane as a proglutelin, which are then transported to the protein storage vacuole (PSV) via the Golgi apparatus. Rab5 and its cognate activator guanine nucleotide exchange factor (GEF) are essential for the intracellular transport of proglutelin from the Golgi apparatus to the PSV. Results from previous studies showed that the double recessive type of glup4/rab5a and glup6/gef mutant accumulated much higher amounts of proglutelin than either parent line. The present study demonstrates that the double recessive type of glup4/rab5a and glup6/gef mutant showed not only elevated proglutelin levels and much larger paramural bodies but also reduced the number and size of PSVs, indicating a synergistic mutation effect. These observations led us to the hypothesis that other isoforms of Rab5 and GEF also participate in the intracellular transport of rice glutelin. A database search identified a novel guanine nucleotide exchange factor, Rab5-GEF2. Like GLUP6/GEF, Rab5-GEF2 was capable of activating Rab5a and two other Rab5 isoforms in in vitro GTP/GDP exchange assays. GEF proteins consist of the helical bundle (HB) domain at the N-terminus, Vps9 domain, and a C-terminal region. By the deletion analysis of GEFs, the HB domain was found essential for the activation of Rab5 proteins.

  6. Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency.

    Science.gov (United States)

    Compton, Lauren M; Ikonomov, Ognian C; Sbrissa, Diego; Garg, Puneet; Shisheva, Assia

    2016-09-01

    The two evolutionarily conserved mammalian lipid kinases Vps34 and PIKfyve are involved in an important physiological relationship, whereby the former produces phosphatidylinositol (PtdIns) 3P that is used as a substrate for PtdIns(3,5)P2 synthesis by the latter. Reduced production of PtdIns(3,5)P2 in proliferating mammalian cells is phenotypically manifested by the formation of multiple translucent cytoplasmic vacuoles, readily rescued upon exogenous delivery of PtdIns(3,5)P2 or overproduction of PIKfyve. Although the aberrant vacuolation phenomenon has been frequently used as a sensitive functional measure of localized PtdIns(3,5)P2 reduction, cellular factors governing the appearance of cytoplasmic vacuoles under PtdIns3P-PtdIns(3,5)P2 loss remain elusive. To gain further mechanistic insight about the vacuolation process following PtdIns(3,5)P2 reduction, in this study we sought for cellular mechanisms required for manifestation of the aberrant endomembrane vacuoles triggered by PIKfyve or Vps34 dysfunction. The latter was achieved by various means such as pharmacological inhibition, gene disruption, or dominant-interference in several proliferating mammalian cell types. We report here that inhibition of V-ATPase with bafilomycin A1 as well as inactivation of the GTP-GDP cycle of Rab5a GTPase phenotypically rescued or completely precluded the cytoplasmic vacuolization despite the continued presence of inactivated PIKfyve or Vps34. Bafilomycin A1 also restored the aberrant EEA1-positive endosomes, enlarged upon short PIKfyve inhibition with YM201636. Together, our work identifies for the first time that factors such as active V-ATPase or functional Rab5a cycle are acting coincidentally with the PtdIns(3,5)P2 reduction in triggering formation of aberrant cytoplasmic vacuoles under PIKfyve or Vps34 dysfunction.

  7. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  8. The expression and correlation of Rab5A and CD44v9 in breast cancer tissues%Rab5A与CD44v9在乳腺癌组织中的表达及其相关性

    Institute of Scientific and Technical Information of China (English)

    谷新悦; 查尼尔; 张明; 李志高

    2012-01-01

    目的 研究乳腺癌组织中Rab5A与CD44v9蛋白的表达及其相关性.方法 应用免疫组织化学S-P法检测53例术后乳腺癌标本、21例乳腺良性肿瘤标本中Rab5A与CD44v9蛋白的表达情况.结果 Rab5A与CD44v9蛋白在乳腺癌组的表达率显著高于良性肿瘤组(P<0.05);Rab5A和CD44v9蛋白在有淋巴结转移的乳腺癌组中的表达率显著高于无淋巴结转移组(P<0.05),并且二者的表达水平均与淋巴结状态相关,二者的表达水平增高,则发生淋巴结转移的概率增加(P<0.05);Rab5A和CD44v9蛋白的表达程度与乳腺癌TNM分期呈正相关,分期越晚表达越强(P<0.05);乳腺癌组织中,Rab5A与CD44v9蛋白的表达呈正相关(P<0.05).结论 Rab5A和CD44v9蛋白在乳腺癌的发生发展、侵袭转移中可能起到协同作用.两者联合检测对于早期诊断乳腺癌及判断其预后有重要的临床意义.%Objective To evaluate the expression and correlation of Rab5A and CD44v9 in breast cancer tissues. Methods The expression of Rab5A and CD44v9 in 53 cases of breast cancer tissues and 21 cases of benign breast disease tissues was detected by immunohistochemistry S - P method. Results The expressions of Rab5A and CD44v9 were obviously stronger in breast cancer tissues than that in benign breast disease tissues( P <0.05 );the expression of Rab5A and CD44v9 were obviously stronger in lymph node - positive cases than that in negative cases( P < 0. 05 ), and were correlated with lymph - node status. With the two proteins expressed at higher levels,the probability of node - positive cases was enhanced( P <0. 05 ). Moreover, the expressions of the two proteins were positive correlation to TNM stage( P < 0. 05 ). In addition, the expressions of the two proteins were positive correlation to each other, the higher levels of either protein was expressed at the higher levels of the other( P <0. 05 ). Conclusions Rab5A and CD44v9 proteins may play a synergetic role in breast

  9. Evidence that neomycin inhibits human cytomegalovirus infection of fibroblasts.

    Science.gov (United States)

    Lobert, P E; Hober, D; Delannoy, A S; Wattré, P

    1996-01-01

    The effect of phosphoinositide-binding aminoglycosides, such as neomycin, gentamicin and streptomycin, on human cytomegalovirus (HCMV) infection of human fibroblasts MRC-5 was studied. The inhibition of HCMV infection was obtained with all of these molecules but neomycin was more effective than the others. We showed that the inoculation of the cells with cell-free viral suspension in presence of neomycin concentrations above 5 mM at 37 degrees C, inhibited more than 98% the HCMV infection. However, the preincubation of the fibroblasts with neomycin at 4 degrees C, before the removal of the drug and the inoculation of the cells, induced only a 30% decrease in the number of infected cells. Addition of neomycin after the HCMV-binding at 4 degrees C or the infection of the cells was less efficient to inhibit HCMV infection than the standard incubation of neomycin during inoculation of the fibroblasts. Indeed, 1 hour after the inoculation of the cells at 37 degrees C, neomycin still inhibited HCMV infection, but 4 hours after the inoculation, this drug had no effect on HCMV infection. Our findings demonstrated that neomycin must be present at the time of infection in order to exert a full inhibiting effect. The effect of neomycin on the HCMV infection was almost immediate upon the addition of the drug (binding and/or internalization) and after the virus internalization (inhibition of immediate-early events). We suggest that neomycin and other aminoglycoside antibiotics may interact with HCMV glycoproteins for binding to similar structural features of cell surface heparan sulfate proteoglycans and may inhibit HCMV infection in fibroblasts by disrupting phosphoinositide-mediated events in the cells.

  10. Inhibition of HIV-1 lentiviral particles infectivity by Gynostemma ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... study in which the inhibition of viral vector infectivity of HeLa cells was assessed flow cytometrically by measuring the expression .... plant Gynostemma pentaphyllum (Cucurbitaceae) for ..... sapogenins and differentiation from.

  11. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection

    Science.gov (United States)

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.

    2016-01-01

    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  12. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection.

    Directory of Open Access Journals (Sweden)

    Michael J Conway

    2016-09-01

    Full Text Available Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV types 1-4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions.

  13. Interferon-γ Inhibits Ebola Virus Infection

    OpenAIRE

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. F...

  14. Teicoplanin inhibits Ebola pseudovirus infection in cell culture.

    Science.gov (United States)

    Wang, Yizhuo; Cui, Rui; Li, Guiming; Gao, Qianqian; Yuan, Shilin; Altmeyer, Ralf; Zou, Gang

    2016-01-01

    There is currently no approved antiviral therapy for treatment of Ebola virus disease. To discover readily available approved drugs that can be rapidly repurposed for treatment of Ebola virus infections, we screened 1280 FDA-approved drugs and identified glycopeptide antibiotic teicoplanin inhibiting Ebola pseudovirus infection by blocking virus entry in the low micromolar range. Teicoplanin could be evaluated further and incorporated into ongoing clinical studies.

  15. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    Science.gov (United States)

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  16. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection.

    Science.gov (United States)

    Martínez, María Guadalupe; Prado Acosta, Mariano; Candurra, Nélida A; Ruzal, Sandra M

    2012-06-15

    It has been previously described that S-layer binds to the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209). It was also shown that DC-SIGN is a cell-surface adhesion factor that enhances viral entry of several virus families. Among those, Junin virus (JUNV) entry is enhanced in cells expressing DC-SIGN and for that reason surface-layer protein (S-layer) of Lactobacillus acidophilus ATCC 4365 was evaluated as a possible JUNV inhibitor. Experiments using 3T3 cells stably expressing DC-SIGN, showed an almost complete inhibition of JUNV infection when they were treated with S-layer in a similar extend as the inhibition shown by mannan. However no inhibition effect was observed in 3T3 wild type cells or in 3T3 cells expressing liver/lymph node-specific ICAM-3 grabbing nonintegrin (L-SIGN or DC-SIGNR or CD209L). Treatments with S-layer during different times in the infection demonstrated that inhibition was only observed when S-layer was presented in early stages of the viral infection. This inhibition does not involve the classic recognition of mannose by this C-type lectin as the S-layer showed no evidence to be glycosylated. In fact, the highly basic nature of the S-layer (pI>9.5) seems to be involved in electrostatic interactions between DC-SIGN and S-layer, since high pH abolished the inhibitory effect on infection cause by the S-layer. In silico analysis predicts a Ca(2+)-dependant carbohydrate recognition domain in the SlpA protein. This novel characteristic of the S-layer, a GRAS status protein, contribute to the pathogen exclusion reported for this probiotic strain and may be applied as an antiviral agent to inhibit several kinds of viruses.

  17. Inhibition of SERPINe1 reduces rhabdoviral infections in zebrafish.

    Science.gov (United States)

    Estepa, Amparo; Coll, Julio

    2015-11-01

    While exploring the molecular mechanisms behind the fin hemorrhages that follow zebrafish (Danio rerio) early infection with viral haemorrhagic septicemia virus (VHSV), we discovered that most serpin (serine protease inhibitor) gene transcripts were upregulated, except those of serpine1. Surprisingly, only SERPINe1-derived 14-mer peptide and low molecular weight drugs targeting SERPINe1 (i.e. tannic acid, EGCG, tiplaxtinin) inhibited in vitro infections not only of VHSV, but also of other fish rhabdoviruses such as infectious hematopoietic necrosis virus (IHNV) and spring viremia carp virus (SVCV). While the mechanisms that inhibited rhabdoviral infections remain speculative, these and other results suggested that SERPINEe1-derived peptide specifically targeted viral infectivity rather than virions. Practical applications might be developed from these studies since preliminary evidences showed that tannic acid could be used to reduce VHSV-caused mortalities. These studies are an example of how the identification of host genes targeted by viral infections using microarrays might facilitate the identification of novel prevention drugs in aquaculture and illuminate viral infection mechanisms.

  18. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Directory of Open Access Journals (Sweden)

    Milly M Choy

    2015-11-01

    Full Text Available The mosquito-borne dengue virus (DENV is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.

  19. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection.

    Science.gov (United States)

    Weber, Christopher; Sliva, Katja; von Rhein, Christine; Kümmerer, Beate M; Schnierle, Barbara S

    2015-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions, including Europe and the United States of America and might cause new, large outbreaks there. No treatment or licensed CHIKV vaccine exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has, among other beneficial properties, antiviral activities. Therefore, we examined if EGCG has antiviral activity against CHIKV. EGCG inhibited CHIKV infection in vitro, blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV attachment to target cells. Thus EGCG might be used as a lead structure to develop more effective antiviral drugs.

  20. Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection.

    Science.gov (United States)

    Li, Hongen; Chen, Yutao; Zhang, Bing; Niu, Xiaodi; Song, Meng; Luo, Zhaoqing; Lu, Gejin; Liu, Bowen; Zhao, Xiaoran; Wang, Jianfeng; Deng, Xuming

    2016-04-15

    The critical role of sortase A in gram-positive bacterial pathogenicity makes this protein a good potential target for antimicrobial therapy. In this study, we report for the first time the crystal structure of Listeria monocytogenes sortase A and identify the active sites that mediate its transpeptidase activity. We also used a sortase A (SrtA) enzyme activity inhibition assay, simulation, and isothermal titration calorimetry analysis to discover that chalcone, an agent with little anti-L. monocytogenes activity, could significantly inhibit sortase A activity with an IC50 of 28.41 ± 5.34 μM by occupying the active site of SrtA. The addition of chalcone to a co-culture of L. monocytogenes and Caco-2 cells significantly inhibited bacterial entry into the cells and L. monocytogenes-mediated cytotoxicity. Additionally, chalcone treatment decreased the mortality of infected mice, the bacterial burden in target organs, and the pathological damage to L. monocytogenes-infected mice. In conclusion, these findings suggest that chalcone is a promising candidate for the development of treatment against L. monocytogenes infection.

  1. The pleckstrin homology domain of phospholipase D1 accelerates EGFR endocytosis by increasing the expression of the Rab5 effector, rabaptin-5.

    Science.gov (United States)

    Park, Mi Hee; Choi, Kang-Yell; Min, Do Sik

    2015-12-18

    Endocytosis is differentially regulated by hypoxia-inducible factor-1α (HIF-1α) and phospholipase D (PLD). However, the relationship between HIF-1α and PLD in endocytosis is unknown. HIF-1α is degraded through the prolyl hydroxylase (PHD)/von Hippel-Lindau (VHL) ubiquitination pathway in an oxygen-dependent manner. Here, we show that PLD1 recovers the decrease in epidermal growth factor receptor (EGFR) endocytosis induced by HIF-1α independent of lipase activity via the Rab5-mediated endosome fusion pathway. EGF-induced interaction of PLD1 with HIF-1α, PHD and VHL may contribute to EGFR endocytosis. The pleckstrin homology domain (PH) of PLD1 itself promotes degradation of HIF-1α, then accelerates EGFR endocytosis via upregulation of rabaptin-5 and suppresses tumor progression. These findings reveal a novel role of the PLD1-PH domain as a positive regulator of endocytosis and provide a link between PLD1 and HIF-1α in the EGFR endocytosis pathway.

  2. Effective inhibition of MERS-CoV infection by resveratrol.

    Science.gov (United States)

    Lin, Shih-Chao; Ho, Chi-Tang; Chuo, Wen-Ho; Li, Shiming; Wang, Tony T; Lin, Chi-Chen

    2017-02-13

    Middle East Respiratory Syndrome coronavirus (MERS-CoV) is an emerging viral pathogen that causes severe morbidity and mortality. Up to date, there is no approved or licensed vaccine or antiviral medicines can be used to treat MERS-CoV-infected patients. Here, we analyzed the antiviral activities of resveratrol, a natural compound found in grape seeds and skin and in red wine, against MERS-CoV infection. We performed MTT and neutral red uptake assays to assess the survival rates of MERS-infected Vero E6 cells. In addition, quantitative PCR, western blotting, and immunofluorescent assays determined the intracellular viral RNA and protein expression. For viral productivity, we utilized plaque assays to confirm the antiviral properties of resveratrol against MERS-CoV. Resveratrol significantly inhibited MERS-CoV infection and prolonged cellular survival after virus infection. We also found that the expression of nucleocapsid (N) protein essential for MERS-CoV replication was decreased after resveratrol treatment. Furthermore, resveratrol down-regulated the apoptosis induced by MERS-CoV in vitro. By consecutive administration of resveratrol, we were able to reduce the concentration of resveratrol while achieving inhibitory effectiveness against MERS-CoV. In this study, we first demonstrated that resveratrol is a potent anti-MERS agent in vitro. We perceive that resveratrol can be a potential antiviral agent against MERS-CoV infection in the near future.

  3. Sulforaphane Inhibits HIV Infection of Macrophages through Nrf2.

    Directory of Open Access Journals (Sweden)

    Andrea Kinga Marias Furuya

    2016-04-01

    Full Text Available Marburg virus, the Kaposi's sarcoma-associated herpesvirus (KSHV and Dengue virus all activate, and benefit from, expression of the transcription regulator nuclear erythroid 2-related factor 2 (Nrf2. The impact of Nrf2 activation on human immunodeficiency virus (HIV infection has not been tested. Sulforaphane (SFN, produced in cruciferous vegetables after mechanical damage, mobilizes Nrf2 to potently reprogram cellular gene expression. Here we show for the first time that SFN blocks HIV infection in primary macrophages but not in primary T cells. Similarly SFN blocks infection in PMA-differentiated promonocytic cell lines, but not in other cell lines tested. siRNA-mediated depletion of Nrf2 boosted HIV infectivity in primary macrophages and reduced the anti-viral effects of SFN treatment. This supports a model in which anti-viral activity is mediated through Nrf2 after it is mobilized by SFN. We further found that, like the type I interferon-induced cellular anti-viral proteins SAMHD1 and MX2, SFN treatment blocks infection after entry, but before formation of 2-LTR circles. Interestingly however, neither SAMHD1 nor MX2 were upregulated. This shows for the first time that Nrf2 action can potently block HIV infection and highlights a novel way to trigger this inhibition.

  4. Piroxicam inhibits herpes simplex virus type 1 infection in vitro.

    Science.gov (United States)

    Astani, A; Albrecht, U; Schnitzler, P

    2015-05-01

    Piroxicam is a potent, nonsteroidal, anti-inflammatory agent (NSAID) which also exhibits antipyretic activity. The antiviral effect of piroxicam against herpes simplex virus type 1 (HSV-1) was examined in vitro on RC-37 monkey kidney cells using a plaque reduction assay. Piroxicam was dissolved in ethanol or dimethylsulfoxide (DMSO) and the 50% inhibitory concentration (IC50) was determined at 4 μg/ml and 75 μg/ml, respectively. The IC50 for the standard antiherpetic drug acyclovir was determined at 1.6 μM. At non-cytotoxic concentrations of these piroxicam solutions, plaque formation was significantly reduced by 62.4% for ethanolic piroxicam and 72.8% for piroxicam in DMSO. The mode of antiviral action of these drugs was assessed by time-on-addition assays. No antiviral effect was observed when cells were incubated with piroxicam prior to infection with HSV-1 or when HSV-1 infected cells were treated with dissolved piroxicam. Herpesvirus infection was, however, significantly inhibited when HSV-1 was incubated with piroxicam prior to the infection of cells. These results indicate that piroxicam affected the virus before adsorption, but not after penetration into the host cell, suggesting that piroxicam exerts a direct antiviral effect on HSV-1. Free herpesvirus was sensitive to piroxicam in a concentration-dependent manner and the inhibition of HSV-1 appears to occur before entering the cell but not after penetration of the virus into the cell. Considering the lipophilic nature of piroxicam, which enables it to penetrate the skin, it might be suitable for topical treatment of herpetic infections.

  5. Beta-interferon inhibits cell infection by Trypanosoma cruzi

    Science.gov (United States)

    Kierszenbaum, F.; Sonnenfeld, G.

    1984-01-01

    Beta interferon has been shown to inhibit the capacity of bloodstream forms of the flagellate Trypanosoma cruzi, the causative agent of Chagas' disease, to associate with and infect mouse peritoneal macrophages and rat heart myoblasts. The inhibitory effect was abrogated in the presence of specific antibodies to the interferon. Pretreatment of the parasites with interferon reduced their infectivity for untreated host cells, whereas pretreament of either type of host cell did not affect the interaction. The effect of interferon on the trypanosomes was reversible; the extent of the inhibitory effect was significantly reduced afer 20 min, and was undetectable after 60 min when macrophages were used as host cells. For the myoblasts, 60 min elapsed before the inhibitory effect began to subside and 120 min elapsed before it became insignificant or undetectable.

  6. Inhibition of a plant virus infection by analogs of melittin.

    Science.gov (United States)

    Marcos, J F; Beachy, R N; Houghten, R A; Blondelle, S E; Pérez-Payá, E

    1995-01-01

    An approach that enables identification of specific synthetic peptide inhibitors of plant viral infection is reported. Synthetic analogs of melittin that have sequence and structural similarities to an essential domain of tobacco mosaic virus coat protein were found to possess highly specific antiviral activity. This approach involves modification of residues located at positions analogous to those that are critical for virus assembly. The degree of inhibition found correlates well with sequence similarities between the viral capsid protein and the melittin analogs studied as well as with the induced conformational changes that result upon interaction of the peptides and ribonucleic acid. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8618922

  7. Inhibition of Mayaro virus infection by bovine lactoferrin.

    Science.gov (United States)

    Carvalho, Carlos A M; Sousa, Ivanildo P; Silva, Jerson L; Oliveira, Andréa C; Gonçalves, Rafael B; Gomes, Andre M O

    2014-03-01

    Mayaro virus (MAYV) is an arbovirus linked to several sporadic outbreaks of a highly debilitating febrile illness in many regions of South America. MAYV is on the verge of urbanization from the Amazon region and no effective antiviral intervention is available against human infections. Our aim was to investigate whether bovine lactoferrin (bLf), an iron-binding glycoprotein, could hinder MAYV infection. We show that bLf promotes a strong inhibition of virus infection with no cytotoxic effects. Monitoring the effect of bLf on different stages of infection, we observed that virus entry into the cell is the heavily compromised event. Moreover, we found that binding of bLf to the cell is highly dependent on the sulfation of glycosaminoglycans, suggesting that bLf impairs virus entry by blocking these molecules. Our findings highlight the antiviral potential of bLf and reveal an effective strategy against one of the major emerging human pathogens in the neotropics.

  8. Apigenin inhibits African swine fever virus infection in vitro.

    Science.gov (United States)

    Hakobyan, Astghik; Arabyan, Erik; Avetisyan, Aida; Abroyan, Liana; Hakobyan, Lina; Zakaryan, Hovakim

    2016-12-01

    African swine fever virus (ASFV) is one of the most devastating diseases of domestic pigs for which no effective vaccines are available. Flavonoids, natural products isolated from plants, have been reported to have significant in vitro and in vivo antiviral activity against different viruses. Here, we tested the antiviral effect of five flavonoids on the replication of ASFV in Vero cells. Our results showed a potent, dose-dependent anti-ASFV effect of apigenin in vitro. Time-of-addition experiments revealed that apigenin was highly effective at the early stages of infection. Apigenin reduced the ASFV yield by more than 99.99 % when it was added at 1 hpi. The antiviral activity of apigenin was further investigated by evaluation of ASFV protein synthesis and viral factories. This flavonoid inhibited ASFV-specific protein synthesis and viral factory formation. ASFV-infected cells continuously treated with apigenin did not display a cytopathic effect. Further studies addressing the use of apigenin in vivo are needed.

  9. Pertussis toxin B-oligomer inhibits HIV infection and replication in hu-PBL-SCID mice.

    Science.gov (United States)

    Lapenta, Caterina; Spada, Massimo; Santini, Stefano M; Racca, Sara; Dorigatti, Fernanda; Poli, Guido; Belardelli, Filippo; Alfano, Massimo

    2005-04-01

    Bordetella pertussis toxin B-oligomer (PTX-B) has been shown to inhibit HIV infection and replication in vitro. The potential anti-viral effect of PTX-B was tested here in an in vivo surrogate model of HIV infection, i.e. SCID mice reconstituted with human peripheral blood leukocytes (PBL) (hu-PBL-SCID) and infected with a CCR5-dependent (R5) HIV-1 strain. SCID mice inoculated intra-peritoneal (i.p.) with PTX-B and then infected with the R5 strain SF-162 were sacrificed 7 days later and analyzed for human PBL (hu-PBL) lymphoid tissue reconstitution, infection of hu-PBL, plasma viremia and viral rescue from ex vivo-cultivated i.p. hu-PBL. Unlike mice treated with 500 ng per animal of PTX-B showing no evidence of viral inhibition, daily administration of PTX-B (50 ng per mouse) strongly inhibited virus infection and replication, as determined by undetectable viremia, absence of infected hu-PBL and lack of rescue of infectious HIV in most animals. Furthermore, PTX-B injection 2 h before and twice after infection prevented HIV-1 infection and replication in all (10/10) tested animals. Thus, PTX-B potently inhibited virus infection and replication in hu-PBL-SCID mice, supporting the hypothesis that it may represent a new pharmacological agent against HIV-1 infection.

  10. Taishan Pinus massoniana pollen polysaccharide inhibits subgroup J avian leucosis virus infection by directly blocking virus infection and improving immunity.

    Science.gov (United States)

    Yu, Cuilian; Wei, Kai; Liu, Liping; Yang, Shifa; Hu, Liping; Zhao, Peng; Meng, Xiuyan; Shao, Mingxu; Wang, Chuanwen; Zhu, Lijun; Zhang, Hao; Li, Yang; Zhu, Ruiliang

    2017-03-13

    Subgroup J avian leucosis virus (ALV-J) generally causes neoplastic diseases, immunosuppression and subsequently increases susceptibility to secondary infection in birds. The spread of ALV-J mainly depends on congenital infection and horizontal contact. Although ALV-J infection causes enormous losses yearly in the poultry industry worldwide, effective measures to control ALV-J remain lacking. In this study, we demonstrated that Taishan Pinus massoniana pollen polysaccharide (TPPPS), a natural polysaccharide extracted from Taishan Pinus massoniana pollen, can significantly inhibit ALV-J replication in vitro by blocking viral adsorption to host cells. Electron microscopy and blocking ELISA tests revealed that TPPPS possibly blocks viral adsorption to host cells by interacting with the glycoprotein 85 protein of ALV-J. Furthermore, we artificially established a congenitally ALV-J-infected chicken model to examine the anti-viral effects of TPPPS in vivo. TPPPS significantly inhibited viral shedding and viral loads in immune organs and largely eliminated the immunosuppression caused by congenital ALV-J infection. Additionally, pre-administration of TPPPS obviously reduced the size and delayed the occurrence of tumors induced by acute oncogenic ALV-J infection. This study revealed the prominent effects and feasible mechanisms of TPPPS in inhibiting ALV-J infection, thereby providing a novel prospect to control ALV-J spread.

  11. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    Science.gov (United States)

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.

  12. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the Arenavirus Pichinde. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, A.M.; Jahrling, P.B.; Merrill, P.; Tobery, S.

    1983-01-19

    Macrophage DNA synthesis and proliferation occur during the development of cell-mediated immunity and in the early non-specific reaction to infection. Arenaviruses have a predilection for infection of cells of the reticuloendothelial system and in this study we have examined the effect of the arenavirus Pichinde on macrophage DNA synthesis. We have found that infection of mouse peritoneal macrophages with Pichinde caused a profound dose dependent inhibition of the DNA synthesis induced by macrophage growth factor/colony stimulating factor. At a multiplicity of inoculum of five there is a 75-95% inhibition of DNA synthesis. Viable virus is necessary for inhibition since Pichinde inactivated by heat or cobalt irradiation had no effect. Similarly, virus pre-treated with an antiserum to Pichinde was without inhibitory effect. Inhibition was demonstrated by measuring DNA synthesis spectrofluorometrically as well as by 3H-thymidine incorporation. The inhibition of DNA synthesis was not associated with any cytopathology. There was no evidence that the inhibition was due to soluble factors, such as prostaglandins or interferon, released by infected cells. These studies demonstrate, for the first time in vitro, a significant alteration in macrophage function caused by infection with an arenavirus. It is possible that inhibition of macrophage proliferation represents a mechanism by which some microorganisms interfere with host resistance.

  13. Inhibition of phage infection in capsule-producing Streptococcus ...

    African Journals Online (AJOL)

    SERVER

    2007-10-04

    Oct 4, 2007 ... Acid production by capsule-producing Streptococcus thermophilus was inhibited less ... lactic acid bacteria (LAB) are of similar size to fat globules ..... Characterization of new virulent phage (MLC-A) of Lactobacillus paracasei.

  14. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2.

    Science.gov (United States)

    Cui, Guimei; Wei, Pan; Zhao, Yuxi; Guan, Zhenhong; Yang, Li; Sun, Wanchun; Wang, Shuangxi; Peng, Qisheng

    2014-11-07

    The calcium-dependent protease calpain2 is involved in macrophages apoptosis. Brucella infection-induced up-regulation of intracellular calcium level is an essential factor for the intracellular survival of Brucella within macrophages. Here, we hypothesize that calcium-dependent E3 ubiquitin ligase Nedd4 ubiquitinates calpain2 and inhibits Brucella infection-induced macrophage apoptosis via degradation of calpain2.Our results reveal that Brucella infection induces increases in Nedd4 activity in an intracellular calcium dependent manner. Furthermore, Brucella infection-induced degradation of calpain2 is mediated by Nedd4 ubiquitination of calpain2. Brucella infection-induced calpain2 degradation inhibited macrophages apoptosis. Treatment of Brucella infected macrophages with calcium chelator BAPTA or Nedd4 knock-down decreased Nedd4 activity, prevented calpain2 degradation, and resulted in macrophages apoptosis.

  15. Dextran sulfate inhibits acute Toxoplama gondii infection in pigs

    OpenAIRE

    2016-01-01

    Background Toxoplasma gondii is a highly prevalent protozoan that can infect all warm-blooded animals, including humans. Its definitive hosts are Felidae and its intermediate hosts include various other mammals and birds, including pigs. It is found in the meat of livestock which is a major source of human infection. Hence the control of toxoplasmosis in pigs is important for public health. We previously showed that dextran sulfate (DS), especially DS10 (dextran sulfate MW 10 kDa), is effecti...

  16. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    Science.gov (United States)

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  17. Derivatives of amphotericin inhibit infection with human immunodeficiency virus in vitro by different modes of action

    DEFF Research Database (Denmark)

    Hansen, J E; Witzke, N M; Nielsen, C;

    1990-01-01

    Three water-soluble derivatives of amphotericin B were tested for inhibition of HIV infection in vitro. The compounds amphotericin B methyl ester (AME) and N-(N'-(2-(4'-methylmorpholinio)ethyl)N"-cyclohexyl guanyl) amphotericin B methyl ester (MCG) inhibited HIV infection by 50% at 1 microgram....../ml; N-(N'-(3-dimethylaminopropyl)N"-ethyl guanyl) amphotericin B (DAPEG) did so at 5-11 micrograms/ml. While the virus-inhibitory effect of AME was due to an interaction with target lymphocytes, the effect of MCG was due to a direct anti-viral action. AME increased the potential of infected cells...

  18. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis.

    Directory of Open Access Journals (Sweden)

    Theresa S Moser

    Full Text Available The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV, an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism.

  19. Inhibition of apoptosis in neuronal cells infected with Chlamydophila (Chlamydia pneumoniae

    Directory of Open Access Journals (Sweden)

    Albert Elizabeth V

    2008-01-01

    Full Text Available Abstract Background Chlamydophila (Chlamydia pneumoniae is an intracellular bacterium that has been identified within cells in areas of neuropathology found in Alzheimer disease (AD, including endothelia, glia, and neurons. Depending on the cell type of the host, infection by C. pneumoniae has been shown to influence apoptotic pathways in both pro- and anti-apoptotic fashions. We have hypothesized that persistent chlamydial infection of neurons may be an important mediator of the characteristic neuropathology observed in AD brains. Chronic and/or persistent infection of neuronal cells with C. pneumoniae in the AD brain may affect apoptosis in cells containing chlamydial inclusions. Results SK-N-MC neuroblastoma cells were infected with the respiratory strain of C. pneumoniae, AR39 at an MOI of 1. Following infection, the cells were either untreated or treated with staurosporine and then examined for apoptosis by labeling for nuclear fragmentation, caspase activity, and membrane inversion as indicated by annexin V staining. C. pneumoniae infection was maintained through 10 days post-infection. At 3 and 10 days post-infection, the infected cell cultures appeared to inhibit or were resistant to the apoptotic process when induced by staurosporine. This inhibition was demonstrated quantitatively by nuclear profile counts and caspase 3/7 activity measurements. Conclusion These data suggest that C. pneumoniae can sustain a chronic infection in neuronal cells by interfering with apoptosis, which may contribute to chronic inflammation in the AD brain.

  20. Inhibition of Interjacent Ribonucleic Acid (26S) Synthesis in Cells Infected by Sindbis Virus

    Science.gov (United States)

    Scheele, Christina M.; Pfefferkorn, E. R.

    1969-01-01

    The interrelationship of viral ribonucleic acid (RNA) and protein synthesis in cells infected by Sindbis virus was investigated. When cultures were treated with puromycin early in the course of infection, the synthesis of interjacent RNA (26S) was preferentially inhibited. A similar result was obtained by shifting cells infected by one temperature-sensitive mutant defective in RNA synthesis from the permissive (29 C) to the nonpermissive (41.5 C) temperature. Under both conditions, the viral RNA produced appeared to be fully active biologically. Once underway, the synthesis of viral RNA in wild-type Sindbis infections did not require concomitant protein synthesis. PMID:5817400

  1. 2-octynoic acid inhibits hepatitis C virus infection through activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Darong Yang

    Full Text Available Many chronic hepatitis C virus (HCV-infected patients with current therapy do not clear the virus. It is necessary to find novel treatments. The effect of 2-octynoic acid (2-OA on HCV infection in human hepatocytes was examined. The mechanism of 2-OA antiviral activity was explored. Our data showed that 2-OA abrogated lipid accumulation in HCV replicon cells and virus-infected hepatocytes. It suppressed HCV RNA replication and infectious virus production with no cytotoxicity to the host cells. 2-OA did not affect hepatitis B virus replication in HepG2.2.15 cells derived from HepG2 cells transfected with full genome of HBV. Further study demonstrated that 2-OA activated AMP-activated protein kinase (AMPK and inhibited acetyl-CoA carboxylase in viral-infected cells. Compound C, a specific inhibitor of AMPK, inhibited AMPK activity and reversed the reduction of intracellular lipid accumulation and the antiviral effect of 2-OA. Knockdown of AMPK expression by RNA interference abolished the activation of AMPK by 2-OA and blocked 2-OA antiviral activity. Interestingly, 2-OA induced interferon-stimulated genes (ISGs and inhibited microRNA-122 (miR-122 expression in virus-infected hepatocytes. MiR-122 overexpression reversed the antiviral effect of 2-OA. Furthermore, knockdown of AMPK expression reversed both the induction of ISGs and suppression of miR-122 by 2-OA, implying that activated AMPK induces the intracellular innate response through the induction of ISGs and inhibiting miR-122 expression. 2-OA inhibits HCV infection through regulation of innate immune response by activated AMPK. These findings reveal a novel mechanism by which active AMPK inhibits HCV infection. 2-OA and its derivatives hold promise for novel drug development for chronic hepatitis C.

  2. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles.

    Science.gov (United States)

    Bimbo, Luis M; Denisova, Oxana V; Mäkilä, Ermei; Kaasalainen, Martti; De Brabander, Jef K; Hirvonen, Jouni; Salonen, Jarno; Kakkola, Laura; Kainov, Denis; Santos, Hélder A

    2013-08-27

    Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells.

  3. Recombinant interferon-γ lentivirus co-infection inhibits adenovirus replication ex vivo.

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    Full Text Available Recombinant interferon-γ (IFNγ production in cultured lentivirus (LV was explored for inhibition of target virus in cells co-infected with adenovirus type 5 (Ad5. The ability of three different promoters of CMV, EF1α and Ubiquitin initiating the enhanced green fluorescence protein (GFP activities within lentiviruses was systematically assessed in various cell lines, which showed that certain cell lines selected the most favorable promoter driving a high level of transgenic expression. Recombinant IFNγ lentivirus carrying CMV promoter (LV-CMV-IFNγ was generated to co-infect 293A cells with a viral surrogate of recombinant GFP Ad5 in parallel with LV-CMV-GFP control. The best morphologic conditions were observed from the two lentiviruses co-infected cells, while single adenovirus infected cells underwent clear pathologic changes. Viral load of adenoviruses from LV-CMV-IFNγ or LV-CMV-GFP co-infected cell cultures was significantly lower than that from adenovirus alone infected cells (P=0.005-0.041, and the reduction of adenoviral load in the co-infected cells was 86% and 61%, respectively. Ad5 viral load from LV-CMV-IFNγ co-infected cells was significantly lower than that from LV-CMV-GFP co-infection (P=0.032, which suggested that IFNγ rather than GFP could further enhance the inhibition of Ad5 replication in the recombinant lentivirus co-infected cells. The results suggest that LV-CMV-IFNγ co-infection could significantly inhibit the target virus replication and might be a potential approach for alternative therapy of severe viral diseases.

  4. Recombinant interferon-γ lentivirus co-infection inhibits adenovirus replication ex vivo.

    Science.gov (United States)

    Zhang, Ling; Yin, Sen; Tan, Wanlong; Xiao, Dong; Weng, Yunceng; Wang, Wenjing; Li, Tingting; Shi, Junwen; Shuai, Lifang; Li, Hongwei; Zhou, Jianhua; Allain, Jean-Pierre; Li, Chengyao

    2012-01-01

    Recombinant interferon-γ (IFNγ) production in cultured lentivirus (LV) was explored for inhibition of target virus in cells co-infected with adenovirus type 5 (Ad5). The ability of three different promoters of CMV, EF1α and Ubiquitin initiating the enhanced green fluorescence protein (GFP) activities within lentiviruses was systematically assessed in various cell lines, which showed that certain cell lines selected the most favorable promoter driving a high level of transgenic expression. Recombinant IFNγ lentivirus carrying CMV promoter (LV-CMV-IFNγ) was generated to co-infect 293A cells with a viral surrogate of recombinant GFP Ad5 in parallel with LV-CMV-GFP control. The best morphologic conditions were observed from the two lentiviruses co-infected cells, while single adenovirus infected cells underwent clear pathologic changes. Viral load of adenoviruses from LV-CMV-IFNγ or LV-CMV-GFP co-infected cell cultures was significantly lower than that from adenovirus alone infected cells (P=0.005-0.041), and the reduction of adenoviral load in the co-infected cells was 86% and 61%, respectively. Ad5 viral load from LV-CMV-IFNγ co-infected cells was significantly lower than that from LV-CMV-GFP co-infection (P=0.032), which suggested that IFNγ rather than GFP could further enhance the inhibition of Ad5 replication in the recombinant lentivirus co-infected cells. The results suggest that LV-CMV-IFNγ co-infection could significantly inhibit the target virus replication and might be a potential approach for alternative therapy of severe viral diseases.

  5. Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L.

    Directory of Open Access Journals (Sweden)

    McCoy Joe-Ann

    2011-04-01

    Full Text Available Abstract Background The mint family (Lamiaceae produces a wide variety of constituents with medicinal properties. Several family members have been reported to have antiviral activity, including lemon balm (Melissa officinalis L., sage (Salvia spp., peppermint (Mentha × piperita L., hyssop (Hyssopus officinalis L., basil (Ocimum spp. and self-heal (Prunella vulgaris L.. To further characterize the anti-lentiviral activities of Prunella vulgaris, water and ethanol extracts were tested for their ability to inhibit HIV-1 infection. Results Aqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent antiviral activity against HIV-1 at sub μg/mL concentrations with little to no cellular cytotoxicity at concentrations more than 100-fold higher. Time-of-addition studies demonstrated that aqueous extracts were effective when added during the first five hours following initiation of infection, suggesting that the botanical constituents were targeting entry events. Further analysis revealed that extracts inhibited both virus/cell interactions and post-binding events. While only 40% inhibition was maximally achieved in our virus/cell interaction studies, extract effectively blocked post-binding events at concentrations similar to those that blocked infection, suggesting that it was targeting of these latter steps that was most important for mediating inhibition of virus infectivity. Conclusions We demonstrate that aqueous P. vulgaris extracts inhibited HIV-1 infectivity. Our studies suggest that inhibition occurs primarily by interference of early, post-virion binding events. The ability of aqueous extracts to inhibit early events within the HIV life cycle suggests that these extracts, or purified constituents responsible for the antiviral activity, are promising microbicides and/or antivirals against HIV-1.

  6. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models.

    Science.gov (United States)

    Delvecchio, Rodrigo; Higa, Luiza M; Pezzuto, Paula; Valadão, Ana Luiza; Garcez, Patrícia P; Monteiro, Fábio L; Loiola, Erick C; Dias, André A; Silva, Fábio J M; Aliota, Matthew T; Caine, Elizabeth A; Osorio, Jorge E; Bellio, Maria; O'Connor, David H; Rehen, Stevens; de Aguiar, Renato Santana; Savarino, Andrea; Campanati, Loraine; Tanuri, Amilcar

    2016-11-29

    Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  7. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    Directory of Open Access Journals (Sweden)

    Rodrigo Delvecchio

    2016-11-01

    Full Text Available Zika virus (ZIKV infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  8. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication

    Directory of Open Access Journals (Sweden)

    Qin Chuan

    2011-10-01

    Full Text Available Abstract Human enterovirus 71 (EV71 infection causes hand, foot and mouth disease in children under 6 years old and this infection occasionally induces severe neurological complications. No vaccines or drugs are clinical available to control EV71 epidemics. In present study, we show that treatment with lycorine reduced the viral cytopathic effect (CPE on rhabdomyosarcoma (RD cells by inhibiting virus replication. Analysis of this inhibitory effect of lycorine on viral proteins synthesis suggests that lycorine blocks the elongation of the viral polyprotein during translation. Lycorine treatment of mice challenged with a lethal dose of EV71 resulted in reduction of mortality, clinical scores and pathological changes in the muscles of mice, which were achieved through inhibition of viral replication. When mice were infected with a moderate dose of EV71, lycorine treatment was able to protect them from paralysis. Lycorine may be a potential drug candidate for the clinical treatment of EV71-infected patients.

  9. Identification of one peptide which inhibited infectivity of avian infectious bronchitis virus in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Purified avian infectious bronchitis virus (IBV) was used to screen a random phage display peptide library. After the fourth panning, 10 positive phages were sequenced and characterized. The phages specifically inhibited IBV infectivity in HeLa cells and blocked IBV haemagglutination. One linear peptide "GSH HRH VHS PFV" from the positive phages with the highest neutralization titer was synthesized and this peptide inhibited IBV infection in HeLa as well. The results may contribute to development of antiviral therapeutics for IBV and studying the determinants for viral and cell interaction.

  10. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  11. Silibinin inhibits HIV-1 infection by reducing cellular activation and proliferation.

    Science.gov (United States)

    McClure, Janela; Lovelace, Erica S; Elahi, Shokrollah; Maurice, Nicholas J; Wagoner, Jessica; Dragavon, Joan; Mittler, John E; Kraft, Zane; Stamatatos, Leonidas; Stamatatos, Leonidis; Horton, Helen; De Rosa, Stephen C; Coombs, Robert W; Polyak, Stephen J

    2012-01-01

    Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects.

  12. Silibinin inhibits HIV-1 infection by reducing cellular activation and proliferation.

    Directory of Open Access Journals (Sweden)

    Janela McClure

    Full Text Available Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum block hepatitis C virus (HCV infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL, a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects.

  13. Antibiotic-loaded phosphatidylcholine inhibits staphylococcal bone infection

    Science.gov (United States)

    Jennings, Jessica Amber; Beenken, Karen E; Skinner, Robert A; Meeker, Daniel G; Smeltzer, Mark S; Haggard, Warren O; Troxel, Karen S

    2016-01-01

    AIM To test antibiotic-loaded coating for efficacy in reducing bacterial biofilm and development of osteomyelitis in an orthopaedic model of implant infection. METHODS Phosphatidylcholine coatings loaded with 25% vancomycin were applied to washed and sterilized titanium wires 20 mm in length. A 10 mm segment was removed from rabbit radius (total = 9; 5 coated, 4 uncoated), and the segment was injected with 1 × 106 colony forming units (CFUs) of Staphylococcus aureus (UAMS-1 strain). Titanium wires were inserted through the intramedullary canal of the removed segment and into the proximal radial segment and the segment was placed back into the defect. After 7 d, limbs were removed, X-rayed, swabbed for tissue contamination. Wires were removed and processed to determine attached CFUs. Tissue was swabbed and streaked on agar plates to determine bacteriological score. RESULTS Antibiotic-loaded coatings resulted in significantly reduced biofilm formation (4.7 fold reduction in CFUs; P < 0.001) on titanium wires and reduced bacteriological score in surrounding tissue (4.0 ± 0 for uncoated, 1.25 ± 0.5 for coated; P = 0.01). Swelling and pus formation was evident in uncoated controls at the 7 d time point both visually and radiographically, but not in antibiotic-loaded coatings. CONCLUSION Active antibiotic was released from coated implants and significantly reduced signs of osteomyelitic symptoms. Implant coatings were well tolerated in bone. Further studies with additional control groups and longer time periods are warranted. Antibiotic-loaded phosphatidylcholine coatings applied at the point of care could prevent implant-associated infection in orthopaedic defects. PMID:27622146

  14. Gastric Helicobacter Infection Inhibits Development of Oral Tolerance to Food Antigens in Mice

    Science.gov (United States)

    Matysiak-Budnik, Tamara; van Niel, Guillaume; Mégraud, Francis; Mayo, Kathryn; Bevilacqua, Claudia; Gaboriau-Routhiau, Valérie; Moreau, Marie-Christiane; Heyman, Martine

    2003-01-01

    The increase in the transcellular passage of intact antigens across the digestive epithelium infected with Helicobacter pylori may interfere with the regulation of mucosal immune responses. The aim of this work was to study the capacity of Helicobacter infection to inhibit the development of oral tolerance or to promote allergic sensitization and the capacity of a gastro-protective agent, rebamipide, to interfere with these processes in mice. Oral tolerance to ovalbumin (OVA) was studied in 48 C3H/He 4-week-old mice divided into four groups: (i) OVA-sensitized mice; (ii) OVA-“tolerized” mice (that is, mice that were rendered immunologically tolerant); (iii) H. felis-infected, OVA-tolerized mice; (iv) and H. felis-infected, OVA-tolerized, rebamipide-treated mice. Oral sensitization to hen egg lysozyme (HEL) was studied in 48 mice divided into four groups: (i) controls; (ii) HEL-sensitized mice; (iii) H. felis-infected, HEL-sensitized mice; and (iv) H. felis-infected, HEL-sensitized, rebamipide-treated mice. Specific anti-OVA or anti-HEL immunoglobulin E (IgE) and IgG1/IgG2a serum titers were measured by enzyme-linked immunosorbent assay. Additionally, the capacity of rebamipide to interfere with antigen presentation and T-cell activation in vitro, as well as absorption of rebamipide across the epithelial monolayer, was tested. H. felis infection led to the inhibition of oral tolerance to OVA, but rebamipide prevented this inhibitive effect of H. felis. H. felis infection did not enhance the sensitization to HEL, but rebamipide inhibited the development of this sensitization. Moreover, rebamipide inhibited in a dose-dependent manner antigen presentation and T-cell activation in vitro and was shown to be able to cross the epithelium at a concentration capable of inducing this inhibitory effect. We conclude that H. felis can inhibit the development of oral tolerance to OVA in mice and that this inhibition is prevented by rebamipide. PMID:12933867

  15. Annexin 2-mediated enhancement of cytomegalovirus infection opposes inhibition by annexin 1 or annexin 5.

    Science.gov (United States)

    Derry, Mélanie C; Sutherland, Michael R; Restall, Christina M; Waisman, David M; Pryzdial, Edward L G

    2007-01-01

    Biochemical studies have suggested that annexin 2 (A2) may participate in cytomegalovirus (CMV) infection. In the current work, effects of A2 monomer (p36) and heterotetramer (A2t; p36(2)p11(2)) were investigated. Demonstrating a role for endogenous A2, the four stages of infection that were followed were each inhibited by anti-p36 or anti-p11 at 37 degrees C. Immuno-inhibition was attenuated when the virus and cells were pre-incubated at 4 degrees C to coordinate virus entry initiated afterwards at 37 degrees C, reconciling controversy in the literature. As an explanation, CMV-induced phosphorylation of p36 was prevented by the 4 degrees C treatment. Supporting these immuno-inhibition data, purified A2t or p11 increased CMV infectious-progeny generation and CMV gene expression. A specific role for A2t was indicated by purified p36 having no effect. Unlike other steps, primary plaque formation was not enhanced by purified A2t or p11, possibly because of undetectable phosphorylation. As annexins 1 (A1) and 5 (A5) interact with A2, their effect on CMV was also tested. Both purified proteins inhibited CMV infection. In each experiment, the concentration of A1 required for half-maximal inhibition was five- to 10-fold lower than that of A5. Addition of A2 opposed A1- or A5-mediated inhibition of CMV, as did certain A2-specific antibodies that had no effect in the absence of added A1 or A5. Transfection of the p36-deficient cell line HepG2 increased CMV infection and was required for inhibition by the other annexins. These data suggest that CMV exploits A2t at physiological temperature to oppose the protection of cells conferred by A1 or A5.

  16. Ambroxol inhibits rhinovirus infection in primary cultures of human tracheal epithelial cells.

    Science.gov (United States)

    Yamaya, Mutsuo; Nishimura, Hidekazu; Nadine, Lusamba Kalonji; Ota, Chiharu; Kubo, Hiroshi; Nagatomi, Ryoichi

    2014-04-01

    The mucolytic drug ambroxol hydrochloride reduces the production of pro-inflammatory cytokines and the frequency of exacerbation in patients with chronic obstructive pulmonary disease (COPD). However, the inhibitory effects of ambroxol on rhinovirus infection, the major cause of COPD exacerbations, have not been studied. We examined the effects of ambroxol on type 14 rhinovirus (RV14) infection, a major RV group, in primary cultures of human tracheal epithelial cells. RV14 infection increased virus titers and cytokine content in the supernatants and RV14 RNA in the cells. Ambroxol (100 nM) reduced RV14 titers and cytokine concentrations of interleukin (IL)-1β, IL-6 and IL-8 in the supernatants and RV14 RNA in the cells after RV14 infection, in addition to reducing susceptibility to RV14 infection. Ambroxol also reduced the expression of intercellular adhesion molecule-1 (ICAM-1), the receptor for RV14, and the number of acidic endosomes from which RV14 RNA enters the cytoplasm. In addition, ambroxol reduced the activation of the transcription factor nuclear factor kappa B (NF-κB) in the nucleus. These results suggest that ambroxol inhibits RV14 infection partly by reducing ICAM-1 and acidic endosomes via the inhibition of NF-κB activation. Ambroxol may modulate airway inflammation by reducing the production of cytokines in rhinovirus infection.

  17. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  18. Inhibition of HIV type 1 infection with a RANTES-IgG3 fusion protein.

    Science.gov (United States)

    Challita-Eid, P M; Klimatcheva, E; Day, B T; Evans, T; Dreyer, K; Rimel, B J; Rosenblatt, J D; Planelles, V

    1998-12-20

    The natural ligands for the chemokine receptors CCR5 (RANTES, MIP-1alpha, and MIP-1beta) and CXCR4 (SDF-1) can act as potent inhibitors of infection by the human immunodeficiency virus type 1 (HIV-1) at the level of viral entry. Unlike antibody-mediated inhibition, chemokine-mediated inhibition is broadly effective. Different HIV-1 strains can utilize the same coreceptor(s) for viral entry and, therefore, can be blocked by the same chemokine(s). HIV-1 strains that are highly resistant to neutralization by V3-specific antibodies are sensitive to inhibition by chemokines. Therefore, the use of chemokine-derived molecules constitutes a potential therapeutic approach to prevent infection by HIV-1. We have generated a fusion protein between RANTES and human IgG3 (RANTES-IgG3). The effectiveness of RANTES-IgG3 inhibition of infection by HIV-1 was similar to that of rRANTES. Inhibition of HIV-1 by RANTES-IgG3 was specific for CCR5-dependent but not CXCR4-dependent HIV-1 isolates. Fusion of a chemokine to an IgG moiety offers two desirable properties with respect to the recombinant chemokine alone. First, IgG fusion proteins have extended half-lives in vivo. Second, molecules with IgG heavy chain moieties may be able to cross the placenta and potentially induce fetal protection.

  19. IL-17A promotes intracellular growth of Mycobacterium by inhibiting apoptosis of infected macrophages

    Directory of Open Access Journals (Sweden)

    Andrea eCruz

    2015-09-01

    Full Text Available The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or M. tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism. .

  20. Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus aureus.

    Science.gov (United States)

    Zhang, Xin; Liu, Yu; Gao, Yaping; Dong, Jie; Mu, Chunhua; Lu, Qiang; Shao, Ningsheng; Yang, Guang

    2011-01-01

    Several fibrinogen binding proteins (Fibs) play important roles in the pathogenesis of Staphylococcus aureus (S. aureus). Most Fibs can promote the aggregation of platelets during infection, but the extracellular fibrinogen-binding protein (Efb) is an exception. It is reported that Efb can specifically bind fibrinogen and inhibit the aggregation of platelet with its N terminal. However, the biological significance of platelet aggregation inhibition in the infection caused by S. aureus is unclear until now. Here, we demonstrated that the persistence and aggregation of platelets were important for killing S. aureus in whole blood. It was found that the N terminal of Efb (EfbN) and platelets inhibitors could increase the survival of S. aureus in whole blood. The study in vivo also showed that EfbN and platelets inhibitors could reduce the killing of S. aureus and increase the lethality rate of S. aureus in the acute infection mouse model.

  1. Lipoprotein lipase inhibits hepatitis C virus (HCV infection by blocking virus cell entry.

    Directory of Open Access Journals (Sweden)

    Patrick Maillard

    Full Text Available A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL. Lipoprotein lipase (LPL hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell

  2. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Mathiesen, Lars Reinhardt

    1991-01-01

    Monoclonal antibodies (MAbs) against the alpha- and beta-chain of lymphocyte-associated antigen-1 (LFA-1) were examined for inhibition of HIV-1 infection in vitro. Infection of the T cell line MT4 and the monocytic cell line U937 by isolates HTLVIIIB and SSI-002, respectively was inhibited...

  3. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Mathiesen, Lars Reinhardt

    1991-01-01

    Monoclonal antibodies (MAbs) against the alpha- and beta-chain of lymphocyte-associated antigen-1 (LFA-1) were examined for inhibition of HIV-1 infection in vitro. Infection of the T cell line MT4 and the monocytic cell line U937 by isolates HTLVIIIB and SSI-002, respectively was inhibited...

  4. Inhibition of HIV-1 infection by synthetic peptides derived CCR5 fragments.

    Science.gov (United States)

    Imai, Masaki; Baranyi, Lajos; Okada, Noriko; Okada, Hidechika

    2007-02-23

    HIV-1 infection requires interaction of viral envelope protein gp160 with CD4 and a chemokine receptor, CCR5 or CXCR4 as entry coreceptor. We designed HIV-inhibitory peptides targeted to CCR5 using a novel computer program (ANTIS), which searched all possible sense-antisense amino acid pairs between proteins. Seven AHBs were found in CCR5 receptor. All AHB peptides were synthesized and tested for their ability to prevent HIV-1 infection to human T cells. A peptide fragment (LC5) which is a part of the CCR5 receptor corresponding to the loop between the fifth and sixth transmembrane regions (amino acids 222-240) proved to inhibit HIV-1IIIB infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. LC5 effectively indicated dose-dependent manner, and the suppression was enhanced additively by T20 peptide, which inhibits infection in vitro by disrupting the gp41 conformational changes necessary for membrane fusion. Thus, these results indicate that CCR5-derived AHB peptides could provide a useful tool to define the mechanism(s) of HIV infection, and may provide insight which will contribute to the development of an anti-HIV-1 reagent.

  5. Trypanosoma congolense Infections: Induced Nitric Oxide Inhibits Parasite Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Wenfa Lu

    2011-01-01

    Full Text Available Wild-type (WT C57BL/6 mice infected intraperitoneally with 5×106 Trypanosoma congolense survive for more than 30 days. C57BL/6 mice deficient in inducible nitric oxide synthase (iNOS−/− and infected with 103 or 5×106 parasites do not control the parasitemia and survive for only 14±7 or 6.8±0.1 days, respectively. Bloodstream trypanosomes of iNOS−/− mice infected with 5×106  T. congolense had a significantly higher ratio of organisms in the S+G2+M phases of the cell cycle than trypanosomes in WT mice. We have reported that IgM anti-VSG-mediated phagocytosis of T. congolense by macrophages inhibits nitric oxide (NO synthesis via CR3 (CD11b/CD18. Here, we show that during the first parasitemia, but not at later stages of infection, T. congolense-infected CD11b−/− mice produce more NO and have a significantly lower parasitemia than infected WT mice. We conclude that induced NO contributes to the control of parasitemia by inhibiting the growth of the trypanosomes.

  6. Roflumilast inhibits respiratory syncytial virus infection in human differentiated bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Manuel Mata

    Full Text Available Respiratory syncytial virus (RSV causes acute exacerbations in COPD and asthma. RSV infects bronchial epithelial cells (HBE that trigger RSV associated lung pathology. This study explores whether the phosphodiesterase 4 (PDE4 inhibitor Roflumilast N-oxide (RNO, alters RSV infection of well-differentiated HBE (WD-HBE in vitro. WD-HBE were RSV infected in the presence or absence of RNO (0.1-100 nM. Viral infection (staining of F and G proteins, nucleoprotein RNA level, mRNA of ICAM-1, ciliated cell markers (digital high speed videomicroscopy, β-tubulin immunofluorescence, Foxj1 and Dnai2 mRNA, Goblet cells (PAS, mRNA of MUC5AC and CLCA1, mRNA and protein level of IL-13, IL-6, IL-8, TNFα, formation of H2O2 and the anti-oxidative armamentarium (mRNA of Nrf2, HO-1, GPx; total antioxidant capacity (TAC were measured at day 10 or 15 post infection. RNO inhibited RSV infection of WD-HBE, prevented the loss of ciliated cells and markers, reduced the increase of MUC5AC and CLCA1 and inhibited the increase of IL-13, IL-6, IL-8, TNFα and ICAM-1. Additionally RNO reversed the reduction of Nrf2, HO-1 and GPx mRNA levels and consequently restored the TAC and reduced the H2O2 formation. RNO inhibits RSV infection of WD-HBE cultures and mitigates the cytopathological changes associated to this virus.

  7. Apolipoprotein B100 is required for hepatitis C infectivity and Mipomersen inhibits hepatitis C

    Science.gov (United States)

    Schaefer, Esperance A K; Meixiong, James; Mark, Christina; Deik, Amy; Motola, Daniel L; Fusco, Dahlene; Yang, Andrew; Brisac, Cynthia; Salloum, Shadi; Lin, Wenyu; Clish, Clary B; Peng, Lee F; Chung, Raymond T

    2016-01-01

    AIM To characterize the role of apolipoprotein B100 (apoB100) in hepatitis C viral (HCV) infection. METHODS In this study, we utilize a gene editing tool, transcription activator-like effector nucleases (TALENs), to generate human hepatoma cells with a stable genetic deletion of APOB to assess of apoB in HCV. Using infectious cell culture-competent HCV, viral pseudoparticles, replicon models, and lipidomic analysis we determined the contribution of apoB to each step of the viral lifecycle. We further studied the effect of mipomersen, an FDA-approved antisense inhibitor of apoB100, on HCV using in vitro cell-culture competent HCV and determined its impact on viral infectivity with the TCID50 method. RESULTS We found that apoB100 is indispensable for HCV infection. Using the JFH-1 fully infectious cell-culture competent virus in Huh 7 hepatoma cells with TALEN-mediated gene deletion of apoB (APOB KO), we found a significant reduction in HCV RNA and protein levels following infection. Pseudoparticle and replicon models demonstrated that apoB did not play a role in HCV entry or replication. However, the virus produced by APOB KO cells had significantly diminished infectivity as measured by the TCID-50 method compared to wild-type virus. Lipidomic analysis demonstrated that these virions have a fundamentally altered lipidome, with complete depletion of cholesterol esters. We further demonstrate that inhibition of apoB using mipomersen, an FDA-approved anti-sense oligonucleotide, results in a potent anti-HCV effect and significantly reduces the infectivity of the virus. CONCLUSION ApoB is required for the generation of fully infectious HCV virions, and inhibition of apoB with mipomersen blocks HCV. Targeting lipid metabolic pathways to impair viral infectivity represents a novel host targeted strategy to inhibit HCV. PMID:28018102

  8. DENV inhibits type I IFN production in infected cells by cleaving human STING.

    Directory of Open Access Journals (Sweden)

    Sebastian Aguirre

    Full Text Available Dengue virus (DENV is a pathogen with a high impact on human health. It replicates in a wide range of cells involved in the immune response. To efficiently infect humans, DENV must evade or inhibit fundamental elements of the innate immune system, namely the type I interferon response. DENV circumvents the host immune response by expressing proteins that antagonize the cellular innate immunity. We have recently documented the inhibition of type I IFN production by the proteolytic activity of DENV NS2B3 protease complex in human monocyte derived dendritic cells (MDDCs. In the present report we identify the human adaptor molecule STING as a target of the NS2B3 protease complex. We characterize the mechanism of inhibition of type I IFN production in primary human MDDCs by this viral factor. Using different human and mouse primary cells lacking STING, we show enhanced DENV replication. Conversely, mutated versions of STING that cannot be cleaved by the DENV NS2B3 protease induced higher levels of type I IFN after infection with DENV. Additionally, we show that DENV NS2B3 is not able to degrade the mouse version of STING, a phenomenon that severely restricts the replication of DENV in mouse cells, suggesting that STING plays a key role in the inhibition of DENV infection and spread in mice.

  9. mTORC1-Activated Monocytes Increase Tregs and Inhibit the Immune Response to Bacterial Infections

    Science.gov (United States)

    Tu, Huaijun; Guo, Wei; Wang, Shixuan; Xue, Ting; Yang, Fei; Zhang, Xiaoyan; Yang, Yazhi; Wan, Qian; Shi, Zhexin; Zhan, Xulong

    2016-01-01

    The TSC1/2 heterodimer, a key upstream regulator of the mTOR, can inhibit the activation of mTOR, which plays a critical role in immune responses after bacterial infections. Monocytes are an innate immune cell type that have been shown to be involved in bacteremia. However, how the mTOR pathway is involved in the regulation of monocytes is largely unknown. In our study, TSC1 KO mice and WT mice were infected with E. coli. When compared to WT mice, we found higher mortality, greater numbers of bacteria, decreased expression of coactivators in monocytes, increased numbers of Tregs, and decreased numbers of effector T cells in TSC1 KO mice. Monocytes obtained from TSC1 KO mice produced more ROS, IL-6, IL-10, and TGF-β and less IL-1, IFN-γ, and TNF-α. Taken together, our results suggest that the inhibited immune functioning in TSC1 KO mice is influenced by mTORC1 activation in monocytes. The reduced expression of coactivators resulted in inhibited effector T cell proliferation. mTORC1-activated monocytes are harmful during bacterial infections. Therefore, inhibiting mTORC1 signaling through rapamycin administration could rescue the harmful aspects of an overactive immune response, and this knowledge provides a new direction for clinical therapy.

  10. Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway

    Science.gov (United States)

    Wang, Wei; Wu, Jiandong; Zhang, Xiaoshuang; Hao, Cui; Zhao, Xiaoliang; Jiao, Guangling; Shan, Xindi; Tai, Wenjing; Yu, Guangli

    2017-01-01

    Development of novel anti-influenza A virus (IAV) drugs with high efficiency and low toxicity is critical for preparedness against influenza outbreaks. Herein, we investigated the anti-IAV activities and mechanisms of fucoidan in vitro and in vivo. The results showed that a fucoidan KW derived from brown algae Kjellmaniella crassifolia effectively blocked IAV infection in vitro with low toxicity. KW possessed broad anti-IAV spectrum and low tendency of induction of viral resistance, superior to the anti-IAV drug amantadine. KW was capable of inactivating virus particles before infection and blocked some stages after adsorption. KW could bind to viral neuraminidase (NA) and inhibit the activity of NA to block the release of IAV. KW also interfered with the activation of EGFR, PKCα, NF-κB, and Akt, and inhibited both IAV endocytosis and EGFR internalization in IAV-infected cells, suggesting that KW may also inhibit cellular EGFR pathway. Moreover, intranasal administration of KW markedly improved survival and decreased viral titers in IAV-infected mice. Therefore, fucoidan KW has the potential to be developed into a novel nasal drop or spray for prevention and treatment of influenza in the future. PMID:28094330

  11. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection

    Science.gov (United States)

    Kwon, Seok-Joon; Na, Dong Hee; Kwak, Jong Hwan; Douaisi, Marc; Zhang, Fuming; Park, Eun Ji; Park, Jong-Hwan; Youn, Hana; Song, Chang-Seon; Kane, Ravi S.; Dordick, Jonathan S.; Lee, Kyung Bok; Linhardt, Robert J.

    2017-01-01

    Rapid change and zoonotic transmission to humans have enhanced the virulence of the influenza A virus (IAV). Neutralizing antibodies fail to provide lasting protection from seasonal epidemics. Furthermore, the effectiveness of anti-influenza neuraminidase inhibitors has declined because of drug resistance. Drugs that can block viral attachment and cell entry independent of antigenic evolution or drug resistance might address these problems. We show that multivalent 6‧-sialyllactose-polyamidoamine (6SL-PAMAM) conjugates, when designed to have well-defined ligand valencies and spacings, can effectively inhibit IAV infection. Generation 4 (G4) 6SL-PAMAM conjugates with a spacing of around 3 nm between 6SL ligands (S3-G4) showed the strongest binding to a hemagglutinin trimer (dissociation constant of 1.6 × 10-7 M) and afforded the best inhibition of H1N1 infection. S3-G4 conjugates were resistant to hydrolysis by H1N1 neuraminidase. These conjugates protected 75% of mice from a lethal challenge with H1N1 and prevented weight loss in infected animals. The structure-based design of multivalent nanomaterials, involving modulation of nanoscale backbone structures and number and spacing between ligands, resulted in optimal inhibition of IAV infection. This approach may be broadly applicable for designing effective and enduring therapeutic protection against human or avian influenza viruses.

  12. Inhibition of listeriolysin O oligomerization by lutein prevents Listeria monocytogenes infection.

    Science.gov (United States)

    Liu, Bowen; Teng, Zihao; Wang, Jianfeng; Lu, Gejin; Deng, Xuming; Li, Li

    2017-01-01

    The foodborne pathogenic bacterial species Listeria monocytogenes (L. monocytogenes) has caused incalculable damages to public health, and its successful infection requires various virulence factors, including Listeriolysin O (LLO). By forming pores in phagosomal membranes and even in some organelles, LLO plays an indispensable role in the ability of L. monocytogenes to escape from host immune attacks. Because of its critical role, LLO offers an appropriate therapeutic target against L. monocytogenes infection. Here, lutein, a natural small molecule existing widely in fruits and vegetables, is demonstrated as an effective inhibitor of LLO that works by blocking its oligomerization during invasion without showing significant bacteriostatic activity. Further assays applying lutein in cell culture models of invasion and in animal models showed that lutein could effectively inhibit L. monocytogenes infection. Overall, our results indicate that lutein may represent a promising and novel therapeutic agent against L. monocytogenes infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. IFN-λ Inhibits Drug-Resistant HIV Infection of Macrophages

    Science.gov (United States)

    Wang, Xu; Wang, He; Liu, Man-Qing; Li, Jie-Liang; Zhou, Run-Hong; Zhou, Yu; Wang, Yi-Zhong; Zhou, Wang; Ho, Wen-Zhe

    2017-01-01

    Type III interferons (IFN-λs) have been demonstrated to inhibit a number of viruses, including HIV. Here, we further examined the anti-HIV effect of IFN-λs in macrophages. We found that IFN-λs synergistically enhanced anti-HIV activity of antiretrovirals [azidothymidine (AZT), efavirenz, indinavir, and enfuvirtide] in infected macrophages. Importantly, IFN-λs could suppress HIV infection of macrophages with the drug-resistant strains, including AZT-resistant virus (A012) and reverse transcriptase inhibitor-resistant virus (TC49). Mechanistically, IFN-λs were able to induce the expression of several important anti-HIV cellular factors, including myxovirus resistance 2 (Mx2), a newly identified HIV post-entry inhibitor and tetherin, a restriction factor that blocks HIV release from infected cells. These observations provide additional evidence to support the potential use of IFN-λs as therapeutics agents for the treatment of HIV infection. PMID:28321215

  14. Macrophages and lymphocytes differentially modulate the ability of RANTES to inhibit HIV-1 infection.

    Science.gov (United States)

    Gross, Eleanore; Amella, Carol A; Pompucci, Lorena; Franchin, Giovanni; Sherry, Barbara; Schmidtmayerova, Helena

    2003-11-01

    The beta-chemokines MIP-1alpha, MIP-1beta, and RANTES inhibit HIV-1 infection of CD4+ T cells by inhibiting interactions between the virus and CCR5 receptors. However, while beta-chemokine-mediated inhibition of HIV-1 infection of primary lymphocytes is well documented, conflicting results have been obtained using primary macrophages as the virus target. Here, we show that the beta-chemokine RANTES inhibits virus entry into both cellular targets of the virus, lymphocytes and macrophages. However, while virus entry is inhibited at the moment of infection in both cell types, the amount of virus progeny is lowered only in lymphocytes. In macrophages, early-entry restriction is lost during long-term cultivation, and the amount of virus produced by RANTES-treated macrophages is similar to the untreated cultures, suggesting an enhanced virus replication. We further show that at least two distinct cellular responses to RANTES treatment in primary lymphocytes and macrophages contribute to this phenomenon. In lymphocytes, exposure to RANTES significantly increases the pool of inhibitory beta-chemokines through intracellular signals that result in increased production of MIP-1alpha and MIP-1beta, thereby amplifying the antiviral effects of RANTES. In macrophages this amplification step does not occur. In fact, RANTES added to the macrophages is efficiently cleared from the culture, without inducing synthesis of beta-chemokines. Our results demonstrate dichotomous effects of RANTES on HIV-1 entry at the moment of infection, and on production and spread of virus progeny in primary macrophages. Since macrophages serve as a reservoir of HIV-1, this may contribute to the failure of endogenous chemokines to successfully eradicate the virus.

  15. Sustained Release of Vancomycin from Polyurethane Scaffolds Inhibits Infection of Bone Wounds in a Rat Femoral Segmental Defect Model

    Science.gov (United States)

    2010-04-09

    a one shot two component reaction between the triisocyanate and the hardener comprising polyester triol, water, TEGOAMIN33 tertiary amine catalyst ...Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model Bing Li a,b...2010 Keywords: Polyurethane Vancomycin Sustained release Infection control Rat femoral segmental defect Bone tissue engineering Infection is a common

  16. Yakammaoto inhibits enterovirus 71 infection by reducing viral attachment, internalization, replication, and translation

    Directory of Open Access Journals (Sweden)

    Chia-Feng Yeh

    2015-06-01

    Full Text Available Enterovirus 71 (EV71 can cause central nervous system infections with mortality and neurologic sequelae. At present, there is no effective therapeutic modality for EV71 infection. The infection is more common in families with poor socioeconomic status. Therefore, finding a readily available, cost-effective therapeutic modality would be very helpful to these socioeconomically disadvantaged families. Yakammaoto is a cheap and readily available traditional prescription that is proven to have antiviral activity against coxsackievirus B4 (CVB4. CVB4 and EV71 are enteroviruses. In this study, we evaluated the antiviral activity of hot water extract of yakammaoto against EV71. The results of plaque reduction assay and flow cytometry demonstrated that yakammaoto dose dependently inhibited EV71 infection. In addition, reverse transcription-polymerase chain reaction (RT-PCR and quantitative RT-PCR results showed that yakammaoto reduced viral replication. Western blotting analysis showed that yakammaoto can inhibit viral protein production. Thus, our results suggest that yakammaoto should be considered to manage EV71 infection in the future.

  17. Choosing an Appropriate Infection Model to Study Quorum Sensing Inhibition in Pseudomonas Infections

    Directory of Open Access Journals (Sweden)

    Evelina Papaioannou

    2013-09-01

    Full Text Available Bacteria, although considered for decades to be antisocial organisms whose sole purpose is to find nutrients and multiply are, in fact, highly communicative organisms. Referred to as quorum sensing, cell-to-cell communication mechanisms have been adopted by bacteria in order to co-ordinate their gene expression. By behaving as a community rather than as individuals, bacteria can simultaneously switch on their virulence factor production and establish successful infections in eukaryotes. Understanding pathogen-host interactions requires the use of infection models. As the use of rodents is limited, for ethical considerations and the high costs associated with their use, alternative models based on invertebrates have been developed. Invertebrate models have the benefits of low handling costs, limited space requirements and rapid generation of results. This review presents examples of such models available for studying the pathogenicity of the Gram-negative bacterium Pseudomonas aeruginosa. Quorum sensing interference, known as quorum quenching, suggests a promising disease-control strategy since quorum-quenching mechanisms appear to play important roles in microbe-microbe and host-pathogen interactions. Examples of natural and synthetic quorum sensing inhibitors and their potential as antimicrobials in Pseudomonas-related infections are discussed in the second part of this review.

  18. Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections.

    Science.gov (United States)

    Papaioannou, Evelina; Utari, Putri Dwi; Quax, Wim J

    2013-09-23

    Bacteria, although considered for decades to be antisocial organisms whose sole purpose is to find nutrients and multiply are, in fact, highly communicative organisms. Referred to as quorum sensing, cell-to-cell communication mechanisms have been adopted by bacteria in order to co-ordinate their gene expression. By behaving as a community rather than as individuals, bacteria can simultaneously switch on their virulence factor production and establish successful infections in eukaryotes. Understanding pathogen-host interactions requires the use of infection models. As the use of rodents is limited, for ethical considerations and the high costs associated with their use, alternative models based on invertebrates have been developed. Invertebrate models have the benefits of low handling costs, limited space requirements and rapid generation of results. This review presents examples of such models available for studying the pathogenicity of the Gram-negative bacterium Pseudomonas aeruginosa. Quorum sensing interference, known as quorum quenching, suggests a promising disease-control strategy since quorum-quenching mechanisms appear to play important roles in microbe-microbe and host-pathogen interactions. Examples of natural and synthetic quorum sensing inhibitors and their potential as antimicrobials in Pseudomonas-related infections are discussed in the second part of this review.

  19. Apigenin Restricts FMDV Infection and Inhibits Viral IRES Driven Translational Activity

    Directory of Open Access Journals (Sweden)

    Suhong Qian

    2015-03-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV. FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i apigenin inhibits FMDV infection at the viral post-entry stage; (ii apigenin does not exhibit direct extracellular virucidal activity; and (iii apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.

  20. Deoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria.

    Science.gov (United States)

    Parkinson, Elizabeth I; Bair, Joseph S; Nakamura, Bradley A; Lee, Hyang Y; Kuttab, Hani I; Southgate, Emma H; Lezmi, Stéphane; Lau, Gee W; Hergenrother, Paul J

    2015-04-24

    Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor candidate for development. Here we describe a facile chemical route to produce DNM and its derivatives. These compounds possess excellent activity against FQR methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci clinical isolates and inhibit mutant DNA gyrase in-vitro. Bacteria that develop resistance to DNM are re-sensitized to fluoroquinolones, suggesting that resistance that emerges to DNM would be treatable. Using a DNM derivative, the first in-vivo efficacy of the nybomycin class is demonstrated in a mouse infection model. Overall, the data presented suggest the promise of DNM derivatives for the treatment of FQR infections.

  1. Chronic inhibition of cyclooxygenase-2 attenuates antibody responses against vaccinia infection.

    Science.gov (United States)

    Bernard, Matthew P; Bancos, Simona; Chapman, Timothy J; Ryan, Elizabeth P; Treanor, John J; Rose, Robert C; Topham, David J; Phipps, Richard P

    2010-02-01

    Generation of optimal humoral immunity to vaccination is essential to protect against devastating infectious agents such as the variola virus that causes smallpox. Vaccinia virus (VV), employed as a vaccine against smallpox, provides an important model of infection. Herein, we evaluated the importance cyclooxygenase-2 (Cox-2) in immunity to VV using Cox-2 deficient mice and Cox-2 selective inhibitory drugs. The effects of Cox-2 inhibition on antibody responses to live viruses such as vaccinia have not been previously described. Here, we used VV infection in Cox-2 deficient mice and in mice chronically treated with Cox-2 selective inhibitors and show that the frequency of VV-specific B cells was reduced, as well as the production of neutralizing IgG. VV titers were approximately 70 times higher in mice treated with a Cox-2 selective inhibitor. Interestingly, Cox-2 inhibition also reduced the frequency of IFN-gamma producing CD4(+) T helper cells, important for class switching. The significance of these results is that the chronic use of non-steroidal anti-inflammatory drugs (NSAIDs), and other drugs that inhibit Cox-2 activity or expression, blunt the ability of B cells to produce anti-viral antibodies, thereby making vaccines less effective and possibly increasing susceptibility to viral infection. These new findings support an essential role for Cox-2 in regulating humoral immunity.

  2. Cross reactive molecules of human lymphatic filaria Brugia malayi inhibit Leishmania donovani infection in hamsters.

    Science.gov (United States)

    Verma, Richa; Joseph, Sujith K; Kushwaha, Vikas; Kumar, Vikash; Siddiqi, M I; Vishwakarma, Preeti; Shivahare, Rahul; Gupta, Suman; Murthy, P K

    2015-12-01

    Coinfections are common in natural populations and the outcome of their interactions depends on the immune responses of the host elicited by the parasites. Earlier we showed that immunization with BmAFII (Sephadex G-200 eluted) fraction of human lymphatic filaria Brugia malayi inhibited progression of Leishmania donovani infection in golden hamsters. In the present study we identified cross reactive molecules of B. malayi, and investigated their effect on L. donovani infection and associated immune responses in the host. The sequence alignment and sharing of linear T- and B-cell epitopes in protein molecules of B. malayi and L. donovani counterparts were studied in silico. Hamsters were immunized with robustly cross reactive SDS-PAGE resolved fractions F6 (54.2-67.8kDa) and F9 (41.3-45.0kDa) of B. malayi and subsequently inoculated with amastigotes of L. donovani intracardially. F6 inhibited (∼72%) L. donovani infection and upregulated Th1 cytokine expression, lymphoproliferation, IgG2, IgG2/3 levels and NO production, and downregulated Th2 cytokine expression. Sequences in HSP60 and EF-2 of F6 and L. donovani counterparts were conserved and B- and T-cell epitopes in the proteins shared antigenic regions. In conclusion, leishmania-cross reactive molecules of filarial parasite considerably inhibited leishmanial infection via Th1-mediated immune responses and NO production. Common B- and T-cell epitope regions in HSP60 and EF-2 of the parasites might have contributed to the inhibitory effect on the L. donovani infection. Thus, leishmania-cross reactive filarial parasite molecules may help in designing prophylactic(s) against L. donovani.

  3. Genome-wide RNAi screen identifies broadly-acting host factors that inhibit arbovirus infection.

    Directory of Open Access Journals (Sweden)

    Ari Yasunaga

    2014-02-01

    Full Text Available Vector-borne viruses are an important class of emerging and re-emerging pathogens; thus, an improved understanding of the cellular factors that modulate infection in their respective vertebrate and insect hosts may aid control efforts. In particular, cell-intrinsic antiviral pathways restrict vector-borne viruses including the type I interferon response in vertebrates and the RNA interference (RNAi pathway in insects. However, it is likely that additional cell-intrinsic mechanisms exist to limit these viruses. Since insects rely on innate immune mechanisms to inhibit virus infections, we used Drosophila as a model insect to identify cellular factors that restrict West Nile virus (WNV, a flavivirus with a broad and expanding geographical host range. Our genome-wide RNAi screen identified 50 genes that inhibited WNV infection. Further screening revealed that 17 of these genes were antiviral against additional flaviviruses, and seven of these were antiviral against other vector-borne viruses, expanding our knowledge of invertebrate cell-intrinsic immunity. Investigation of two newly identified factors that restrict diverse viruses, dXPO1 and dRUVBL1, in the Tip60 complex, demonstrated they contributed to antiviral defense at the organismal level in adult flies, in mosquito cells, and in mammalian cells. These data suggest the existence of broadly acting and functionally conserved antiviral genes and pathways that restrict virus infections in evolutionarily divergent hosts.

  4. Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection

    Directory of Open Access Journals (Sweden)

    Pécheur Eve-Isabelle

    2006-07-01

    Full Text Available Abstract Arbidol (ARB is an antiviral compound that was originally proven effective for treatment of influenza and several other respiratory viral infections. The broad spectrum of ARB anti-viral activity led us to evaluate its effect on hepatitis C virus (HCV infection and replication in cell culture. Long-term ARB treatment of Huh7 cells chronically replicating a genomic length genotype 1b replicon resulted in sustained reduction of viral RNA and protein expression, and eventually cured HCV infected cells. Pre-treatment of human hepatoma Huh7.5.1 cells with 15 μM ARB for 24 to 48 hours inhibited acute infection with JFH-1 virus by up to 1000-fold. The inhibitory effect of ARB on HCV was not due to generalized cytotoxicity, nor to augmentation of IFN antiviral signaling pathways, but involved impaired virus-mediated membrane fusion. ARB's affinity for membranes may inhibit several aspects of the HCV lifecycle that are membrane-dependent.

  5. Optimization and inhibition of the adherent ability of Plasmodium falciparum-infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Heidi Smith

    1992-01-01

    Full Text Available The vast majority of the 1-2 million malaria associated deaths that occur each year are due to anemia and cerebral malaria (the attachment of erythrocytes containing mature forms of Plasmodium falciparum to the endothelial cells that line the vascular beds of the brain. A "model" system"for the study of cerebral malaria employs amelanotic melanoma cells as the "target"cells in an vitro cytoadherence assay. Using this model system we determined that the optimum pH for adherence is 6.6 to 6.8, that high concentrations of Ca²* (50mM result in increased levels of binding, and that the type of buffer used influences adherence (Bis Tris > MOPS > HEPES > PIPES. We also observed that the ability of infected erythrocytes to cytoadhere varied from (erythrocyte donor to donor. We have produced murine monoclonal antibodies against P. falciparum-infected red cells which recognized modified forms of human band 3; these inhibit the adherence of infected erythrocytes to melanoma cells in a doso responsive fashion. Antimalarials (chloroquine, quinacrine, mefloquine, artemisinin, on the other hand, affected adherence in an indirect fashion i.e. since cytoadherence is due, in part to the presence of knobs on the surface of the infected erythrocyte, and knob formation is dependent on intracellular parasite growth, when plasmodial development is inhibited so is knob production, and consequently adherence is ablated.

  6. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection.

    Science.gov (United States)

    Song, Wei; Seta, Joseph; Chen, Liang; Bergum, Christopher; Zhou, Zhubin; Kanneganti, Praveen; Kast, Rachel E; Auner, Gregory W; Shen, Ming; Markel, David C; Ren, Weiping; Yu, Xiaowei

    2017-07-05

    Few studies have been reported that focus on developing implant surface nanofiber (NF) coating to prevent infection and enhance osseointegration by local drug release. In this study, coaxial doxycycline (Doxy)-doped polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs were directly deposited on a titanium (Ti) implant surface during electrospinning. The interaction of loaded Doxy with both PVA and PCL NFs was characterized by Raman spectroscopy. The bonding strength of Doxy-doped NF coating on Ti implants was confirmed by a stand single-pass scratch test. The improved implant osseointegration by PCL/PVA NF coatings in vivo was confirmed by scanning electron microscopy, histomorphometry and micro computed tomography (μCT) at 2, 4 and 8 weeks after implantation. The bone contact surface (%) changes of the NF coating group (80%) is significantly higher than that of the no NF group (Doxy-doped NF coating effectively inhibited bacterial infection and enhanced osseointegration in an infected (Staphylococcus aureus) tibia implantation rat model. Doxy released from NF coating inhibited bacterial growth up to 8 weeks in vivo. The maximal push-in force of the Doxy-NF coating (38 N) is much higher than that of the NF coating group (6.5 N) 8 weeks after implantation (p Doxy and/or other drugs have great potential in enhancing implant osseointegration and preventing infection.

  7. Naringenin suppresses Edwardsiella tarda infection in GAKS cells by NanA sialidase inhibition.

    Science.gov (United States)

    Shinyoshi, Sayaka; Kamada, Yuko; Matsusaki, Koki; Chigwechokha, Petros Kingstone; Tepparin, Supawan; Araki, Kyosuke; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2017-02-01

    Edwardsiella tarda (E. tarda) is a gram-negative bacterium, which causes Edwardsiellosis in aquaculture. Previous studies indicate that E. tarda NanA sialidase plays crucial roles in infection through the desialylation of glycoproteins in fish cells. On the other hand, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, classic sialidase inhibitor, negatively regulates E. tarda infection of goldfish scale GAKS cells. Here, to development the suppression model of E. tarda infection for aquaculture application, the possibility of NanA inhibitory activities in citrus phytochemicals was evaluated as citrus extracts have widely been used as a supplement in fish diets for the improvement of meat quality. Some flavanones such as naringenin, hesperetin, hesperidin and naringin showed sialidase inhibitory activity toward recombinant NanA in vitro. Among them, naringenin showed the most potent inhibitory activity and its inhibitory pattern was non-competitive. Naringenin significantly suppressed E. tarda infection in GAKS cells at 200 and 400 μM without bactericidal effect on E. tarda. On the other hand, naringin, glycosylation form of naringenin, showed slight suppression of E. tarda infection toward GAKS cells, suggesting the glycosides on flavanone could be important for NanA inhibition. Fluorescence microscopy analysis verified that number of invading E. tarda in GAKS cells was declined by naringenin treatment. The present study exhibited the possibility of naringenin as an effective ingredient in fish diet for the inhibition of E. tarda infection.

  8. Pharmacologic inhibition of COX-1 and COX-2 in influenza A viral infection in mice.

    Directory of Open Access Journals (Sweden)

    Michelle A Carey

    Full Text Available BACKGROUND: We previously demonstrated that cyclooxygenase (COX-1 deficiency results in greater morbidity and inflammation, whereas COX-2 deficiency leads to reduced morbidity, inflammation and mortality in influenza infected mice. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of COX-1 and COX-2 inhibitors in influenza A viral infection. Mice were given a COX-1 inhibitor (SC-560, a COX-2 inhibitor (celecoxib or no inhibitor beginning 2 weeks prior to influenza A viral infection (200 PFU and throughout the course of the experiment. Body weight and temperature were measured daily as indicators of morbidity. Animals were sacrificed on days 1 and 4 post-infection and bronchoalveolar lavage (BAL fluid was collected or daily mortality was recorded up to 2 weeks post-infection. Treatment with SC-560 significantly increased mortality and was associated with profound hypothermia and greater weight loss compared to celecoxib or control groups. On day 4 of infection, BAL fluid cells were modestly elevated in celecoxib treated mice compared to SC-560 or control groups. Viral titres were similar between treatment groups. Levels of TNF-alpha and G-CSF were significantly attenuated in the SC-560 and celecoxib groups versus control and IL-6 levels were significantly lower in BAL fluid of celecoxib treated mice versus control and versus the SC-560 group. The chemokine KC was significantly lower in SC-560 group versus control. CONCLUSIONS/SIGNIFICANCE: Treatment with a COX-1 inhibitor during influenza A viral infection is detrimental to the host whereas inhibition of COX-2 does not significantly modulate disease severity. COX-1 plays a critical role in controlling the thermoregulatory response to influenza A viral infection in mice.

  9. The Ly49E receptor inhibits the immune control of acute Trypanosoma cruzi infection

    Directory of Open Access Journals (Sweden)

    Jessica Filtjens

    2016-11-01

    Full Text Available The protozoan parasite Trypanosoma cruzi (T. cruzi circulates in the blood upon infection and invades a variety of cells. Parasites intensively multiply during the acute phase of infection and persist lifelong at low levels in tissues and blood during the chronic phase. Natural killer (NK and NKT cells play an important role in the immune control of T. cruzi infection, mainly by releasing the cytokine IFN-γ that activates the microbicidal action of macrophages and other cells and shapes a protective type 1 immune response. The mechanisms by which immune cells are regulated to produce IFN-γ during T. cruzi infection are still incompletely understood. Here, we show that urokinase plasminogen activator (uPA is induced early upon T. cruzi infection, and remains elevated until day 20 post inoculation. We previously demonstrated that the inhibitory receptor Ly49E, which is expressed, among others, on NK and NKT cells, is triggered by uPA. Therefore, we compared wild type (WT to Ly49E knockout (KO mice for their control of experimental T. cruzi infection. Our results show that young, i.e. 4- and 6-week-old, Ly49E KO mice control the infection better than WT mice, indicated by a lower parasite load and less cachexia. The beneficial effect of Ly49E depletion is more obvious in 4-week-old male than in female mice and weakens in 8-week-old mice. In young mice, the lower T. cruzi parasitemia in Ly49E KO mice is paralleled by higher IFN-γ production compared to their WT controls. Our data indicate that Ly49E receptor expression inhibits the immune control of T. cruzi infection. This is the first demonstration that the inhibitory Ly49E receptor can interfere with the immune response to a pathogen in vivo.

  10. Pedilanthus tithymaloides Inhibits HSV Infection by Modulating NF-κB Signaling.

    Directory of Open Access Journals (Sweden)

    Durbadal Ojha

    Full Text Available Pedilanthus tithymaloides (PT, a widely used ethnomedicinal plant, has been employed to treat a number of skin conditions. To extend its utility and to fully exploit its medicinal potential, we have evaluated the in vitro antiviral activity of a methanolic extract of PT leaves and its isolated compounds against Herpes Simplex Virus type 2 (HSV-2. Bioactivity-guided studies revealed that the extract and one of its constituents, luteolin, had potent antiviral activity against wild-type and clinical isolates of HSV-2 (EC50 48.5-52.6 and 22.4-27.5 μg/ml, respectively, with nearly complete inhibition at 86.5-101.8 and 40.2-49.6 μg/ml, respectively. The inhibitory effect was significant (p<0.001 when the drug was added 2 h prior to infection, and was effective up to 4 h post-infection. As viral replication requires NF-κB activation, we examined whether the observed extract-induced inhibition of HSV-2 was related to NF-κB inhibition. Interestingly, we observed that treatment of HSV-2-infected cells with extract or luteolin suppressed NF-κB activation. Although NF-κB, JNK and MAPK activation was compromised during HSV replication, neither the extract nor luteolin affected HSV-2-induced JNK1/2 and MAPK activation. Moreover, the PT leaf extract and luteolin potently down-regulated the expression of tumor necrosis factor (TNF-α, Interleukin (IL-1β, IL-6, NO and iNOS and the production of gamma interferon (IFN-γ, which are directly involved in controlling the NF-κB signaling pathway. Thus, our results indicate that both PT leaf extract and luteolin modulate the NF-κB signaling pathway, resulting in the inhibition of HSV-2 replication.

  11. Down-regulation of HIV-1 Infection by Inhibition of the MAPK Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    Jian Gong; Xi-hui Shen; Chao Chen; Hui Qiu; Rong-ge Yang

    2011-01-01

    The human immunodeficiency virus type 1(HIV-1)can interact with and exploit the host cellular machinery to replicate and propagate itself.Numerous studies have shown that the Mitogen-activated protein kinase(MAPK)signal pathway can positively regulate the replication of HIV-1,but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood.In this study,we used the Extracellular signal-regulated kinase(ERK)pathway inhibitor,PD98059,the Jun N-terminal kinase(JNK)pathway inhibitor,SP600125,and the p38 pathway inhibitor,SB203580,to investigate the roles of these pathways in HIV-1replication.We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity.In addition,SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity.We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059when cells were treated with all three MAPK pathway inhibitors in combination.Finally,we show that HIV-1virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.

  12. Inhibition of HIV and HSV infection by vaginal lactobacilli in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Modarressi

    2012-10-01

    Full Text Available Background and the purpose of the study The cervico-vaginal mucosa which is populated with microflora (mostly includes lactobacilli is the portal of entry for sexually transmitted pathogens.MethodsThe in vitro anti-viral effect of vaginal and non-vaginal lactobacillus was evaluated using single cycle HIV-1 replication and HSV-2 plaque reduction assays. The XTT proliferation assay was used to monitor the cellular toxicity. The in vivo anti-HSV-1 activity was evaluated in BALB/c mouse model by monitoring skin lesion and immune response development. Results and major conclusion DMEM culture supernatant of L. Gasseri and L. fermentum (PH 7.3 did not show toxic effect but inhibited 50% of HIV replication at 12 and 31% concentrations, respectively. Coculture of L. gasseri (1000 CFU/ target cell showed mild cytotoxicity but inhibited 68% of HIV replication. The supernatant of L. crispatus inhibited 50% of HSV replication at 4% and also co-culture of L. gasseri, L. rhamnosus and L. crispatus revokes almost all of the HSV multiplication. Culture supernatants of L. gasseri and L. crispatus had significant virucidal effect against the HIV and HSV and inhibited HSV infection in a stage before viral entry to the target cells. Alive L. gasseri cells showed high potential for inhibiting HSV-1 infection in vivo condition. Current data indicates that lactobacilli supernatant encompasses components with neutralizing activity against HIV and HSV and it would be a determinant factor for viral diseases transmission and promising lead for anti-viral probiotic design.

  13. Inhibition of HIV and HSV infection by vaginal lactobacilli in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zabihollahi Rezvan

    2012-10-01

    Full Text Available Abstract Background and the purpose of the study The cervico-vaginal mucosa which is populated with microflora (mostly includes lactobacilli is the portal of entry for sexually transmitted pathogens. Methods The in vitro anti-viral effect of vaginal and non-vaginal lactobacillus was evaluated using single cycle HIV-1 replication and HSV-2 plaque reduction assays. The XTT proliferation assay was used to monitor the cellular toxicity. The in vivo anti-HSV-1 activity was evaluated in BALB/c mouse model by monitoring skin lesion and immune response development. Results and major conclusion DMEM culture supernatant of L. Gasseri and L. fermentum (PH 7.3 did not show toxic effect but inhibited 50% of HIV replication at 12 and 31% concentrations, respectively. Co-culture of L. gasseri (1000 CFU/ target cell showed mild cytotoxicity but inhibited 68% of HIV replication. The supernatant of L. crispatus inhibited 50% of HSV replication at 4% and also co-culture of L. gasseri, L. rhamnosus and L. crispatus revokes almost all of the HSV multiplication. Culture supernatants of L. gasseri and L. crispatus had significant virucidal effect against the HIV and HSV and inhibited HSV infection in a stage before viral entry to the target cells. Alive L. gasseri cells showed high potential for inhibiting HSV-1 infection in vivo condition. Current data indicates that lactobacilli supernatant encompasses components with neutralizing activity against HIV and HSV and it would be a determinant factor for viral diseases transmission and promising lead for anti-viral probiotic design.

  14. A Novel Human Radixin Peptide Inhibits Hepatitis C Virus Infection at the Level of Cell Entry.

    Science.gov (United States)

    Bukong, Terence N; Kodys, Karen; Szabo, Gyongyi

    2014-09-01

    Hepatitis C virus infection of hepatocytes is a multistep process involving the interaction between viral and host cell molecules. Recently, we identified ezrin-moesin-radixin proteins and spleen tyrosine kinase (SYK) as important host therapeutic targets for HCV treatment development. Previously, an ezrin hinge region peptide (Hep1) has been shown to exert anti-HCV properties in vivo, though its mechanism of action remains limited. In search of potential novel inhibitors of HCV infection and their functional mechanism we analyzed the anti-HCV properties of different human derived radixin peptides. Sixteen different radixin peptides were derived, synthesized and tested. Real-time quantitative PCR, cell toxicity assay, immuno-precipitation/western blot analysis and computational resource for drug discovery software were used for experimental analysis. We found that a human radixin hinge region peptide (Peptide1) can specifically block HCV J6/JFH-1 infection of Huh7.5 cells. Peptide 1 had no cell toxicity or intracellular uptake into Huh7.5 cells. Mechanistically, the anti-HCV activity of Peptide 1 extended to disruption of HCV engagement of CD81 thereby blocking downstream SYK activation, which we have recently demonstrated to be important for effective HCV infection of target hepatocytes. Our findings highlight a novel functional class of anti-HCV agents that can inhibit HCV infection, most likely by disrupting vital viral-host signaling interactions at the level of virus entry.

  15. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Directory of Open Access Journals (Sweden)

    Agostina Pietrantoni

    2015-01-01

    Full Text Available Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  16. Amiodarone and metabolite MDEA inhibit Ebola virus infection by interfering with the viral entry process.

    Science.gov (United States)

    Salata, Cristiano; Baritussio, Aldo; Munegato, Denis; Calistri, Arianna; Ha, Huy Riem; Bigler, Laurent; Fabris, Fabrizio; Parolin, Cristina; Palù, Giorgio; Mirazimi, Ali

    2015-07-01

    Ebola virus disease (EVD) is one of the most lethal transmissible infections characterized by a high fatality rate, and a treatment has not been developed yet. Recently, it has been shown that cationic amphiphiles, among them the antiarrhythmic drug amiodarone, inhibit filovirus infection. In the present work, we investigated how amiodarone interferes with Ebola virus infection. Wild-type Sudan ebolavirus and recombinant vesicular stomatitis virus, pseudotyped with the Zaire ebolavirus glycoprotein, were used to gain further insight into the ability of amiodarone to affect Ebola virus infection. We show that amiodarone decreases Ebola virus infection at concentrations close to those found in the sera of patients treated for arrhythmias. The drug acts by interfering with the fusion of the viral envelope with the endosomal membrane. We also show that MDEA, the main amiodarone metabolite, contributes to the antiviral activity. Finally, studies with amiodarone analogues indicate that the antiviral activity is correlated with drug ability to accumulate into and interfere with the endocytic pathway. Considering that it is well tolerated, especially in the acute setting, amiodarone appears to deserve consideration for clinical use in EVD.

  17. HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions.

    Directory of Open Access Journals (Sweden)

    Alessandra Sacchi

    Full Text Available DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC. After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.

  18. HIV infection of monocytes-derived dendritic cells inhibits Vγ9Vδ2 T cells functions.

    Science.gov (United States)

    Sacchi, Alessandra; Rinaldi, Alessandra; Tumino, Nicola; Casetti, Rita; Agrati, Chiara; Turchi, Federica; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2014-01-01

    DCs act as sentinel cells against incoming pathogens and represent the most potent antigen presenting cells, having the unique capability to prime naïve T cells. In addition to their role in induction of adaptive immune responses, DC are also able to activate innate cells as γδ T cells; in particular, a reciprocal crosstalk between DC and γδ T cells was demonstrated. However, whether HIV infection may alter DC-Vγ9Vδ2 T cells cross-talk was not yet described. To clarify this issue, we cultured activated Vγ9Vδ2 T cells with HIV infected monocyte derived DC (MoDC). After 5 days we evaluated MoDC phenotype, and Vγ9Vδ2 T cells activation and proliferation. In our model, Vγ9Vδ2 T cells were not able to proliferate in response to HIV-infected MoDC, although an up-regulation of CD69 was observed. Upon phosphoantigens stimulation, Vγ9Vδ2 T cells proliferation and cytokine production were inhibited when cultured with HIV-infected MoDC in a cell-contact dependent way. Moreover, HIV-infected MoDC are not able to up-regulate CD86 molecules when cultured with activated Vγ9Vδ2 T cells, compared with uninfected MoDC. Further, activated Vγ9Vδ2 T cells are not able to induce HLA DR up-regulation and CCR5 down-regulation on HIV-infected MoDC. These data indicate that HIV-infected DC alter the capacity of Vγ9Vδ2 T cells to respond to their antigens, pointing out a new mechanisms of induction of Vγ9Vδ2 T cells anergy carried out by HIV, that could contribute to immune evasion.

  19. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    Science.gov (United States)

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Honokiol, a Lignan Biphenol Derived from the Magnolia Tree, Inhibits Dengue Virus Type 2 Infection

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-09-01

    Full Text Available Dengue is the most widespread arbovirus infection and poses a serious health and economic issue in tropical and subtropical countries. Currently no licensed vaccine or compounds can be used to prevent or manage the severity of dengue virus (DENV infection. Honokiol, a lignan biphenol derived from the Magnolia tree, is commonly used in Eastern medicine. Here we report that honokiol has profound antiviral activity against serotype 2 DENV (DENV-2. In addition to inhibiting the intracellular DENV-2 replicon, honokiol was shown to suppress the replication of DENV-2 in baby hamster kidney (BHK and human hepatocarcinoma Huh7 cells. At the maximum non-toxic dose of honokiol treatment, the production of infectious DENV particles was reduced >90% in BHK and Huh7 cells. The underlying mechanisms revealed that the expression of DENV-2 nonstructural protein NS1/NS3 and its replicating intermediate, double-strand RNA, was dramatically reduced by honokiol treatment. Honokiol has no effect on the expression of DENV putative receptors, but may interfere with the endocytosis of DENV-2 by abrogating the co-localization of DENV envelope glycoprotein and the early endosomes. These results indicate that honokiol inhibits the replication, viral gene expression, and endocytotic process of DENV-2, making it a promising agent for chemotherapy of DENV infection.

  1. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro.

    Science.gov (United States)

    von Rhein, Christine; Weidner, Tatjana; Henß, Lisa; Martin, Judith; Weber, Christopher; Sliva, Katja; Schnierle, Barbara S

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever, and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions including Europe and the United States of America. CHIKV has recently caused large outbreaks in Latin America. No treatment or licensed CHIKV vaccine exists. Traditional medicines are known to have anti-viral effects; therefore, we examined whether curcumin or Boswellia serrata gum resin extract have antiviral activity against CHIKV. Both compounds blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV infection in vitro. In addition, vesicular stomatitis virus vector particles and viral infections were also inhibited to the same extent, indicating a broad antiviral activity. Although the bioavailability of these compounds is rather poor, they might be used as a lead structure to develop more effective antiviral drugs or might be used topically to prevent CHIKV spread in the skin after mosquito bites.

  2. IFN-λ3 inhibits HIV infection of macrophages through the JAK-STAT pathway.

    Directory of Open Access Journals (Sweden)

    Man-Qing Liu

    Full Text Available BACKGROUND: Interferon lambda 3 (IFN-λ3 is a newly identified cytokine with antiviral activity, and its single nucleotide polymorphisms are strongly associated with the treatment effectiveness and development of chronic hepatitis C virus infection. We thus examined the potential of IFN-λ3 to inhibit HIV replication and the possible mechanisms of the anti-HIV action by IFN-λ3 in human macrophages. PRINCIPAL FINDINGS: Under different conditions (before, during, and after HIV infection, IFN-λ3 significantly inhibited viral replication in macrophages, which was associated with the induction of multiple antiviral cellular factors (ISG56, MxA, OAS-1, A3G/F and tetherin and IFN regulatory factors (IRF-1, 3, 5, 7 and 9. This anti-HIV action of IFN-λ3 could be compromised by the JAK-STAT inhibitor. In addition, IFN-λ3 treatment of macrophages induced the expression of toll-like receptor 3 (TLR3 and two key adaptors (MyD88 and TRIF in type I IFN pathway activation. However, HIV infection compromised IFN-λ3-mediated induction of the key elements in JAK-STAT signaling pathway. CONCLUSIONS: These data indicate that IFN-λ3 exerts its anti-HIV function by activating JAK-STAT pathway-mediated innate immunity in macrophages. Future in vivo studies are necessary in order to explore the potential for developing IFN-λ3-based therapy for HIV disease.

  3. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas

    Science.gov (United States)

    Duggal, Neil; Jaishankar, Dinesh; Yadavalli, Tejabhiram; Hadigal, Satvik; Mishra, Yogendra Kumar; Adelung, Rainer

    2017-01-01

    Purpose Infection of the human cornea by herpes simplex virus type-1 (HSV-1) can cause significant vision loss. The purpose of this study was to develop an ex vivo model to visualize viral growth and spread in the cornea. The model was also used to analyze cytokine production and study the antiviral effects of zinc oxide tetrapods. Methods A β-galactosidase-expressing recombinant virus, HSV-1(KOS)tk12, was used to demonstrate the ability of the virus to enter and develop blue plaques on human corneal epithelial (HCE) cells and corneal tissues. Freshly obtained porcine corneas were cultured and then scratched before infection with HSV-1(KOS)tk12. The blue plaques on the corneas were imaged using a stereomicroscope. Western blot analysis for HSV-1 proteins was performed to verify HSV-1 infection of the cornea. Using the ex vivo model, zinc oxide tetrapods were tested for their anti-HSV-1 potential, and a cytokine profile was developed to assess the effects of the treatment. Results Cultured corneas and the use of β-galactosidase-expressing HSV-1(KOS)tk12 virus can provide an attractive ex vivo model to visualize and study HSV-1 entry and spread of the infection in tissues. We found that unlike cultured HCE cells, which demonstrated nearly 100% infectivity, HSV-1 infection of the cultured cornea was more restrictive and took longer to develop. We also found that the zinc oxide tetrapod–shaped nano- and microstructures inhibited HSV infection of the cultured cells, as well as the cultured corneas. The cytokine profile of the infected samples was consistent with previous studies of HSV-1 corneal infection. Conclusions The ability to visualize HSV-1 growth and spread in corneal tissues can provide new details about HSV-1 infection of the cornea and the efficacy of new cornea-specific antiviral drug candidates. The ex vivo model also demonstrates antiviral effects of zinc oxide tetrapods and adequately portrays the drug delivery issues that cornea-specific treatments

  4. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  5. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed......Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro...... that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating...

  6. New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection.

    Science.gov (United States)

    Garcia-Perez, Javier; Rueda, Patricia; Staropoli, Isabelle; Kellenberger, Esther; Alcami, Jose; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2011-02-18

    CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [(125)I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [(35)S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [(35)S]gp120-binding receptors are in the same range (IC(50) ∼6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.

  7. HIV Infection Is Associated with Impaired Striatal Function during Inhibition with Normal Cortical Functioning on Functional MRI

    NARCIS (Netherlands)

    du Plessis, Stéfan; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2015-01-01

    The aim of the present study was to investigate the effect of HIV infection on cortical and subcortical regions of the frontal-striatal system involved in the inhibition of voluntary movement. Functional MRI (fMRI) studies suggest that human immunodeficiency virus (HIV) infection is associated with

  8. Lipopolysaccharide-binding alkylpolyamine DS-96 inhibits Chlamydia trachomatis infection by blocking attachment and entry.

    Science.gov (United States)

    Osaka, Ichie; Hefty, P Scott

    2014-06-01

    Vaginally delivered microbicides are being developed to offer women self-initiated protection against transmission of sexually transmitted infections such as Chlamydia trachomatis. A small molecule, DS-96, rationally designed for high affinity to Escherichia coli lipid A, was previously demonstrated to bind and neutralize lipopolysaccharide (LPS) from a wide variety of Gram-negative bacteria (D. Sil et al., Antimicrob. Agents Chemother. 51: 2811-2819, 2007, doi:10.1128/AAC.00200-07). Aside from the lack of the repeating O antigen, chlamydial lipooligosaccharide (LOS) shares general molecular architecture features with E. coli LPS. Importantly, the portion of lipid A where the interaction with DS-96 is expected to take place is well conserved between the two organisms, leading to the hypothesis that DS-96 inhibits Chlamydia infection by binding to LOS and compromising the function. In this study, antichlamydial activity of DS-96 was examined in cell culture. DS-96 inhibited the intercellular growth of Chlamydia in a dose-dependent manner and offered a high level of inhibition at a relatively low concentration (8 μM). The data also revealed that infectious elementary bodies (EBs) were predominantly blocked at the attachment step, as indicated by the reduced number of EBs associated with the host cell surface following pretreatment. Of those EBs that were capable of attachment, the vast majority was unable to gain entry into the host cell. Inhibition of EB attachment and entry by DS-96 suggests that Chlamydia LOS is critical to these processes during the developmental cycle. Importantly, given the low association of host toxicity previously reported by Sil et al., DS-96 is expected to perform well in animal studies as an active antichlamydial compound in a vaginal microbicide. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Partial inhibition of hemocyte agglutination by Lathyrus odoratus lectin in Crassotrea virginica infected with Perkinsus marinus

    Directory of Open Access Journals (Sweden)

    Thomas C. Cheng

    1995-06-01

    Full Text Available Quantitative determinations of agglutination of hemocytes from oysters, Crassostrea virginica, by the Lathyrus odoratus lectin at five concentrations revealed that clumping of hemocytes from oysters infected with Perkinsus marinus is partially inhibited. Although the nature of the hemocyte surface saccharide, which is not D(+-glucose, D(+mannose, or alpha-methyl-D-mannoside, remains to be determined, it may be concluded that this molecule also occurs on the surface of P. marinus. It has been demonstrated that the panning technique (Ford et al. 1990 is qualitatively as effective for determining the presence of P. marinus in C. virginica as the hemolymph assay method (Gauthier & Fisher 1990.

  10. Inhibition of Influenza A Virus Infection In Vitro by Peptides Designed In Silico

    Science.gov (United States)

    López-Martínez, Rogelio; Ramírez-Salinas, G. Lizbeth; Correa-Basurto, José; Barrón, Blanca L.

    2013-01-01

    Influenza A viruses are enveloped, segmented negative single-stranded RNA viruses, capable of causing severe human respiratory infections. Currently, only two types of drugs are used to treat influenza A infections, the M2 H+ ion channel blockers (amantadine and rimantadine) and the neuraminidase inhibitors (NAI) (oseltamivir and zanamivir). Moreover, the emergence of drug-resistant influenza A virus strains has emphasized the need to develop new antiviral agents to complement or replace the existing drugs. Influenza A virus has on the surface a glycoprotein named hemagglutinin (HA) which due to its important role in the initial stage of infection: receptor binding and fusion activities of viral and endosomal membranes, is a potential target for new antiviral drugs. In this work we designed nine peptides using several bioinformatics tools. These peptides were derived from the HA1 and HA2 subunits of influenza A HA with the aim to inhibit influenza A virus infection. The peptides were synthetized and their antiviral activity was tested in vitro against several influenza A viral strains: Puerto Rico/916/34 (H1N1), (H1N1)pdm09, swine (H1N1) and avian (H5N2). We found these peptides were able to inhibit the influenza A viral strains tested, without showing any cytotoxic effect. By docking studies we found evidence that all the peptides were capable to bind to the viral HA, principally to important regions on the viral HA stalk, thus could prevent the HA conformational changes required to carry out its membranes fusion activity. PMID:24146939

  11. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Mathiesen, Lars Reinhardt;

    1991-01-01

    Monoclonal antibodies (MAbs) against the alpha- and beta-chain of lymphocyte-associated antigen-1 (LFA-1) were examined for inhibition of HIV-1 infection in vitro. Infection of the T cell line MT4 and the monocytic cell line U937 by isolates HTLVIIIB and SSI-002, respectively was inhibited...... in a concentration dependent manner by MAb against the beta-chain but not against the alpha-chain. No cross-reactivity was found between MAb against LFA-1 and against the CD4 receptor (MAb Leu3a). MAbs against the beta-chain and the CD4 receptor were found to act synergistically in inhibiting HIV infection....... These data indicate that the beta-chain of LFA-1 in addition to the CD4 receptor may be involved in HIV infection in vitro....

  12. Binding of Galanthus nivalis lectin to Chlamydia trachomatis and inhibition of in vitro infection.

    Science.gov (United States)

    Amin, K; Beillevaire, D; Mahmoud, E; Hammar, L; Mårdh, P A; Fröman, G

    1995-10-01

    A glycoprotein present in Chlamydia trachomatis, serotype L1, elementary bodies (EBs) was earlier found to bind the lectin from Galanthus nivalis (GNA). In the present paper we investigate the interaction of GNA with chlamydial EBs and its effect on in vitro infectivity. The binding affinity was studied with 125I-GNA lectin. Within 15 min about 80% maximal binding was obtained. The chlamydia-GNA interaction was inhibited by alpha-methylmannoside, causing a decrease of about 50% at 1 mM. Curve fit analyses indicated two types of binding sites for GNA on the EBs. The affinity to these differed by a factor of 15. The influence of the lectin on the ability of C. trachomatis to infect McCoy cells was also investigated. There was a GNA-dependent inhibition with a 50% reduction in the number of intracellular inclusions at 0.2 microM of the lectin. The findings indicate the presence of terminal mannose structures on the chlamydial surface at or in the proximity of the cell-binding domains. Mannose-binding proteins of eukaryotic cells could be important for the initial uptake of EBs.

  13. Inhibition of Japanese Encephalitis Virus Infection by Flavivirus Recombinant E Protein Domain Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Jingjing Fan; Yi Liu; Xuping Xie; Bo Zhang; Zhiming Yuan

    2013-01-01

    Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus closely related to the human pathogens including yellow fever virus,dengue virus and West Nile virus.There are currently no effective antiviral therapies for all of the flavivirus and only a few highly effective vaccines are licensed for human use.In this paper,the E protein domain Ⅲ (DⅢ) of six heterologous flaviviruses (DENV1-4,WNV and JEV) was expressed in Escherichia coli successfully.The proteins were purified after a solubilization and refolding procedure,characterized by SDS-PAGE and Western blotting.Competitive inhibition showed that all recombinant flavivirus DⅢ proteins blocked the entry of JEV into BHK-21 cells.Further studies indicated that antibodies induced by the soluble recombinant flavivirus DⅢ partially protected mice against lethal JEV challenge.These results demonstrated that recombinant flavivirus DⅢ proteins could inhibit JEV infection competitively,and immunization with proper folding flavivirus DⅢ induced cross-protection against JEV infection in mice,implying a possible role of DⅢ for the cross-protection among flavivirus as well as its use in antigens for immunization in animal models.

  14. Meganuclease-mediated Inhibition of HSV1 Infection in Cultured Cells.

    Science.gov (United States)

    Grosse, Stéphanie; Huot, Nicolas; Mahiet, Charlotte; Arnould, Sylvain; Barradeau, Sébastien; Clerre, Diane Le; Chion-Sotinel, Isabelle; Jacqmarcq, Cécile; Chapellier, Benoît; Ergani, Ayla; Desseaux, Carole; Cédrone, Frédéric; Conseiller, Emmanuel; Pâques, Frédéric; Labetoulle, Marc; Smith, Julianne

    2011-04-01

    Herpes simplex virus type 1 (HSV1) is a major health problem. As for most viral diseases, current antiviral treatments are based on the inhibition of viral replication once it has already started. As a consequence, they impair neither the viral cycle at its early stages nor the latent form of the virus, and thus cannot be considered as real preventive treatments. Latent HSV1 virus could be addressed by rare cutting endonucleases, such as meganucleases. With the aim of a proof of concept study, we generated several meganucleases recognizing HSV1 sequences, and assessed their antiviral activity in cultured cells. We demonstrate that expression of these proteins in African green monkey kidney fibroblast (COS-7) and BSR cells inhibits infection by HSV1, at low and moderate multiplicities of infection (MOIs), inducing a significant reduction of the viral load. Furthermore, the remaining viral genomes display a high rate of mutation (up to 16%) at the meganuclease cleavage site, consistent with a mechanism of action based on the cleavage of the viral genome. This specific mechanism of action qualifies meganucleases as an alternative class of antiviral agent, with the potential to address replicative as well as latent DNA viral forms.

  15. Serum amyloid P component binds to influenza A virus haemagglutinin and inhibits the virus infection in vitro

    DEFF Research Database (Denmark)

    Andersen, Ove; Vilsgaard Ravn, K; Juul Sørensen, I;

    1997-01-01

    that SAP can bind to influenza A virus and inhibit agglutination of erythrocytes mediated by the virus subtypes H1N1, H2N2 and H3N2. SAP also inhibits the production of haemagglutinin (HA) an the cytopathogenic effect of influenza A virus in MDCK cells. The binding of SAP to the virus requires...... to the mass of the HA1 peptide. Of several monosaccharides tested only D-mannose interfered with SAP's inhibition of both HA and infectivity. The glycosaminoglycans heparan sulfate and heparin, which bind SAP, reduced SAPs binding to the virus. The results indicate that the inhibition by SAP is due to steric...

  16. Serum amyloid P component binds to influenza A virus haemagglutinin and inhibits the virus infection in vitro

    DEFF Research Database (Denmark)

    Andersen, Ove; Vilsgaard Ravn, K; Juul Sørensen, I

    1997-01-01

    that SAP can bind to influenza A virus and inhibit agglutination of erythrocytes mediated by the virus subtypes H1N1, H2N2 and H3N2. SAP also inhibits the production of haemagglutinin (HA) an the cytopathogenic effect of influenza A virus in MDCK cells. The binding of SAP to the virus requires...... to the mass of the HA1 peptide. Of several monosaccharides tested only D-mannose interfered with SAP's inhibition of both HA and infectivity. The glycosaminoglycans heparan sulfate and heparin, which bind SAP, reduced SAPs binding to the virus. The results indicate that the inhibition by SAP is due to steric...

  17. Pentagalloylglucose Blocks the Nuclear Transport and the Process of Nucleocapsid Egress to Inhibit HSV-1 Infection.

    Science.gov (United States)

    Jin, Fujun; Ma, Kaiqi; Chen, Maoyun; Zou, Muping; Wu, Yanting; Li, Feng; Wang, Yifei

    2016-01-01

    Herpes simplex virus type 1 (HSV-1), a widespread virus, causes a variety of human viral diseases worldwide. The serious threat of drug-resistance highlights the extreme urgency to develop novel antiviral drugs with different mechanisms of action. Pentagalloylglucose (PGG) is a natural polyphenolic compound with significant anti-HSV activity; however, the mechanisms underlying its antiviral activity need to be defined by further studies. In this study, we found that PGG treatment delays the nuclear transport process of HSV-1 particles by inhibiting the upregulation of dynein (a cellular major motor protein) induced by HSV-1 infection. Furthermore, PGG treatment affects the nucleocapsid egress of HSV-1 by inhibiting the expression and disrupting the cellular localization of pEGFP-UL31 and pEGFP-UL34, which are indispensable for HSV-1 nucleocapsid egress from the nucleus. However, the over-expression of pEGFP-UL31 and pEGFP-UL34 could decrease the antiviral effect of PGG. In this study, for the first time, the antiviral activity of PGG against acyclovir-resistant virus was demonstrated in vitro, and the possible mechanisms of its anti-HSV activities were identified based on the inhibition of nuclear transport and nucleocapsid egress in HSV-1. It was further confirmed that PGG could be a promising candidate for HSV therapy, especially for drug-resistant strains.

  18. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  19. ESCRT-I Protein Tsg101 Plays a Role in the Post-macropinocytic Trafficking and Infection of Endothelial Cells by Kaposi’s Sarcoma-Associated Herpesvirus

    Science.gov (United States)

    Kumar, Binod; Dutta, Dipanjan; Iqbal, Jawed; Ansari, Mairaj Ahmed; Roy, Arunava; Chikoti, Leela; Pisano, Gina; Veettil, Mohanan Valiya; Chandran, Bala

    2016-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) binding to the endothelial cell surface heparan sulfate is followed by sequential interactions with α3β1, αVβ3 and αVβ5 integrins and Ephrin A2 receptor tyrosine kinase (EphA2R). These interactions activate host cell pre-existing FAK, Src, PI3-K and RhoGTPase signaling cascades, c-Cbl mediated ubiquitination of receptors, recruitment of CIB1, p130Cas and Crk adaptor molecules, and membrane bleb formation leading to lipid raft dependent macropinocytosis of KSHV into human microvascular dermal endothelial (HMVEC-d) cells. The Endosomal Sorting Complexes Required for Transport (ESCRT) proteins, ESCRT-0, -I, -II, and–III, play a central role in clathrin-mediated internalized ubiquitinated receptor endosomal trafficking and sorting. ESCRT proteins have also been shown to play roles in viral egress. We have recently shown that ESCRT-0 component Hrs protein associates with the plasma membrane during macropinocytosis and mediates KSHV entry via ROCK1 mediated phosphorylation of NHE1 and local membrane pH change. Here, we demonstrate that the ESCRT-I complex Tsg101 protein also participates in the macropinocytosis of KSHV and plays a role in KSHV trafficking. Knockdown of Tsg101 did not affect virus entry in HMVEC-d and human umbilical vein endothelial (HUVEC) cells but significantly inhibited the KSHV genome entry into the nucleus and consequently viral gene expression in these cells. Double and triple immunofluorescence, proximity ligation immunofluorescence and co-immuoprecipitation studies revealed the association of Tsg101 with the KSHV containing macropinosomes, and increased levels of Tsg101 association/interactions with EphA2R, c-Cbl, p130Cas and Crk signal molecules, as well as with upstream and downstream ESCRT components such as Hrs (ESCRT-0), EAP45 (ESCRT-II), CHMP6 (ESCRT-III) and CHMP5 (ESCRT-III) in the KSHV infected cells. Tsg101 was also associated with early (Rab5) and late endosomal (Rab7) stages of

  20. Soluble Form of Canine Transferrin Receptor Inhibits Canine Parvovirus Infection In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Jiexia Wen

    2013-01-01

    Full Text Available Canine parvovirus (CPV disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo.

  1. Soluble form of canine transferrin receptor inhibits canine parvovirus infection in vitro and in vivo.

    Science.gov (United States)

    Wen, Jiexia; Pan, Sumin; Liang, Shuang; Zhong, Zhenyu; He, Ying; Lin, Hongyu; Li, Wenyan; Wang, Liyue; Li, Xiujin; Zhong, Fei

    2013-01-01

    Canine parvovirus (CPV) disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR) was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR)) possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo.

  2. A peptide of heparin cofactor II inhibits endotoxin-mediated shock and invasive Pseudomonas aeruginosa infection.

    Directory of Open Access Journals (Sweden)

    Martina Kalle

    Full Text Available Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies. Heparin cofactor II (HCII has recently been shown to be protective against Gram-negative infections. The antimicrobial effects were mapped to helices A and D of the molecule. Here we show that KYE28, a 28 amino acid long peptide representing helix D of HCII, is antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida albicans. Moreover, KYE28 binds to LPS and thereby reduces LPS-induced pro-inflammatory responses by decreasing NF-κB/AP-1 activation in vitro. In mouse models of LPS-induced shock, KYE28 significantly enhanced survival by dampening the pro-inflammatory cytokine response. Finally, in an invasive Pseudomonas infection model, the peptide inhibited bacterial growth and reduced the pro-inflammatory response, which lead to a significant reduction of mortality. In summary, the peptide KYE28, by simultaneously targeting bacteria and LPS-induced pro-inflammatory responses represents a novel therapeutic candidate for invasive infections.

  3. The therapeutic effect of Chlorogenic acid against Staphylococcus aureus infection through Sortase A inhibition

    Directory of Open Access Journals (Sweden)

    Lin eWang

    2015-10-01

    Full Text Available The emergence and wide spread of multi-drug resistant Staphylococcus aureus (S. aureus requires the development of new therapeutic agents with alternative modes of action. Anti-virulence strategies are hoped to meet that need. Sortase A (SrtA has attracted great interest as a potential drug target to treat infections caused by S. aureus, as many of the surface proteins displayed by SrtA function as virulence factors by mediating bacterial adhesion to specific organ tissues, invasion of host cells, and evasion of the host-immune responses. It has been suggested that inhibitors of SrtA might be promising candidates for the treatment and/or prevention of S. aureus infections. In this study, we report that Chlorogenic acid (CHA, a natural compound that lacks significant anti–S. aureus activity, inhibit the activity of SrtA in vitro (IC50=33.86±5.55μg/ml and the binding of S. aureus to fibrinogen (Fg. Using molecular dynamics simulations and mutagenesis assays, we further demonstrate that CHA binds to the binding sites of C184 and G192 in the SrtA. In vivo studies demonstrated that CHA prevent mice from S. aureus-induced renal abscess, resulting in a significant survival advantage. These findings indicate that CHA is a promising therapeutic compound against SrtA during S. aureus infections.

  4. Over-expression of mitochondrial antiviral signaling protein inhibits coxsackievirus B3 infection by enhancing type-I interferons production

    Directory of Open Access Journals (Sweden)

    Zhang Qing-Meng

    2012-12-01

    Full Text Available Abstract Background Recent studies have revealed that Mitochondrial Antiviral Signaling (MAVS protein plays an essential role in the inhibition of viral infection through type I interferon (IFN pathway. It has been shown that 3C (pro cysteine protease of coxsackievirus B3 (CVB3 cleaves MAVS to inhibit type I IFNs induction. Other workers also found that MAVS knock-out mice suffered CVB3 susceptibility and severe histopathological change. Accordingly,our experiments were designed to explore the protection of over-expressing MAVS against CVB3 infection and the possible mechanism. Results In this study, HeLa cells (transfected with MAVS constructs pre- or post- exposure to CVB3 were used to analyze the function of exogenous MAVS on CVB3 infection. The results revealed that though CVB3 infection induced production of type I IFNs, viral replication and cell death were not effectively inhibited. Similarly, exogenous MAVS increased type I IFNs moderately. Morever, we observed robust production of type I IFNs in CVB3 post-infected HeLa cells thereby successfully inhibiting CVB3 infection, as well formation of cytopathic effect (CPE and cell death. Finally, introduction of exogenous MAVS into CVB3 pre-infected cells also restricted viral infection efficiently by greatly up-regulating IFNs. Conclusions In summary, exogenous MAVS effectively prevents and controls CVB3 infection by modulating and promoting the production of type I IFNs. The IFNs level in MAVS over-expressing cells is still tightly regulated by CVB3 infection. Thus, the factors that up-regulate MAVS might be an alternative prescription in CVB3-related syndromes by enhancing IFNs production.

  5. Inhibition of antiviral drug cidofovir on proliferation of human papillomavirus-infected cervical cancer cells.

    Science.gov (United States)

    Yang, Jing; Dai, Lv-Xia; Chen, Ming; Li, Bei; Ding, Nana; Li, Gang; Liu, Yan-Qing; Li, Ming-Yuan; Wang, Bao-Ning; Shi, Xin-Li; Tan, Hua-Bing

    2016-11-01

    In order to evaluate the potential application value of cidofovir (CDV) in the prevention of human papillomavirus (HPV) infection and treatment of cervical cancer, the inhibitory effect of CDV on the proliferation of HPV 18-positive HeLa cells in cervical cancer was preliminarily investigated, using cisplatin (DDP) as a positive control. An MTT assay was used to analyze the effects of CDV and DDP on HeLa cell proliferation. In addition, clone formation assay and Giemsa staining were used to examine the extent of HeLa cell apoptosis caused by CDV and DDP. Flow cytometry was also used to detect the shape and size of apoptotic cells following propidium iodide staining, while western blot analysis identified the expression levels of of E6 and p53 proteins in HeLa cells. A cell climbing immunofluorescence technique was used to locate the subcellular position of p53 in HeLa cells. The results demonstrated that CDV and DDP inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Flow cytometry showed that CDV and DDP treatments resulted in cell arrest in the S-phase, and triggered programmed cell death. Furthermore, western blot analysis revealed that CDV and DDP inhibited E6 protein expression and activated p53 expression in HeLa cells. Finally, the immunofluorescence results indicated that CDV and DDP inhibited the nuclear export of p53 by E6 protein, which is required for degradation of endogenous p53 by MDM2 and human papilloma virus E6. In conclusion, CDV and DDP inhibited HeLa cell proliferation in a concentration- and time-dependent manner, reduced the expression of E6 protein, and reinstated p53 protein activity. Thus, CDV regulates cell cycle arrest and apoptosis, and may be a potential cervical cancer therapeutic strategy.

  6. Inhibition of antiviral drug cidofovir on proliferation of human papillomavirus-infected cervical cancer cells

    Science.gov (United States)

    Yang, Jing; Dai, Lv-Xia; Chen, Ming; Li, Bei; Ding, Nana; Li, Gang; Liu, Yan-Qing; Li, Ming-Yuan; Wang, Bao-Ning; Shi, Xin-Li; Tan, Hua-Bing

    2016-01-01

    In order to evaluate the potential application value of cidofovir (CDV) in the prevention of human papillomavirus (HPV) infection and treatment of cervical cancer, the inhibitory effect of CDV on the proliferation of HPV 18-positive HeLa cells in cervical cancer was preliminarily investigated, using cisplatin (DDP) as a positive control. An MTT assay was used to analyze the effects of CDV and DDP on HeLa cell proliferation. In addition, clone formation assay and Giemsa staining were used to examine the extent of HeLa cell apoptosis caused by CDV and DDP. Flow cytometry was also used to detect the shape and size of apoptotic cells following propidium iodide staining, while western blot analysis identified the expression levels of of E6 and p53 proteins in HeLa cells. A cell climbing immunofluorescence technique was used to locate the subcellular position of p53 in HeLa cells. The results demonstrated that CDV and DDP inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Flow cytometry showed that CDV and DDP treatments resulted in cell arrest in the S-phase, and triggered programmed cell death. Furthermore, western blot analysis revealed that CDV and DDP inhibited E6 protein expression and activated p53 expression in HeLa cells. Finally, the immunofluorescence results indicated that CDV and DDP inhibited the nuclear export of p53 by E6 protein, which is required for degradation of endogenous p53 by MDM2 and human papilloma virus E6. In conclusion, CDV and DDP inhibited HeLa cell proliferation in a concentration- and time-dependent manner, reduced the expression of E6 protein, and reinstated p53 protein activity. Thus, CDV regulates cell cycle arrest and apoptosis, and may be a potential cervical cancer therapeutic strategy. PMID:27882102

  7. Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media

    Directory of Open Access Journals (Sweden)

    Zimmerberg Joshua

    2007-05-01

    Full Text Available Abstract Background Intracellular malaria parasites leave their host erythrocytes to infect neighbouring cells after each cycle of asexual replication. No method is currently available for the direct quantification of parasite release. Method and results To quantify parasite release process, human erythrocytes infected with Plasmodium falciparum were injected into sealed chambers at optimal density, where they progressed through the end of the erythrocyte cycle. Each event of parasite release inside the chamber at the site of erythrocyte rupture leaves on the chamber wall a footprint, composed of 1 separated parasites, 2 a digestive vacuole with haemozoin, and 3 fragments of the ruptured membranes. These footprints are stable for hours, allowing precise identification using differential interference contrast (DIC microscopy. The relative rate of parasite release is defined as the percent of such footprints out of all schizonts injected and incubated into chamber at 37°C for two hours. The method is highly reproducible, easy to perform, and does not require expensive equipment. Additionally, this method allows one to analyse cell and release site morphology, which adds information about the release process and the quality of the culture. The method is used here to show that swelling of schizonts caused by protein-free media inhibits parasite release. Conclusion In this study, a novel method is described to count sites of parasite release by microscopy. Besides the direct estimation of parasite release from infected erythrocytes, this method provides a morphological evaluation of normal infected cells approaching the end of the plasmodial life cycle, or pathological forms accumulated as the result of experimental intervention in the parasite release process. One may now accurately estimate the relative parasite release rate at the time of cycle transition, without any obligatory coupling to parasite invasion.

  8. Phage Inhibit Pathogen Dissemination by Targeting Bacterial Migrants in a Chronic Infection Model

    Directory of Open Access Journals (Sweden)

    Sophie E. Darch

    2017-04-01

    Full Text Available The microbial communities inhabiting chronic infections are often composed of spatially organized micrometer-sized, highly dense aggregates. It has recently been hypothesized that aggregates are responsible for the high tolerance of chronic infections to host immune functions and antimicrobial therapies. Little is currently known regarding the mechanisms controlling aggregate formation and antimicrobial tolerance primarily because of the lack of robust, biologically relevant experimental systems that promote natural aggregate formation. Here, we developed an in vitro model based on chronic Pseudomonas aeruginosa infection of the cystic fibrosis (CF lung. This model utilizes a synthetic sputum medium that readily promotes the formation of P. aeruginosa aggregates with sizes similar to those observed in human CF lung tissue. Using high-resolution imaging, we exploited this model to elucidate the life history of P. aeruginosa and the mechanisms that this bacterium utilizes to tolerate antimicrobials, specifically, bacteriophage. In the early stages of growth in synthetic sputum, planktonic cells form aggregates that increase in size over time by expansion. In later growth, migrant cells disperse from aggregates and colonize new areas, seeding new aggregates. When added simultaneously with phage, P. aeruginosa was readily killed and aggregates were unable to form. When added after initial aggregate formation, phage were unable to eliminate all of the aggregates because of exopolysaccharide production; however, seeding of new aggregates by dispersed migrants was inhibited. We propose a model in which aggregates provide a mechanism that allows P. aeruginosa to tolerate phage therapy during chronic infection without the need for genetic mutation.

  9. Inhibition of Human Immunodeficiency Virus and Growth of Infected T Cells by the Immunosuppressive Drugs Cyclosporin A and FK 506

    Science.gov (United States)

    Karpas, Abraham; Lowdell, Mark; Jacobson, S. Kim; Hill, Fergal

    1992-09-01

    The effects of the immunosuppressive drugs cyclosporin A and FK 506 were studied on cells chronically infected with human immunodeficiency virus type 1 (HIV-1) as well as on uninfected and newly infected cells. When cells chronically infected with HIV-1 or with HIV-2 were cocultivated with uninfected cells in the presence of cyclosporin A or FK 506 there was a delay in the formation of syncytia and of cytopathic effects. This inhibitory effect was not due to decreased membrane expression of CD4. In addition, there was an ≈100-fold reduction in the yield of infectious HIV-1 when the infected cells were grown in the presence of these drugs, a finding consistent with other evidence of decreased HIV expression. Both drugs were found to inhibit the growth of chronically infected cells at concentrations that did not inhibit the growth of the uninfected cells. These results, demonstrating that cyclosporin A and FK 506 interfere with HIV production and selectively inhibit the growth of infected cells, suggest that they may be useful in the treatment of this infection and indicate further cellular targets for antiviral agents.

  10. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    Science.gov (United States)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  11. Adenovirus-expressed preS2 antibody inhibits hepatitis B virus infection and hepatic carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Qian Zhang; Zhi-Qing Li; Hu Liu; Jia-He Yang

    2012-01-01

    AIM: To investigate the inhibitory effect of hepatitis B virus (HBV) preS2 antibody (preS2Ab) against HBV infection and HBV-associated hepatic carcinogenesis. METHODS: An adenoviral vector carrying the fulllength light and heavy chains of the HBV preS2Ab gene, Ad315-preS2Ab, was constructed. Enzyme linked immunosorbent assay (ELISA) and Western blotting analyses were used to determine the preS2Ab expression levels in vitro . Immunofluorescent techniques were used to examine the binding affinity between the expressed HBV preS2Ab and HBV-positive liver cells. ELISAs were also used to determine hepatitis B surface antigen (HBsAg) levels to assess the inhibitory effect of the preS2Ab against HBV infection in L02 cells. The inhibitory effect of preS2Ab against hepatic carcinogenesiswas studied with diethylnitrosamine (DEN)-induced hepatocellular carcinomas (HCCs) in HBV transgenic mice. RESULTS: The expression of HBV preS2Ab increased with increases in the multiplicity of infection (MOI) of Ad315-preS2Ab in L02 cells, with 350.87 ± 17.37 μg/L of preS2Ab when the MOI was 100 plaque forming units (pfu)/cell. The expressed preS2Abs could recognize liver cells from HBV transgenic mice. ELISA results showed that L02 cells expressing preS2Ab produced less HBsAg after treatment with the serum of HBV patients than parental L02 cells expressing no preS2Ab. HBV transgenic mice treated with Ad315-preS2Ab had fewer and smaller cancerous nodes after induction with DEN than mice treated with a blank Ad315 vector or untreated mice. Additionally, the administration of Ad315-preS2Ab could alleviate hepatic cirrhosis and decrease the serum levels of alanine transaminase and aspartate transaminase. CONCLUSION: Adenovirus-mediated HBV preS2Ab expression could inhibit HBV infection in L02 cells, and then inhibit DEN-induced hepatocellular carcinogenesis and protect hepatic function in HBV transgenic mice.

  12. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function.

    Science.gov (United States)

    Nair, Chandrika; Shoemark, Amelia; Chan, Mario; Ollosson, Sarah; Dixon, Mellissa; Hogg, Claire; Alton, Eric W F W; Davies, Jane C; Williams, Huw D

    2014-11-01

    We have previously reported cyanide at concentrations of up to 150 μM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 μM: 47% fall, pcyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway. ©ERS 2014.

  13. Acinetobacter baumannii Infection Inhibits Airway Eosinophilia and Lung Pathology in a Mouse Model of Allergic Asthma

    Science.gov (United States)

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Zhou, Hongyan; Miller, Harvey; Patel, Girishchandra B.; Chen, Wangxue

    2011-01-01

    Allergic asthma is a dysregulation of the immune system which leads to the development of Th2 responses to innocuous antigens (allergens). Some infections and microbial components can re-direct the immune response toward the Th1 response, or induce regulatory T cells to suppress the Th2 response, thereby inhibiting the development of allergic asthma. Since Acinetobacter baumannii infection can modulate lung cellular and cytokine responses, we studied the effect of A. baumannii in modulating airway eosinophilia in a mouse model of allergic asthma. Ovalbumin (OVA)-sensitized mice were treated with live A. baumannii or phosphate buffered saline (PBS), then intranasally challenged with OVA. Compared to PBS, A. baumannii treatment significantly reduced pulmonary Th2 cytokine and chemokine responses to OVA challenge. More importantly, the airway inflammation in A. baumannii-treated mice was strongly suppressed, as seen by the significant reduction of the proportion and the total number of eosinophils in the bronchoalveolar lavage fluid. In addition, A. baumannii-treated mice diminished lung mucus overproduction and pathology. However, A. baumannii treatment did not significantly alter systemic immune responses to OVA. Serum OVA-specific IgE, IgG1 and IgG2a levels were comparable between A. baumannii- and PBS-treated mice, and tracheobronchial lymph node cells from both treatment groups produced similar levels of Th1 and Th2 cytokines in response to in vitro OVA stimulation. Moreover, it appears that TLR-4 and IFN-γ were not directly involved in the A. baumannii-induced suppression of airway eosinophilia. Our results suggest that A. baumannii inhibits allergic airway inflammation by direct suppression of local pulmonary Th2 cytokine responses to the allergen. PMID:21789200

  14. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Louise E Ludlow

    Full Text Available HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1(Ba-L infection of monocyte-derived macrophages (MDM on phagocytosis of opsonised P. falciparum infected erythrocytes (IE and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR (10 (0-28 versus (34 (27-108; IE internalised/100 MDM; p = 0.001 and decreased secretion of IL-6 (1,116 (352-3,387 versus 1,552 (889-6,331; pg/mL; p = 0.0078 and IL-1β (16 (7-21 versus 33 (27-65; pg/mL; p = 0.0078. Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals.

  15. Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry

    Directory of Open Access Journals (Sweden)

    Raffaello Cimbro

    2016-08-01

    Full Text Available Tyrosine sulfation is a post-translational modification that facilitates protein-protein interaction. Two sulfated tyrosines (Tys173 and Tys177 were recently identified within the second variable (V2 loop of the major HIV-1 envelope glycoprotein, gp120, and shown to contribute to stabilizing the intramolecular interaction between V2 and the third variable (V3 loop. Here, we report that tyrosine-sulfated peptides derived from V2 act as structural and functional mimics of the CCR5 N-terminus and potently block HIV-1 infection. Nuclear magnetic and surface plasmon resonance analyses indicate that a tyrosine-sulfated V2 peptide (pV2α-Tys adopts a CCR5-like helical conformation and directly interacts with gp120 in a CD4-dependent fashion, competing with a CCR5 N-terminal peptide. Sulfated V2 mimics, but not their non-sulfated counterparts, inhibit HIV-1 entry and fusion by preventing coreceptor utilization, with the highly conserved C-terminal sulfotyrosine, Tys177, playing a dominant role. Unlike CCR5 N-terminal peptides, V2 mimics inhibit a broad range of HIV-1 strains irrespective of their coreceptor tropism, highlighting the overall structural conservation of the coreceptor-binding site in gp120. These results document the use of receptor mimicry by a retrovirus to occlude a key neutralization target site and provide leads for the design of therapeutic strategies against HIV-1.

  16. Inhibition of host protein synthesis and degradation of cellular mRNAs during infection by influenza and herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, S.C.

    1982-12-01

    Cloned DNA copies of two cellular genes were used to monitor, by blot hybridization, the stability of particular cell mRNAs after infection by influenza virus and herpes virus. The results indicated that the inhibition of host cell protein synthesis that accompanied infection by each virus could be explained by a reduction in the amounts of cellular mRN As in the cytoplasm, and they suggested that this decrease was due to virus-mediated mRNA degradation.

  17. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy.

    Directory of Open Access Journals (Sweden)

    Grant R Campbell

    Full Text Available Low vitamin D levels in human immunodeficiency virus type-1 (HIV infected persons are associated with more rapid disease progression and increased risk for Mycobacterium tuberculosis infection. We have previously shown that 1α,25-dihydroxycholecalciferol (1,25D3, the active form of vitamin D, inhibits HIV replication in human macrophages through the induction of autophagy. In this study, we report that physiological concentrations of 1,25D3 induce the production of the human cathelicidin microbial peptide (CAMP and autophagic flux in HIV and M. tuberculosis co-infected human macrophages which inhibits mycobacterial growth and the replication of HIV. Using RNA interference for Beclin-1 and the autophagy-related 5 homologue, combined with the chemical inhibitors of autophagic flux, bafilomycin A₁, an inhibitor of autophagosome-lysosome fusion and subsequent acidification, and SID 26681509 an inhibitor of the lysosome hydrolase cathepsin L, we show that the 1,25D3-mediated inhibition of HIV replication and mycobacterial growth during single infection or dual infection is dependent not only upon the induction of autophagy, but also through phagosomal maturation. Moreover, through the use of RNA interference for CAMP, we demonstrate that cathelicidin is essential for the 1,25D3 induced autophagic flux and inhibition of HIV replication and mycobacterial growth. The present findings provide a biological explanation for the benefits and importance of vitamin D sufficiency in HIV and M. tuberculosis-infected persons, and provide new insights into novel approaches to prevent and treat HIV infection and related opportunistic infections.

  18. Infection of Ixodes spp. tick cells with different Anaplasma phagocytophilum isolates induces the inhibition of apoptotic cell death.

    Science.gov (United States)

    Alberdi, Pilar; Ayllón, Nieves; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Zweygarth, Erich; Stuen, Snorre; de la Fuente, José

    2015-09-01

    Anaplasma phagocytophilum is an intracellular rickettsial pathogen transmitted by Ixodes spp. ticks, which causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever (TBF) in ruminants. In the United States, human granulocytic anaplasmosis (HGA) is highly prevalent while TBF has not been reported. However, in Europe the situation is the opposite, with high prevalence for TBF in sheep and low prevalence of HGA. The origin of these differences has not been identified and our hypothesis is that different A. phagocytophilum isolates impact differently on tick vector capacity through inhibition of apoptosis to establish infection of the tick vector. In this study we used three different isolates of A. phagocytophilum of human, canine and ovine origin to infect the Ixodes ricinus-derived cell line IRE/CTVM20 and the Ixodes scapularis-derived cell line ISE6 in order to characterize the effect of infection on the level of tick cell apoptosis. Inhibition of apoptosis was observed by flow cytometry as early as 24h post-infection for both tick cell lines and all three isolates of A. phagocytophilum, suggesting that pathogen infection inhibits apoptotic pathways to facilitate infection independently of the origin of the A. phagocytophilum isolate and tick vector species. However, infection with A. phagocytophilum isolates inhibited the intrinsic apoptosis pathway at different levels in I. scapularis and I. ricinus cells. These results suggested an impact of vector-pathogen co-evolution on the adaptation of A. phagocytophilum isolates to grow in tick cells as each isolate grew better in the tick cell line derived from its natural vector species. These results increase our understanding of the mechanisms of A. phagocytophilum infection and multiplication and suggest that multiple mechanisms may affect disease prevalence in different geographical regions.

  19. Inhibition of Bim enhances replication of varicella-zoster virus and delays plaque formation in virus-infected cells.

    Science.gov (United States)

    Liu, Xueqiao; Cohen, Jeffrey I

    2014-01-01

    Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication.

  20. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  1. D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections.

    Science.gov (United States)

    Ramón-Peréz, Miriam L; Diaz-Cedillo, Francisco; Ibarra, J Antonio; Torales-Cardeña, Azael; Rodríguez-Martínez, Sandra; Jan-Roblero, Janet; Cancino-Diaz, Mario E; Cancino-Diaz, Juan C

    2014-10-01

    Biofilm formation on medical and surgical devices is a major virulence determinant for Staphylococcus epidermidis. The bacterium S. epidermidis is able to produce biofilms on biotic and abiotic surfaces and is the cause of ocular infection (OI). Recent studies have shown that d-amino acids inhibit and disrupt biofilm formation in the prototype strains Bacillus subtilis NCBI3610 and Staphylococcus aureus SCO1. The effect of d-amino acids on S. epidermidis biofilm formation has yet to be tested for clinical or commensal isolates. S. epidermidis strains isolated from healthy skin (n = 3), conjunctiva (n = 9) and OI (n = 19) were treated with d-Leu, d-Tyr, d-Pro, d-Phe, d-Met or d-Ala and tested for biofilm formation. The presence of d-amino acids during biofilm formation resulted in a variety of patterns. Some strains were sensitive to all amino acids tested, while others were sensitive to one or more, and one strain was resistant to all of them when added individually; in this way d-Met inhibited most of the strains (26/31), followed by d-Phe (21/31). Additionally, the use of d-Met inhibited biofilm formation on a contact lens. The use of l-isomers caused no defect in biofilm formation in all strains tested. In contrast, when biofilms were already formed d-Met, d-Phe and d-Pro were able to disrupt it. In summary, here we demonstrated the inhibitory effect of d-amino acids on biofilm formation in S. epidermidis. Moreover, we showed, for the first time, that S. epidermidis clinical strains have a different sensitivity to these compounds during biofilm formation.

  2. Cinnamaldehyde Inhibits Staphylococcus aureus Virulence Factors and Protects against Infection in a Galleria mellonella Model

    Science.gov (United States)

    Ferro, Thiago A. F.; Araújo, Jéssica M. M.; dos Santos Pinto, Bruna L.; dos Santos, Jéssica S.; Souza, Eliene B.; da Silva, Bruna L. R.; Colares, Valderlane L. P.; Novais, Tânia M. G.; Filho, Clovis M. B.; Struve, Carsten; Calixto, João B.; Monteiro-Neto, Valério; da Silva, Luís C. N.; Fernandes, Elizabeth S.

    2016-01-01

    Bacterial resistance to the available marketed drugs has prompted the search of novel therapies; especially in regards of anti-virulence strategies that aim to make bacteria less pathogenic and/or decrease their probability to become resistant to therapy. Cinnamaldehyde is widely known for its antibacterial properties through mechanisms that include the interaction of this compound with bacterial cell walls. However, only a handful of studies have addressed its effects on bacterial virulence, especially when tested at sub-inhibitory concentrations. Herein, we show for the first time that cinnamaldehyde is bactericidal against Staphylococcus aureus and Enterococcus faecalis multidrug resistant strains and does not promote bacterial tolerance. Cinnamaldehyde actions were stronger on S. aureus as it was able to inhibit its hemolytic activity on human erythrocytes and reduce its adherence to latex. Furthermore, cinnamaldehyde enhanced the serum-dependent lysis of S. aureus. In vivo testing of cinnamaldehyde in Galleria mellonella larvae infected with S. aureus, showed this compound improves larvae survival whilst diminishing bacterial load in their hemolymph. We suggest that cinnamaldehyde may represent an alternative therapy to control S. aureus-induced bacterial infections as it presents the ability to reduce bacterial virulence/survival without promoting an adaptive phenotype. PMID:28066373

  3. Inhibition of alphavirus infection in cell culture and in mice with antisense morpholino oligomers.

    Science.gov (United States)

    Paessler, Slobodan; Rijnbrand, Rene; Stein, David A; Ni, Haolin; Yun, Nadezhda E; Dziuba, Natallia; Borisevich, Viktoriya; Seregin, Alexey; Ma, Yinghong; Blouch, Robert; Iversen, Patrick L; Zacks, Michele A

    2008-07-05

    The genus Alphavirus contains members that threaten human health, both as natural pathogens and as potential biological weapons. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) enter cells readily and can inhibit viral replication through sequence-specific steric blockade of viral RNA. Sindbis virus (SINV) has low pathogenicity in humans and is regularly utilized as a model alphavirus. PPMO targeting the 5'-terminal and AUG translation start site regions of the SINV genome blocked the production of infectious SINV in tissue culture. PPMO designed against corresponding regions in Venezuelan equine encephalitis virus (VEEV) were likewise found to be effective in vitro against several strains of VEEV. Mice treated with PPMO before and after VEEV infection were completely protected from lethal outcome while mice receiving only post-infection PPMO treatment were partially protected. Levels of virus in tissue samples correlated with animal survival. Uninfected mice suffered no apparent ill-effects from PPMO treatment. Thus, PPMO appear promising as candidates for therapeutic development against alphaviruses.

  4. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    Science.gov (United States)

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts.

  5. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    Science.gov (United States)

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past two decades, which highlights the pressing need for antiviral therapeutics. In a high throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound, which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV infected cultures with 2 μM of BDAA reduced the virion production by greater than 2 logs, the compound is not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug resistant viruses revealed that substitution of proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine or alanine confers YFV resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, substitution of P219 with glycine confers BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 localizes at the endoplasmic reticulum lumen side of the fifth putative trans-membrane domain of NS4B and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed important role and structural basis for NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs and attenuated viral infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever.

  6. Acacetin Protects Mice from Staphylococcus aureus Bloodstream Infection by Inhibiting the Activity of Sortase A.

    Science.gov (United States)

    Bi, Chongwei; Dong, Xiaoyun; Zhong, Xiaobo; Cai, Hongjun; Wang, Dacheng; Wang, Lin

    2016-09-26

    Staphylococcus aureus (S. aureus) is a major cause of infection in hospitals and communities. Widespread dissemination of multi-drug resistant S. aureus is a serious threat to the health of humans and animals. An anti-virulence strategy has been widely considered as an alternative therapeutic approach. Inhibitors of virulence factors are able to treat S. aureus infections without influencing the growth or viability of bacteria and rarely lead to bacterial resistance. Sortase A (SrtA) is a membrane-associated cysteine transpeptidase that catalyzes up to 25 surface proteins that covalently bind to cell wall peptidoglycans. In S. aureus, most of these surface proteins have been identified as important virulence factors that are vital in bacterial pathogenesis. In the present study, we show that acacetin, a natural flavonoid compound, inhibits the activity of SrtA in S. aureus (IC50 = 36.46 ± 4.69 μg/mL, 128 μM) which affects the assembly of protein A (SpA) to cell walls and reduces the binding of S. aureus to fibrinogen (Fg). The mechanism of the interaction between acacetin and SrtA were preliminarily discussed using molecular dynamics simulations. The results suggested that acacetin adopted a compact conformation binding at the pocket of the SrtA via residues Arg-139 and Lys-140. By performing an animal infection model, we demonstrated that acacetin was able to protect mice from renal abscess formation induced by S. aureus and significantly increased survival rates. Taken together, these findings suggest that acacetin may be a promising candidate for the development of anti-S. aureus drugs.

  7. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways...

  8. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H; Song, Z; Hentzer, M

    2004-01-01

    INTRODUCTION: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways...

  9. Griffithsin binds to the glycosylated proteins (E and prM) of Japanese encephalitis virus and inhibit its infection.

    Science.gov (United States)

    Ishag, Hassan Z A; Li, Chen; Wang, Fengjuan; Mao, Xiang

    2016-04-02

    Griffithsin (GRFT) is a broad-spectrum antiviral protein against several glycosylated viruses. In our previous publication, we have shown that GRFT exerted antiviral activity against Japanese encephalitis virus (JEV) infection. Herein, we further elucidated the mechanism by which GRFT inhibits JEV infection in BHK-21 cells. In vitro experiments using Pull-down assay and Co-immunoprecipitation (CO-IP) assay showed that GRFT binds to the JEV glycosylated viral proteins, specifically the enveloped (E) and premature (prM) glycoproteins. The binding of GRFT to the JEV was competitively inhibited by increasing concentrations of mannose; in turns abolished anti-JEV activity of GRFT. We suggested that, the binding of GRFT to the glycosylated viral proteins may contribute to its anti-JEV activity. Collectively, our data indicated a possible mechanism by which GRFT exerted its anti-JEV activity. This observation suggests GRFT's potentials in the development of therapeutics against JEV or other flavivirus infection.

  10. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    Science.gov (United States)

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells.

  11. Inhibition of the Type I Interferon Antiviral Response During Arenavirus Infection

    Directory of Open Access Journals (Sweden)

    Juan Carlos de la Torre

    2010-11-01

    Full Text Available Arenaviruses merit interest both as tractable experimental model systems to study acute and persistent viral infections, and as clinically-important human pathogens. Several arenaviruses cause hemorrhagic fever (HF disease in humans. In addition, evidence indicates that the globally-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV is a human pathogen of clinical significance in congenital infections, and also poses a great danger to immunosuppressed individuals. Arenavirus persistence and pathogenesis are facilitated by their ability to overcome the host innate immune response. Mammalian hosts have developed both membrane toll-like receptors (TLR and cytoplasmic pattern recognition receptors (PRRs that recognize specific pathogen-associated molecular patterns (PAMPs, resulting in activation of the transcription factors IRF3 or IRF7, or both, which together with NF-κB and ATF-2/c-JUN induce production of type I interferon (IFN-I. IFN-I plays a key role in host anti-microbial defense by mediating direct antiviral effects via up-regulation of IFN-I stimulated genes (ISGs, activating dendritic cells (DCs and natural killer (NK cells, and promoting the induction of adaptive responses. Accordingly, viruses have developed a plethora of strategies to disrupt the IFN-I mediated antiviral defenses of the host, and the viral gene products responsible for these disruptions are often major virulence determinants.IRF3- and IRF7-dependent induction of host innate immune responses is frequently targeted by viruses. Thus, the arenavirus nucleoprotein (NP was shown to inhibit the IFN‑I response by interfering with the activation of IRF3. This NP anti-IFN activity, together with alterations in the number and function of DCs observed in mice chronically infected with LCMV, likely play an important role in LCMV persistence in its murine host. In this review we will discuss current knowledge about the cellular and molecular mechanisms by

  12. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells.

    Science.gov (United States)

    Yamamoto, Daisuke S; Sumitani, Megumi; Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-09-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.

  13. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells.

    Directory of Open Access Journals (Sweden)

    Daisuke S Yamamoto

    2016-09-01

    Full Text Available Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.

  14. 25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Bergeron, Éric; Chakrabarti, Ayan K; Albariño, César G; Flint, Mike; Nichol, Stuart T; Spiropoulou, Christina F

    2016-12-20

    Lassa virus (LASV) infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H) encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC). 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N-glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA) enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy.

  15. 25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation

    Directory of Open Access Journals (Sweden)

    Punya Shrivastava-Ranjan

    2016-12-01

    Full Text Available Lassa virus (LASV infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC. 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N-glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy.

  16. Plasmodium falciparum infection and age influence parasite growth inhibition mediated by IgG in Beninese infants.

    Science.gov (United States)

    Adamou, Rafiou; Chénou, Francine; Sadissou, Ibrahim; Sonon, Paulin; Dechavanne, Célia; Djilali-Saïah, Abdelkader; Cottrell, Gilles; Le Port, Agnès; Massougbodji, Achille; Remarque, Edmond J; Luty, Adrian J F; Sanni, Ambaliou; Garcia, André; Migot-Nabias, Florence; Milet, Jacqueline; Courtin, David

    2016-07-01

    Antibodies that impede the invasion of Plasmodium falciparum (P. falciparum) merozoites into erythrocytes play a critical role in anti-malarial immunity. The Growth Inhibition Assay (GIA) is an in vitro measure of the functional capacity of such antibodies to limit erythrocyte invasion and/or parasite growth. Up to now, it is unclear whether growth-inhibitory activity correlates with protection from clinical disease and there are inconsistent results from studies performed with GIA. Studies that have focused on the relationship between IgGs and their in vitro parasite Growth Inhibition Activity (GIAc) in infants aged less than two years old are rare. Here, we used clinical and parasitological data to precisely define symptomatic or asymptomatic infection with P. falciparum in groups of infants followed-up actively for 18 months post-natally. We quantified the levels of IgG1 and IgG3 directed to a panel of candidate P. falciparum vaccine antigens (AMA-1, MSP1, 2, 3 and GLURP) using ELISA and the functional activity of IgG was quantified using GIA. Data were then correlated with individuals' infection status. At 18 months of age, infants harbouring infections at the time of blood sampling had an average 19% less GIAc than those not infected (p=0.004, multivariate linear regression). GIAc decreased from 12 to 18 months of age (p=0.003, Wilcoxon matched pairs test). Antibody levels quantified at 18 months in infants were strongly correlated with their exposure to malarial infection, however GIAc was not correlated with malaria infectious status (asymptomatic and symptomatic groups). In conclusion, both infection status at blood draw and age influence parasite growth inhibition mediated by IgG in the GIA. Both factors must be taken into account when correlations between GIAc and anti-malarial protection or vaccine efficacy have to be made.

  17. Taenia crassiceps infection and its excreted/secreted products inhibit STAT1 activation in response to IFN-γ.

    Science.gov (United States)

    Becerra-Díaz, Mireya; Terrazas, Luis I

    2014-08-01

    It is well understood that helminth infections modulate the immune responses of their hosts but the mechanisms involved in this modulation are not fully known. Macrophages and dendritic cells appear to be consistently affected during this type of infection and are common target cells for helminth-derived molecules. In this report, we show that macrophages obtained from chronically Taenia crassiceps-infected mice displayed an impaired response to recombinant murine IFN-γ, but not to recombinant murine IL-4, as measured based on the phosphorylation of STAT1 and STAT6, respectively. These macrophages expressed high levels of SOCS3. However, the inhibition of phosphatase activity by orthovanadate restored the IFN-γ response of these macrophages by increasing STAT1 phosphorylation without affecting SOCS3 expression. Therefore, we aimed to identify the phosphatases associated with IFN-γ signaling inhibition and found that macrophages from T. crassiceps-infected mice displayed enhanced SHP-1 expression. Interestingly, the exposure of naïve macrophages to T. crassiceps excreted/secreted products similarly interfered with IFN-γ-induced STAT1 phosphorylation. Moreover, macrophages exposed to T. crassiceps excreted/secreted products expressed high levels of SOCS3 as well as SHP-1. Strikingly, human peripheral blood mononuclear cells that were exposed to T. crassiceps excreted/secreted products in vitro also displayed impaired STAT1 phosphorylation in response to IFN-γ; again, phosphatase inhibition abrogated the T. crassiceps excreted/secreted product-altered IFN-γ signaling. These data demonstrate a new mechanism by which helminth infection and the products derived during this infection target intracellular pathways to block the response to inflammatory cytokines such as IFN-γ in both murine and human cells.

  18. Neutralizing monoclonal antibodies against hepatitis C virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step

    DEFF Research Database (Denmark)

    Sabo, Michelle C; Luca, Vincent C; Prentoe, Jannick

    2011-01-01

    The E2 glycoprotein of hepatitis C virus (HCV) mediates viral attachment and entry into target hepatocytes and elicits neutralizing antibodies in infected patients. To characterize the structural and functional basis of HCV neutralization, we generated a novel panel of 78 monoclonal antibodies...... of the homologous HCV strain in cell culture. Two of these bound E2 proteins from strains representative of HCV genotypes 1 to 6, and one of these MAbs, H77.39, neutralized infection of strains from five of these genotypes. The three most potent neutralizing MAbs in our panel, H77.16, H77.39, and J6.36, inhibited...

  19. Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tyrphostin.

    Science.gov (United States)

    Kolokoltsov, Andrey A; Adhikary, Shramika; Garver, Jennifer; Johnson, Lela; Davey, Robert A; Vela, Eric M

    2012-01-01

    Arenaviruses and filoviruses are capable of causing hemorrhagic fever syndrome in humans. Limited therapeutic and/or prophylactic options are available for humans suffering from viral hemorrhagic fever. In this report, we demonstrate that pre-treatment of host cells with the kinase inhibitors genistein and tyrphostin AG1478 leads to inhibition of infection or transduction in cells infected with Ebola virus, Marburg virus, and Lassa virus. In all, the results demonstrate that a kinase inhibitor cocktail consisting of genistein and tyrphostin AG1478 is a broad-spectrum antiviral that may be used as a therapeutic or prophylactic against arenavirus and filovirus hemorrhagic fever.

  20. Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response.

    Directory of Open Access Journals (Sweden)

    Flavia L Ribeiro-Gomes

    2012-02-01

    Full Text Available Neutrophils and dendritic cells (DCs converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4(+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved.

  1. Inhibition of Fusarium solani Infection in Murine Keratocytes by Lactobacillus salivarius ssp. salivarius JCM1231 Culture Filtrate In Vitro.

    Science.gov (United States)

    Hu, Jianzhang; Chen, Fang; Kan, Tong; Zhuang, Hua; Zhang, Jingjin; Han, Xiaoli

    2017-06-21

    To explore the inhibitory activity of Lactobacillus salivarius ssp. salivarius JCM1231 (L. salivarius JCM1231) culture filtrate against Fusarium solani (F. solani) and its effects on murine keratocytes (MKs) infected with F. solani. L. salivarius JCM1231 was cultured in an anaerobic incubator for 24 h, and the L. salivarius culture filtrate (LSCF) was prepared .The antifungal activity of L. salivarius JCM1231 against F. solani was determined with a plate overlay assay, agar diffusion assay, and conidial germination inhibition test. The effects of temperature, pH, and proteolytic enzymes on the antifungal activity of LSCF were detected with microtiter plate-well assay and conidial germination inhibition assay. Furthermore, the effects of LSCF on MKs infected with F. solani were detected. Cell activity and apoptosis were measured using methylthiazoletetrazolium assays and flow cytometry analysis, respectively. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) cytokines were measured using real-time polymerase chain reactions and enzyme-linked immunosorbent assays (ELISA), and mycotoxin production was detected with high-performance liquid chromatography tandem mass spectrometry. Conidial germination and mycelia growth of F. solani were significantly inhibited by LSCF. The antifungal substances produced by L. salivarius JCM1231 were heat unstable, proteinaceous, and sensitive to proteolytic enzymes and were active within a narrow acidic pH range between 2.0 and 4.0. In the presence of 15 µg/ml of LSCF, cell activity was significantly increased, and cell apoptosis, the level of IL-6 and TNF-α expressions, and mycotoxin (zearalenone and fumonisin B1) productions were decreased significantly in MKs infected with F. solani. L. salivarius JCM1231 culture filtrate can effectively inhibit F. solani growth and protect MKs against F. solani infection.

  2. XTT formazan widely used to detect cell viability inhibits HIV type 1 infection in vitro by targeting gp41.

    Science.gov (United States)

    Zhao, Qian; Ernst, Justin T; Hamilton, Andrew D; Debnath, Asim K; Jiang, Shibo

    2002-09-20

    XTT can be metabolically reduced by mitochondrial dehydrogenase in viable cells to a water-soluble formazan product. Thus XTT has been widely used to evaluate cell viability and to screen anti-HIV agents and the cytotoxicity of these agents. The present studies demonstrated that XTT formazan derived from XTT in cell culture significantly inhibits the fusion of HIV-1-infected cells with uninfected cells. Synthetic XTT formazan effectively inhibited the replication of laboratory-adapted and primary HIV-1 isolates and cell-to-cell fusion with low cytotoxicity. It blocks the six-helix bundle formation between peptides derived from the N- and C-terminal heptad repeat regions of the gp41 ectodomain (designated N- and C-peptides, respectively). Analysis by a computer-aided docking program indicates that XTT formazan may bind to the highly conserved hydrophobic pocket on the surface of the central trimeric coiled coil of gp41. These results suggest that XTT formazan inhibits HIV-1 entry by targeting the alpha-helical coiled-coil domain of gp41. This small molecular nonpeptide antiviral compound can be used as a lead for designing more effective HIV-1 entry inhibitors targeting the fusion stage of HIV-1 infection. But because XTT formazan itself has anti-HIV-1 activity, caution should be exercised when XTT is used to evaluate HIV-1 infectivity.

  3. Dual infection and superinfection inhibition of epithelial skin cells by two alphaherpesviruses co-occur in the natural host.

    Directory of Open Access Journals (Sweden)

    Keith W Jarosinski

    Full Text Available Hosts can be infected with multiple herpesviruses, known as superinfection; however, superinfection of cells is rare due to the phenomenon known as superinfection inhibition. It is believed that dual infection of cells occurs in nature, based on studies examining genetic exchange between homologous alphaherpesviruses in the host, but to date, this has not been directly shown in a natural model. In this report, gallid herpesvirus 2 (GaHV-2, better known as Marek's disease virus (MDV, was used in its natural host, the chicken, to determine whether two homologous alphaherpesviruses can infect the same cells in vivo. MDV shares close similarities with the human alphaherpesvirus, varicella zoster virus (VZV, with respect to replication in the skin and exit from the host. Recombinant MDVs were generated that express either the enhanced GFP (eGFP or monomeric RFP (mRFP fused to the UL47 (VP13/14 herpesvirus tegument protein. These viruses exhibited no alteration in pathogenic potential and expressed abundant UL47-eGFP or -mRFP in feather follicle epithelial cells in vivo. Using laser scanning confocal microscopy, it was evident that these two similar, but distinguishable, viruses were able to replicate within the same cells of their natural host. Evidence of superinfection inhibition was also observed. These results have important implications for two reasons. First, these results show that during natural infection, both dual infection of cells and superinfection inhibition can co-occur at the cellular level. Secondly, vaccination against MDV with homologous alphaherpesvirus like attenuated GaHV-2, or non-oncogenic GaHV-3 or meleagrid herpesvirus (MeHV-1 has driven the virus to greater virulence and these results implicate the potential for genetic exchange between homologous avian alphaherpesviruses that could drive increased virulence. Because the live attenuated varicella vaccine is currently being administered to children, who in turn could be

  4. Serum amyloid P component binds to influenza A virus haemagglutinin and inhibits the virus infection in vitro

    DEFF Research Database (Denmark)

    Andersen, Ove; Vilsgaard Ravn, K; Juul Sørensen, I

    1997-01-01

    Serum amyloid P component (SAP) is a member of the phylogenetically conserved and structurally related group of proteins called pentraxins. SAP exhibits multispecific calcium-dependent binding to oligosaccharides with terminal N-acetyl-galactosamine, mannose and glucuronic acid. The authors report...... physiological calcium concentrations and is blocked by specific SAP antibodies. Denaturated and renaturated SAP retained inhibition of HA. Electron microscopy shows Ca(2+)-dependent binding of SAP to spikes on the viral envelope and immunoblotting indicates that SAP binds to a 50-55 kDa peptide corresponding...... to the mass of the HA1 peptide. Of several monosaccharides tested only D-mannose interfered with SAP's inhibition of both HA and infectivity. The glycosaminoglycans heparan sulfate and heparin, which bind SAP, reduced SAPs binding to the virus. The results indicate that the inhibition by SAP is due to steric...

  5. A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4

    Directory of Open Access Journals (Sweden)

    In-Seung Jang

    2016-11-01

    Full Text Available Abstract Human immunodeficiency virus (HIV is the causative agent of acquired immune deficiency syndrome (AIDS. Anti-HIV agents targeting various steps in HIV life cycle have been developed; however, so far, no effective drugs have been found. We show here that a peptide isolated from Spirulina maxima (SM-peptide inhibits HIV-1 infection in a human T cell line MT4. SM-peptide inhibited HIV-1IIIB-induced cell lysis with a half-maximal inhibitory concentration (IC50 of 0.691 mM, while its 50 % cytotoxic concentration (CC50 was greater than 1.457 mM. Furthermore, the SM-peptide inhibited the HIV-1 reverse transcriptase activity and p24 antigen production. This suggests that SM-peptide is a novel candidate peptide, which may be developed as a therapeutic agent for acquired immunodeficiency syndrome patients.

  6. Griseofulvin impairs intraerythrocytic growth of Plasmodium falciparum through ferrochelatase inhibition but lacks activity in an experimental human infection study

    Science.gov (United States)

    Smith, Clare M.; Jerkovic, Ante; Truong, Thy Thuc; Foote, Simon J.; McCarthy, James S.; McMorran, Brendan J.

    2017-01-01

    Griseofulvin, an orally active antifungal drug used to treat dermatophyte infections, has a secondary effect of inducing cytochrome P450-mediated production of N-methyl protoporphyrin IX (N-MPP). N-MPP is a potent competitive inhibitor of the heme biosynthetic-enzyme ferrochelatase, and inhibits the growth of cultured erythrocyte stage Plasmodium falciparum. Novel drugs against Plasmodium are needed to achieve malaria elimination. Thus, we investigated whether griseofulvin shows anti-plasmodial activity. We observed that the intraerythrocytic growth of P. falciparum is inhibited in red blood cells pretreated with griseofulvin in vitro. Treatment with 100 μM griseofulvin was sufficient to prevent parasite growth and induce the production of N-MPP. Inclusion of the ferrochelatase substrate PPIX blocked the inhibitory activity of griseofulvin, suggesting that griseofulvin exerts its activity through the N-MPP-dependent inhibition of ferrochelatase. In an ex-vivo study, red blood cells from griseofulvin-treated subjects were refractory to the growth of cultured P. falciparum. However, in a clinical trial griseofulvin failed to show either therapeutic or prophylactic effect in subjects infected with blood stage P. falciparum. Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase. PMID:28176804

  7. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Science.gov (United States)

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  8. Sulfated fucan from marine alga inhibits HeLa cells infection by HTLV-1 free particles: semi-quantitative analysis

    Directory of Open Access Journals (Sweden)

    Maria T. V. Romanos

    2011-04-01

    Full Text Available A sulfated fucan from Laminaria abyssalis marine alga prevented the interaction of HTLV-1 particles, purified from the MT-2 cell line, with HeLa cells. The infection obtained using a concentrated virus suspension was detected only by amplification of the newly synthesized HTLV-1 proviral cDNA by the nested-polymerase chain reaction (PCR. The sulfated polysaccharide was not toxic to the cells at a concentration of 100 µg/mL and prevented infection by the viral particles when added to the cell monolayers. The proviral cDNA was only detected when the sulfated polysaccharide was added to the cells three hours post-infection, indicating that the inhibitory activity occurred in the initial stages of virus-cell interaction. Our results demonstrate, for the first time, the ability of a sulfated fucan from marine algae to inhibit virus transmission through free virus particles.

  9. CD8α¯ DC is the major DC subset which mediates inhibition of allergic responses by Schistosoma infection.

    Science.gov (United States)

    Liu, J-Y; Lu, P; Hu, L-Z; Shen, Y-J; Zhu, Y-J; Ren, J-L; Ji, W-H; Zhang, X-Z; Wu, Z-Q; Yang, X-Z; Yang, J; Li, L-Y; Yang, X; Liu, P-M

    2014-12-01

    Our and others' previous studies have shown that Schistosoma japonicum (SJ) infection can inhibit allergic reactions. We recently reported that DCs played an important role in SJ infection-mediated inhibition of allergy, which was associated with enhanced IL-10 and T regulatory cell responses. Here, we further compared the role of CD8α(+) DC and CD8α(-) DC subsets for the inhibitory effect. We sorted CD8α(+) DC (SJCD8α(+) DC) and CD8α(-) DC (SJCD8α(-) DC) from SJ-infected mice and tested their ability to modulate allergic responses in vivo. The data showed that the adoptive transfer of SJCD8α(-) DC was much more efficient than SJCD8α(+) DC for the suppression of allergic airway eosinophilia, mucus overproduction, antigen-specific IgE responses, and Th2 cytokines (IL-4 and IL-5). More importantly, we found that the transfer of SJCD8α(-) DC, but not SJCD8α(+) DC, significantly increased IL-10 and TGF-β production following OVA exposure. As control, the transfer of DC subsets from naïve mice had no significant effect on allergic inflammation. In addition, SJCD8α-DC expressed significantly higher IL-10 but lower IL-12, CD80 and CD86 than SJCD8α(+) DC, fitting a tolerogenic phenotype. The results suggest that CD8α(-) DC is the predominant DC subset which is involved in the parasitic infection-mediated inhibition of allergic inflammation and possibly through enhancing immunomodulatory cytokine (IL-10 and TGF-β) production.

  10. Ascorbic acid inhibits replication and infectivity of avian RNA tumor virus

    Energy Technology Data Exchange (ETDEWEB)

    BISSELL, MINA J; HATIE, CARROLL; FARSON, DEBORAH A.; SCHWARZ, RICHARD I.; SOO, WHAI-JEN

    1980-04-01

    Ascorbic acid, at nontoxic concentrations, causes a substantial reduction in the ability of avian tumor viruses to replicate in both primary avian tendon cells and chicken embryo fibroblasts. The virus-infected cultures appear to be less transformed in the presence of ascorbic acid by the criteria of morphology, reduced glucose uptake, and increased collagen synthesis. The vitamin does not act by altering the susceptibility of the cells to initial infection and transformation, but instead appears to interfere with the spread of infection through a reduction in virus replication and virus infectivity. The effect is reversible and requires the continuous presence of the vitamin in the culture medium.

  11. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection

    DEFF Research Database (Denmark)

    Song, Z; Kong, K F; Wu, H

    2010-01-01

    immune systems and cystic fibrosis. The QS systems of P. aeruginosa use N-acylated homoserine lactone (AHL) as signal molecules. Previously we have demonstrated that Panax ginseng treatment allowed the animals with P. aeruginosa pneumonia to effectively clear the bacterial infection. We postulated...... that the ability to impact the outcome of infections is partly due to ginseng having direct effect on the production of P. aeruginosa virulence factors. The study explores the effect of ginseng on alginate, protease and AHL production. The effect of ginseng extracts on growth and expression of QS......-controlled virulence factors on the prototypic P. aeruginosa PAO1 and its isogenic mucoid variant (PAOmucA22) was determined. Ginseng did not inhibit the growth of the bacteria, enhanced the extracellular protein production and stimulated the production of alginate. However, ginseng suppressed the production of Las...

  12. Cannabidiol inhibits growth and induces programmed cell death in kaposi sarcoma-associated herpesvirus-infected endothelium.

    Science.gov (United States)

    Maor, Yehoshua; Yu, Jinlong; Kuzontkoski, Paula M; Dezube, Bruce J; Zhang, Xuefeng; Groopman, Jerome E

    2012-07-01

    Kaposi sarcoma is the most common neoplasm caused by Kaposi sarcoma-associated herpesvirus (KSHV). It is prevalent among the elderly in the Mediterranean, inhabitants of sub-Saharan Africa, and immunocompromised individuals such as organ transplant recipients and AIDS patients. Current treatments for Kaposi sarcoma can inhibit tumor growth but are not able to eliminate KSHV from the host. When the host's immune system weakens, KSHV begins to replicate again, and active tumor growth ensues. New therapeutic approaches are needed. Cannabidiol (CBD), a plant-derived cannabinoid, exhibits promising antitumor effects without inducing psychoactive side effects. CBD is emerging as a novel therapeutic for various disorders, including cancer. In this study, we investigated the effects of CBD both on the infection of endothelial cells (ECs) by KSHV and on the growth and apoptosis of KSHV-infected ECs, an in vitro model for the transformation of normal endothelium to Kaposi sarcoma. While CBD did not affect the efficiency with which KSHV infected ECs, it reduced proliferation and induced apoptosis in those infected by the virus. CBD inhibited the expression of KSHV viral G protein-coupled receptor (vGPCR), its agonist, the chemokine growth-regulated protein α (GRO-α), vascular endothelial growth factor receptor 3 (VEGFR-3), and the VEGFR-3 ligand, vascular endothelial growth factor C (VEGF-C). This suggests a potential mechanism by which CBD exerts its effects on KSHV-infected endothelium and supports the further examination of CBD as a novel targeted agent for the treatment of Kaposi sarcoma.

  13. Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step.

    NARCIS (Netherlands)

    J.W. Rossen (John); J. Bouma (Janneke); R.H. Raatgeep (Rolien); H.A. Büller (Hans); A.W.C. Einerhand (Sandra)

    2004-01-01

    textabstractElevated levels of prostaglandins (PGs), products of cyclooxygenases (COXs), are found in the plasma and stool of rotavirus-infected children. We sought to determine the role of COXs, PGs, and the signal transduction pathways involved in rotavirus infection to elucidate

  14. Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step

    NARCIS (Netherlands)

    Rossen, John W A; Bouma, Janneke; Raatgeep, Rolien H C; Büller, Hans A; Einerhand, Alexandra W C

    2004-01-01

    Elevated levels of prostaglandins (PGs), products of cyclooxygenases (COXs), are found in the plasma and stool of rotavirus-infected children. We sought to determine the role of COXs, PGs, and the signal transduction pathways involved in rotavirus infection to elucidate possible new targets for anti

  15. Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step

    NARCIS (Netherlands)

    Rossen, John W A; Bouma, Janneke; Raatgeep, Rolien H C; Büller, Hans A; Einerhand, Alexandra W C

    Elevated levels of prostaglandins (PGs), products of cyclooxygenases (COXs), are found in the plasma and stool of rotavirus-infected children. We sought to determine the role of COXs, PGs, and the signal transduction pathways involved in rotavirus infection to elucidate possible new targets for

  16. Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step.

    NARCIS (Netherlands)

    J.W. Rossen (John); J. Bouma (Janneke); R.H. Raatgeep (Rolien); H.A. Büller (Hans); A.W.C. Einerhand (Sandra)

    2004-01-01

    textabstractElevated levels of prostaglandins (PGs), products of cyclooxygenases (COXs), are found in the plasma and stool of rotavirus-infected children. We sought to determine the role of COXs, PGs, and the signal transduction pathways involved in rotavirus infection to elucidate

  17. Immunization of mice with a recombinant adenovirus vaccine inhibits the early growth of Mycobacterium tuberculosis after infection.

    Directory of Open Access Journals (Sweden)

    Edward O Ronan

    Full Text Available BACKGROUND: In pulmonary Mycobacterium tuberculosis (Mtb infection, immune responses are delayed compared to other respiratory infections, so that antigen-specific cells are not detected in the lungs earlier than day 14. Even after parenteral immunization with Bacille Calmette Guerin (BCG or a subunit vaccine, the immune response after Mtb challenge is only slightly accelerated and the kinetics of pulmonary Mtb growth do not differ between naïve and immunized animals up to day 14. METHODS AND FINDINGS: Mice were immunized intranasally with a recombinant adenovirus expressing mycobacterial antigen 85A (Ad85A, challenged by aerosol with Mtb and the kinetics of Mtb growth in the lungs measured. Intranasal immunization with Ad85A inhibits Mtb growth in the early phase of infection, up to day 8. Protection is sustained for at least 7 months and correlates with the presence of antigen-specific activated effector CD8 T cells in the lungs. Antigen 85A-specific T cells respond to antigen presenting cells from the lungs of mice immunized with Ad85A 23 weeks previously, demonstrating the persistence of antigen in the lungs. CONCLUSIONS/SIGNIFICANCE: Intranasal immunization with Ad85A can inhibit early growth of Mtb because it establishes a lung antigen depot and maintains an activated lung-resident lymphocyte population. We propose that an optimal immunization strategy for tuberculosis should aim to induce both lung and systemic immunity, targeting the early and late phases of Mtb growth.

  18. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  19. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Directory of Open Access Journals (Sweden)

    Mayim E. Wiens

    2017-01-01

    Full Text Available α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5 blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses.

  20. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  1. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Science.gov (United States)

    Wiens, Mayim E.

    2017-01-01

    ABSTRACT α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5) blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV) infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses. PMID:28119475

  2. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection.

    Science.gov (United States)

    Atkinson, Carl; Song, Hongbin; Lu, Bo; Qiao, Fei; Burns, Tara A; Holers, V Michael; Tsokos, George C; Tomlinson, Stephen

    2005-09-01

    Previous studies indicate a pivotal role for complement in mediating both local and remote injury following ischemia and reperfusion of the intestine. Here, we report on the use of a mouse model of intestinal ischemia/reperfusion injury to investigate the strategy of targeting complement inhibition to sites of complement activation by linking an iC3b/C3dg-binding fragment of mouse complement receptor 2 (CR2) to a mouse complement-inhibitory protein, Crry. We show that the novel CR2-Crry fusion protein targets sites of local and remote (lung) complement activation following intestinal ischemia and reperfusion injury and that CR2-Crry requires a 10-fold lower dose than its systemic counterpart, Crry-Ig, to provide equivalent protection from both local and remote injury. CR2-Crry has a significantly shorter serum half-life than Crry-Ig and, unlike Crry-Ig, had no significant effect on serum complement activity at minimum effective therapeutic doses. Furthermore, the minimum effective dose of Crry-Ig significantly enhanced susceptibility to infection in a mouse model of acute septic peritonitis, whereas the effect of CR2-Crry on susceptibility to infection was indistinguishable from that of PBS control. Thus, compared with systemic inhibition, CR2-mediated targeting of a complement inhibitor of activation improved bioavailability, significantly enhanced efficacy, and maintained host resistance to infection.

  3. Lipoxin Inhibits Fungal Uptake by Macrophages and Reduces the Severity of Acute Pulmonary Infection Caused by Paracoccidioides brasiliensis

    Directory of Open Access Journals (Sweden)

    Laura R. R. Ribeiro

    2015-01-01

    Full Text Available Cysteinyl leukotrienes (CysLTs and lipoxins (LXs are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J and susceptible (B10.A mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.

  4. Up-regulation of the ATP-binding cassette transporter A1 inhibits hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Simone Bocchetta

    Full Text Available Hepatitis C virus (HCV establishes infection using host lipid metabolism pathways that are thus considered potential targets for indirect anti-HCV strategies. HCV enters the cell via clathrin-dependent endocytosis, interacting with several receptors, and virus-cell fusion, which depends on acidic pH and the integrity of cholesterol-rich domains of the hepatocyte membrane. The ATP-binding Cassette Transporter A1 (ABCA1 mediates cholesterol efflux from hepatocytes to extracellular Apolipoprotein A1 and moves cholesterol within cell membranes. Furthermore, it generates high-density lipoprotein (HDL particles. HDL protects against arteriosclerosis and cardiovascular disease. We show that the up-regulation of ABCA1 gene expression and its cholesterol efflux function in Huh7.5 hepatoma cells, using the liver X receptor (LXR agonist GW3965, impairs HCV infection and decreases levels of virus produced. ABCA1-stimulation inhibited HCV cell entry, acting on virus-host cell fusion, but had no impact on virus attachment, replication, or assembly/secretion. It did not affect infectivity or properties of virus particles produced. Silencing of the ABCA1 gene and reduction of the specific cholesterol efflux function counteracted the inhibitory effect of the GW3965 on HCV infection, providing evidence for a key role of ABCA1 in this process. Impaired virus-cell entry correlated with the reorganisation of cholesterol-rich membrane microdomains (lipid rafts. The inhibitory effect could be reversed by an exogenous cholesterol supply, indicating that restriction of HCV infection was induced by changes of cholesterol content/distribution in membrane regions essential for virus-cell fusion. Stimulation of ABCA1 expression by GW3965 inhibited HCV infection of both human primary hepatocytes and isolated human liver slices. This study reveals that pharmacological stimulation of the ABCA1-dependent cholesterol efflux pathway disrupts membrane cholesterol homeostasis

  5. Curcumin Inhibits Gastric Inflammation Induced by Helicobacter Pylori Infection in a Mouse Model

    Directory of Open Access Journals (Sweden)

    António M. Santos

    2015-01-01

    Full Text Available Helicobacter pylori (H. pylori infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT and quantitative real-time polymerase chain reaction (PCR. Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available.

  6. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue

    Science.gov (United States)

    Edén, C. Svanborg; Freter, R.; Hagberg, L.; Hull, R.; Hull, S.; Leffler, H.; Schoolnik, G.

    1982-08-01

    It has been shown that the establishment of urinary tract infection by Escherichia coli is dependent on attachment of the bacteria to epithelial cells1-4. The attachment involves specific epithelial cell receptors, which have been characterized as glycolipids5-10. Reversible binding to cell-surface mannosides may also be important4,11-13. This suggests an approach to the treatment of infections-that of blocking bacterial attachment with cell membrane receptor analogues. Using E. coli mutants lacking one or other of the two binding specificities (glycolipid and mannose), we show here that glycolipid analogues can block in vitro adhesion and in vivo urinary tract infection.

  7. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner.

    Directory of Open Access Journals (Sweden)

    Rajeev Mehla

    Full Text Available HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC involving stress induced AMP Kinase (AMPK inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.

  8. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner.

    Science.gov (United States)

    Mehla, Rajeev; Bivalkar-Mehla, Shalmali; Zhang, Ruonan; Handy, Indhira; Albrecht, Helmut; Giri, Shailendra; Nagarkatti, Prakash; Nagarkatti, Mitzi; Chauhan, Ashok

    2010-06-16

    HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.

  9. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    Science.gov (United States)

    Borges, Andrew Rosa; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3’-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50s ranging from 0.1 – 7.4 µg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. PMID:20880566

  10. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition

    Science.gov (United States)

    Tate, Michelle D.; Ong, James D. H.; Dowling, Jennifer K.; McAuley, Julie L.; Robertson, Avril B.; Latz, Eicke; Drummond, Grant R.; Cooper, Matthew A.; Hertzog, Paul J.; Mansell, Ashley

    2016-01-01

    The inflammasome NLRP3 is activated by pathogen associated molecular patterns (PAMPs) during infection, including RNA and proteins from influenza A virus (IAV). However, chronic activation by danger associated molecular patterns (DAMPs) can be deleterious to the host. We show that blocking NLRP3 activation can be either protective or detrimental at different stages of lethal influenza A virus (IAV). Administration of the specific NLRP3 inhibitor MCC950 to mice from one day following IAV challenge resulted in hypersusceptibility to lethality. In contrast, delaying treatment with MCC950 until the height of disease (a more likely clinical scenario) significantly protected mice from severe and highly virulent IAV-induced disease. These findings identify for the first time that NLRP3 plays a detrimental role later in infection, contributing to IAV pathogenesis through increased cytokine production and lung cellular infiltrates. These studies also provide the first evidence identifying NLRP3 inhibition as a novel therapeutic target to reduce IAV disease severity. PMID:27283237

  11. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection.

    Directory of Open Access Journals (Sweden)

    Charles J Shoemaker

    Full Text Available Ebola virus (EBOV is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC(50 1.6 to 8.0 µM at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann-Pick C1 protein (NPC1, a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.

  12. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection.

    Science.gov (United States)

    Shoemaker, Charles J; Schornberg, Kathryn L; Delos, Sue E; Scully, Corinne; Pajouhesh, Hassan; Olinger, Gene G; Johansen, Lisa M; White, Judith M

    2013-01-01

    Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC(50) 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann-Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.

  13. A Novel Human Radixin Peptide Inhibits Hepatitis C Virus Infection at the Level of Cell Entry

    OpenAIRE

    Bukong, Terence N; Kodys, Karen; Szabo, Gyongyi

    2014-01-01

    Hepatitis C virus infection of hepatocytes is a multistep process involving the interaction between viral and host cell molecules. Recently, we identified ezrin–moesin–radixin proteins and spleen tyrosine kinase (SYK) as important host therapeutic targets for HCV treatment development. Previously, an ezrin hinge region peptide (Hep1) has been shown to exert anti-HCV properties in vivo, though its mechanism of action remains limited. In search of potential novel inhibitors of HCV infection and...

  14. Inhibition of vesicular stomatitis virus replication in the course of HIV infection in patients with different stages of immunodeficiency.

    Science.gov (United States)

    Piasecki, Egbert; Knysz, Brygida; Zwolińska, Katarzyna; Gąsiorowski, Jacek; Lorenc, Maria; Zalewska, Małgorzata; Gładysz, Andrzej; Siemieniec, Iwona; Pazgan-Simon, Monika

    2010-12-01

    The replication of vesicular stomatitis virus (VSV) in isolated human leukocytes has been used to measure the level of nonspecific antiviral immunity. However, during infection with some pathogens, the main effect observed is caused by interaction between the pathogen and VSV. This was also noted in advanced stages of HIV infection, when an inverse association between HIV viral load and VSV replication was found. The mutual effect was markedly stronger than the correlation between the VSV replication level and CD4(+) T-cell count. Since successful antiretroviral therapy is associated with a decrease in HIV viremia to undetectable levels, the effect of such therapy on VSV replication was expected and confirmed in this investigation. In fact, increased VSV titers were observed together with decreased HIV viral load, particularly in the case of efficient therapeutic schemes, for example those including lopinavir/ritonavir. The results showed that VSV replication capacity reflected the progression of HIV infection. Moreover, the presence of interferon in the plasma of AIDS patients was found to be only partially responsible for the inhibition of VSV replication. The results suggest a specific HIV-VSV interaction, whether direct or indirect. Thus the VSV replication assay may be applied in evaluating the stage of HIV infection.

  15. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells

    Directory of Open Access Journals (Sweden)

    Bertin Jonathan

    2012-03-01

    Full Text Available Abstract Background Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS. Leukotriene B4 (LTB4 and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs in HIV-1 infection of microglial cells. Methods To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2 or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR. Results We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5 surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. Conclusions These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.

  16. Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells.

    Science.gov (United States)

    Bertin, Jonathan; Barat, Corinne; Bélanger, Dave; Tremblay, Michel J

    2012-03-16

    Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS). Leukotriene B4 (LTB4) and cysteinyl-leukotrienes such as LTC4 are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs) in HIV-1 infection of microglial cells. To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis) were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2) or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR). We report in this study that virus replication is reduced upon treatment of MDMis with LTB4 and LTC4. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5) surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C. These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.

  17. Inhibition of lung serine proteases in mice: a potentially new approach to control influenza infection

    Directory of Open Access Journals (Sweden)

    Błazejewska Paulina

    2011-01-01

    Full Text Available Abstract Background Host serine proteases are essential for the influenza virus life cycle because the viral haemagglutinin is synthesized as a precursor which requires proteolytic maturation. Therefore, we studied the activity and expression of serine proteases in lungs from mice infected with influenza and evaluated the effect of serine protease inhibitors on virus replication both in cell culture and in infected mice. Results Two different inbred mouse strains were investigated: DBA/2J as a highly susceptible and C57Bl/6J as a more resistant strain to influenza virus infection. The serine proteases from lung homogenates of mice exhibited pH optima of 10.00. Using the substrate Bz-Val-Gly-Arg-p-nitroanilide or in zymograms, the intensities of proteolysis increased in homogenates from both mouse strains with time post infection (p.i. with the mouse-adapted influenza virus A/Puerto Rico/8/34 (H1N1; PR8. In zymograms at day 7 p.i., proteolytic bands were stronger and numerous in lung homogenates from DBA/2J than C57Bl/6J mice. Real-time PCR results confirmed differential expression of several lung proteases before and after infecting mice with the H1N1 virus. The most strongly up-regulated proteases were Gzma, Tmprss4, Elane, Ctrl, Gzmc and Gzmb. Pretreatment of mouse and human lung cell lines with the serine protease inhibitors AEBSF or pAB or a cocktail of both prior to infection with the H1N1 or the A/Seal/Massachusetts/1/80 (H7N7; SC35M virus resulted in a decrease in virus replication. Pretreatment of C57Bl/6J mice with either AEBSF or a cocktail of AEBSF and pAB prior to infection with the H1N1 virus significantly reduced weight loss and led to a faster recovery of treated versus untreated mice while pAB alone exerted a very poor effect. After infection with the H7N7 virus, the most significant reduction of weight loss was obtained upon pretreatment with either the protease inhibitor cocktail or pAB. Furthermore, pretreatment of C57BL/6J

  18. Hexane Extracts of Calophyllum brasiliense Inhibit the Development of Gastric Preneoplasia in Helicobacter felis Infected INS-Gas Mice

    Science.gov (United States)

    Lemos, Larissa M. S.; Miyajima, Fabio; Castilho, Geovane R. C.; Martins, Domingos Tabajara O.; Pritchard, D. Mark; Burkitt, Michael D.

    2017-01-01

    Objectives: Indigenous Latin American populations have used extracts from Calophyllum brasiliense, a native hardwood, to treat gastrointestinal symptoms for generations. The hexane extract of Calophyllum brasiliense stem bark (HECb) protects against ethanol-mediated gastric ulceration in Swiss–Webster mice. We investigated whether HECb inhibits the development of gastric epithelial pathology following Helicobacter felis infection of INS-Gas mice. Materials and Methods: Groups of five male, 6-week-old INS-Gas mice were colonized with H. felis by gavage. From 2 weeks after colonization their drinking water was supplemented with 2% Tween20 (vehicle), low dose HECb (33 mg/L, lHECb) or high dose HECb (133 mg/L, hHECb). Equivalent uninfected groups were studied. Animals were culled 6 weeks after H. felis colonization. Preneoplastic pathology was quantified using established histological criteria. Gastric epithelial cell turnover was quantified by immunohistochemistry for Ki67 and active-caspase 3. Cytokines were quantified using an electrochemiluminescence assay. Results: Vehicle-treated H. felis infected mice exhibited higher gastric atrophy scores than similarly treated uninfected mice (mean atrophy score 5.6 ± 0.87 SEM vs. 2.2 ± 0.58, p < 0.01). The same pattern was observed following lHECb. Following hHECb treatment, H. felis status did not significantly alter atrophy scores. Gastric epithelial apoptosis was not altered by H. felis or HECb administration. Amongst vehicle-treated mice, gastric epithelial cell proliferation was increased 2.8-fold in infected compared to uninfected animals (p < 0.01). Administration of either lHECb or hHECb reduced proliferation in infected mice to levels similar to uninfected mice. A Th17 polarized response to H. felis infection was observed in all infected groups. hHECb attenuated IFN-γ, IL-6, and TNF production following H. felis infection [70% (p < 0.01), 67% (p < 0.01), and 41% (p < 0.05) reduction vs. vehicle, respectively

  19. Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection.

    Science.gov (United States)

    Bergmann, C W; Ito, Y; Singer, D; Albersheim, P; Darvill, A G; Benhamou, N; Nuss, L; Salvi, G; Cervone, F; De Lorenzo, G

    1994-05-01

    Polygalacturonase-inhibiting protein (PGIP) is a cell wall-associated protein that specifically binds to and inhibits the activity of fungal endopolygalacturonases. The Phaseolus vulgaris gene encoding PGIP has been cloned and characterized. Using a fragment of the cloned pgip gene as a probe in Northern blot experiments, it is demonstrated that the pgip mRNA accumulates in suspension-cultured bean cells following addition of elicitor-active oligogalacturonides or fungal glucan to the medium. Rabbit polyclonal antibodies specific for PGIP were generated against a synthetic peptide designed from the N-terminal region of PGIP; the antigenicity of the peptide was enhanced by coupling to KLH. Using the antibodies and the cloned pgip gene fragment as probes in Western and Northern blot experiments, respectively, it is shown that the levels of PGIP and its mRNA are increased in P. vulgaris hypocotyls in response to wounding or treatment with salicylic acid. Using gold-labeled goat-anti-rabbit secondary antibodies in EM studies, it has also been demonstrated that, in bean hypocotyls infected with Colletotrichum lindemuthianum, the level of PGIP preferentially increases in those cells immediately surrounding the infection site. The data support the hypothesis that synthesis of PGIP constitutes an active defense mechanism of plants that is elicited by signal molecules known to induce plant defense genes.

  20. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors.

    Science.gov (United States)

    Zhang, Wei; Qiao, Haishi; Lv, Yuanzi; Wang, Jingjing; Chen, Xiaoqing; Hou, Yayi; Tan, Renxiang; Li, Erguang

    2014-01-01

    Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5'-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication.

  1. Inhibition of middle east respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody

    NARCIS (Netherlands)

    K. Ohnuma (Kei); B.L. Haagmans (Bart); R. Hatano (Ryo); V.S. Raj (Stalin); H. Mou (Huihui); S. Iwata (Satoshi); R.L. Dang (Rong); B.J. Bosch (Berend Jan); C. Morimoto (Chikao)

    2013-01-01

    textabstractWe identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also sign

  2. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K;

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed...

  3. Inhibition of human lymphocyte proliferative response by serum from Plasmodium falciparum infected patients

    DEFF Research Database (Denmark)

    Theander, T G; Svenson, M; Bygbjerg, I C

    1987-01-01

    initiation of treatment suppressed the in vitro lymphocyte proliferative response to both Plasmodium-derived antigens and an unrelated antigen (PPD-tuberculin). The suppressive effect was lost if the serum was incubated at 56 degrees C for 30 min, and the effect was not HLA-restricted since the inhibition...

  4. IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Yiming Qi

    Full Text Available Dengue hemorrhagic fever (DHF/Dengue shock syndrome (DSS is a fatal infectious disease that demands an effective treatment. Interferon (IFN-stimulated genes (ISGs induced by dengue virus (DENV exert antiviral effects. Among ISGs, IFN-α inducible gene 6 (IFI6 was increased in DENV infected human umbilical vascular endothelial cells (HUVECs by microarray analysis in our previous study. However, its function is incompletely understood. In this study, we confirmed that IFI6 was markedly induced in DENV infection of both primary HUVECs and EA.hy926 cell lines. Recombinant EA.hy926 cell lines in which IFI6 was either over-expressed (IFI6+/+ or knocked-down (IFI6-/- were generated. The activation of caspase-3 and intrinsic apoptosis-related protein caspase-9 were down-regulated in IFI6+/+ but up-regulated in IFI6-/- cells at 24-48 hrs post-infection. After incubation with DENV for 48 hrs, the mitochondrial membrane potential (Δψ(m was more stable in IFI6+/+ cells but reduced in IFI6-/- cells, as assayed by fluorescence staining with JC-1. We observed that Bcl-2 expression was increased in IFI6+/+ and decreased in IFI6-/- cells. By contrast, Bax expression was decreased in IFI6+/+ and increased in IFI6-/- cells. It is presumed that the anti-apoptotic function of IFI6 is expressed by regulating the rheostatic balance between bcl-2/bax expression and inhibition of Δψ(m depolarization during DENV infection of vascular endothelial cells(VECs. In addition, the pro-apoptotic protein X-linked Inhibitor of Apoptosis (XIAP-Associated Factor 1(XAF1 expression had been reported to be up-regulated and led to the induction of apoptosis in DENV2-infected VECs,but the relationship between XAF1 and IFI6 dengue virus-induced apoptosis in VECs warrants further study.

  5. An indole alkaloid from a tribal folklore inhibits immediate early event in HSV-2 infected cells with therapeutic efficacy in vaginally infected mice.

    Directory of Open Access Journals (Sweden)

    Paromita Bag

    Full Text Available Herpes genitalis, caused by HSV-2, is an incurable genital ulcerative disease transmitted by sexual intercourse. The virus establishes life-long latency in sacral root ganglia and reported to have synergistic relationship with HIV-1 transmission. Till date no effective vaccine is available, while the existing therapy frequently yielded drug resistance, toxicity and treatment failure. Thus, there is a pressing need for non-nucleotide antiviral agent from traditional source. Based on ethnomedicinal use we have isolated a compound 7-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole (HM from the traditional herb Ophiorrhiza nicobarica Balkr, and evaluated its efficacy on isolates of HSV-2 in vitro and in vivo. The cytotoxicity (CC50, effective concentrations (EC50 and the mode of action of HM was determined by MTT, plaque reduction, time-of-addition, immunofluorescence (IFA, Western blot, qRT-PCR, EMSA, supershift and co-immunoprecipitation assays; while the in vivo toxicity and efficacy was evaluated in BALB/c mice. The results revealed that HM possesses significant anti-HSV-2 activity with EC50 of 1.1-2.8 µg/ml, and selectivity index of >20. The time kinetics and IFA demonstrated that HM dose dependently inhibited 50-99% of HSV-2 infection at 1.5-5.0 µg/ml at 2-4 h post-infection. Further, HM was unable to inhibit viral attachment or penetration and had no synergistic interaction with acyclovir. Moreover, Western blot and qRT-PCR assays demonstrated that HM suppressed viral IE gene expression, while the EMSA and co-immunoprecipitation studies showed that HM interfered with the recruitment of LSD-1 by HCF-1. The in vivo studies revealed that HM at its virucidal concentration was nontoxic and reduced virus yield in the brain of HSV-2 infected mice in a concentration dependent manner, compared to vaginal tissues. Thus, our results suggest that HM can serve as a prototype to develop non-nucleotide antiviral lead targeting the viral IE

  6. An indole alkaloid from a tribal folklore inhibits immediate early event in HSV-2 infected cells with therapeutic efficacy in vaginally infected mice.

    Science.gov (United States)

    Bag, Paromita; Ojha, Durbadal; Mukherjee, Hemanta; Halder, Umesh Chandra; Mondal, Supriya; Chandra, Nidhi S; Nandi, Suman; Sharon, Ashoke; Sarkar, Mamta Chawla; Chakrabarti, Sekhar; Chattopadhyay, Debprasad

    2013-01-01

    Herpes genitalis, caused by HSV-2, is an incurable genital ulcerative disease transmitted by sexual intercourse. The virus establishes life-long latency in sacral root ganglia and reported to have synergistic relationship with HIV-1 transmission. Till date no effective vaccine is available, while the existing therapy frequently yielded drug resistance, toxicity and treatment failure. Thus, there is a pressing need for non-nucleotide antiviral agent from traditional source. Based on ethnomedicinal use we have isolated a compound 7-methoxy-1-methyl-4,9-dihydro-3H-pyrido[3,4-b]indole (HM) from the traditional herb Ophiorrhiza nicobarica Balkr, and evaluated its efficacy on isolates of HSV-2 in vitro and in vivo. The cytotoxicity (CC50), effective concentrations (EC50) and the mode of action of HM was determined by MTT, plaque reduction, time-of-addition, immunofluorescence (IFA), Western blot, qRT-PCR, EMSA, supershift and co-immunoprecipitation assays; while the in vivo toxicity and efficacy was evaluated in BALB/c mice. The results revealed that HM possesses significant anti-HSV-2 activity with EC50 of 1.1-2.8 µg/ml, and selectivity index of >20. The time kinetics and IFA demonstrated that HM dose dependently inhibited 50-99% of HSV-2 infection at 1.5-5.0 µg/ml at 2-4 h post-infection. Further, HM was unable to inhibit viral attachment or penetration and had no synergistic interaction with acyclovir. Moreover, Western blot and qRT-PCR assays demonstrated that HM suppressed viral IE gene expression, while the EMSA and co-immunoprecipitation studies showed that HM interfered with the recruitment of LSD-1 by HCF-1. The in vivo studies revealed that HM at its virucidal concentration was nontoxic and reduced virus yield in the brain of HSV-2 infected mice in a concentration dependent manner, compared to vaginal tissues. Thus, our results suggest that HM can serve as a prototype to develop non-nucleotide antiviral lead targeting the viral IE transcription for the

  7. Inhibition of enterovirus 71 (EV-71 infections by a novel antiviral peptide derived from EV-71 capsid protein VP1.

    Directory of Open Access Journals (Sweden)

    Chee Wah Tan

    Full Text Available Enterovirus 71 (EV-71 is the main causative agent of hand, foot and mouth disease (HFMD. In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50 values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.

  8. Derivatives of amphotericin inhibit infection with human immunodeficiency virus in vitro by different modes of action

    DEFF Research Database (Denmark)

    Hansen, J E; Witzke, N M; Nielsen, C;

    1990-01-01

    /ml; N-(N'-(3-dimethylaminopropyl)N"-ethyl guanyl) amphotericin B (DAPEG) did so at 5-11 micrograms/ml. While the virus-inhibitory effect of AME was due to an interaction with target lymphocytes, the effect of MCG was due to a direct anti-viral action. AME increased the potential of infected cells...

  9. Immunization with L. sigmodontis microfilariae reduces peripheral microfilaraemia after challenge infection by inhibition of filarial embryogenesis.

    Directory of Open Access Journals (Sweden)

    Sebastian Ziewer

    Full Text Available BACKGROUND: Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for alternative treatment ways, i.e. other effective drugs or vaccines. METHODOLOGY/PRINCIPAL FINDINGS: Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as IFN-γ secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden. CONCLUSIONS/SIGNIFICANCE: Our results present a tool to understand the immunological basis of vaccine induced protection in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful weapon to stop transmission of filariasis.

  10. Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa; Jarupathirun, Patsaporn; Kaptein, Suzanne; Neyts, Johan; Smit, Jolanda

    2013-01-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus (DENV)-induced disease during a heterologous re-infection. Despite ADE's clinical impact, only a few antiviral compounds have been assessed for their anti-ADE activity. We reported earlier tha

  11. Potent inhibition of Junín virus infection by interferon in murine cells.

    Science.gov (United States)

    Huang, Cheng; Walker, Aida G; Grant, Ashley M; Kolokoltsova, Olga A; Yun, Nadezhda E; Seregin, Alexey V; Paessler, Slobodan

    2014-06-01

    The new world arenavirus Junín virus (JUNV) is the causative agent of Argentine hemorrhagic fever, a lethal human infectious disease. Adult laboratory mice are generally resistant to peripheral infection by JUNV. The mechanism underlying the mouse resistance to JUNV infection is largely unknown. We have reported that interferon receptor knockout mice succumb to JUNV infection, indicating the critical role of interferon in restricting JUNV infection in mice. Here we report that the pathogenic and vaccine strains of JUNV were highly sensitive to interferon in murine primary cells. Treatment with low concentrations of interferon abrogated viral NP protein expression in murine cells. The replication of both JUNVs was enhanced in IRF3/IRF7 deficient cells. In addition, the vaccine strain of JUNV displayed impaired growth in primary murine cells. Our data suggested a direct and potent role of host interferon response in restricting JUNV replication in mice. The defect in viral growth for vaccine JUNV might also partially explain its attenuation in mice.

  12. Inhibition of poly(ADP-ribose polymerase interferes with Trypanosoma cruzi infection and proliferation of the parasite.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Poly(ADP-ribosylation is a post-translational covalent modification of proteins catalyzed by a family of enzymes termed poly(ADP-ribose polymerases (PARPs. In the human genome, 17 different genes have been identified that encode members of the PARP superfamily. Poly (ADP-ribose metabolism plays a role in a wide range of biological processes. In Trypanosoma cruzi, PARP enzyme appears to play a role in DNA repair mechanisms and may also be involved in controlling the different phases of cell growth. Here we describe the identification of potent inhibitors for T. cruzi PARP with a fluorescence-based activity assay. The inhibitors were also tested on T. cruzi epimastigotes, showing that they reduced ADP-ribose polymer formation in vivo. Notably, the identified inhibitors are able to reduce the growth rate of T. cruzi epimastigotes. The best inhibitor, Olaparib, is effective at nanomolar concentrations, making it an efficient chemical tool for chacterization of ADP-ribose metabolism in T. cruzi. PARP inhibition also decreases drastically the amount of amastigotes but interestingly has no effect on the amount of trypomastigotes in the cell culture. Knocking down human PARP-1 decreases both the amount of amastigotes and trypomastigotes in cell culture, indicating that the effect would be mainly due to inhibition of human PARP-1. The result suggests that the inhibition of PARP could be a potential way to interfere with T. cruzi infection.

  13. The soluble form of the EIAV receptor encoded by an alternative splicing variant inhibits EIAV infection of target cells.

    Directory of Open Access Journals (Sweden)

    Yue-Zhi Lin

    Full Text Available Equine lentivirus receptor 1 (ELR1 has been identified as the sole receptor for equine infectious anemia virus (EIAV and is a member of the tumor necrosis factor receptor (TNFR superfamily. In addition to the previously described membrane-associated form of ELR1, two other major alternative splicing variant mRNAs were identified in equine monocyte-derived macrophages (eMDMs. One major spliced species (ELR1-IN contained an insertion of 153 nt, which resulted in a premature stop codon situated 561 nt upstream of the predicted membrane spanning domain. The other major species (ELR1-DE has a deletion of 109 nt that causes a shift of the open reading frame and generates a stop codon 312 nt downstream. Because ELR1-DE presumably encodes a peptide of a mere 23 residues, only ELR1-IN was further analyzed. The expression of a soluble form of ELR1 (sELR1 by ELR1-IN was confirmed by Western blot and immunofluorescence analyses. Similar to ELR1, the transcription level of ELR1-IN varied among individual horses and at different time points in the same individuals. The ratio of ELR1-IN mRNA species to ELR1 mRNA was approximately 1∶2.5. Pre-incubation of the recombinant sELR1 with EIAV significantly inhibited EIAV infection in equine macrophages, the primary in vivo target cell of the virus. Fetal equine dermal (FED cells are susceptible to EIAV in vitro, and the replication of EIAV in FED cells transiently transfected with ELR1-IN was markedly reduced when compared with replication in cells transfected with the empty vector. Finally, the expression levels of both forms of the EIAV receptor were significantly regulated by infection with this virus. Taken together, our data indicate that sELR1 acts as a secreted cellular factor that inhibits EIAV infection in host cells.

  14. Detection of Theileria equi and Babesia caballi infections in Venezuelan horses using Competitive-Inhibition ELISA and PCR.

    Science.gov (United States)

    Rosales, Romel; Rangel-Rivas, Ariadna; Escalona, América; Jordan, Luis Segundo; Gonzatti, Mary Isabel; Aso, Pedro Maria; Perrone, Trina; Silva-Iturriza, Adriana; Mijares, Alfredo

    2013-09-01

    The focus of this study was the detection of equine piroplasmosis in Distrito Capital, Miranda, Aragua, Guárico and Apure States from Venezuela, using two methods: Competitive-Inhibition ELISA and multiplex PCR and the analysis of the possible differences in occurrence in relation to the primary purpose of the horses, which is related to varied degrees of exposure to tick. Antibody levels to Babesia caballi and Theileria equi were assessed in 694 equine serum samples using Competitive-Inhibition ELISA, while PCR assays were performed in 136 horses, using two sets of oligonucleotides to establish the presence of T. equi, B. caballi or both. The overall seroprevalence of equine piroplasmosis was 50.2%, antibodies to B. caballi were found in 161 horses (23.2%), whereas 97 (14.0%) were seropositive to T. equi and 90 (13.0%) were positives to both parasites (mixed infections). PCR determinations (n=136) showed a prevalence of 66.2%, distributed in 84 (61.8% positives) for T. equi and, 6 (4.4%) were positive to both parasites. The cELISA showed higher levels of prevalence of B. caballi and mixed infections, as compared to the PCR method. This discrepancy can be explained by the different parameters that are evaluated by each technique, PCR detect the parasite itself, while cELISA detects antibodies to the parasite. By PCR, the highest prevalence was found in Apure state, where 92.3% of the samples were positive to T. equi infections. In this locality, free grazing animals are used for livestock management. This high prevalence may be linked to the tick species present in that area. More epidemiological studies will be necessary to assess the epidemiological status of equine piroplasmosis in Venezuela.

  15. Helicobacter pylori infection inhibits phagocyte clearance of apoptotic gastric epithelial cells.

    Science.gov (United States)

    Bimczok, Diane; Smythies, Lesley E; Waites, Ken B; Grams, Jayleen M; Stahl, Richard D; Mannon, Peter J; Peter, Shajan; Wilcox, C Mel; Harris, Paul R; Das, Soumita; Ernst, Peter B; Smith, Phillip D

    2013-06-15

    Increased apoptotic death of gastric epithelial cells is a hallmark of Helicobacter pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells (AECs) in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR(+) mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive AEC material, indicating that gastric phagocytes are involved in AEC clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the AECs by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-α, which was expressed at higher levels in H. pylori-infected, compared with uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of AECs and higher levels of nonphagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection.

  16. Hesperidin Inhibits Inflammatory Response Induced by Aeromonas hydrophila Infection and Alters CD4+/CD8+ T Cell Ratio

    Directory of Open Access Journals (Sweden)

    Abdelaziz S. A. Abuelsaad

    2014-01-01

    Full Text Available Background. Aeromonas hydrophila is an opportunistic bacterial pathogen that is associated with a number of human diseases. Hesperidin (HES has been reported to exert antioxidant and anti-inflammatory activities. Objectives. The aim of this study was to investigate the potential effect of HES treatment on inflammatory response induced by A. hydrophila infection in murine. Methods. A. hydrophila-infected mice were treated with HES at 250 mg/kg b.wt./week for 4 consecutive weeks. Phagocytosis, reactive oxygen species production, CD4+/CD8+ T cell ratio, and CD14 expression on intestinal infiltrating monocytes were evaluated. The expression of E-selectin and intercellular adhesion molecule 1 on stimulated HUVECs and RAW macrophage was evaluated. Results. Percentage of CD4+ T cells in the intestinal tissues of infected treated mice was highly significantly increased; however, phagocytic index, ROS production, CD8+ T cells percentage, and CD14 expression on monocytes were significantly reduced. On the other hand, HES significantly inhibited A-LPS- and A-ECP-induced E-selectin and ICAM-1 expression on HUVECs and ICAM-1 expression on RAW macrophage. Conclusion. Present data indicated that HES has a potential role in the suppression of inflammatory response induced by A. hydrophila toxins through downmodulation of ROS production and CD14 and adhesion molecules expression, as well as increase of CD4+/CD8+ cell ratio.

  17. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections

    DEFF Research Database (Denmark)

    Hentzer, Morten; Givskov, Michael Christian

    2003-01-01

    Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. The discovery of bacterial-communication systems (quorum-sensing...... mechanisms and potential antipathogenic drugs that specifically target quorum-sensing systems in a manner unlikely to pose a selective pressure for the development of resistant mutants....

  18. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry.

    Directory of Open Access Journals (Sweden)

    Eric M Feeley

    2011-10-01

    Full Text Available To replicate, viruses must gain access to the host cell's resources. Interferon (IFN regulates the actions of a large complement of interferon effector genes (IEGs that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats.

  19. Bioluminescence Imaging to Track Bacteroides fragilis Inhibition of Vibrio parahaemolyticus Infection in Mice

    Directory of Open Access Journals (Sweden)

    Zhengchao Li

    2017-05-01

    Full Text Available Bacteroides fragilis is an anaerobic, Gram-negative, commensal bacterium of the human gut. It plays an important role in promoting the maturation of the immune system, as well as suppressing abnormal inflammation. Many recent studies have focused on the relationship between B. fragilis and human immunity, and indicate that B. fragilis has many useful probiotic effects. As inhibition of intestinal pathogens is an important characteristic of probiotic strains, this study examined whether B. fragilis could inhibit pathogenic bacteria. Results showed that Vibrio parahaemolyticus was inhibited by B. fragilis in vitro, and that B. fragilis could protect both RAW 264.7 and LoVo cells from damage caused by V. parahaemolyticus. Using in vivo imaging, we constructed a light-emitting V. parahaemolyticus strain and showed that B. fragilis might shorten the colonization time and reduce the number of lux-expressing bacteria in a mouse model. These results provide useful information for developing B. fragilis into a probiotic product, and also indicate that this commensal bacterium might aid in the clinical treatment of gastroenteritis caused by V. parahaemolyticus.

  20. Serotype-specific differences in inhibition of reovirus infectivity by human-milk glycans are determined by viral attachment protein σ1.

    Science.gov (United States)

    Iskarpatyoti, Jason A; Morse, E Ashley; McClung, R Paul; Ikizler, Miné; Wetzel, J Denise; Contractor, Nikhat; Dermody, Terence S

    2012-11-25

    Human milk contains many bioactive components, including secretory IgA, oligosaccharides, and milk-associated proteins. We assessed the antiviral effects of several components of milk against mammalian reoviruses. We found that glucocerebroside (GCB) inhibited the infectivity of reovirus strain type 1 Lang (T1L), whereas gangliosides GD3 and GM3 and 3'-sialyllactose (3SL) inhibited the infectivity of reovirus strain type 3 Dearing (T3D). Agglutination of erythrocytes mediated by T1L and T3D was inhibited by GD3, GM3, and bovine lactoferrin. Additionally, α-sialic acid, 3SL, 6'-sialyllactose, sialic acid, human lactoferrin, osteopontin, and α-lactalbumin inhibited hemagglutination mediated by T3D. Using single-gene reassortant viruses, we found that serotype-specific differences segregate with the gene encoding the viral attachment protein. Furthermore, GD3, GM3, and 3SL inhibit T3D infectivity by blocking binding to host cells, whereas GCB inhibits T1L infectivity post-attachment. These results enhance an understanding of reovirus cell attachment and define a mechanism for the antimicrobial activity of human milk.

  1. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    Science.gov (United States)

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  2. Lead Screening for CXCR4 of the Human HIV Infection Receptor Inhibited by Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available The acquired immunodeficiency syndrome (AIDS is a serious worldwide disease caused by the human immunodeficiency virus (HIV infection. Recent research has pointed out that the G protein-coupled chemokine receptor CXCR4 and the coreceptor C-C chemokine receptor type 5 (CCR5 are important targets for HIV infection. The traditional Chinese medicine (TCM database has been screened for candidate compounds by simulating molecular docking and molecular dynamics against HIV. Saussureamine C, 5-hydroxy-L-tryptophan, and diiodotyrosine are selected based on the highest docking score. The molecular dynamics is helpful in the analysis and detection of protein-ligand interactions. According to the analysis of docking poses, hydrophobic interactions, hydrogen bond variations, and the comparison of the effect on CXCR4 and CCR5, these results indicate Saussureamine C may have better effect on these two receptors. But for some considerations, diiodotyrosine could make the largest variation and may have some efficacy contrary to expectations.

  3. Ibalizumab, a CD4-specific mAb to inhibit HIV-1 infection.

    Science.gov (United States)

    Dimitrov, Anthony

    2007-08-01

    Tanox Inc (under license from Biogen Idec, formerly Biogen Inc) is developing ibalizumab, an intravenous, humanized, monoclonal antibody specific for CD4, for the potential treatment of HIV infection. In August 2006, the FDA advised Tanox to conduct additional dose-finding studies, from which data could potentially be used in a BLA filing. Ibalizumab had reached phase II clinical trials; however, there are currently no ongoing clinical trials.

  4. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors

    DEFF Research Database (Denmark)

    Nogueira-Silva, L; Da Hora, G. C.A.; Soares, Goncalo Teofilo Afonso Pinheiro

    2017-01-01

    Staphylococcus aureus is an opportunistic pathogen related to a variety of life-threatening infections but for which antimicrobial resistance is liming the treatment options. We report here that myricetin, but not its glycosylated form, can remarkably decrease the production of several S. aureus...... in the Galleria mellonella model. The present findings reveal the potential of Myr as an alternative multi-target antivirulence candidate to control S. aureus pathogenicity....

  5. Water-filtered infrared a irradiation in combination with visible light inhibits acute chlamydial infection.

    Directory of Open Access Journals (Sweden)

    Hanna Marti

    Full Text Available New therapeutic strategies are needed to overcome drawbacks in treatment of infections with intracellular bacteria. Chlamydiaceae are Gram-negative bacteria implicated in acute and chronic diseases such as abortion in animals and trachoma in humans. Water-filtered infrared A (wIRA is short wavelength infrared radiation with a spectrum ranging from 780 to 1400 nm. In clinical settings, wIRA alone and in combination with visible light (VIS has proven its efficacy in acute and chronic wound healing processes. This is the first study to demonstrate that wIRA irradiation combined with VIS (wIRA/VIS diminishes recovery of infectious elementary bodies (EBs of both intra- and extracellular Chlamydia (C. in two different cell lines (Vero, HeLa regardless of the chlamydial strain (C. pecorum, C. trachomatis serovar E as shown by indirect immunofluorescence and titration by subpassage. Moreover, a single exposure to wIRA/VIS at 40 hours post infection (hpi led to a significant reduction of C. pecorum inclusion frequency in Vero cells and C. trachomatis in HeLa cells, respectively. A triple dose of irradiation (24, 36, 40 hpi during the course of C. trachomatis infection further reduced chlamydial inclusion frequency in HeLa cells without inducing the chlamydial persistence/stress response, as ascertained by electron microscopy. Irradiation of host cells (HeLa, Vero neither affected cell viability nor induced any molecular markers of cytotoxicity as investigated by Alamar blue assay and Western blot analysis. Chlamydial infection, irradiation, and the combination of both showed a similar release pattern of a subset of pro-inflammatory cytokines (MIF/GIF, Serpin E1, RANTES, IL-6, IL-8 and chemokines (IL-16, IP-10, ENA-78, MIG, MIP-1α/β from host cells. Initial investigation into the mechanism indicated possible thermal effects on Chlamydia due to irradiation. In summary, we demonstrate a non-chemical reduction of chlamydial infection using the combination

  6. Water-Filtered Infrared A Irradiation in Combination with Visible Light Inhibits Acute Chlamydial Infection

    Science.gov (United States)

    Marti, Hanna; Koschwanez, Maria; Pesch, Theresa; Blenn, Christian; Borel, Nicole

    2014-01-01

    New therapeutic strategies are needed to overcome drawbacks in treatment of infections with intracellular bacteria. Chlamydiaceae are Gram-negative bacteria implicated in acute and chronic diseases such as abortion in animals and trachoma in humans. Water-filtered infrared A (wIRA) is short wavelength infrared radiation with a spectrum ranging from 780 to 1400 nm. In clinical settings, wIRA alone and in combination with visible light (VIS) has proven its efficacy in acute and chronic wound healing processes. This is the first study to demonstrate that wIRA irradiation combined with VIS (wIRA/VIS) diminishes recovery of infectious elementary bodies (EBs) of both intra- and extracellular Chlamydia (C.) in two different cell lines (Vero, HeLa) regardless of the chlamydial strain (C. pecorum, C. trachomatis serovar E) as shown by indirect immunofluorescence and titration by subpassage. Moreover, a single exposure to wIRA/VIS at 40 hours post infection (hpi) led to a significant reduction of C. pecorum inclusion frequency in Vero cells and C. trachomatis in HeLa cells, respectively. A triple dose of irradiation (24, 36, 40 hpi) during the course of C. trachomatis infection further reduced chlamydial inclusion frequency in HeLa cells without inducing the chlamydial persistence/stress response, as ascertained by electron microscopy. Irradiation of host cells (HeLa, Vero) neither affected cell viability nor induced any molecular markers of cytotoxicity as investigated by Alamar blue assay and Western blot analysis. Chlamydial infection, irradiation, and the combination of both showed a similar release pattern of a subset of pro-inflammatory cytokines (MIF/GIF, Serpin E1, RANTES, IL-6, IL-8) and chemokines (IL-16, IP-10, ENA-78, MIG, MIP-1α/β) from host cells. Initial investigation into the mechanism indicated possible thermal effects on Chlamydia due to irradiation. In summary, we demonstrate a non-chemical reduction of chlamydial infection using the combination of water

  7. Inhibition of human immunodeficiency virus 1 (HIV-1) and herpes simplex virus 1 (HSV-1) infectivity with a broad range of lectins

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Vestergaard, B F

    1991-01-01

    Five lectins with specificity for N- and O-linked oligosaccharides were examined for inhibition of HIV-1 and HSV-1 infectivity in vitro. HIV-1 isolate HTLVIIIB was preincubated with lectin and subsequently inoculated onto MT-4 cells. Lectins specific for N-linked oligosaccharides blocked HIV infe......-1 infection, the most potent inhibition was found with the lectin HPA. These results indicate that lectins may have a broad antiviral effect on enveloped viruses only limited by types of oligosaccharides present on individual viruses....

  8. Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus Extracts Effectively Inhibit BK Virus and JC Virus Infection of Host Cells

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2017-01-01

    Full Text Available The human polyomaviruses BK (BKPyV and JC (JCPyV are ubiquitous pathogens long associated with severe disease in immunocompromised individuals. BKPyV causes polyomavirus-associated nephropathy and hemorrhagic cystitis, whereas JCPyV is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy. No effective therapies targeting these viruses are currently available. The goal of this study was to identify Chinese medicinal herbs with antiviral activity against BKPyV and JCPyV. We screened extracts of Chinese medicinal herbs for the ability to inhibit hemagglutination by BKPyV and JCPyV virus-like particles (VLPs and the ability to inhibit BKPyV and JCPyV binding and infection of host cells. Two of the 40 herbal extracts screened, Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus, had hemagglutination inhibition activity on BKPyV and JCPyV VLPs and further inhibited infection of the cells by BKPyV and JCPyV, as evidenced by reduced expression of viral proteins in BKPyV-infected and JCPyV-infected cells after treatment with Rhodiolae Kirliowii Radix et Rhizoma or Crataegus pinnatifida Fructus extract. The results in this work show that both Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus may be sources of potential antiviral compounds for treating BKPyV and JCPyV infections.

  9. Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus Extracts Effectively Inhibit BK Virus and JC Virus Infection of Host Cells.

    Science.gov (United States)

    Chen, San-Yuan; Teng, Ru-Hsiou; Wang, Meilin; Chen, Pei-Lain; Lin, Mien-Chun; Shen, Cheng-Huang; Chao, Chun-Nun; Chiang, Ming-Ko; Fang, Chiung-Yao; Chang, Deching

    2017-01-01

    The human polyomaviruses BK (BKPyV) and JC (JCPyV) are ubiquitous pathogens long associated with severe disease in immunocompromised individuals. BKPyV causes polyomavirus-associated nephropathy and hemorrhagic cystitis, whereas JCPyV is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy. No effective therapies targeting these viruses are currently available. The goal of this study was to identify Chinese medicinal herbs with antiviral activity against BKPyV and JCPyV. We screened extracts of Chinese medicinal herbs for the ability to inhibit hemagglutination by BKPyV and JCPyV virus-like particles (VLPs) and the ability to inhibit BKPyV and JCPyV binding and infection of host cells. Two of the 40 herbal extracts screened, Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus, had hemagglutination inhibition activity on BKPyV and JCPyV VLPs and further inhibited infection of the cells by BKPyV and JCPyV, as evidenced by reduced expression of viral proteins in BKPyV-infected and JCPyV-infected cells after treatment with Rhodiolae Kirliowii Radix et Rhizoma or Crataegus pinnatifida Fructus extract. The results in this work show that both Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus may be sources of potential antiviral compounds for treating BKPyV and JCPyV infections.

  10. Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum

    Directory of Open Access Journals (Sweden)

    Widrlechner Mark P

    2009-07-01

    Full Text Available Abstract Background Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated. Results Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1 by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material. Conclusion Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents.

  11. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity.

    Science.gov (United States)

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S; Morris, Kevin V; Burnett, John C; Rossi, John J

    2015-03-19

    The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties.

  12. Melatonin inhibits cholangiocarcinoma and reduces liver injury in Opisthorchis viverrini-infected and N-nitrosodimethylamine-treated hamsters.

    Science.gov (United States)

    Laothong, Umawadee; Pinlaor, Porntip; Boonsiri, Patcharee; Pairojkul, Chawalit; Priprem, Aroonsri; Johns, Nutjaree Pratheepawanit; Charoensuk, Lakhanawan; Intuyod, Kitti; Pinlaor, Somchai

    2013-10-01

    The human liver fluke Opisthorchis viverrini infection and N-nitrosodimethylamine (NDMA) administration induce cholangiocarcinoma (CCA) and liver injury in hamsters. Melatonin protects against liver injury and reduces the alteration of mitochondrial structure, mitochondrial membrane potential, and mitochondrial pro- and anti-apoptotic pathways in various cancer types. To investigate the chemopreventive effect of melatonin on CCA genesis and liver injury, hamsters were treated with a combination of O. viverrini infection and NDMA concurrently administered with melatonin (10 mg/kg and 50 mg/kg) for 120 days. Melatonin treatment at 50 mg/kg caused a significant reduction in liver/body weight ratios and decreased tumor volumes leading to an increase in the survival of animals. In the tumorous tissues, the high-dose melatonin reduced DNA fragmentation and mitochondrial apoptosis by inducing anti-apoptotic protein (Bcl-2) in the mitochondrial fraction and down-regulating cytochrome c, pro-apoptotic protein (Bax), and caspase-3 in tumor cytosol. Moreover, a high-dose melatonin treatment significantly increased mitochondrial antioxidant enzymes and prevented mitochondrial ultrastructure changes in the tumor. Overall, melatonin has potent chemopreventive effects in inhibiting CCA genesis and also reduces liver injury in hamster CCA, which, in part, might involve in the suppression of CCA by reducing tumor mitochondria alteration.

  13. The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection

    Science.gov (United States)

    Delang, L.; Li, C.; Tas, A.; Quérat, G.; Albulescu, I. C.; De Burghgraeve, T.; Guerrero, N. A. Segura; Gigante, A.; Piorkowski, G.; Decroly, E.; Jochmans, D.; Canard, B.; Snijder, E. J.; Pérez-Pérez, M. J.; van Hemert, M. J.; Coutard, B.; Leyssen, P.; Neyts, J.

    2016-01-01

    The chikungunya virus (CHIKV) has become a substantial global health threat due to its massive re-emergence, the considerable disease burden and the lack of vaccines or therapeutics. We discovered a novel class of small molecules ([1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones) with potent in vitro activity against CHIKV isolates from different geographical regions. Drug-resistant variants were selected and these carried a P34S substitution in non-structural protein 1 (nsP1), the main enzyme involved in alphavirus RNA capping. Biochemical assays using nsP1 of the related Venezuelan equine encephalitis virus revealed that the compounds specifically inhibit the guanylylation of nsP1. This is, to the best of our knowledge, the first report demonstrating that the alphavirus capping machinery is an excellent antiviral drug target. Considering the lack of options to treat CHIKV infections, this series of compounds with their unique (alphavirus-specific) target offers promise for the development of therapy for CHIKV infections. PMID:27545976

  14. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes

    Science.gov (United States)

    Costa, Diego L.; Namasivayam, Sivaranjani; Amaral, Eduardo P.; Arora, Kriti; Chao, Alex; Mittereder, Lara R.; Maiga, Mamoudou; Boshoff, Helena I.; Barry, Clifton E.; Goulding, Celia W.; Andrade, Bruno B.

    2016-01-01

    ABSTRACT Heme oxygenase-1 (HO-1) is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX), a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.

  15. Porcine epidemic diarrhea virus infection: inhibition by polysaccharide from Ginkgo biloba exocarp and mode of its action.

    Science.gov (United States)

    Lee, Jung-Hee; Park, Jang-Soon; Lee, Seung-Woong; Hwang, Seock-Yeon; Young, Bae-Eun; Choi, Hwa-Jung

    2015-01-02

    Porcine epidemic diarrhea virus (PEDV) is the predominant cause of severe entero-pathogenic diarrhea in swine. Until now there is no recorded clinically effective antiviral chemotherapeutic agent for treatment of diseases caused by PEDV. This study aimed to investigate in vitro anti-PEDV effect of polysaccharide from Ginkgo biloba exocarp and mode of its action. The polysaccharide exhibited potent antiviral activity against PEDV reducing the formation of a visible CPE [a 50% inhibitory concentration (IC50)=1.7±1.3μg/mL], compared to positive control, ribavirin and it did not show cytotoxicity at 100μg/mL [a 50% cytotoxicity concentration (CC50)=100μg/mL]. Polysaccharide also showed effective inhibitory effects when added at the viral attachment and entry steps. Moreover, polysaccharide effectively inactivated PEDV infection in time-, dose- and temperature-dependent manners. Overall, this research revealed that polysaccharide could inhibit PEDV infection, and that polysaccharide may be involved in PEDV-Vero cell interactions, as the virus attachment and entry to the Vero cells was hindered by the polysaccharide. Therefore, polysaccharide possessing effective inhibitory effect on viral attachment and entry steps of PEDV life cycle is a good candidate for development of antivirals.

  16. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Diego L. Costa

    2016-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX, a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.

  17. N-acetyl-cysteine inhibits liver oxidative stress markers in BALB/c mice infected with Leishmania amazonensis

    Science.gov (United States)

    Gasparotto, Juciano; Kunzler, Alice; Senger, Mario Roberto; de Souza, Celeste da Silva Freitas; de Simone, Salvatore Giovanni; Bortolin, Rafael Calixto; Somensi, Nauana; Dal-Pizzol, Felipe; Moreira, José Claudio Fonseca; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva; Silva, Floriano Paes; Gelain, Daniel Pens

    2017-01-01

    BACKGROUND Leishmaniasis is a parasitosis caused by several species of the genus Leishmania. These parasites present high resistance against oxidative stress generated by inflammatory cells. OBJECTIVES To investigate oxidative stress and molecular inflammatory markers in BALB/c mice infected with L. amazonensis and the effect of antioxidant treatment on these parameters. METHODS Four months after infection, oxidative and inflammatory parameters of liver, kidneys, spleen, heart and lungs from BALB/c mice were assessed. FINDINGS In liver, L. amazonensis caused thiol oxidation and nitrotyrosine formation; SOD activity and SOD2 protein content were increased while SOD1 protein content decreased. The content of the cytokines IL-1β, IL-6, TNF-α, and the receptor of advanced glycation endproducts (RAGE) increased in liver. Treatment with the antioxidant N-acetyl-cysteine (20 mg/kg b.w) for five days inhibited oxidative stress parameters. MAIN CONCLUSIONS L. amazonensis induces significant alterations in the redox status of liver but not in other organs. Acute antioxidant treatment alleviates oxidative stress in liver, but it had no effect on pro-inflammatory markers. These results indicate that the pathobiology of leishmaniasis is not restricted to the cutaneous manifestations and open perspectives for the development of new therapeutic approaches to the disease, especially for liver function. PMID:28177049

  18. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses.

    Science.gov (United States)

    Fros, Jelke J; Pijlman, Gorben P

    2016-06-11

    Alphaviruses cause debilitating disease in humans and animals and are transmitted by blood-feeding arthropods, typically mosquitoes. With a traditional focus on two models, Sindbis virus and Semliki Forest virus, alphavirus research has significantly intensified in the last decade partly due to the re-emergence and dramatic expansion of chikungunya virus in Asia, Europe, and the Americas. As a consequence, alphavirus-host interactions are now understood in much more molecular detail, and important novel mechanisms have been elucidated. It has become clear that alphaviruses not only cause a general host shut-off in infected vertebrate cells, but also specifically suppress different host antiviral pathways using their viral nonstructural proteins, nsP2 and nsP3. Here we review the current state of the art of alphavirus host cell shut-off of viral transcription and translation, and describe recent insights in viral subversion of interferon induction and signaling, the unfolded protein response, and stress granule assembly.

  19. Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model.

    Science.gov (United States)

    Li, Yuan-Yuan; Wang, Ting; Gao, Song; Xu, Guang-Mei; Niu, Hua; Huang, Rui; Wu, Shu-Yan

    2016-02-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is a facultative intracellular pathogen that can cause gastroenteritis and systemic infection in a wide range of hosts. Salmonella plasmid virulence gene spvB is closely related to bacterial virulence in different cells and animal models, and the encoded protein acts as an intracellular toxin required for ADP-ribosyl transferase activity. However, until now there is no report about the pathogenecity of spvB gene on zebrafish. Due to the outstanding advantages of zebrafish in analyzing bacteria-host interactions, a S. typhimurium infected zebrafish model was set up here to study the effect of spvB on autophagy and intestinal pathogenesis in vivo. We found that spvB gene could decrease the LD50 of S. typhimurium, and the strain carrying spvB promoted bacterial proliferation and aggravated the intestinal damage manifested by the narrowed intestines, fallen microvilli, blurred epithelium cell structure and infiltration of inflammatory cells. Results demonstrated the enhanced virulence induced by spvB in zebrafish. In spvB-mutant strain infected zebrafish, the levels of Lc3 turnover and Beclin1 expression increased, and the double-membraned autophagosome structures were observed, suggesting that spvB can inhibit autophagy activity. In summary, our results indicate that S. typhimurium strain containing spvB displays more virulence, triggering an increase in bacterial survival and intestine injuries by suppressing autophagy for the first time. This model provides novel insights into the role of Salmonella plasmid virulence gene in bacterial pathogenesis, and can help to further elucidate the relationship between bacteria and host immune response.

  20. Multifunctional CuS nanocrystals for inhibiting both osteosarcoma proliferation and bacterial infection by photothermal therapy

    Science.gov (United States)

    Hu, Xiaoming; Li, Lihua; Lu, Yao; Liu, Cong; Lei, Yangqing; Zhang, Chengcheng; Yin, Qingshui; Zhang, Yu

    2017-09-01

    Photothermal therapy (PTT) has attracted great attention in cancer therapy because of high efficiency and low side effect. The semiconductors have been proved to be ideal photothermal agents in the past years. Herein, we synthesized a novel hexahedron structure of polyvinyl pyrrolidone (PVP) coating CuS nanocrystals (NCs) by a facile hydrothermal method. The synthesized CuS NCs (150 nm for average length of edge and 125 nm for length of width) have good biocompatibility due to their PVP coating and strong absorption in the near infrared region. Moreover, the CuS NCs exhibit high photothermal conversion efficiency as well as good antibacterial effect. Notably, the proliferation of osteosarcoma cancer cells can be efficiently inhibited both in vitro and in vivo by the fatal heat with very low concentration of CuS NCs under the near infrared ray at a power density of 0.5 W/cm2. Therefore, the CuS-PVP NCs have great potential to work as an ideal photothermal and antibacterial agent in clinical applications.

  1. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins

    Directory of Open Access Journals (Sweden)

    Garza Treviño Elsa N

    2011-09-01

    Full Text Available Abstract Background HIV/AIDS pandemic is a worldwide public health issue. There is a need for new approaches to develop new antiviral compounds or other therapeutic strategies to limit viral transmission. The envelope glycoproteins gp120 and gp41 of HIV are the main targets for both silver nanoparticles (AgNPs and neutralizing antibodies. There is an urgency to optimize the efficiency of the neutralizing antibodies (NABs. In this study, we demonstrated that there is an additive effect between the four NABs and AgNPs when combined against cell-associated HIV-1 infection in vitro Results Four NABs (Monoclonal antibody to HIV-1 gp41 126-7, HIV-1 gp120 Antiserum PB1 Sub 2, HIV-1 gp120 Antiserum PB1, HIV-1 gp120 Monoclonal Antibody F425 B4e8 with or without AgNPs of 30-50 nm in size were tested against cell free and cell-associated HIVIIIB virus. All NABs inhibited HIV-1 cell free infection at a dose response manner, but with AgNPs an antiviral additive effect was not achieved Although there was no inhibition of infection with cell-associated virus by the NABs itself, AgNPs alone were able to inhibit cell associated virus infection and more importantly, when mixed together with NABs they inhibited the HIV-1 cell associated infection in an additive manner. Discussion The most attractive strategies to deal with the HIV problem are the development of a prophylactic vaccine and the development of effective topical vaginal microbicide. For two decades a potent vaccine that inhibits transmission of infection of HIV has been searched. There are vaccines that elicit NABs but none of them has the efficacy to stop transmission of HIV-1 infection. We propose that with the addition of AgNPs, NABs will have an additive effect and become more potent to inhibit cell-associated HIV-1 transmission/infection. Conclusions The addition of AgNPs to NABs has significantly increased the neutralizing potency of NABs in prevention of cell-associated HIV-1 transmission/infection

  2. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses

    Directory of Open Access Journals (Sweden)

    Jelke J. Fros

    2016-06-01

    Full Text Available Alphaviruses cause debilitating disease in humans and animals and are transmitted by blood-feeding arthropods, typically mosquitoes. With a traditional focus on two models, Sindbis virus and Semliki Forest virus, alphavirus research has significantly intensified in the last decade partly due to the re-emergence and dramatic expansion of chikungunya virus in Asia, Europe, and the Americas. As a consequence, alphavirus–host interactions are now understood in much more molecular detail, and important novel mechanisms have been elucidated. It has become clear that alphaviruses not only cause a general host shut-off in infected vertebrate cells, but also specifically suppress different host antiviral pathways using their viral nonstructural proteins, nsP2 and nsP3. Here we review the current state of the art of alphavirus host cell shut-off of viral transcription and translation, and describe recent insights in viral subversion of interferon induction and signaling, the unfolded protein response, and stress granule assembly.

  3. Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection in Vivo

    Directory of Open Access Journals (Sweden)

    Qingzhong Kong

    2013-07-01

    Full Text Available Prion diseases, or transmissible spongiform encephalopathies (TSEs, are associated with the conformational conversion of the cellular prion protein, PrPC, into a protease-resistant form, PrPSc. Here, we show that mutation-induced thermodynamic stabilization of the folded, α-helical domain of PrPC has a dramatic inhibitory effect on the conformational conversion of prion protein in vitro, as well as on the propagation of TSE disease in vivo. Transgenic mice expressing a human prion protein variant with increased thermodynamic stability were found to be much more resistant to infection with the TSE agent than those expressing wild-type human prion protein, in both the primary passage and three subsequent subpassages. These findings not only provide a line of evidence in support of the protein-only model of TSEs but also yield insight into the molecular nature of the PrPC→PrPSc conformational transition, and they suggest an approach to the treatment of prion diseases.

  4. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact.

    Science.gov (United States)

    Waguia Kontchou, Collins; Tzivelekidis, Tina; Gentle, Ian E; Häcker, Georg

    2016-11-01

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen of medical importance. C. trachomatis develops inside a membranous vacuole in the cytosol of epithelial cells but manipulates the host cell in numerous ways. One prominent effect of chlamydial infection is the inhibition of apoptosis in the host cell, but molecular aspects of this inhibition are unclear. Tumour necrosis factor (TNF) is a cytokine with important roles in immunity, which is produced by immune cells in chlamydial infection and which can have pro-apoptotic and non-apoptotic signalling activity. We here analysed the signalling through TNF in cells infected with C. trachomatis. The pro-apoptotic signal of TNF involves the activation of caspase-8 and is controlled by inhibitor of apoptosis proteins. We found that in C. trachomatis-infected cells, TNF-induced apoptosis was blocked upstream of caspase-8 activation even when inhibitor of apoptosis proteins were inhibited or the inhibitor of caspase-8 activation, cFLIP, was targeted by RNAi. However, when caspase-8 was directly activated by experimental over-expression of its upstream adapter Fas-associated protein with death domain, C. trachomatis was unable to inhibit apoptosis. Non-apoptotic TNF-signalling, particularly the activation of NF-κB, initiates at the plasma membrane, while the activation of caspase-8 and pro-apoptotic signalling occur subsequently to internalization of TNF receptor and the formation of a cytosolic signalling complex. In C. trachomatis-infected cells, NF-κB activation through TNF was unaffected, while the internalization of the TNF-TNF-receptor complex was blocked, explaining the lack of caspase-8 activation. These results identify a dichotomy of TNF signalling in C. trachomatis-infected cells: Apoptosis is blocked at the internalization of the TNF receptor, but non-apoptotic signalling through this receptor remains intact, permitting a response to this cytokine at sites of infection.

  5. Nanoparticles Composed of Zn and ZnO Inhibit Peronospora tabacina Spore Germination in vitro and P. tabacina Infectivity on Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    George Wagner

    2016-03-01

    Full Text Available Manufactured nanoparticles (NPs are increasingly being used for commercial purposes and certain NP types have been shown to have broad spectrum antibacterial activity. In contrast, their activities against fungi and fungi-like oomycetes are less studied. Here, we examined the potential of two types of commercially available Zn NPs (Zn NPs and ZnO NPs to inhibit spore germination and infectivity on tobacco leaves resulting from exposure to the fungi-like oomycete pathogen Peronospora tabacina (P. tabacina. Both types of NPs, as well as ZnCl2 and bulk ZnO control treatments, inhibited spore germination compared to a blank control. ZnO ENMs were shown to be a much more powerful suppressor of spore germination and infectivity than bulk ZnO. ZnO and Zn NPs significantly inhibited leaf infection at 8 and 10 mg·L−1, respectively. Both types of NPs were found to provide substantially higher concentration dependent inhibition of spore germination and infectivity than could be readily explained by the presence of dissolved Zn. These results suggest that both NP types have potential for use as economic, low-dose, potentially non-persistent anti-microbial agents against the oomycete P. tabacina.

  6. An inhibition enzyme immunoassay, using a human monoclonal antibody (K14) reactive with gp41 of HIV-1, for the serology of HIV-1 infections.

    NARCIS (Netherlands)

    V.J.P. Teeuwsen; J.J. Schalken; G. van der Groen (Guido); R. van den Akker (Ruud); J. Goudsmit (Jaap); A.D.M.E. Osterhaus (Albert)

    1991-01-01

    textabstractAn inhibition enzyme immunoassay (IEIA), using a human monoclonal antibody (K14) reactive with gp41 of HIV-1, was evaluated for its applicability to the serology of HIV-1 infections. Using panels of serum samples from seronegative and confirmed HIV-1-seropositive individuals, it was show

  7. Inhibition of HIV-1 infection in ex vivo cervical tissue model of human vagina by palmitic acid; implications for a microbicide development.

    Directory of Open Access Journals (Sweden)

    Xudong Lin

    Full Text Available BACKGROUND: Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L species of probiotic vaginal flora. PRINCIPAL FINDINGS: Our results show that treatment with 100-200 µM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki to be ∼2.53 µM. SIGNIFICANCE: These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.

  8. Impairment of the biomechanical compliance of P pili: a novel means of inhibiting uropathogenic bacterial infections?

    Science.gov (United States)

    Klinth, Jeanna E; Pinkner, Jerome S; Hultgren, Scott J; Almqvist, Fredrik; Uhlin, Bernt Eric; Axner, Ove

    2012-03-01

    Gram-negative bacteria often initiate their colonization by use of extended attachment organelles, so called pili. When exposed to force, the rod of helix-like pili has been found to be highly extendable, mainly attributed to uncoiling and recoiling of its quaternary structure. This provides the bacteria with the ability to redistribute an external force among a multitude of pili, which enables them to withstand strong rinsing flows, which, in turn, facilitates adherence and colonization processes critical to virulence. Thus, pili fibers are possible targets for novel antibacterial agents. By use of a substance that compromises compliance of the pili, the ability of bacteria to redistribute external forces can be impaired, so they will no longer be able to resist strong urine flow and thus be removed from the host. It is possible such a substance can serve as an alternative to existing antibiotics in the future or be a part of a multi-drug. In this work we investigated whether it is possible to achieve this by targeting the recoiling process. The test substance was purified PapD. The effect of PapD on the compliance of P pili was assessed at the single organelle level by use of force-measuring optical tweezers. We showed that the recoiling process, and thus the biomechanical compliance, in particular the recoiling process, can be impaired by the presence of PapD. This leads to a new concept in the search for novel drug candidates combating uropathogenic bacterial infections--"coilicides", targeting the subunits of which the pilus rod is composed.

  9. Systems analysis of a RIG-I agonist inducing broad spectrum inhibition of virus infectivity.

    Directory of Open Access Journals (Sweden)

    Marie-Line Goulet

    Full Text Available The RIG-I like receptor pathway is stimulated during RNA virus infection by interaction between cytosolic RIG-I and viral RNA structures that contain short hairpin dsRNA and 5' triphosphate (5'ppp terminal structure. In the present study, an RNA agonist of RIG-I was synthesized in vitro and shown to stimulate RIG-I-dependent antiviral responses at concentrations in the picomolar range. In human lung epithelial A549 cells, 5'pppRNA specifically stimulated multiple parameters of the innate antiviral response, including IRF3, IRF7 and STAT1 activation, and induction of inflammatory and interferon stimulated genes - hallmarks of a fully functional antiviral response. Evaluation of the magnitude and duration of gene expression by transcriptional profiling identified a robust, sustained and diversified antiviral and inflammatory response characterized by enhanced pathogen recognition and interferon (IFN signaling. Bioinformatics analysis further identified a transcriptional signature uniquely induced by 5'pppRNA, and not by IFNα-2b, that included a constellation of IRF7 and NF-kB target genes capable of mobilizing multiple arms of the innate and adaptive immune response. Treatment of primary PBMCs or lung epithelial A549 cells with 5'pppRNA provided significant protection against a spectrum of RNA and DNA viruses. In C57Bl/6 mice, intravenous administration of 5'pppRNA protected animals from a lethal challenge with H1N1 Influenza, reduced virus titers in mouse lungs and protected animals from virus-induced pneumonia. Strikingly, the RIG-I-specific transcriptional response afforded partial protection from influenza challenge, even in the absence of type I interferon signaling. This systems approach provides transcriptional, biochemical, and in vivo analysis of the antiviral efficacy of 5'pppRNA and highlights the therapeutic potential associated with the use of RIG-I agonists as broad spectrum antiviral agents.

  10. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    Science.gov (United States)

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  11. Macrophage inflammatory protein 1alpha inhibits postentry steps of human immunodeficiency virus type 1 infection via suppression of intracellular cyclic AMP.

    Science.gov (United States)

    Amella, Carol-Ann; Sherry, Barbara; Shepp, David H; Schmidtmayerova, Helena

    2005-05-01

    Primary isolates of human immunodeficiency virus type 1 (HIV-1) predominantly use chemokine receptor CCR5 to enter target cells. The natural ligands of CCR5, the beta-chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES, interfere with HIV-1 binding to CCR5 receptors and decrease the amount of virions entering cells. Although the inhibition of HIV-1 entry by beta-chemokines is well documented, their effects on postentry steps of the viral life cycle and on host cell components that control the outcome of infection after viral entry are not well defined. Here, we show that all three beta-chemokines, and MIP-1alpha in particular, inhibit postentry steps of the HIV-1 life cycle in primary lymphocytes, presumably via suppression of intracellular levels of cyclic AMP (cAMP). Productive HIV-1 infection of primary lymphocytes requires cellular activation. Cell activation increases intracellular cAMP, which is required for efficient synthesis of proviral DNA during early steps of viral infection. Binding of MIP-1alpha to cognate receptors decreases activation-induced intracellular cAMP levels through the activation of inhibitory G proteins. Furthermore, inhibition of one of the downstream targets of cAMP, cAMP-dependent PKA, significantly inhibits synthesis of HIV-1-specific DNA without affecting virus entry. These data reveal that beta-chemokine-mediated inhibition of virus replication in primary lymphocytes combines inhibitory effects at the entry and postentry levels and imply the involvement of beta-chemokine-induced signaling in postentry inhibition of HIV-1 infection.

  12. Interleukin-27 inhibits vaccine-enhanced pulmonary disease following respiratory syncytial virus infection by regulating cellular memory responses.

    Science.gov (United States)

    Zeng, Ruihong; Zhang, Huixian; Hai, Yan; Cui, Yuxiu; Wei, Lin; Li, Na; Liu, Jianxun; Li, Caixia; Liu, Ying

    2012-04-01

    Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract disease in young children. In the 1960s, infants vaccinated with formalin-inactivated RSV developed a more severe disease characterized by excessive inflammatory immunopathology in lungs upon natural RSV infection. The fear of causing the vaccine-enhanced disease (VED) is an important obstacle for development of safe and effective RSV vaccines. The recombinant vaccine candidate G1F/M2 immunization also led to VED. It has been proved that cellular memory induced by RSV vaccines contributed to VED. Interleukin-27 (IL-27) and IL-23 regulate Th1, Th17, and/or Th2 cellular immune responses. In this study, mice coimmunized with pcDNA3-IL-27 and G1F/M2 were fully protected and, importantly, did not develop vaccine-enhanced inflammatory responses and immunopathology in lungs after RSV challenge, which was correlated with moderate Th1-, suppressed Th2-, and Th17-like memory responses activated by RSV. In contrast, G1F/M2- or pcDNA3-IL-23+G1F/M2-immunized mice, in which robust Th2- and Th17-like memory responses were induced, developed enhanced pulmonary inflammation and severe immunopathology. Mice coimmunized with G1F/M2 and the two cytokine plasmids exhibited mild inflammatory responses as well as remarkable Th1-, suppressed Th2-, and Th17-like memory responses. These results suggested that Th1-, Th2-, and Th17-like memory responses and, in particular, excessive Th2- and Th17-like memory responses were closely associated with VED; IL-27 may inhibit VED following respiratory syncytial virus infection by regulating cellular memory responses.

  13. Inhibition of cholesterol crystallization under bilirubin deconjugation: partial characterization of mechanisms whereby infected bile accelerates pigment stone formation.

    Science.gov (United States)

    Nakai, Kuniharu; Tazuma, Susumu; Nishioka, Tomoji; Chayama, Kazuaki

    2003-06-10

    Pigment gallstones have been reported to be closely associated with biliary tract infection. We previously reported that addition of unconjugated bilirubin (UCB), which is deconjugated by beta-glucuronidase in infected bile, could enhance cholesterol crystal formation in supersaturated model bile (MB). The present study evaluated the effect of beta-glucuronidase on the processes of pigment gallstone formation and cholesterol crystallization. Supersaturated MB (taurocholate/lecithin/cholesterol at 71:18:11, a total lipid concentration of 10.0 g/dl and a cholesterol saturation index (CSI) of 2.0) and native rat bile were mixed at a ratio of 3:1. Then, mixed bile was incubated with or without beta-glucuronidase and changes of the following parameters were investigated over time: (1) the UCB/total bilirubin ratio; (2) cholesterol crystal formation; (3) the precipitate weight and the cholesterol concentration in the precipitate and supernatant; and (4) the lipid distribution of vesicles in the supernatant. Compared with beta-glucuronidase-free bile, (1) beta-glucuronidase-containing bile showed a significant increase of the UCB/total bilirubin ratio, (2) as well as a significantly longer nucleation time (96+/-17.0 vs. 114+/-20.0) and fewer cholesterol crystals. (3) The precipitate weight and the cholesterol concentration in the precipitate were significantly increased, while the cholesterol concentration in supernatant was decreased. (4) When mixed bile was incubated with beta-glucuronidase, the cholesterol concentration in the vesicles was lower than in bile without beta-glucuronidase. The precipitate weight and the cholesterol concentration in the precipitate was increased by incubation with beta-glucuronidase, while cholesterol concentration was decreased in the supernatant (especially in the vesicles). This means that bile vesicles were more stable and it was more difficult for cholesterol crystals to form. Thus, the presence of beta-glucuronidase may inhibit the

  14. Berberine inhibits Chlamydia pneumoniae infection-induced vascular smooth muscle cell migration through downregulating MMP3 and MMP9 via PI3K.

    Science.gov (United States)

    Ma, Lu; Zhang, Lijun; Wang, Beibei; Wei, Junyan; Liu, Jingya; Zhang, Lijun

    2015-05-15

    The mechanisms by which Chlamydia pneumoniae infection promote vascular smooth muscle cell (VSMC) migration required in the development of atherosclerosis have not yet been fully clarified. Matrix metalloproteinases (MMPs) have important roles in VSMC migration. However, it is still unknown whether MMPs are involved in C. pneumoniae infection-induced VSMC migration. In addition, whether berberine can exert its inhibitory effects on the infection-induced VSMC migration also remains unclear. Accordingly, we investigated the effects of berberine on C. pneumoniae infection-induced VSMC migration and explored the possible mechanisms involved in this process. Herein, we found that C. pneumoniae infection could induce VSMC migration through Matrigel-coated membrane (Pberberine significantly attenuated C. pneumoniae infection-induced VSMC migration (Pberberine suppressed the protein expressions of MMP3 and MMP9 caused by C. pneumoniae infection in a dose-dependent manner (Pberberine (Pberberine inhibits C. pneumoniae infection-induced VSMC migration by downregulating the expressions of MMP3 and MMP9 via PI3K.

  15. Inhibition of bacterial adhesion and salmonella infection in BALB/c mice by sialyloligosaccharides and their derivatives from chicken egg yolk.

    Science.gov (United States)

    Sugita-Konishi, Yoshiko; Sakanaka, Senji; Sasaki, Ken; Juneja, Lekh Raj; Noda, Tetsuji; Amano, Fumio

    2002-06-05

    The effects of an egg-yolk-derived sialyloligosaccharide (YDS), asialo-YDS, and a sialylglycopeptide of YDS (SGP) on bacterial adhesion to intestinal epithelial cells and on Salmonella infection in BALB/c mice were examined. YDS, its derivative asialo-YDS, and SGP strongly inhibited the binding of Salmonella enteritidis but not E. coli K-88 to a human epithelial cell line, Caco-2. In a Salmonella infection experiment using BALB/c mice, oral administration of these reagents effectively prevented the bacteria from proliferating in spleen, as well as preventing lethality. An experiment using radioactive SGP orally administered to mice revealed that the compound was absorbed from the intestine into blood and eliminated via urine within 8 h. However, these reagents did not influence the production of TNF-alpha or NO. in culture macrophages. The results suggest that they inhibit Salmonella infection not by activating macrophages but by inhibiting the entry of bacteria through the gut, suggesting that YDS and its derivatives are useful for preventing Salmonella infection when ingested continuously.

  16. Analysis of Quality-Related Parameters in Mature Kernels of Polygalacturonase Inhibiting Protein (PGIP) Transgenic Bread Wheat Infected with Fusarium graminearum.

    Science.gov (United States)

    Masci, Stefania; Laino, Paolo; Janni, Michela; Botticella, Ermelinda; Di Carli, Mariasole; Benvenuto, Eugenio; Danieli, Pier Paolo; Lilley, Kathryn S; Lafiandra, Domenico; D'Ovidio, Renato

    2015-04-22

    Fusarium head blight, caused by the fungus Fusarium graminearum, has a detrimental effect on both productivity and qualitative properties of wheat. To evaluate its impact on wheat flour, we compared its effect on quality-related parameters between a transgenic bread wheat line expressing a bean polygalacturonase inhibiting protein (PGIP) and its control line. We have compared metabolic proteins, the amounts of gluten proteins and their relative ratios, starch content, yield, extent of pathogen contamination, and deoxynivalenol (DON) accumulation. These comparisons showed that Fusarium significantly decreases the amount of starch in infected control plants, but not in infected PGIP plants. The flour of PGIP plants contained also a lower amount of pathogen biomass and DON accumulation. Conversely, both gluten and metabolic proteins were not significantly influenced either by the transgene or by fungal infection. These results indicate that the transgenic PGIP expression reduces the level of infection, without changing significantly the wheat seed proteome and other quality-related parameters.

  17. Advanced glycation end products inhibit both infection and transmission in trans of HIV-1 from monocyte-derived dendritic cells to autologous T cells.

    Science.gov (United States)

    Nasreddine, Nadine; Borde, Chloé; Gozlan, Joël; Bélec, Laurent; Maréchal, Vincent; Hocini, Hakim

    2011-05-15

    Highly active antiretroviral therapy is associated with carbohydrate metabolic alterations that may lead to diabetes. One consequence of hyperglycemia is the formation of advanced glycation end products (AGEs) that are involved in diabetes complications. We investigated the impact of AGEs on the infection of monocyte-derived dendritic cells (MDDCs) by HIV-1 and the ability of MDDCs to transmit the virus to T cells. We showed that AGEs could inhibit infection of MDDCs with primary R5-tropic HIV-1(Ba-L) by up to 85 ± 9.2% and with primary X4-tropic HIV-1(VN44) by up to 60 ± 8.5%. This inhibitory effect of AGEs was not prevented by a neutralizing anti-receptor for advanced glycation end products (anti-RAGE) Ab, demonstrating a RAGE-independent mechanism. Moreover, AGEs inhibited by 70-80% the transmission in trans of the virus to CD4 T cells. Despite the inhibitory effect of AGEs on both MDDC infection and virus transmission in trans, no inhibition of virus attachment to cell membrane was observed, confirming that attachment and transmission of the virus involve independent mechanisms. The inhibitory effect of AGEs on infection was associated with a RAGE-independent downregulation of CD4 at the cell membrane and by a RAGE-dependent repression of the CXCR4 and CCR5 HIV-1 receptors. AGEs induce the secretion of proinflammatory cytokines IL-6, TNF-α, and IL-12, but not RANTES or MIP-1α, and did not lead to MDDC maturation as demonstrated by the lack of expression of the CD83 molecule. Taken together, our results suggest that AGEs can play an inhibiting role in HIV-1 infection in patients who accumulate circulating AGEs, including patients treated with protease inhibitors that developed diabetes.

  18. Infections

    Science.gov (United States)

    ... Does My Child Need? How to Safely Give Acetaminophen Is It a Cold or the Flu? Is the Flu Vaccine a Good Idea for Your Family? Too Late for the Flu Vaccine? Common Childhood Infections Can Chronic Ear Infections Cause Long-Term Hearing Loss? Chickenpox Cold Sores Common Cold Diarrhea Fever and ...

  19. Resveratrol inhibits the TRIF-dependent pathway by upregulating sterile alpha and armadillo motif protein, contributing to anti-inflammatory effects after respiratory syncytial virus infection.

    Science.gov (United States)

    Liu, Tiantian; Zang, Na; Zhou, Na; Li, Wei; Xie, Xiaohong; Deng, Yu; Ren, Luo; Long, Xiaoru; Li, Simin; Zhou, Lili; Zhao, Xiaodong; Tu, Wenwei; Wang, Lijia; Tan, Bin; Liu, Enmei

    2014-04-01

    Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infection in young children and the leading cause of infant hospitalization worldwide. Uncontrolled response to RSV is mediated by a toll-like receptor (TLR)-mediated immune response. Resveratrol possesses anti-RSV activity and is an inhibitor of the TRIF/TBK1/IRF-3 complex. We hypothesize that resveratrol inhibits the TRIF-dependent pathway through upregulation of SARM post-RSV infection. BALB/c mice were infected with RSV and were injected with resveratrol 1 h postinoculation. SARM short interfering RNA was administered to RSV-infected and resveratrol-treated mice. Lung function was measured by whole-body plethysmography, lung histopathology was examined, and lymphocytes in bronchoalveolar lavage fluid were quantified. SARM and TRIF protein expression were detected in the lung by Western blot analyses. The expression of gamma interferon in bronchoalveolar lavage fluid (BALF) was evaluated by enzyme-linked immunosorbent assay (ELISA). SARM expression was reduced and TRIF expression was increased after infection with RSV. Resveratrol increased SARM expression and decreased TRIF expression after RSV infection. SARM knockdown in resveratrol-treated mice enhanced gamma interferon production, RSV-induced airway inflammation, and airway hyperresponsiveness (AHR). Resveratrol decreased TRIF expression and prevented the RSV-mediated reduction of SARM expression. Resveratrol-mediated inhibition of the TRIF-dependent pathway may be dependent on SARM expression. Our study provides insights into the regulation of innate immunity in response to RSV infection. The results suggest that resveratrol-mediated alterations in SARM have therapeutic potential against RSV immunopathology caused by deregulation of the TLR-mediated immune response. Ultimately, improved insight into the complex interplay between TLR adaptor proteins and the occurrence of severe RSV infection might lead to novel

  20. Inhibition of Acute in vivo Human Immunodeficiency Virus Infection by Human Interleukin 10 Treatment of SCID Mice Implanted with Human Fetal Thymus and Liver

    Science.gov (United States)

    Kollmann, Tobias R.; Pettoello-Mantovani, Massimo; Katopodis, Nikos F.; Hachamovitch, Moshe; Rubinstein, Arye; Kim, Ana; Goldstein, Harris

    1996-04-01

    To improve the usefulness of in vivo models for the investigation of the pathophysiology of human immunodeficiency virus (HIV) infection, we modified the construction of SCID mice implanted with human fetal thymus and liver (thy/liv-SCID-hu mice) so that the peripheral blood of the mice contained significant numbers of human monocytes and T cells. After inoculation with HIV-159, a primary patient isolate capable of infecting monocytes and T cells, the modified thy/liv-SCID-hu mice developed disseminated HIV infection that was associated with plasma viremia. The development of plasma viremia and HIV infection in thy/liv-SCID-hu mice inoculated with HIV-159 was inhibited by acute treatment with human interleukin (IL) 10 but not with human IL-12. The human peripheral blood mononuclear cells in these modified thy/liv-SCID-hu mice were responsive in vivo to treatment with exogenous cytokines. Human interferon γ expression in the circulating human peripheral blood mononuclear cells was induced by treatment with IL-12 and inhibited by treatment with IL-10. Thus, these modified thy/liv-SCID-hu mice should prove to be a valuable in vivo model for examining the role of immunomodulatory therapy in modifying HIV infection. Furthermore, our demonstration of the in vivo inhibitory effect of IL-10 on acute HIV infection suggests that further studies may be warranted to evaluate whether there is a role for IL-10 therapy in preventing HIV infection in individuals soon after exposure to HIV such as for children born to HIV-infected mothers.

  1. Vpr14-88-Apobec3G fusion protein is efficiently incorporated into Vif-positive HIV-1 particles and inhibits viral infection.

    Directory of Open Access Journals (Sweden)

    Zhujun Ao

    Full Text Available BACKGROUND: APOBEC3G (A3G, a deoxycytidine deaminase, is a potent host antiviral factor that can restrict HIV-1 infection. During Vif-negative HIV-1 replication, A3G is incorporated into HIV-1 particles, induces mutations in reverse transcribed viral DNA and inhibits reverse transcription. However, HIV-1 Vif counteracts A3G's activities by inducing its degradation and by blocking its incorporation into HIV-1 particles. Thus, it is interesting to elucidate a mechanism that would allow A3G to escape the effects of Vif in order to rescue its potent antiviral activity and to provide a possible novel therapeutic strategy for treating HIV-1 infection. METHODS AND FINDINGS: In this study, we generated an R88-A3G fusion protein by fusing A3G to a virion-targeting polypeptide (R14-88 derived from HIV-1 Vpr protein and compared its antiviral effects relative to those of HA-tagged native A3G (HA-A3G. Our study showed that transient expression of the R88-A3G fusion protein in both Vif(- and Vif(+ HIV-1 producing cells drastically inhibited viral infection in HeLa-CD4-CCR5-cells, CD4(+ C8166 T cells and human primary PBMCs. Moreover, we established CD4(+ C8166 T cell lines that stably express either R88-A3G or HA-A3G by transduction with VSV-G-pseudotyped lentiviral vector that harbor expression cassettes for R88-A3G or HA-A3G, respectively, and tested their susceptibility to Vif(+ HIV-1 infection. Our results clearly reveal that expression of R88-A3G in transduced CD4(+ C8166 cells significantly blocked Vif(+ HIV-1 infection. In an attempt to understand the mechanism underlying the antiviral activity of R88-A3G, we demonstrated that R88-A3G was efficiently incorporated into viral particles in the presence of Vif. Moreover, PCR analysis revealed that R88-A3G significantly inhibited viral cDNA synthesis during the early stage of Vif(+ virus infection. CONCLUSIONS: Our results clearly indicate that R88 delivers A3G into Vif(+ HIV-1 particles and inhibits

  2. Helminth infections coincident with active pulmonary tuberculosis inhibit mono- and multifunctional CD4+ and CD8+ T cell responses in a process dependent on IL-10.

    Directory of Open Access Journals (Sweden)

    Parakkal Jovvian George

    2014-09-01

    Full Text Available Tissue invasive helminth infections and tuberculosis (TB are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4(+ and CD8(+ T cell responses as well as the systemic (plasma cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections-Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4(+ and CD8(+ T cells and their component subsets (including multifunctional cells, we report a significant diminution in the mycobacterial-specific frequencies of mono- and multi-functional CD4(+ Th1 and (to a lesser extent Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4(+ and CD8(+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2- and Th17 (IL-17A and IL-17F-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4(+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4(+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection profound inhibition of antigen-specific CD4(+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB.

  3. Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate.

    Science.gov (United States)

    Netter, Robert C; Amberg, Sean M; Balliet, John W; Biscone, Mark J; Vermeulen, Arwen; Earp, Laurie J; White, Judith M; Bates, Paul

    2004-12-01

    Fusion proteins of enveloped viruses categorized as class I are typified by two distinct heptad repeat domains within the transmembrane subunit. These repeats are important structural elements that assemble into the six-helix bundles characteristic of the fusion-activated envelope trimer. Peptides derived from these domains can be potent and specific inhibitors of membrane fusion and virus infection. To facilitate our understanding of retroviral entry, peptides corresponding to the two heptad repeat domains of the avian sarcoma and leukosis virus subgroup A (ASLV-A) TM subunit of the envelope protein were characterized. Two peptides corresponding to the C-terminal heptad repeat (HR2), offset from one another by three residues, were effective inhibitors of infection, while two overlapping peptides derived from the N-terminal heptad repeat (HR1) were not. Analysis of envelope mutants containing substitutions within the HR1 domain revealed that a single amino acid change, L62A, significantly reduced sensitivity to peptide inhibition. Virus bound to cells at 4 degrees C became sensitive to peptide within the first 5 min of elevating the temperature to 37 degrees C and lost sensitivity to peptide after 15 to 30 min, consistent with a transient intermediate in which the peptide binding site is exposed. In cell-cell fusion experiments, peptide inhibitor sensitivity occurred prior to a fusion-enhancing low-pH pulse. Soluble receptor for ASLV-A induces a lipophilic character in the envelope which can be measured by stable liposome binding, and this activation was found to be unaffected by inhibitory HR2 peptide. Finally, receptor-triggered conformational changes in the TM subunit were also found to be unaffected by inhibitory peptide. These changes are marked by a dramatic shift in mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, from a subunit of 37 kDa to a complex of about 80 kDa. Biotinylated HR2 peptide bound specifically to the 80-kDa complex

  4. Pertussis toxin B-oligomer suppresses IL-6 induced HIV-1 and chemokine expression in chronically infected U1 cells via inhibition of activator protein 1.

    Science.gov (United States)

    Rizzi, Chiara; Crippa, Massimo P; Jeeninga, Rienk E; Berkhout, Ben; Blasi, Francesco; Poli, Guido; Alfano, Massimo

    2006-01-15

    Pertussis toxin B-oligomer (PTX-B) inhibits HIV replication in T lymphocytes and monocyte-derived macrophages by interfering with multiple steps of the HIV life cycle. PTX-B prevents CCR5-dependent (R5) virus entry in a noncompetitive manner, and it also exerts suppressive effects on both R5- and CXCR4-dependent HIV expression at a less-characterized postentry level. We demonstrate in this study that PTX-B profoundly inhibits HIV expression in chronically infected promonocytic U1 cells stimulated with several cytokines and, particularly, the IL-6-mediated effect, a cytokine that triggers viral production in these cells independently of NF-kappaB activation. From U1 cells we have subcloned a cell line, named U1-CR1, with increased responsiveness to IL-6. In these cells, PTX-B neither down-regulated the IL-6R nor prevented IL-6 induced signaling in terms of STAT3 phosphorylation and DNA binding. In contrast, PTX-B inhibited AP-1 binding to target DNA and modified its composition with a proportional increases in FosB, Fra2, and ATF2. PTX-B inhibited IL-6-induced HIV-1 long-terminal repeat-driven transcription from A, C, E, and F viral subtypes, which contain functional AP-1 binding sites, but failed to inhibit transcription from subtypes B and D LTR devoid of these sites. In addition, PTX-B inhibited the secretion of IL-6-induced, AP-1-dependent genes, including urokinase-type plasminogen activator, CXCL8/IL-8, and CCL2/monocyte chemotactic protein-1. Thus, PTX-B suppression of IL-6 induced expression of HIV and cellular genes in chronically infected promonocytic cells is strongly correlated to inhibition of AP-1.

  5. HCV Infection Induces Autocrine Interferon Signaling by Human Liver Endothelial Cell and Release of Exosomes, Which Inhibits Viral Replication

    Science.gov (United States)

    Giugliano, Silvia; Kriss, Michael; Golden-Mason, Lucy; Dobrinskikh, Evgenia; Stone, Amy E.L.; Soto-Gutierrez, Alejandro; Mitchell, Angela; Khetani, Salman R.; Yamane, Daisuke; Stoddard, Mark; Li, Hui; Shaw, George M.; Edwards, Michael G.; Lemon, Stanley M.; Gale, Michael; Shah, Vijay H.; Rosen, Hugo R.

    2014-01-01

    Background & Aims Liver sinusoidal endothelial cells (LSECs) make up a large proportion of the non-parenchymal cells in the liver. LSECs are involved in induction of immune tolerance, but little is known about their functions during hepatitis C virus (HCV) infection. Methods Primary human LSECs (HLSECs) and immortalized liver endothelial cells (TMNK-1) were exposed to various forms of HCV, including full-length transmitted/founder virus, sucrose-purified Japanese Fulminant Hepatitis-1 (JFH-1), a virus encoding a luciferase reporter, and the HCV-specific pathogen-associated molecular pattern molecules. Cells were analyzed by confocal immunofluorescence, immunohistochemical, and PCR assays. Results HLSECs internalized HCV, independent of cell–cell contacts; HCV RNA was translated but not replicated. Through pattern recognition receptors (TLR7 and retinoic acid inducible gene 1), HCV RNA induced consistent and broad transcription of multiple interferons (IFNs); supernatants from primary HLSECs transfected with HCV-specific pathogen-associated molecular pattern molecules increased induction of IFNs and IFN-stimulated genes in HLSECs. Recombinant type I and type III IFNs strongly up-regulated HLSEC transcription of interferon λ 3 (IFNL3) and viperin (RSAD2), which inhibit replication of HCV. Compared to CD8+ T cells, HLSECs suppressed HCV replication within Huh7.5.1 cells, also inducing IFN-stimulated genes in co-culture. Conditioned media from IFN-stimulated HLSECs induced expression of antiviral genes by uninfected primary human hepatocytes. Exosomes, derived from HLSECs following stimulation with either type I or type III IFNs, controlled HCV replication in a dose-dependent manner. Conclusions Cultured HLSECs produce factors that mediate immunity against HCV. HLSECs induce self-amplifying IFN-mediated responses and release of exosomes with antiviral activity. PMID:25447848

  6. Activation of Phosphotyrosine Phosphatase Activity Attenuates Mitogen-Activated Protein Kinase Signaling and Inhibits c-FOS and Nitric Oxide Synthase Expression in Macrophages Infected with Leishmania donovani

    OpenAIRE

    Nandan, Devki; Lo, Raymond; Reiner, Neil E

    1999-01-01

    Intracellular protozoan parasites of the genus Leishmania antagonize host defense mechanisms by interfering with cell signaling in macrophages. In this report, the impact of Leishmania donovani on mitogen-activated protein (MAP) kinases and nitric oxide synthase (NOS) expression in the macrophage cell line RAW 264 was investigated. Overnight infection of cells with leishmania led to a significant decrease in phorbol-12-myristate-13-acetate (PMA)-stimulated MAP kinase activity and inhibited PM...

  7. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N...... carbohydrate structures expressed by the viral envelope glycoprotein gp120, indicating that glycans of the viral envelope are possible targets for immunotherapy or vaccine development or both....

  8. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands.

    Science.gov (United States)

    Wang, Liangliang; Si, Wei; Xue, Huping; Zhao, Xin

    2017-01-26

    Staphylococcus aureus (S. aureus) is a frequent cause of infections in both humans and animals. Probiotics are known to inhibit colonization of pathogens on host tissues. However, mechanisms for the inhibition are still elusive due to complex host-microbe and microbe-microbe interactions. Here, we show that reduced abilities of S. aureus to infect mammary glands in the presence of Weissella cibaria (W. cibaria) were correlated with its poor adherence to mammary epithelial cells. Such inhibition by W. cibaria isolates was at least partially attributed to a fibronectin-binding protein (FbpA) on this lactic acid bacterium. Three W. cibaria isolates containing fbpA had higher inhibitory abilities than other three LAB isolates without the gene. The fbpA-deficient mutant of W. cibaria isolate LW1, LW1ΔfbpA, lost the inhibitory activity to reduce the adhesion of S. aureus to mammary epithelial cells and was less able to reduce the colonization of S. aureus in mammary glands. Expression of FbpA to the surface of LW1ΔfbpA reversed its inhibitory activities. Furthermore, addition of purified FbpA inhibited S. aureus biofilm formation. Our results suggest that W. cibaria FbpA hinders S. aureus colonization and infection through interfering with the S. aureus invasion pathway mediated by fibronectin-binding proteins and inhibiting biofilm formation of S. aureus.

  9. Interferon-Induced Transmembrane Protein 3 Inhibits Hantaan Virus Infection, and Its Single Nucleotide Polymorphism rs12252 Influences the Severity of Hemorrhagic Fever with Renal Syndrome

    Science.gov (United States)

    Xu-yang, Zheng; Pei-yu, Bian; Chuan-tao, Ye; Wei, Ye; Hong-wei, Ma; Kang, Tang; Chun-mei, Zhang; Ying-feng, Lei; Xin, Wei; Ping-zhong, Wang; Chang-xing, Huang; Xue-fan, Bai; Ying, Zhang; Zhan-sheng, Jia

    2017-01-01

    Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS). Previous studies have identified interferon-induced transmembrane proteins (IFITMs) as an interferon-stimulated gene family. However, the role of IFITMs in HTNV infection is unclear. In this study, we observed that IFITM3 single nucleotide polymorphisms (SNP) rs12252 C allele and CC genotype associated with the disease severity and HTNV load in the plasma of HFRS patients. In vitro experiments showed that the truncated protein produced by the rs12252 C allele exhibited an impaired anti-HTNV activity. We also proved that IFITM3 was able to inhibit HTNV infection in both HUVEC and A549 cells by overexpression and RNAi assays, likely via a mechanism of inhibiting virus entry demonstrated by binding and entry assay. Localization of IFITM3 in late endosomes was also observed. In addition, we demonstrated that the transcription of IFITM3 is negatively regulated by an lncRNA negative regulator of interferon response (NRIR). Taken together, we conclude that IFITM3, negatively regulated by NRIR, inhibits HTNV infection, and its SNP rs12252 correlates with the plasma HTNV load and the disease severity of patients with HFRS. PMID:28096800

  10. Kushenin induces the apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A.

    Science.gov (United States)

    Zhou, Yi; Chen, Na; Liu, Xiaojing; Lin, Shumei; Luo, Wenjuan; Liu, Min

    2016-07-01

    With the increased burden induced by HCV, there is an urgent need to develop better-tolerated agents with good safety. In this study, we evaluated the anti-HCV capability of kushenin, as well as the possible mechanism to Huh7.5-HCV cells. The results demonstrated that kushenin significantly inhibited the HCV-RNA level. Similarly, the expression of HCV-specific protein NS5A was also decreased. Molecular docking results displayed that kushenin bonded well to the active pockets of HCV NS5A, further confirming the effects of kushenin on HCV replication. Coimmunoprecipitation assay determined that kushenin suppressed the interaction between PI3K and NS5A in HCV-replicon cells. Furthermore, kushenin exerted an obviously induced function on HCV-replicon cells apoptosis by inhibiting PI3K-Akt-mTOR pathway, which could be ameliorated by the specific activator IGF-1 addition. Taken together, kushenin possesses the ability to inhibit HCV replication, and contributes to the increased apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A. Our results provide important evidence for a better understanding of the pathogenesis of HCV infection, and suggest that kushenin has the potential to treat HCV disease.

  11. Dendritic cell function and pathogen-specific T cell immunity are inhibited in mice administered levonorgestrel prior to intranasal Chlamydia trachomatis infection.

    Science.gov (United States)

    Quispe Calla, Nirk E; Vicetti Miguel, Rodolfo D; Mei, Ao; Fan, Shumin; Gilmore, Jocelyn R; Cherpes, Thomas L

    2016-11-28

    The growing popularity of levonorgestrel (LNG)-releasing intra-uterine systems for long-acting reversible contraception provides strong impetus to define immunomodulatory properties of this exogenous progestin. In initial in vitro studies herein, we found LNG significantly impaired activation of human dendritic cell (DCs) and their capacity to promote allogeneic T cell proliferation. In follow-up studies in a murine model of intranasal Chlamydia trachomatis infection, we analogously found that LNG treatment prior to infection dramatically reduced CD40 expression in DCs isolated from draining lymph nodes at 2 days post infection (dpi). At 12 dpi, we also detected significantly fewer CD4(+) and CD8(+) T cells in the lungs of LNG-treated mice. This inhibition of DC activation and T cell expansion in LNG-treated mice also delayed chlamydial clearance and the resolution of pulmonary inflammation. Conversely, administering agonist anti-CD40 monoclonal antibody to LNG-treated mice at 1 dpi restored lung T cell numbers and chlamydial burden at 12 dpi to levels seen in infected controls. Together, these studies reveal that LNG suppresses DC activation and function, and inhibits formation of pathogen-specific T cell immunity. They also highlight the need for studies that define in vivo effects of LNG use on human host response to microbial pathogens.

  12. Neutralizing antibodies induced by recombinant virus-like particles of enterovirus 71 genotype C4 inhibit infection at pre- and post-attachment steps.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Ku

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is a major causative agent of hand, foot and mouth disease, which has been prevalent in Asia-Pacific regions, causing significant morbidity and mortality in young children. Antibodies elicited by experimental EV71 vaccines could neutralize infection in vitro and passively protect animal models from lethal challenge, indicating that neutralizing antibodies play an essential role in protection. However, how neutralizing antibodies inhibit infection in vitro remains unclear. METHODS/FINDINGS: In the present study, we explored the mechanisms of neutralization by antibodies against EV71 virus-like particles (VLPs. Recombinant VLPs of EV71 genotype C4 were produced in insect cells using baculovirus vectors. Immunization with the VLPs elicited a high-titer, EV71-specific antibody response in mice. Anti-VLP mouse sera potently neutralized EV71 infection in vitro. The neutralizing antibodies in the anti-VLP mouse sera were found to target mainly an extremely conserved epitope (FGEHKQEKDLEYGAC located at the GH loop of the VP1 protein. The neutralizing anti-VLP antisera were able to inhibit virus binding to target cells efficiently. In addition, post-attachment treatment of virus-bound cells with the anti-VLP antisera also neutralized virus infection, although the antibody concentration required was higher than that of the pre-attachment treatment. CONCLUSIONS: Collectively, our findings represent a valuable addition to the understanding of mechanisms of EV71 neutralization and have strong implications for EV71 vaccine development.

  13. Dendritic cell function and pathogen-specific T cell immunity are inhibited in mice administered levonorgestrel prior to intranasal Chlamydia trachomatis infection

    Science.gov (United States)

    Quispe Calla, Nirk E.; Vicetti Miguel, Rodolfo D.; Mei, Ao; Fan, Shumin; Gilmore, Jocelyn R.; Cherpes, Thomas L.

    2016-01-01

    The growing popularity of levonorgestrel (LNG)-releasing intra-uterine systems for long-acting reversible contraception provides strong impetus to define immunomodulatory properties of this exogenous progestin. In initial in vitro studies herein, we found LNG significantly impaired activation of human dendritic cell (DCs) and their capacity to promote allogeneic T cell proliferation. In follow-up studies in a murine model of intranasal Chlamydia trachomatis infection, we analogously found that LNG treatment prior to infection dramatically reduced CD40 expression in DCs isolated from draining lymph nodes at 2 days post infection (dpi). At 12 dpi, we also detected significantly fewer CD4+ and CD8+ T cells in the lungs of LNG-treated mice. This inhibition of DC activation and T cell expansion in LNG-treated mice also delayed chlamydial clearance and the resolution of pulmonary inflammation. Conversely, administering agonist anti-CD40 monoclonal antibody to LNG-treated mice at 1 dpi restored lung T cell numbers and chlamydial burden at 12 dpi to levels seen in infected controls. Together, these studies reveal that LNG suppresses DC activation and function, and inhibits formation of pathogen-specific T cell immunity. They also highlight the need for studies that define in vivo effects of LNG use on human host response to microbial pathogens. PMID:27892938

  14. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways

    Directory of Open Access Journals (Sweden)

    Wu Weilin

    2008-06-01

    Full Text Available Abstract Human T-cell leukemia virus type-1 (HTLV-1 induces adult T-cell leukemia/lymphoma (ATL/L, a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP, a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-κB and the cell cycle pathways. The observation that NF-κB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-κB and CDK inhibitors (total of 35 compounds to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKβ kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A

  15. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model.

    Science.gov (United States)

    de Wilde, Adriaan H; Falzarano, Darryl; Zevenhoven-Dobbe, Jessika C; Beugeling, Corrine; Fett, Craig; Martellaro, Cynthia; Posthuma, Clara C; Feldmann, Heinz; Perlman, Stanley; Snijder, Eric J

    2017-01-15

    Currently, there is no registered treatment for infections with emerging zoonotic coronaviruses like SARS- and MERS-coronavirus. We here report that in cultured cells low-micromolar concentrations of alisporivir, a non-immunosuppressive cyclosporin A-analog, inhibit the replication of four different coronaviruses, including MERS- and SARS-coronavirus. Ribavirin was found to further potentiate the antiviral effect of alisporivir in these cell culture-based infection models, but this combination treatment was unable to improve the outcome of SARS-CoV infection in a mouse model. Nevertheless, our data provide a basis to further explore the potential of Cyp inhibitors as host-directed, broad-spectrum inhibitors of coronavirus replication.

  16. Infections

    Directory of Open Access Journals (Sweden)

    Virginia Vanzzini Zago

    2012-01-01

    Full Text Available This is a retrospective, and descriptive study about the support that the laboratory of microbiology aids can provide in the diagnosis of ocular infections in patients whom were attended a tertiary-care hospital in México City in a 10-year-time period. We describe the microbiological diagnosis in palpebral mycose; in keratitis caused by Fusarium, Aspergillus, Candida, and melanized fungi; endophthalmitis; one Histoplasma scleritis and one mucormycosis. Nowadays, ocular fungal infections are more often diagnosed, because there is more clinical suspicion and there are easy laboratory confirmations. Correct diagnosis is important because an early medical treatment gives a better prognosis for visual acuity. In some cases, fungal infections are misdiagnosed and the antifungal treatment is delayed.

  17. The thalidomide analogue CC-3052 inhibits HIV-1 and tumour necrosis factor-alpha (TNF-α) expression in acutely and chronically infected cells in vitro

    Science.gov (United States)

    La Maestra, L; Zaninoni, A; Marriott, J B; Lazzarin, A; Dalgleish, A G; Barcellini, W

    2000-01-01

    We investigated the in vitro effect of the water-soluble, highly stable thalidomide analogue CC-3052 on HIV-1 expression and TNF-α production in latently infected promonocytic U1 cells, acutely infected T cells and monocyte-derived human macrophages (MDM), and in mitogen-stimulated ex vivo cultures from patients with primary acute HIV-1 infection. HIV-1 expression was assessed by Northern blot analysis of RNAs, and ELISA for p24 antigen release and reverse transcriptase (RT) activity. TNF-α expression was evaluated by RT-polymerase chain reaction (PCR)-ELISA for mRNA and ELISA for protein secretion. We demonstrated that CC-3052 is able to inhibit HIV-1 expression, as evaluated by mRNA, p24 release and RT activity, in phorbol myristate acetate (PMA)- and cytokine-stimulated U1 cells. Furthermore, CC-3052 inhibited HIV-1 expression, as evaluated by p24 and RT activity, in acutely infected MDM and T cells. As far as TNF-α is concerned, CC-3052 significantly reduced TNF-α mRNA and protein secretion in PMA-stimulated U937 and U1 cells, and in PMA-stimulated uninfected and acutely infected MDM. Consistently, the addition of CC-3052 reduced TNF-α production in phytohaemagglutinin (PHA) and lipopolysaccharide (LPS)-stimulated whole blood cultures from patients during the primary acute phase of HIV-1 infection. Since TNF-α is among the most potent enhancers of HIV-1 expression, the effect of CC-3052 on TNF-α may account for its inhibitory activity on HIV-1 expression. Given the well documented immunopathological role of TNF-α and its correlation with viral load, advanced disease and poor prognosis, CC-3052 could be an interesting drug for the design of therapeutic strategies in association with anti-retroviral agents. PMID:10606973

  18. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis.

    Science.gov (United States)

    Cabezas-Cruz, Alejandro; Alberdi, Pilar; Ayllón, Nieves; Valdés, James J; Pierce, Raymond; Villar, Margarita; de la Fuente, José

    2016-04-01

    Epigenetic mechanisms have not been characterized in ticks despite their importance as vectors of human and animal diseases worldwide. The objective of this study was to characterize the histones and histone modifying enzymes (HMEs) of the tick vector Ixodes scapularis and their role during Anaplasma phagocytophilum infection. We first identified 5 histones and 34 HMEs in I. scapularis in comparison with similar proteins in model organisms. Then, we used transcriptomic and proteomic data to analyze the mRNA and protein levels of I. scapularis histones and HMEs in response to A. phagocytophilum infection of tick tissues and cultured cells. Finally, selected HMEs were functionally characterized by pharmacological studies in cultured tick cells. The results suggest that A. phagocytophilum manipulates tick cell epigenetics to increase I. scapularis p300/CBP, histone deacetylase, and Sirtuin levels, resulting in an inhibition of cell apoptosis that in turn facilitates pathogen infection and multiplication. These results also suggest that a compensatory mechanism might exist by which A. phagocytophilum manipulates tick HMEs to regulate transcription and apoptosis in a tissue-specific manner to facilitate infection, but preserving tick fitness to guarantee survival of both pathogens and ticks. Our study also indicates that the pathogen manipulates arthropod and vertebrate cell epigenetics in similar ways to inhibit the host response to infection. Epigenetic regulation of tick biological processes is an essential element of the infection by A. phagocytophilum and the study of the mechanisms and principal actors involved is likely to provide clues for the development of anti-tick drugs and vaccines.

  19. Infection,

    Science.gov (United States)

    1980-10-16

    to synthesize ketones is not fully utilized during acute infectious illnesses (6). The mechanisms responsible for inhibition of ketogenesis during...AND R. W. WANNEMACHER, JR. Gluconeogenesis, ureagenesis, and ketogenesis during sepsis. J.P.E.N. 4:277, 1980. 7. WANNEMACHER, R. W., JR., R. E

  20. In Vitro Exposure to PC-1005 and Cervicovaginal Lavage Fluid from Women Vaginally Administered PC-1005 Inhibits HIV-1 and HSV-2 Infection in Human Cervical Mucosa.

    Science.gov (United States)

    Villegas, Guillermo; Calenda, Giulia; Zhang, Shimin; Mizenina, Olga; Kleinbeck, Kyle; Cooney, Michael L; Hoesley, Craig J; Creasy, George W; Friedland, Barbara; Fernández-Romero, José A; Zydowsky, Thomas M; Teleshova, Natalia

    2016-09-01

    Our recent phase 1 trial demonstrated that PC-1005 gel containing 50 μM MIV-150, 14 mM zinc acetate dihydrate, and carrageenan (CG) applied daily vaginally for 14 days is safe and well tolerated. Importantly, cervicovaginal lavage fluid samples (CVLs) collected 4 or 24 h after the last gel application inhibited HIV-1 and human papillomavirus (HPV) in cell-based assays in a dose-dependent manner (MIV-150 for HIV-1 and CG for HPV). Herein we aimed to determine the anti-HIV and anti-herpes simplex virus 2 (anti-HSV-2) activity of PC-1005 in human cervical explants after in vitro exposure to the gel and to CVLs from participants in the phase 1 trial. Single HIV-1BaL infection and HIV-1BaL-HSV-2 coinfection explant models were utilized. Coinfection with HSV-2 enhanced tissue HIV-1BaL infection. In vitro exposure to PC-1005 protected cervical mucosa against HIV-1BaL (up to a 1:300 dilution) in single-challenge and cochallenge models. CG gel (PC-525) provided some barrier effect against HIV-1BaL at the 1:100 dilution in a single-challenge model but not in the cochallenge model. Both PC-1005 and PC-525 at the 1:100 dilution inhibited HSV-2 infection, pointing to a CG-mediated protection. MIV-150 and CG in CVLs inhibited HIV (single-challenge or cochallenge models) and HSV-2 infections in explants in a dose-dependent manner (P < 0.05). Stronger inhibition of HIV-1 infection by CVLs collected 4 h after the last gel administration was observed compared to infection detected in the presence of baseline CVLs. The anti-HIV and anti-HSV-2 activity of PC-1005 gel in vitro and CVLs in human ectocervical explants supports the further development of PC-1005 gel as a broad-spectrum on-demand microbicide.

  1. Identification of the peptide derived from S1 domain that inhibits type I and type II feline infectious peritonitis virus infection.

    Science.gov (United States)

    Doki, Tomoyoshi; Takano, Tomomi; Koyama, Yusuke; Hohdatsu, Tsutomu

    2015-06-02

    Feline infectious peritonitis virus (FIPV) can cause a lethal disease in cats, feline infectious peritonitis (FIP). A therapeutic drug that is effective against FIP has not yet been developed. Peptides based on viral protein amino acid sequences have recently been attracting attention as new antiviral drugs. In the present study, we synthesized 30 overlapping peptides based on the amino acid sequence of the S1 domain of the type I FIPV strain KU-2 S protein, and investigated their inhibitory effects on FIPV infection. To evaluate the inhibitory effects on type I FIPV infection of these peptides, we investigated a method to increase the infection efficiency of poorly replicative type I FIPV. The efficiency of type I FIPV infection was increased by diluting the virus with medium containing a polycation. Of the 30 peptides, I-S1-8 (S461-S480), I-S1-9 (S471-S490), I-S1-10 (S481-S500), I-S1-16 (S541-S560), and I-S1-22 (S601-S620) significantly decreased the infectivity of FIPV strain KU-2 while I-S1-9 and I-S1-16 exhibited marked inhibitory effects on FIPV infection. The inhibitory effects on FIPV infection of these 2 peptides on other type I and type II FIPV strains, feline herpesvirus (FHV), and feline calicivirus (FCV) were also examined. These 2 peptides specifically inhibited type I and type II FIPV, but did FHV or FCV infection. In conclusion, the possibility of peptides derived from the S protein of type I FIPV strain KU-2 as anti-FIPV agents effective not only for type I, but also type II FIPV was demonstrated in vitro.

  2. Interferon regulatory factor-1 protects from fatal neurotropic infection with vesicular stomatitis virus by specific inhibition of viral replication in neurons.

    Directory of Open Access Journals (Sweden)

    Sharmila Nair

    2014-03-01

    Full Text Available The innate immune system protects cells against invading viral pathogens by the auto- and paracrine action of type I interferon (IFN. In addition, the interferon regulatory factor (IRF-1 can induce alternative intrinsic antiviral responses. Although both, type I IFN and IRF-1 mediate their antiviral action by inducing overlapping subsets of IFN stimulated genes, the functional role of this alternative antiviral action of IRF-1 in context of viral infections in vivo remains unknown. Here, we report that IRF-1 is essential to counteract the neuropathology of vesicular stomatitis virus (VSV. IFN- and IRF-1-dependent antiviral responses act sequentially to create a layered antiviral protection program against VSV infections. Upon intranasal infection, VSV is cleared in the presence or absence of IRF-1 in peripheral organs, but IRF-1-/- mice continue to propagate the virus in the brain and succumb. Although rapid IFN induction leads to a decline in VSV titers early on, viral replication is re-enforced in the brains of IRF-1-/- mice. While IFN provides short-term protection, IRF-1 is induced with delayed kinetics and controls viral replication at later stages of infection. IRF-1 has no influence on viral entry but inhibits viral replication in neurons and viral spread through the CNS, which leads to fatal inflammatory responses in the CNS. These data support a temporal, non-redundant antiviral function of type I IFN and IRF-1, the latter playing a crucial role in late time points of VSV infection in the brain.

  3. Infection of chicken bone marrow mononuclear cells with subgroup J avian leukosis virus inhibits dendritic cell differentiation and alters cytokine expression.

    Science.gov (United States)

    Liu, Di; Qiu, Qianqian; Zhang, Xu; Dai, Manman; Qin, Jianru; Hao, Jianjong; Liao, Ming; Cao, Weisheng

    2016-10-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus known to induce tumor formation and immunosuppression in infected chickens. One of the organs susceptible to ALV-J is the bone marrow, from which specialized antigen-presenting cells named dendritic cells (BM-DCs) are derived. Notably, these cells possess the unique ability to induce primary immune responses. In the present study, a method of cultivating and purifying DCs from chicken bone marrow in vitro was established to investigate the effects of ALV-J infection on BM-DC differentiation or generation. The results indicated that ALV-J not only infects the chicken bone marrow mononuclear cells but also appears to inhibit the differentiation and maturation of BM-DCs and to trigger apoptosis. Moreover, substantial reductions in the mRNA expression of TLR1, TLR2, TLR3, MHCI, and MHCII and in cytokine production were detected in the surviving BM-DCs following ALV-J infection. These findings indicate that ALV-J infection disrupts the process of bone marrow mononuclear cell differentiation into BM-DCs likely via altered antigen presentation, resulting in a downstream immune response in affected chickens.

  4. Bacterial lipopolysaccharide inhibits influenza virus infection of human macrophages and the consequent induction of CD8+ T cell immunity

    NARCIS (Netherlands)

    Short, K.R.; Vissers, M.; Kleijn, S. de; Zomer, A.L.; Kedzierska, K.; Grant, E.; Reading, P.C.; Hermans, P.W.M.; Ferwerda, G.; Diavatopoulos, D.A.

    2014-01-01

    It is well established that infection with influenza A virus (IAV) facilitates secondary bacterial disease. However, there is a growing body of evidence that the microbial context in which IAV infection occurs can affect both innate and adaptive responses to the virus. To date, these studies have be

  5. Claviceps purpurea expressing polygalacturonases escaping PGIP inhibition fully infects PvPGIP2 wheat transgenic plants but its infection is delayed in wheat transgenic plants with increased level of pectin methyl esterification.

    Science.gov (United States)

    Volpi, Chiara; Raiola, Alessandro; Janni, Michela; Gordon, Anna; O'Sullivan, Donal M; Favaron, Francesco; D'Ovidio, Renato

    2013-12-01

    Claviceps purpurea is a biotrophic fungal pathogen of grasses causing the ergot disease. The infection process of C. purpurea on rye flowers is accompanied by pectin degradation and polygalacturonase (PG) activity represents a pathogenicity factor. Wheat is also infected by C. purpurea and we tested whether the presence of polygalacturonase inhibiting protein (PGIP) can affect pathogen infection and ergot disease development. Wheat transgenic plants expressing the bean PvPGIP2 did not show a clear reduction of disease symptoms when infected with C. purpurea. To ascertain the possible cause underlying this lack of improved resistance of PvPGIP2 plants, we expressed both polygalacturonases present in the C. purpurea genome, cppg1 and cppg2 in Pichia pastoris. In vitro assays using the heterologous expressed PGs and PvPGIP2 showed that neither PG is inhibited by this inhibitor. To further investigate the role of PG in the C. purpurea/wheat system, we demonstrated that the activity of both PGs of C. purpurea is reduced on highly methyl esterified pectin. Finally, we showed that this reduction in PG activity is relevant in planta, by inoculating with C. purpurea transgenic wheat plants overexpressing a pectin methyl esterase inhibitor (PMEI) and showing a high degree of pectin methyl esterification. We observed reduced disease symptoms in the transgenic line compared with null controls. Together, these results highlight the importance of pectin degradation for ergot disease development in wheat and sustain the notion that inhibition of pectin degradation may represent a possible route to control of ergot in cereals.

  6. Infection

    Science.gov (United States)

    2010-09-01

    Interactions between biofilms and the environment. FEMS Microbiol Rev. 1997;20:291–303. 4. Webb LX, Wagner W, Carroll D, et al. Osteomyelitis and...treatment of osteomyelitis . Biomed Mater. 2008;3: 034114. 6. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration...vertebral osteomyelitis . Spine. 2007;32: 2996–3006. 15. Beckham JD, Tuttle K, Tyler KL. Reovirus activates transforming growth factor ß and bone

  7. PPAR[gamma] Agonists as an Anti-Inflammatory Treatment Inhibiting Rotavirus Infection of Small Intestinal Villi

    National Research Council Canada - National Science Library

    Dory Gomez; Natalia Muñoz; Rafael Guerrero; Orlando Acosta; Carlos A. Guerrero

    2016-01-01

      Rotavirus infection has been reported to induce an inflammatory response in the host cell accompanied by the increased expression or activation of some cellular molecules including ROS, NF-κB, and COX-2. PPARγ...

  8. A colonisation-inhibition culture consisting of Salmonella Enteritidis and Typhimurium ΔhilAssrAfliG strains protects against infection by strains of both serotypes in broilers.

    Science.gov (United States)

    De Cort, W; Mot, D; Haesebrouck, F; Ducatelle, R; Van Immerseel, F

    2014-08-06

    Consumption of contaminated poultry meat is still an important cause of Salmonella infections in humans and there is a need for control methods that protect broilers from day-of-hatch until slaughter age against infection with Salmonella. Colonisation-inhibition, a concept in which a live Salmonella strain is orally administered to day-old chickens and protects against subsequent challenge, can potentially be used as control method. In this study, the efficacy of a Salmonella Typhimurium ΔhilAssrAfliG strain as a colonisation-inhibition strain for protection of broilers against Salmonella Typhimurium was evaluated. Administration of a Salmonella Typhimurium ΔhilAssrAfliG strain to day-old broiler chickens decreased faecal shedding and strongly reduced caecal and internal organ colonisation of a Salmonella Typhimurium challenge strain administered one day later using a seeder bird model. In addition, it was verified whether a colonisation-inhibition culture could be developed that protects against both Salmonella Enteritidis and Typhimurium. Therefore, the Salmonella Typhimurium ΔhilAssrAfliG strain was orally administered simultaneously with a Salmonella Enteritidis ΔhilAssrAfliG strain to day-old broiler chickens, which resulted in a decreased caecal and internal organ colonisation for both a Salmonella Enteritidis and a Salmonella Typhimurium challenge strain short after hatching, using a seeder bird model. The combined culture was not protective against Salmonella Paratyphi B varietas Java challenge, indicating serotype-specific protection mechanisms. The data suggest that colonisation-inhibition can potentially be used as a versatile control method to protect poultry against several Salmonella serotypes.

  9. Theiler's murine encephalomyelitis virus infection induces a redistribution of heat shock proteins 70 and 90 in BHK-21 cells, and is inhibited by novobiocin and geldanamycin.

    Science.gov (United States)

    Mutsvunguma, Lorraine Z; Moetlhoa, Boitumelo; Edkins, Adrienne L; Luke, Garry A; Blatch, Gregory L; Knox, Caroline

    2011-09-01

    Theiler's murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.

  10. In vitro screening and evaluation of some Indian medicinal plants for their potential to inhibit Jack bean and bacterial ureases causing urinary infections.

    Science.gov (United States)

    Bai, Sheema; Bharti, Pooja; Seasotiya, Leena; Malik, Anupma; Dalal, Sunita

    2015-03-01

    Bacterial ureases play an important role in pathogenesis of urinary infections. Selection of plants was done on the basis of their uses by the local people for the treatment of various bacterial and urinary infections. Our investigation screens and evaluates 15 Indian medicinal plants for their possible urease inhibitory activity as well as their ability to inhibit bacteria causing urinary infections. Plant extracts in three different solvents (methanol, aqueous, and cow urine) were screened for their effect on Jack-bean urease using the phenol-hypochlorite method. Subsequently, seven bacterial strains were screened for their ability to release urease and further antimicrobial-linked urease inhibition activity and minimum inhibitory concentration of the tested extracts were evaluated by the agar well diffusion and microdilution method, respectively. Five plants out of 15 crude extracts revealed good urease inhibitory activity (≥ 20% at 1 mg/ml conc.) and IC50 values for these extracts ranged from 2.77 to 0.70 mg/ml. Further testing of these extracts on urease-producing bacterial strains (Staphylococcus aureus NCDC 109, S. aureus MTCC 3160, Proteus vulgaris MTCC 426, Klebsiella pneumoniae MTCC 4030, and Pseudomonas aeruginosa MTCC 7453) showed good anti-urease potency with an MIC ranging from 500 to 7.3 µg/ml. The results of screening as well as susceptibility assay clearly revealed a strong urease inhibitory effect of Acacia nilotica L. (Fabaceae), Emblica officinalis Gaertn. (Phyllanthaceae), Psidium guajava L. (Myrtaceae), Rosa indica L. (Rosaceae), and Terminalia chebula Retz. (Combretaceae). Our findings may help to explain the beneficial effect of these plants against infections associated with the urease enzyme.

  11. Prophylactic use of Ganoderma lucidum extract may inhibit Mycobacterium tuberculosis replication in a new mouse model of spontaneous latent tuberculosis infection

    Directory of Open Access Journals (Sweden)

    Chuan eQin

    2016-01-01

    Full Text Available A mouse model of spontaneous latent tuberculosis infection (LTBIthat mimics latent tuberculosis infection in humans is valuable for drug/vaccine development and the study of tuberculosis. However, most LTBI mouse models require interventions, and a spontaneous LTBI mouse model with a low bacterial load is difficult to establish. In this study, mice were IV-inoculated with 100 CFU Mycobacterium tuberculosis H37Rv, and a persistent LTBI was established with low bacterial loads (0.5~1.5log10 CFU in the lung; <4log10 CFU in the spleen. Histopathological changes in the lung, spleen, and liver were mild during the first 20 weeks post-inoculation. The model was used to demonstrate the comparative effects of prophylactic and therapeutic administration of Ganoderma lucidum extract (spores and spores lipid in preventing H37Rv replication in both lung and spleen. H37Rv was inhibited with prophylactic use of G. lucidum extract relative to that of the untreated control and therapy groups, and observed in the spleen as early as post-inoculation week 3. H37Rv infection in the therapy group was comparable to that of the untreated control mice. No significant mitigation of pathological changes was observed in either the prophylactic or therapeutic groups. Our results suggest that this LTBI model is an efficient means of testing anti-tuberculosis vaccines and drugs. The use of G. lucidum extract prior to M. tuberculosis infection may protect the host against bacterial replication to some extent.

  12. Imaging Early Steps of Sindbis Virus Infection by Total Internal Reflection Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Youling Gu

    2011-01-01

    Full Text Available Sindbis virus (SINV is an alphavirus that has a broad host range and has been widely used as a vector for recombinant gene transduction, DNA-based vaccine production, and oncolytic cancer therapy. The mechanism of SINV entry into host cells has yet to be fully understood. In this paper, we used single virus tracking under total internal reflection fluorescence microscopy (TIRFM to investigate SINV attachment to cell surface. Biotinylated viral particles were labeled with quantum dots, which retained viral viability and infectivity. By time-lapse imaging, we showed that the SINV exhibited a heterogeneous dynamics on the surface of the host cells. Analysis of SINV motility demonstrated a two-step attachment reaction. Moreover, dual color TIRFM of GFP-Rab5 and SINV suggested that the virus was targeted to the early endosomes after endocytosis. These findings demonstrate the utility of quantum dot labeling in studying the early steps and behavior of SINV infection.

  13. Oligoclonal CD8 lymphocytes from persons with asymptomatic human immunodeficiency virus (HIV) type 1 infection inhibit HIV-1 replication.

    Science.gov (United States)

    Toso, J F; Chen, C H; Mohr, J R; Piglia, L; Oei, C; Ferrari, G; Greenberg, M L; Weinhold, K J

    1995-10-01

    CD8 lymphocytes from asymptomatic human immunodeficiency virus (HIV) type 1-infected patients can suppress virus production from infected CD4 cells. Suppressive activity is separate and distinct from cytotoxic T lymphocyte (CTL) reactivities and is likely mediated by a soluble factor(s). The majority of HIV-1 suppression studies have been done in the context of bulk CD8 cell cultures. In this study, viral suppression was characterized by clonal populations of CD8 cells derived from HIV-1-infected patients. Most of the suppressive clones were devoid of detectable CTL reactivity against env-, gag-, pol-, and nef-expressing targets. Among the suppressive clones derived from an individual patient, a marked heterogeneity was evident with respect to phenotypic markers, cytokine production, and T cell receptor V beta expression. These results suggest that noncytolytic virus suppression is oligoclonal in nature. Clones provide tools for future studies aimed at understanding the mechanism of suppression and identifying the suppressive factor.

  14. Peptide-derivatized SB105-A10 dendrimer inhibits the infectivity of R5 and X4 HIV-1 strains in primary PBMCs and cervicovaginal histocultures.

    Directory of Open Access Journals (Sweden)

    Isabella Bon

    Full Text Available Peptide dendrimers are a class of molecules that exhibit a large array of biological effects including antiviral activity. In this report, we analyzed the antiviral activity of the peptide-derivatized SB105-A10 dendrimer, which is a tetra-branched dendrimer synthetized on a lysine core, in activated peripheral blood mononuclear cells (PBMCs that were challenged with reference and wild-type human immunodeficiency virus type 1 (HIV-1 strains. SB105-A10 inhibited infections by HIV-1 X4 and R5 strains, interfering with the early phases of the viral replication cycle. SB105-A10 targets heparan sulfate proteoglycans (HSPGs and, importantly, the surface plasmon resonance (SPR assay revealed that SB105-A10 strongly binds gp41 and gp120, most likely preventing HIV-1 attachment/entry through multiple mechanisms. Interestingly, the antiviral activity of SB105-A10 was also detectable in an organ-like structure of human cervicovaginal tissue, in which SB105-A10 inhibited the HIV-1ada R5 strain infection without altering the tissue viability. These results demonstrated the strong antiviral activity of SB105-A10 and suggest a potential microbicide use of this dendrimer to prevent the heterosexual transmission of HIV-1.

  15. The inhibition of COPII trafficking is important for intestinal epithelial tight junction disruption during enteropathogenic Escherichia coli and Citrobacter rodentium infection.

    Science.gov (United States)

    Thanabalasuriar, Ajitha; Kim, Jinoh; Gruenheid, Samantha

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are bacterial pathogens that cause severe illnesses in humans. Citrobacter rodentium is a related mouse pathogen that serves as a small animal model for EPEC and EHEC infections. EPEC, EHEC and C. rodentium translocate bacterial virulence proteins directly into host intestinal cells via a type III secretion system (T3SS). Non-LEE-encoded effector A (NleA) is a T3SS effector that is common to EPEC, EHEC and C. rodentium. NleA interacts with and inhibits the mammalian COPII complex, impairing cellular secretion; this interaction is required for bacterial virulence. Although diarrhea is a hallmark of EPEC, EHEC and C. rodentium infections, the underlying mechanisms are not well characterized. One of the essential functions of the intestine is to maintain a barrier between the lumen and submucosa. Tight junctions seal the space between adjacent epithelial cells creating this barrier. Consequently, it is thought that the disruption of intestinal epithelial tight junctions by EPEC, EHEC, and C. rodentium could result in a loss of barrier function. In this study, we demonstrate that NleA mediated COPII inhibition is required for EPEC- and C. rodentium-mediated disruption of tight junction proteins and increases in fecal water content.

  16. Sulfated fucan from marine alga inhibits HeLa cells infection by HTLV-1 free particles: semi-quantitative analysis

    OpenAIRE

    Romanos,Maria T. V.; Maria J. Andrada-Serpa; Mourão, Paulo A. S.; Yocie Yoneshigue-Valentin; Pereira,Mariana S.; Norma Santos; Marcia D. Wigg

    2011-01-01

    A sulfated fucan from Laminaria abyssalis marine alga prevented the interaction of HTLV-1 particles, purified from the MT-2 cell line, with HeLa cells. The infection obtained using a concentrated virus suspension was detected only by amplification of the newly synthesized HTLV-1 proviral cDNA by the nested-polymerase chain reaction (PCR). The sulfated polysaccharide was not toxic to the cells at a concentration of 100 µg/mL and prevented infection by the viral particles when added to the cell...

  17. Inhibition of HIV type 1 infectivity by coexpression of a wild-type and a defective glycoprotein 120

    DEFF Research Database (Denmark)

    Lund, O S; Losman, B; Schønning, Kristian;

    1998-01-01

    An amino acid substitution (D --> K) in the C3 region of HIV-1 gp120 has previously been shown to inhibit binding of virions to CD4+ cells. We have introduced the same mutation into the HIV-1 isolate LAV-I(BRU), in which the mutation is denoted D373K. Here we show that the D373K envelope protein ...

  18. Identification of Light-independent Inhibition of Human Immunodeficiency Virus-1 Infection through Bioguided Fractionation of Hypericum perforatum

    Science.gov (United States)

    Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not. Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (...

  19. Sil: a Streptococcus iniae bacteriocin with dual role as an antimicrobial and an immunomodulator that inhibits innate immune response and promotes S. iniae infection.

    Directory of Open Access Journals (Sweden)

    Mo-fei Li

    Full Text Available Streptococcus iniae is a Gram-positive bacterium and a severe pathogen to a wide range of economically important fish species. In addition, S. iniae is also a zoonotic pathogen and can cause serious infections in humans. In this study, we identified from a pathogenic S. iniae strain a putative bacteriocin, Sil, and examined its biological activity. Sil is composed of 101 amino acid residues and shares 35.6% overall sequence identity with the lactococcin 972 of Lactococcus lactis. Immunoblot analysis showed that Sil was secreted by S. iniae into the extracellular milieu. Purified recombinant Sil (rSil exhibited a dose-dependent inhibitory effect on the growth of Bacillus subtilis but had no impact on the growths of other 16 Gram-positive bacteria and 10 Gram-negative bacteria representing 23 different bacterial species. Treatment of rSil by heating at 50°C abolished the activity of rSil. rSil bound to the surface of B. subtilis but induced no killing of the target cells. Cellular study revealed that rSil interacted with turbot (Scophthalmus maximus head kidney monocytes and inhibited the innate immune response of the cells, which led to enhanced cellular infection of S. iniae. Antibody blocking of the extracellular Sil produced by S. iniae significantly attenuated the infectivity of S. iniae. Consistent with these in vitro observations, in vivo study showed that administration of turbot with rSil prior to S. iniae infection significantly increased bacterial dissemination and colonization in fish tissues. Taken together, these results indicate that Sil is a novel virulence-associated bacteriostatic and an immunoregulator that promotes S. iniae infection by impairing the immune defense of host fish.

  20. Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR.

    Directory of Open Access Journals (Sweden)

    Celina M Abreu

    Full Text Available HIV infection is not cleared by antiretroviral drugs due to the presence of latently infected cells that are not eliminated with current therapies and persist in the blood and organs of infected patients. New compounds to activate these latent reservoirs have been evaluated so that, along with HAART, they can be used to activate latent virus and eliminate the latently infected cells resulting in eradication of viral infection. Here we describe three novel diterpenes isolated from the sap of Euphorbia tirucalli, a tropical shrub. These molecules, identified as ingenols, were modified at carbon 3 and termed ingenol synthetic derivatives (ISD. They activated the HIV-LTR in reporter cell lines and human PBMCs with latent virus in concentrations as low as 10 nM. ISDs were also able to inhibit the replication of HIV-1 subtype B and C in MT-4 cells and human PBMCs at concentrations of EC50 0.02 and 0.09 µM respectively, which are comparable to the EC50 of some antiretroviral currently used in AIDS treatment. Control of viral replication may be caused by downregulation of surface CD4, CCR5 and CXCR4 observed after ISD treatment in vitro. These compounds appear to be less cytotoxic than other diterpenes such as PMA and prostratin, with effective dose versus toxic dose TI>400. Although the mechanisms of action of the three ISDs are primarily attributed to the PKC pathway, downregulation of surface receptors and stimulation of the viral LTR might be differentially modulated by different PKC isoforms.

  1. Inhibition of protease-resistant prion protein formation in a transformed deer cell line infected with chronic wasting disease

    NARCIS (Netherlands)

    Raymond, G.J.; Olsen, E.A.; Lee, K.S.; Raymond, L.D.; Bryant, P.K.; Baron, G.S.; Caughey, W.S.; Kocisko, D.A.; McHolland, L.E.; Favara, C.; Langeveld, J.P.M.; Zijderveld, van F.G.; Mayer, R.T.; Miller, M.W.; Williams, E.S.; Caughey, B.

    2006-01-01

    Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected wi

  2. Fungus gnat (Bradysia impatiens) feeding and mechanical wounding inhibit Pythium aphanidermatum infection of geranium seedlings (Pelargonium x hortorum)

    Science.gov (United States)

    A series of laboratory tests were conducted to investigate potential effects of fungus gnat (Bradysia impatiens) feeding damage on susceptibility of geranium seedlings (Pelargonium x hortorum) to infection by the root rot pathogen Pythium aphanidermatum. Effects were compared to those from similar t...

  3. Interferon Alpha Production by Swine Dendritic Cells is Inhibited During Acute Infection with Foot-and-Mouth Disease Virus (FMDV)

    Science.gov (United States)

    Viruses have evolved multiple mechanisms to evade the innate immune response, particularly the actions of interferons (IFN). We have previously reported that exposure of dendritic cells (DCs) to foot-and-mouth disease virus (FMDV) in vitro yields no infection and induces a strong IFN response indic...

  4. Interferon Alpha Production by Circulating Dendritic Cells is Inhibited During Acute Infection with Foot-and-Mouth Disease Virus (FMDV)

    Science.gov (United States)

    Viruses have evolved multiple mechanisms to evade the innate immune response, particularly the actions of interferons (IFN). We have previously reported that exposure of dendritic cells (DCs) to foot-and-mouth disease virus (FMDV) in vitro yields no infection and induces a strong IFN response indica...

  5. Sugar-binding proteins potently inhibit dendritic cell human immunodeficiency virus type 1 (HIV-1) infection and dendritic-cell-directed HIV-1 transfer.

    Science.gov (United States)

    Turville, Stuart G; Vermeire, Kurt; Balzarini, Jan; Schols, Dominique

    2005-11-01

    Both endocytic uptake and viral fusion can lead to human immunodeficiency virus type 1 (HIV-1) transfer to CD4+ lymphocytes, either through directional regurgitation (infectious transfer in trans [I-IT]) or through de novo viral production in dendritic cells (DCs) resulting in a second-phase transfer to CD4+ lymphocytes (infectious second-phase transfer [I-SPT]). We have evaluated in immature monocyte-derived DCs both pathways of transfer with regard to their susceptibilities to being blocked by potential microbicidal compounds, including cyanovirin (CNV); the plant lectins Hippeastrum hybrid agglutinin, Galanthus nivalis agglutinin, Urtica dioica agglutinin, and Cymbidium hybrid agglutinin; and the glycan mannan. I-IT was a relatively inefficient means of viral transfer compared to I-SPT at both high and low levels of the viral inoculum. CNV was able to completely block I-IT at 15 microg/ml. All other compounds except mannan could inhibit I-IT by at least 90% when used at doses of 15 microg/ml. In contrast, efficient inhibition of I-SPT was remarkably harder to achieve, as 50% effective concentration levels for plant lectins and CNV to suppress this mode of HIV-1 transfer increased significantly. Thus, our findings indicate that I-SPT may be more elusive to targeting by antiviral drugs and stress the need for drugs affecting the pronounced inhibition of the infection of DCs by HIV-1.

  6. Inhibition of Tapeworm Thioredoxin and Glutathione Pathways by an Oxadiazole N-Oxide Leads to Reduced Mesocestoides vogae Infection Burden in Mice

    Directory of Open Access Journals (Sweden)

    Vivian Pasquet

    2015-06-01

    Full Text Available Parasitic flatworms cause serious infectious diseases that affect humans and livestock in vast regions of the world, yet there are few effective drugs to treat them. Thioredoxin glutathione reductase (TGR is an essential enzyme for redox homeostasis in flatworm parasites and a promising pharmacological target. We purified to homogeneity and characterized the TGR from the tapeworm Mesocestoides vogae (syn. M. corti. This purification revealed absence of conventional TR and GR. The glutathione reductase activity of the purified TGR exhibits a hysteretic behavior typical of flatworm TGRs. Consistently, M. vogae genome analysis revealed the presence of a selenocysteine-containing TGR and absence of conventional TR and GR. M. vogae thioredoxin and glutathione reductase activities were inhibited by 3,4-bis(phenylsulfonyl-1,2,5-oxadiazole N2-oxide (VL16E, an oxadiazole N-oxide previously identified as an inhibitor of fluke and tapeworm TGRs. Finally, we show that mice experimentally infected with M. vogae tetrathyridia and treated with either praziquantel, the reference drug for flatworm infections, or VL16E exhibited a 28% reduction of intraperitoneal larvae numbers compared to vehicle treated mice. Our results show that oxadiazole N-oxide is a promising chemotype in vivo and highlights the convenience of M. vogae as a model for rapid assessment of tapeworm infections in vivo.

  7. Infection of Tribolium castaneum with Bacillus thuringiensis: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination.

    Science.gov (United States)

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P; Kurtz, Joachim

    2015-12-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Infection of Tribolium castaneum with Bacillus thuringiensis: Quantification of Bacterial Replication within Cadavers, Transmission via Cannibalism, and Inhibition of Spore Germination

    Science.gov (United States)

    Milutinović, Barbara; Höfling, Christina; Futo, Momir; Scharsack, Jörn P.

    2015-01-01

    Reproduction within a host and transmission to the next host are crucial for the virulence and fitness of pathogens. Nevertheless, basic knowledge about such parameters is often missing from the literature, even for well-studied bacteria, such as Bacillus thuringiensis, an endospore-forming insect pathogen, which infects its hosts via the oral route. To characterize bacterial replication success, we made use of an experimental oral infection system for the red flour beetle Tribolium castaneum and developed a flow cytometric assay for the quantification of both spore ingestion by the individual beetle larvae and the resulting spore load after bacterial replication and resporulation within cadavers. On average, spore numbers increased 460-fold, showing that Bacillus thuringiensis grows and replicates successfully in insect cadavers. By inoculating cadaver-derived spores and spores from bacterial stock cultures into nutrient medium, we next investigated outgrowth characteristics of vegetative cells and found that cadaver-derived bacteria showed reduced growth compared to bacteria from the stock cultures. Interestingly, this reduced growth was a consequence of inhibited spore germination, probably originating from the host and resulting in reduced host mortality in subsequent infections by cadaver-derived spores. Nevertheless, we further showed that Bacillus thuringiensis transmission was possible via larval cannibalism when no other food was offered. These results contribute to our understanding of the ecology of Bacillus thuringiensis as an insect pathogen. PMID:26386058

  9. Sodium chloride inhibits the growth and infective capacity of the amphibian chytrid fungus and increases host survival rates.

    Directory of Open Access Journals (Sweden)

    Michelle Pirrie Stockwell

    Full Text Available The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.

  10. 2-Hexadecynoic Acid Inhibits Plasmodial FAS-II Enzymes and Arrest Erythrocytic and Liver Stage Plasmodium Infections

    OpenAIRE

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.

    2010-01-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the in...

  11. Broad-Spectrum Inhibition of Respiratory Virus Infection by MicroRNA Mimics Targeting p38 MAPK Signaling.

    Science.gov (United States)

    McCaskill, Jana L; Ressel, Sarah; Alber, Andreas; Redford, Jane; Power, Ultan F; Schwarze, Jürgen; Dutia, Bernadette M; Buck, Amy H

    2017-06-16

    The majority of antiviral therapeutics target conserved viral proteins, however, this approach confers selective pressure on the virus and increases the probability of antiviral drug resistance. An alternative therapeutic strategy is to target the host-encoded factors that are required for virus infection, thus minimizing the opportunity for viral mutations that escape drug activity. MicroRNAs (miRNAs) are small noncoding RNAs that play diverse roles in normal and disease biology, and they generally operate through the post-transcriptional regulation of mRNA targets. We have previously identified cellular miRNAs that have antiviral activity against a broad range of herpesvirus infections, and here we extend the antiviral profile of a number of these miRNAs against influenza and respiratory syncytial virus. From these screening experiments, we identified broad-spectrum antiviral miRNAs that caused >75% viral suppression in all strains tested, and we examined their mechanism of action using reverse-phase protein array analysis. Targets of lead candidates, miR-124, miR-24, and miR-744, were identified within the p38 mitogen-activated protein kinase (MAPK) signaling pathway, and this work identified MAPK-activated protein kinase 2 as a broad-spectrum antiviral target required for both influenza and respiratory syncytial virus (RSV) infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Inhibition of G1P3 expression found in the differential display study on respiratory syncytial virus infection

    Directory of Open Access Journals (Sweden)

    Li Lei

    2008-10-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is the leading viral pathogen associated with bronchiolitis and lower respiratory tract disease in infants and young children worldwide. The respiratory epithelium is the primary initiator of pulmonary inflammation in RSV infections, which cause significant perturbations of global gene expression controlling multiple cellular processes. In this study, differential display reverse transcription polymerase chain reaction amplification was performed to examine mRNA expression in a human alveolar cell line (SPC-A1 infected with RSV. Results Of the 2,500 interpretable bands on denaturing polyacrylamide gels, 40 (1.6% cDNA bands were differentially regulated by RSV, in which 28 (70% appeared to be upregulated and another 12 (30% appeared to be downregulated. Forty of the expressed sequence tags (EST were isolated, and 20 matched homologs in GenBank. RSV infection upregulated the mRNA expression of chemokines CC and CXC and interfered with type α/β interferon-inducible gene expression by upregulation of MG11 and downregulation of G1P3. Conclusion RSV replication could induce widespread changes in gene expression including both positive and negative regulation and play a different role in the down-regulation of IFN-α and up-regulation of IFN-γ inducible gene expression, which suggests that RSV interferes with the innate antiviral response of epithelial cells by multiple mechanisms.

  13. A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement

    Directory of Open Access Journals (Sweden)

    Tomlinson Stephen

    2010-06-01

    Full Text Available Abstract Background The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV, however, possesses several mechanisms to evade complement-mediated lysis (CoML and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. Presentation of the hypothesis Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively linked to a complement-activating human IgG1 Fc domain ((anti-gp120 × anti-C3d-Fc, can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. Testing the hypothesis Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 × anti-C3d-Fc proteins. As a control group, viruses

  14. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus

    Directory of Open Access Journals (Sweden)

    Weber Friedemann

    2006-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV is the etiologic agent of the severe acute respiratory syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of those cells can determine the course of disease. Here, we investigated the cytokine response of two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-CoV. Results A comparison with established cytokine-inducing viruses revealed that SARS-CoV only weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6. Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293. Conclusion Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the infected lungs observed in SARS patients could be due to the production of these chemokines by the infected tissue cells.

  15. Tick-borne thogoto virus infection in mice is inhibited by the orthomyxovirus resistance gene product Mx1.

    OpenAIRE

    1995-01-01

    We show that tick-transmitted Thogoto virus is sensitive to interferon-induced nuclear Mx1 protein, which is known for its specific antiviral action against orthomyxoviruses. Influenza virus-susceptible BALB/c mice (lacking a functional Mx1 gene) developed severe disease symptoms and died within days after intracerebral or intraperitoneal infection with a lethal challenge dose of Thogoto virus. In contrast, Mx1-positive congenic, influenza virus-resistant BALB.A2G-Mx1 mice remained healthy an...

  16. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    Institute of Scientific and Technical Information of China (English)

    Issam Alshami; Ahmed E Alharbi

    2014-01-01

    Objective: To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract.Methods:In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results: Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions: The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.

  17. Inhibition of caspase-8 activity reduces IFN-gamma expression by T cells from Leishmania major infection

    Directory of Open Access Journals (Sweden)

    Wânia F. Pereira

    2008-03-01

    Full Text Available Following infection with Leishmania major, T cell activation and apoptosis can be detected in draining lymph nodes of C57BL/6-infected mice. We investigated the mechanisms involved in apoptosis and cytokine expression following Tcellactivation. After two weeks of infection, apoptotic T cells were not detected in draining lymph nodes but activation with anti-CD3 induced apoptosis in both CD4 and CD8 T cells. Treatment with anti-FasLigand, caspase-8 or caspase- 9 inhibitors did not block activation-induced T-cell death. We also investigated whether the blockade of caspase-8 activity would affect the expression of type-1 or type-2 cytokines. At early stages of infection, both CD4 and CD8 T cells expressed IFN-gamma upon activation. Treatment with the caspase-8 inhibitor zIETD-fmk (benzyl-oxycarbonyl-Ile- Glu(OMe-Thr-Asp(OMe-fluoromethyl ketone reduced the proportion of CD8 T cells and IFN-gamma expression in both CD4 and CD8T cells. We conclude that a non apoptotic role of caspase-8 activity may be required for T cell-mediated type-1 responses during L. major infection.A ativação e a morte por apoptose de linfócitos T foram observadas em linfonodos drenantes de camundongos C57BL/6 infectados com Leishmania major. Investigamos os mecanismos envolvidos na apoptose e na expressão de citocinas após a ativação de linfócitos T. Após duas semanas de infecção, embora as células apoptóticas ainda não sejam detectadas em linfonodos drenantes, células T CD4 e CD8 sofrem apoptose após ativação com anti-CD3. O tratamento com anticorpo antagonista anti-Ligante de Fas, ou com inibidores das caspases-8 e 9, não bloqueou a morte induzida por ativação das células T. Investigamos também se a inibição da atividade da caspase-8 poderia afetar a expressão de citocinas tipo-1 ou tipo-2. Nos estágios iniciais da infecção, células T CD4 e CD8 de animais infectados com L. major expressaram IFN-gama após ativação. O tratamento com o inibidor

  18. Brugia malayi Antigen (BmA Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells.

    Directory of Open Access Journals (Sweden)

    Emily E I M Mouser

    Full Text Available One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA and excretory-secretory product 62 (ES-62 from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.

  19. Oral Cyclosporin A Inhibits CD4 T cell P-glycoprotein Activity in HIV-Infected Adults Initiating Treatment with Nucleoside Reverse Transcriptase Inhibitors

    Science.gov (United States)

    Hulgan, Todd; Donahue, John P.; Smeaton, Laura; Pu, Minya; Wang, Hongying; Lederman, Michael M.; Smith, Kimberly; Valdez, Hernan; Pilcher, Christopher; Haas, David W.

    2010-01-01

    Purpose P-glycoprotein limits tissue penetration of many antiretroviral drugs. We characterized effects of the P-glycoprotein substrate cyclosporin A on T cell P-glycoprotein activity in HIV-infected AIDS Clinical Trials Group study A5138 participants. Methods We studied P-glycoprotein activity on CD4 and CD8 T cells in 16 participants randomized to receive oral cyclosporin A (n=9) or not (n=7) during initiation antiretroviral therapy (ART) that did not include protease or non-nucleoside reverse transcriptase inhibitors. Results CD4 T cell P-glycoprotein activity decreased by a median of 8 percentage points with cyclosporin A/ART (difference between cyclosporin A/ART versus ART only P=0.001). Plasma trough cyclosporin A concentrations correlated with change in P-glycoprotein activity in several T cell subsets. Conclusions Oral cyclosporin A can inhibit peripheral blood CD4 T cell P-glycoprotein activity. Targeted P-glycoprotein inhibition might enhance delivery of ART to T cells. PMID:19779705

  20. Broadly Reactive Anti-Respiratory Syncytial Virus G Antibodies from Exposed Individuals Effectively Inhibit Infection of Primary Airway Epithelial Cells.

    Science.gov (United States)

    Cortjens, B; Yasuda, E; Yu, X; Wagner, K; Claassen, Y B; Bakker, A Q; van Woensel, J B M; Beaumont, T

    2017-05-15

    Respiratory syncytial virus (RSV) causes severe respiratory disease in young children. Antibodies specific for the RSV prefusion F protein have guided RSV vaccine research, and in human serum, these antibodies contribute to >90% of the neutralization response; however, detailed insight into the composition of the human B cell repertoire against RSV is still largely unknown. In order to study the B cell repertoire of three healthy donors for specificity against RSV, CD27(+) memory B cells were isolated and immortalized using BCL6 and Bcl-xL. Of the circulating memory B cells, 0.35% recognized RSV-A2-infected cells, of which 59% were IgA-expressing cells and 41% were IgG-expressing cells. When we generated monoclonal B cells selected for high binding to RSV-infected cells, 44.5% of IgG-expressing B cells and 56% of IgA-expressing B cells reacted to the F protein, while, unexpectedly, 41.5% of IgG-expressing B cells and 44% of IgA expressing B cells reacted to the G protein. Analysis of the G-specific antibodies revealed that 4 different domains on the G protein were recognized. These epitopes predicted cross-reactivity between RSV strain A (RSV-A) and RSV-B and matched the potency of antibodies to neutralize RSV in HEp-2 cells and in primary epithelial cell cultures. G-specific antibodies were also able to induce antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis of RSV-A2-infected cells. However, these processes did not seem to depend on a specific epitope. In conclusion, healthy adults harbor a diverse repertoire of RSV glycoprotein-specific antibodies with a broad range of effector functions that likely play an important role in antiviral immunity.IMPORTANCE Human RSV remains the most common cause of severe lower respiratory tract disease in premature babies, young infants, the elderly, and immunocompromised patients and plays an important role in asthma exacerbations. In developing countries, RSV lower respiratory tract disease

  1. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2015-12-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL. This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5 on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  2. High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner.

    Science.gov (United States)

    Sato, Yuichiro; Morimoto, Kinjiro; Hirayama, Makoto; Hori, Kanji

    2011-02-11

    The carbohydrate binding profile of the red algal lectin KAA-2 from Kappaphycus alvarezii was evaluated by a centrifugal ultrafiltration-HPLC method using pyridylaminated oligosaccharides. KAA-2 bound exclusively to high mannose type N-glycans, but not to other glycans such as complex type, hybrid type, or the pentasaccharide core of N-glycans. This lectin exhibited a preference for an exposed α1-3 Man on a D2 arm in a similar manner to Eucheuma serra agglutinin (ESA-2), which shows various biological activities, such as anti-HIV and anti-carcinogenic activity. We tested the anti-influenza virus activity of KAA-2 against various strains including the recent pandemic H1N1-2009 influenza virus. KAA-2 inhibited infection of various influenza strains with EC50s of low nanomolar levels. Immunofluorescence microscopy using an anti-influenza antibody demonstrated that the antiviral activity of KAA-2 was exerted by interference with virus entry into host cells. This mechanism was further confirmed by the evidence of direct binding of KAA-2 to a viral envelope protein, hemagglutinin (HA), using an ELISA assay. These results indicate that this lectin would be useful as a novel antiviral reagent for the prevention of infection.

  3. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival.

    Science.gov (United States)

    Panfil, Amanda R; Al-Saleem, Jacob; Howard, Cory M; Mates, Jessica M; Kwiek, Jesse J; Baiocchi, Robert A; Green, Patrick L

    2015-12-30

    Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2-3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  4. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora.

    Science.gov (United States)

    Blount, Kenneth F; Megyola, Cynthia; Plummer, Mark; Osterman, David; O'Connell, Tim; Aristoff, Paul; Quinn, Cheryl; Chrusciel, R Alan; Poel, Toni J; Schostarez, Heinrich J; Stewart, Catherine A; Walker, Daniel P; Wuts, Peter G M; Breaker, Ronald R

    2015-09-01

    Novel mechanisms of action and new chemical scaffolds are needed to rejuvenate antibacterial drug discovery, and riboswitch regulators of bacterial gene expression are a promising class of targets for the discovery of new leads. Herein, we report the characterization of 5-(3-(4-fluorophenyl)butyl)-7,8-dimethylpyrido[3,4-b]quinoxaline-1,3(2H,5H)-dione (5FDQD)-an analog of riboflavin that was designed to bind riboswitches that naturally recognize the essential coenzyme flavin mononucleotide (FMN) and regulate FMN and riboflavin homeostasis. In vitro, 5FDQD and FMN bind to and trigger the function of an FMN riboswitch with equipotent activity. MIC and time-kill studies demonstrated that 5FDQD has potent and rapidly bactericidal activity against Clostridium difficile. In C57BL/6 mice, 5FDQD completely prevented the onset of lethal antibiotic-induced C. difficile infection (CDI). Against a panel of bacteria representative of healthy bowel flora, the antibacterial selectivity of 5FDQD was superior to currently marketed CDI therapeutics, with very little activity against representative strains from the Bacteroides, Lactobacillus, Bifidobacterium, Actinomyces, and Prevotella genera. Accordingly, a single oral dose of 5FDQD caused less alteration of culturable cecal flora in mice than the comparators. Collectively, these data suggest that 5FDQD or closely related analogs could potentially provide a high rate of CDI cure with a low likelihood of infection recurrence. Future studies will seek to assess the role of FMN riboswitch binding to the mechanism of 5FDQD antibacterial action. In aggregate, our results indicate that riboswitch-binding antibacterial compounds can be discovered and optimized to exhibit activity profiles that merit preclinical and clinical development as potential antibacterial therapeutic agents.

  5. Favipiravir (T-705 inhibits Junin virus infection and reduces mortality in a guinea pig model of Argentine hemorrhagic fever.

    Directory of Open Access Journals (Sweden)

    Brian B Gowen

    Full Text Available BACKGROUND: Junín virus (JUNV, the etiologic agent of Argentine hemorrhagic fever (AHF, is classified by the NIAID and CDC as a Category A priority pathogen. Presently, antiviral therapy for AHF is limited to immune plasma, which is readily available only in the endemic regions of Argentina. T-705 (favipiravir is a broadly active small molecule RNA-dependent RNA polymerase inhibitor presently in clinical evaluation for the treatment of influenza. We have previously reported on the in vitro activity of favipiravir against several strains of JUNV and other pathogenic New World arenaviruses. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the efficacy of favipiravir in vivo, guinea pigs were challenged with the pathogenic Romero strain of JUNV, and then treated twice daily for two weeks with oral or intraperitoneal (i.p. favipiravir (300 mg/kg/day starting 1-2 days post-infection. Although only 20% of animals treated orally with favipiravir survived the lethal challenge dose, those that succumbed survived considerably longer than guinea pigs treated with placebo. Consistent with pharmacokinetic analysis that showed greater plasma levels of favipiravir in animals dosed by i.p. injection, i.p. treatment resulted in a substantially higher level of protection (78% survival. Survival in guinea pigs treated with ribavirin was in the range of 33-40%. Favipiravir treatment resulted in undetectable levels of serum and tissue viral titers and prevented the prominent thrombocytopenia and leucopenia observed in placebo-treated animals during the acute phase of infection. CONCLUSIONS/SIGNIFICANCE: The remarkable protection afforded by i.p. favipiravir intervention beginning 2 days after challenge is the highest ever reported for a small molecule antiviral in the difficult to treat guinea pig JUNV challenge model. These findings support the continued development of favipiravir as a promising antiviral against JUNV and other related arenaviruses.

  6. Nitric oxide inhibits the accumulation of CD4+CD44hiTbet+CD69lo T cells in mycobacterial infection

    Science.gov (United States)

    Pearl, John E.; Torrado, Egidio; Tighe, Michael; Fountain, Jeffrey J.; Solache, Alejandra; Strutt, Tara; Swain, Susan; Appelberg, Rui; Cooper, Andrea M

    2013-01-01

    Summary Animals lacking the inducible nitric oxide synthase gene (nos2−/−) are less susceptible to M. avium strain 25291 and lack nitric oxide-mediated immunomodulation of CD4+ T cells. Here we show that the absence of nos2 results in increased accumulation of neutrophils and both CD4+ and CD8+ T cells within the M. avium-containing granuloma. Examination of the T-cell phenotype in M. avium-infected mice demonstrated that CD4+CD44hi effector T cells expressing the Th1 transcriptional regulator T-bet (T-bet+) were specifically reduced by the presence of nitric oxide. Importantly, the T-bet+ effector population could be separated into CD69hi and CD69lo populations, with the CD69lo population only able to accumulate during chronic infection within infected nos2−/− mice. Transcriptomic comparison between CD4+CD44hiCD69hi and CD4+CD44hiCD69lo populations revealed that CD4+CD44hiCD69lo cells had higher expression of the integrin itgb1/itga4 (VLA-4, CD49d/CD29). Inhibition of Nos2 activity allowed increased accumulation of the CD4+CD44hiT-bet+CD69lo population in WT mice as well as increased expression of VLA-4. These data support the hypothesis that effector T cells in mycobacterial granulomata are not a uniform effector population but exist in distinct subsets with differential susceptibility to the regulatory effects of nitric oxide. PMID:22890814

  7. Chemoenzymatic synthesis of artificial glycopolypeptides containing multivalent sialyloligosaccharides with a gamma-polyglutamic acid backbone and their effect on inhibition of infection by influenza viruses.

    Science.gov (United States)

    Ogata, Makoto; Murata, Takeomi; Murakami, Kouki; Suzuki, Takashi; Hidari, Kazuya I P J; Suzuki, Yasuo; Usui, Taichi

    2007-02-01

    Highly water-soluble, artificial glycopolypeptides with a gamma-polyglutamic acid (gamma-PGA) backbone derived from Bacillus subtilis sp. and multivalent sialyloligosaccharide units have been chemoenzymatically synthesized as potential polymeric inhibitors of infection by bird and human influenza viruses. 5-Trifluoroacetamidopentyl beta-N-acetyllactosaminide and 5-trifluoroacetamidopentyl beta-lactoside were enzymatically synthesized from LacNAc and lactose, respectively, by cellulase-mediated condensation with 5-trifluoroacetamido-1-pentanol. After deacetylation, the resulting 5-aminopentyl beta-LacNAc and beta-lactoside glycosides were coupled to the alpha-carboxyl groups of the gamma-PGA side chains. The artificial glycopolypeptides carrying LacNAc and lactose were further converted to Neu5Acalpha2-(3/6)Galbeta1-4Glcbeta and Neu5Acalpha2-(3/6)Galbeta1-4GlcNAcbeta sialyloligosaccharide units by alpha2,3- and alpha2,6-sialyltransferase, respectively. The interaction of these glycopolypeptides with various influenza virus strains has been investigated by three different methods. Glycopolypeptides carrying Neu5Acalpha2,6LacNAc inhibited hemagglutination mediated by influenza A and B viruses, and their relative binding affinities for hemagglutinin were 10(2)- to 10(4)-fold higher than that of the naturally occurring fetuin control. A glycopolypeptide carrying Neu5Acalpha2,6LacNAc inhibited infection by A/Memphis/1/71 (H3N2) 93 times more strongly than fetuin, as assessed by cytopathic effects on virus-infected MDCK cells. The avian virus [A/duck/Hong kong/4/78 (H5N3)] bound strongly to Neu5Acalpha2,3LacNAc/Lac-carrying glycopolypeptides, whereas the human virus [A/Memphis/1/71 (H3N2)] bound to Neu5Acalpha2,6LacNAc in preference to Neu5Acalpha2,6Lac. Taken together, these results indicate that the binding of viruses to terminal sialic acids is markedly affected by the structure of the asialo portion, in this case either LacNAc or lactose, in the sugar chain of

  8. Regulatory B cells inhibit cytotoxic T lymphocyte (CTL activity and elimination of infected CD4 T cells after in vitro reactivation of HIV latent reservoirs.

    Directory of Open Access Journals (Sweden)

    Basile Siewe

    Full Text Available During HIV infection, IL-10/IL-10 receptor and programmed death-1 (PD-1/programmed death-1-ligand (PD-L1 interactions have been implicated in the impairment of cytotoxic T lymphocyte (CTL activity. Despite antiretroviral therapy (ART, attenuated anti-HIV CTL functions present a major hurdle towards curative measures requiring viral eradication. Therefore, deeper understanding of the mechanisms underlying impaired CTL is crucial before HIV viral eradication is viable. The generation of robust CTL activity necessitates interactions between antigen-presenting cells (APC, CD4+ and CD8+ T cells. We have shown that in vitro, IL-10hiPD-L1hi regulatory B cells (Bregs directly attenuate HIV-specific CD8+-mediated CTL activity. Bregs also modulate APC and CD4+ T cell function; herein we characterize the Breg compartment in uninfected (HIVNEG, HIV-infected "elite controllers" (HIVEC, ART-treated (HIVART, and viremic (HIVvir, subjects, and in vitro, assess the impact of Bregs on anti-HIV CTL generation and activity after reactivation of HIV latent reservoirs using suberoylanilide hydroxamic acid (SAHA. We find that Bregs from HIVEC and HIVART subjects exhibit comparable IL-10 expression levels significantly higher than HIVNEG subjects, but significantly lower than HIVVIR subjects. Bregs from HIVEC and HIVART subjects exhibit comparable PD-L1 expression, significantly higher than in HIVVIR and HIVNEG subjects. SAHA-treated Breg-depleted PBMC from HIVEC and HIVART subjects, displayed enhanced CD4+ T-cell proliferation, significant upregulation of antigen-presentation molecules, increased frequency of CD107a+ and HIV-specific CD8+ T cells, associated with efficient elimination of infected CD4+ T cells, and reduction in integrated viral DNA. Finally, IL-10-R and PD-1 antibody blockade partially reversed Breg-mediated inhibition of CD4+ T-cell proliferation. Our data suggest that, possibly, via an IL-10 and PD-L1 synergistic mechanism; Bregs likely inhibit APC

  9. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    KAUST Repository

    Kremb, Stephan

    2014-08-21

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  10. Inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and application of statins as a novel effective therapeutic approach against Acanthamoeba infections.

    Science.gov (United States)

    Martín-Navarro, Carmen María; Lorenzo-Morales, Jacob; Machin, Rubén P; López-Arencibia, Atteneri; García-Castellano, José Manuel; de Fuentes, Isabel; Loftus, Brendan; Maciver, Sutherland K; Valladares, Basilio; Piñero, José E

    2013-01-01

    Acanthamoeba is an opportunistic pathogen in humans, whose infections most commonly manifest as Acanthamoeba keratitis or, more rarely, granulomatous amoebic encephalitis. Although there are many therapeutic options for the treatment of Acanthamoeba, they are generally lengthy and/or have limited efficacy. Therefore, there is a requirement for the identification, validation, and development of novel therapeutic targets against these pathogens. Recently, RNA interference (RNAi) has been widely used for these validation purposes and has proven to be a powerful tool for Acanthamoeba therapeutics. Ergosterol is one of the major sterols in the membrane of Acanthamoeba. 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase is an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, one of the precursors for the production of cholesterol in humans and ergosterol in plants, fungi, and protozoa. Statins are compounds which inhibit this enzyme and so are promising as chemotherapeutics. In order to validate whether this enzyme could be an interesting therapeutic target in Acanthamoeba, small interfering RNAs (siRNAs) against HMG-CoA were developed and used to evaluate the effects induced by the inhibition of Acanthamoeba HMG-CoA. It was found that HMG-CoA is a potential drug target in these pathogenic free-living amoebae, and various statins were evaluated in vitro against three clinical strains of Acanthamoeba by using a colorimetric assay, showing important activities against the tested strains. We conclude that the targeting of HMG-CoA and Acanthamoeba treatment using statins is a novel powerful treatment option against Acanthamoeba species in human disease.

  11. Epimedium polysaccharide and propolis flavone can synergistically inhibit the cellular infectivity of NDV and improve the curative effect of ND in chicken.

    Science.gov (United States)

    Fan, Yunpeng; Liu, Jiaguo; Wang, Deyun; Hu, Yuanliang; Yang, Shujuan; Wang, Junmin; Guo, Liwei; Zhao, Xiaona; Wang, Huali; Jiang, Yu

    2011-04-01

    Four prescriptions, epimedium flavone plus propolis flavone (EF-PF), epimedium flavone plus propolis extracts (EF-PE), epimedium polysaccharide plus propolis flavone (EP-PF) and epimedium polysaccharide plus propolis extracts (EP-PE), were prepared and their antiviral effects were compared. In test in vitro, the four prescriptions within safety concentration scope and Newcastle disease virus (NDV) were added into cultured chick embryo fibroblast (CEF) in three modes, pre-, post-adding drug and simultaneous-adding drug and virus after being mixed, the cellular A(570) values were determined by MTT method and the highest virus inhibitory rates were calculated to compare the antiviral activity of four prescriptions. In test in vivo, three hundred 21-day-old chickens were randomly divided into 6 groups and challenged with NDV except for blank control group. After 24h the chickens in four prescription groups were injected with corresponding drugs respectively, in virus control and blank control groups, with physiological saline, once a day for three successive days. On days 3, 7 and 14 after challenge, the serum antibody titer was determined. On day 15 after challenge, the mortality, morbidity and cure rate in every group were counted. The results showed that the most of A(570) values in EP-PF group were numberly or significantly larger than those of the corresponding virus control group and the highest virus inhibitory rates of EP-PF at optimal concentration group were the highest among four prescription groups in three drug-adding modes, which confirmed that EP-PF could significantly inhibit the infectivity of NDV to CEF, its action was stronger than those of other three prescriptions; in EP-PF group, the antibody titers and cure rate were the highest and the mortality and morbidity were lowest presenting numberly or significantly differences in comparison with other three prescription groups. These results indicated that epimedium polysaccharide and propolis flavone

  12. The Effects of Berberine and Palmatine on Efflux Pumps Inhibition with Different Gene Patterns in Pseudomonas aeruginosa Isolated from Burn Infections

    Science.gov (United States)

    Aghayan, Seyed Sajjad; Kalalian Mogadam, Hamidreza; Fazli, Mozhgan; Darban-Sarokhalil, Davood; Khoramrooz, Seyed Sajjad; Jabalameli, Fereshteh; Yaslianifard, Somayeh; Mirzaii, Mehdi

    2017-01-01

    Background: Related Multidrug Resistance (MDR) to efflux pumps is a significant problem in treating infections caused by Pseudomonas aeruginosa (P. aeruginosa). Plant compounds have been identified as Pump Inhibitors (EPIs). In the current study, the potential effect of Berberine and Palmatine as EPIs were investigated on efflux pump inhibition through focusing on different gene patterns in P. aeruginosa isolated from burn infections. Methods: All isolates were collected and identified using the standard biochemical tests. Antimicrobial sensitivity was performed based on disk agar diffusion method for 12 antibiotics. MIC-MBC tests were also performed based on the broth microdilution method to detect synergistic relationship between ciprofloxacin, Berberine and Palmatine. Detection of mexA, mexB, mexC, mexD, mexE, mexF and mexX was conducted by PCR assay. Fisher’s Exact test and Logistic Regression were used as statistical tools. Results: A total of 60 P. aeruginosa isolates were collected. The highest and lowest levels of resistance were found to be respectively against clindamycin and tigecycline. Comparing the MIC with MBC distribution, it was found that Berberine and Palmatine lower the MIC-MBC level of ciprofloxacin. The PCR results indicated that the highest frequency is about MexAB-OprM operon. The statistical analysis among different gene patterns of efflux pumps showed that there were no significant relationships between the effectiveness of Berberine and Palmatine (p>0.05). Conclusion: It can be speculated that Berberine and Palmatine both act as EPIs and can be used as auxiliary treatments with the purpose of increasing the effect of available antibiotics as well as decreasing the emergence of MDR bacteria. The efficiency of these combinations should be studied further under in vivo conditions to have a more comprehensive conclusion regarding this issue. PMID:28090273

  13. Cytoplasmic translocation of polypyrimidine tract-binding protein and its binding to viral RNA during Japanese encephalitis virus infection inhibits virus replication.

    Directory of Open Access Journals (Sweden)

    Deepika Bhullar

    Full Text Available Japanese encephalitis virus (JEV has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5'- and 3'-non-coding regions (NCRs. The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB interacts in vitro with both the 5'-NCR of the positive-sense genomic RNA--5NCR(+, and its complementary sequence in the negative-sense replication intermediate RNA--3NCR(-. The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(- RNA with viral RNA-dependent RNA polymerase (NS5 protein, an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.

  14. Cytoplasmic localized infected cell protein 0 (bICP0) encoded by bovine herpesvirus 1 inhibits beta interferon promoter activity and reduces IRF3 (interferon response factor 3) protein levels

    Science.gov (United States)

    da Silva, Leticia Frizzo; Gaudreault, Natasha; Jones, Clinton

    2011-01-01

    Bovine herpesvirus 1 (BHV-1), an alpha-herpesvirinae subfamily member, establishes a life-long latent infection in sensory neurons. Periodically, BHV-1 reactivates from latency, infectious virus is spread, and consequently virus transmission occurs. BHV-1 acute infection causes upper respiratory track infections and conjunctivitis in infected cattle. As a result of transient immunesuppression, BHV-1 infections can also lead to life-threatening secondary bacterial pneumonia that is referred to as bovine respiratory disease. The infected cell protein 0 (bICP0) encoded by BHV-1 reduces human beta-interferon (IFN-β) promoter activity, in part, by inducing degradation of interferon response factor 3 (IRF3) and interacting with IRF7. In contrast to humans, cattle contain three IFN-β genes. All three bovine IFN-β proteins have anti-viral activity: but each IFN-β gene has a distinct transcriptional promoter. We have recently cloned and characterized the three bovine IFN-β promoters. Relative to the human IFN-β promoter, each of the three IFN-β promoters contain differences in the four positive regulatory domains that are required for virus-induced activity. In this study, we demonstrate that bICP0 effectively inhibits bovine IFN-β promoter activity following transfection of low passage bovine cells with interferon response factor 3 (IRF3) or IRF7. A bICP0 mutant that localizes to the cytoplasm inhibits bovine IFN-β promoter activity as efficiently as wt bICP0. The cytoplasmic localized bICP0 protein also induced IRF3 degradation with similar efficiency as wt bICP0. In summary, these studies suggested that cytoplasmic localized bICP0 plays a role in inhibiting the IFN-β response during productive infection. PMID:21689696

  15. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection

    Directory of Open Access Journals (Sweden)

    José Alberto Aguilar-Briseño

    2015-01-01

    Full Text Available Sulphated polysaccharides (SP extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata, and of its mixture with a fucoidan (SP from Cladosiphon okamuranus, against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage.

  16. Sterile-α- and armadillo motif-containing protein inhibits the TRIF-dependent downregulation of signal regulatory protein α to interfere with intracellular bacterial elimination in Burkholderia pseudomallei-infected mouse macrophages.

    Science.gov (United States)

    Baral, Pankaj; Utaisincharoen, Pongsak

    2013-09-01

    Burkholderia pseudomallei, the causative agent of melioidosis, evades macrophage killing by suppressing the TRIF-dependent pathway, leading to inhibition of inducible nitric oxide synthase (iNOS) expression. We previously demonstrated that virulent wild-type B. pseudomallei inhibits the TRIF-dependent pathway by upregulating sterile-α- and armadillo motif-containing protein (SARM) and by inhibiting downregulation of signal regulatory protein α (SIRPα); both molecules are negative regulators of Toll-like receptor signaling. In contrast, the less virulent lipopolysaccharide (LPS) mutant of B. pseudomallei is unable to exhibit these features and is susceptible to macrophage killing. However, the functional relationship of these two negative regulators in the evasion of macrophage defense has not been elucidated. We demonstrated here that SIRPα downregulation was observed after inhibition of SARM expression by small interfering RNA in wild-type-infected macrophages, indicating that SIRPα downregulation is regulated by SARM. Furthermore, this downregulation requires activation of the TRIF signaling pathway, as we observed abrogation of SIRPα downregulation as well as restricted bacterial growth in LPS mutant-infected TRIF-depleted macrophages. Although inhibition of SARM expression is correlated to SIRPα downregulation and iNOS upregulation in gamma interferon-activated wild-type-infected macrophages, these phenomena appear to bypass the TRIF-dependent pathway. Similar to live bacteria, the wild-type LPS is able to upregulate SARM and to prevent SIRPα downregulation, implying that the LPS of B. pseudomallei may play a crucial role in regulating the expression of these two negative regulators. Altogether, our findings show a previously unrecognized role of B. pseudomallei-induced SARM in inhibiting SIRPα downregulation-mediated iNOS upregulation, facilitating the ability of the bacterium to multiply in macrophages.

  17. SseK1 and SseK3 Type III Secretion System Effectors Inhibit NF-κB Signaling and Necroptotic Cell Death in Salmonella-Infected Macrophages

    Science.gov (United States)

    Günster, Regina A.; Matthews, Sophie A.; Holden, David W.

    2017-01-01

    ABSTRACT Within host cells such as macrophages, Salmonella enterica translocates virulence (effector) proteins across its vacuolar membrane via the SPI-2 type III secretion system. Previously, it was shown that when expressed ectopically, the effectors SseK1 and SseK3 inhibit tumor necrosis factor alpha (TNF-α)-induced NF-κB activation. In this study, we show that ectopically expressed SseK1, SseK2, and SseK3 suppress TNF-α-induced, but not Toll-like receptor 4- or interleukin-induced, NF-κB activation. Inhibition required a DXD motif in SseK1 and SseK3, which is essential for the transfer of N-acetylglucosamine to arginine residues (arginine-GlcNAcylation). During macrophage infection, SseK1 and SseK3 inhibited NF-κB activity in an additive manner. SseK3-mediated inhibition of NF-κB activation did not require the only known host-binding partner of this effector, the E3-ubiquitin ligase TRIM32. SseK proteins also inhibited TNF-α-induced cell death during macrophage infection. Despite SseK1 and SseK3 inhibiting TNF-α-induced apoptosis upon ectopic expression in HeLa cells, the percentage of infected macrophages undergoing apoptosis was SseK independent. Instead, SseK proteins inhibited necroptotic cell death during macrophage infection. SseK1 and SseK3 caused GlcNAcylation of different proteins in infected macrophages, suggesting that these effectors have distinct substrate specificities. Indeed, SseK1 caused the GlcNAcylation of the death domain-containing proteins FADD and TRADD, whereas SseK3 expression resulted in weak GlcNAcylation of TRADD but not FADD. Additional, as-yet-unidentified substrates are likely to explain the additive phenotype of a Salmonella strain lacking both SseK1 and SseK3. PMID:28069818

  18. A ROLE OF ARGININE DEIMINASE FROM STREPTOCOCCUS PYOGENES M49-16 IN PROMOTING INFECTION AND INHIBITION OF ENDOTHELIAL CELL PROLIFERATION

    Directory of Open Access Journals (Sweden)

    E. A. Starikova

    2016-01-01

    Full Text Available Arginine deiminase is a bacterial enzyme that hydrolyses arginine with citrulline and ammonia formation. In recent years, increasing evidence is reported about in vitro and in vivo anti-angiogenic action of arginine deiminase from Mycoplasma spp. Our studies have shown that arginine deiminase from Streptococcus pyogenes M22 exerts similar effects, i.e., inhibits proliferation and other endothelial cell functions related to angiogenesis. To confirm a leading role of arginine deiminase, as a factor responsible for the anti-proliferative effect, we have constructed an isogenic S. pyogenes M49-16 mutant unable to express arginine deiminase. A comparative analysis of anti-proliferative activity of original S. pyogenes M49-16 strain and its isogenic mutant with arginine deiminase gene deletion (M49-16delAD was performed, using an endothelial EA.hy926 cell line. The bacterial supernatantes obtained by sonication of S. pyogenes M49-16 and M49-16delAD were tested. The ability of S. pyogenes M49-16 and M49-16delAD supernatantes to hydrolyze arginine was assessed. Moreover, we compared effects of the Streptococcus supernatantes upon proliferative activity of endothelial cells and their distribution through the cell cycle phases.Supernatantes from original S. pyogenes 49-16 strain were shown to inhibit endothelial cell proliferation to a significant degree (down to 50% of controls. This effect was due to its arginine hydrolyzing activity, i. e. addition of exogenous arginine to the medium resulted into recovery of the cell proliferation levels. The supernatante from S. pyogenes M49-16delAD showed a lower ability to hydrolyze arginine as compared to the supernatante of original strain. Culturing of endothelial cells supplied with S. pyogenes M49-16delAD supernatantes resulted into reduction of their proliferative activity by 10% of control values. Analysis of the cell cycle distribution was concordant with these results. S. pyogenes M49-16 supernatante

  19. Role of host GTPases in infection by Listeria monocytogenes.

    Science.gov (United States)

    Ireton, Keith; Rigano, Luciano A; Dowd, Georgina C

    2014-09-01

    The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin-based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB-mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial-induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin-based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell-to-cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighbouring cells. The human GTPase Cdc42, its activator Tuba, and its effector N-WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42-GTP or Tuba/N-WASP interaction.

  20. RNase P-Associated External Guide Sequence Effectively Reduces the Expression of Human CC-Chemokine Receptor 5 and Inhibits the Infection of Human Immunodeficiency Virus 1

    Directory of Open Access Journals (Sweden)

    Wenbo Zeng

    2013-01-01

    Full Text Available External guide sequences (EGSs represent a new class of RNA-based gene-targeting agents, consist of a sequence complementary to a target mRNA, and render the target RNA susceptible to degradation by ribonuclease P (RNase P. In this study, EGSs were constructed to target the mRNA encoding human CC-chemokine receptor 5 (CCR5, one of the primary coreceptors for HIV. An EGS RNA, C1, efficiently directed human RNase P to cleave the CCR5 mRNA sequence in vitro. A reduction of about 70% in the expression level of both CCR5 mRNA and protein and an inhibition of more than 50-fold in HIV (R5 strain Ba-L p24 production were observed in cells that expressed C1. In comparison, a reduction of about 10% in the expression of CCR5 and viral growth was found in cells that either did not express the EGS or produced a “disabled” EGS which carried nucleotide mutations that precluded RNase P recognition. Furthermore, the same C1-expressing cells that were protected from R5 strain Ba-L retained susceptibility to X4 strain IIIB, which uses CXCR4 as the coreceptor instead of CCR5, suggesting that the RNase P-mediated cleavage induced by the EGS is specific for the target CCR5 but not the closely related CXCR4. Our results provide direct evidence that EGS RNAs against CCR5 are effective and specific in blocking HIV infection and growth. These results also demonstrate the feasibility to develop highly effective EGSs for anti-HIV therapy.

  1. The anti-fibrotic effect of inhibition of TGFβ-ALK5 signalling in experimental pulmonary fibrosis in mice is attenuated in the presence of concurrent γ-herpesvirus infection

    Directory of Open Access Journals (Sweden)

    Natalia Smoktunowicz

    2015-09-01

    Full Text Available TGFβ-ALK5 pro-fibrotic signalling and herpesvirus infections have been implicated in the pathogenesis and exacerbation of pulmonary fibrosis. In this study we addressed the role of TGFβ-ALK5 signalling during the progression of fibrosis in a two-hit mouse model of murine γ-herpesvirus 68 (MHV-68 infection on the background of pre-existing bleomycin-induced pulmonary fibrosis. Assessment of total lung collagen levels in combination with ex vivo micro-computed tomography (µCT analysis of whole lungs demonstrated that MHV-68 infection did not enhance lung collagen deposition in this two-hit model but led to a persistent and exacerbated inflammatory response. Moreover, µCT reconstruction and analysis of the two-hit model revealed distinguishing features of diffuse ground-glass opacities and consolidation superimposed on pre-existing fibrosis that were reminiscent of those observed in acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF. Virally-infected murine fibrotic lungs further displayed evidence of extensive inflammatory cell infiltration and increased levels of CCL2, TNFα, IL-1β and IL-10. Blockade of TGFβ-ALK5 signalling attenuated lung collagen accumulation in bleomycin-alone injured mice, but this anti-fibrotic effect was reduced in the presence of concomitant viral infection. In contrast, inhibition of TGFβ-ALK5 signalling in virally-infected fibrotic lungs was associated with reduced inflammatory cell aggregates and increased levels of the antiviral cytokine IFNγ. These data reveal newly identified intricacies for the TGFβ-ALK5 signalling axis in experimental lung fibrosis, with different outcomes in response to ALK5 inhibition depending on the presence of viral infection. These findings raise important considerations for the targeting of TGFβ signalling responses in the context of pulmonary fibrosis.

  2. The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6.

    Science.gov (United States)

    Lau, Betty; Poole, Emma; Krishna, Benjamin; Sellart, Immaculada; Wills, Mark R; Murphy, Eain; Sinclair, John

    2016-08-05

    The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.

  3. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells.

    Science.gov (United States)

    Liu, Sufang; Li, Hongde; Chen, Lin; Yang, Lifang; Li, Lili; Tao, Yongguan; Li, Wei; Li, Zijian; Liu, Haidan; Tang, Min; Bode, Ann M; Dong, Zigang; Cao, Ya

    2013-03-01

    Epstein-Barr virus (EBV) reactivation into the lytic cycle plays certain roles in the development of EBV-associated diseases, including nasopharyngeal carcinoma and lymphoma. In this study, we investigated the effects of the tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) on EBV spontaneous lytic infection and the mechanism(s) involved in EBV-positive cells. We found that EGCG could effectively inhibit the constitutive lytic infection of EBV at the DNA, gene transcription and protein levels by decreasing the phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt. By using cellular signaling pathway-specific inhibitors, we also explored the signaling mechanisms underlying the inhibitory effects of EGCG on EBV spontaneous lytic infection in cell models. Results show that specific inhibitors of Mitogen-Activated Protein Kinase Kinase (MEK) (PD98059) and phosphatidylinositol 3-kinase [PI3-K (LY294002)] markedly downregulated gene transcription and expression of BZLF1 and BMRF1 indicating that the MEK/ERK1/2 and PI3-K/Akt pathways are involved in the EBV spontaneous lytic cycle cascade. Therefore, one of the mechanisms by which EGCG inhibits EBV spontaneous lytic infection appears to involve the suppression of the activation of MEK/ERK1/2 and PI3-K/Akt signaling.

  4. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection

    Directory of Open Access Journals (Sweden)

    Mohammed Fayaz A

    2012-09-01

    anti-HIV activity was primarily mediated by the Ag-NPs, which are associated with the PUC. In addition, the data showed that both macrophage (M-tropic and T lymphocyte (T-tropic strains of HIV-1 were highly sensitive to the Ag-NPs-coated PUC. Furthermore, we also showed that the Ag-NPs-coated PUC was able to inhibit the growth of bacteria and fungi. These results demonstrated that the Ag-NPs-coated PUC is able to directly inactivate the microbe’s infectious ability and provides another defense line against these sexually transmitted microbial infections.Keywords: silver nanoparticles, condom, HIV-1, HSV-1/2, antimicrobial

  5. Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells.

    Science.gov (United States)

    Zhou, Beixian; Yang, Zifeng; Feng, Qitong; Liang, Xiaoli; Li, Jing; Zanin, Mark; Jiang, Zhihong; Zhong, Nanshan

    2017-03-06

    Baphicacanthus cusia root also names "Nan Ban Lan Gen" has been traditionally used to prevent and treat influenza A virus infections. Here, we identified a peptide derivative, aurantiamide acetate (compound E17), as an active compound in extracts of B. cusia root. Although studies have shown that aurantiamide acetate possesses antioxidant and anti-inflammatory properties, the effects and mechanism by which it functions as an anti-viral or as an anti-inflammatory during influenza virus infection are poorly defined. Here we investigated the anti-viral activity and possible mechanism of compound E17 against influenza virus infection. The anti-viral activity of compound E17 against Influenza A virus (IAV) was determined using the cytopathic effect (CPE) inhibition assay. Viruses were titrated on Madin-Darby canine kidney (MDCK) cells by plaque assays. Ribonucleoprotein (RNP) luciferase reporter assay was further conducted to investigate the effect of compound E17 on the activity of the viral polymerase complex. HEK293T cells with a stably transfected NF-κB luciferase reporter plasmid were employed to examine the activity of compound E17 on NF-κB activation. Activation of the host signaling pathway induced by IAV infection in the absence or presence of compound E17 was assessed by western blotting. The effect of compound E17 on IAV-induced expression of pro-inflammatory cytokines was measured by real-time quantitative PCR and Luminex assays. Compound E17 exerted an inhibitory effect on IAV replication in MDCK cells but had no effect on avian IAV and influenza B virus. Treatment with compound E17 resulted in a reduction of RNP activity and virus titers. Compound E17 treatment inhibited the transcriptional activity of NF-κB in a NF-κB luciferase reporter stable HEK293 cell after stimulation with TNF-α. Furthermore, compound E17 blocked the activation of the NF-κB signaling pathway and decreased mRNA expression levels of pro-inflammatory genes in infected cells

  6. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from em>P. yoelii infection

    DEFF Research Database (Denmark)

    Chen, M; Theander, T G; Christensen, S B;

    1994-01-01

    Licochalcone A, isolated from Chinese licorice roots, inhibited the in vitro growth of both chloroquine-susceptible (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains in a [3H]hypoxanthine uptake assay. The growth inhibition of the chloroquine-resistant strain by licochalcone A w...

  7. Recombinant envelope glycoprotein domain Ⅲ of dengue virus inhibit virus infection%重组登革病毒E蛋白结构域Ⅲ抑制登革病毒感染的初步研究

    Institute of Scientific and Technical Information of China (English)

    陆鹏; 杭小同; 梁米芳; 李德新; 韦艳; 曹守春; 李建东; 刘琴芝; 张全福; 李川; 苗芳; 张硕

    2008-01-01

    目的 了解原核表达的登革病毒(dengue virus, DV)的E蛋白结构域Ⅲ直接抑制登革病毒感染及其抗体的中和作用.方法 在大肠埃希菌中表达1~4型登革病毒E蛋白结构域Ⅲ(EⅢ).重组蛋白纯化后,进行阻断DV-2感染BHK~21细胞试验.用重组蛋白制备免疫血清,检测抗体中和作用.结果 在大肠埃希菌中成功表达了1-4型登革病毒E蛋白结构域埃希菌,4型重组E蛋白结构域Ⅲ均能够阻断2型DV感染,4型重组蛋白的免疫血清均能中和2型DV,但中和抗体效价不同.结论 原核表达的登革病毒结构域Ⅲ可以直接抑制病毒感染,所产生的抗体具有中和作用.直接抑制和中和抗体均对同型病毒作用较强.%Objective To observe the ability of dengue virus recombinant envelope protein domain expressed in E. coil to inhibit virus infection and induce the neutralizing antibody. Methods E Ⅲ protein of Dengue virus serotypes 1-4 were expressed in E. coli BL21 (DE3) then purified. Recombinant proteins were tested to inhibit DV2 from infecting BHK-21 cell. Rabbits were immunized with recombinant proteins to produce anti-E Ⅲserum. Antibody titers were determined by neutralizing assay. Results The recombinant E Ⅲ proteins of Dengue virus serotypes 1-4 were expressed in E. coli. They effectively protected BHK cells in culture against DV2infection. All four type anti-E Ⅲ sera can neutralize DV2 but their efficacies are different. Conclusion E Ⅲproteins of dengue virus expressed in E. coli can directly inhibit DV2 infection. Neutralizing antibodies were induced by E Ⅲ proteins. Both E Ⅲ protein of dengue virus and the neutralizing antibodies they induced are more efficient in inhibiting homologous dengue serotypes infection than heterologous serotypes.

  8. TMEM2 inhibits hepatitis B virus infection in HepG2 and HepG2.2.15 cells by activating the JAK-STAT signaling pathway.

    Science.gov (United States)

    Zhu, X; Xie, C; Li, Y-M; Huang, Z-L; Zhao, Q-Y; Hu, Z-X; Wang, P-P; Gu, Y-R; Gao, Z-L; Peng, L

    2016-06-02

    We have previously observed the downregulation of TMEM2 in the liver tissue of patients with chronic hepatitis B virus (HBV) infection and in HepG2.2.15 cells with HBV genomic DNA. In the present study, we investigated the role and mechanism of TMEM2 in HepG2 and HepG2.2.15 during HBV infection HepG2 and HepG2.2.15. HepG2 shTMEM2 cells with stable TMEM2 knockdown and HepG2 TMEM2 and HepG2.2.15 TMEM2 cells with stable TMEM2 overexpression were established using lentivirus vectors. We observed reduced expression of TMEM2 in HBV-infected liver tissues and HepG2.2.15 cells. HBsAg, HBcAg, HBV DNA, and HBV cccDNA levels were significantly increased in HepG2 shTMEM2 cells but decreased in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells compared with naive HepG2 cells. On the basis of the western blotting results, the JAK-STAT signaling pathway was inhibited in HepG2 shTMEM2 cells but activated in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells. In addition, reduced and increased expression of the antiviral proteins MxA and OAS1 was observed in TMEM2-silenced cells (HepG2 shTMEM2 cells) and TMEM2-overexpressing cells (HepG2 TMEM2 and HepG2.2.15 TMEM2 cells), respectively. The expression of Interferon regulatory factor 9 (IRF9) was not affected by TMEM2. However, we found that overexpression and knockdown of TMEM2, respectively, promoted and inhibited importation of IRF9 into nuclei. The luciferase reporter assay showed that IRF9 nuclear translocation affected interferon-stimulated response element activities. In addition, the inhibitory effects of TMEM2 on HBV infection in HepG2 shTMEM2 cells was significantly enhanced by pre-treatment with interferon but significantly inhibited in HepG2.2.15 TMEM2 cells by pre-treatment with JAK1 inhibitor. TMEM2 inhibits HBV infection in HepG2 and HepG2.2.15 by activating the JAK-STAT signaling pathway.

  9. TMEM2 inhibits hepatitis B virus infection in HepG2 and HepG2.2.15 cells by activating the JAK–STAT signaling pathway

    Science.gov (United States)

    Zhu, X; Xie, C; Li, Y-m; Huang, Z-l; Zhao, Q-y; Hu, Z-x; Wang, P-p; Gu, Y-r; Gao, Z-l; Peng, L

    2016-01-01

    We have previously observed the downregulation of TMEM2 in the liver tissue of patients with chronic hepatitis B virus (HBV) infection and in HepG2.2.15 cells with HBV genomic DNA. In the present study, we investigated the role and mechanism of TMEM2 in HepG2 and HepG2.2.15 during HBV infection HepG2 and HepG2.2.15. HepG2 shTMEM2 cells with stable TMEM2 knockdown and HepG2 TMEM2 and HepG2.2.15 TMEM2 cells with stable TMEM2 overexpression were established using lentivirus vectors. We observed reduced expression of TMEM2 in HBV-infected liver tissues and HepG2.2.15 cells. HBsAg, HBcAg, HBV DNA, and HBV cccDNA levels were significantly increased in HepG2 shTMEM2 cells but decreased in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells compared with naive HepG2 cells. On the basis of the western blotting results, the JAK–STAT signaling pathway was inhibited in HepG2 shTMEM2 cells but activated in HepG2 TMEM2 and HepG2.2.15 TMEM2 cells. In addition, reduced and increased expression of the antiviral proteins MxA and OAS1 was observed in TMEM2-silenced cells (HepG2 shTMEM2 cells) and TMEM2-overexpressing cells (HepG2 TMEM2 and HepG2.2.15 TMEM2 cells), respectively. The expression of Interferon regulatory factor 9 (IRF9) was not affected by TMEM2. However, we found that overexpression and knockdown of TMEM2, respectively, promoted and inhibited importation of IRF9 into nuclei. The luciferase reporter assay showed that IRF9 nuclear translocation affected interferon-stimulated response element activities. In addition, the inhibitory effects of TMEM2 on HBV infection in HepG2 shTMEM2 cells was significantly enhanced by pre-treatment with interferon but significantly inhibited in HepG2.2.15 TMEM2 cells by pre-treatment with JAK1 inhibitor. TMEM2 inhibits HBV infection in HepG2 and HepG2.2.15 by activating the JAK–STAT signaling pathway. PMID:27253403

  10. The Amount of Hepatocyte Turnover That Occurred during Resolution of Transient Hepadnavirus Infections Was Lower When Virus Replication Was Inhibited with Entecavir▿ †

    Science.gov (United States)

    Mason, William S.; Xu, Chunxiao; Low, Huey Chi; Saputelli, Jeffry; Aldrich, Carol E.; Scougall, Catherine; Grosse, Arend; Colonno, Richard; Litwin, Sam; Jilbert, Allison R.

    2009-01-01

    Transient hepadnavirus infections can involve spread of virus to the entire hepatocyte population. In this situation hepatocytes present following recovery are derived from infected hepatocytes. During virus clearance antiviral cytokines are thought to block virus replication and formation of new covalently closed circular DNA (cccDNA), the viral transcriptional template. It remains unclear if existing cccDNA is eliminated noncytolytically or if hepatocyte death and proliferation, to compensate for killing of some of the infected hepatocytes, are needed to remove cccDNA from surviving infected hepatocytes. Interpreting the relationship between hepatocyte death and cccDNA elimination requires knowing both the amount of hepatocyte turnover and whether cccDNA synthesis is effectively blocked during the period of immune destruction of infected hepatocytes. We have addressed these questions by asking if treatment of woodchucks with the nucleoside analog inhibitor of viral DNA synthesis entecavir (ETV) reduced hepatocyte turnover during clearance of transient woodchuck hepatitis virus (WHV) infections. To estimate hepatocyte turnover, complexity analysis was carried out on virus-cell DNA junctions created by integration of WHV and present following recovery in the livers of WHV-infected control or ETV-treated woodchucks. We estimated that, on average, 2.2 to 4.8 times less hepatocyte turnover occurred during immune clearance in the ETV-treated woodchucks. Computer modeling of the complexity data suggests that mechanisms in addition to hepatocyte death were responsible for elimination of cccDNA during recovery from transient infections. PMID:19073743

  11. Inhibition of adaptive immune responses leads to a fatal clinical outcome in SIV-infected pigtailed macaques but not vervet African green monkeys.

    Directory of Open Access Journals (Sweden)

    Jörn E Schmitz

    2009-12-01

    Full Text Available African green monkeys (AGM and other natural hosts for simian immunodeficiency virus (SIV do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90 to infect vervet AGM and pigtailed macaques (PTM. This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4 and AGM (n = 4, and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.

  12. Chronic hyperosmotic stress inhibits renal Toll-Like Receptors expression in striped catfish (Pangasianodon hypophthalmus, Sauvage) exposed or not to bacterial infection.

    Science.gov (United States)

    Schmitz, Mélodie; Baekelandt, Sébastien; Bequet, Sandrine; Kestemont, Patrick

    2017-03-24

    Toll-like Receptors (TLRs) are the first innate receptors in recognizing pathogen-associated molecular patterns. In fish, upregulation of toll-like receptors during infection has been largely demonstrated while the effects of abiotic stressors on their expression remain poorly investigated. In this study, striped catfish were submitted during 20 days to three salinity profiles (freshwater, low saline water, saline water), followed by injection of a bacterial strain of Edwardsiella ictaluri. The expression of TLRs 1, 3, 4, 5, 7, 9, 19, 21, and 22 was measured in kidney at different time points in non infected and infected striped catfish. Infection induced overexpression of TLRs 1, 3, 4, 5, 7, 21 and 22. With elevated salinity, the expression of all TLRs, except TLR5, was severely decreased, particularly after bacterial infection. The TLRs responsiveness of striped catfish facing bacterial disease and salinity stress and possible consequences on striped catfish immune response's efficiency are discussed.

  13. Reduced antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells of salivary polymorphonuclear leukocytes and inhibition of peripheral blood polymorphonuclear leukocyte cytotoxicity by saliva.

    Science.gov (United States)

    Ashkenazi, M; Kohl, S

    1990-06-15

    Blood polymorphonuclear leukocytes (BPMN) have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) against HSV-infected cells. Although HSV infections are frequently found in the oral cavity, the ADCC capacity of salivary PMN (SPMN) has not been studied, mainly because methods to isolate SPMN were not available. We have recently developed a method to isolate SPMN, and in this study have evaluated their ADCC activity against HSV-infected cells. SPMN were obtained by repeated washings of the oral cavity, and separated from epithelial cells by nylon mesh filtration. ADCC was quantitatively determined by 51Cr release from HSV-infected Chang liver cells. SPMN in the presence of antibody were able to destroy HSV-infected cells, but SPMN were much less effective in mediating ADCC than BPMN (3.4% vs 40.7%, p less than 0.0001). In the presence of antiviral antibody, SPMN were able to adhere to HSV-infected cells, but less so than BPMN (34% vs 67%), and specific antibody-induced adherence was significantly lower in SPMN (p less than 0.04). The spontaneous adherence to HSV-infected cells was higher for SPMN than BPMN. SPMN demonstrated up-regulation of the adhesion glycoprotein CD18, but down-regulation of the FcRIII receptor. Incubation with saliva decreased ADCC capacity of BPMN, up-regulated CD18 expression, and down-regulated FcRIII expression.

  14. IL-10 Inhibits the NF-kB and ERK/MAPK-Mediated Production of Pro-Inflammatory Mediators by UpRegulation of SOCS-3 in Trypanosoma cruzi-Infected Cardiomyocytes

    OpenAIRE

    Hovsepian, Eugenia; Penas, Federico Nicolás; Siffo, Sofía; Mirkin Gerardo A.; Goren, Nora Beatriz

    2015-01-01

    Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas´ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tu...

  15. IL-10 Inhibits the NF-kB and ERK/MAPK-Mediated Production of Pro-Inflammatory Mediators by UpRegulation of SOCS-3 in Trypanosoma cruzi-Infected Cardiomyocytes

    OpenAIRE

    Hovsepian, Eugenia; Penas, Federico Nicolás; Siffo, Sofía; Mirkin Gerardo A.; Goren, Nora Beatriz

    2015-01-01

    Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas´ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tu...

  16. Effect of Weifuchun of inhibiting inflammation of helicobacter pylori-infected GES-1 cells and NF-κB signaling pathway

    Institute of Scientific and Technical Information of China (English)

    黄宣

    2014-01-01

    Objective To study the effect of Weifuchun on inflammation of Helicobacter pylori(Hp)-infected gastric epithelial cells(GES-1)and its correlation with NF-κB signaling pathway.Methods Hp standard home-made strain(CagA+,VacA+)NCTCI 1637 infected GES-1cells were used.Weifuchun was used as intervention.Weifuchun of different concentrations(5,10,and 20μg/

  17. Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a murine model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Bong-Kwang Jung

    Full Text Available Immunosuppression is a characteristic feature of Toxoplasma gondii-infected murine hosts. The present study aimed to determine the effect of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of Alzheimer's disease (AD in Tg2576 AD mice. Mice were infected with a cyst-forming strain (ME49 of T. gondii, and levels of inflammatory mediators (IFN-γ and nitric oxide, anti-inflammatory cytokines (IL-10 and TGF-β, neuronal damage, and β-amyloid plaque deposition were examined in brain tissues and/or in BV-2 microglial cells. In addition, behavioral tests, including the water maze and Y-maze tests, were performed on T. gondii-infected and uninfected Tg2576 mice. Results revealed that whereas the level of IFN-γ was unchanged, the levels of anti-inflammatory cytokines were significantly higher in T. gondii-infected mice than in uninfected mice, and in BV-2 cells treated with T. gondii lysate antigen. Furthermore, nitrite production from primary cultured brain microglial cells and BV-2 cells was reduced by the addition of T. gondii lysate antigen (TLA, and β-amyloid plaque deposition in the cortex and hippocampus of Tg2576 mouse brains was remarkably lower in T. gondii-infected AD mice than in uninfected controls. In addition, water maze and Y-maze test results revealed retarded cognitive capacities in uninfected mice as compared with infected mice. These findings demonstrate the favorable effects of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of AD in Tg2576 mice.

  18. Vaccination inhibits TLR2 transcription via suppression of GR nuclear translocation and binding to TLR2 promoter in porcine lung infected with Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Sun, Zhiyuan; Liu, Maojun; Zou, Huafeng; Li, Xian; Shao, Guoqing; Zhao, Ruqian

    2013-12-27

    Toll-like receptors (TLRs) and glucocorticoid receptor (GR) act respectively as effectors of innate immune and stress responses. The crosstalk between them is critical for the maintenance of homeostasis during the immune response. Vaccination is known to boost adaptive immunity, yet it remains elusive whether vaccination may affect GR/TLR interactions following infection. Duroc×Meishan crossbred piglets were allocated to three groups. The control group (CC) received neither vaccination nor infection; the non-vaccinated infection group (NI) was artificially infected intratracheally with Mycoplasma hyopneumoniae (M. hyopneumoniae); while the vaccinated, infected group (VI) was vaccinated intramuscularly with inactivated M. hyopneumoniae one month before infection. The clinical signs and macroscopic lung lesions were significantly reduced by vaccination. However, vaccination did not affect the concentration of M. hyopneumoniae DNA in the lung. Serum cortisol was significantly decreased in both NI and VI pigs (PGR content. TLRs 1-10 were all expressed in lung, among which TLR2 was the most abundant and was significantly up-regulated (PGR binding to the GR response element on TLR2 promoter was significantly increased (PGR nuclear translocation and binding to the TLR2 promoter, which results in diminished TLR2 expression, is associated with the protective effect of vaccination on M. hyopneumoniae-induced lung lesions in the pig.

  19. Nanoparticles containing siRNA to silence CD4 and CCR5 reduce expression of these receptors and inhibit HIV-1 infection in human female reproductive tract tissue explants

    Directory of Open Access Journals (Sweden)

    Susan K. Eszterhas

    2011-09-01

    Full Text Available Human Immunodeficiency Virus-type 1 (HIV- 1 binds to CD4 and CCR5 receptors on target cells in the human female reproductive tract. We sought to determine whether reducing levels of messenger RNA (mRNA transcripts that encode these receptors in female reproductive tract cells could protect mucosal tissue explants from HIV- 1 infection. Explants prepared from the endometrium, endocervix, and ectocervix of hysterectomy tissues from HIV-1 sero-negative women were exposed to nanoparticles containing CD4- and CCR5-specific short-interfering RNA (siRNA sequences. Explants were then exposed two days later to HIV-1, and HIV-1 reverse transcripts were measured five days post-infection. Explants treated with nanoparticles containing CD4- and CCR5-specific siRNA showed reduced levels of CD4 and CCR5 transcripts, and significantly lower levels of HIV-1 reverse transcripts compared to those treated with an irrelevant siRNA. In female reproductive tract explants and in peripheral blood cell cultures, siRNA transfection induced the secretion of IFN-alpha (IFN-α, a potent antiviral cytokine. In female mice, murine-specific Cd4-siRNA nanoparticles instilled within the uterus significantly reduced murine Cd4 transcripts by day 3. Our findings demonstrate that siRNA nanoparticles reduce expression of HIV-1 infectivity receptors in human female reproductive tract tissues and also inhibit HIV-1 infection. Murine studies demonstrate that nanoparticles can penetrate the reproductive tract tissues in vivo and silence gene expression. The induction of IFN-α after siRNA transfection can potentially contribute to the antiviral effect. These findings support the therapeutic development of nanoparticles to deliver siRNA molecules to silence host cell receptors in the female reproductive tract as a novel microbicide to inhibit mucosal HIV-1 transmission.

  20. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines.

    Directory of Open Access Journals (Sweden)

    Lanying Du

    Full Text Available An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS, is caused by a novel coronavirus (MERS-CoV. It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588 in the truncated receptor-binding domain (RBD: residues 367-606 of MERS-CoV spike (S protein fused with human IgG Fc fragment (S377-588-Fc is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4, the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients' lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.

  1. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF-alpha receptor.

    Science.gov (United States)

    Baillie, J; Sahlender, D A; Sinclair, J H

    2003-06-01

    Infection with human cytomegalovirus (HCMV) results in complex interactions between viral and cellular factors which perturb many cellular functions. HCMV is known to target the cell cycle, cellular transcription, and immunoregulation, and it is believed that this optimizes the cellular environment for viral DNA replication during productive infection or during carriage in the latently infected host. Here, we show that HCMV infection also prevents external signaling to the cell by disrupting the function of TNFRI, the 55-kDa receptor for tumor necrosis factor alpha (TNF-alpha), one of the receptors for a potent cytokine involved in eliciting a wide spectrum of cellular responses, including antiviral responses. HCMV infection of fully permissive differentiated monocytic cell lines and U373 cells resulted in a reduction in cell surface expression of TNFRI. The reduction appeared to be due to relocalization of TNFRI from the cell surface and was reflected in the elimination of TNF-alpha-induced Jun kinase activity. Analysis of specific phases of infection suggested that viral early gene products were responsible for this relocalization. However, a mutant HCMV in which all viral gene products known to be involved in down-regulation of major histocompatibility complex (MHC) class I were deleted still resulted in relocalization of TNFRI. Consequently, TNFRI relocalization by HCMV appears to be mediated by a novel viral early function not involved in down-regulation of cell surface MHC class I expression. We suggest that upon infection, HCMV isolates the cell from host-mediated signals, forcing the cell to respond only to virus-specific signals which optimize the cell for virus production and effect proviral responses from bystander cells.

  2. Polyvinylpyrrolidone-Capped Silver Nanoparticle Inhibits Infection of Carbapenem-Resistant Strain of Acinetobacter baumannii in the Human Pulmonary Epithelial Cell

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2017-08-01

    Full Text Available Acinetobacter baumannii, an opportunistic ESKAPE pathogen, causes respiratory and urinary tract infections. Its prevalence increases gradually in the clinical setup. Pathogenicity of Acinetobacter is significantly influenced by its ability to infect and survive in human pulmonary cells. Therefore, it is important to study the infection of A. baumannii in human pulmonary host cell (A-549, monitoring surface interacting and internalized bacteria. It was found that during infection of A. baumannii, about 40% bacteria adhered to A-549, whereas 20% got internalized inside pulmonary cell and induces threefold increase in the reactive oxygen species production. We have synthesized polyvinylpyrrolidone (PVP-capped AgNPs using chemical methods and tested its efficacy against carbapenem-resistant strain of A. baumannii. PVP-capped silver nanoparticles (PVP-AgNPs (30 µM have shown antibacterial activity against carbapenem-resistant strain of A. baumannii and this concentration does not have any cytotoxic effect on the human pulmonary cell line (IC50 is 130 µM. Similarly, PVP-AgNPs treatment decreases 80% viability of intracellular bacteria, decreases adherence of A. baumannii to A-549 (40 to 2.2%, and decreases intracellular concentration (20 to 1.3% of A. baumannii. This concludes that PVP-AgNPs can be developed as a substitute for carbapenem to control the infection caused by carbapenem-resistant A. baumannii.

  3. T-cell production of matrix metalloproteinases and inhibition of parasite clearance by TIMP-1 during chronic Toxoplasma infection in the brain

    Directory of Open Access Journals (Sweden)

    Emma H Wilson

    2011-01-01

    Full Text Available Chronic infection with the intracellular protozoan parasite Toxoplasma gondii leads to tissue remodelling in the brain and a continuous requirement for peripheral leucocyte migration within the CNS (central nervous system. In the present study, we investigate the role of MMPs (matrix metalloproteinases and their inhibitors in T-cell migration into the infected brain. Increased expression of two key molecules, MMP-8 and MMP-10, along with their inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases-1, was observed in the CNS following infection. Analysis of infiltrating lymphocytes demonstrated MMP-8 and -10 production by CD4+ and CD8+ T-cells. In addition, infiltrating T-cells and CNS resident astrocytes increased their expression of TIMP-1 following infection. TIMP-1-deficient mice had a decrease in perivascular accumulation of lymphocyte populations, yet an increase in the proportion of CD4+ T-cells that had trafficked into the CNS. This was accompanied by a reduction in parasite burden in the brain. Taken together, these findings demonstrate a role for MMPs and TIMP-1 in the trafficking of lymphocytes into the CNS during chronic infection in the brain.

  4. T-Cell Production of Matrix Metalloproteinases and Inhibition of Parasite Clearance by TIMP-1 During Chronic Toxoplasma Infection in the Brain

    Directory of Open Access Journals (Sweden)

    Robin T Clark

    2010-12-01

    Full Text Available Chronic infection with the intracellular protozoan parasite Toxoplasma gondii leads to tissue remodelling in the brain and a continuous requirement for peripheral leucocyte migration within the CNS (central nervous system. In the present study, we investigate the role of MMPs (matrix metalloproteinases and their inhibitors in T-cell migration into the infected brain. Increased expression of two key molecules, MMP-8 and MMP-10, along with their inhibitor, TIMP-1 (tissue inhibitor of metalloproteinases-1, was observed in the CNS following infection. Analysis of infiltrating lymphocytes demonstrated MMP-8 and −10 production by CD4+ and CD8+ T-cells. In addition, infiltrating T-cells and CNS resident astrocytes increased their expression of TIMP-1 following infection. TIMP-1-deficient mice had a decrease in perivascular accumulation of lymphocyte populations, yet an increase in the proportion of CD4+ T-cells that had trafficked into the CNS. This was accompanied by a reduction in parasite burden in the brain. Taken together, these findings demonstrate a role for MMPs and TIMP-1 in the trafficking of lymphocytes into the CNS during chronic infection in the brain.

  5. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots

    Science.gov (United States)

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector ge...

  6. Protection against Paracoccidioides brasiliensis infection in mice treated with modulated dendritic cells relies on inhibition of interleukin-10 production by CD8+ T cells

    Science.gov (United States)

    Alves da Costa, Thiago; Di Gangi, Rosária; Martins, Paula; Longhini, Ana Leda Figueiredo; Zanucoli, Fábio; de Oliveira, Alexandre Leite Rodrigues; Stach-Machado, Dagmar Ruth; Burger, Eva; Verinaud, Liana; Thomé, Rodolfo

    2015-01-01

    Paracoccidioidomycosis is a systemic infection prevalent in Latin American countries. Disease develops after inhalation of Paracoccidioides brasiliensis conidia followed by an improper immune activation by the host leucocytes. Dendritic cells (DCs) are antigen-presenting cells with the unique ability to direct the adaptive immune response by the time of activation of naive T cells. This study was conducted to test whether extracts of P. brasiliensis would induce maturation of DCs. We found that DCs treated with extracts acquired an inflammatory phenotype and upon adoptive transfer conferred protection to infection. Interestingly, interleukin-10 production by CD8+ T cells was ablated following DC transfer. Further analyses showed that lymphocytes from infected mice were high producers of interleukin-10, with CD8+ T cells being the main source. Blockage of cross-presentation to CD8+ T cells by modulated DCs abolished the protective effect of adoptive transfer. Collectively, our data show that adoptive transfer of P. brasiliensis-modulated DCs is an interesting approach for the control of infection in paracoccidioidomycosis. PMID:26302057

  7. Antibiotic-Mediated Inhibition of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV Infection: A Novel Quinolone Function Which Potentiates the Antiviral Cytokine Response in MARC-145 Cells and Pig Macrophages

    Directory of Open Access Journals (Sweden)

    William A. Cafruny

    2008-01-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is an economically significant agent for which there currently are no effective treatments. Development of antiviral agents for PRRSV as well as many other viruses has been limited by toxicity of known antiviral compounds. In contrast, antibiotics for non-virus microbial infections have been widely useful, in part because of their acceptable toxicity in animals. We report here the discovery that the quinolonecontaining compound Plasmocin™, as well as the quinolones nalidixic acid and ciprofloxacin, have potent anti-PRRSV activity in vitro. PRRSV replication was inhibited by these antibiotics in both cultured MARC-145 cells and cultured primary alveolar porcine macrophages (PAMs. Furthermore, sub-optimal concentrations of nalidixic acid synergized with antiviral cytokines (AK-2 or IFN-γ to quantitatively and qualitatively inhibit PRRSV replication in MARC-145 cells or PAMs. The antiviral activity of Plasmocin and nalidixic acid correlated with reduced actin expression in MARC-145 cells. Replication of the related lactate dehydrogenase-elevating virus (LDV was also inhibited in primary mouse macrophages by Plasmocin. These results are significant to the development of antiviral strategies with potentially reduced toxicity, and provide a model system to better understand regulation of arterivirus replication.

  8. Potent Suppression of Viral Infectivity by the Peptides That Inhibit Multimerization of Human Immunodeficiency Virus Type 1 (HIV-1) Vif Proteins*

    OpenAIRE

    YANG Bin; Gao, Ling; Lin LI; Lu, Zhixian; Fan, Xuejun; Patel, Charvi A.; Pomerantz, Roger J.; DuBois, Garrett C.; Zhang, Hui

    2002-01-01

    Virion infectivity factor (Vif) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) in vivo, but its function remains uncertain. Recently, we have shown that Vif proteins are able to form multimers, including dimers, trimers, or tetramers. Because the multimerization of Vif proteins is required for Vif function in the viral life cycle, we propose that it could be a novel target for anti-HIV-1 therapeutics. Through a phage peptide display method, we have identified ...

  9. Flufenamic acid protects against intestinal fluid secretion and barrier leakage in a mouse model of Vibrio cholerae infection through NF-κB inhibition and AMPK activation.

    Science.gov (United States)

    Pongkorpsakol, Pawin; Satitsri, Saravut; Wongkrasant, Preedajit; Chittavanich, Pamorn; Kittayaruksakul, Suticha; Srimanote, Potjanee; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2017-03-05

    Nuclear factor kappa B (NF-κB)-mediated inflammatory responses play crucial roles in the pathogenesis of diarrhea caused by the Vibrio cholerae El Tor variant (EL), which is a major bacterial strain causing recent cholera outbreaks. Flufenamic acid (FFA) has previously been demonstrated to be a potent activator of AMP-activated protein kinase (AMPK), which is a negative regulator of NF-κB signaling. This study aimed to investigate the anti-diarrheal efficacy of FFA in a mouse model of EL infection and to investigate the mechanisms by which FFA activates AMPK in intestinal epithelial cells (IEC). In a mouse closed loop model of EL infection, FFA treatment (20mg/kg) significantly abrogated EL-induced intestinal fluid secretion and barrier disruption. In addition, FFA suppressed NF-κB nuclear translocation and expression of proinflammatory mediators and promoted AMPK phosphorylation in the EL-infected mouse intestine. In T84 cells, FFA induced AMPK activation. Furthermore, FFA promoted tight junction assembly and prevented interferon gamma (IFN-γ)-induced barrier disruption in an AMPK-dependent manner. Biochemical and molecular docking analyses indicated that FFA activates AMPK via a direct stimulation of calcium/calmodulin-dependent protein kinase kinase beta (CaMKKβ) activity. Collectively, our data indicate that FFA represents a class of existing drugs that may be of potential utility in the treatment of cholera caused by EL infection via AMPK-mediated suppression of NF-κB signaling in IEC. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Macrophage Inflammatory Protein 1α Inhibits Postentry Steps of Human Immunodeficiency Virus Type 1 Infection via Suppression of Intracellular Cyclic AMP

    OpenAIRE

    2005-01-01

    Primary isolates of human immunodeficiency virus type 1 (HIV-1) predominantly use chemokine receptor CCR5 to enter target cells. The natural ligands of CCR5, the β-chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and RANTES, interfere with HIV-1 binding to CCR5 receptors and decrease the amount of virions entering cells. Although the inhibition of HIV-1 entry by β-chemokines is well documented, their effects on postentry steps of the viral life cycle and on host cell components...

  11. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract pursuant

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to CranMax® and reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract. The food that is the subject of the claim is CranMax®. The Panel considers that the food, CranMax®, which is the subject of the claim is sufficiently characterised...... in relation to the claimed effect. The Panel considers that reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract is a beneficial physiological effect. One human study from which conclusions could be drawn for the scientific substantiation...... of the claim did not show an effect of CranMax® on reduction of the risk of urinary tract infection by inhibiting the adhesion of certain bacteria in the urinary tract. The Panel concludes that a cause and effect relationship has not been established between the consumption of CranMax® and reduction...

  12. Linalool, derived from Cinnamomum camphora (L.) Presl leaf extracts, possesses molluscicidal activity against Oncomelania hupensis and inhibits infection of Schistosoma japonicum.

    Science.gov (United States)

    Yang, Fan; Long, Erping; Wen, Juhua; Cao, Lei; Zhu, Chengcheng; Hu, Huanxin; Ruan, Ying; Okanurak, Kamolnetr; Hu, Huiling; Wei, Xiaoxia; Yang, Xiangyun; Wang, Chaofan; Zhang, Limei; Wang, Xiaoying; Ji, Pengyu; Zheng, Huanqin; Wu, Zhongdao; Lv, Zhiyue

    2014-08-29

    Schistosomiasis japonicum remains a considerable economic and public health concern in China, the Philippines and Indonesia. Currently available measures to control the unique intermediate host Oncomelania hupensis are frequently associated with severe side effects. Previous studies have demonstrated that linalool-rich extracts from various plants exhibited promising biological activities including cytotoxic, anti-microbial and anti-parasitic properties. We identified the components of leaf extracts from Cinnamomum camphora by gas chromatography coupled to mass spectrometry (GC-MS) and investigated molluscicidal and larvicidal effects of linalool against O. hupensis and Schistosoma japonicium. The ultrastructural alterations in gills, salivary gland, stomach and hepatopancreas of snails were observed under the light microscope and transmission electron microscope, and lesions to tegument of cercaria were examined under a light microscope and fluorescence microscope. We then evaluated the effects of linalool on skin penetration and migration of schistosomula and adult survival by measurement of worm burden and egg counts in Balb/C mice infected with linalool-treated cercariae. In the present work, 44 components were identified from the leaf extracts of C. camphora, of which linalool was the most abundant constituent. Linalool exhibited the striking molluscicidal and larvicidal effects with LC50 = 0.25 mg/L for O. hupensis and LC50 = 0.07 mg/L for cercaria of S. japonicium. After exposure to linalool, damage to the gills and hepatopancreas of the snails, and to the tegument and body-tail joint of cercariae was apparent. In addition, linalool markedly reduced the recovered schistosomulum from mouse skin after challenge infection, and therefore decreased the worm burden in infected animals, but not fecundity of female adults of the parasite. Our findings indicated that linalool might be a novel chemotherapeutic agent against S. japonicium and the snail

  13. Co-release of dicloxacillin and thioridazine from catheter material containing an interpenetrating polymer network for inhibiting device-associated Staphylococcus aureus infection

    DEFF Research Database (Denmark)

    Stenger, Michael; Klein, Kasper; Grønnemose, Rasmus B;

    2016-01-01

    Approximately half of all nosocomial bloodstream infections are caused by bacterial colonization of vascular catheters. Attempts have been made to improve devices using anti-adhesive or antimicrobial coatings; however, it is often difficult to bind coatings stably to catheter materials, and the low...... amounts of drug in thin-film coatings limit effective long-term release. Interpenetrating polymer networks (IPNs) are polymer hybrid materials with unique drug release properties. While IPNs have been extensively investigated for use in tablet- or capsule-based drug delivery systems, the potential for use...

  14. Symbiotic Plant Peptides Eliminate Candida albicans Both In Vitro and in an Epithelial Infection Model and Inhibit the Proliferation of Immortalized Human Cells

    Directory of Open Access Journals (Sweden)

    Lilla Ördögh

    2014-01-01

    Full Text Available The increasing number of multidrug-resistant microbes now emerging necessitates the identification of novel antimicrobial agents. Plants produce a great variety of antimicrobial peptides including hundreds of small, nodule-specific cysteine-rich NCR peptides that, in the legume Medicago truncatula, govern the differentiation of endosymbiotic nitrogen fixing bacteria and, in vitro, can display potent antibacterial activities. In this study, the potential candidacidal activity of 19 NCR peptides was investigated. Cationic NCR peptides having an isoelectric point above 9 were efficient in killing Candida albicans, one of the most common fungal pathogens of humans. None of the tested NCR peptides were toxic for immortalized human epithelial cells at concentrations that effectively killed the fungus; however, at higher concentrations, some of them inhibited the division of the cells. Furthermore, the cationic peptides successfully inhibited C. albicans induced human epithelial cell death in an in vitro coculture model. These results highlight the therapeutic potential of cationic NCR peptides in the treatment of candidiasis.

  15. Hypochlorous Acid as a Potential Wound Care Agent: Part II. Stabilized Hypochlorous Acid: Its Role in Decreasing Tissue Bacterial Bioburden and Overcoming the Inhibition of Infection on Wound Healing.

    Science.gov (United States)

    Robson, Martin C; Payne, Wyatt G; Ko, Francis; Mentis, Marni; Donati, Guillermo; Shafii, Susan M; Culverhouse, Susan; Wang, Lu; Khosrovi, Behzad; Najafi, Ramin; Cooper, Diane M; Bassiri, Mansour

    2007-04-11

    Background: A topical antimicrobial that can decrease the bacterial bioburden of chronic wounds without impairing the wound's ability to heal is a therapeutic imperative. A stabilized form of hypochlorous acid (NVC-101) has been demonstrated in vitro and in standard toxicity testing to possess properties that could fulfill these criteria. Materials and Methods: Using a standard rodent model of a chronically infected granulating wound, various preparations of NVC-101 and multiple treatment regimens were investigated to evaluate the role of NVC-101 in decreasing tissue bacterial bioburden and overcoming the inhibition of infection on wound healing. Quantitative bacteriology of tissue biopsies and wound healing trajectories were used to compare the various NVC-101 preparations and regimens to saline-treated negative controls and silver sulfadiazine-treated positive controls. Results: NVC-101 at 0.01% hypochlorous acid with a pH of 3.5 to 4.0 proved to be an effective topical antimicrobial. It was most effective when used for a brief period (15-30 minutes), and followed with another application. Possibly this was due to its rapid neutralization in the wound bed environment. Although not as effective at decreasing the tissue bacterial bioburden as silver sulfadiazine, NVC-101 was associated with improved wound closure. Conclusions: This stabilized form of hypochlorous acid (NVC-101) could have potential application as an antimicrobial wound irrigation and treatment solution if its effective pH range can be maintained in the clinical situation. NVC-101 solution was equally effective at pH 3.5 or 4.0 and more efficient soon after its application. As opposed to other antimicrobials investigated in this animal model, NVC-101 controls the tissue bacterial bioburden without inhibiting the wound healing process.

  16. Acoustic Emission Signal of Lactococcus lactis before and after Inhibition with NaN 3 and Infection with Bacteriophage c2.

    Science.gov (United States)

    Ghosh, Debasish; Stencel, John M; Hicks, Clair D; Payne, Fred; Ozevin, Didem

    2013-01-01

    The detection of acoustic emission (AE) from Lactococcus lactis, ssp lactis is reported in which emission intensities are used to follow and define metabolic activity during growth in nutrient broths. Optical density (OD) data were also acquired during L. lactis growth at 32°C and provided insight into the timing of the AE signals relative to the lag, logarithmic, and stationary growth phases of the bacteria. The inclusion of a metabolic inhibitor, NaN3, into the nutrient broth eliminated bacteria metabolic activity according to the OD data, the absence of which was confirmed using AE data acquisition. The OD and AE data were also acquired before and after the addition of Bacteriophage c2 in L. lactis containing nutrient broths during the early or middle logarithmic phase; c2 phage m.o.i. (Multiplicity of infection) was varied to help differentiate whether the detected AE was from bacteria cells during lysis or from the c2 phage during genome injection into the cells. It is proposed that AE measurements using piezoelectric sensors are sensitive enough to detect bacteria at the amount near 10(4) cfu/mL, to provide real time data on bacteria metabolic activity and to dynamically monitor phage infection of cells.

  17. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens.

    Science.gov (United States)

    Inada, Noriko; Betsuyaku, Shigeyuki; Shimada, Takashi L; Ebine, Kazuo; Ito, Emi; Kutsuna, Natsumaro; Hasezawa, Seiichiro; Takano, Yoshitaka; Fukuda, Hiroo; Nakano, Akihiko; Ueda, Takashi

    2016-09-01

    RAB5 is a small GTPase that acts in endosomal trafficking. In addition to canonical RAB5 members that are homologous to animal RAB5, land plants harbor a plant-specific RAB5, the ARA6 group, which regulates trafficking events distinct from canonical RAB5 GTPases. Here, we report that plant RAB5, both canonical and plant-specific members, accumulate at the interface between host plants and biotrophic fungal and oomycete pathogens. Biotrophic fungi and oomycetes colonize living plant tissues by establishing specialized infection hyphae, the haustorium, within host plant cells. We found that Arabidopsis thaliana ARA6/RABF1, a plant-specific RAB5, is localized to the specialized membrane that surrounds the haustorium, the extrahaustorial membrane (EHM), formed by the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii Whereas the conventional RAB5 ARA7/RABF2b was also localized to the EHM, endosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) and RAB5-activating proteins were not, which suggests that the EHM has modified endosomal characteristic. The recruitment of host RAB5 to the EHM was a property shared by the barley-adapted powdery mildew fungus Blumeria graminis f.sp. hordei and the oomycete Hyaloperonospora arabidopsidis, but the extrahyphal membrane surrounding the hypha of the hemibiotrophic fungus Colletotrichum higginsianum at the biotrophic stage was devoid of RAB5. The localization of RAB5 to the EHM appears to correlate with the functionality of the haustorium. Our discovery sheds light on a novel relationship between plant RAB5 and obligate biotrophic pathogens.

  18. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots.

    Directory of Open Access Journals (Sweden)

    Yingzhen Yang

    Full Text Available Root-knot nematodes (RKNs infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42 or 271 bp (pART27-271 of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5' end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi

  19. Immune Modulating Topical S100A8/A9 Inhibits Growth of Pseudomonas aeruginosa and Mitigates Biofilm Infection in Chronic Wounds

    DEFF Research Database (Denmark)

    Trøstrup, Hannah; Lerche, Christian Johann; Christophersen, Lars

    2017-01-01

    Pseudomonas aeruginosa biofilm maintains and perturbs local host defense, hindering timely wound healing. Previously, we showed that P. aeruginosa suppressed S100A8/A9 of the murine innate host defense. We assessed the potential antimicrobial effect of S100A8/A9 on biofilm-infected wounds...... in a murine model and P. aeruginosa growth in vitro. Seventy-six mice, inflicted with a full-thickness burn wound were challenged subcutaneously (s.c.) by 10⁶ colony-forming units (CFUs) of P. aeruginosa biofilm. Mice were subsequently randomized into two treatment groups, one group receiving recombinant...... murine S100A8/A9 and a group of vehicle controls (phosphate-buffered saline, PBS) all treated with s.c. injections daily for up to five days. Wounds were analyzed for quantitative bacteriology and contents of key inflammatory markers. Count of blood polymorphonuclear leukocytes was included. S100A8/A9...

  20. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9.

    Science.gov (United States)

    Li, Chang; Guan, Xinmeng; Du, Tao; Jin, Wei; Wu, Biao; Liu, Yalan; Wang, Ping; Hu, Bodan; Griffin, George E; Shattock, Robin J; Hu, Qinxue

    2015-08-01

    CCR5 serves as an essential coreceptor for human immunodeficiency virus type 1 (HIV-1) entry, and individuals with a CCR5(Δ32) variant appear to be healthy, making CCR5 an attractive target for control of HIV-1 infection. The CRISPR/Cas9, which functions as a naturally existing adaptive immune system in prokaryotes, has been recently harnessed as a novel nuclease system for genome editing in mammalian cells. Although CRISPR/Cas9 can be readily delivered into cell lines, due to the large size of the Cas9 protein, efficient delivery of CCR5-targeting CRISPR/Cas9 components into primary cells, including CD4(+) T-cells, the primary target for HIV-1 infection in vivo, remains a challenge. In the current study, following design of a panel of top-ranked single-guided RNAs (sgRNAs) targeting the ORF of CCR5, we demonstrate that CRISPR/Cas9 can efficiently mediate the editing of the CCR5 locus in cell lines, resulting in the knockout of CCR5 expression on the cell surface. Next-generation sequencing revealed that various mutations were introduced around the predicted cleavage site of CCR5. For each of the three most effective sgRNAs that we analysed, no significant off-target effects were detected at the 15 top-scoring potential sites. More importantly, by constructing chimeric Ad5F35 adenoviruses carrying CRISPR/Cas9 components, we efficiently transduced primary CD4(+) T-lymphocytes and disrupted CCR5 expression, and the positively transduced cells were conferred with HIV-1 resistance. To our knowledge, this is the first study establishing HIV-1 resistance in primary CD4(+) T-cells utilizing adenovirus-delivered CRISPR/Cas9.

  1. Treatment with triterpenic fraction purified from Baccharis uncinella leaves inhibits Leishmania (Leishmania) amazonensis spreading and improves Th1 immune response in infected mice.

    Science.gov (United States)

    Yamamoto, Eduardo Seiji; Campos, Bruno Luiz S; Laurenti, Márcia Dalastra; Lago, João H G; Grecco, Simone dos Santos; Corbett, Carlos E P; Passero, Luiz Felipe D

    2014-01-01

    The current medications used to treat leishmaniasis have many side effects for patients; in addition, some cases of the disease are refractory to treatment. Therefore, the search for new leishmanicidal compounds is indispensable. Recently, it was demonstrated that oleanolic- and ursolic-containing fraction from Baccharis uncinella leaves eliminated the promastigote and amastigote forms of Leishmania (Leishmania) amazonensis and L. (Viannia) braziliensis without causing toxic effects for J774 macrophages. Thus, the aim of the present work was to characterize the therapeutic effect of the triterpenic fraction in L. (L.) amazonensis-infected BALB/c mice. Oleanolic- and ursolic acid-containing fraction was extracted from B. uncinella leaves using organic solvents and chromatographic procedures. L. (L.) amazonensis-infected BALB/c mice were treated intraperitoneally with triterpenic fraction during five consecutive days with 1.0 and 5.0 mg/kg of triterpenic fraction, or with 10.0 mg/kg of amphotericin B drug. Groups of mice treated with the triterpenic fraction, presented with decreased lesion size and low parasitism of the skin-both of which were associated with high amounts of interleukin-12 and interferon gamma. The curative effect of this fraction was similar to amphotericin B-treated mice; however, the final dose, required to eliminate amastigotes, was lesser than amphotericin B. Moreover, triterpenic fraction did not cause microscopic alterations in liver, spleen, heart, lung, and kidney of experimental groups. This work suggests that this fraction possesses compounds that are characterized by leishmanicidal and immunomodulatory activities. From this perspective, the triterpenic fraction can be explored as a new therapeutic agent for use against American Tegumentar Leishmaniasis.

  2. RNA干扰在柯萨奇病毒致心肌炎小鼠模型中的抗病毒研究%Inhibition of Virus Infection in Coxsackievirus-induced Myocarditis Model by RNA Interference

    Institute of Scientific and Technical Information of China (English)

    姚海兰; 何峰; 肖宗慧; 刘哲伟

    2012-01-01

    To evaluate the effects of lentivirus-delivered short hairpin RNA (shRNA) on CVB3 infection in an animal model by RNA interference technique, we constructed a recombinant lentivirus expressing shR-NA-3753 against the viral genome region 3753-3771, then transduced Lenti-sh3753 into mice infected with CVB3. We evaluated the antiviral ability of Ienti-sh3753 by cytopathic effect (CPE) , viral plaque assay and histological analysis of mice hearts. The results showed that Lenti-sh3753 exhibited a significant protective effect on cell viability and reduction of viral titers in supernatant of cell culture by specific inhibition on viral replication. Lenti-sh3753 also prolonged the mice survival and limited the viral production in mice hearts. These data proposed that Lenti-sh3753 can effectively inhibit CVB3 infection in a coxsackievirus-induced myocarditis model, suggesting its potential role in prevention and therapy of viral diseases.%为了研究慢病毒介导的shRNA(Short hairpin RNA,shRNA)在柯萨奇B组3型病毒(Coxsackievirus B3,CVB3)导致的心肌炎小鼠模型中的抗病毒作用,合成针对CVB3基因组3753~3771区域的慢病毒Lenti-sh3753,感染HeLa细胞后感染CVB3病毒,通过荧光显微镜观测shRNA的表达和病毒致细胞病变效应,并测定培养上清中的病毒滴度,将慢病毒Lenti-sh3753感染BALB/c小鼠后感染CVB3病毒,观察小鼠的存活率,心脏组织中的病毒滴度和病理变化.结果发现Lenti-sh3753能在HeLa细胞中表达shRNA,并能有效抑制细胞中病毒RNA的复制.在小鼠模型上,Lenti-sh3753能提高小鼠的存活率,降低心脏中的病毒含量,从而减轻病理反应.这些结果提示,Lenti-sh3753在细胞和动物模型中能针对性地降解CVB3病毒RNA,明显降低病毒滴度,有效控制病毒感染.

  3. Urokinase plasminogen activator inhibits HIV virion release from macrophage-differentiated chronically infected cells via activation of RhoA and PKCε.

    Directory of Open Access Journals (Sweden)

    Francesca Graziano

    Full Text Available BACKGROUND: HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA with its cell surface receptor (uPAR has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA. By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles. RESULTS: uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA. CONCLUSIONS: These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed

  4. Physalins B and F, seco-steroids isolated from Physalis angulata L., strongly inhibit proliferation, ultrastructure and infectivity of Trypanosoma cruzi.

    Science.gov (United States)

    Meira, Cássio S; Guimarães, Elisalva T; Bastos, Tanira M; Moreira, Diogo R M; Tomassini, Therezinha C B; Ribeiro, Ivone M; Dos Santos, Ricardo R; Soares, Milena B P

    2013-12-01

    We previously observed that physalins have immunomodulatory properties, as well as antileishmanial and antiplasmodial activities. Here, we investigated the anti-Trypanosoma cruzi activity of physalins B, D, F and G. We found that physalins B and F were the most potent compounds against trypomastigote and epimastigote forms of T. cruzi. Electron microscopy of trypomastigotes incubated with physalin B showed disruption of kinetoplast, alterations in Golgi apparatus and endoplasmic reticulum, followed by the formation of myelin-like figures, which were stained with MDC to confirm their autophagic vacuole identity. Physalin B-mediated alteration in Golgi apparatus was likely due to T. cruzi protease perturbation; however physalins did not inhibit activity of the trypanosomal protease cruzain. Flow cytometry examination showed that cell death is mainly caused by necrosis. Treatment with physalins reduced the invasion process, as well as intracellular parasite development in macrophage cell culture, with a potency similar to benznidazole. We observed that a combination of physalins and benznidazole has a greater anti-T. cruzi activity than when compounds were used alone. These results indicate that physalins, specifically B and F, are potent and selective trypanocidal agents. They cause structural alterations and induce autophagy, which ultimately lead to parasite cell death by a necrotic process.

  5. NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection.

    Science.gov (United States)

    Zhang, Min; Li, Mo-fei; Sun, Li

    2014-01-01

    NK-lysin is an antimicrobial protein produced by cytotoxic T lymphocytes and natural killer cells. In this study, we examined the biological property of a peptide, NKLP27, derived from tongue sole (Cynoglossus semilaevis) NK-lysin. NKLP27 is composed of 27 amino acids and shares little sequence identity with known NK-lysin peptides. NKLP27 possesses bactericidal activity against both Gram-negative and Gram-positive bacteria including common aquaculture pathogens. The bactericidal activity of NKLP27 was dependent on the C-terminal five residues, deletion of which dramatically reduced the activity of NKLP27. During its interaction with the target bacterial cells, NKLP27 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA. In vivo study showed that administration of tongue sole with NKLP27 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. Further study revealed that fish administered with NKLP27 exhibited significantly upregulated expression of the immune genes including those that are known to be involved in antibacterial and antiviral defense. These results indicate that NKLP27 is a novel antimicrobial against bacterial and viral pathogens, and that the observed effect of NKLP27 on bacterial DNA and host gene expression adds new insights to the action mechanism of fish antimicrobial peptides.

  6. NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available NK-lysin is an antimicrobial protein produced by cytotoxic T lymphocytes and natural killer cells. In this study, we examined the biological property of a peptide, NKLP27, derived from tongue sole (Cynoglossus semilaevis NK-lysin. NKLP27 is composed of 27 amino acids and shares little sequence identity with known NK-lysin peptides. NKLP27 possesses bactericidal activity against both Gram-negative and Gram-positive bacteria including common aquaculture pathogens. The bactericidal activity of NKLP27 was dependent on the C-terminal five residues, deletion of which dramatically reduced the activity of NKLP27. During its interaction with the target bacterial cells, NKLP27 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA. In vivo study showed that administration of tongue sole with NKLP27 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. Further study revealed that fish administered with NKLP27 exhibited significantly upregulated expression of the immune genes including those that are known to be involved in antibacterial and antiviral defense. These results indicate that NKLP27 is a novel antimicrobial against bacterial and viral pathogens, and that the observed effect of NKLP27 on bacterial DNA and host gene expression adds new insights to the action mechanism of fish antimicrobial peptides.

  7. P2X7 Receptor Inhibition Improves CD34 T-Cell Differentiation in HIV-Infected Immunological Nonresponders on c-ART.

    Directory of Open Access Journals (Sweden)

    Inna Menkova-Garnier

    2016-04-01

    Full Text Available Peripheral CD4+ T-cell levels are not fully restored in a significant proportion of HIV+ individuals displaying long-term viral suppression on c-ART. These immunological nonresponders (INRs have a higher risk of developing AIDS and non-AIDS events and a lower life expectancy than the general population, but the underlying mechanisms are not fully understood. We used an in vitro system to analyze the T- and B-cell potential of CD34+ hematopoietic progenitor cells. Comparisons of INRs with matched HIV+ patients with high CD4+ T-cell counts (immune responders (IRs revealed an impairment of the generation of T-cell progenitors, but not of B-cell progenitors, in INRs. This impairment resulted in the presence of smaller numbers of recent thymic emigrants (RTE in the blood and lower peripheral CD4+ T-cell counts. We investigated the molecular pathways involved in lymphopoiesis, focusing particularly on T-cell fate specification (Notch pathway, survival (IL7R-IL7 axis and death (Fas, P2X7, CD39/CD73. P2X7 expression was abnormally strong and there was no CD73 mRNA in the CD34+ cells of INRs, highlighting a role for the ATP pathway. This was confirmed by the demonstration that in vitro inhibition of the P2X7-mediated pathway restored the T-cell potential of CD34+ cells from INRs. Moreover, transcriptomic analysis revealed major differences in cell survival and death pathways between CD34+ cells from INRs and those from IRs. These findings pave the way for the use of complementary immunotherapies, such as P2X7 antagonists, to restore T-cell lymphopoiesis in INRs.

  8. 鸡柔嫩艾美耳球虫对宿主细胞凋亡的影响%Eimeria Tenella Sporozoite Inhibits Apoptosis in Infected Host Cells

    Institute of Scientific and Technical Information of China (English)

    邓家俭; 王黎霞; 安健

    2011-01-01

    The aim of the experiments is to investigate the relationship between the apoptosis and the host cell infection with the intracellular parasite, E. Tenella. The MDBK cells were invaded by the sporozoites of E. Tenella for 1. 5 hours, and then was incubated in 6% alcohol for 3 hours. The apoptosis of the MDBK cells were tested using fluorescence inverted microscope and flow cytometry by Annexin V/PI staining. The data showed that E. Tenella protected the invaded host cell from apoptosis inducing, whereas uninfected cells underwent apoptosis after application of inducer of apoptosis. The results indicated that the sporozoites of E. Tenella had a unique mechanism to extend the survival time of host cells to ensure that they survive in the cell and development.%为了研究柔嫩艾美耳球虫入侵与宿主细胞之间的相互关系,用纯化的柔嫩艾美耳球虫子孢子与MDBK细胞共培养,使球虫子孢子入侵MDBK(Madin-Darby bovine kidney)细胞,用终浓度6%乙醇进行凋亡诱导,通过Annex-in V/PI双荧光染色法和流式细胞术(FCM)对MDBK细胞凋亡水平进行检测.试验结果证明子孢子入侵细胞后,有子孢子入侵的细胞凋亡诱导显著被抑制(P<0.05),而未有子孢子入侵的细胞相继被凋亡诱导剂诱导凋亡.进一步揭示柔嫩艾美耳球虫子孢子具有独特的机制来延长宿主细胞的存活时间来确保它们能在细胞中存活并发育.

  9. Abundance of IFN-alpha and IFN-gamma mRNA in blood of resistant and susceptible chickens infected with Marek's disease virus (MDV) or vaccinated with turkey herpesvirus; and MDV inhibition of subsequent induction of IFN gene transcription.

    Science.gov (United States)

    Quéré, P; Rivas, C; Ester, K; Novak, R; Ragland, W L

    2005-03-01

    The effects of the very virulent RB-1B strain of Marek's disease virus (MDV) and turkey herpesvirus (HVT), a vaccinal strain, on abundance of IFN mRNA in the blood were investigated. MDV and HVT infection did not change the circulating level of IFN-gamma mRNA 1 and 7 days p.i., but they increased IFN-alpha mRNA levels slightly in genetically susceptible (to tumour development) B(13)/B(13) chickens. The total number of circulating leukocytes was unchanged and increase in message was accompanied by an increase in circulating CD8alpha(+) and MHC Class II(+) cells. On the contrary, both viruses slightly increased IFN-gamma transcripts and decreased IFN-alpha transcripts in genetically resistant B(21)/B(21) chickens. Further, oncogenic MDV was able to block the response to inactivated Newcastle disease virus, a potent inducer of IFN, in both chicken lines. The inhibiting effect on transcription was present for both IFN at days 1 and 7 p.i. in susceptible B(13)/B(13) chickens, but only at day 7 p.i. in resistant B(21)/B(21) chickens. By contrast, non-oncogenic HVT did not interfere with induction of either message at one day p.i. and MDV had a more suppressive effect than HVT on IFN gene transcription 7 days p.i. in B(21)/B(21) chickens. Thus, the strong ability of MDV to block induction of IFN gene transcription detected in the blood as soon as one day after infection in susceptible chickens, as opposed to resistant chickens, not only causes immunosuppression but also may be related to the virus's oncogenicity.

  10. STAT3 Regulates Proliferation and Survival of CD8+ T Cells: Enhances Effector Responses to HSV-1 Infection, and Inhibits IL-10+ Regulatory CD8+ T Cells in Autoimmune Uveitis

    Directory of Open Access Journals (Sweden)

    Cheng-Rong Yu

    2013-01-01

    Full Text Available STAT3 regulates CD4+ T cell survival and differentiation. However, its effects on CD8+ T cells are not well understood. Here, we show that in comparison to WT CD8+ T cells, STAT3-deficient CD8+ T cells exhibit a preactivated memory-like phenotype, produce more IL-2, proliferate faster, and are more sensitive to activation-induced cell death (AICD. The enhanced proliferation and sensitivity to AICD correlated with downregulation of class-O forkhead transcription factors (FoxO1, FoxO3A, , , Bcl-2, OX-40, and upregulation of FasL, Bax, and Bad. We examined whether STAT3-deficient CD8+ T cells can mount effective response during herpes simplex virus (HSV-1 infection and experimental autoimmune uveitis (EAU. Compared to WT mice, HSV-1-infected STAT3-deficient mice (STAT3KO produced less IFN- and virus-specific KLRG-1+ CD8+ T cells. STAT3KO mice are also resistant to EAU and produced less IL-17-producing Tc17 cells. Resistance of STAT3KO to EAU correlated with marked expansion of IL-10-producing regulatory CD8+ T cells (CD8-Treg implicated in recovery from autoimmune encephalomyelitis. Thus, increases of IL-6-induced STAT3 activation observed during inflammation may inhibit expansion of CD8-Tregs, thereby impeding recovery from uveitis. These results suggest that STAT3 is a potential therapeutic target for upregulating CD8+ T cell-mediated responses to viruses and suggest the successful therapeutic targeting of STAT3 as treatment for uveitis, derived, in part, from promoting CD8-Treg expansion.

  11. Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes.

    Science.gov (United States)

    Chauhan, Ashok; Mehla, Rajeev; Vijayakumar, Theophilus Sunder; Handy, Indhira

    2014-05-01

    Astrocytes protect neurons but also evoke a proinflammatory response to injury and viral infections including HIV. We investigated the mechanism of HIV-1 infection in primary astrocytes, which showed minimal but productive viral infection independent of CXCR4. As with ectopic-CD4-expressing astrocytes, lysosomotropic agents led to increased HIV-1 infection in wild-type but not Rabs 5, 7, and 11-ablated astrocytes. Instead, HIV-1 infection was decreased in Rab-depleted astrocytes, corroborating viral entry by endocytosis. HIV-1 produced persistent infection in astrocytes (160 days); no evidence of latent infection was seen. Notably, one caveat is that endosomal modifiers enhanced wild-type HIV-1 infection (M- and T-tropic) in astrocytes, suggesting endocytic entry of the virus. Impeding endocytosis by inhibition of Rab 5, 7 or 11 will inhibit HIV infection in astrocytes. Although the contribution of such low-level infection in astrocytes to neurological complications is unclear, it may serve as an elusive viral reservoir in the central nervous system.

  12. Central line infections - hospitals

    Science.gov (United States)

    ... infection; Central venous catheter - infection; CVC - infection; Central venous device - infection; Infection control - central line infection; Nosocomial infection - central line infection; Hospital acquired ...

  13. Hookworm infection

    Science.gov (United States)

    Hookworm disease; Ground itch; Ancylostoma duodenale infection; Necator americanus infection; Parasitic infection - hookworm ... The infection is caused by infestation with any of the following ... Ancylostoma duodenale Ancylostoma ceylanicum Ancylostoma ...

  14. Kidney Infection

    Science.gov (United States)

    ... X-ray called a voiding cystourethrogram. Antibiotics for kidney infections Antibiotics are the first line of treatment ... the infection is completely eliminated. Hospitalization for severe kidney infections For a severe kidney infection, your doctor ...

  15. A Subinhibitory Concentration of Clarithromycin Inhibits Mycobacterium avium Biofilm Formation

    OpenAIRE

    2004-01-01

    Mycobacterium avium causes disseminated infection in immunosuppressed individuals and lung infection in patients with chronic lung diseases. M. avium forms biofilm in the environment and possibly in human airways. Antibiotics with activity against the bacterium could inhibit biofilm formation. Clarithromycin inhibits biofilm formation but has no activity against established biofilm.

  16. Inhibition of porcine reproductive and respiratory syndrome virus infection by recombinant adenovirus- and/or exosome-delivered the artificial microRNAs targeting sialoadhesin and CD163 receptors.

    Science.gov (United States)

    Zhu, Li; Song, Hongqin; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2014-12-19

    The current vaccines failed to provide substantial protection against porcine reproductive and respiratory syndrome (PRRS) and the new vaccine development faces great challenges. Sialoadhesin (Sn) and CD163 are the two key receptors for PRRS virus (PRRSV) infection of porcine alveolar macrophages (PAMs), but the artificial microRNA (amiRNA) strategy targeting two viral receptors has not been described. The candidate miRNAs targeting Sn or CD163 receptor were predicted using a web-based miRNA design tool and validated by transfection of cells with each amiRNA expression vector plus the reporter vector. The amiRNA-expressing recombinant adenoviruses (rAds) were generated using AdEasy Adenoviral Vector System. The rAd transduction efficiencies for pig cells were measured by flow cytometry and fluorescent microscopy. The expression and exosome-mediated secretion of amiRNAs were detected by RT-PCR. The knock-down of Sn or CD163 receptor by rAd- and/or exosome-delivered amiRNA was detected by quantitative RT-PCR and flow cytometry. The additive anti-PRRSV effect between the two amiRNAs was detected by quantitative RT-PCR and viral titration. All 18 amiRNAs validated were effective against Sn or CD163 receptor mRNA expression. Two rAds expressing Sn- or CD163-targeted amiRNA were generated for further study. The maximal rAd transduction efficiency was 62% for PAMs at MOI 800 or 100% for PK-15 cells at MOI 100. The sequence-specific amiRNAs were expressed efficiently in and secreted from the rAd-transduced cells via exosomes. The expression of Sn and CD163 receptors was inhibited significantly by rAd transduction and/or amiRNA-containing exosome treatment at mRNA and protein levels. Both PRRSV ORF7 copy number and viral titer were reduced significantly by transduction of PAMs with the two rAds and/or by treatment with the two amiRNA-containing exosomes. The additive anti-PRRSV effect between the two amiRNAs was relatively long-lasting (96 h) and effective against three

  17. The CORVET subunit Vps8 cooperates with the Rab5 homolog Vps21 to induce clustering of late endosomal compartments

    NARCIS (Netherlands)

    Markgraf, Daniel F; Ahnert, Franziska; Arlt, Henning; Mari, Muriel; Peplowska, Karolina; Epp, Nadine; Griffith, Janice; Reggiori, Fulvio; Ungermann, Christian

    2009-01-01

    Membrane tethering, the process of mediating the first contact between membranes destined for fusion, requires specialized multisubunit protein complexes and Rab GTPases. In the yeast endolysosomal system, the hexameric HOPS tethering complex cooperates with the Rab7 homolog Ypt7 to promote homotypi

  18. Poly(A)-Binding Protein 1 Partially Relocalizes to the Nucleus during Herpes Simplex Virus Type 1 Infection in an ICP27-Independent Manner and Does Not Inhibit Virus Replication▿

    Science.gov (United States)

    Salaun, C.; MacDonald, A. I.; Larralde, O.; Howard, L.; Lochtie, K.; Burgess, H. M.; Brook, M.; Malik, P.; Gray, N. K.; Graham, S. V.

    2010-01-01

    Infection of cells by herpes simplex virus type 1 (HSV-1) triggers host cell shutoff whereby mRNAs are degraded and cellular protein synthesis is diminished. However, virus protein translation continues because the translational apparatus in HSV-infected cells is maintained in an active state. Surprisingly, poly(A)-binding protein 1 (PABP1), a predominantly cytoplasmic protein that is required for efficient translation initiation, is partially relocated to the nucleus during HSV-1 infection. This relocalization occurred in a time-dependent manner with respect to virus infection. Since HSV-1 infection causes cell stress, we examined other cell stress inducers and found that oxidative stress similarly relocated PABP1. An examination of stress-induced kinases revealed similarities in HSV-1 infection and oxidative stress activation of JNK and p38 mitogen-activated protein (MAP) kinases. Importantly, PABP relocalization in infection was found to be independent of the viral protein ICP27. The depletion of PABP1 by small interfering RNA (siRNA) knockdown had no significant effect on viral replication or the expression of selected virus late proteins, suggesting that reduced levels of cytoplasmic PABP1 are tolerated during infection. PMID:20573819

  19. Shigella Infections

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Shigella Infections KidsHealth > For Parents > Shigella Infections Print A ... the Doctor en español Infecciones por Shigella About Shigella Shigella are bacteria that can infect the digestive ...

  20. Spinal Infections

    Science.gov (United States)

    ... infections may occur following surgery or spontaneously in patients with certain risk factors. Risk factors for spinal infections include poor nutrition, immune suppression, human immunodeficiency virus (HIV) infection, cancer, diabetes and obesity. Surgical risk factors ...

  1. Infective Endocarditis

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Infective Endocarditis Updated:Oct 10,2016 View an illustration of endocarditis Infective endocarditis (IE), also called bacterial endocarditis (BE), ...

  2. Active inhibition of herpes simplex virus type 1-induced cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bzik, D.J.; Person, S.; Read, G.S.

    1982-01-01

    Previous studies have demonstrated that syn mutant-infected cells fuse less well with nonsyncytial virus-infected cells than with uninfected cells, a phenomenon defined as function inhibition. The present study characterizes the kinetics as well as the requirements for expression of fusion inhibition. Initially, the capacity of sparse syn mutant-infected cells to fuse with uninfected surrounding cells was determined throughout infection. Of seven syn mutants examined, including representatives with alterations in two different viral genes that affect cell fusion, all showed an increase in fusion capacity up to 12 hr after infection and a decrease at later times. Fusion inhibition was examined in experiments employing sparse syn20-infected cells which had been incubated to a maximum fusion capacity; it was shown that surrounding cells infected with KOS, the parent of syn20, began to inhibit fusion by the syn20-infected cells at about 4 hr after infection, and that the maximum ability to inhibit fusion was attained at about 6 hr after infection. The metabolic blocking agents actinomycin D (RNA), cycloheximide (protein), 2-deoxyglucose, and tunicamycin (glycoslyation of glycoproteins) all showed the ability to inhibit the expression of fusion inhibition by KOS-infected cells if added shortly after infection. It is concluded that fusion inhibition is an active process that requires the synthesis of RNA, proteins, and glycoproteins. 17 references, 3 figures, 2 tables.

  3. Inhibition of type 1 diabetes in filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+ regulatory T cells.

    Science.gov (United States)

    Hübner, Marc P; Stocker, J Thomas; Mitre, Edward

    2009-08-01

    We sought to determine whether Litomosoides sigmodontis, a filarial infection of rodents, protects against type 1 diabetes in non-obese diabetic (NOD) mice. Six-week-old NOD mice were sham-infected or infected with either L3 larvae, adult male worms, or adult female worms. Whereas 82% of uninfected NOD mice developed diabetes by 25 weeks of age, no L. sigmodontis-infected mice developed disease. Although all mice had evidence of ongoing islet cell inflammation by histology, L. sigmodontis-infected mice had greater numbers of total islets and non-infiltrated islets than control mice. Protection against diabetes was associated with a T helper type 2 (Th2) shift, as interleukin-4 (IL-4) and IL-5 release from alpha-CD3/alpha-CD28-stimulated splenocytes was greater in L. sigmodontis-infected mice than in uninfected mice. Increased circulating levels of insulin-specific immunoglobulin G1, showed that this Th2 shift occurs in response to one of the main autoantigens in diabetes. Multicolour flow cytometry studies demonstrated that protection against diabetes in L. sigmodontis-infected NOD mice was associated with significantly increased numbers of splenic CD4(+) CD25(+) FoxP3(+) regulatory T cells. Interestingly, injection of crude worm antigen into NOD mice also resulted in protection against type 1 diabetes, though to a lesser degree than infection with live L. sigmodontis worms. In conclusion, these studies demonstrate that filarial worms can protect against the onset of type 1 diabetes in NOD mice. This protection is associated with a Th2 shift, as demonstrated by cytokine and antibody production, and with an increase in CD4(+) CD25(+) FoxP3(+) regulatory T cells.

  4. The IFITMs Inhibit Zika Virus Replication

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses.

  5. [Infections and fingolimod].

    Science.gov (United States)

    Cervera, Carlos

    2012-08-16

    Fingolimod is the first approved drug with oral availability for the treatment of relapsing multiple sclerosis. To review the mechanism of action of fingolimod and its relationship with the development of infections. To propose preventive measures for those patients who are receiving the drug or will initiate a new treatment. In addition, the role of fingolimod in the development of progressive multifocal leukoencephalopathy on the basis of recent knowledge of its pathophysiology will be discussed. The mechanism of action of fingolimod is based on an antagonic effect on the sphingosine 1-phospate receptors that will generate an inhibition of the egress of naive and central memory lymphocytes into the bloodstream, allowing the free recirculation of memory effectors T lymphocytes. This effect will produce lymphopenia. Fingolimod-associated lymphopenia is a consequence of lymphocyte redistribution, and it is selective and reversible. There is no evidence of higher number of opportunistic and non-opportunistic infections in comparison to placebo or interferon beta-1a in patients receiving fingolimod. However, two patients developed severe herpetic infections under fingolimod. Fingolimod induce a selective and reversible lymphopenia that, taking into account the most recent available data, does not seem to be associated with higher risk of opportunistic infections due to a preservation of immuno-surveillance. The risk of herpesvirus infection should be taken into consideration and more studies are warranted to confirm if an association of these infections with the use of fingolimod exists.

  6. Inhibition of Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa by Culture Extract from Novel Bacterial Species of Paenibacillus Using a Rat Model of Chronic Lung Infection

    Directory of Open Access Journals (Sweden)

    Saad Musbah Alasil

    2015-01-01

    Full Text Available Quorum sensing (QS is a key regulator of virulence factors and biofilm formation in Gram-negative bacteria such as Pseudomonas aeruginosa. Microorganisms that inhabit soil are of strategic importance in the discovery of compounds with anti-QS properties. The objective of the study was to test the culture extract of a taxonomically novel species of Paenibacillus strain 139SI for its inhibitory effects on the QS-controlled virulence factors and biofilm formation of Pseudomonas aeruginosa both in vitro and in vivo. The Paenibacillus sp. culture extract was used to test its anti-QS effects on the LasA protease, LasB elastase, pyoverdin production, and biofilm formation of P. aeruginosa as well as evaluate its therapeutic effects on lung bacteriology, pathology, hematological profile, and serum antibody responses of experimental animals in a rat model of chronic lung infection. Results showed significant decrease in the activities of QS-controlled LasA protease, LasB elastase pyoverdin, and biofilm formation of P. aeruginosa caused by the culture extract. Moreover, the extract significantly prolonged the survival times of rats and facilitated the clearance of biofilm infections from infected lungs. In conclusion, the antiquorum sensing effects of culture extract from a novel species of Paenibacillus provide new insights to combat biofilm-associated infections.

  7. Infection and anorexia.

    Science.gov (United States)

    Kanra, Güler Y; Ozen, Hasan; Kara, Ateş

    2006-01-01

    Whereas anorexia is a common behavioral response to infectious diseases, the reasons for and mechanisms behind this observation are still unknown. When it is considered on an evolutionary basis, the organism must have net benefits from anorexia. The first response to infection is the development of acute phase response (APR). The APR is triggered by microbial products and characterized by production of several cytokines known to induce anorexia. Several microbial products and cytokines reduce food intake after parenteral administration, suggesting a role of these substances in the anorexia during infection. Locally released cytokines may inhibit feeding by activating peripheral sensory fibers directly or indirectly, and without a concomitant increase in circulating cytokines. However, the final center for appetite or eating is the central nervous system (CNS). Thus, these peripheral signals must reach and interact with brain regions that control appetite. In addition, a direct action of cytokines and microbial products on the CNS is presumably involved in the anorexia during infection.

  8. Hand Infections

    Science.gov (United States)

    ... a skin infection that can cause skin redness, warmth, and pain. People with cellulitis may have a ... cause the skin around the nail to be red, swollen, and tender. If the infection is treated ...

  9. Staph Infections

    Science.gov (United States)

    ... Culture Household Safety: Preventing Cuts Dealing With Cuts Osteomyelitis Tetanus First Aid: Skin Infections Toxic Shock Syndrome ... Abscess Paronychia Dealing With Cuts and Wounds Cellulitis Osteomyelitis Impetigo Staph Infections MRSA Cuts, Scratches, and Scrapes ...

  10. Streptococcal Infections

    Science.gov (United States)

    ... red rash on the body. Impetigo - a skin infection Toxic shock syndrome Cellulitis and necrotizing fasciitis (flesh-eating disease) Group B strep can cause blood infections, pneumonia and meningitis in newborns. A screening test ...

  11. Tapeworm Infection

    Science.gov (United States)

    Diseases and Conditions Tapeworm infection By Mayo Clinic Staff Tapeworm infection is caused by ingesting food or water contaminated with tapeworm eggs or larvae. If you ingest certain tapeworm eggs, they can migrate outside ...

  12. Infection Control

    Science.gov (United States)

    ... lives are lost because of the spread of infections in hospitals. Health care workers can take steps ... of infectious diseases. These steps are part of infection control. Proper hand washing is the most effective ...

  13. Tinea Infections

    Science.gov (United States)

    ... The skin may become itchy and red, with blisters and cracking of the skin. The infection may ... my sheets and towels every day? ResourcesDiagnosis and Management of Common Tinea Infections by SL Noble, Pharm. ...

  14. Campylobacter Infections

    Science.gov (United States)

    Campylobacter infection is a common foodborne illness. You get it from eating raw or undercooked poultry. You ... whether you need to take antibiotics. To prevent campylobacter infection, cook poultry thoroughly. Use a separate cutting ...

  15. Spinal infections.

    Science.gov (United States)

    Tay, Bobby K-B; Deckey, Jeffrey; Hu, Serena S

    2002-01-01

    Spinal infections can occur in a variety of clinical situations. Their presentation ranges from the infant with diskitis who is unwilling to crawl or walk to the adult who develops an infection after a spinal procedure. The most common types of spinal infections are hematogenous bacterial or fungal infections, pediatric diskitis, epidural abscess, and postoperative infections. Prompt and accurate diagnosis of spinal infections, the cornerstone of treatment, requires a high index of suspicion in at-risk patients and the appropriate evaluation to identify the organism and determine the extent of infection. Neurologic function and spinal stability also should be carefully evaluated. The goals of therapy should include eradicating the infection, relieving pain, preserving or restoring neurologic function, improving nutrition, and maintaining spinal stability.

  16. Anaerobic Infections

    Science.gov (United States)

    ... on the face and neck, sometimes after a dental infection or procedure such as a tooth extraction or ... adults of all ages. The most common are dental infections, inflammation of the abdominal lining (peritonitis), and abscesses ...

  17. Hantavirus Infections

    Science.gov (United States)

    ... but deadly viral infection. It is spread by mice and rats. They shed the virus in their ... breathe infected air or come into contact with rodents or their urine or droppings. You cannot catch ...

  18. Rotavirus Infections

    Science.gov (United States)

    Rotavirus is a virus that causes gastroenteritis. Symptoms include severe diarrhea, vomiting, fever, and dehydration. Almost all ... the U.S. are likely to be infected with rotavirus before their 5th birthday. Infections happen most often ...

  19. High efficacy of anti DBL4e-VAR2CSA antibodies in inhibition of CSA-binding Plasmodium falciparum-infected erythrocytes from pregnant women

    DEFF Research Database (Denmark)

    Magistrado, Pamela A; Minja, Daniel; Doritchamou, Justin

    2011-01-01

    Malaria during pregnancy is a major cause of intra-uterine growth-retardation and infant death in sub-Saharan Africa. Ideally, this could be prevented by a vaccine delivered before the first pregnancy. Antibodies against domain DBL4¿ from VAR2CSA has been shown to inhibit adhesion of laboratory i...... elicited antibodies with similar efficacy as pooled plasma from immune multi-gravid African women....

  20. Inhibition of influenza A virus replication by rifampicin and selenocystamine

    Energy Technology Data Exchange (ETDEWEB)

    Hamzehei, M.; Ledinko, N.

    1980-01-01

    The effects of selenocystamine, an inhibitor of influenza virus RNA-dependent RNA polymerase in vitro activity, in the antibiotic rifampicin were studied on influenza A/PR/8/34 (HON1) infection in embryonated eggs. Both drugs completely inhibited hemagglutinating and infective virus yields when added at relatively early times postinfection. Maximal inhibition was produced by apparently noncytotoxic concentrations of 50 microgram of selenocystamine, or of 400 microgram of rifampicin, per egg.

  1. The expression of miR-125b-5p is increased in the serum of patients with chronic hepatitis B infection and inhibits the detection of hepatitis B virus surface antigen.

    Science.gov (United States)

    Ninomiya, M; Kondo, Y; Kimura, O; Funayama, R; Nagashima, T; Kogure, T; Morosawa, T; Tanaka, Y; Nakayama, K; Shimosegawa, T

    2016-05-01

    MicroRNAs were first discovered as small endogenous RNA molecules and some viruses have been reported to interact with host miRNAs. By investigating miRNA expression in serum derived from HBV-infected patients, we have clarified the relationship between miRNA expression and chronic HBV infection. Additionally, we demonstrate the use of miRNAs as both novel biomarkers and new therapies against HBV. We included the sera of 20 patients with chronic HBV infection, sera of 20 patients with HCV infection and sera of 10 healthy controls in this study. The miRNA libraries were sequenced using a 32-mer single end sequence. The validation study of circulating miRNA in serum was conducted by qRT-PCR. The HBV genomic regions of genotype B and genotype C that were speculated to be targeted by miRNA were constructed using complementary oligonucleotides in the vectors. Reporter assays were performed 48 h after transfection. The expression levels of 21 miRNAs were found to be differentially expressed in the three groups. 10 miRNAs (hsa-miR-100-5p, miR-125b-5p, miR-193b-3p, miR-194-3p, miR-30a-3p, miR-30c-2-3p, miR-3591-5p, miR-4709-3p, miR-574-3p and miR-99a-5p) were found to be upregulated in CH-B by deep sequence analysis. The computer analysis showed that two regions of HBsAg are potential targets of miR-125b-5p and miR-30c-2-3p and that these miRNAs may downregulate the expression of HBV-S. The HBV genotype C segment speculated to be targeted by hsa-miR-125b-5p significantly decreased the expression of the reporter. This study indicated that expression of miR-125b-5p was related to the etiology of chronic hepatitis B infection and regulated the expression of HBsAg. © 2016 John Wiley & Sons Ltd.