WorldWideScience

Sample records for ra-3 reactor thermal

  1. New irradiation facility for biomedical applications at the RA-3 reactor thermal column.

    Science.gov (United States)

    Miller, M; Quintana, J; Ojeda, J; Langan, S; Thorp, S; Pozzi, E; Sztejnberg, M; Estryk, G; Nosal, R; Saire, E; Agrazar, H; Graiño, F

    2009-07-01

    A new irradiation facility has been developed in the RA-3 reactor in order to perform trials for the treatment of liver metastases using boron neutron capture therapy (BNCT). RA-3 is a production research reactor that works continuously five days a week. It had a thermal column with a small cross section access tunnel that was not accessible during operation. The objective of the work was to perform the necessary modifications to obtain a facility for irradiating a portion of the human liver. This irradiation facility must be operated without disrupting the normal reactor schedule and requires a highly thermalized neutron spectrum, a thermal flux of around 10(10) n cm(-2)s(-1) that is as isotropic and uniform as possible, as well as on-line instrumentation. The main modifications consist of enlarging the access tunnel inside the thermal column to the suitable dimensions, reducing the gamma dose rate at the irradiation position, and constructing properly shielded entrance gates enabled by logical control to safely irradiate and withdraw samples with the reactor at full power. Activation foils and a neutron shielded graphite ionization chamber were used for a preliminary in-air characterization of the irradiation site. The constructed facility is very practical and easy to use. Operational authorization was obtained from radioprotection personnel after confirming radiation levels did not significantly increase after the modification. A highly thermalized and homogenous irradiation field was obtained. Measurements in the empty cavity showed a thermal flux near 10(10) n cm(-2)s(-1), a cadmium ratio of 4100 for gold foils and a gamma dose rate of approximately 5 Gy h(-1).

  2. Simulation of the neutron flux in the irradiation facility at RA-3 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bortolussi, S., E-mail: silva.bortolussi@pv.infn.it [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6 27100, Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6 27100, Pavia (Italy); Pinto, J.M. [Department of Research and Production Reactors, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina); Thorp, S.I. [Department of Instrumentations and Control, Comision Nacional de Energia Atomica (CNEA), Presbitero Luis Gonzalez y Aragon 15 (B1802AYA), Buenos Aires (Argentina); Farias, R.O. [CONICET, Avda. Rivadavia 1917, (1033) C.A.B.A. Argentina (Argentina); Soto, M.S. [FCEyN, Universidad de Buenos Aires (1428), Cdad. Universitaria. C.A.B.A. Argentina (Argentina); Sztejnberg, M. [Department of Instrumentations and Control, Comision Nacional de Energia Atomica (CNEA), Presbitero Luis Gonzalez y Aragon 15 (B1802AYA), Buenos Aires (Argentina); Pozzi, E.C.C. [Department of Research and Production Reactors, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina)] [Department of Radiobiology, Comision Nacional de Energia Atomica (CNEA), Av. del Libertador 8250 (1429), Buenos Aires (Argentina)

    2011-12-15

    A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comision Nacional de Energia Atomica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility.

  3. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  4. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    Science.gov (United States)

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  5. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Farías, R. O.; Trivillin, V. A.; Portu, A. M.; Schwint, A. E.; González, S. J., E-mail: srgonzal@cnea.gov.ar [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033 (Argentina); Garabalino, M. A.; Monti Hughes, A.; Pozzi, E. C. C.; Thorp, S. I.; Curotto, P.; Miller, M. E.; Santa Cruz, G. A.; Saint Martin, G. [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650 (Argentina); Ferraris, S.; Santa María, J.; Rovati, O.; Lange, F. [CIDME, Universidad Maimónides, Buenos Aires 1405 (Argentina); Bortolussi, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100 (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100, Italy and Dipartimento di Fisica, Università di Pavia, Pavia 27100 (Italy)

    2015-07-15

    Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect

  6. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina.

    Science.gov (United States)

    Farías, R O; Garabalino, M A; Ferraris, S; Santa María, J; Rovati, O; Lange, F; Trivillin, V A; Monti Hughes, A; Pozzi, E C C; Thorp, S I; Curotto, P; Miller, M E; Santa Cruz, G A; Bortolussi, S; Altieri, S; Portu, A M; Saint Martin, G; Schwint, A E; González, S J

    2015-07-01

    Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (l)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the

  7. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  8. REACTOR GROUT THERMAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  9. Thermal Analysis for Mobile Reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Mobile reactor design in the paper is consisted of two grades of thermal electric conversion. The first grade is the thermionic conversion inside the core and the second grade is thermocouple conversion

  10. Thermal reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  11. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  12. Wire core reactor for nuclear thermal propulsion

    Science.gov (United States)

    Harty, Richard B.; Brengle, Robert G.

    1993-01-01

    Studies have been performed of a compact high-performance nuclear rocket reactor that incorporates a tungsten alloy wire fuel element. This reactor, termed the wire core reactor, can deliver a specific impulse of 1,000 s using an expander cycle and a nozzle expansion ratio of 500 to 1. The core is constructed of layers of 0.8-mm-dia fueled tungsten wires wound over alternate layers of spacer wires, which forms a rugged annular lattice. Hydrogen flow in the core is annular, flowing from inside to outside. In addition to the concepts compact size and good heat transfer, the core has excellent power-flow matching features and can resist vibration and thermal stresses during star-up and shutdown.

  13. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  14. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  15. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  16. Nuclear vapor thermal reactor propulsion technology

    Science.gov (United States)

    Maya, Isaac; Diaz, Nils J.; Dugan, Edward T.; Watanabe, Yoichi; McClanahan, James A.; Wen-Hsiung Tu, Carman, Robert L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF4) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (˜100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development.

  17. Thermal-hydraulic modeling of reactivity accidents in MTR reactors

    Directory of Open Access Journals (Sweden)

    Khater Hany

    2006-01-01

    Full Text Available This paper describes the development of a dynamic model for the thermal-hydraulic analysis of MTR research reactors during a reactivity insertion accident. The model is formulated for coupling reactor kinetics with feedback reactivity and reactor core thermal-hydraulics. To represent the reactor core, two types of channels are considered, average and hot channels. The developed computer program is compiled and executed on a personal computer, using the FORTRAN language. The model is validated by safety-related benchmark calculations for MTR-TYPE reactors of IAEA 10 MW generic reactor for both slow and fast reactivity insertion transients. A good agreement is shown between the present model and the benchmark calculations. Then, the model is used for simulating the uncontrolled withdrawal of a control rod of an ETRR-2 reactor in transient with over power scram trip. The model results for ETRR-2 are analyzed and discussed.

  18. Thermal swing reactor including a multi-flight auger

    Energy Technology Data Exchange (ETDEWEB)

    Ermanoski, Ivan

    2017-03-07

    A thermal swing reactor including a multi-flight auger and methods for solar thermochemical reactions are disclosed. The reactor includes a multi-flight auger having different helix portions having different pitch. Embodiments of reactors include at least two distinct reactor portions between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between portions during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat.

  19. An Iris Mechanism Driven Temperature Control of Solar Thermal Reactors

    OpenAIRE

    Van den Langenbergh, Lode; Ophoff, Cédric; Ozalp, Nesrin

    2015-01-01

    In spite of their attraction for clean production of fuels and commodities; solar thermal reactors are challenged by the transient nature of solar energy. Control of reactor temperature during transient periods is the key factor to maintain solar reactor performance. Currently, there are few techniques that are being used to accommodate the fluctuations of incoming solar radiation. One of the commonly practiced methods is to adjust the mass flow rate of the feedstock which is very simple to i...

  20. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    Science.gov (United States)

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  1. Primary system thermal hydraulics of future Indian fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K., E-mail: kvelu@igcar.gov.in [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Natesan, K.; Maity, Ram Kumar; Asokkumar, M.; Baskar, R. Arul; Rajendrakumar, M.; Sarathy, U. Partha; Selvaraj, P.; Chellapandi, P. [Thermal Hydraulics Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Kumar, G. Senthil; Jebaraj, C. [AU-FRG Centre for CAD/CAM, Anna University, Chennai 600 025 (India)

    2015-12-01

    Highlights: • We present innovative design options proposed for future Indian fast reactor. • These options have been validated by extensive CFD simulations. • Hotspot factors in fuel subassembly are predicted by parallel CFD simulations. • Significant safety improvement in the thermal hydraulic design is quantified. - Abstract: As a follow-up to PFBR (Indian prototype fast breeder reactor), many FBRs of 500 MWe capacity are planned. The focus of these future FBRs is improved economy and enhanced safety. They are envisaged to have a twin-unit concept. Design and construction experiences gained from PFBR project have provided motivation to achieve an optimized design for future FBRs with significant design changes for many critical components. Some of the design changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus lower part, (iii) dome shape roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. This paper covers thermal hydraulic design validation of the chosen options with respect to hot and cold pool thermal hydraulics, flow requirement for main vessel cooling, inner vessel temperature distribution, safety analysis of primary pipe rupture event, adequacy of decay heat removal capacity by natural convection cooling, cold pool transient thermal loads and thermal management of top shield and reactor vault.

  2. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  3. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  4. Sensitivity and Uncertainty Study for Thermal Molten Salt Reactors

    Science.gov (United States)

    Bidaud, Adrien; Ivanona, Tatiana; Mastrangelo, Victor; Kodeli, Ivo

    2006-04-01

    The Thermal Molten Salt Reactor (TMSR) using the thorium cycle can achieve the GEN IV objectives of economy, safety, non-proliferation and durability. Its low production of higher actinides, coupled with its breeding capabilities - even with a thermal spectrum - are very valuable characteristics for an innovative reactor. Furthermore, the thorium cycle is more flexible than the uranium cycle since only a small fissile inventory (reactor. The potential of these reactors is currently being extensively studied at the CNRS and EdF /1,2/. A simplified chemical reprocessing is envisaged compared to that used for the former Molten Salt Breeder Reactor (MSBR). The MSBR concept was developed at Oak Ridge National Laboratory (ORNL) in the 1970's based on the Molten Salt Reactor Experiment (MSRE). The main goals of our current studies are to achieve a reactor concept that enables breeding, improved safety and having chemical reprocessing needs reduced and simplified as much as reasonably possible. The neutronic properties of the new TMSR concept are presented in this paper. As the temperature coefficient is close to zero, we will see that the moderation ratio cannot be chosen to simultaneously achieve a high breeding ratio, long graphite lifetime and low uranium inventory. It is clear that any safety margin taken due to uncertainty in the nuclear data will significantly reduce the capability of this concept, thus a sensitivity analysis is vital to propose measurements which would allow to reduce at present high uncertainties in the design parameters of this reactor. Two methodologies, one based on OECD/NEA deterministic codes and one on IPPE (Obninsk) stochastic code, are compared for keff sensitivity analysis. The uncertainty analysis of keff using covariance matrices available in evaluated files has been performed. Furthermore, a comparison of temperature coefficient sensitivity profiles is presented for the most important reactions. These results are used to review the

  5. Advanced fuels for thermal spectrum reactors

    OpenAIRE

    Zakova, Jitka

    2012-01-01

    The advanced fuels investigated in this thesis comprise fuels non− conventional in their design/form (TRISO), their composition (high content of plutonium and minor actinides) or their use in a reactor type, in which they have not been used before (e.g. nitride fuel in BWR). These fuels come with a promise of improved characteristics such as safe, high temperature operation, spent fuel transmutation or fuel cycle extension, for which reasons their potentialis worth assessment and investigatio...

  6. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  7. Thermal hydraulics analysis of the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dean, E-mail: Dean_Wang@uml.edu [University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854 (United States); Yoder, Graydon L.; Pointer, David W.; Holcomb, David E. [Oak Ridge National Laboratory, 1 Bethel Valley RD #6167, Oak Ridge, TN 37831 (United States)

    2015-12-01

    Highlights: • The TRACE AHTR model was developed and used to define and size the DRACS and the PHX. • A LOFF transient was simulated to evaluate the reactor performance during the transient. • Some recommendations for modifying FHR reactor system component designs are discussed. - Abstract: The Advanced High Temperature Reactor (AHTR) is a liquid salt-cooled nuclear reactor design concept, featuring low-pressure molten fluoride salt coolant, a carbon composite fuel form with embedded coated particle fuel, passively triggered negative reactivity insertion mechanisms, and fully passive decay heat rejection. This paper describes an AHTR system model developed using the Nuclear Regulatory Commission (NRC) thermal hydraulic transient code TRAC/RELAP Advanced Computational Engine (TRACE). The TRACE model includes all of the primary components: the core, downcomer, hot legs, cold legs, pumps, direct reactor auxiliary cooling system (DRACS), the primary heat exchangers (PHXs), etc. The TRACE model was used to help define and size systems such as the DRACS and the PHX. A loss of flow transient was also simulated to evaluate the performance of the reactor during an anticipated transient event. Some initial recommendations for modifying system component designs are also discussed. The TRACE model will be used as the basis for developing more detailed designs and ultimately will be used to perform transient safety analysis for the reactor.

  8. Post irradiation examination of thermal reactor fuels

    Science.gov (United States)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  9. Sensitivity theory for reactor thermal-hydraulics problems

    Energy Technology Data Exchange (ETDEWEB)

    Oblow, E. M.

    1978-07-01

    A sensitivity theory based on reactor physics experience was successfully developed for a reactor thermal-hydraulics problem. The new theory is derived for the case of non-linear, transient heat and mass transfer in a typical reactor subassembly. Suitable adjoint equations for heat and fluid flow are presented along with methods for deriving the sources and boundary and final conditions for these equations. Expressions for the sensitivity of any integral temperature response to problem input data are also presented. The theory is applied to a sample problem describing the steady-state thermal-hydraulic conditions in a CRBR fuel channel. For this case, sensitivity coefficients are derived for several thermal response functions (i.e., peak clad and peak fuel temperature) for all physical input data (i.e., the heat transfer coefficient, thermal conductivities, etc.). A typical uncertainty analysis for peak clad and peak fuel temperature was also performed using uncertainty information about the physical data. Conclusions are drawn about the applicability of this approach to more general problems and the procedures for its implementation in conjunction with large safety or thermal-hydraulics codes are outlined. The method is also compared with currently used response surface techniques.

  10. System Thermal Model for the S-Prime Thermionic Reactor

    Science.gov (United States)

    Arx, Alan V. Von

    1994-07-01

    A model has been developed which numerically simulates heat transfer and flow characteristics of the thermal-hydraulic loop of the S-PRIME thermionic reactor. The components for which detailed models have been included are: the thermionic fuel elements (TFEs), heat pipe panels, flow loop and pumps. The reactor start-up operation was then modeled from zero to full power. It includes modelling of the melting of the heat pipe working fluid as well as correlations for the performance of the thermionic cells. The results show that there is stable operation during this period.

  11. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    OpenAIRE

    Imam Mahmoud M.; Roushdy Hassan

    2002-01-01

    The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a) to provide a thermal neutron flux in the neutron transmutation silicon doping, (b) to provide a thermal flux in the neutron activation analysis position, and (c) to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, ...

  12. Thermally activated deformation of irradiated reactor pressure vessel steel

    Science.gov (United States)

    Böhmert, J.; Müller, G.

    2002-03-01

    Temperature and strain rate change tensile tests were performed on two VVER 1000-type reactor pressure vessel welds with different contents of nickel in unirradiated and irradiated conditions in order to determine the activation parameters of the contribution of the thermally activated deformation. There are no differences of the activation parameters in the unirradiated and the irradiated conditions as well as for the two different materials. This shows that irradiation hardening preferentially results from a friction hardening mechanism by long-range obstacles.

  13. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  14. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    Science.gov (United States)

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system.

  15. Analysis of Nigeria research reactor-1 thermal power calibration methods

    Energy Technology Data Exchange (ETDEWEB)

    Agbo, Sunday Arome; Ahmed, Yusuf Aminu; Ewa, Ita Okon; Jibrin, Yahaya [Ahmadu Bello University, Zaria (Nigeria)

    2016-06-15

    This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  16. Thermal stability analysis of the liquid phase methanol synthesis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gogate, M.R.; Desirazu, S.; Berty, J.M.; Lee, S. (Akron University, Akron, OH (USA). Dept. of Chemical Engineering)

    1992-01-01

    The effect of addition of an inert liquid phase on the rate of heat generation in the catalytic synthesis of methanol from syngas has been studied. Gas compositions typical of product gases from Lurgi and Koppers-Totzek gasifiers, represented by H[sub 2]-rich and CO-rich syngas respectively, were used to experimentally verify the 'slope' and 'dynamic' criteria in a three-phase fixed bed recycle reactor. The liquid medium, Witco-40 oil, has been effective in controlling the rate of heat generation and in preventing catalyst overheating, signifying that the liquid phase synthesis is thermally far more stable than the vapour phase synthesis. The experimental thermal stability study provides crucial and valuable information in commercializing the liquid phase methanol synthesis process. The current approach of thermal stability analysis does not require any a priori assumption or predetermined reaction kinetics. 22 refs., 6 figs., 7 tabs.

  17. Steady thermal hydraulic analysis for a molten salt reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dalin; QIU Suizheng; LIU Changliang; SU Guanghui

    2008-01-01

    The Molten Salt Reactor (MSR) can meet the demand of transmutation and breeding. In this study, theoretical calculation of steady thermal hydraulic characteristics of a graphite-moderated channel type MSR is conducted. The DRAGON code is adopted to calculate the axial and radial power factor firstly. The flow and heat transfer model in the fuel salt and graphite are developed on basis of the fundamental mass, momentum and energy equations. The results show the detailed flow distribution in the core, and the temperature profiles of the fuel salt, inner and outer wall in the nine typical elements along the axial flow direction are also obtained.

  18. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  19. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor.

    Science.gov (United States)

    Chen, Pin-Chuan; Park, Daniel S; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C

    2010-08-06

    Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow

  20. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  1. Investigation of Thermal Hydraulics of a Nuclear Reactor Moderator

    Science.gov (United States)

    Sarchami, Araz

    A three-dimensional numerical modeling of the thermo hydraulics of Canadian Deuterium Uranium (CANDU) nuclear reactor is conducted. The moderator tank is a Pressurized heavy water reactor which uses heavy water as moderator in a cylindrical tank. The main use of the tank is to bring the fast neutrons to the thermal neutron energy levels. The moderator tank compromises of several bundled tubes containing nuclear rods immersed inside the heavy water. It is important to keep the water temperature in the moderator at sub-cooled conditions, to prevent potential failure due to overheating of the tubes. Because of difficulties in measuring flow characteristics and temperature conditions inside a real reactor moderator, tests are conducted using a scaled moderator in moderator test facility (MTF) by Chalk River Laboratories of Atomic Energy of Canada Limited (CRL, AECL). MTF tests are conducted using heating elements to heat tube surfaces. This is different than the real reactor where nuclear radiation is the source of heating which results in a volumetric heating of the heavy water. The data recorded inside the MTF tank have shown levels of fluctuations in the moderator temperatures and requires in depth investigation of causes and effects. The purpose of the current investigation is to determine the causes for, and the nature of the moderator temperature fluctuations using three-dimensional simulation of MTF with both (surface heating and volumetric heating) modes. In addition, three dimensional simulation of full scale actual moderator tank with volumetric heating is conducted to investigate the effects of scaling on the temperature distribution. The numerical simulations are performed on a 24-processor cluster using parallel version of the FLUENT 12. During the transient simulation, 55 points of interest inside the tank are monitored for their temperature and velocity fluctuations with time.

  2. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  3. Prestressed concrete reactor vessel thermal cylinder model study

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, J.P.; Canonico, D.A.; Richardson, M.; Corum, J.M.; Dodge, W.G.; Robinson, G.C.; Whitman, G.D.

    1977-05-04

    The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a /sup 1///sub 6/-scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the inner surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating.

  4. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  5. 10 CFR 50.66 - Requirements for thermal annealing of the reactor pressure vessel.

    Science.gov (United States)

    2010-01-01

    ... Requirements for thermal annealing of the reactor pressure vessel. (a) For those light water nuclear power... life of these components. (B) The effects of localized high temperatures on degradation of the concrete... thermal annealing or to operate the nuclear power reactor following the annealing must be identified....

  6. Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    OpenAIRE

    2009-01-01

    A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS), which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (S...

  7. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  8. VISTA : thermal-hydraulic integral test facility for SMART reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. Y.; Park, H. S.; Cho, S.; Park, C. K.; Lee, S. J.; Song, C. H.; Chung, M. K. [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Preliminary performance tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual Heat Removal (PRHR) systems. Its scaled ratio with respect to the SMART-P is 1/1 in height and 1/96 in volume and heater power. Several steady states and power changing tests have been carried out to verify the overall thermal hydraulic primary and secondary characteristics in the range of 10% to 100% power operation. As for the preliminary results, the steady state conditions were found to coincide with the expected design values of the SMART-P. But the major thermal hydraulic parameters are greatly affected by the initial water level and the nitrogen pressure in the reactor's upper annular cavity. The power step/ramp changing tests are successfully carried out and the system responses are observed. The primary natural circulation operation is achieved, but advanced control logics need to be developed to reach the natural circulation mode without pressure excursion. In the PRHR transient tests, the natural circulation flow rate through the PRHR system was found to be about 10 percent in the early phases of PRHR operation.

  9. Applied thermal pyrolysis of cogongrass in twin screw reactor

    Science.gov (United States)

    Promdee, K.; Vitidsant, T.

    2014-08-01

    Thermal pyrolysis by heat transfer model can be solved the control temperature in twin screw feeder for produce bio-oil from Cogongrass by novel continuous pyrolysis reactor. In this study, all yield were expressed on a dry and their values were taken as the average of the thermal controlled. Thermal of pyrolysis were carried out at 400-500°C. The products yield calculation showed that the liquid yield of Cogongrass by pyrolysis was higher than that solid and gas yield, as highest of 52.62%, at 500°C, and the other of liquid yield obtained from Cogongrass were 40.56, and 46.45%, at 400, and 450°C, respectively. When separate liquid phase be composed of the bio-oil was highest 37.39%, at 500°C. Indicated that biomass from Cogongrass had good received yields because of low solid yield average and gas yield and high liquid yield average. The compounds detected in bio-oil from Cogongrass showed the functional group, especially; Phenol, Phenol 2,5-dimethyl, Benzene 1-ethyl-4-methoxy, 2-Cyclopenten-1-one, 2,3-dimethyl, Benzene 1-ethyl-3-methyl.

  10. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  11. Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor

    Science.gov (United States)

    Ramos, A.; Filtvedt, W. O.; Lindholm, D.; Ramachandran, P. A.; Rodríguez, A.; del Cañizo, C.

    2015-12-01

    Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS). We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the effects of some key parameters such as reactor wall emissivity and gas distributor temperature, on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.

  12. Thermal-hydraulic modeling needs for passive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered, but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.

  13. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    CERN Document Server

    Bernstein, A; Misner, A; Palmer, T

    2008-01-01

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to three percent within seven days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  14. Exploratory development of a glass ceramic automobile thermal reactor. [anti-pollution devices

    Science.gov (United States)

    Gould, R. E.; Petticrew, R. W.

    1973-01-01

    This report summarizes the design, fabrication and test results obtained for glass-ceramic (CER-VIT) automotive thermal reactors. Several reactor designs were evaluated using both engine-dynamometer and vehicle road tests. A maximum reactor life of about 330 hours was achieved in engine-dynamometer tests with peak gas temperatures of about 1065 C (1950 F). Reactor failures were mechanically induced. No evidence of chemical degradation was observed. It was concluded that to be useful for longer times, the CER-VIT parts would require a mounting system that was an improvement over those tested in this program. A reactor employing such a system was designed and fabricated.

  15. Steady Thermal Field Simulation of Forced Air-cooled Column-type Air-core Reactor

    Institute of Scientific and Technical Information of China (English)

    DENG Qiu; LI Zhenbiao; YIN Xiaogen; YUAN Zhao

    2013-01-01

    Modeling the steady thermal field of the column-type air-core reactor,and further analyzing its distribution regularity,will help optimizing reactor design as well as improving its quality.The operation mechanism and inner insulation structure of a novel current limiting column-type air-core reactor is introduced in this paper.The finite element model of five encapsulation forced air-cooled column type air-core reactor is constructed using Fluent.Most importantly,this paper present a new method that,the steady thermal field of reactor working under forced air-cooled condition is simulated without arbitrarily defining the convection heat transfer coefficient for the initial condition; The result of the thermal field distribution shows that,the maximum steady temperature rise of forced air-cooled columntype air-core reactor happens approximately 5% to its top.The law of temperature distribution indicates:In the 1/3part of the reactor to its bottom,the temperature will rise rapidly to the increasing of height,yet the gradient rate is gradually decreasing; In the 5 % part of the reactor to its top,the temperature will drop rapidly to the increasing of height; In the part between,the temperature will rise slowly to the increasing of height.The conclusion draws that more thermal withstand capacity should be considered at the 5 % part of the reactor to its top to achieve optimal design solution.

  16. Optimization simulation of thermal plasma reactor for acetylene production from coal

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Yang, Y.; Bao, W.; Zhang, Y.; Kie, K. [Taiyuan University of Technology, Taiyuan (China)

    2007-07-01

    A heat-flow field mathematical model based on the computational; fluid dynamics (CFD) technique was developed for a thermal plasma reactor in order to optimize the reactor structure and operation conditions for the direct production of acetylene from coal. The simulation of the thermal plasma reactor with single inlet, double inlet and double inlet with protective gas was given; simulations of the heat-flow coupling field were carried out by using the method of Incomplete Cholesky Conjugate Gradient (ICCG). The optimization simulation results show that the load of the thermal plasma reactor with double inlet is increased, and the reactor wall surface coke is depressed. The anticoking effect is best under the gas flow rate of 50 m/s. 4 refs., 4 figs.

  17. Thermal and hydraulic characteristics of the JEN-1 Reactor; Caracteristicas hidraulicas y termicas del Reactor JEN-1

    Energy Technology Data Exchange (ETDEWEB)

    Otra Otra, F.; Leira Rey, G.

    1971-07-01

    In this report an analysis is made of the thermal and hydraulic performances of the JEN-1 reactor operating steadily at 3 Mw of thermal power. The analysis is made separately for the core, main heat exchanger and cooling tower. A portion of the report is devoted to predict the performances of these three main components when and if the reactor was going to operate at a power higher than the maximum 3 Mw attainable today. Finally an study is made of the unsteady operation of the reactor, focusing the attention towards the pumping characteristics and the temperatures obtained in the fuel elements. Reference is made to several digital calculation programmes that nave been developed for such purpose. (Author) 21 refs.

  18. Antineutrino emission and gamma background characteristics from a thermal research reactor

    CERN Document Server

    Bui, V M; Fallot, M; Communeau, V; Cormon, S; Estienne, M; Lenoir, M; Peuvrel, N; Shiba, T; Cucoanes, A S; Elnimr, M; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Thiolliere, N; Yermia, F; Zakari-Issoufou, A -A

    2016-01-01

    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\\% enrichment in $^{235}$U. In addition, the required off-equilibrium correction...

  19. Proceedings of the DOE/SNL/EPRI sponsored Reactor Pressure Vessel Thermal Annealing Workshop. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, S.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Carter, R.G. [ed.] [Electric Power Research Institute, Charlotte, NC (United States)

    1994-09-01

    The purpose of the Reactor Pressure Vessel Thermal Annealing Workshop was to provide a forum for US utilities and interested parties to discuss relevant experience and issues and identify potential solutions/approaches related to: (1) an understanding of the potential benefits of thermal annealing for US commercial reactors; (2) on-going technical research activities; (3) technical aspects of a generic, full-scale, in-place vessel annealing demonstration; and (4) the impact of economic, regulatory, and technical issues on the application of thermal annealing technology to US plants. Experts from the international nuclear reactor community were brought together to discuss issues regarding application of thermal annealing technology in the US and identify the steps necessary to commercialize this technology for US reactors. These proceedings contain all presentation materials discussed during the Workshop. This document, Volume 2, contains sections 10 through 13, Individual papers have been cataloged separately.

  20. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K. A.; Schubring, D. [Univ. of Florida, Florida (United States); Girardin, G.; Pautz, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    2013-07-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  1. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  2. Report on Thermal Neutron Diffusion Length Measurement in Reactor Grade Graphite Using MCNP and COMSOL Multiphysics

    OpenAIRE

    2013-01-01

    Neutron diffusion length in reactor grade graphite is measured both experimentally and theoretically. The experimental work includes Monte Carlo (MC) coding using 'MCNP' and Finite Element Analysis (FEA) coding suing 'COMSOL Multiphysics' and Matlab. The MCNP code is adopted to simulate the thermal neutron diffusion length in a reactor moderator of 2m x 2m with slightly enriched uranium ($^{235}U$), accompanied with a model designed for thermal hydraulic analysis using point kinetic equations...

  3. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Energy Technology Data Exchange (ETDEWEB)

    Harto, Andang Widi [Engineering Physics Department, Faculty of Engineering, Gadjah Mada University (Indonesia)

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  4. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  5. Proceedings of the DOE/SNL/EPRI sponsored Reactor Pressure Vessel Thermal Annealing Workshop. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, S.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Carter, R.G. [ed.] [Electric Power Research Institute, Charlotte, NC (United States)

    1994-09-01

    The purpose of the Reactor Pressure vessel Thermal Annealing Workshop was to provide a forum for US utilities and interested parties to discuss relevant experience and issues and identify potential solutions/approaches related to: An understanding of the potential benefits of thermal annealing for US commercial reactors; on-going technical research activities; technical aspects of a generic, full-scale, in-place vessel annealing demonstration; and the impact of economic, regulatory, and technical issues on the application of thermalannealingtechnology to US plants. Experts from the international nuclear reactor community were brought together to discuss issues regarding application of thermal annealing technology in the US and identify the steps necessary to commercialize this technology for US reactors. These proceedings contain all presentation materials discussed during the Workshop. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  7. Thermally safe operation of a cooled semi-batch reactor: slow liquid-liquid reactions

    NARCIS (Netherlands)

    Steensma, M.; Westerterp, K.R.

    1988-01-01

    Thermally safe operation of a semi-batch reactor (SBR) implies that conditions leading to strong accumulation of unreacted reactants must be avoided. All thermal responses of a SBR, in which a slow liquid-liquid reaction takes place, can be represented in a diagram with the kinetics, cooling capacit

  8. Experimental study on thermal stratification in a reactor hot plenum of a Japanese demonstration LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.; Yamamoto, K.; Takakuwa, M.; Kajiwara, H.; Watanabe, O.; Akamatsu, K.

    1997-12-31

    Thermal stratification which occurs in a reactor hot plenum after reactor trip has been regarded as one of the most serious phenomena in the thermal-hydraulics of LMFBR. Using a 1/8th scale water model, an experimental study has been conducted to estimate the thermal stratification for a Japanese demonstration LMFBR (DFBR). In the present study, reactor trip was simulated by changing the core outlet temperature with maintaining a constant flow rate. Temperature distribution was measured during the transient and detailed phenomena have been acquired in the study. A severe density interface on structural integrity occurs in a hot plenum under the thermal stratification. Experimental results for temperature gradient and rising speed of the density interface were estimated based on a similarity rule so that an actual condition in the DFBR could be fully discerned. (author)

  9. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  10. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  11. A comparative study of the attenuation of reactor thermal neutrons in different types of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bashiter, I.I. [Zagazig Univ. (Egypt). Dept. of Physics; El-Sayed Abdo, A.; Makarious, A.S. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Centre

    1996-05-20

    This study was carried out to assess the distribution of thermal neutrons emitted directly from the core of the ET-RR-1 reactor in ordinary concrete, ilmenite concrete and ilmenite-limonite concrete shields. Measurements were carried out by using a direct beam and a cadmium filtered beam of reactor neutrons. The neutron dose distributions were measured using Li{sub 2}B{sub 4}O{sub 7}:Mn thermoluminescent dosimeters. The data obtained show that ilmenite concrete is better for slow and thermal neutron attenuation than both ordinary and ilmenite-limonite concrete. Also it was concluded that thermal neutrons emitted directly from the reactor core are highly absorbed within the first few centimeters of each type of concrete. The thickness of ilmenite concrete required to attenuate the doses of neutrons to a certain value along the beam axis for a direct reactor beam estimated to be about 75 and 57% of the shield thickness made from ordinary and ilmenite-limonite concretes, respectively. Empirical formulae were derived to calculate the neutron dose distribution in ordinary, ilmenite and ilmenite-limonite concrete shields both along and perpendicular to the beam axis for both the direct reactor neutrons and the reactor thermal neutrons. (author).

  12. Evaluation of thermal-hydraulic parameter uncertainties in a TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Costa, Antonio C.L.; Ladeira, Luiz C.D.; Rezende, Hugo C., E-mail: amir@cdtn.br, E-mail: aclc@cdtn.br, E-mail: lcdl@cdtn.br, E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Experimental studies had been performed in the TRIGA Research Nuclear Reactor of CDTN/CNEN to find out the its thermal hydraulic parameters. Fuel to coolant heat transfer patterns must be evaluated as function of the reactor power in order to assess the thermal hydraulic performance of the core. The heat generated by nuclear fission in the reactor core is transferred from fuel elements to the cooling system through the fuel-cladding (gap) and the cladding to coolant interfaces. As the reactor core power increases the heat transfer regime from the fuel cladding to the coolant changes from single-phase natural convection to subcooled nucleate boiling. This paper presents the uncertainty analysis in the results of the thermal hydraulics experiments performed. The methodology used to evaluate the propagation of uncertainty in the results was done based on the pioneering article of Kline and McClintock, with the propagation of uncertainties based on the specification of uncertainties in various primary measurements. The uncertainty analysis on thermal hydraulics parameters of the CDTN TRIGA fuel element is determined, basically, by the uncertainty of the reactor's thermal power. (author)

  13. Analysis of Pressurized Water Reactor Primary Coolant Leak Events Caused by Thermal Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Corwin Lee; Shah, Vikram Naginbhai; Galyean, William Jospeh

    1999-09-01

    We present statistical analyses of pressurized water reactor (PWR) primary coolant leak events caused by thermal fatigue, and discuss their safety significance. Our worldwide data contain 13 leak events (through-wall cracking) in 3509 reactor-years, all in stainless steel piping with diameter less than 25 cm. Several types of data analysis show that the frequency of leak events (events per reactor-year) is increasing with plant age, and the increase is statistically significant. When an exponential trend model is assumed, the leak frequency is estimated to double every 8 years of reactor age, although this result should not be extrapolated to plants much older than 25 years. Difficulties in arresting this increase include lack of quantitative understanding of the phenomena causing thermal fatigue, lack of understanding of crack growth, and difficulty in detecting existing cracks.

  14. Review of the nuclear reactor thermal hydraulic research in ocean motions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn

    2017-03-15

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  15. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    Science.gov (United States)

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Parameters measurement for the thermal neutron beam in the thermal column hole of Xi’an pulse reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The distribution of the neutron spectra in the thermal column hole of Xi’an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.

  17. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  18. Study on Thermal-Hydraulic Behavior of an Integral Type Reactor under Heaving Condition

    OpenAIRE

    2014-01-01

    A self-developed program was used to study the thermal-hydraulic behavior of an integral type reactor under heaving condition. Comparison of calculated results with the data of experiments performed on a natural circulation loop designed with reference to an integral type reactor of Tsinghua University in inclination, heaving, and rolling motions was carried out. Characteristics of natural circulation in heaving motion and effect of motion parameters on natural circulation were investigated. ...

  19. Conversion of hydrocarbon fuel in thermal protection reactors of hypersonic aircraft

    Science.gov (United States)

    Kuranov, A. L.; Mikhaylov, A. M.; Korabelnikov, A. V.

    2016-07-01

    Thermal protection of heat-stressed surfaces of a high-speed vehicle flying in dense layers of atmosphere is one of the topical issues. Not of a less importance is also the problem of hydrocarbon fuel combustion in a supersonic air flow. In the concept under development, it is supposed that in the most high-stressed parts of airframe and engine, catalytic thermochemical reactors will be installed, wherein highly endothermic processes of steam conversion of hydrocarbon fuel take place. Simultaneously with heat absorption, hydrogen generation will occur in the reactors. This paper presents the results of a study of conversion of hydrocarbon fuel in a slit reactor.

  20. EL-2 reactor: Thermal neutron flux distribution; EL-2: Repartition du flux de neutrons thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, A.; Genthon, J.P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  1. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  2. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    Science.gov (United States)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  3. N Reactor thermal plume characterization during Pu-only mode of operation

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Thompson, F.L.; Whelan, G.

    1983-04-01

    Pacific Northwest Laboratories (PNL) performed field and modeling studies -from March 1982 through June 1983 to characterize the thermal plume from the N Reactor heated water outfall while the N Reactor operated in the Pu-only mode. Part 1 of this report deals with the field studies conducted to characterize the N Reactor thermal plume while in the Pu-only mode of operation. It includes a description of the study area, a description of field tasks and procedures, and data collection results and discussion. Part 2 describes the computer simulation of the thermal plume under different flow conditions and the calibration of the model used. It includes a description of the computer model and the assumptions on which it is based, a presentation of the input data used in this application, and a discussion of modeling results. Because the field studies were restricted by the NPOES permit variance to the spring months when high Columbia River flows prevail the mathematical modeling of the N Reactor thermal plume while the reactor operates in the Pu-only mode is instrumental in characterizing the plume during low Columbia River flows.

  4. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  5. Neutronic and thermal-hydraulic coupling for 3D reactor core modeling combining MCB and fluent

    Directory of Open Access Journals (Sweden)

    Królikowski Igor P.

    2015-09-01

    Full Text Available Three-dimensional simulations of neutronics and thermal hydraulics of nuclear reactors are a tool used to design nuclear reactors. The coupling of MCB and FLUENT is presented, MCB allows to simulate neutronics, whereas FLUENT is computational fluid dynamics (CFD code. The main purpose of the coupling is to exchange data such as temperature and power profile between both codes. Temperature required as an input parameter for neutronics is significant since cross sections of nuclear reactions depend on temperature. Temperature may be calculated in thermal hydraulics, but this analysis needs as an input the power profile, which is a result from neutronic simulations. Exchange of data between both analyses is required to solve this problem. The coupling is a better solution compared to the assumption of estimated values of the temperatures or the power profiles; therefore the coupled analysis was created. This analysis includes single transient neutronic simulation and several steady-state thermal simulations. The power profile is generated in defined points in time during the neutronic simulation for the thermal analysis to calculate temperature. The coupled simulation gives information about thermal behavior of the reactor, nuclear reactions in the core, and the fuel evolution in time. Results show that there is strong influence of neutronics on thermal hydraulics. This impact is stronger than the impact of thermal hydraulics on neutronics. Influence of the coupling on temperature and neutron multiplication factor is presented. The analysis has been performed for the ELECTRA reactor, which is lead-cooled fast reactor concept, where the coolant fl ow is generated only by natural convection

  6. NUMERICAL ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST REACTOR

    Directory of Open Access Journals (Sweden)

    SEOK-KI CHOI

    2013-04-01

    Full Text Available A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (∼300 seconds. However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy may be due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.

  7. Thermal characteristics analysis of microwaves reactor for pyrolysis of used cooking oil

    Science.gov (United States)

    Anis, Samsudin; Shahadati, Laily; Sumbodo, Wirawan; Wahyudi

    2017-03-01

    The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to provide temperature of 480°C, heating rate of 18.2°C/min and thermal efficiency of 53% that is suitable to pyrolyze used cooking oil.

  8. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  9. Thermal analysis of IRT-T reactor fuel elements

    OpenAIRE

    Naymushin, Artem Georgievich; Chertkov, Yuri Borisovich; Lebedev, Ivan Igorevich; Anikin, Mikhail Nikolaevich

    2015-01-01

    The article describes the method and results of thermo-physical calculations of IRT-T reactor core. Heat fluxes, temperatures of cladding, fuel meat and coolant were calculated for height of core, azimuth directions of FA and each fuel elements in FA. Average calculated values of uniformity factor of energy release distribution for height of fuel assemblies were shown in this research. Onset nucleate boiling temperature and ONB-ratio were calculated. Shows that temperature regimes of fuel ele...

  10. The thermal decomposition of methane in a tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

  11. Report on Thermal Neutron Diffusion Length Measurement in Reactor Grade Graphite Using MCNP and COMSOL Multiphysics

    CERN Document Server

    Mirfayzi, S R

    2013-01-01

    Neutron diffusion length in reactor grade graphite is measured both experimentally and theoretically. The experimental work includes Monte Carlo (MC) coding using 'MCNP' and Finite Element Analysis (FEA) coding suing 'COMSOL Multiphysics' and Matlab. The MCNP code is adopted to simulate the thermal neutron diffusion length in a reactor moderator of 2m x 2m with slightly enriched uranium ($^{235}U$), accompanied with a model designed for thermal hydraulic analysis using point kinetic equations, based on partial and ordinary differential equation. The theoretical work includes numerical approximation methods including transcendental technique to illustrate the iteration process with the FEA method. Finally collision density of thermal neutron in graphite is measured, also specific heat relation dependability of collision density is also calculated theoretically, the thermal neutron diffusion length in graphite is evaluated at $50.85 \\pm 0.3cm$ using COMSOL Multiphysics and $50.95 \\pm 0.5cm$ using MCNP. Finally ...

  12. Thermally safe operation of a cooled semi-batch reactor: slow liquid-liquid reactions

    OpenAIRE

    Steensma, M.; Westerterp, K R

    1988-01-01

    Thermally safe operation of a semi-batch reactor (SBR) implies that conditions leading to strong accumulation of unreacted reactants must be avoided. All thermal responses of a SBR, in which a slow liquid-liquid reaction takes place, can be represented in a diagram with the kinetics, cooling capacity and potential temperature rise as the keyfactors. Slow reactions taking place in the dispersed phase were found to be more prone to accumulation than reactions in the continuous phase. An overhea...

  13. Design of Modern Reactors for Synthesis of Thermally Expanded Graphite

    Science.gov (United States)

    Strativnov, Eugene V.

    2015-05-01

    One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.

  14. Design of Modern Reactors for Synthesis of Thermally Expanded Graphite.

    Science.gov (United States)

    Strativnov, Eugene V

    2015-12-01

    One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.

  15. Thermal runaway limit of tubular reactors, defined at the inflection point of the temperature profile

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, S.; Chovan, T.; Masri, B.J.; Mukherjee, A.; Pant, A.; Sen, S.; Vijayaragharvan, P. (Akron Univ., OH (United States). Dept. of Chemical Engineering); Berty, J.M. (Berty Reaction Engineers, Ltd., Fogelsville, PA (United States))

    1992-09-01

    The predicted maximum temperature difference between reacting fluid and wall to avoid thermal runaways can be exceeded in production reactors. This has been known for some time but the explanation has been lacking. The reason for this deviation was found in that the traditional approximation of the sensitivity criterion by [Delta]T [le] RT[sup 2]/E is correct for a limiting value at the inflection point but not at the hot spot, where it can be much higher. The exact expression for the limiting value at the inflection point is the total temperature derivative of the rate, and this is proven in this paper mathematically. The total temperature derivative of a rate can be measured in a few, well-designed recycle reactor experiments. Results were checked by computer simulation of tubular reactors. Matching to those predicted from CSTR or recycle reactor (RR) measurements was excellent. The proposed interpretation explains why previously predicted limits could be exceeded in practice.

  16. Experimental and analytical study on thermal hydraulics in reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Araya, Fumimasa; Ohnuki, Akira; Yoshida, Hiroyuki; Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Study and development of reduced-moderation spectrum water reactor proceeds as a option of the future type reactor in Japan Atomic Energy Research Institute (JAERI). The reduced-moderation spectrum in which a neutron has higher energy than the conventional water reactors is achieved by decreasing moderator-to-fuel ratio in the lattice core of the reactor. Conversion ratio in the reduced-moderation water reactor can be more than 1.0. High burnup and long term cycle operation of the reactor are expected. A type of heavy water cooled PWR and three types of BWR are discussed as follows; For the PWR, (1) critical heat flux experiments in hexagonal tight lattice core, (2) evaluation of cooling limit at a nominal power operation, and (3) analysis of rewetting cooling behavior at loss of coolant accident following with large scale pipe rupture. For the BWR, analyses of cooling limit at a nominal power operation of, (1) no blanket BWR, (2) long term cycle operation BWR, and (3) high conversion ratio BWR. The experiments and the analyses proved that the basic thermal hydraulic characteristics of these reduced-moderation water reactors satisfy the essential points of the safety requirements. (Suetake, M.)

  17. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-03-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized.

  18. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C., E-mail: amir@cdtn.b, E-mail: souzarm@cdtn.b, E-mail: avf@cdtn.b, E-mail: ajp@cdtn.b, E-mail: aclc@cdtn.b, E-mail: hcr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  19. Thermal ageing mechanisms of VVER-1000 reactor pressure vessel steels

    Science.gov (United States)

    Shtrombakh, Yaroslav I.; Gurovich, Boris A.; Kuleshova, Evgenia A.; Maltsev, Dmitry A.; Fedotova, Svetlana V.; Chernobaeva, Anna A.

    2014-09-01

    In this paper a complex of microstructural studies (TEM and SEM) and a comparative analysis of the results of these studies with the data of mechanical tests of temperature sets of VVER-1000 RPV surveillance specimens with exposure times up to ∼200,000 h were conducted. Special annealing of control and temperature sets of SS which provides the dissolution of grain boundary segregation was performed to clarify the mechanisms of thermal ageing. It was demonstrated that during long-term exposures up to 200,000 h at the operating temperature of about 310-320 °C thermal ageing effects reveal themselves only for the weld metal (Ni content ⩾ 1.35%) and are the result of grain boundary segregation accumulation (development of reversible temper brittleness). The obtained results improve the accuracy of prediction of the thermal ageing rate of VVER-1000 materials in case of RPV service life extension up to 60 years.

  20. Thermal stability study for candidate stainless steels of GEN IV reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simeg Veternikova, J., E-mail: jana.veternikova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Degmova, J. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pekarcikova, M. [Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, Paulinska 16, 917 24 Trnava (Slovakia); Simko, F. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia); Petriska, M. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Skarba, M. [Slovak University of Technology, Vazovova 5, 812 43 Bratislava (Slovakia); Mikula, P. [Institute of Nuclear and Physical Engineering, Faculty of Electrical and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Pupala, M. [Department of Molten Salts, Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia)

    2016-11-30

    Highlights: • Thermal resistance of advanced stainless steels were observed at 1000 °C. • GEN IV candidate steels were confronted to classic AISI steels. • ODS AISI 316 has weaker thermal resistance than classic AISI steel. • Ferritic ODS steels and NF 709 has better thermal resistance than AISI steels. - Abstract: Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  1. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    Science.gov (United States)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES

  2. Data of evolutionary structure change: 1C8RA-3CODB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1C8RA-3CODB 1C8R 3COD A B TGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFY...ne>PHE CA 209 GLY CA 249 PHE CA 274 3COD... B 3CODB YILYVLFFGFTSKA...ne>GLU CA 222 VAL CA 302 3COD B 3CODB TSKAESMRPEV HHGGG

  3. Data of evolutionary structure change: 1C8RA-3CODA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1C8RA-3CODA 1C8R 3COD A A TGRPEWIWLALGTALMGLGTLYFLVKGMGVSDPDAKKFY...ne>PHE CA 209 GLY CA 249 PHE CA 274 3COD... A 3CODA YILYVLFFGFTSKA...>GLU CA 222 VAL CA 302 3COD A... 3CODA TSKAESMRPEV HHGGG H

  4. Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.

  5. Thermal striping in nuclear reactors: POD analysis of LES simulations and experiment

    Science.gov (United States)

    Merzari, Elia; Alvarez, Andres; Marin, Oana; Obabko, Aleksandr; Lomperski, Steve; Aithal, Shashi

    2015-11-01

    Thermal fatigue caused due to thermal striping impacts design and analyses of a wide-range of industrial apparatus. This phenomena is of particular significance in nuclear reactor applications, primarily in sodium cooled fast reactors. In order to conduct systematic analyses of the thermal striping phenomena a simplified experimental set-up was designed and built at Argonne National Laboratory. In this set-up two turbulent jets with a temperature difference of about 20K were mixed in a rectangular tank. The jets entered the tank via 2 hexagonal inlets. Two different inlet geometries were studied, both experimentally and via high-fidelity LES simulations. Proper Orthogonal Decomposition (POD) was performed on the turbulent velocity field in the tank to identify the most dominant energetic modes. The POD analyses of the experimental data in both inlet geometrical configurations were compared with LES simulations. Detailed POD analyses are presented to highlight the impact of geometry on the velocity and thermal fields. These can be correlated with experimental and numerical data to assess the impact of thermal striping on the design of the upper plenum of sodium-cooled nuclear reactors. ALCF.

  6. The new hybrid thermal neutron facility at TAPIRO reactor for BNCT radiobiological experiments.

    Science.gov (United States)

    Esposito, J; Rosi, G; Agosteo, S

    2007-01-01

    A new thermal neutron irradiation facility, devoted to carry out both dosimetric and radiobiological studies on boron carriers, which are being developed in the framework of INFN BNCT project, has been installed at the ENEA Casaccia TAPIRO research fast reactor. The thermal column, based on an original, hybrid, neutron spectrum shifter configuration, has been recently become operative. In spite of its low power (5 kW), the new facility is able to provide a high thermal neutron flux level, uniformly distributed inside the irradiation cavity, with a quite low gamma background. The main features and preliminary benchmark measurements of the Beam-shaping assembly are here presented and discussed.

  7. Experimental study of thermal crisis in connection with Tokamak reactor high heat flux components

    Science.gov (United States)

    Gallo, D.; Giardina, M.; Castiglia, F.; Celata, G. P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-04-01

    The results of an experimental research on high heat flux thermal crisis in forced convective subcooled water flow, under operative conditions of interest to the thermal-hydraulic design of TOKAMAK fusion reactors, are here reported. These experiments, carried out in the framework of a collaboration between the Nuclear Engineering Department of Palermo University and the National Institute of Thermal - Fluid Dynamics of the ENEA - Casaccia (Rome), were performed on the STAF (Scambio Termico Alti Flussi) water loop and consisted, essentially, in a high speed photographic study which enabled focusing several information on bubble characteristics and flow patterns taking place during the burnout phenomenology.

  8. Thermal stability study for candidate stainless steels of GEN IV reactors

    Science.gov (United States)

    Simeg Veternikova, J.; Degmova, J.; Pekarcikova, M.; Simko, F.; Petriska, M.; Skarba, M.; Mikula, P.; Pupala, M.

    2016-11-01

    Candidate stainless steels for GEN IV reactors were investigated in term of thermal and corrosion stability at high temperatures. New austenitic steel (NF 709), austenitic ODS steel (ODS 316) and two ferritic ODS steels (MA 956 and MA 957) were exposed to around 1000 °C in inert argon atmosphere at pressure of ∼8 MPa. The steels were further studied in a light of vacancy defects presence by positron annihilation spectroscopy and their thermal resistance was confronted to classic AISI steels. The thermal strain supported a creation of oxide layers observed by scanning electron microscopy (SEM).

  9. Relevant thermal-hydraulic aspects in the design of the RRR (Replacement Research Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Doval, Alicia S.; Mazufri, Claudio M. [INVAP SE, Bariloche (Argentina)

    2002-07-01

    A description of the main thermal-hydraulic features and challenges of the Replacement Research Reactor, for the Australian Nuclear Science and Technology Organization (ANSTO), is presented. Different hydraulic and thermal-hydraulic aspects are considered, core cooling during full power operation and the way it affects the design, design criteria, engineered safety features and computational tools, amongst others. A special section is devoted to the thermal-hydraulic aspects inside the reflector tank, as well as the cooling of irradiation facilities, particularly, the Molybdenum production facility. (author)

  10. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  11. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su -Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  12. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  13. Determination of thermal-hydraulic loads on reactor internals in a DBA-situation

    Energy Technology Data Exchange (ETDEWEB)

    Ville Lestinen; Timo Toppila [POB 10, 00048 FORTUM (Finland)

    2005-07-01

    Full text of publication follows: According to Finnish regulatory requirements, reactor internals have to stay intact in a design basis accident (DBA) situation, so that control rods can still penetrate into the core. To fulfill this demand some criteria must be followed in periodical in-service inspections. This is the motivation for studying and developing more detailed methods for analysis of thermal-hydraulic loads on reactor internals during the DBA-situation for the Loviisa NPP in Finland. The objective of this research program is to connect thermal-hydraulic and mechanical analysis methods with the goal to produce a reliable method for determination of thermal-hydraulic and mechanical loads on reactor internals in the accident situation. The tools studied are thermal-hydraulic system codes, computational fluid dynamics (CFD) codes and finite element analysis (FEA) codes. This paper concentrates mainly on thermal-hydraulic part of the research, but also the mechanical aspects are discussed. Firstly, the paper includes a short literary review of the available methods to analyse the described problem including both thermal-hydraulic and structural analysis parts. Secondly, different possibilities to carry out thermal-hydraulic analyses have been studied. The DBA-case includes complex physical phenomena and therefore modelling is difficult. The accident situation can be for example LLOCA. When the pipe has broken, the pressure decreases and water starts to evaporate, which consumes energy and that way limits the pressure decrease. After some period of time, the system reaches a new equilibrium state. To perform exact thermal-hydraulic analysis also two phase phenomena must be included. Therefore CFD codes are not capable of modelling the DBA situation very well, but the use of CFD codes requires that the effect of two phase flow must be added somehow. One method to calculate two phase phenomena with CFD codes is to use thermal-hydraulic system codes to calculate

  14. Thermal limits validation of gamma thermometer power adaption in CFE Laguna Verde 2 reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, G.; Banfield, J. [GE-Hitachi Nuclear Energy Americas LLC, Global Nuclear Fuel, Americas LLC, 3901 Castle Hayne Road, Wilmingtonm, North Carolina (United States); Avila N, A., E-mail: Gabriel.Cuevas-Vivas@ge.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2016-09-15

    This paper presents the status of GEH work on Gamma Thermometer (GT) validation using the signals of the instruments installed in the Laguna Verde Unit 2 reactor core. The long-standing technical collaboration between Comision Federal de Electricidad (CFE), Global Nuclear Fuel - Americas LLC (GNF) and GE-Hitachi Nuclear Energy Americas LLC (GEH) is moving forward with solid steps to a final implementation of GTs in a nuclear reactor core. Each GT is integrated into a slightly modified Local Power Range Monitor (LPRM) assembly. Six instrumentation strings are equipped with two gamma field detectors for a total of twenty-four bundles whose calculated powers are adapted to the instrumentation readings in addition to their use as calibration instruments for LPRMs. Since November 2007, the six GT instrumentation strings have been operable with almost no degradation by the strong neutron and gamma fluxes in the Laguna Verde Unit 2 reactor core. In this paper, the thermal limits, Critical Power Ratio (CPR) and maximum Linear Heat Generation Rate (LHGR), of bundles directly monitored by either Traverse In-core Probes (TIPs) or GTs are used to establish validation results that confirm the viability of TIP system replacement with automatic fixed in-core probes (AFIPs, GTs, in a Boiling Water Reactor. The new GNF steady-state reactor core simulator AETNA02 is used to obtain power and exposure distribution. Using this code with an updated methodology for GT power adaption, a reduced value of the GT interpolation uncertainty is obtained that is fed into the LHGR calculation. This new method achieves margin recovery for the adapted thermal limits for use in the Economic Simplified Boiling Water Reactor (ESBWR) or any other BWR in the future that employs a GT based AFIP system for local power measurements. (Author)

  15. Thermal spectra of the TRIGA Mark III reactor; El espectro termico del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R.; Palacios G, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The diffraction phenomenon is gave in observance of the well known Bragg law in crystalline materials and this can be performance by mean of X-rays, electrons and neutrons among others, which allows to do inside the field of each one of these techniques the obtaining of measurements focussed at each one of them. For the present work, it will be mentioned only the referring to X-ray and neutron techniques. The X-ray diffraction due to its properties just it does measurements which are known in general as superficial measurements of the sample material but for the properties of the neutrons, this diffraction it explores in volumetric form the sample material. Since the neutron diffraction process depends lots of its intensity, then it is important to know the neutron source spectra that in this case is supplied by the TRIGA Mark III reactor. Within of diffraction techniques a great number of them can be found, however some of the traditional will be mentioned such as the identification of crystalline samples, phases identification and the textures measurement. At present this last technique is founded on the dot of a minimum error and the technique of phases identification performs but not compete with that which is obtained by mean of X-rays due to this last one has a major resolution. (Author)

  16. Thermal-hydraulics and safety analysis of sectored compact reactor for lunar surface power

    Energy Technology Data Exchange (ETDEWEB)

    Schriener, T. M. [Inst. for Space and Nuclear Power Studies, Univ. of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States); El-Genk, M. S. [Inst. for Space and Nuclear Power Studies, Univ. of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States)

    2012-07-01

    The liquid NaK-cooled, fast-neutron spectrum, Sectored Compact Reactor (SCoRe-N 5) concept has been developed at the Univ. of New Mexico for lunar surface power applications. It is loaded with highly enriched UN fuel pins in a triangular lattice, and nominally operates at exit and inlet coolant temperatures of 850 K and 900 K. This long-life reactor generates up to 1 MWth continuously for {>=} 20 years. To avoid a single point failure in reactor cooling, the core is divided into 6 sectors that are neutronically and thermally coupled, but hydraulically independent. This paper performs a 3-D the thermal-hydraulic analysis of SCoRe--N 5 at nominal operation temperatures and a power level of 1 MWth. In addition, the paper investigates the potential of continuing reactor operation at a lower power in the unlikely event that one sector in the core experiences a loss of coolant (LOC). Redesigning the core with a contiguous steel matrix enhances the cooling of the sector experiencing a LOC. Results show that with a core sector experiencing a LOC, SCORE-N 5 could continue operating safely at a reduced power of 166.6 kWth. (authors)

  17. Porosity Effect in the Core Thermal Hydraulics for Ultra High Temperature Gas-cooled Reactor

    Directory of Open Access Journals (Sweden)

    Motoo Fumizawa

    2008-12-01

    Full Text Available This study presents an experimental method of porosity evaluation and a predictive thermal-hydraulic analysis with packed spheres in a nuclear reactor core. The porosity experiments were carried out in both a fully shaken state with the closest possible packing and in a state of non-vibration. The predictive analysis considering the fixed porosity value was applied as a design condition for an Ultra High Temperature Reactor Experiment (UHTREX. The thermal-hydraulic computer code was developed and identified as PEBTEMP. The highest outlet coolant temperature of 1316 oC was achieved in the case of an UHTREX at Los Alamos Scientific Laboratory, which was a small scale UHTR. In the present study, the fuel was changed to a pebble type, a porous media. In order to compare the present pebble bed reactor and UHTREX, a calculation based on HTGR-GT300 was carried out in similar conditions with UHTREX; in other words, with an inlet coolant temperature of 871oC, system pressure of 3.45 MPa and power density of 1.3 w/cm3. As a result, the fuel temperature in the present pebble bed reactor showed an extremely lower value compared to that of UHTREX.

  18. Phytoplankton distribution in three thermally different but edaphically similar reactor cooling reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E W

    1982-01-01

    Phytoplankton community structure and the physicochemical characteristics of three reactor cooling reservoirs in close proximity and of similar age and bottom type were studied during 1978. The three reservoirs differed in thermal alteration resulting from reactor cooling water as follows: (1) considerable heating with lake-wide temperatures >30/sup 0/C, even in winter; (2) a maximal 5/sup 0/C increase occurring in only one of three major arms of the reservoir; and (3) no thermal effluent received during the study period. Considerable spatial and temporal differences in water quality and phytoplankton community structure were observed; however, water temperature independent of other environmental factors (e.g., light and nutrients) was found to be a relatively unimportant variable for explaining phytoplankton periodicity.

  19. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores. [PEBBLE code

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases.

  20. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  1. Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.

    2015-03-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.

  2. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wosko, Paul; Sundram, S. K.

    2012-10-16

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.

  3. A new thermal hydraulics code coupled to agent for light water reactor analysis

    Science.gov (United States)

    Eklund, Matthew Deric

    A new numerical model for coupling a thermal hydraulics method based on the Drift Flux and Homogeneous Equilibrium Mixture (HEM) models, with a deterministic neutronics code system AGENT (Arbitrary Geometry Neutron Transport), is developed. Named the TH thermal hydraulics code, it is based on the mass continuity, momentum, and energy equations integrated with appropriate relations for liquid and vapor phasic velocities. The modified conservation equations are then evaluated in one-dimensional (1D) steady-state conditions for LWR coolant subchannel in the axial direction. This permits faster computation times without sacrificing significant accuracy, as compared to other three-dimensional (3D) codes such as RELAP5/TRACE. AGENT is a deterministic neutronics code system based on the Method of Characteristics to solve the 2D/3D neutron transport equation in current and future reactor systems. The coupling scheme between the TH and AGENT codes is accomplished by computing the normalized fission rate profile in the LWR fuel elements by AGENT. The normalized fission rate profile is then transferred to the TH thermal hydraulics code for computing the reactor coolant properties. In conjunction with the 1D axial TH code, a separate 1D radial heat transfer model within the TH code is used to determine the average fuel temperature at each node where coolant properties are calculated. These properties then are entered into Scale 6.1, a criticality analysis code, to recalculate fuel pin neutron interaction cross sections based on thermal feedback. With updated fuel neutron interaction cross sections, the fission rate profile is recalculated in AGENT, and the cycle continues until convergence is reached. The TH code and coupled AGENT-TH code are benchmarked against the TRACE reactor analysis software, showing required agreement in evaluating the basic reactor parameters.

  4. Thermal and neutron-physical features of the nuclear reactor for a power pulsation plant for space applications

    Science.gov (United States)

    Gordeev, É. G.; Kaminskii, A. S.; Konyukhov, G. V.; Pavshuk, V. A.; Turbina, T. A.

    2012-05-01

    We have explored the possibility of creating small-size reactors with a high power output with the provision of thermal stability and nuclear safety under standard operating conditions and in emergency situations. The neutron-physical features of such a reactor have been considered and variants of its designs preserving the main principles and approaches of nuclear rocket engine technology are presented.

  5. Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

    Directory of Open Access Journals (Sweden)

    M.H. Altaf

    2014-12-01

    Full Text Available Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt.

  6. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  7. Preliminary Development of Thermal Power Calculation Code H-Power for a Supercritical Water Reactor

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2014-01-01

    Full Text Available SCWR (Supercritical Water Reactor is one of the promising Generation IV nuclear systems, which has higher thermal power efficiency than current pressurized water reactor. It is necessary to perform the thermal equilibrium and thermal power calculation for the conceptual design and further monitoring and calibration of the SCWR. One visual software named H-Power was developed to calculate thermal power and its uncertainty of SCWR, in which the advanced IAPWS-IF97 industrial formulation was used to calculate the thermodynamic properties of water and steam. The ISO-5167-4: 2003 standard was incorporated in the code as the basis of orifice plate to compute the flow rate. New heat balance model and uncertainty estimate have also been included in the code. In order to validate H-Power, an assessment was carried out by using data published by US and Qinshan Phase II. The results showed that H-Power was able to estimate the thermal power of SCWR.

  8. The Possibilities of Fission Material Reproduction Increase in Thermal Reactor with the Assemblies with a Hard Neutron Spectrum

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2011-01-01

    The possibility of additional neutron source development with the use of fast neutrons with an energy distribution close to the fission spectrum in the major part of thermal reactor core is researched in this paper.

  9. Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor

    Science.gov (United States)

    Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.

    2006-06-01

    Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.

  10. Effect of reactor radiation on the thermal conductivity of TREAT fuel

    Science.gov (United States)

    Mo, Kun; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Wright, Arthur E.; Yacout, Abdellatif M.

    2017-04-01

    The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO2 particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO2 particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO2 particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO2 particle size on fission-fragment damage. The proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.

  11. A model to estimate volume change due to radiolytic gas bubbles and thermal expansion in solution reactors

    Energy Technology Data Exchange (ETDEWEB)

    Souto, F.J. [NIS-6: Advanced Nuclear Technology, Los Alamos National Lab., Los Alamos, NM (United States); Heger, A.S. [ESA-EA: Engineering Sciences and Application, Los Alamos National Lab., Los Alamos, NM (United States)

    2001-07-01

    To investigate the effects of radiolytic gas bubbles and thermal expansion on the steady-state operation of solution reactors at the power level required for the production of medical isotopes, a calculational model has been developed. To validate this model, including its principal hypotheses, specific experiments at the Los Alamos National Laboratory SHEBA uranyl fluoride solution reactor were conducted. The following sections describe radiolytic gas generation in solution reactors, the equations to estimate the fuel solution volume change due to radiolytic gas bubbles and thermal expansion, the experiments conducted at SHEBA, and the comparison of experimental results and model calculations. (author)

  12. The effects of low dose rate irradiation and thermal aging on reactor structural alloys

    Science.gov (United States)

    Allen, T. R.; Trybus, C. L.; Cole, J. I.

    As part of the EBR-II reactor materials surveillance program, test samples of fifteen different alloys were placed into EBR-II in 1965. The surveillance (SURV) program was intended to determine property changes in reactor structural materials caused by irradiation and thermal aging. In this work, the effect of low dose rate (approximately 2 × 10 -8 dpa/s) irradiation at 380-410°C and long term thermal aging at 371°C on the properties of 20% cold worked 304 stainless steel, 420 stainless steel, Inconel X750, 304/308 stainless weld material, and 17-4 PH steel are evaluated. Doses of up to 6.8 dpa and thermal aging to 2994 days did not significantly affect the density of these alloys. The strength of 304 SS, X750, 17-4 PH, and 304/308 weld material increased with irradiation. In contrast, the strength of 420 stainless steel decreased with irradiation. Irradiation decreased the impact energy in both Inconel X750 and 17-4 PH steel. Thermal aging decreased the impact energy in 17-4 PH steel and increased the impact energy in Inconel X750. Tensile property comparisons of 304 SURV samples with 304 samples irradiated in EBR-II at a higher dose rate show that the higher dose rate samples had greater increases in strength and greater losses in ductility.

  13. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or

  14. Review of fuel assembly and pool thermal hydraulics for fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Ferry, E-mail: roelofs@nrg.eu; Gopala, Vinay R.; Jayaraju, Santhosh; Shams, Afaque; Komen, Ed

    2013-12-15

    Highlights: • Literature review of fuel assembly and pool thermal hydraulics for fast reactors. • Experiments and state-of-the-art simulations. • For wire wrapped fuel assemblies RANS for complete fuel assembly is state-of-the-art, LES serves reference. • For pool thermal hydraulics, typically 5 to 20 million computational volumes are used in RANS simulations. • Gas entrainment analyses are extremely demanding as in addition they request multiphase modelling. -- Abstract: Liquid metal cooled reactors are envisaged to play an important role in the future of nuclear energy production because of their possible efficient use of uranium and the possibility to reduce the volume and lifetime of nuclear waste. Thermal-hydraulics is recognized as a key scientific subject in the development of such reactors. Two important challenges for the design of liquid metal fast reactors (LMFRs) are fuel assembly and pool thermal hydraulics. The heart of every nuclear reactor is the core, where the nuclear chain reaction takes place. Heat is produced in the nuclear fuel and transported to the coolant. LMFR core designs consist of many fuel assemblies which in turn consist of a large number of fuel rods. Wire wraps are commonly envisaged as spacer design in LMFR fuel assemblies. For the design and safety analyses of such reactors, simulations of the heat transport within the core are essential. The flow exiting the core is made up of the outlets of many different fuel assemblies. The liquid metal in these assemblies may be heated up to different temperatures. This leads to temperature fluctuations on various above core structures. As these temperature fluctuations may lead to thermal fatigue damage of the structures, an accurate characterization of the liquid metal flow field in the above core region is very important. This paper will provide an overview of state-of-the-art evaluations of fuel assembly and pool thermal hydraulics for LMFRs. It will show the tight interaction

  15. Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Junli Gou

    2009-01-01

    Full Text Available A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS, which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (SCPRHRS, the transient behaviors of the PRHRS as well as the effects of the height difference between the steam generator and the heat exchanger and the heat transfer area of the heat exchanger are studied in detail. Through the calculation analysis, it is found that the calculated parameter variation trends are reasonable. The higher height difference between the steam generator and the residual heat exchanger and the larger heat transfer area of the residual heat exchanger are favorable to the passive residual heat removal system.

  16. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    CERN Document Server

    Lychagin, E V; Muzychka, A Yu; Nekhaev, G V; Nesvizhevsky, V V; Onegin, M S; Sharapov, E I; Strelkov, A V

    2015-01-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium (4He). The PIK reactor is chosen as a perspective example of the application of this idea, which consists of installing a 4He UCN source in a beam of thermal or cold neutrons and surrounding the source with a moderator-reflector, which plays the role of a source of cold neutrons (CNs) feeding the UCN source. The CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator-reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of a 4He source with solid methane (CH4) or/and liquid deuterium (D2) moderator-reflector. We show that such a source with CH4 moderator-reflector at the PIK reactor would provide the UCN density of ~1x10^5 1/cm^3, and the UCN production rate of ~2x10^7 1/s. These values are resp...

  17. Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor

    Directory of Open Access Journals (Sweden)

    Stefanović Predrag Lj.

    2003-01-01

    Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.

  18. Thermal hydraulic analysis of reactivity accidents in MTR research reactors using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    El-Sahlamy, N.; Khedr, A. [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt); D' Auria, F.D. [Pisa Univ. (Italy). Facolta di Ingegneria

    2015-12-15

    The present paper comes in the line with the international approach which use the best estimate codes, instead of conservative codes, to get more realistic prediction of system behavior under off-normal reactor conditions. The aim of the current work is to apply this approach using the thermal-hydraulic system code RELAP5/Mod3.3 in a reassessment of safety of the IAEA benchmark 10 MW Research Reactor. The assessment is performed for both slow and fast reactivity insertion transients at initial power of 1.0 W. The reactor power is calculated using the RELA5 point kinetic model. The reactivity feedback terms are considered in two steps. In the first step the feedback from changes in water density and fuel temperature (Doppler effects) are considered. In the second step the feedback from the water temperature changes is added. The results from the first step are compared with that published in IAEA-TECDOC-643 benchmarks. The comparison shows that RELAP5 over predicts the peak power and consequently the fuel, clad and coolant temperatures in case of fast reactivity insertion. The results from the second step show unjustified values for reactor power. Therefore, the model of reactivity feedback from water temperature changes in the RELAP5 code may have to be reviewed.

  19. Neutronic and Thermal-hydraulic Modelling of High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Malla [VTT Technical Research Centre of Finland, P.O.Box 1000, FI02044 VTT (Finland)

    2008-07-01

    High Performance Light Water Reactor (HPLWR), which is studied in EU project 'HPLWR2', uses water at supercritical pressures as coolant and moderator to achieve higher core outlet temperature and thus higher efficiency compared to present reactors. At VTT Technical Research Centre of Finland, functionality of the thermal-hydraulics in the coupled reactor dynamics code TRAB3D/ SMABRE was extended to supercritical pressures for the analyses of HPLWR. Input models for neutronics and thermal-hydraulics were made for TRAB3D/ SMABRE according to the latest HPLWR design. A preliminary analysis was performed in which the capability of SMABRE in the transition from supercritical pressures to subcritical pressures was demonstrated. Parameterized two-group cross sections for TRAB3D neutronics were received from Hungarian Academy of Sciences KFKI Atomic Energy Research Institute together with a subroutine for handling them. PSG, a new Monte Carlo transport code developed at VTT, was also used to generate two-group constants for HPLWR and comparisons were made with the KFKI cross sections and MCNP calculations. (author)

  20. Modeling and temperature regulation of a thermally coupled reactor system via internal model control strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Coronella, C.J.; Bhadkamkar, A.S.; Seader, J.D. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    1993-12-01

    A two-stage, thermally coupled fluidized-bed reactor system has been developed for energy-efficient conversion of tar-sand bitumen to synthetic crude oil. Modeling and temperature control of a system are addressed in this study. A process model and transfer function are determined by a transient response technique and the reactor temperature are controlled by PI controllers with tuning settings determined by an internal model control (IMC) strategy. Using the IMC tuning method, sufficiently good control performance was experimentally observed without lengthy on-line tuning. It is shown that IMC strategy provides a means to directly use process knowledge to make a control decision. Although this control method allows for fine tuning by adjusting a single tuning parameter, it is not easy to determine the optimal value of this tuning parameter, which must be specified by the user. A novel method is presented to evaluate that parameter, which must be specified by the user. A novel method is presented to evaluate that parameter in this study. It was selected based on the magnitude of elements on the off-diagonal of the relative gain array to account for the effect of thermal coupling on control performance. It is shown that this method provides stable and fast control of reactor temperatures. By successfully decoupling the system, a simple method of extending the IMC tuning technique to multiinput/multioutput systems is obtained.

  1. Measurement of basic thermal-hydraulic characteristics under the test facility and reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Eduard A Boltenko; Victor P Sharov [Elektrogorsk Research and Engineering Center, EREC, Bezimyannaja Street, 6, Elektrogorsk, Moscow Region, 142530 (Russian Federation); Dmitriy E Boltenko [State Scientific Center of Russian Federation IPPE, Bondarenko Square, Obhinsk, Kaluga Region, 249020 (Russian Federation)

    2005-07-01

    Full text of publication follows: The nuclear power of Russia is based on the reactors of two types: water-water - WWER and uranium - graphite channel RBMK. The nuclear power development is possible with performance of the basic condition - level of nuclear power plants (NPP) safety should satisfy the rigid requirements. The calculated proof of NPPs safety made by means of thermal-hydraulic codes of improved estimation, verified on experimental data is the characteristic of this level. The data for code verification can be obtained at the integral facilities simulating a circulation circuit of NPP with the basic units and intended for investigation of circuit behaviour in transient and accident conditions. For verification of mathematical models in transient and accident conditions, development of physically reasonable methods for definition of the various characteristics of two-phase flow the experimental data, as the integrated characteristics of a flow, and data on the local characteristics and structure of a flow is necessary. For safety assurance of NPP it is necessary to monitor and determine the basic thermalhydraulic characteristics of reactor facility (RF). It is possible to refer coolant flow-rate, core input and output water temperature, heat-power. The description of the EREC works in the field completion and adaptation of certain methods with reference to measurements in dynamic modes of test facility conditions and development of methods for measurements of basic thermal-hydraulic characteristics of reactor facilities is presented in the paper. (authors)

  2. Scaling approach and thermal-hydraulic analysis in the reactor cavity cooling system of a high temperature gas -cooled reactor and thermal-jet mixing in a sodium fast reactor

    Science.gov (United States)

    Omotowa, Olumuyiwa A.

    This dissertation develops and demonstrates the application of the top-down and bottom-up scaling methodologies to thermal-hydraulic flows in the reactor cavity cooling system (RCCS) of the high temperature gas reactor (HTGR) and upper plenum of the sodium fast reactor (SFR), respectively. The need to integrate scaled separate effects and integral tests was identified. Experimental studies and computational tools (CFD) have been integrated to guide the engineering design, analysis and assessment of this scaling methods under single and two-phase flow conditions. To test this methods, two applicable case studies are considered, and original contributions are noted. Case 1: "Experimental Study of RCCS for the HTGR". Contributions include validation of scaling analysis using the top-down approach as guide to a ¼-scale integral test facility. System code, RELAP5, was developed based on the derived scaling parameters. Tests performed included system sensitivity to decay heat load and heat sink inventory variations. System behavior under steady-state and transient scenarios were predicted. Results show that the system has the capacity to protect the cavity walls from over-heating during normal operations and provide a means for decay heat removal under accident scenarios. A full width half maximum statistical method was devised to characterize the thermal-hydraulics of the non-linear two-phase oscillatory behavior. This facilitated understanding of the thermal hydraulic coupling of the loop segments of the RCCS, the heat transfer, and the two-phase flashing flow phenomena; thus the impact of scaling overall. Case 2: "Computational Studies of Thermal Jet Mixing in SFR". In the pool-type SFR, susceptible regions to thermal striping are the upper instrumentation structure and the intermediate heat exchanger (IHX). We investigated the thermal mixing above the core to UIS and the potential impact due to poor mixing. The thermal mixing of dual-jet flows at different

  3. FX2-TH: a two-dimensional nuclear reactor kinetics code with thermal-hydraulic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Shober, R.A.; Daly, T.A.; Ferguson, D.R.

    1978-10-01

    FX2-TH is a two-dimensional, time-dependent nuclear reactor kinetics program with thermal and hydraulic feedback. The neutronics model used is multigroup neutron diffusion theory. The following geometry options are available: x, r, x-y, r-z, theta-r, and triangular. FX2-TH contains two basic thermal and hydraulic models: a simple adiabatic fuel temperature calculation, and a more detailed model consisting of an explicit representation of a fuel pin, gap, clad, and coolant. FX2-TH allows feedback effects from both fuel temperature (Doppler) and coolant temperature (density) changes. FX2-TH will calculate a consistent set of steady state conditions by iterating between the neutronics and thermal-hydraulics until convergence is reached. The time-dependent calculation is performed by the use of the improved quasistatic method. A disk editing capability is available. FX2-TH is operational on IBM system 360 or 370 computers and on the CDC 7600.

  4. Thermal hydraulics characterization of the core and the reactor vessel type BWR; Caracterizacion termohidraulica del nucleo y de la vasija de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Zapata Y, M.; Lopez H, L.E. [CFE, Carretera Cardel-Nautla Km. 42.5, Municipio Alto Lucero, Veracruz (Mexico)]. e-mail: marxlenin.zapata@cfe.gob.mx

    2008-07-01

    The thermal hydraulics design of a reactor type BWR 5 as the employees in the nuclear power plant of Laguna Verde involves the coupling of at least six control volumes: Pumps jet region, Stratification region, Core region, Vapor dryer region, Humidity separator region and Reactor region. Except by the regions of the core and reactor, these control volumes only are used for design considerations and their importance as operative data source is limited. It is for that is fundamental to complement the thermal hydraulics relations to obtain major data that allow to determine the efficiency of internal components, such as pumps jet, humidity separator and vapor dryer. Like example of the previous thing, calculations are realized on the humidity of the principal vapor during starting, comparing it with the values at the moment incorporated in the data banks of the computers of process of both units. (Author)

  5. Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei

    2007-01-01

    A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".

  6. Review of pressurized thermal shock studies of large scale reactor pressure vessels in Hungary

    Directory of Open Access Journals (Sweden)

    Tamás Fekete

    2016-03-01

    Full Text Available In Hungary, four nuclear power units were constructed more than 30 years ago; they are operating to this day. In every unit, VVER-440 V213-type light-water cooled, light-water moderated, ressurized water reactors are in operation. Since the mid-1980s, numerous researches in the field of Pressurized Thermal Shock (PTS analyses of Reactor Pressure Vessels (RPVs have been conducted in Hungary; in all of them, the concept of structural integrity was the basis of research and development. During this time, four large PTS studies with industrial relevance have been completed in Hungary. Each used different objectives and guides, and the analysis methodology was also changing. This paper gives a comparative review of the methodologies used in these large PTS Structural Integrity Analysis projects, presenting the latest results as well

  7. Study on Thermal-Hydraulic Behavior of an Integral Type Reactor under Heaving Condition

    Directory of Open Access Journals (Sweden)

    Beibei Feng

    2014-01-01

    Full Text Available A self-developed program was used to study the thermal-hydraulic behavior of an integral type reactor under heaving condition. Comparison of calculated results with the data of experiments performed on a natural circulation loop designed with reference to an integral type reactor of Tsinghua University in inclination, heaving, and rolling motions was carried out. Characteristics of natural circulation in heaving motion and effect of motion parameters on natural circulation were investigated. Results indicated that: (1 long-period heaving motion would lead to more significant influence than inclination and rolling motion; (2 it was an alternating force field which consisted of gravity and an additional force that decided the flow temperature and density difference of natural circulation; (3 effect of strength k and cycle T of heaving motion on flow fluctuation of natural circulation and condensate depression of heating section outlet was performed.

  8. Thermal-hydraulic characteristics in a tokamak vacuum vessel of fusion reactor after transient events occurred

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Kazuyuki; Kunugi, Tomoaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Seki, Yasushi

    1997-12-31

    The thermal-hydraulic characteristics in a vacuum vessel (VV) of fusion reactor under the ingress-of-coolant-event (ICE) or loss-of-vacuum-event (LOVA) condition were carried out to investigate experimentally the thermofluid safety in the International Thermonuclear Experimental Reactor (ITER) under transient events. In the ICE experiments, the pressure rise and wall temperatures in the VV were measured and the performance of a suppression tank was confirmed. In the LOVA experiments, the exchange time inside the VV from the vacuum to be the atmospheric pressure was measured for various breach size and the exchange flow rates through the breaches of the VV under the atmospheric pressure conditions were clarified. (author)

  9. Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds

    Indian Academy of Sciences (India)

    B Rama Raju; E Linga Reddy; J Karuppiah; P Manoj Kumar Reddy; Ch Subrahmanyam

    2013-05-01

    The decomposition of mixture of selected volatile organic compounds (VOCs) has been studied in a catalytic non-thermal plasma dielectric barrier discharge reactor. The VOCs mixture consisting n-hexane, cyclo-hexane and -xylene was chosen for the present study. The decomposition characteristics of mixture of VOCs by the DBD reactor with inner electrode modified with metal oxides of Mn and Co was studied. The results indicated that the order of the removal efficiency of VOCs followed as -xylene > cyclo-hexane > -hexane. Among the catalytic study, MnOx/SMF (manganese oxide on sintered metal fibres electrode) shows better performance, probably due to the formation of active oxygen species by in situ decomposition of ozone on the catalyst surface. Water vapour further enhanced the performance due to the in situ formation of OH radicals.

  10. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  11. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Grcar, J.F.; Kee, R.J. [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  12. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  13. History of the 185-/189-D thermal hydraulics laboratory and its effects on reactor operations at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1994-09-01

    The 185-D deaeration building and the 189-D refrigeration building were constructed at Hanford during 1943 and 1944. Both buildings were constructed as part of the influent water cooling system for D reactor. The CMS studies eliminated the need for 185-D function. Early gains in knowledge ended the original function of the 189-D building mission. In 1951, 185-D and 189-D were converted to a thermal-hydraulic laboratory. The experiments held in the thermal-hydraulic lab lead to historic changes in Hanford reactor operations. In late 1951, the exponential physics experiments were moved to the 189-D building. In 1958, new production reactor experiments were begun in 185/189-D. In 1959, Plutonium Recycle Test Reactor experiments were added to the 185/189-D facility. By 1960, the 185/189-D thermal hydraulics laboratory was one of the few full service facilities of its type in the nation. During the years 1961--1963 tests continued in the facility in support of existing reactors, new production reactors, and the Plutonium Recycle Test Reactor. In 1969, Fast Flux Test Facility developmental testings began in the facility. Simulations in 185/189-D building aided in the N Reactor repairs in the 1980`s. In 1994 the facility was nominated to the National Register of Historic Places, because of its pioneering role over many years in thermal hydraulics, flow studies, heat transfer, and other reactor coolant support work. During 1994 and 1995 it was demolished in the largest decontamination and decommissioning project thus far in Hanford Site history.

  14. E-SCAPE: A scale facility for liquid-metal, pool-type reactor thermal hydraulic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Van Tichelen, Katrien, E-mail: kvtichel@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Mirelli, Fabio, E-mail: fmirelli@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Greco, Matteo, E-mail: mgreco@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Viviani, Giorgia, E-mail: giorgiaviviani@gmail.com [University of Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy)

    2015-08-15

    Highlights: • The E-SCAPE facility is a thermal hydraulic scale model of the MYRRHA fast reactor. • The focus is on mixing and stratification in liquid-metal pool-type reactors. • Forced convection, natural convection and the transition are investigated. • Extensive instrumentation allows validation of computational models. • System thermal hydraulic and CFD models have been used for facility design. - Abstract: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a flexible fast-spectrum research reactor under design at SCK·CEN. MYRRHA is a pool-type reactor with lead bismuth eutectic (LBE) as primary coolant. The proper understanding of the thermal hydraulic phenomena occurring in the reactor pool is an important issue in the design and licensing of the MYRRHA system and liquid-metal cooled reactors by extension. Model experiments are necessary for understanding the physics, for validating experimental tools and to qualify the design for the licensing. The E-SCAPE (European SCAled Pool Experiment) facility at SCK·CEN is a thermal hydraulic 1/6-scale model of the MYRRHA reactor, with an electrical core simulator, cooled by LBE. It provides experimental feedback to the designers on the forced and natural circulation flow patterns. Moreover, it enables to validate the computational methods for their use with LBE. The paper will elaborate on the design of the E-SCAPE facility and its main parameters. Also the experimental matrix and the pre-test analysis using computational fluid dynamics (CFD) and system thermal hydraulics codes will be described.

  15. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Peyrouty, P.

    1996-12-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible.

  16. Robinson 2 reactor vessel: pressurized thermal shock analysis for a small-break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Marston, T.; Griesbach, T.; Chao, J.; Chexal, B.; Norris, D.; Nickell, B.; Layman, B.

    1984-08-01

    A best-estimate Pressurized Thermal Shock (PTS) analysis was performed for a three-inch diameter hot-leg small-break loss-of-coolant accident for the Robinson 2 plant. This plant specific analysis was performed using EPRI's linked set of codes for PTS analysis. The analysis shows that with the H.B. Robinson 2 reactor pressure vessel, a hot-leg small-break loss-of-coolant accident does not pose a significant health or safety concern to the public for at least 40 years of operation.

  17. Diffusive-thermal oscillations of rich premixed hydrogen-air flames in a microflow reactor

    Science.gov (United States)

    Miroshnichenko, Taisia; Gubernov, Vladimir; Maruta, Kaoru; Minaev, Sergei

    2016-03-01

    In this paper the dynamics of rich hydrogen-air flames in a microflow reactor with controlled temperature of the walls is investigated numerically using the thermal-diffusion model with two-step kinetics in one spatial dimension. It is found that as the parameters of the system are varied the sequence of bifurcation occurs leading to the formation of complex spatio-temporal patterns. These include pulsating, chaotic, mixed-mode and FREI (Flames with Repetitive Extinction and Ignition) oscillations. The critical parameter values for the existence of different dynamical regimes are found in terms of equivalence ratio and flow velocity.

  18. Concerted action of NIC relaxase and auxiliary protein MobC in RA3 plasmid conjugation.

    Science.gov (United States)

    Godziszewska, Jolanta; Moncalián, Gabriel; Cabezas, Matilde; Bartosik, Aneta A; de la Cruz, Fernando; Jagura-Burdzy, Grazyna

    2016-08-01

    Conjugative transfer of the broad-host-range RA3 plasmid, the archetype of the IncU group, relies on the relaxase NIC that belongs to the as yet uncharacterized MOBP4 subfamily. NIC contains the signature motifs of HUH relaxases involved in Tyr nucleophilic attack. However, it differs in the residue involved in His activation for cation coordination and was shown here to have altered divalent cation requirements. NIC is encoded in the mobC-nic operon preceded directly by oriT, where mobC encodes an auxiliary transfer protein with a dual function: autorepressor and stimulator of conjugative transfer. Here an interplay between MobC and NIC was demonstrated. MobC is required for efficient NIC cleavage of oriT in supercoiled DNA whereas NIC assists MobC in repression of the mobC-nic operon. A 7-bp arm of IR3 (IR3a) was identified as the binding site for NIC and the crucial nucleotides in IR3a for NIC recognition were defined. Fully active oriTRA3 was delineated to a 47-bp DNA segment encompassing a conserved cleavage site sequence, the NIC binding site IR3a and the MobC binding site OM . This highly efficient RA3 conjugative system with defined requirements for minimal oriT could find ample applications in biotechnology and computational biology where simple conjugative systems are needed.

  19. Conceptual Thermal Hydraulic Design of a 20MW Multipurpose Research Reactor (KAERI/VAEC joint study on a new research reactor for Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Hee Taek; Seo, Chul Gyo; Park, Jong Hark; Park, Cheol [Kaeri, Daejeon (Korea, Republic of); Vinh, Le Vinh; Nghiem, Huynh Ton; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    The conceptual thermal hydraulics design analyses for the 20 MW reference AHR core have been jointly performed by the KAERI and DNRI(VAEC). The preliminary core thermal hydraulic characteristics and safety margins for the AHR core were studied for various core flow rates, fuel assembly powers and core inlet temperatures. Statistical method was applied to the thermal hydraulic design of the reactor core. The MATRA{sub h} subchannel code has been applied to evaluate the thermal hydraulic performances of the AHR and the resulting thermal margins of the core under the forced convection cooling mode during a nominal power operation and the natural circulation mode during a reactor shutdown condition. In addition, typical accident analyses were carried out for a loss of flow accident by a primary pump seizure and a reactivity induced accident by a CAR rod withdrawal during a normal full power operation. The normal full power operation of the AHR was ensured with a sufficient safety margin for the onset of nucleate boiling phenomena. The AHR also had a sufficient natural circulation cooling capability to cool the core without the onset of nucleate boiling in the channel after a normal reactor shutdown and the anticipated transients. It was confirmed by the typical accident analyses that the AHR core was sufficiently protected from the loss of flow by the primary cooling pump seizure and the overpower transients by the CAR withdrawal from the MCHFR and fuel temperature points of view.

  20. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    Science.gov (United States)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  1. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  2. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  3. EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

    2007-01-16

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  4. A new concept of high flow rate non-thermal plasma reactor for air treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, V.; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Although several non-thermal plasma reactors have been tested for air treatment at the laboratory scale, up-scaling to pilot or industrial scale remains a challenge because several parameters must be considered, such as hydrodynamic behaviour, maximum voltage in an industrial environment, and maintenance of the system. This paper presented a newly developed reactor which consists to a DBD plasma generated on individual supports that could be directly inserted in gas pipes where air flow must be treated. Elimination of 40 percent of 15 ppm of propene was obtained with a energy density as low as 10 J/L. The propene conversion increased when a manganese oxide based catalyst was used because the ozone produced by the plasma was used as an as an oxidant. A simple model of the plasma-catalyst reactor behaviour showed that more than 90 percent of propene conversion can be expected for an input energy density of 10 J/L and residual ozone concentration less than 100 ppb.

  5. Machine-able Yttria Stabilized Zirconia Composites for Thermal Insulation in Nuclear Reactors

    Science.gov (United States)

    Lo, J.; Zhang, R.; Santos, R.

    2016-02-01

    Ceramics are a promising insulating material for high temperature environment. To qualify for in-core use in nuclear reactors, there are many other materials requirements to be met, such as neutron irradiation resistance, corrosion resistance, low thermal conductivity, high coefficient of thermal expansion, high strength, high fracture toughness, ease of fabricability, etc. And among the promising ceramics meeting most of the requirements, with the exception of fabricability, is yttria-stabilized zirconia (YSZ). Like all ceramics, YSZ is hard, brittle and difficult to machine. At CanmetMATERIALS, YSZ-based composites for in-core insulation that are machine-able and capable of being formed into complex shapes have been developed. In this paper, the focus is geared towards the fabrication and property evaluation of such composites. In addition, the machinability aspect of the YSZ composites was addressed with a demonstration of a machined component.

  6. Analyzing the thermionic reactor critical experiments. [thermal spectrum of uranium 235 core

    Science.gov (United States)

    Niederauer, G. F.

    1973-01-01

    The Thermionic Reactor Critical Experiments (TRCE) consisted of fast spectrum highly enriched U-235 cores reflected by different thicknesses of beryllium or beryllium oxide with a transition zone of stainless steel between the core and reflector. The mixed fast-thermal spectrum at the core reflector interface region poses a difficult neutron transport calculation. Calculations of TRCE using ENDF/B fast spectrum data and GATHER library thermal spectrum data agreed within about 1 percent for the multiplication factor and within 6 to 8 percent for the power peaks. Use of GAM library fast spectrum data yielded larger deviations. The results were obtained from DOT R Theta calculations with leakage cross sections, by region and by group, extracted from DOT RZ calculations. Delineation of the power peaks required extraordinarily fine mesh size at the core reflector interface.

  7. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW{sub th} and an electricity generation mode of 100 kW{sub th}, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  8. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Directory of Open Access Journals (Sweden)

    Seung Hyun Nam

    2015-10-01

    Full Text Available Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER, for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MWth and an electricity generation mode of 100 kWth, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  9. Use of laser flow visualization techniques in reactor component thermal-hydraulic studies

    Energy Technology Data Exchange (ETDEWEB)

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    To properly design reactor components, an understanding of the various thermal hydraulic phenomena, i.e., thermal stratification flow channeling, recirculation regions, shear layers, etc., is necessary. In the liquid metal breeder reactor program, water is commonly used to replace sodium in experimental testing to facilitate the investigations, (i.e., reduce cost and allow fluid velocity measurement or flow pattern study). After water testing, limited sodium tests can be conducted to validate the extrapolation of the water results to sodium. This paper describes a novel laser flow visualization technique being utilized at ANL together with various examples of its use and plans for further development. A 3-watt argon-ion laser, in conjunction with a cylindrical opticallens, has been used to create a thin (approx. 1-mm) intense plane of laser light for the illuminiation of various flow tracers in precisely defined regions of interest within a test article having windows. Both fluorescing dyes tuned to the wavelength of the laser light (to maximize brightness and sharpness of flow image) and small (< 0.038-mm, 0.0015-in. dia.) opaque, nearly neutrally buoyant polystyrene spheres (to ensure that the particles trace out the fluid motion) have been used as flow tracers.

  10. Simulation of Thermal and Chemical Relaxation in a Post-Discharge Air Corona Reactor

    CERN Document Server

    Meziane, M; Ducasse, O; Yousfi, M

    2016-01-01

    In a DC point-to-plane corona discharge reactor, the mono filamentary streamers cross the inter electrode gap with a natural repetition frequency of some tens of kHz. The discharge phase (including the primary and the secondary streamers development) lasts only some hundred of nanoseconds while the post-discharge phases occurring between two successive discharge phases last some tens of microseconds. From the point of view of chemical activation, the discharge phases create radical and excited species located inside the very thin discharge filaments while during the post-discharge phases these radical and excited species induce a chemical kinetics that diffuse in a part of the reactor volume. From the point of view of hydrodynamics activation, the discharge phases induce thermal shock waves and the storage of vibrational energy which relaxes into thermal form only during the post-discharge phase. Furthermore, the glow corona discharges that persist during the post-discharge phases induce the so called electri...

  11. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Zaredah, E-mail: zaredah@nm.gov.my; Lanyau, Tonny Anak, E-mail: tonny@nm.gov.my; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi [Reactor Technology Centre, Technical Support Division, Malaysia Nuclear Agency, Ministry of Science, Technology and Innovation, Bangi, 43000, Kajang, Selangor Darul Ehsan (Malaysia); Azhar, Noraishah Syahirah [Universiti Teknologi Malaysia, 80350, Johor Bahru, Johor Darul Takzim (Malaysia)

    2016-01-22

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel’s center and surface, cladding, coolant temperatures as well as DNBR’s values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  12. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lychagin, E.V., E-mail: lychag@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Mityukhlyaev, V.A., E-mail: victim@pnpi.spb.ru [Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina 188300 (Russian Federation); Muzychka, A.Yu., E-mail: muz@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Nekhaev, G.V., E-mail: grigorijnekhaev@yandex.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Nesvizhevsky, V.V., E-mail: nesvizhevsky@ill.eu [Institut Max von Laue – Paul Langevin, 71 Avenue des Martyrs, Grenoble 38042 (France); Onegin, M.S., E-mail: oneginm@gmail.com [Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina 188300 (Russian Federation); Sharapov, E.I., E-mail: sharapov@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Strelkov, A.V., E-mail: str@jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation)

    2016-07-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium ({sup 4}He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing {sup 4}He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator–reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of {sup 4}He source with solid methane (CH{sub 4}) or/and liquid deuterium (D{sub 2}) moderator–reflector. We show that such a source with CH{sub 4} moderator–reflector at the PIK reactor would provide the UCN density of ~1·10{sup 5} cm{sup −3}, and the UCN production rate of ~2·10{sup 7} s{sup −1}. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D{sub 2} moderator-reflector would reach the value of ~2·10{sup 5} cm{sup −3}, and the UCN production rate would be equal ~8·10{sup 7} s{sup −1}. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  13. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    Science.gov (United States)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  14. Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method

    Directory of Open Access Journals (Sweden)

    Mingjun Yang

    2012-05-01

    Full Text Available The heat transfer analysis of hydrate-bearing sediment involved phase changes is one of the key requirements of gas hydrate exploitation techniques. In this paper, experiments were conducted to examine the heat transfer performance during hydrate formation and dissociation by a thermal method using a 5L volume reactor. This study simulated porous media by using glass beads of uniform size. Sixteen platinum resistance thermometers were placed in different position in the reactor to monitor the temperature differences of the hydrate in porous media. The influence of production temperature on the production time was also investigated. Experimental results show that there is a delay when hydrate decomposed in the radial direction and there are three stages in the dissociation period which is influenced by the rate of hydrate dissociation and the heat flow of the reactor. A significant temperature difference along the radial direction of the reactor was obtained when the hydrate dissociates and this phenomenon could be enhanced by raising the production temperature. In addition, hydrate dissociates homogeneously and the temperature difference is much smaller than the other conditions when the production temperature is around the 10 °C. With the increase of the production temperature, the maximum of ΔToi grows until the temperature reaches 40 °C. The period of ΔToi have a close relation with the total time of hydrate dissociation. Especially, the period of ΔToi with production temperature of 10 °C is twice as much as that at other temperatures. Under these experimental conditions, the heat is mainly transferred by conduction from the dissociated zone to the dissociating zone and the production temperature has little effect on the convection of the water in the porous media.

  15. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  16. Thermal-hydraulic Fortran program for steady-state calculations of plate-type fuel research reactors

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2008-01-01

    Full Text Available The safety assessment of research and power reactors is a continuous process covering their lifespan and requiring verified and validated codes. Power reactor codes all over the world are well established and qualified against real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume a lot of running time. On the other hand, most research reactor codes still require much more data for validation and qualification. It is, therefore, of benefit to any regulatory body to develop its own codes for the review and assessment of research reactors. The present paper introduces a simple, one-dimensional Fortran program called THDSN for steady-state thermal-hydraulic calculations of plate-type fuel research reactors. Besides calculating the fuel and coolant temperature distributions and pressure gradients in an average and hot channel, the program calculates the safety limits and margins against the critical phenomena encountered in research reactors, such as the onset of nucleate boiling, critical heat flux and flow instability. Well known thermal-hydraulic correlations for calculating the safety parameters and several formulas for the heat transfer coefficient have been used. The THDSN program was verified by comparing its results for 2 and 10 MW benchmark reactors with those published in IAEA publications and a good agreement was found. Also, the results of the program are compared with those published for other programs, such as the PARET and TERMIC.

  17. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Padmakumar, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN 603 102 (India)], E-mail: gpk@igcar.gov.in; Pandey, G.K.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN 603 102 (India)

    2009-06-15

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  18. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor.

    Science.gov (United States)

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezzati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Amini, Sepideh

    2014-12-01

    An irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.2m(2). This facility is filled with removable graphite blocks. The aim of this work is to perform the necessary modifications in the thermal column structure to meet thermal BNCT beam criteria recommended by International Atomic Energy Agency. The main modifications consist of rearranging graphite blocks and reducing the gamma dose rate at the beam exit. Activation foils and TLD700 dosimeter have been used to measure in-air characteristics of the neutron beam. According to the measurements, a thermal flux is 5.6×10(8) (ncm(-2)s(-1)), a cadmium ratio is 186 for gold foils and a gamma dose rate is 0.57Gy h(-1).

  19. Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

    Directory of Open Access Journals (Sweden)

    A. Rais

    2015-01-01

    Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.

  20. Evolution of the construction and performances in accordance to the applications of non-thermal plasma reactors

    Science.gov (United States)

    Hnatiuc, B.; Brisset, J. L.; Astanei, D.; Ursache, M.; Mares, M.; Hnatiuc, E.; Felea, C.

    2016-12-01

    This paper aims to present the evolution of the construction and performances of non-thermal plasma reactors, identifying specific requirements for various known applications, setting out quality indicators that would allow on the one hand comparing devices that use different kinds of electrical discharges but also their rigorous classification by identification of criteria in order to choose the correct cold plasma reactors for a specific application. It briefly comments the post-discharge effect but also the current dilemma on non-thermal plasma direct treatments versus indirect treatments, using plasma activated water (PAW) or plasma activated medium (PAM), promising in cancer treatment.

  1. Calculation methodology of the thermal margin in the CAREM 25 reactor; Metodologia de calculo del margen termico en el reactor CAREM 25

    Energy Technology Data Exchange (ETDEWEB)

    Mazufri, Claudio M. [Investigacion Aplicada SE (INVAP), San Carlos de Bariloche (Argentina)

    1995-12-31

    According to the nuclear reactors characteristics, can be found different methodologies to appraise the thermal margin available in the core. In the particular case of the CAREM (25 MWe) reactor, where the core is cooled by low mass flux and there are zones with positive steam quality, such evaluation is critical. Due to these characteristics, it was necessary to develop one proper methodology. In the present work, the different steps of that development are described: the election of figures of merit for measure the thermal margin, the hypothesis to use, the election of the critical heat flux prediction model, model qualification and the specification of the core wide procedure. In each step assume criteria are discussed. (author). 9 refs, 1 tab, 1 fig.

  2. Evaluation of Concepts for Mulitiple Application Thermal Reactor for Irradiation eXperiments (MATRIX)

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Michael A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryskamp, John M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Originally operated primarily in support of the Offcie of Naval Reactors (NR), the mission has gradually expanded to cater to other customers, such as the DOE Office of Nuclear Energy (NE), private industry, and universities. Unforeseen circumstances may lead to the decommissioning of ATR, thus leaving the U.S. Government without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. This work can be viewed as an update to a project from the 1990’s called the Broad Application Test Reactor (BATR). In FY 2012, a survey of anticipated customer needs was performed, followed by analysis of the original BATR concepts with fuel changed to low-enriched uranium. Departing from these original BATR designs, four concepts were identified for further analysis in FY2013. The project informally adopted the acronym MATRIX (Multiple-Application Thermal Reactor for Irradiation eXperiments). This report discusses analysis of the four MATRIX concepts along with a number of variations on these main concepts. Designs were evaluated based on their satisfaction of anticipated customer requirements and the “Cylindrical” variant was selected for further analysis of options. This downselection should be considered preliminary and the backup alternatives should include the other three main designs. The baseline Cylindrical MATRIX design is expected to be capable of higher burnup than the ATR (or longer cycle length given a

  3. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Science.gov (United States)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  4. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  5. Neutronic and thermal analysis of composite fuel for potential deployment in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Abou Jaoude, Abdalla; Thomas, Colin; Erickson, Anna, E-mail: erickson@gatech.edu

    2016-07-15

    Highlights: • Neutronic and heat transfer performance of composite fuels on the macro-scale. • Methodology to guide flexible fuel design using high fidelity simulation tools. • Viability of composite fuels for ultra-high burnup fast reactor deployment. - Abstract: Composite fuels are promising candidates for high-burnup fast reactors because of their accommodation of swelling, limited fuel-cladding interactions and flexibility in design. While a proof-of-concept fuel consisting of granules of U-alloys and PuO{sub 2} dispersed within a porous zirconium matrix was successfully manufactured and irradiated, its neutronic and thermal performance remains to be optimized as compared to currently utilized fuels. MCNP6, COMSOL and a sphere packing algorithm were employed to perform the analysis. We found that both the theoretical maximum burnup reached and the temperature profiles are comparable to that of the currently considered alternative fuel. The results are promising and do not indicate any substantial limitation to the deployment of composite fuel. The fuel type merits further research, including full-core simulations. The methodology followed herein also provides a basis for screening different material compositions and guiding materials selection in composite fuels.

  6. Effects of thermal annealing and reirradiation on toughness of reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, R.K.; Iskander, S.K.; Sokolov, M.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-02-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPV) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response, or {open_quotes}recovery,{close_quotes} of several irradiated RPV steels; it also includes recent results from both ORNL and the Russian Research Center-Kurchatov Institute (RRC-KI) on a cooperative program of irradiation, annealing and reirradiation of both U.S. and Russian RPV steels. The cooperative program was conducted under the auspices of Working Group 3, U.S./Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS). The materials investigated are an RPV plate and various submerged-arc welds, with tensile, Charpy impact toughness, and fracture toughness results variously determined. Experimental results are compared with applicable prediction guidelines, while observed differences in annealing responses and reirradiation rates are discussed.

  7. Blackness coefficients, effective diffusion parameters, and control rod worths for thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.

    1984-09-01

    Simple diffusion theory cannot be used to evaluate control rod worths in thermal reactors because of the strongly absorbing character of the control material. However, good results can be obtained from a diffusion calculation by representing the absorber slab by means of a suitable pair of internal boundary conditions, ..cap alpha.. and ..beta.., which are ratios of neutron flux to neutron current. Methods for calculating ..cap alpha.. and ..beta.. in the P/sub 1/, P/sub 3/, and P/sub 5/ approximations, with and without scattering, are presented. By appropriately weighting the fine-group blackness coefficients, broad group values, <..cap alpha..> and <..beta..>, are obtained. The technique is applied to the calculation of control rod worths of Cd, Ag-In-Cd, and Hf control elements. Results are found to compare very favorably with detailed Monte Carlo calculations. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method is briefly discussed and applied to the calculation of control rod worths in the Ford Nuclear Reactor at the University of Michigan. Calculated and measured worths are found to be in good agreement.

  8. Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Shin, Chang Hwan; Lee, Chan; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Chi Young [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-12-15

    The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermalhydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermalhydraulic technology and the commercialization.

  9. A Combined Neutronic-Thermal Hydraulic Model of CERMET NTR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan A. Webb; Brian Gross; William T. Taitano

    2011-02-01

    Abstract. Two different CERMET fueled Nuclear Thermal Propulsion reactors were modeled to determine the optimum coolant channel surface area to volume ratio required to cool a 25,000 lbf rocket engine operating at a specific impulse of 940 seconds. Both reactor concepts were computationally fueled with hexagonal cross section fuel elements having a flat-to-flat distance of 3.51 cm and containing 60 vol.% UO2 enriched to 93wt.%U235 and 40 vol.% tungsten. Coolant channel configuration consisted of a 37 coolant channel fuel element and a 61 coolant channel model representing 0.3 and 0.6 surface area to volume ratios respectively. The energy deposition from decelerating fission products and scattered neutrons and photons was determined using the MCNP monte carlo code and then imported into the STAR-CCM+ computational fluid dynamics code. The 37 coolant channel case was shown to be insufficient in cooling the core to a peak temperature of 3000 K; however, the 61 coolant channel model shows promise for maintaining a peak core temperature of 3000 K, with no more refinements to the surface area to volume ratio. The core was modeled to have a power density of 9.34 GW/m3 with a thrust to weight ratio of 5.7.

  10. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Jones, Byron

    2013-09-13

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  11. Blackness coefficients, effective diffusion parameters, and control rod worths for thermal reactors - methods

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.

    1984-01-01

    Simple diffusion theory cannot be used to evaluate control rod worths in thermal neutron reactors because of the strongly absorbing character of the control material. However, reliable control rod worths can be obtained within the framework of diffusion theory if the control material is characterized by a set of mesh-dependent effective diffusion parameters. For thin slab absorbers the effective diffusion parameters can be expressed as functions of a suitably-defined pair of blackness coefficients. Methods for calculating these blackness coefficients in the P/sub 1/, P/sub 3/, and P/sub 5/ approximations, with and without scattering, are presented. For control elements whose geometry does not permit a thin slab treatment, other methods are needed for determining the effective diffusion parameters. One such method, based on reaction rate ratios, is discussed.

  12. Physics parameter calculations for a Tandem Mirror Reactor with thermal barriers

    Energy Technology Data Exchange (ETDEWEB)

    Boghosian, B.M.; Lappa, D.A.; Logan, B.G.

    1979-11-06

    Thermal barriers are localized reductions in potential between the plugs and the central cell, which effectively insulate trapped plug electrons from the central cell electrons. By then applying electron heating in the plug, it is possible to obtain trapped electron temperatures that are much greater than those of the central cell electrons. This, in turn, effects an increase in the plug potential and central cell confinement with a concomitant decrease in plug density and injection power. Ions trapped in the barrier by collisions are removed by the injection of neutral beams directed inside the barrier cell loss cone; these beam neutrals convert trapped barrier ions to neutrals by charge exchange permitting their escape. We describe a zero-dimensional physics model for this type of reactor, and present some preliminary results for Q.

  13. THE THERMAL-HYDRAULICS ANALYSIS ON RADIAL AND AXIAL POWER FLUCTUATION FOR AP1000 REACTOR

    Directory of Open Access Journals (Sweden)

    Muh. Darwis Isnaini

    2015-06-01

    Full Text Available ABSTRACT THE THERMAL-HYDRAULICS ANALYSIS ON RADIAL AND AXIAL POWER FLUCTUATION FOR AP1000 REACTOR. The reduction of fissile material during reactor operation affects reactivity reduction. Therefore, in order to keep the reactor operating at fixed power, it must be compensated by slowly withdrawing the control-rod up. However, it will change the shape of the horizontal/axial power distribution and safety margin as well. The research carries out the calculations of the core thermal-hydraulics to determine the effect of the fluctuations of the power distribution on the thermal-hydraulic AP1000’s parameters and study their impacts on the safety margin. The calculation is done using the COBRA-EN code and the result shows that the maximum heat flux at the Beginning of Cycle (BOC is 1624.02 kW/m2. This heat flux will then decrease by 22.75% at the Middle of Cycle (MOC and by 0.29% at the End of Cycle (EOC. The peak fuel centerline temperature at the BOC, MOC and EOC, are 1608.15°C, 1232.15°C, and 1301.75°C, respectively. These temperature differences are caused by the heat flux effects on sub-cooled boiling regions in the cladding surface. Moreover, the value of MDNBRs at the MOC and EOC are 3.23 and 3.00, which are higher than the MDNBR at the BOC of 2.49. It could be concluded that the operating cycle of the AP1000 reactor should be operated in the MOC and the EOC, which will be more safely than be operated in the BOC. Keywords: Core thermal-hydraulics, AP1000, fluctuation of power distribution, COBRA-EN.   ABSTRAK ANALISIS TERMOHIDRAULIKA PADA FLUKTUASI DAYA AXIAL DAN RADIAL UNTUK REAKTOR AP1000. Berkurangnya material fisil selama operasi reaktor, mengakibatkan reaktivitas berkurang. Oleh karena itu, agar reaktor tetap beroperasi pada daya yang tetap, maka harus dikompensasi dengan menarik batang kendali ke atas sedikit demi sedikit. Akan tetapi, hal ini akan berakibat pada berubahnya bentuk distribusi daya ke arah horisontal/aksial dan

  14. Coupled neutronics/thermal-hydraulics and safety characteristics of liquid-fueled molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Suizheng; Zhang, Dalin; Liu, Minghao; Liu, Limin; Xu, Rongshuan; Gong, Cheng; Su, Guanghui [Xi' an Jiaotong Univ. (China). State Key Laboratory of Multiphase Flow in Power Engineering

    2016-05-15

    Molten salt reactor (MSR) as one candidate of the Generation IV advanced nuclear power systems is attracted more attention in China due to its top ranked fuel cycle and thorium utilization. The MSRs are characterized by using liquid-fuel, which offers complicated coupling problem of neutronics and thermal hydraulics. In this paper, the fundamental model and numerical method are established to calculate and analyze the safety characteristics for liquid-fuel MSRs. The theories and methodologies are applied to the MOSART concept. The liquid-fuel flow effects on neutronics, reactivity coefficients and three operation parameters' influences at steady state are obtained, which provide the basic information for safety analysis. The unprotected loss of flow transient is calculated, the results of which shows the inherent safety characteristics of MOSART due to its strong negative reactivity feedbacks.

  15. Development of thermal hydraulic models for main circulation circuit of RBMK-1500 reactor using Apros and Cathare 2 codes

    Energy Technology Data Exchange (ETDEWEB)

    Zemulis, G.; Jasiulevicius, A. [Kaunas University of Technology, Dept. of Thermal and Nuclear Energy, Kaunas, (Lithuania)

    2001-07-01

    Reactor safety is the most important issue in nuclear engineering. It concerns the capability of the nuclear object to withhold the main safety and reliability criterion within specified range during both normal operation and transient conditions. Three types of assessment are to be performed in order to establish the nuclear power plant safety level: neutronic calculations; thermal hydraulic calculations; mechanical design calculations. Calculations of the thermal hydraulic parameters of the RBMK-1500 reactor main circulation circuit (MCC) are presented in this paper. The aim of this work was to test the capability of the APROS code to simulate the behavior of the RBMK-1500 type reactor main circulation circuit during normal operation and transients. (author)

  16. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  17. Thermal hygienization of excess anaerobic sludge: a possible self-sustained application of biogas produced in UASB reactors.

    Science.gov (United States)

    Borges, E S M; Godinho, V M; Chernicharo, C A L

    2005-01-01

    The main current trends in final disposal of sludge from Wastewater Treatment Plants (WTP) include: safe use of nutrients and organic matter in agriculture, sludge disinfection and restricted use in landfill. As to sludge hygienization, helminth eggs have been used as a major parameter to determine the effectiveness of such process, and its inactivation can be reached by means of thermal treatment, under varying temperature and other conditions. In such context, the objective of this research was to determine how effectively biogas produced in UASB reactors could be used as a source of calorific energy for the thermal hygienization of excess anaerobic sludge, with Ascaris lumbricoides eggs being used as indicator microorganisms, and whether the system can operate on a self-sustained basis. The experiments were conducted in a pilot-scale plant comprising one UASB reactor, two biogas holders and one thermal reactor. The investigation proved to be of extreme importance to developing countries, since it leads to a simplified and fully self-sustainable solution for sludge hygienization, while making it possible to reuse such material for agricultural purposes. It should be also noted that using biogas from UASB reactors is more than sufficient to accomplish the thermal hygienization of all excess sludge produced by this system, when used for treating domestic sewage.

  18. Neutronics and thermal hydraulic analysis of TRIGA Mark II reactor using MCNPX and COOLOD-N2 computer code

    Science.gov (United States)

    Tiyapun, K.; Wetchagarun, S.

    2017-06-01

    The neutronic analysis of TRIGA Mark II reactor has been performed. A detailed model of the reactor core was conducted including standard fuel elements, fuel follower control rods, and irradiation devices. As the approach to safety nuclear design are based on determining the criticality (keff), reactivity worth, reactivity excess, hot rod power factor and power peaking of the reactor, the MCNPX code had been used to calculate the nuclear parameters for different core configuration designs. The thermal-hydraulic model has been developed using COOLOD-N2 for steady state, using the nuclear parameters and power distribution results from MCNPX calculation. The objective of the thermal-hydraulic model is to determine the thermal safety margin and to ensure that the fuel integrity is maintained during steady state as well as during abnormal condition at full power. The hot channel fuel centerline temperature, fuel surface temperature, cladding surface temperature, the departure from nucleate boiling (DNB) and DNB ratio were determined. The good agreement between experimental data and simulation concerning reactor criticality proves the reliability of the methodology of analysis from neutronic and thermal hydraulic perspective.

  19. A MODEL TO ESTIMATE VOLUME CHANGE DUE TO RADIOLYTIC GAS BUBBLES AND THERMAL EXPANSION IN SOLUTION REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    F. SOUTO; A HEGER

    2001-02-01

    Aqueous homogeneous solution reactors have been proposed for the production of medical isotopes. However, the reactivity effects of fuel solution volume change, due to formation of radiolytic gas bubbles and thermal expansion, have to be mitigated to allow steady-state operation of solution reactors. The results of the free run experiments analyzed indicate that the proposed model to estimate the void volume due to radiolytic gas bubbles and thermal expansion in solution reactors can accurately describe the observed behavior during the experiments. This void volume due to radiolytic gas bubbles and fuel solution thermal expansion can then be used in the investigation of reactivity effects in fissile solutions. In addition, these experiments confirm that the radiolytic gas bubbles are formed at a higher temperature than the fuel solution temperature. These experiments also indicate that the mole-weighted average for the radiolytic gas bubbles in uranyl fluoride solutions is about 1 {micro}m. Finally, it should be noted that another model, currently under development, would simulate the power behavior during the transient given the initial fuel solution level and density. The model is based on Monte Carlo simulation with the MCNP computer code [Briesmeister, 1997] to obtain the reactor reactivity as a function of the fuel solution density, which, in turn, changes due to thermal expansion and radiolytic gas bubble formation.

  20. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    Science.gov (United States)

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor.

  1. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  2. Research and development program for PWR safety at the CEA reactor thermal hydraulics laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M. [CEA, Grenoble (France)

    1995-04-15

    Since the start of the French electronuclear program, the three partners Fermate, EDF and Cea (DRN and IPSN) have devoted considerable effort to research and development for safety issues. In particular an important program on thermal hydraulics was initiated at the beginning of the seventies. It is illustrated by the development of the CATHARE thermalhydraulic safety code which includes physical models derived from a large experimental support program and the construction of the BETHSY integral facility which is aimed to assess both the CATHARE code and the physical relevance of the accident management procedures to be applied on reactors. The state of the art on this program is described with particular emphasis on the capabilities and the assessment of the last version of CATHARE and the lessons drawn from 50 BETHSY tests performed so far. The future plans for safety research cover the following strategy: - to solve the few problems identified on present computing tools and extend the assessment - to solve the few problems identified on present computing tools and extend the assessment - to perform safety studies on the basis of plant operation feedback - to contribute to treating the safety issues related to the future reactors and in particular the case of severe accidents which have to be taken into account from the design stage. The program on severe accidents is aimed to support the design studies performed by the industrial partners and to provide computing tools which model the various phases of severe accidents and will be validated on experiments performed with real and simulating materials. The main lines of the program are: - the development of the TOLBIAC 3D code for the thermal hydraulics of core melt pools, which will be validated against the Bali experiment presently under construction - the Sultan experiment, to study the capability of cooling by external flooding of the reactor vessel - the development of the MC-3D code for core melt

  3. Calibration of the borated ion chamber at NIST reactor thermal column.

    Science.gov (United States)

    Wang, Z; Hertel, N E; Lennox, A

    2007-01-01

    In boron neutron capture therapy and boron neutron capture enhanced fast neutron therapy, the absorbed dose of tissue due to the boron neutron capture reaction is difficult to measure directly. This dose can be computed from the measured thermal neutron fluence rate and the (10)B concentration at the site of interest. A borated tissue-equivalent (TE) ion chamber can be used to directly measure the boron dose in a phantom under irradiation by a neutron beam. Fermilab has two Exradin 0.5 cm(3) Spokas thimble TE ion chambers, one loaded with boron, available for such measurements. At the Fermilab Neutron Therapy Facility, these ion chambers are generally used with air as the filling gas. Since alpha particles and lithium ions from the (10)B(n,alpha)(7)Li reactions have very short ranges in air, the Bragg-Gray principle may not be satisfied for the borated TE ion chamber. A calibration method is described in this paper for the determination of boron capture dose using paired ion chambers. The two TE ion chambers were calibrated in the thermal column of the National Institute of Standards and Technology (NIST) research reactor. The borated TE ion chamber is loaded with 1,000 ppm of natural boron (184 ppm of (10)B). The NIST thermal column has a cadmium ratio of greater than 400 as determined by gold activation. The thermal neutron fluence rate during the calibration was determined using a NIST fission chamber to an accuracy of 5.1%. The chambers were calibrated at two different thermal neutron fluence rates: 5.11 x 10(6) and 4.46 x 10(7)n cm(-2) s(-1). The non-borated ion chamber reading was used to subtract collected charge not due to boron neutron capture reactions. An optically thick lithium slab was used to attenuate the thermal neutrons from the neutron beam port so the responses of the chambers could be corrected for fast neutrons and gamma rays in the beam. The calibration factor of the borated ion chamber was determined to be 1.83 x 10(9) +/- 5.5% (+/- 1sigma) n

  4. Thermal analysis to support decommissioning of the molten salt reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sulfredge, C.D.; Morris, D.G.; Park, J.E.; Williams, P.T.

    1996-06-01

    As part of the decommissioning process for the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory, several thermal-sciences issues were addressed. Apparently a mixture of UF{sub 6} and F{sub 2} had diffused into the upper portion of one charcoal column in the MSRE auxiliary charcoal bed (ACB), leading to radiative decay heating and possible chemical reaction sources. A proposed interim corrective action was planned to remove the water from the ACB cell to reduce criticality and reactivity concerns and then fill the ACB cell with an inert material. This report describes design of a thermocouple probe to obtain temperature measurements for mapping the uranium deposit, as well as development of steady-state and transient numerical models for the heat transfer inside the charcoal column. Additional numerical modeling was done to support filling of the ACB cell. Results from this work were used to develop procedures for meeting the goals of the MSRE Remediation Project without exceeding appropriate thermal limits.

  5. Integrity analysis of reactor pressure vessels subjected to pressurized thermal shocks by XFEM

    Energy Technology Data Exchange (ETDEWEB)

    González-Albuixech, V.F., E-mail: vicente.gonzalez@psi.ch; Qian, G.; Niffenegger, M.

    2014-08-15

    Highlights: • We did fracture mechanics computations for an RPV with XFEM thermal shocks. • We introduce guidelines for using XFEM in RPV studies. • We did a comparison between FEM and XFEM results for an RPV analysis. • Some limitations of the eXtended Finite Element Methods are commented. - Abstract: The integrity of an reactor pressure vessel (RPV) related to Pressurized Thermal Shocks (PTSs) has been widely studied. However, due to the difficulties associated with the crack modeling with the 3-D finite element method (FEM), it is preferred to use models with simple geometries and crack configurations. In the last years new improved FEMs were developed which include the singularities and discontinuities and simplify the computational fracture mechanics studies. One of those methods, the eXtended Finite Element Method (XFEM) relies on the introduction of the crack effect with an enrichment of the finite element approximation space. This paper introduces the use of XFEM to the structural analysis of an RPV subjected to PTSs. The analysis compares the stress intensity factor (SIF) calculated with XFEM with results obtained by conventional FEM calculations.

  6. Thermal analysis to support decommissioning of the molten salt reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sulfredge, C.D.; Morris, D.G.; Park, J.E.; Williams, P.T.

    1996-06-01

    As part of the decommissioning process for the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory, several thermal-sciences issues were addressed. Apparently a mixture of UF{sub 6} and F{sub 2} had diffused into the upper portion of one charcoal column in the MSRE auxiliary charcoal bed (ACB), leading to radiative decay heating and possible chemical reaction sources. A proposed interim corrective action was planned to remove the water from the ACB cell to reduce criticality and reactivity concerns and then fill the ACB cell with an inert material. This report describes design of a thermocouple probe to obtain temperature measurements for mapping the uranium deposit, as well as development of steady-state and transient numerical models for the heat transfer inside the charcoal column. Additional numerical modeling was done to support filling of the ACB cell. Results from this work were used to develop procedures for meeting the goals of the MSRE Remediation Project without exceeding appropriate thermal limits.

  7. Aerosol dissemination veterinary pathogenic and human opportunistic thermophilic and thermotolerant fungi from thermal effluents of nuclear production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tansey, M.R.; Fliermans, C.B.; Kern, C.D.

    1979-01-01

    The extent to which veterinary pathogenic and human opportunistic species of thermophilic and thermotolerant fungi disseminate in aerosols from heated effluents of nuclear production reactors of the Savannah River Plant (SRP), South Carolina, has been measured. Aerosol samples were taken at 140 sites, from directly over thermal effluents to more than 100 kilometers from the SRP boundary. Sampling methods included settle plates, liquid impingement, filtration, and a particle sizing cascade impactor (Andersen Sampler). Soils, foams, and microbial mats from thermal effluents, and vegetation were sampled to study distribution of particular species. Sampling was done under a variety of conditions; hot weather and cold, wet and dry, day and night, windy and calm, reactor(s) operating and not, disturbed vegetation and undisturbed. At 102 of the aerosol sampling sites, sophisticated meterological analysis were used to allow sampling of air in the plume which originated from thermal effluents. Soil, foam, microbial mat, vegetation, and aerosol samples were quantitatively plated for detection of viable units; filters were halved and then both plated and observed microscopically. Significant dissemination of thermophilic and thermotolerant fungi from thermal effluents was not detected. Thermophilic and thermotolerant fungi were widely distributed in soil, air, and on vegetation. Dactylaria gallopava, the indicator species and dominant fungus in microbial mats lining SRP thermal effluents and the cause of epidemic fatal phaeohyphomycosis in flocks of turkeys and chickens in South Carolina, Georgia, and elsewhere, was isolated from air at a maximum of 50 meters from effluents.

  8. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tarantino, M., E-mail: mariano.tarantino@enea.it [ENEA UTIS, C.R. Brasimone, 40032 Camugnano, BO (Italy); Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G. [ENEA UTIS, C.R. Brasimone, 40032 Camugnano, BO (Italy); Class, A.; Liftin, K. [KIT, Forschungszentrum Karlsruhe, IKET, P.O. Box 3640, D-76021 Karlsruhe (Germany); Forgione, N. [Universita di Pisa, DIMNP, Via Diotisalvi 2, 56126 Pisa (Italy); Moreau, V. [CRS4, Loc. Piscina Manna, Edificio 1, 09010 Pula (Italy)

    2011-08-31

    In the frame of the IP-EUROTRANS (6th Framework Program EU), domain DEMETRA, ENEA was involved in the Work Package 4.5 'Large Scale Integral Test', devoted to characterize a relevant portion of a sub-critical ADS reactor block (core, internals, heat exchanger, cladding for fuel elements) in steady state, transient and accidental conditions. More in details ENEA assumed the commitment to perform an integral experiment aiming to reproduce the primary flow path of the 'European Transmutation Demonstrator (ETD)' pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This experimental activity, called 'Integral Circulation Experiment (ICE)', has been implemented merging the efforts of several research institutes, among which, besides ENEA, FZK, CRS4 and University of Pisa, allowing to design an appropriate test section to be installed in the CIRCE facility. The goal of the experiments is therefore to demonstrate the technological feasibility of a heavy liquid metal (HLM) nuclear system pool-type in a relevant scale (1 MW), investigating the related thermal-hydraulic behaviour (heat source and heat exchanger coupling, primary system and downcomer coupling, gas trapping into the main stream, thermal stratification in the pool, forced and mixed convection in rod bundle) under both steady state and transient conditions. Moreover the preliminary as well as the planned experiments aims to address performance and reliability tests of some prototypical components, such as heat source, heat exchanger, chemistry control system. The paper reports a detailed description of the experiment, the design performed for the test section and its main components as well as the preliminary experimental results carried out in the first experimental campaign run on the CIRCE pool, which consists of a full power steady state test. The preliminary experimental results carried out have demonstrate the proper design of the test section trough the

  9. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor

    Science.gov (United States)

    Tarantino, M.; Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G.; Class, A.; Liftin, K.; Forgione, N.; Moreau, V.

    2011-08-01

    In the frame of the IP-EUROTRANS (6th Framework Program EU), domain DEMETRA, ENEA was involved in the Work Package 4.5 " Large Scale Integral Test", devoted to characterize a relevant portion of a sub-critical ADS reactor block (core, internals, heat exchanger, cladding for fuel elements) in steady state, transient and accidental conditions. More in details ENEA assumed the commitment to perform an integral experiment aiming to reproduce the primary flow path of the " European Transmutation Demonstrator (ETD)" pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This experimental activity, called " Integral Circulation Experiment (ICE)", has been implemented merging the efforts of several research institutes, among which, besides ENEA, FZK, CRS4 and University of Pisa, allowing to design an appropriate test section to be installed in the CIRCE facility. The goal of the experiments is therefore to demonstrate the technological feasibility of a heavy liquid metal (HLM) nuclear system pool-type in a relevant scale (1 MW), investigating the related thermal-hydraulic behaviour (heat source and heat exchanger coupling, primary system and downcomer coupling, gas trapping into the main stream, thermal stratification in the pool, forced and mixed convection in rod bundle) under both steady state and transient conditions. Moreover the preliminary as well as the planned experiments aims to address performance and reliability tests of some prototypical components, such as heat source, heat exchanger, chemistry control system. The paper reports a detailed description of the experiment, the design performed for the test section and its main components as well as the preliminary experimental results carried out in the first experimental campaign run on the CIRCE pool, which consists of a full power steady state test. The preliminary experimental results carried out have demonstrate the proper design of the test section trough the experiment goals as well as the HLM

  10. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.

  11. A revaluation of helium/dpa ratios for fast reactor and thermal reactor data in fission-fusion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Greenwood, L.R. [Pacific Northwest National Lab., Richland, WA (United States); Oliver, B.M.

    1996-10-01

    For many years it has been accepted that significant differences exist in the helium/dpa ratios produced in fast reactors and various proposed fusion energy devices. In general, the differences arise from the much larger rate of (n,{alpha}) threshold reactions occurring in fusion devices, reactions which occur for energies {ge} 6 MeV. It now appears, however, that for nickel-containing alloys in fast reactors the difference may not have been as large as was originally anticipated. In stainless steels that have a very long incubation period for swelling, for instance, the average helium concentration over the duration of the transient regime have been demonstrated in an earlier paper to be much larger in the FFTF out-of-core regions than first calculated. The helium/dpa ratios in some experiments conducted near the core edge or just outside of the FFTF core actually increase strongly throughout the irradiation, as {sup 59}Ni slowly forms by transmutation of {sup 58}Ni. This highly exothermic {sup 59}Ni(n,{alpha}) reaction occurs in all fast reactors, but is stronger in the softer spectra of oxide-fueled cores such as FFTF and weaker in the harder spectra of metal-fueled cores such as EBR-II. The formation of {sup 59}Ni also increases strongly in out-of-core unfueled regions where the reactor spectra softens with distance from the core.

  12. Thermal and hydrothermal stability of selected polymers in a nuclear reactor environment

    Science.gov (United States)

    Kim, Jinho

    The focus of this study is the development and understanding of polymer based burnable poison rod assemblies (BPRAs) in pressurized water reactors (PWRs). This material substitution reduces the water displacement penalty at the end of cycle (EOC) currently found with the B4C/Al 2O3 BPRAs that displace moderator water in PWRs. This gives rise to a longer fuel cycle due to the extra moderation from hydrogen in polymer structures. Finding synthetic polymers that endure a severe nuclear reactor circumstance is a challenge. Aside from the proper thermal stability at the range of 350--600°C in the core for a single cycle, the hydrothermal stability at near-critical water condition (350°C, 20.7MPa) is required to maintain the safe and controlled nuclear reaction because a danger comes if water might possibly penetrate inside the burnable poison rod by the failure of zircaloy cladding. There are two approaches to obtain a boron source (burnable position material) in hydrogen containing polymers. One is to utilize the boron source directly by synthesizing boron-containing polymers. A second approach is to find commercial polymers that have an appropriate thermal, hydrothermal, radiational stability and high hydrogen content; and then add an inorganic boron source such as B4C to form a composite material. Poly (diacetylene-siloxane-carborane)s and other silicon based precursor polymers were introduced to observe their thermal and hydrothermal stability. However, we found that the degradation of Si-O-Si, which was presented in the polymer, was an unfavorable disadvantage under near-critical water (350°C, 20.7MPa) even though they formed dense network structures. In addition, the Si-O bond is quite sensitive to variety of reagents, including base and acid. Therefore, the degradation rate might be accelerated by high H+ and OH- ion concentrations at the near-critical water condition. For the second approach, a number of candidate matrix polymers were screened for new

  13. An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Per F. Peterson

    2010-10-01

    Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zuber’s hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools.

  14. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it

    2016-08-15

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  15. Development of a Reduced-Order Three-Dimensional Flow Model for Thermal Mixing and Stratification Simulation during Reactor Transients

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui

    2017-09-03

    Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developed at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.

  16. Thermal-hydraulic modeling of the Pennsylvania State University Breazeale Nuclear Reactor (PSBR)

    Science.gov (United States)

    Chang, Jong E.

    2005-11-01

    Earlier experiments determined that the Pennsylvania State University Breazeale Nuclear Reactor (PSBR) core is cooled, not by an axial flow, but rather by a strong cross flow due to the thermal expansion of the coolant. To further complicate the flow field, a nitrogen-16 (N-16) pump was installed above the PSBR core to mix the exiting core buoyant thermal plume in order to delay the rapid release of radioactive N-16 to the PSBR pool surface. Thus, the interaction between the N-16 jet flow and the buoyancy driven flow complicates the analysis of the flow distribution in the PSBR pool. The main objectives of this study is to model the thermal-hydraulic behavior of the PSBR core and pool. During this study four major things were performed including the Computational Fluid Dynamics (CFD) model for the PSBR pool, the stand-alone fuel rod model for a PSBR fuel rod, the velocity measurements in and around the PSBR core, and the temperature measurements in the PSBR pool. Once the flow field was predicted by the CFD model, the measurement devices were manufactured and calibrated based on the CFD results. The major contribution of this study is to understand and to explain the flow behavior in the PSBR subchannels and pool using the FLOW3D model. The stand-alone dynamic fuel rod model was developed to determine the temperature distribution inside a PSBR fuel rod. The stand-alone fuel rod model was coupled to the FLOW3D model and used to predict the temperature behavior during steady-state and pulsing. The heat transfer models in the stand-alone fuel rod code are used in order to overcome the disadvantage of the CFD code, which does not calculate the mechanical stress, the gap conductance, and the two phase heat transfer. (Abstract shortened by UMI.)

  17. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F., E-mail: placco@ieav.cta.br, E-mail: guimarae@ieav.cta.br [Instituto de Estudos Avancados (IEAV/DCTA) Sao Jose dos Campos, SP (Brazil); Santos, Rubens S. dos, E-mail: rsantos@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN -RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  18. Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    Directory of Open Access Journals (Sweden)

    Shixiong Song

    2014-01-01

    CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.

  19. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  20. Effect of U-238 and U-235 cross sections on nuclear characteristics of fast and thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1997-03-01

    Benchmark calculation has been made for fast and thermal reactors by using ENDF/B-VI release 2(ENDF/B-VI.2) and JENDL-3.2 nuclear data. Effective multiplication factors (k{sub eff}s) calculated for fast reactors calculated with ENDF/B-VI.2 becomes about 1% larger than the results with JENDL-3.2. The difference in k{sub eff} is caused mainly from the difference in inelastic scattering cross section of U-238. In all thermal benchmark cores, ENDF/B-VI.2 gives smaller multiplication factors than JENDL-3.2. In U-235 cores, the difference is about 0.3%dk and it becomes about 0.6% in TCA U cores. The difference in U-238 data is also important in thermal reactors, while there are found 0.1-0.3% different v values of U isotopes in thermal energy between ENDF/B-VI.2 and JENDL-3.2. (author)

  1. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 1, Sessions 1-5

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.C.; Feiner, F. [comps.] [American Nuclear Society, La Grange Park, IL (United States)

    1995-09-01

    This document, Volume 1, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Advanced neutron source reactor thermal-hydraulic test loop facility description

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D.K.; Farquharson, G.; Hardy, J.H.; King, J.F.; McFee, M.T.; Montgomery, B.H.; Pawel, R.E.; Power, B.H.; Shourbaji, A.A.; Siman-Tov, M.; Wood, R.J.; Yoder, G.L.

    1994-02-01

    The Thermal-Hydraulic Test Loop (THTL) is a facility for experiments constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory. The ANSR is both cooled and moderated by heavy water and uses uranium silicide fuel. The core is composed of two coaxial fuel-element annuli, each of different diameter. There are 684 parallel aluminum-clad fuel plates (252 in the inner-lower core and 432 in the outer-upper core) arranged in an involute geometry that effectively creates an array of thin rectangular flow channels. Both the fuel plates and the coolant channels are 1.27 mm thick, with a span of 87 mm (lower core), 70 mm (upper core), and 507-mm heated length. The coolant flows vertically upwards at a mass flux of 27 Mg/m{sup 2}s (inlet velocity of 25 m/s) with an inlet temperature of 45{degrees}C and inlet pressure of 3.2 MPa. The average and peak heat fluxes are approximately 6 and 12 MW/m{sup 2}, respectively. The availability of experimental data for both flow excursion (FE) and true critical heat flux (CHF) at the conditions applicable to the ANSR is very limited. The THTL was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of thermal limits under the expected ANSR thermal-hydraulic conditions. For these experimental studies, the involute-shaped fuel plates of the ANSR core with the narrow 1.27-mm flow gap are represented by a narrow rectangular channel. Tests in the THTL will provide both single- and two-phase thermal-hydraulic information. The specific phenomena that are to be examined are (1) single-phase heat-transfer coefficients and friction factors, (2) the point of incipient boiling, (3) nucleate boiling heat-transfer coefficients, (4) two-phase pressure-drop characteristics in the nucleate boiling regime, (5) flow instability limits, and (6) CHF limits.

  3. Neutron cross-section libraries in the AMPX master interface format for thermal and fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bjerke, M.A.; Webster, C.C.

    1981-12-01

    Neutron cross-section libraries in the AMPX master interface format have been created for three reactor types. Included are an 84-group library for use with light-water reactors, a 27-group library for use with heavy-water CANDU reactors and a 126-group library for use with liquid metal fast breeder reactors. In general, ENDF/B data were used in the creation of these libraries, and the nuclides included in each library should be sufficient for most neutronic analyses of reactors of that type. Each library has been used successfully in fuel depletion calculations.

  4. Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)

    Science.gov (United States)

    Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.

    2014-06-01

    Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.

  5. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    Science.gov (United States)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were

  6. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine

  7. Thermal-hydraulic analysis of a heavy-water reactor moderator tank using the CUPID Code

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Su Ryong; Jeong, Jae Jun [Pusan National Univ., Busan (Korea, Republic of); Kim, Hyoung Tae; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, a preliminary analysis is performed for the CANDU moderator tank. The calculation results using the basic case input showed a unrealistic, thermal stratification in the upper region, which was caused by the lack of the momentum of the cooling water from the inlet nozzle. To increase the flow momentum from the inlet nozzle, the cross-section area of each inlet nozzle was reduced by half and, then, the calculation showed very realistic results. It is clear that the modeling of the inlet nozzle affects the calculation result significantly. Further studies are needed for a realistic and efficient simulation of the flow in the Calandria tank. When the core cooling system fails to remove the decay heat from the fuel channels during a loss of coolant accident (LOCA), the pressure tube (PT) could strain to contact its surrounding Calandria tube (CT), which leads to sustained CTs dry out, finally resulting in damages to nuclear fuel. This situation can occur when the degree of the subcooling of the moderator inside the Calandria vessel is insufficient. In this regard, to estimate the local subcooling of the moderator inside the Calandria vessel is very important. However, the local temperature is measured at the inlet and outlet of the vessel only. Therefore, we need to accurately predict the local temperature inside the Calandria vessel.In this study, the thermal-hydraulic analysis of the real-scale heavy-water reactor moderator is carried out using the CUPID code. The applicability of the CUPID code to the analysis of the flow in the Calandria vessel has been assessed in the previous studies.

  8. Revisiting the Integrated Pressurized Thermal Shock Studies of an Aging Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryson, J.W.; Dickson, T.L.; Malik, S.N.M.; Simonen, F.A.

    1999-08-01

    The Integrated Pressurized Thermal Shock (IPTS) studies were a series of studies performed in the early-mid 1980s as part of an NRC-organized comprehensive research project to confirm the technical bases for the pressurized thermal shock (PTS) rule, and to aid in the development of guidance for licensee plant-specific analyses. The research project consisted of PTS pilot analyses for three PWRs: Oconee Unit 1, designed by Babcock and Wilcox; Calvert Cliffs Unit 1, designed by Combustion Engineering; and H.B. Robinson Unit 2, designed by Westinghouse. The primary objectives of the IPTS studies were (1) to provide for each of the three plants an estimate of the probability of a crack propagating through the wall of a reactor pressure vessel (RPV) due to PTS; (2) to determine the dominant overcooling sequences, plant features, and operator actions and the uncertainty in the plant risk due to PTS; and (3) to evaluate the effectiveness of potential corrective actions. The NRC is currently evaluating the possibility of revising current PTS regulatory guidance. Technical bases must be developed to support any revisions. In the years since the results of IPTS studies were published, the fracture mechanics model, the embrittlement database, embrittlement correlation, inputs for flaw distributions, and the probabilistic fracture mechanics (PFM) computer code have been refined. An ongoing effort is underway to determine the impact of these fracture-technology refinements on the conditional probabilities of vessel failure calculated in the IPTS Studies. This paper discusses the results of these analyses performed for one of these plants.

  9. Thermal hydraulic characteristics during ingress of coolant and loss of vacuum events in fusion reactors

    Science.gov (United States)

    Takase, K.; Kunugi, T.; Seki, Y.; Akimoto, H.

    2000-03-01

    The thermal hydraulic characteristics in the vacuum vessel (VV) of a fusion reactor under an ingress of coolant event (ICE) and a loss of vacuum event (LOVA) were investigated quantitatively using preliminary experimental apparatuses. In the ICE experiments, pressure rise characteristics in the VV were clarified for experimental parameters of the wall temperature and water temperature and for cases with and without a blowdown tank. In addition, the functional performance of a blowdown tank with and without a water cooling system was examined and it was confirmed that the blowdown tank with a water cooling system is effective for suppressing the pressure rise during the ICE. In the LOVA experiments, the saturation time in the VV from vacuum to atmosphere was investigated for various breach sizes and it was found that the saturation time is in inverse proportion to the breach size. In addition, the characteristics of exchange flow through breaches were clarified for the different breach positions on the VV. It was proven from the experimental results that the exchange flow became a counter-current flow when the breach was positioned on the top of the VV and a stratified flow when it was formed on the side wall of the VV, and that the exchange flow under the stratified flow condition was smoother than that of counter-current flow. On the basis of these results, the severest breach condition in ITER was changed from the top-break case to the side-break case. To predict with high accuracy the thermal hydraulic characteristics during ICEs and LOVAs under ITER conditions, a large scale test facility will be necessary. The current conceptual design of the combined ICE-LOVA test facility with a scaling factor of 1/1000 in comparison with the ITER volume is presented.

  10. Thermal hydraulic and neutron kinetic simulation of the Angra 2 reactor using a RELAP5/PARCS coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Patricia A.L.; Costa, Antonella L.; Hamers, Adolfo R.; Pereira, Claubia; Rodrigues, Thiago D.A.; Mantecon, Javier G.; Veloso, Maria A.F., E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: adolforomerohamers@hotmail.com, E-mail: claubia@nuclear.ufmg.br, E-mail: thiagodanielbh@gmail.com, E-mail: mantecon1987@gmail.com, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Belo Horizonte (Brazil); Miro, Rafael; Verdu, Gumersindo, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear

    2015-07-01

    The computational advances observed in the last two decades have been provided direct impact on the researches related to nuclear simulations, which use several types of computer codes, including coupled between them, allowing representing with very accuracy the behavior of nuclear plants. Studies of complex scenarios in nuclear reactors have been improved by the use of thermal-hydraulic (TH) and neutron kinetics (NK) coupled codes. This technique consists in incorporating three-dimensional (3D) neutron modeling of the reactor core into codes, mainly to simulate transients that involve asymmetric core spatial power distributions and strong feedback effects between neutronics and reactor thermal-hydraulics. Therefore, this work presents preliminary results of TH RELAP5 and the NK PARCS calculations applied to model of the Angra 2 reactor. The WIMSD-5B code has been used to generate the macroscopic cross sections used in the NK code. The results obtained are satisfactory and represent important part of the development of this methodology. The next step is to couple the codes. (author)

  11. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor

    Science.gov (United States)

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630

  12. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    Directory of Open Access Journals (Sweden)

    Pouyan Talebizadeh

    Full Text Available Non-thermal plasma (NTP has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

  13. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    Science.gov (United States)

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

  14. Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements

    Science.gov (United States)

    Kirk, Daniel R.

    2005-01-01

    When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.

  15. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.

    2007-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.

  16. Investigation of Correlations for the Thermal-hydraulic Analysis of Liquid Metal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won Pyo; Jeong, Hae Yong; Lee, Yong Bum

    2007-08-15

    The present investigation is aimed at reducing favorable constitutive correlations from those developed for the thermal-hydraulic analysis of Liquid Metal Reactors (LMR), for reliable safety analyses of KALIMER. It is achieved by analyzing them in a point of their accuracies. The study is particularly important because its outcomes can provide an essential knowledge on their relative errors including their conservatisms to be analyzed in the future KALIMER licensing stage. The predictions of the correlations have been compared with available experimental data on both friction factors for the wired-wrapped rod bundles in the core and the heat transfer coefficients in the system. As a result, the heat transfer coefficient inside pipe currently featured in SSC-K has been found acceptable. It, however, has shown a discrepancy of about 60 % and thus an alternative one has been proposed for improvement. Meanwhile, the friction factor model in the current SSC-K has not shown a prominent discrepancy in prediction trend but it has not backed an enough theoretical basis so that another model has been proposed. A systematic assessment for effects of those factors to the conservatism must be fully understood for the future licensing stage, and systematic calculations must be followed by designing an assessment matrix. Besides, it is essential to conduct experiments under similar conditions for constitutive parts of geometries which represent the KALIMER design.

  17. A comparative assessment of independent thermal-hydraulic models for research reactors: The RSG-GAS case

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidakis, S., E-mail: schatzid@purdue.edu [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 (United States); Hainoun, A. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400, San Carlos de Bariloche, Rio Negro (Argentina); Alhabet, F. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Francioni, F. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400, San Carlos de Bariloche, Rio Negro (Argentina); Ikonomopoulos, A. [Institute of Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center for Scientific Research ‘Demokritos’, 15130, Aghia Paraskevi, Athens (Greece); Ridikas, D. [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, A-1400 Vienna (Austria)

    2014-03-15

    Highlights: • Increased use of thermal-hydraulic codes requires assessment of important phenomena in RRs. • Three independent modeling teams performed analysis of loss of flow transient. • Purpose of this work is to examine the thermal-hydraulic codes response. • To perform benchmark analysis comparing the different codes with experimental measurements. • To identify the impact of the user effect on the computed results, performed with the same codes. - Abstract: This study presents the comparative assessment of three thermal-hydraulic codes employed to model the Indonesian research reactor (RSG-GAS) and simulate the reactor behavior under steady state and loss of flow transient (LOFT). The RELAP5/MOD3, MERSAT and PARET-ANL thermal-hydraulic codes are used by independent research groups to perform benchmark analysis against measurements of coolant and clad temperatures, conducted on an instrumented fuel element inside RSG-GAS core. The results obtained confirm the applicability of RELAP5/MOD3, MERSAT and PARET-ANL on the modeling of loss of flow transient in research reactors. In particular, the three codes are able to simulate flow reversal from downward forced to upward natural convection after pump trip and successful reactor scram. The benchmark results show that the codes predict maximum clad temperature of hot channel conservatively with a maximum overestimation of 27% for RELAP5/MOD3, 17% for MERSAT and 8% for PARET-ANL. As an additional effort, the impact of user effect on the simulation results has been assessed for the code RELAP5/MOD3, where the main differences among the models are presented and discussed.

  18. The Impact of Climate Changes on the Thermal Performance of a Proposed Pressurized Water Reactor: Nuclear-Power Plant

    Directory of Open Access Journals (Sweden)

    Said M. A. Ibrahim

    2014-01-01

    Full Text Available This paper presents a methodology for studying the impact of the cooling water temperature on the thermal performance of a proposed pressurized water reactor nuclear power plant (PWR NPP through the thermodynamic analysis based on the thermodynamic laws to gain some new aspects into the plant performance. The main findings of this study are that an increase of one degree Celsius in temperature of the coolant extracted from environment is forecasted to decrease by 0.39293 and 0.16% in the power output and the thermal efficiency of the nuclear-power plant considered, respectively.

  19. Thermal analysis for a spent reactor fuel storage test in granite

    Energy Technology Data Exchange (ETDEWEB)

    Montan, D.N.

    1980-09-01

    A test is conducted in which spent fuel assemblies from an operating commercial nuclear power reactor are emplaced in the Climax granite at the US Department of Energy`s Nevada Test Site. In this generic test, 11 canisters of spent PWR fuel are emplaced vertically along with 6 electrical simulator canisters on 3 m centers, 4 m below the floor of a storage drift which is 420 m below the surface. Two adjacent parallel drifts contain electrical heaters, operated to simulate (in the vicinity of the storage drift) the temperature fields of a large repository. This test, planned for up to five years duration, uses fairly young fuel (2.5 years out of core) so that the thermal peak will occur during the time frame of the test and will not exceed the peak that would not occur until about 40 years of storage had older fuel (5 to 15 years out of core) been used. This paper describes the calculational techniques and summarizes the results of a large number of thermal calculations used in the concept, basic design and final design of the spent fuel test. The results of the preliminary calculations show the effects of spacing and spent fuel age. Either radiation or convection is sufficient to make the drifts much better thermal conductors than the rock that was removed to create them. The combination of radiation and convection causes the drift surfaces to be nearly isothermal even though the heat source is below the floor. With a nominal ventilation rate of 2 m{sup 3}/s and an ambient rock temperature of 23{sup 0}C, the maximum calculated rock temperature (near the center of the heat source) is about 100{sup 0}C while the maximum air temperature in the drift is around 40{sup 0}C. This ventilation (1 m{sup 3}/s through the main drift and 1/2 m{sup 3}/s through each of the side drifts) will remove about 1/3 of the heat generated during the first five years of storage.

  20. The deterministic structural integrity assessment of reactor pressure vessels under pressurized thermal shock loading

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingya, E-mail: chenmingya@cgnpc.com.cn; Lu, Feng; Wang, Rongshan; Huang, Ping; Liu, Xiangbin; Zhang, Guodong; Xu, Chaoliang

    2015-07-15

    Highlights: • The conservative and non-conservative assumptions in the codes were shown. • The influence of different loads on the SM was given. • The unloading effect of the cladding was studied. • A concentrated reflection of the safety was shown based on 3-D FE analyses. - Abstract: The deterministic structural integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. While the nil-ductility-transition temperature (RT{sub NDT}) parameter is widely used, the influence of fluence and temperature distributions along the thickness of the base metal wall cannot be reflected in the comparative analysis. This paper introduces the method using a structure safety margin (SM) parameter which is based on a comparison between the material toughness (the fracture initiation toughness K{sub IC} or fracture arrest toughness K{sub Ia}) and the stress intensity factor (SIF) along the crack front for the integrity analysis of a RPV subjected to PTS transients. A 3-D finite element model is used to perform fracture mechanics analyses considering both crack initiation assessment and arrest assessment. The results show that the critical part along the crack front is always the clad-base metal interface point (IP) rather than the deepest point (DP) for either crack initiation assessment or crack arrest assessment under the thermal load. It is shown that the requirement in Regulatory Guide 1.154 that ‘axial flaws with depths less than 20% of the wall thickness and all circumferential flaws should be modeled in infinite length’ may be non-conservative. As the assessment result is often poor universal for a given material, crack and transient, caution is recommended in the safety assessment, especially for the IP. The SIF reduces under the thermal or pressure load if the map cracking (MC) effect is considered. Therefore, the assumption in the ASME and RCCM codes that the cladding should be taken into account in

  1. A Plasma Reactor for the Synthesis of High-Temperature Materials: Electro Thermal, Processing and Service Life Characteristics

    Science.gov (United States)

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-08-01

    The three-jet direct-flow plasma reactor with a channel diameter of 0.054 m was studied in terms of service life, thermal, technical, and functional capabilities. It was established that the near-optimal combination of thermal efficiency, required specific enthalpy of the plasma-forming gas and its mass flow rate is achieved at a reactor power of 150 kW. The bulk temperature of plasma flow over the rector of 12 gauges long varies within 5500÷3200 K and the wall temperature within 1900÷850 K, when a cylinder from zirconium dioxide of 0.005 m thick is used to thermally insulate the reactor. The specific electric power reaches a high of 1214 MW/m3. The rated service life of electrodes is 4700 hours for a copper anode and 111 hours for a tungsten cathode. The projected contamination of carbides and borides with elec-trode-erosion products doesn't exceed 0.0001% of copper and 0.00002% of tungsten.

  2. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  3. Neutronic and thermal-hydraulic analysis of fission molybdenum-99 production at Tehran Research Reactor using LEU plate targets.

    Science.gov (United States)

    Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi

    2016-12-01

    Efficient and safe production of molybdenum-99 ((99)Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced (99)Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient (99)Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors

    Science.gov (United States)

    Karve, Atul A.

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR loop model that we develop is studied by carrying

  5. Actinides reduction by recycling in a thermal reactor; Reduccion de actinidos por reciclado en un reactor termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  6. Methodology of Supervision by Analysis of Thermal Flux for Thermal Conduction of a Batch Chemical Reactor Equipped with a Monofluid Heating/Cooling System

    Directory of Open Access Journals (Sweden)

    Ghania Henini

    2012-01-01

    Full Text Available We present the thermal behavior of a batch reactor to jacket equipped with a monofluid heating/cooling system. Heating and cooling are provided respectively by an electrical resistance and two plate heat exchangers. The control of the temperature of the reaction is based on the supervision system. This strategy of management of the thermal devices is based on the usage of the thermal flux as manipulated variable. The modulation of the monofluid temperature by acting on the heating power or on the opening degrees of an air-to-open valve that delivers the monofluid to heat exchanger. The study shows that the application of this method for the conduct of the pilot reactor gives good results in simulation and that taking into account the dynamics of the various apparatuses greatly improves ride quality of conduct. In addition thermal control of an exothermic reaction (mononitration shows that the consideration of heat generated in the model representation improve the results by elimination any overshooting of the set-point temperature.

  7. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability

  8. Development of a thermal scheme for a cogeneration combined-cycle unit with an SVBR-100 reactor

    Science.gov (United States)

    Kasilov, V. F.; Dudolin, A. A.; Krasheninnikov, S. M.

    2017-02-01

    At present, the prospects for development of district heating that can increase the effectiveness of nuclear power stations (NPS), cut down their payback period, and improve protection of the environment against harmful emissions are being examined in the nuclear power industry of Russia. It is noted that the efficiency of nuclear cogeneration power stations (NCPS) is drastically affected by the expenses for heat networks and heat losses during transportation of a heat carrier through them, since NPSs are usually located far away from urban area boundaries as required for radiation safety of the population. The prospects for using cogeneration power units with small or medium power reactors at NPSs, including combined-cycle units and their performance indices, are described. The developed thermal scheme of a cogeneration combined-cycle unit (CCU) with an SBVR-100 nuclear reactor (NCCU) is presented. This NCCU should use a GE 6FA gasturbine unit (GTU) and a steam-turbine unit (STU) with a two-stage district heating plant. Saturated steam from the nuclear reactor is superheated in a heat-recovery steam generator (HRSG) to 560-580°C so that a separator-superheater can be excluded from the thermal cycle of the turbine unit. In addition, supplemental fuel firing in HRSG is examined. NCCU effectiveness indices are given as a function of the ambient air temperature. Results of calculations of the thermal cycle performance under condensing operating conditions indicate that the gross electric efficiency η el NCCU gr of = 48% and N el NCCU gr = 345 MW can be achieved. This efficiency is at maximum for NCCU with an SVBR-100 reactor. The conclusion is made that the cost of NCCU installed kW should be estimated, and the issue associated with NCCUs siting with reference to urban area boundaries must be solved.

  9. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Marijana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Jović, Milica; Stanković, Dalibor [Innovation Center, Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Kovačević, Vesna [Faculty of Physics, University of Belgrade, P.O. Box 44, 11000 Belgrade (Serbia); Roglić, Goran [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Gojgić-Cvijović, Gordana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Manojlović, Dragan, E-mail: manojlo@chem.bg.ac.rs [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia)

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe{sup 2+}). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe{sup 2+} was 99%). • In DBD/Fe{sup 2+} only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions.

  10. Kinetics of thermal decomposition of hydrated minerals associated with hematite ore in a fluidized bed reactor

    Science.gov (United States)

    Beuria, P. C.; Biswal, S. K.; Mishra, B. K.; Roy, G. G.

    2017-03-01

    The kinetics of removal of loss on ignition (LOI) by thermal decomposition of hydrated minerals present in natural iron ores (i.e., kaolinite, gibbsite, and goethite) was investigated in a laboratory-scale vertical fluidized bed reactor (FBR) using isothermal methods of kinetic analysis. Experiments in the FBR in batch processes were carried out at different temperatures (300 to 1200°C) and residence time (1 to 30 min) for four different iron ore samples with various LOIs (2.34wt% to 9.83wt%). The operating velocity was maintained in the range from 1.2 to 1.4 times the minimum fluidization velocity ( U mf). We observed that, below a certain critical temperature, the FBR did not effectively reduce the LOI to a desired level even with increased residence time. The results of this study indicate that the LOI level could be reduced by 90% within 1 min of residence time at 1100°C. The kinetics for low-LOI samples (reaction mechanisms in two temperature regimes. At lower temperatures (300 to 700°C), the kinetics is characterized by a lower activation energy (diffusion-controlled physical moisture removal), followed by a higher activation energy (chemically controlled removal of LOI). In the case of high-LOI samples, three different kinetics mechanisms prevail at different temperature regimes. At temperature up to 450°C, diffusion kinetics prevails (removal of physical moisture); at temperature from 450 to 650°C, chemical kinetics dominates during removal of matrix moisture. At temperatures greater than 650°C, nucleation and growth begins to influence the rate of removal of LOI.

  11. Validation of coupled neutronic / thermal-hydraulic codes for VVER reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mittag, S.; Grundmann, U.; Kliem, S.; Kozmenkov, Y.; Rindelhardt, U.; Rohde, U.; Weiss, F.-P.; Langenbuch, S.; Krzykacz-Hausmann, B.; Schmidt, K.-D.; Vanttola, T.; Haemaelaeinen, A.; Kaloinen, E.; Kereszturi, A.; Hegyi, G.; Panka, I.; Hadek, J.; Strmensky, C.; Darilek, P.; Petkov, P.; Stefanova, S.; Kuchin, A.; Khalimonchuk, V.; Hlbocky, P.; Sico, D.; Danilin, S.; Ionov, V.; Nikonov, S.; Powney, D.

    2004-08-01

    In recent years, the simulation methods for the safety analysis of nuclear power plants have been continuously improved to perform realistic calculations. Therefore in VALCO work package 2 (WP 2), the usual application of coupled neutron-kinetic / thermal-hydraulic codes to VVER has been supplemented by systematic uncertainty and sensitivity analyses. A comprehensive uncertainty analysis has been carried out. The GRS uncertainty and sensitivity method based on the statistical code package SUSA was applied to the two transients studied earlier in SRR-1/95: A load drop of one turbo-generator in Loviisa-1 (VVER-440), and a switch-off of one feed water pump in Balakovo-4 (VVER-1000). The main steps of these analyses and the results obtained by applying different coupled code systems (SMABRE - HEXTRAN, ATHLET - DYN3D, ATHLET - KIKO3D, ATHLET - BIPR-8) are described in this report. The application of this method is only based on variations of input parameter values. No internal code adjustments are needed. An essential result of the analysis using the GRS SUSA methodology is the identification of the input parameters, such as the secondary-circuit pressure, the control-assembly position (as a function of time), and the control-assembly efficiency, that most sensitively affect safety-relevant output parameters, like reactor power, coolant heat-up, and primary pressure. Uncertainty bands for these output parameters have been derived. The variation of potentially uncertain input parameter values as a consequence of uncertain knowledge can activate system actions causing quite different transient evolutions. This gives indications about possible plant conditions that might be reached from the initiating event assuming only small disturbances. In this way, the uncertainty and sensitivity analysis reveals the spectrum of possible transient evolutions. Deviations of SRR-1/95 coupled code calculations from measurements also led to the objective to separate neutron kinetics from

  12. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  13. Physical and economical aspects of Pu multiple recycling on the basis of REMIX reprocessing technology in thermal reactors

    Directory of Open Access Journals (Sweden)

    Teplov Pavel S.

    2016-01-01

    Full Text Available The basic strategy of Russian nuclear energy is propagation of a closed fuel cycle on the basis of fast breeder and thermal reactors, as well as the solution of the spent nuclear fuel accumulation and resource problems. The three variants of multiple Pu and U recycling in Russian pressurized water reactor concept reactors on the basis of REgenerated MIXture of U, Pu oxides (REMIX reprocessing technology are considered in this work. The REMIX fuel is fabricated from an unseparated mixture of uranium and plutonium obtained during spent fuel reprocessing with further makeup by enriched natural U or reactor grade Pu. This makes it possible to recycle several times the total amount of Pu obtained from the spent fuel. The main difference in Pu recycling is the concept of 100% or partial fuel loading of the core. The third variant is heterogeneous composition of enriched uranium and uranium–plutonium mixed oxide fuel pins in one fuel assembly. It should be noted that all fuel assemblies with Pu require the involvement of expensive technologies during manufacturing. These three variants of the full core loadings can be balanced on zero Pu accumulation in the cycle. The various physical and economical aspects of Pu and U multiple recycling in selected variants are observed in the given work.

  14. The Thermal-Hydraulic model for the pebble bed modular reactor (PBMR) plant operator training simulator system

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Trevor [Pebble Bed Modular Reactor (Proprietary) Limited, Die Anker Building, Centurion 0046 (South Africa)], E-mail: trevor.dudley@pbmr.co.za; Bouwer, Werner; Villiers, Piet de [Pebble Bed Modular Reactor (Proprietary) Limited, Die Anker Building, Centurion 0046 (South Africa); Wang Zen [GSE Systems, Inc., 7133 Rutherford Suite 200, Baltimore, MD 21244 (United States)

    2008-11-15

    This paper provides a discussion of the model development status and verification efforts for the Reactor Core Thermal-Hydraulic model developed for the full-scope plant Operator Training Simulator System of the Pebble Bed Modular Reactor (PBMR). Due to the First of a Kind Engineering nature and lack of reference plant data, model verification has mainly been focused on benchmarking the model configurations against test cases performed by PBMR design analysis codes, i.e. TINTE, VSOP and FLOWNEX. As a first step, due to the symmetrical physical nature of the PBMR core, a two-dimensional (2D) model configuration in radial and axial directions (axial-symmetry) was developed. The design was subsequently extended to a three-dimensional (3D) configuration. Through the use of cross-flow and cross-conduction links, three nearly identical 2D configurations were glued together to form this 3D model configuration. To date, the 3D configuration represents the most comprehensive model to simulate the PBMR core thermo-hydraulics. This paper concludes with the verification of thermodynamic and heat-transfer properties of two steady state (100% and 40% power) conditions between the 3D Reactor Core Thermal-Hydraulic model and the available FLOWNEX and TINTE design code analysis. The transient operations between these two power levels are also discussed.

  15. A Counter-Current Heat-Exchange Reactor for the Thermal Stimulation of Hydrate-Bearing Sediments

    Directory of Open Access Journals (Sweden)

    Manja Luzi-Helbing

    2013-06-01

    Full Text Available Since huge amounts of CH4 are bound in natural gas hydrates occurring at active and passive continental margins and in permafrost regions, the production of natural gas from hydrate-bearing sediments has become of more and more interest. Three different methods to destabilize hydrates and release the CH4 gas are discussed in principle: thermal stimulation, depressurization and chemical stimulation. This study focusses on the thermal stimulation using a counter-current heat-exchange reactor for the in situ combustion of CH4. The principle of in situ combustion as a method for thermal stimulation of hydrate bearing sediments has been introduced and discussed earlier [1,2]. In this study we present the first results of several tests performed in a pilot plant scale using a counter-current heat-exchange reactor. The heat of the flameless, catalytic oxidation of CH4 was used for the decomposition of hydrates in sand within a LArge Reservoir Simulator (LARS. Different catalysts were tested, varying from diverse elements of the platinum group to a universal metal catalyst. The results show differences regarding the conversion rate of CH4 to CO2. The promising results of the latest reactor test, for which LARS was filled with sand and ca. 80% of the pore space was saturated with CH4 hydrate, are also presented in this study. The data analysis showed that about 15% of the CH4 gas released from hydrates would have to be used for the successful dissociation of all hydrates in the sediment using thermal stimulation via in situ combustion.

  16. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  17. Experimental studies into the thermal-hydraulic performance of the VK-300 reactor based on a draft tube model

    Directory of Open Access Journals (Sweden)

    N.P. Serdun

    2015-12-01

    Full Text Available The paper presents an experimental study into the thermal-hydraulic performance of the VK-300 reactor based on a model of a single draft tube at a pressure of 3.4MPa, various flow rates and the model inlet relative enthalpies of –0.05 to 0.2. The experimental procedures include generation of a steam-water mixture circulation with a preset flow rate and a relative enthalpy through the test section at a pressure of 3.3 to 3.4MPa, and measurement of thermal-hydraulic parameters within the circuit's representative upflow and downflow lengths of practical interest. There have been confirmed the designs used to support the reactor facility serviceability and the assumptions concerning the thermal-hydraulic performance of a natural circulation circuit used in the analysis thereof. It has been shown that, across the analyzed range of the relative enthalpy values, the draft tube has an annular-dispersed or an annular flow of the steam-water mixture, both providing for the significant separation of the steam-water mixture (Ksep=0.4 at the draft tube edges and in the mixing chamber. The perforation in the upper part of the draft tubes allows the separation coefficient to be increased at the first stage and creates more favorable conditions for the second-stage separation. The measured values of the void fraction in the mixing chamber and in the draft tube are in a satisfactory agreement with calculations based on Z.L. Miropolskiy's method and the RELAP code and may be used to verify the VK-300 thermal-hydraulic codes. It has been shown that steam may enter the ring slit that simulates the annular space and reach the reactor core inlet. Further investigations need to be conducted to study this effect for its guaranteed exclusion and for the development of emergency response procedures.

  18. Anti mutagenesis of chemical modulators against damage induced by reactor thermal neutrons; Antimutagenesis de moduladores quimicos contra el dano inducido por neutrones termicos de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Garcia B, A.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, Departamentos de Materiales Radiactivos, de Biologia, del Reactor y Gerencia de Aplicaciones Nucleares en la Salud, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The mutations are changes in the genetic information whether for spontaneous form or induced by the exposure of the genetic material to certain agents, called mutagens: chemical or physical (diverse types of radiations). As well as exist a great variety of mutagens and pro mutagens (these last are agents which transform themselves in mutagens after the metabolic activation). Also several chemical compounds exist which are called antimutagens because they reduce the mutagens effect. The C vitamin or ascorbic acid (A A) presents antimutagenic and anti carcinogenic properties. On the other hand a sodium/copper salt derived from chlorophyll belonging to the porphyrin group (C L) contains a chelated metal ion in the center of molecule. It is also an antioxidant, antimutagenic and anti carcinogenic compound, it is called chlorophyllin. The objective of this work is to establish if the A A or the C L will reduce the damages induced by thermal and fast reactor neutrons. (Author)

  19. Somatic mutation and recombination induced with reactor thermal neutrons in Drosophila melanogaster; Mutacion y recombinacion somaticas inducidas con neutrones termicos de reactor en Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The SMART test of Drosophila melanogaster was used to quantify the effect over the somatic mutation and recombination induced by thermal and fast neutrons at the TRIGA Mark III reactor of the ININ at the power of 300 k W for times of 30, 60 and 120 minutes with total equivalent doses respectively of 20.8, 41.6 and 83.2 Sv. A linear relation between the radiation equivalent dose and the frequency of the genetic effects such as mutation and recombination was observed. The obtained results allow to conclude that SMART is a sensitive system to the induced damage by neutrons, so this can be used for studying its biological effects. (Author)

  20. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  1. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)

    2014-12-15

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  2. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-3: High Temperature Gas Cooled Reactor Thermal-Hydraulics.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…

  3. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    Science.gov (United States)

    Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.; Ellison, G. Barney

    2016-07-01

    Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H513CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H513CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

  4. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Grant T. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA; National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Porterfield, Jessica P. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA; Kostko, Oleg [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Troy, Tyler P. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Robichaud, David J. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Nimlos, Mark R. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA; Daily, John W. [Department of Mechanical Engineering, Center for Combustion and Environmental Research, University of Colorado, Boulder, Colorado 80309-0427, USA; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA

    2016-07-05

    Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 us. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H5 13CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H5 13CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).

  5. Coupled high fidelity thermal hydraulics and neutronics for reactor safety simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vincent A. Mousseau; Hongbin Zhang; Haihua Zhao

    2008-09-01

    This work is a continuation of previous work on the importance of accuracy in the simulation of nuclear reactor safety transients. This work is qualitative in nature and future work will be more quantitative. The focus of this work will be on a simplified single phase nuclear reactor primary. The transient of interest investigates the importance of accuracy related to passive (inherent) safety systems. The transient run here will be an Unprotected Loss of Flow (ULOF) transient. Here the coolant pump is turned off and the un’SCRAM’ed reactor transitions from forced to free convection (Natural circulation). Results will be presented that show the difference that the first order in time truncation physics makes on the transient. The purpose of this document is to illuminate a possible problem in traditional reactor simulation approaches. Detailed studies need to be done on each simulation code for each transient analyzed to determine if the first order truncation physics plays an important role.

  6. Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hobbs, Randy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    There has been a considerable effort over the previous few years to demonstrate and optimize the production of plutonium-238 (238Pu) at the High Flux Isotope Reactor (HFIR). This effort has involved resources from multiple divisions and facilities at the Oak Ridge National Laboratory (ORNL) to demonstrate the fabrication, irradiation, and chemical processing of targets containing neptunium-237 (237Np) dioxide (NpO2)/aluminum (Al) cermet pellets. A critical preliminary step to irradiation at the HFIR is to demonstrate the safety of the target under irradiation via documented experiment safety analyses. The steady-state thermal safety analyses of the target are simulated in a finite element model with the COMSOL Multiphysics code that determines, among other crucial parameters, the limiting maximum temperature in the target. Safety analysis efforts for this model discussed in the present report include: (1) initial modeling of single and reduced-length pellet capsules in order to generate an experimental knowledge base that incorporate initial non-linear contact heat transfer and fission gas equations, (2) modeling efforts for prototypical designs of partially loaded and fully loaded targets using limited available knowledge of fabrication and irradiation characteristics, and (3) the most recent and comprehensive modeling effort of a fully coupled thermo-mechanical approach over the entire fully loaded target domain incorporating burn-up dependent irradiation behavior and measured target and pellet properties, hereafter referred to as the production model. These models are used to conservatively determine several important steady-state parameters including target stresses and temperatures, the limiting condition of which is the maximum temperature with respect to the melting point. The single pellet model results provide a basis for the safety of the irradiations, followed by parametric analyses in the initial prototypical designs

  7. Screening of Gas-Cooled Reactor Thermal-Hydraulic and Safety Analysis Tools and Experimental Database

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Kim, Min Hwan; Lee, Seung Wook (and others)

    2007-08-15

    This report is a final report of I-NERI Project, 'Screening of Gas-cooled Reactor Thermal Hydraulic and Safety Analysis Tools and Experimental Database 'jointly carried out by KAERI, ANL and INL. In this study, we developed the basic technologies required to develop and validate the VHTR TH/safety analysis tools and evaluated the TH/safety database information. The research tasks consist of; 1) code qualification methodology (INL), 2) high-level PIRTs for major nucleus set of events (KAERI, ANL, INL), 3) initial scaling and scoping analysis (ANL, KAERI, INL), 4) filtering of TH/safety tools (KAERI, INL), 5) evaluation of TH/safety database information (KAERI, INL, ANL) and 6) key scoping analysis (KAERI). The code qualification methodology identifies the role of PIRTs in the R and D process and the bottom-up and top-down code validation methods. Since the design of VHTR is still evolving, we generated the high-level PIRTs referencing 600MWth block-type GT-MHR and 400MWth pebble-type PBMR. Nucleus set of events that represents the VHTR safety and operational transients consists of the enveloping scenarios of HPCC (high pressure conduction cooling: loss of primary flow), LPCC/Air-Ingress (low pressure conduction cooling: loss of coolant), LC (load changes: power maneuvering), ATWS (anticipated transients without scram: reactivity insertion), WS (water ingress: water-interfacing system break) and HU (hydrogen-side upset: loss of heat sink). The initial scaling analysis defines dimensionless parameters that need to be reflected in mixed convection modeling and the initial scoping analysis provided the reference system transients used in the PIRTs generation. For the PIRTs phenomena, we evaluated the modeling capability of the candidate TH/safety tools and derived a model improvement need. By surveying and evaluating the TH/safety database information, a tools V and V matrix has been developed. Through the key scoping analysis using available database, the

  8. Geotechnical studies at whiteshell research area (RA-3). Report No. MRL 87-52(TR)

    Energy Technology Data Exchange (ETDEWEB)

    Katsube, T.J.; Hume, J.P.

    1987-01-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of containers of waste in a vault located at a depth of about 1,000 m in plutonic rock. Adequate development of this concept requires the development of the capability to assess what impact the disposal system would have on humans and the environment if the concept were implemented. This series of papers describes the general geology, micromorphology, geochemistry, mechanical properties, petrophysics, thermal properties, magnetic properties and electrical properties of the Lac du Bonnet Underground Research Laboratory at Pinewa, Manitoba.

  9. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor; Determinacion de nitrogeno en harina de trigo mediante analisis por activacion empleando el flujo de neutrones rapidos de un reactor nuclear termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, T

    1976-07-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  10. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  11. The Effect of Fuel Mass Fraction on the Combustion and Fluid Flow in a Sulfur Recovery Unit Thermal Reactor

    Directory of Open Access Journals (Sweden)

    Chun-Lang Yeh

    2016-11-01

    Full Text Available Sulfur recovery unit (SRU thermal reactors are negatively affected by high temperature operation. In this paper, the effect of the fuel mass fraction on the combustion and fluid flow in a SRU thermal reactor is investigated numerically. Practical operating conditions for a petrochemical corporation in Taiwan are used as the design conditions for the discussion. The simulation results show that the present design condition is a fuel-rich (or air-lean condition and gives acceptable sulfur recovery, hydrogen sulfide (H2S destruction, sulfur dioxide (SO2 emissions and thermal reactor temperature for an oxygen-normal operation. However, for an oxygen-rich operation, the local maximum temperature exceeds the suggested maximum service temperature, although the average temperature is acceptable. The high temperature region must be inspected very carefully during the annual maintenance period if there are oxygen-rich operations. If the fuel mass fraction to the zone ahead of the choke ring (zone 1 is 0.0625 or 0.125, the average temperature in the zone behind the choke ring (zone 2 is higher than the zone 1 average temperature, which can damage the downstream heat exchanger tubes. If the zone 1 fuel mass fraction is reduced to ensure a lower zone 1 temperature, the temperature in zone 2 and the heat exchanger section must be monitored closely and the zone 2 wall and heat exchanger tubes must be inspected very carefully during the annual maintenance period. To determine a suitable fuel mass fraction for operation, a detailed numerical simulation should be performed first to find the stoichiometric fuel mass fraction which produces the most complete combustion and the highest temperature. This stoichiometric fuel mass fraction should be avoided because the high temperature could damage the zone 1 corner or the choke ring. A higher fuel mass fraction (i.e., fuel-rich or air-lean condition is more suitable because it can avoid deteriorations of both zone 1

  12. Thermal hydraulic investigations on porous blockage in a prototype sodium cooled fast reactor fuel pin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Raj, M.Naveen; Velusamy, K., E-mail: kvelu@igcar.gov.in; Maity, Ram Kumar

    2016-07-15

    clad temperature is found to be a strong function of porosity, with enhanced clad temperature for smaller porosity. Fuel-clad that are partly exposed to blockage are subjected to large circumferential temperature variation and the resulting huge thermal stress. Further, for a six subchannel blockage with 40% porosity and 0.5 mm mean particle diameter the critical length is 80 mm, whereas for the same blockage the critical length reduces to <7 mm when its porosity reduces to 5%. Six subchannel blockage with 60% porosity and 0.5 mm mean particle diameter, does not induce boiling even up to a blockage height of 400 mm. For a single subchannel blockage with one helical pitch length, there is no risk of sodium boiling even for porosity as low as 5%. The results of the present study would act as safety and monitoring criteria during the operation of the reactor.

  13. Thermal-Hydraulic Simulations of Single Pin and Assembly Sector for IVG- 1M Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Garner, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanan, N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-15

    Thermal-hydraulic simulations have been performed using computational fluid dynamics (CFD) for the highly-enriched uranium (HEU) design of the IVG.1M reactor at the Institute of Atomic Energy (IAE) at the National Nuclear Center (NNC) in the Republic of Kazakhstan. Steady-state simulations were performed for both types of fuel assembly (FA), i.e. the FA in rows 1 & 2 and the FA in row 3, as well as for single pins in those FA (600 mm and 800 mm pins). Both single pin calculations and bundle sectors have been simulated for the most conservative operating conditions corresponding to the 10 MW output power, which corresponds to a pin unit cell Reynolds number of only about 7500. Simulations were performed using the commercial code STAR-CCM+ for the actual twisted pin geometry as well as a straight-pin approximation. Various Reynolds-Averaged Navier-Stokes (RANS) turbulence models gave different results, and so some validation runs with a higher-fidelity Large Eddy Simulation (LES) code were performed given the lack of experimental data. These singled out the Realizable Two-Layer k-ε as the most accurate turbulence model for estimating surface temperature. Single-pin results for the twisted case, based on the average flow rate per pin and peak pin power, were conservative for peak clad surface temperature compared to the bundle results. Also the straight-pin calculations were conservative as compared to the twisted pin simulations, as expected, but the single-pin straight case was not always conservative with regard to the straight-pin bundle. This was due to the straight-pin temperature distribution being strongly influenced by the pin orientation, particularly near the outer boundary. The straight-pin case also predicted the peak temperature to be in a different location than the twisted-pin case. This is a limitation of the straight-pin approach. The peak temperature pin was in a different location from the peak power pin in every case simulated, and occurred at an

  14. Experimental determination of thermal contact conductance between pressure and calandria tubes of Indian pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Pawaskar, D.N.; Seshu, P. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Sinha, S.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Sinha, R.K. [Department of Atomic Energy, OYC, Near Gateway of India, Mumbai (India)

    2015-04-01

    Highlights: • We established an experimental facility to measure thermal contact conductance between disc shaped specimens. • We measured thermal contact conductance between Zr-2.5Nb alloy pressure tube (PT) material and Zr-4 calandria tube (CT) material. • We concluded that thermal contact conductance is a linear function of contact pressure for interface of PT and CT up to 10 MPa contact pressure. • We concluded that thermal contact conductance is a weak function of interface temperature. - Abstract: Thermal contact conductance (TCC) is one of the most important parameters in determining the temperature distribution in contacting structures. Thermal contact conductance between the contacting structures depends on the mechanical properties of underlying materials, thermo-physical properties of the interstitial fluid and surface condition of the structures coming in contact. During a postulated accident scenario of loss of coolant with coincident loss of emergency core cooling system in a tube type heavy water nuclear reactor, the pressure tube is expected to sag/balloon and come in contact with outer cooler calandria tube to dissipate away the heat generated to the moderator. The amount of heat thus transferred is a function of thermal contact conductance and the nature of contact between the two tubes. An experimental facility was designed, fabricated and commissioned to measure thermal contact conductance between pressure tube and calandria tube specimens. Experiments were conducted on disc shaped specimens under axial contact pressure in between mandrels. Experimental results of TCC and a linear correlation as a function of contact pressure have been reported in this paper.

  15. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others

    2005-03-15

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well.

  16. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition.

    Science.gov (United States)

    Haydary, J; Susa, D; Dudáš, J

    2013-05-01

    Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  17. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    Science.gov (United States)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  18. Test problem for thermal-hydraulics and neutronic coupled calculation fore ALFREAD reactor core

    Science.gov (United States)

    Filip, A.; Darie, G.; Saldikov, I. S.; Smirnov, A. D.; Tikhomirov, G. V.

    2017-01-01

    The beginning of a new era of nuclear reactor requires technological advances and also multiples studies. The European Liquid metal cooled Fast breeder Reactor is one of the designs for the generation IV nuclear reactor, selected by ENEA. A pioneer of its time, ELFR needs a demonstrator in order to prove the feasibility of this project and to acquire more data and experience in operating a LFR. For this reason the ALFRED project was started and it is expected to be under operation by the year 2030. This paper has the objective of analyzing the neutronic and thermohydraulics of the ALFRED core by the means of a coupled scheme. The selected code for neutronic simulation is MCNP and the selected code for thermohydraulics is ANSYS.

  19. Gas-Cooled Thermal Reactor Program. Semiannual technical progress report, April 1, 1983-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    An assessment of the HTGR opportunities from the year 2000 through 2045 was the principal activity on the Market Definition Task (WBS 03). Within the Plant Technology (WBS 13) task, there were activities to develop analytical methods for investigation of Coolant Transport Behavior and to define methods and criteria for High Temperature Structural Engineering design. The activities in support of the HTGR-SC/C Lead Plant (WBS 30 and 31) were the participation in the Lead Plant System Engineering (LPSE) effort and the plant simulation task. The efforts on the Advanced HTGR systems was performed under the Modular Reactor Systems (MRS) (WBS 41) to study the potential for multiple small reactors to provide lower costs, improved safety, and higher availability than the large monolithic core reactors.

  20. IAEA coordinated research program on `harmonization and validation of fast reactor thermomechanical and thermohydraulic codes using experimental data`. 1. Thermohydraulic benchmark analysis on high-cycle thermal fatigue events occurred at French fast breeder reactor Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-06-01

    A benchmark exercise on `Tee junction of Liquid Metal Fast Reactor (LMFR) secondary circuit` was proposed by France in the scope of the said Coordinated Research Program (CRP) via International Atomic Energy Agency (IAEA). The physical phenomenon chosen here deals with the mixture of two flows of different temperature. In a LMFR, several areas of the reactor are submitted to this problem. They are often difficult to design, because of the complexity of the phenomena involved. This is one of the major problems of the LMFRs. This problem has been encountered in the Phenix reactor on the secondary loop, where defects in a tee junction zone were detected during a campaign of inspections after an operation of 90,000 hours of the reactor. The present benchmark is based on an industrial problem and deal with thermal striping phenomena. Problems on pipes induced by thermal striping phenomena have been observed in some reactors and experimental facilities coolant circuits. This report presents numerical results on thermohydraulic characteristics of the benchmark problem, carried out using a direct numerical simulation code DINUS-3 and a boundary element code BEMSET. From the analysis with both the codes, it was confirmed that the hot sodium from the small pipe rise into the cold sodium of the main pipe with thermally instabilities. Furthermore, it was indicated that the coolant mixing region including the instabilities agrees approximately with the result by eye inspections. (author)

  1. NOVEL COMPOSITE HYDROGEN-PERMEABLE MEMBRANES FOR NON-THERMAL PLASMA REACTORS FOR THE DECOMPOSITION OF HYDROGEN SULFIDE

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Ji-Jun Zhang; Guibing Zhao; Robyn J. Alcanzare; Linna Wang; Ovid A. Plumb

    2004-07-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Experiments involving methane conversion reactions were conducted with a preliminary pulsed corona discharge reactor design in order to test and improve the reactor and membrane designs using a non-toxic reactant. This report details the direct methane conversion experiments to produce hydrogen, acetylene, and higher hydrocarbons utilizing a co-axial cylinder (CAC) corona discharge reactor, pulsed with a thyratron switch. The reactor was designed to accommodate relatively high flow rates (655 x 10{sup -6} m{sup 3}/s) representing a pilot scale easily converted to commercial scale. Parameters expected to influence methane conversion including pulse frequency, charge voltage, capacitance, residence time, and electrode material were investigated. Conversion, selectivity and energy consumption were measured or estimated. C{sub 2} and C{sub 3} hydrocarbon products were analyzed with a residual gas analyzer (RGA). In order to obtain quantitative results, the complex sample spectra were de-convoluted via a linear least squares method. Methane conversion as high as 51% was achieved. The products are typically 50%-60% acetylene, 20% propane, 10% ethane and ethylene, and 5% propylene. First Law thermodynamic energy efficiencies for the system (electrical and reactor) were estimated to range from 38% to 6%, with the highest efficiencies occurring at short residence time and low power input (low specific energy) where conversion is the lowest (less than 5%). The highest methane conversion of 51% occurred at a

  2. NOVEL COMPOSITE HYDROGEN-PERMEABLE MEMBRANES FOR NON-THERMAL PLASMA REACTORS FOR THE DECOMPOSITION OF HYDROGEN SULFIDE

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Ji-Jun Zhang; Guibing Zhao; Robyn J. Alcanzare; Linna Wang; Ovid A. Plumb

    2004-07-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Experiments involving methane conversion reactions were conducted with a preliminary pulsed corona discharge reactor design in order to test and improve the reactor and membrane designs using a non-toxic reactant. This report details the direct methane conversion experiments to produce hydrogen, acetylene, and higher hydrocarbons utilizing a co-axial cylinder (CAC) corona discharge reactor, pulsed with a thyratron switch. The reactor was designed to accommodate relatively high flow rates (655 x 10{sup -6} m{sup 3}/s) representing a pilot scale easily converted to commercial scale. Parameters expected to influence methane conversion including pulse frequency, charge voltage, capacitance, residence time, and electrode material were investigated. Conversion, selectivity and energy consumption were measured or estimated. C{sub 2} and C{sub 3} hydrocarbon products were analyzed with a residual gas analyzer (RGA). In order to obtain quantitative results, the complex sample spectra were de-convoluted via a linear least squares method. Methane conversion as high as 51% was achieved. The products are typically 50%-60% acetylene, 20% propane, 10% ethane and ethylene, and 5% propylene. First Law thermodynamic energy efficiencies for the system (electrical and reactor) were estimated to range from 38% to 6%, with the highest efficiencies occurring at short residence time and low power input (low specific energy) where conversion is the lowest (less than 5%). The highest methane conversion of 51% occurred at a

  3. Development of Reactor Core for Nuclear Thermal Propulsion%核热推进堆芯方案的发展

    Institute of Scientific and Technical Information of China (English)

    解家春; 赵守智

    2012-01-01

    Nuclear thermal propulsion heats propellant with fission energy. It's specific impulse is double of chemical rockets. It could play an important role in space mission. During the research process about nuclear thermal propulsion in USA and Russia, many reactors were well developed. The details of the reactors core were described, the characteristics of design were indicated, and the trend of development was summarized.%核热推进利用核裂变能加热工质,比冲可达化学火箭的2倍多,在空间活动中有广阔的应用前景.在美国和俄罗斯的研究过程中,对多个核热推进堆芯方案进行了较深入的研究.本工作介绍了这些堆芯方案的情况,详细说明了其设计特点,并总结了堆芯方案的发展趋势.

  4. Natural gas pyrolysis in double-walled reactor tubes using thermal plasma or concentrated solar radiation as external heating source

    Institute of Scientific and Technical Information of China (English)

    Stèphane Abanades; Stefania Tescari; Sylvain Rodat; Gilles Flamant

    2009-01-01

    The thermal pyrolysis of natural gas as a clean hydrogen production route is examined.The concept of a double-walled reactor tube is proposed and implemented.Preliminary experiments using an external plasma heating source are carded out to validate this concept.The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time.Simulations are performed to predict the conversion rate of CH4 at the reactor outlet,and are consistent with experimental tendencies.A solar reactor prototype featuring four independent double-walled tubes is then developed.The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy.The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window.The gas composition at the reactor outlet,the chemical conversion of CH4,and the yield to H2 are determined with respect to reaction temperature,inlet gas flow-rates,and feed gas composition.The longer the gas residence time,the higher the CH4 conversion and H2 yield,whereas the lower the amount of acetylene.A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms).A temperature increase from 1870 K to 1970 K does not improve the H2 yield.

  5. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  6. Thermal hydraulic analysis of the IPR-R1 TRIGA reactor; Analise termo-hidraulica do reator TRIGA IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Marcelo Antonio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Fortini, Maria Auxiliadora [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2002-07-01

    The subchannel approach, normally employed for the analysis of power reactor cores that work under forced convection, have been used for the thermal hydraulic evaluation of a TRIGA Mark I reactor, named IPR-R1, at 250 kW power level. This was accomplished by using the PANTERA-1P subchannel code, which has been conveniently adapted to the characteristics of natural convection of TRIGA reactors. The analysis of results indicates that the steady state operation of IPR-R1 at 250 kW do not imply risks to installations, workers and public. (author)

  7. Evaluation of the thermal neutron flux in the core of IPEN/MB-01 reactor using the code Monte Carlo (MCNP)

    Energy Technology Data Exchange (ETDEWEB)

    Salome, Jean A.D.; Cardoso, Fabiano; Faria, Rochkhudson B.; Pereira, Claubia, E-mail: jadsalome@yahoo.com.br, E-mail: fabinuclear@yahoo.com.br, E-mail: rockdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The IPEN/MB-01 reactor, located in the city of Sao Paulo - Brazil, reached its first criticality on the year of 1988. The reactor is characterized by a low output power of 100 W only, even because its purpose is to produce knowledge about nuclear power plants on a smaller geometric scale without the requirement of an extremely complex cooling system. The use of devices such as this it is very interesting because it achieves the demands of nuclear engineering about the neutronic parameters needed in the design of large nuclear plants through relatively simple and inexpensive methods. In this paper, the computational mathematical code MCNP5 is used to perform the calculation of the thermal neutron flux in the core of the IPEN/MB-01 reactor. To do this is used an experiment from the LEU-COMP-THERM-077 benchmark that represents the standard rectangular configuration of the IPEN/MB-01 reactor. The thermal neutron flux is calculated at some axial planes of different heights and, after that, axial profiles of the thermal neutron flux are done and compared to experimental results issued previously. The experimental values used as reference refer to a cylindrical configuration of the core of the reactor. Finally, the pertinence and relevance of the results are checked. With this work is expected to produce more knowledge about the dynamics of neutron flux in the core of the IPEN/MB-01 reactor. (author)

  8. Thermally safe operation of a semibatch reactor for liquid-liquid reactions-fast reactions

    NARCIS (Netherlands)

    Steensma, Metske; Westerterp, K.R.

    1991-01-01

    Accumulation of the reactant supplied to a cooled semibatch reactor (SBR) will occur if the mass transfer rate across the interface is insufficient to keep pace with the supply rate. Then, due to a low starting temperature or supercooling, the reaction temperature does not rise fast enough to the de

  9. Calculation of the Thermal State of the Graphite Moderator of the RBMK Reactor

    Directory of Open Access Journals (Sweden)

    Vorobiev Alexander V.

    2017-01-01

    Full Text Available This work is devoted to study the temperature field of the graphite stack of the RBMK reactor. In work was analyzed the influence of contact pressure between the components of the masonry on the temperature of the graphite moderator.

  10. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  11. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  12. Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Styman, P.D., E-mail: paul.styman@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); National Nuclear Laboratory, B168, Harwell Business Centre, Didcot, Oxon OX11 0QT (United Kingdom); Hyde, J.M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); National Nuclear Laboratory, B168, Harwell Business Centre, Didcot, Oxon OX11 0QT (United Kingdom); Wilford, K.; Parfitt, D.; Riddle, N. [Rolls-Royce, PO Box 2000, Raynesway, Derby DE21 7XX (United Kingdom); Smith, G.D.W. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    To understand the contribution of long term thermal ageing to Reactor Pressure Vessel (RPV) embrittlement two high Cu steel welds with different Ni contents were thermally aged for times up to 100,000 h at 330 °C and 365 °C. Microstructural characterisation using Atom Probe Tomography was performed. Thermal ageing produced a high number density of nano-scale Cu-enriched precipitates. The precipitate–matrix interfaces were enriched in Ni, Mn and Si. The characterisation of these interfaces using a double cluster search approach is the subject of this work. The interface region around thermally-induced precipitates was found to be wider in steels with higher bulk Ni contents and where precipitates had larger core radii. The effect of ageing temperature on interface width was small when comparing precipitates of equal core radius. The narrower interface width in the lower Ni steels is reflected in the composition of the interface, which has a lower Ni content than in the higher Ni material. The reduction in interfacial energy due to the segregation of Ni, Mn and Si has been calculated and shows enhanced reductions in interfacial energy with increasing precipitate size, but no obvious effect of temperature. - Highlights: • Characterisation of interfacial segregation of Ni, Mn and Si to Cu-enriched clusters. • Analysis method gives information on interface composition and widths of large numbers of clusters. • Reduction in interface energy due to segregation of Ni, Mn and Si is calculated.

  13. 1-Dimensional simulation of thermal annealing in a commercial nuclear power plant reactor pressure vessel wall section

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, J.T.; Rosinski, S.T.; Acton, R.U.

    1994-11-01

    The objective of this work was to provide experimental heat transfer boundary condition and reactor pressure vessel (RPV) section thermal response data that can be used to benchmark computer codes that simulate thermal annealing of RPVS. This specific protect was designed to provide the Electric Power Research Institute (EPRI) with experimental data that could be used to support the development of a thermal annealing model. A secondary benefit is to provide additional experimental data (e.g., thermal response of concrete reactor cavity wall) that could be of use in an annealing demonstration project. The setup comprised a heater assembly, a 1.2 in {times} 1.2 m {times} 17.1 cm thick [4 ft {times} 4 ft {times} 6.75 in] section of an RPV (A533B ferritic steel with stainless steel cladding), a mockup of the {open_quotes}mirror{close_quotes} insulation between the RPV and the concrete reactor cavity wall, and a 25.4 cm [10 in] thick concrete wall, 2.1 in {times} 2.1 in [10 ft {times} 10 ft] square. Experiments were performed at temperature heat-up/cooldown rates of 7, 14, and 28{degrees}C/hr [12.5, 25, and 50{degrees}F/hr] as measured on the heated face. A peak temperature of 454{degrees}C [850{degrees}F] was maintained on the heated face until the concrete wall temperature reached equilibrium. Results are most representative of those RPV locations where the heat transfer would be 1-dimensional. Temperature was measured at multiple locations on the heated and unheated faces of the RPV section and the concrete wall. Incident heat flux was measured on the heated face, and absorbed heat flux estimates were generated from temperature measurements and an inverse heat conduction code. Through-wall temperature differences, concrete wall temperature response, heat flux absorbed into the RPV surface and incident on the surface are presented. All of these data are useful to modelers developing codes to simulate RPV annealing.

  14. 1-Dimensional simulation of thermal annealing in a commercial nuclear power plant reactor pressure vessel wall section

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, J.T.; Rosinski, S.T.; Acton, R.U.

    1994-11-01

    The objective of this work was to provide experimental heat transfer boundary condition and reactor pressure vessel (RPV) section thermal response data that can be used to benchmark computer codes that simulate thermal annealing of RPVS. This specific protect was designed to provide the Electric Power Research Institute (EPRI) with experimental data that could be used to support the development of a thermal annealing model. A secondary benefit is to provide additional experimental data (e.g., thermal response of concrete reactor cavity wall) that could be of use in an annealing demonstration project. The setup comprised a heater assembly, a 1.2 in {times} 1.2 m {times} 17.1 cm thick [4 ft {times} 4 ft {times} 6.75 in] section of an RPV (A533B ferritic steel with stainless steel cladding), a mockup of the {open_quotes}mirror{close_quotes} insulation between the RPV and the concrete reactor cavity wall, and a 25.4 cm [10 in] thick concrete wall, 2.1 in {times} 2.1 in [10 ft {times} 10 ft] square. Experiments were performed at temperature heat-up/cooldown rates of 7, 14, and 28{degrees}C/hr [12.5, 25, and 50{degrees}F/hr] as measured on the heated face. A peak temperature of 454{degrees}C [850{degrees}F] was maintained on the heated face until the concrete wall temperature reached equilibrium. Results are most representative of those RPV locations where the heat transfer would be 1-dimensional. Temperature was measured at multiple locations on the heated and unheated faces of the RPV section and the concrete wall. Incident heat flux was measured on the heated face, and absorbed heat flux estimates were generated from temperature measurements and an inverse heat conduction code. Through-wall temperature differences, concrete wall temperature response, heat flux absorbed into the RPV surface and incident on the surface are presented. All of these data are useful to modelers developing codes to simulate RPV annealing.

  15. Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element

    Science.gov (United States)

    1990-06-01

    143 5 Table of Figures 2.1 Typical Open Cycle Nuclear Thermal Rocket ............................................ 14 2.2 Typical Closed...applications aid general boost applications. With the renewed emphasis on space exploration, NTR (Nu- clear Thermal Rocket ) technology is being...as well as closed cycle systems (Figure 2.2) (G-l) are being examined. Open cycle systems are typical of a PFNTR (pressure fed nuclear thermal rocket ) (H

  16. Preliminary Thermohydraulic Analysis of a New Moderated Reactor Utilizing an LEU-Fuel for Space Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The Korea Advanced NUclear Thermal Engine Rocket utilizing an LEU fuel (KANUTER-LEU) is a non-proliferative and comparably efficient NTR engine with relatively low thrust levels of 40 - 50 kN for in-space transportation. The small modular engine can expand mission versatility, when flexibly used in a clustered engine arrangement, so that it can perform various scale missions from low-thrust robotic science missions to high-thrust manned missions. In addition, the clustered engine system can enhance engine redundancy and ensuing crew safety as well as the thrust. The propulsion system is an energy conversion system to transform the thermal energy of the reactor into the kinetic energy of the propellant to produce the powers for thrust, propellant feeding and electricity. It is mainly made up of a propellant Feeding System (PFS) comprising a Turbo-Pump Assembly (TPA), a Regenerative Nozzle Assembly (RNA), etc. For this core design study, an expander cycle is assumed to be the propulsion system. The EGS converts the thermal energy of the EHTGR in the idle operation (only 350 kW{sub th} power) to electric power during the electric power mode. This paper presents a preliminary thermohydraulic design analysis to explore the design space for the new reactor and to estimate the referential engine performance. The new non-proliferative NTR engine concept, KANUTER-LEU, is under designing to surmount the nuclear proliferation obstacles on allR and Dactivities and eventual commercialization for future generations. To efficiently implement a heavy LEU fuel for the NTR engine, its reactor design innovatively possesses the key characteristics of the high U density fuel with high heating and H{sub 2} corrosion resistances, the thermal neutron spectrum core and also minimizing non-fission neutron loss, and the compact reactor design with protectively cooling capability. To investigate feasible design space for the moderated EHTGR-LEU and resultant engine performance, the

  17. Development of an artificial neural network model for on-line thermal margin estimation of a nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Koon

    1992-02-15

    One of the key safety parameters related to thermal margin in a Pressurized Water Reactor (PWR) core, is Departure from Nucleate Boiling Ratio (DNBR), which is to be assessed and continuously monitored during operation via either an analog or a digital monitoring system. The digital monitoring system, in general, allows more thermal margin than the analog system through the on-line computation of DNBR using the measured parameters as inputs to a simplified, fast running computer code. The purpose of this thesis is to develop an advanced method for on-line DNBR estimation by introducing an artifactual neural network model for best-estimation of DNBR at the given reactor operating conditions. the neural network model, consisting of three layers with five operating parameters in the input layer, provides real-time prediction accuracy of DNBR by training the network against the detailed simulation results for various operating conditions. The overall training procedure is developed to learn the characteristics of DNBR behaviour in the reactor core. First, a set of random combination of input variables is generated by Latin Hypercube Sampling technique performed on a wide range of input parameters. Second, the target values of DNBR to be referenced for training are calculated using a detailed simulation code, COBRA-IV. Third, the optimized training input data are selected. Then, training is performed using an Error Back Propagation algorithm. After completion of training, the network is tested on the examining data set in order to investigate the generalization capability of the network responses for the steady state operating condition as well as for the transient situations where DNB is of a primary concern. The test results show that the values of DNBR predicted by the neural network are maintained at a high level of accuracy for the steady state condition, and are in good agreements with the transient situation, although slightly conservative as compared to those

  18. Catalyst-Packed Non-Thermal Plasma Reactor for Removal of Nitrogen Oxides

    Science.gov (United States)

    Ravi, V.; Young, Sun Mok; Rajanikanth, B. S.; Kang, Ho-Chul

    2003-02-01

    A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.

  19. Probabilistic fracture mechanics analysis of thermally aged nuclear piping in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuxiao; Zhang, Hailong; Li, Shilei; Wang, Yanli [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Xue, Fei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Wang, Xitao, E-mail: xtwang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-12-15

    Highlights: • Thermal aging embrittlement was considered in the PFM analysis of nuclear pipe. • Predicting program for pipe failure probability was developed based on thermal aging. • Cumulative failure probability is significantly affected by fracture toughness. • Cumulative failure probability is slightly affected by fatigue crack growth rate. • Tensile strength increase due to thermal aging slightly reduces pipe failure risk. - Abstract: A predicting program for pipe break probability based on thermal aging embrittlement was developed. In order for life prediction, evolutions of fracture toughness and tensile strength were estimated for a Z3CN20-09M piping steel using the Argonne National Laboratory (ANL) procedure. To understand the influence of thermal aging on failure probability, different evolutions of fracture toughness, tensile strength and fatigue crack growth rate were employed in the prediction of cumulative failure probability. The results show that the cumulative failure probability for 40-year thermal aging increases by almost four times compared to without consideration of fracture toughness degradation. The cumulative failure probability is slightly affected by fatigue crack growth rate. The increase of tensile strength due to thermal aging reduces the risk of pipe failure. This work demonstrates that the degradation of fracture toughness due to thermal aging should be fully considered in the probabilistic fracture mechanics analysis of nuclear pressure pipes.

  20. Study for 228Th reduction in thermal reactor with Th-U fuel cycls

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    By using computercode WIMS/CENDL, the effects of some parameters, core configuration such as fuel element structure, neutron flux and burn-up, are discussed in thispaper.It is shown that high neutron flux, small fuel rod diameter,large volume ratio of coolant to fuel, seed-blank heterogeneous corearrangement and 231Pa chemical separation are necessary for reducing 228Th production in reactor.

  1. Study of the thermal decomposition of petrochemical sludge in a pilot plant reactor

    OpenAIRE

    Conesa Ferrer, Juan Antonio; Moltó Berenguer, Julia; Ariza, José; Ariza, María; García Barneto, Agustín

    2014-01-01

    The pyrolysis of a sludge produced in the waste water treatment plant of an oil refinery was studied in a pilot plant reactor provided with a system for condensation of semivolatile matter. The study comprises experiments at 350, 400, 470 and 530 °C in nitrogen atmosphere. Analysis of all the products obtained (gases, liquids and chars) are presented, with a thermogravimetric study of the char produced and analysis of main components of the liquid. In the temperature range studied, the compos...

  2. GAPCON-THERMAL-3 verification and comparison to in-reactor data.

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Panisko, F.E.; Mohr, C.L.

    1978-01-01

    The GAPCON-THERMAL-3 computer code is an outgrowth of the GAPCON series, written in response to a need to predict the interacting path-dependent thermal and mechanical behavior of oxide fuel rods. Previous GAPCON versions did not include a comprehensive path-dependent prediction of cladding stress and strain that was connected to the thermal history. GAPCON-THERMAL-3 includes an incremental, finite element solution for the cladding that includes elastic, plastic, and creep contributions. The stress-strain increments for each time step reflect the thermal-mechanical state of the fuel at that time, so that the evolution of fuel and cladding displacements and temperatures through time is truly interconnected and path dependent.

  3. Development of a computer code for thermal hydraulics of reactors (THOR). [BWR and PWR

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W

    1975-01-01

    The purpose of the advanced code development work is to construct a computer code for the prediction of thermohydraulic transients in water-cooled nuclear reactor systems. The fundamental formulation of fluid dynamics is to be based on the one-dimensional drift flux model for non-homogeneous, non-equilibrium flows of two-phase mixtures. Particular emphasis is placed on component modeling, automatic prediction of initial steady state conditions, inclusion of one-dimensional transient neutron kinetics, freedom in the selection of computed spatial detail, development of reliable constitutive descriptions, and modular code structure. Numerical solution schemes have been implemented to integrate simultaneously the one-dimensional transient drift flux equations. The lumped-parameter modeling analyses of thermohydraulic transients in the reactor core and in the pressurizer have been completed. The code development for the prediction of the initial steady state has been completed with preliminary representation of individual reactor system components. A program has been developed to predict critical flow expanding from a dead-ended pipe; the computed results have been compared and found in good agreement with idealized flow solutions. Transport properties for liquid water and water vapor have been coded and verified.

  4. Computation of flow and thermal fields in a model CVD reactor

    Indian Academy of Sciences (India)

    Vishwadeep Saxena; K Muralidhar; V Eswaran

    2002-12-01

    Mixing of coaxial jets within a tube in the presence of blockage has been numerically studied. This configuration is encountered during the modelling of flow and heat transfer in CVD (chemical vapour deposition) reactors. For the conditions prevailing in the reactor, the Reynolds numbers are low and flow can be taken to be laminar and incompressible. The unsteady forms of the governing equations have been solved by a finite volume method that can treat complex three-dimensional geometries. The algorithm is a two-step procedure, wherein the first step predicts the velocity field using an assumed pressure field. The second step corrects the fields using a Poisson equation to obtain the pressure corrections. Advection terms have been treated by a hybrid upwind-central difference technique. The computer code developed is fully three-dimensional, though most computations of the present study have been carried out for two-dimensional geometry. Results have been obtained in the form of velocity vector plots, wall shear stress variation on the block and the tube wall, isotherms and temperature profiles. The flow and heat transfer characteristics of jet mixing have been explored in terms of the Reynolds number, the jet velocity ratio, the axial position of the block, and the blockage ratio. The results obtained show that a proper combination of the process parameters can lead to an improved performance of the CVD reactor.

  5. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  6. Simulation of radiation dose distribution and thermal analysis for the bulk shielding of an optimized molten salt reactor

    Institute of Scientific and Technical Information of China (English)

    张志宏; 夏晓彬; 蔡军; 王建华; 李长园; 葛良全; 张庆贤

    2015-01-01

    The Chinese Academy of Science has launched a thorium-based molten-salt reactor (TMSR) research project with a mission to research and develop a fission energy system of the fourth generation. The TMSR project intends to construct a liquid fuel molten-salt reactor (TMSR-LF), which uses fluoride salt as both the fuel and coolant, and a solid fuel molten-salt reactor (TMSR-SF), which uses fluoride salt as coolant and TRISO fuel. An optimized 2 MWth TMSR-LF has been designed to solve major technological challenges in the Th-U fuel cycle. Preliminary conceptual shielding design has also been performed to develop bulk shielding. In this study, the radiation dose and temperature distribution of the shielding bulk due to the core were simulated and analyzed by performing Monte Carlo simulations and computational fluid dynamics (CFD) analysis. The MCNP calculated dose rate and neutron and gamma spectra indicate that the total dose rate due to the core at the external surface of the concrete wall was 1.91 µSv/h in the radial direction, 1.16 µSv/h above and 1.33 µSv/h below the bulk shielding. All the radiation dose rates due to the core were below the design criteria. Thermal analysis results show that the temperature at the outermost surface of the bulk shielding was 333.86 K, which was below the required limit value. The results indicate that the designed bulk shielding satisfies the radiation shielding requirements for the 2 MWth TMSR-LF.

  7. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  8. A three-dimensional transient neutronics routine for the TRAC-PF1 reactor thermal hydraulic computer code

    Energy Technology Data Exchange (ETDEWEB)

    Bandini, B.R. [Los Alamos National Lab., NM (United States)

    1990-05-01

    No present light water reactor accident analysis code employs both high state of the art neutronics and thermal-hydraulics computational algorithms. Adding a modern three-dimensional neutron kinetics model to the present TRAC-PFI/MOD2 code would create a fully up to date pressurized water reactor accident evaluation code. After reviewing several options, it was decided that the Nodal Expansion Method would best provide the basis for this multidimensional transient neutronic analysis capability. Steady-state and transient versions of the Nodal Expansion Method were coded in both three-dimensional Cartesian and cylindrical geometries. In stand-alone form this method of solving the few group neutron diffusion equations was shown to yield efficient and accurate results for a variety of steady-state and transient benchmark problems. The Nodal Expansion Method was then incorporated into TRAC-PFl/MOD2. The combined NEM/TRAC code results agreed well with the EPRI-ARROTTA core-only transient analysis code when modelling a severe PWR control rod ejection accident.

  9. Fission product data for thermal reactors. Part 2. Users manual for EPRI-CINDER code and data

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Wilson, W.B.; Stamatelatos, M.G.

    1976-12-01

    The objective of this project has been the production of a data library suitable for calculating the buildup of fission product nuclides during the operation of a thermal power reactor. This has been accomplished by reducing the fission product data from the fourth version of the national reference nuclear data base--ENDF/B into a series of linearized decay chains and calculating the effective yields and cross sections of the relevant nuclides. Two versions of the fission product library have been prepared: an 84 chain master library and a reduced 12 chain library, both of which can be used as input for the computer program CINDER. A users manual for an upgraded version of the burnup program CINDER (renamed EPRI-CINDER) is presented.

  10. Simultaneous Oxidization of NOx and 802 by a New Non-thermal Plasma Reactor Enhanced by Catalyst and Additive

    Institute of Scientific and Technical Information of China (English)

    Heejoon KIM; HAN Jun; Yuhei SAKAGUCHI; Wataru MINAMI

    2008-01-01

    The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attracted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200℃.

  11. Synthesis of nanocrystalline Y2O3 in a specially designed atmospheric pressure radio frequency thermal plasma reactor

    Science.gov (United States)

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Ghorui, S.

    2015-10-01

    Synthesis of yttrium oxide nanoparticles in a specially designed radio frequency thermal plasma reactor is reported. Good crystallinity, narrow size distribution, low defect state concentration, high purity, good production rate, single-step synthesis, and simultaneous formation of nanocrystalline monoclinic and cubic phases are some of the interesting features observed. Synthesized particles are characterized through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermo-luminescence (TL), and Brunauer-Emmett-Teller surface area analysis. Polymorphism of the nanocrystalline yttria is addressed in detail. Synthesis mechanism is explored through in-situ emission spectroscopy. Post-synthesis environmental effects and possible methods to eliminate the undesired phases are probed. Defect states are investigated through the study of TL spectra.

  12. Thermal-hydraulic Optimization of Water-cooled Center Conductor Post for Spherical Tokamaks Reactor

    Institute of Scientific and Technical Information of China (English)

    柯严; 吴宜灿; 黄群英; 郑善良

    2002-01-01

    This paper proposes a conceptual structure of segmental water-cooled Center Con ductor Post (CCP) to be flexible in installment and replacement. Thermal-hydraulic optimization and sensitivity analysis of key parameters are performed based on a reference fusion transmutation system with 100 MW fusion power. Numerical simulation by using a commercial code PHOEN]CS has been carried out to be close to the thermal-hydraulic analytical results of the CCP mid-part.

  13. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  14. Development of a preliminary PIRT (Phenomena Identification and Ranking Table) of thermal-hydraulic phenomena for 330MWt SMART integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Sim, S. K.; Song, J. H.; Kim, H. C.

    1997-09-01

    The work reported in this document identifies the thermal-hydraulic phenomena that are expected to occur during a number of key transients in a 330 MWt SMART integral reactor which is under development at KAERI. The result of this efforts is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary Phenomena Identification and Ranking Table (PIRT) has been developed based on the experts` knowledge and experience. The preliminary PIRT has been developed by the consensus of KAERI expert panelists and AHP (Analytical Hierarchy Process). Preliminary PIRT developed in this report is intended for use to identify and integrate development areas of further experimental tests needed and thermal-hydraulic models and correlations and code improvements for the safety analysis of the SMART integral reactor. (author). 7 refs., 21 tabs., 22 figs.

  15. Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor

    Science.gov (United States)

    Fiorina, Carlo; Cammi, Antonio; Luzzi, Lelio; Mikityuk, Konstantin; Ninokata, Hisashi; Ricotti, Marco E.

    2014-04-01

    The Molten Salt Reactors (MSR) are an innovative kind of nuclear reactors and are presently considered in the framework of the Generation IV International Forum (GIF-IV) for their promising performances in terms of low resource utilization, waste minimization and enhanced safety. A unique feature of MSRs is that molten fluoride salts play the distinctive role of both fuel (heat source) and coolant. The presence of an internal heat generation perturbs the temperature field and consequences are to be expected on the heat transfer characteristics of the molten salts. In this paper, the problem of heat transfer for internally heated fluids in a straight circular channel is first faced on a theoretical ground. The effect of internal heat generation is demonstrated to be described by a corrective factor applied to traditional correlations for the Nusselt number. It is shown that the corrective factor can be fully characterized by making explicit the dependency on Reynolds and Prandtl numbers. On this basis, a preliminary correlation is proposed for the case of molten fluoride salts by interpolating the results provided by an analytic approach previously developed at the Politecnico di Milano. The experimental facility and the related measuring procedure for testing the proposed correlation are then presented. Finally, the developed correlation is used to carry out a parametric investigation on the effect of internal heat generation on the main out-of-core components of the Molten Salt Fast Reactor (MSFR), the reference circulating-fuel MSR design in the GIF-IV. The volumetric power determines higher temperatures at the channel wall, but the effect is significant only in case of large diameters and/or low velocities.

  16. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  17. Methods for calculating group cross sections for doubly heterogeneous thermal reactor systems. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatos, M G; LaBauve, R J

    1977-02-01

    The report discusses methods used at LASL for calculating group cross sections for doubly heterogeneous HTGR systems of the General Atomic design. These cross sections have been used for the neutronic safety analysis calculations of such HTGR systems at various points in reactor lifetime (e.g., beginning-of-life, end-of-equilibrium cycle). They were also compared with supplied General Atomic cross sections generated with General Atomic codes. The overall agreement between the LASL and the GA cross sections has been satisfactory.

  18. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    HEARD, F.J.

    1999-04-09

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels.

  19. Runaway behavior and thermally safe operation of multiple liquid–liquid reactions in the semi-batch reactor: The nitric acid oxidation of 2-octanol

    NARCIS (Netherlands)

    Woezik, van B.A.A.; Westerterp, K.R.

    2002-01-01

    The thermal runaway behavior of an exothermic, heterogeneous, multiple reaction system has been studied in a cooled semi-batch reactor. The nitric acid oxidation of 2-octanol has been used to this end. During this reaction, 2-octanone is formed, which can be further oxidized to unwanted carboxylic a

  20. Nuclear research reactors activities in INVAP

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Juan Pablo [INVAP, Bariloche (Argentina)

    2013-07-01

    This presentation describes the different activities in the research reactor field that are being carried out by INVAP. INVAP is presently involved in the design of three new research reactors in three different countries. The RA-10 is a multipurpose reactor, in Argentina, planned as a replacement for the RA-3 reactor. INVAP was contracted by CNEA for carrying out the preliminary engineering for this reactor, and has recently been contracted by CNEA for the detailed engineering. CNEA groups are strongly involved in the design of this reactor. The RMB is a multipurpose reactor, planned by CNEN from Brazil. CNEN, through REDETEC, has contracted INVAP to carry out the preliminary engineering for this reactor. As the user requirements for RA-10 and RMB are very similar, an agreement was signed between Argentina and Brasil governments to cooperate in these two projects. The agreement included that both reactors would use the OPAL reactor in Australia, design and built by INVAP, as a reference reactor. INVAP has also designed the LPRR reactor for KACST in Saudi Arabia. The LPRR is a 30 kw reactor for educational purposes. KACST initially contracted INVAP for the engineering for this reactor and has recently signed the contract with INVAP for building the reactor. General details of these three reactors will be presented.

  1. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  2. Catalyst-Packed Non-Thermal Plasma Reactor for Removal of Nitrogen Oxides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A single-stage plasma-catalytic reactor in which catalytic materials were packedwas used to remove nitrogen oxides. The packing material was scoria being made of various metaloxides including A12O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pelletsbut also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Withoutplasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °Cto 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.

  3. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline; Arne Pearlstein; William Linak

    2003-08-06

    The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.

  4. Synthesis of Carbon Nanotubes in Thermal Plasma Reactor at Atmospheric Pressure

    Science.gov (United States)

    Szymanski, Lukasz; Kolacinski, Zbigniew; Wiak, Slawomir; Raniszewski, Grzegorz; Pietrzak, Lukasz

    2017-01-01

    In this paper, a novel approach to the synthesis of the carbon nanotubes (CNTs) in reactors operating at atmospheric pressure is presented. Based on the literature and our own research results, the most effective methods of CNT synthesis are investigated. Then, careful selection of reagents for the synthesis process is shown. Thanks to the performed calculations, an optimum composition of gases and the temperature for successful CNT synthesis in the CVD (chemical vapor deposition) process can be chosen. The results, having practical significance, may lead to an improvement of nanomaterials synthesis technology. The study can be used to produce CNTs for electrical and electronic equipment (i.e., supercapacitors or cooling radiators). There is also a possibility of using them in medicine for cancer diagnostics and therapy. PMID:28336880

  5. CFD investigation of flow inversion in typical MTR research reactor undergoing thermal-hydraulic transients

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Amgad, E-mail: asalama75@yahoo.com [Atomic Energy Authority, Reactors Department, 13759 Cairo (Egypt)

    2011-07-15

    Highlights: > The 3D, CFD simulation of FLOFA accident in the generic IAEA 10 MW research reactor is carried out. > The different flow and heat transfer mechanisms involved in this process were elucidated. > The transition between these mechanisms during the course of FLOFA is discussed and investigated. > The interesting inversion process upon the transition from downward flow to upward flow is shown. > The temperature field and the friction coefficient during the whole transient process were shown. - Abstract: Three dimensional CFD full simulations of the fast loss of flow accident (FLOFA) of the IAEA 10 MW generic MTR research reactor are conducted. In this system the flow is initially downward. The transient scenario starts when the pump coasts down exponentially with a time constant of 1 s. As a result the temperatures of the heating element, the clad, and the coolant rise. When the flow reaches 85% of its nominal value the control rod system scrams and the power drops sharply resulting in the temperatures of the different components to drop. As the coolant flow continues to drop, the decay heat causes the temperatures to increase at a slower rate in the beginning. When the flow becomes laminar, the rate of temperature increase becomes larger and when the pumps completely stop a flow inversion occurs because of natural convection. The temperature will continue to rise at even higher rates until natural convection is established, that is when the temperatures settle off. The interesting 3D patterns of the flow during the inversion process are shown and investigated. The temperature history is also reported and is compared with those estimated by one-dimensional codes. Generally, very good agreement is achieved which provides confidence in the modeling approach.

  6. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  7. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d' Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de, E-mail: ubitelli@ipen.b, E-mail: gsasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  8. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor.

    Science.gov (United States)

    El-Bery, Haitham; Tawfik, Ahmed; Kumari, Sheena; Bux, Faizal

    2013-01-01

    The effect of thermal pre-treatment on inoculum sludge for continuous H2 production from alkali hydrolysed rice straw using anaerobic baffled reactor (ABR) was investigated. Two reactors, ABR1 and ABR2, were inoculated with untreated and thermally pre-treated sludge, respectively. Both reactors were operated in parallel at a constant hydraulic retention time of 20 h and organic loading rate ranged from 0.5 to 2.16 g COD/L d. The results obtained indicated that ABR2 achieved a better hydrogen conversion rate and hydrogen yield as compared with ABR1. The hydrogen conversion rates were 30% and 24%, while the hydrogen yields were 1.19 and 0.97 mol H2/mol glucose for ABR2 and ABR1, respectively. Similar trend was observed for chemical oxygen demand (COD) and carbohydrate removal, where ABR2 provided a removal efficiency of 53 +/- 2.3% for COD and 46 +/- 2% for carbohydrate. The microbial community analysis using 16S rRNA phylogeny revealed the presence of different species of bacteria, namely Clostridium, Prevotella, Paludibacter, Ensifer, and Petrimonas within the reactors. Volatile fatty acids generated from ABR1 and ABR2 were mainly in the form of acetate and butyrate and a relatively low fraction ofpropionate was detected in ABR1. Based on these results, thermal pre-treatment ofinoculum sludge is preferable for hydrogen production from hydrolysed rice straw.

  9. A CONCEPTUAL DESIGN OF NEUTRON COLLIMATOR IN THE THERMAL COLUMN OF KARTINI RESEARCH REACTOR FOR IN VITRO AND IN VIVO TEST OF BORON NEUTRON CAPTURE THERAPY

    OpenAIRE

    Nina Fauziah; Andang Widiharto; Yohannes Sardjono

    2015-01-01

    Studies were carried out to design a collimator which results in epithermal neutron beam for IN VITRO and IN VIVO of Boron Neutron Capture Therapy (BNCT) at the Kartini research reactor by means of Monte Carlo N-Particle (MCNP) codes. Reactor within 100 kW of thermal power was used as the neutron source. The design criteria were based on recommendation from the International Atomic Energy Agency (IAEA). All materials used were varied in size, according to the value of mean free path for each ...

  10. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-02-01

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  11. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor

    OpenAIRE

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine\\ud exhaust emissions treatment. In this paper, different electrode shapes are analysed and the ...

  12. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Directory of Open Access Journals (Sweden)

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  13. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  14. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  15. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of

  16. Microdosimetric measurements in the thermal neutron irradiation facility of LENA reactor.

    Science.gov (United States)

    Colautti, P; Moro, D; Chiriotti, S; Conte, V; Evangelista, L; Altieri, S; Bortolussi, S; Protti, N; Postuma, I

    2014-06-01

    A twin TEPC with electric-field guard tubes has been constructed to be used to characterize the BNCT field of the irradiation facility of LENA reactor. One of the two mini TEPC was doped with 50ppm of (10)B in order to simulate the BNC events occurring in BNCT. By properly processing the two microdosimetric spectra, the gamma, neutron and BNC spectral components can be derived with good precision (~6%). However, direct measurements of (10)B in some doped plastic samples, which were used for constructing the cathode walls, point out the scarce accuracy of the nominal (10)B concentration value. The influence of the Boral(®) door, which closes the irradiation channel, has been measured. The gamma dose increases significantly (+51%) when the Boral(®) door is closed. The crypt-cell-regeneration weighting function has been used to measure the quality, namely the RBEµ value, of the radiation field in different conditions. The measured RBEµ values are only partially consistent with the RBE values of other BNCT facilities.

  17. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  18. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor.

    Science.gov (United States)

    Benetoli, Luís Otávio de Brito; Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon; Geremias, Reginaldo; de Souza, Ivan Gonçalvez; Debacher, Nito Angelo

    2012-10-30

    In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N(2), Ar, and O(2). The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N(2)degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  19. Gel-sphere-pac fuel for thermal reactors: assessment of fabrication technology and irradiation performance

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)

    1979-11-01

    Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.

  20. Measurements of thermal- and slow-neutron dose distributions in ordinary concrete shield using a reactor neutron beam of different energy ranges

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Makarious, A.S.; El-Kolaly, M.A.; Afifi, Y.A.

    1980-01-01

    Experimental studies on the distribution and attenuation of thermal and slow neutron doses in ordinary concrete shield have been carried-out. A collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor was used. Measurements were performed using, a direct beam, cadmium filtered beam and boron carbide filtered beam. The neutron doses were measured using thermolumin-escent Li/sub 2/B/sub 4/O/sub 7/ detectors. The measured data have been analyzed and a group of attenuation curves were given for beams of reactor neutrons of different energy. These curves show that cadmium and boron carbide filters tend to decrease the neutron doses specially at the beginning of penetration. The data were transformed to that which would be obtained using neutron sources of different geometries.

  1. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    Science.gov (United States)

    Massacret, N.; Moysan, J.; Ploix, M. A.; Jeannot, J. P.; Corneloup, G.

    2013-01-01

    In the framework of the French R&D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 °C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlabin order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  2. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    Science.gov (United States)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  3. Genomic and functional characterization of the modular broad-host-range RA3 plasmid, the archetype of the IncU group.

    Science.gov (United States)

    Kulinska, Anna; Czeredys, Magdalena; Hayes, Finbarr; Jagura-Burdzy, Grazyna

    2008-07-01

    IncU plasmids are a distinctive group of mobile elements with highly conserved backbone functions and variable antibiotic resistance gene cassettes. The IncU archetype is conjugative plasmid RA3, whose sequence (45,909 bp) shows it to be a mosaic, modular replicon with a class I integron different from that of other IncU replicons. Functional analysis demonstrated that RA3 possesses a broad host range and can efficiently self-transfer, replicate, and be maintained stably in alpha-, beta-, and gammaproteobacteria. RA3 contains 50 open reading frames clustered in distinct functional modules. The replication module encompasses the repA and repB genes embedded in long repetitive sequences. RepA, which is homologous to antitoxin proteins from alpha- and gammaproteobacteria, contains a Cro/cI-type DNA-binding domain present in the XRE family of transcriptional regulators. The repA promoter is repressed by RepA and RepB. The minireplicon encompasses repB and the downstream repetitive sequence r1/r2. RepB shows up to 80% similarity to putative replication initiation proteins from environmental plasmids of beta- and gammaproteobacteria, as well as similarity to replication proteins from alphaproteobacteria and Firmicutes. Stable maintenance functions of RA3 are most like those of IncP-1 broad-host-range plasmids and comprise the active partitioning apparatus formed by IncC (ParA) and KorB (ParB), the antirestriction protein KlcA, and accessory stability components KfrA and KfrC. The RA3 origin of transfer was localized experimentally between the maintenance and conjugative-transfer operons. The putative conjugative-transfer module is highly similar in organization and in its products to transfer regions of certain broad-host-range environmental plasmids.

  4. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  5. Key Technologies and Their Development in Nuclear Thermal Propulsion Reactors%核热推进反应堆关键技术及其发展

    Institute of Scientific and Technical Information of China (English)

    陈立新; 胡攀; 王立鹏; 江新标

    2014-01-01

    分析了核热推进NTP(nuclear thermal propulsion)反应堆关键技术及现状,介绍了核热推进反应堆技术在空间推进领域的应用,总结对比了美国、俄罗斯现有核热推进反应堆设计方案的主要参数和特性,并对未来航天器用核热推进反应堆的发展方向和应用前景进行了探讨。%In this paper , the key technologies and their development in nuclear thermal pro-pulsion( NTP) reactors are analyzed , and the application background of NTP reactors in space is also introduced . Meanw hile , the main parameters and characteristics of some N T P reactors designed in USA and Russia are compared . Finally , the development and application foreground of NTP reactors in the future are discussed .

  6. Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist

    Science.gov (United States)

    Xu, Di; Xiao, Zehua; Hao, Chunjing; Qiu, Jian; Liu, Kefu

    2017-06-01

    A dielectric barrier discharge (DBD) reactor is introduced to generate H2O2 by non-thermal plasma with a mixture of oxygen and water mist produced by an ultrasonic atomizer. The results of our experiment show that the energy yield and concentration of the generated H2O2 in the pulsed discharge are much higher than that in AC discharge, due to its high energy efficiency and low heating effect. Micron-sized liquid droplets produced by an ultrasonic atomizer in water mist have large specific surface area, which greatly reduces mass transfer resistance between hydroxyl radicals and water liquids, leading to higher energy yield and H2O2 concentration than in our previous research. The influence of applied voltage, discharge frequency, and environmental temperature on the generated H2O2 is discussed in detail from the viewpoint of the DBD mechanism. The H2O2 concentration of 30 mg l-1, with the energy yield of 2 g kW-1h-1 is obtained by pulsed discharge in our research.

  7. Role of energetic mixed-oxide-fuel-sodium thermal interactions in liquid metal fast breeder reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Fauske, H.K.

    1976-01-01

    Based upon analysis, numerous experiments and examination of all known occurrences of large-mass vapor explosions, the following general behavior principle has emerged: Mixing of large quantities of a hot and cold liquid, a necessary condition for developing sustained pressures and large damage potential from thermal interaction, requires spontaneous nucleation upon contact. Since the contact temperature for the mixed-oxide-fuel-sodium system is well below the spontaneous-nucleation temperature for liquid sodium, the current interesting controversy regarding spontaneous nucleation and its role in the vapor-explosion mechanism itself is largely irrelevant for this system. Therefore, current practice is to use the pressure-volume curve determined by the expanding fuel vapor following a postulated hydrodynamic disassembly (which generally results from considering a number of unrealistic physical processes to occur) for safety evaluation. It follows that for reactors like FFTF and CRBR, the extremely unlikely event of a core meltdown is predicted to occur safely, with essentially no energetics involved.

  8. Contribution to the study of thermal-hydraulic problems in nuclear reactors; Contribution a l`etude de problemes de thermohydraulique dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G

    1998-07-07

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in `in-situ` thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  9. Measurement of the thermal and fast neutron flux in a research reactor with a Li and Th loaded optical fibre detector

    CERN Document Server

    Yamane, Y; Misawa, T; Karlsson, J K H; Pázsit, I

    1999-01-01

    The spatial dependence of thermal and fast neutron flux was measured axially in the core of a 1 MW research reactor. The measurements were made by a thin optical fibre detector with a neutron sensitive ZnS(Ag) scintillation tip. For thermal neutrons sup 6 Li was used, whereas for fast neutrons sup 2 sup 3 sup 2 Th was used as neutron converter. The spatial dependence was measured by moving the fibre axially with a uniform speed. The measurement takes a few minutes, compared to up to 10 h with the conventional wire activation method. Comparison with traditional measurements shows a good agreement. (author)

  10. INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHENOMENA IN ADVANCED GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    INVESTIGATION OF FUNDAMENTAL THERMAL-HYDRAULIC PHE

    2006-09-01

    INL LDRD funded research was conducted at MIT to experimentally characterize mixed convection heat transfer in gas-cooled fast reactor (GFR) core channels in collaboration with INL personnel. The GFR for Generation IV has generated considerable interest and is under development in the U.S., France, and Japan. One of the key candidates is a block-core configuration first proposed by MIT, has the potential to operate in Deteriorated Turbulent Heat Transfer (DTHT) regime or in the transition between the DTHT and normal forced or laminar convection regime during post-loss-of-coolant accident (LOCA) conditions. This is contrary to most industrial applications where operation is in a well-defined and well-known turbulent forced convection regime. As a result, important new need emerged to develop heat transfer correlations that make possible rigorous and accurate predictions of Decay Heat Removal (DHR) during post LOCA in these regimes. Extensive literature review on these regimes was performed and a number of the available correlations was collected in: (1) forced laminar, (2) forced turbulent, (3) mixed convection laminar, (4) buoyancy driven DTHT and (5) acceleration driven DTHT regimes. Preliminary analysis on the GFR DHR system was performed and using the literature review results and GFR conditions. It confirmed that the GFR block type core has a potential to operate in the DTHT regime. Further, a newly proposed approach proved that gas, liquid and super critical fluids all behave differently in single channel under DTHT regime conditions, thus making it questionable to extrapolate liquid or supercritical fluid data to gas flow heat transfer. Experimental data were collected with three different gases (nitrogen, helium and carbon dioxide) in various heat transfer regimes. Each gas unveiled different physical phenomena. All data basically covered the forced turbulent heat transfer regime, nitrogen data covered the acceleration driven DTHT and buoyancy driven DTHT

  11. Impacts of Xe-135m on Xenon Reactivity in Thermal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeha; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    To our best knowledge, the effect of the omission of Xe-135m has never been evaluated before. Recently, we found that the cross section data of Xe-135m are available from the TENDL-2011 library based on the theoretical evaluations. According to the TENDL data, the neutron absorption cross section of Xe-135m turns out to be much larger than that of Xe-135 in the thermal neutron region, as shown in Fig. 1. In this paper, we evaluated the impacts of Xe-135m on the total steady-state and transient Xe reactivity. By taking into account Xe-135m in the I-135 decay, we have found the followings. First, the steady state total xenon reactivity is slightly increased by ∼0.94% as compared with the conventional model. Second, the impact of Xe-135m on the transient Xe reactivity is rather significant. In particular, the reactivity change during the early transient period can be noticeably enhanced by accounting for Xe-135. And this indicates that Xe-135m may play an important role in measuring the PCR for which the transient Xenon reactivity should be accurately estimated. Currently, the impacts of Xe-135 on the PCR measurement are under investigation.

  12. Synthesis and characterization of Nd2O3 nanoparticles in a radiofrequency thermal plasma reactor

    Science.gov (United States)

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Dhole, S. D.; Ghorui, S.

    2016-02-01

    The synthesis of nanocrystalline Nd2O3 through an inductively coupled radiofrequency thermal plasma route is reported. Unlike in conventional synthesis processes, plasma-synthesized nanoparticles are directly obtained in a stable hexagonal crystal structure with a faceted morphology. The synthesized nanoparticles are highly uniform with an average size around 20 nm. The nanoparticles are characterized in terms of phase formation, crystallinity, morphology, size distribution, nature of chemical bonds and post-synthesis environmental effects using standard characterization techniques. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy are used for structural and morphological studies. The thermo-gravimetric technique, using a differential scanning calorimeter, is used to investigate the purity of phase. Fourier transform infrared spectroscopy is used to investigate the nature of existing bonds. The optical response of the nanoparticles is investigated through the electronic transition of Nd3+ ions in its crystalline structure via UV-visible spectroscopy. The presence of defect states and corresponding activation energies in the nanocrystalline Nd2O3 compared to those of the precursors are studied using thermoluminescence.

  13. Thermal-Fatigue Analysis of W-joined Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon; Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk National University, Chonbuk (Korea, Republic of)

    2015-10-15

    Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, W/FMS joining methods have been developed and a new Ti interlayer was applied differently from the previous work. In the present study, the W/FMS PFC development was introduced with the following procedure to apply to the PFCs for a fusion reactor: (1) Three W/FMS mockups were fabricated using the developed HIP followed by a post-HIP heat treatment (PHHT). (2) Because the High Heat Flux (HHF) test should be performed over the thermal lifetime of the mockup under the proper test conditions to confirm the joint's integrity, the test conditions were determined through a preliminary analysis. In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. From the analysis, the heating and the cooling conditions were determined for 0.5- and 1.0-MW/m{sup 2} heat fluxes, respectively. Elastic-plastic analysis is performed to determine the lifetime and finally, the 1.0 MW/m{sup 2} heat flux conditions are determined up to 4,306 cycles. The test will be done in the near future and the measured temperatures will be compared with the present simulation results.

  14. Structure and thermal properties of as-fabricated U-7Mo/Mg and U-10Mo/Mg low-enriched uranium research reactor fuels

    Science.gov (United States)

    Kulakov, Mykola; Saoudi, Mouna; Piro, Markus H. A.; Donaberger, Ronald L.

    2017-02-01

    Aluminum-clad U-7Mo/Mg and U-10Mo/Mg pin-type mini-elements (with a core uranium loading of 4.5 gU/cm3) have been fabricated at the Canadian Nuclear Laboratories for experimental tests and ultimately for use in research and test reactors. In this study, the microstructure and phase composition of unirradiated U-7Mo/Mg and U-10Mo/Mg fuel cores were analyzed using optical and scanning electron microscopy, and neutron powder diffraction. Thermal properties were characterized using a combination of experimental measurements and thermodynamic calculations. The thermal diffusivity was measured using the laser flash method. The temperature-dependent specific heat capacities were calculated based on the linear rule of mixture using the weight fraction of different crystalline phases and their specific heat capacity values taken from the literature. The thermal conductivity was then calculated using the measured thermal diffusivity, the measured density and the calculated specific heat capacity. The resulting thermal conductivity is practically identical for both types of fuel. The in-reactor temperatures were predicted using conjugate heat transfer simulations.

  15. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  16. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ; Caracterizacion del flujo neutronico en el Hohlraum de la columna termica del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Palacios, J.C.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: adl@nuclear.inin.mx

    2006-07-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  17. Trend in Plutonium Content of MOX in Thermal Reactor Use and Irradiation Behavior of MOX with High Plutonium Content

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, N.; Baba, T.; Kamimura, K. [Japan Nuclear Energy Safety Organization - JNES, TOKYU REIT Toranomon Bldg., 3-17-1, Toranomon, Minato-ku, Tokyo, 105-0001 (Japan); Verwerft, M.; Jutier, F. [SCK-CEN (Belgium)

    2009-06-15

    The uranium enrichment of UO{sub 2} fuel for the current power reactors, both PWR and BWR, tends to increase because of increasing burn-up target. The plutonium content of MOX fuel used in thermal reactors shall be determined in order to have reactivity worth equivalent to enriched UO{sub 2} fuel based on physical accounting method for adjusting fissile enrichment, thus the plutonium content tends to increase according to the increment of the uranium enrichment of UO{sub 2} fuel and this trend shall further be accentuated due to the fact that Pu recovered from reprocessing of the spent high burnup UO{sub 2} fuel contains less fissile isotopes. The plutonium content is calculated by use of the physical accounting method with the plutonium having several kinds of isotope ratios and the calculation results indicate that the plutonium content in MOX will evolve to ratios in excess of 10%. It shall be, therefore, important to know the irradiation behavior of MOX with high plutonium content of more than 10 wt%. MOX fuel rods having a plutonium content of about 14 wt% and fabricated by use of MIMAS process have been irradiated under PWR conditions in the Belgian test reactors BR-3 and BR-2. The peak fuel rod burn-up of the fuel rods studied in this paper ranges from 31 to 37 GWd/t-HM, and their average burnup is about 22-26 GWd/t-HM with the rod averaged linear heat generation rate of about 15-21 kW/m. The MOX rods are investigated by destructive and non-destructive post irradiation examinations and some of them are now continued to be irradiated in BR-2. Mixed Oxide (U,Pu)O{sub 2} fuel produced by the MIMAS process results in a fine dispersion of Pu enriched particles in a UO{sub 2} matrix and effectively gives three enrichment classes: low, medium and high enriched. The high enriched particles (often called 'Pu spots'), have an enrichment of around 25 wt% Pu, the low enriched phase is the UO{sub 2} matrix and contains only trace amounts of Pu. An

  18. SNTP program reactor design

    Science.gov (United States)

    Walton, Lewis A.; Sapyta, Joseph J.

    1993-06-01

    The Space Nuclear Thermal Propulsion (SNTP) program is evaluating the feasibility of a particle bed reactor for a high-performance nuclear thermal rocket engine. Reactors operating between 500 MW and 2,000 MW will produce engine thrusts ranging from 20,000 pounds to 80,000 pounds. The optimum reactor arrangement depends on the power level desired and the intended application. The key components of the reactor have been developed and are being tested. Flow-to-power matching considerations dominate the thermal-hydraulic design of the reactor. Optimal propellant management during decay heat cooling requires a three-pronged approach. Adequate computational methods exist to perform the neutronics analysis of the reactor core. These methods have been benchmarked to critical experiment data.

  19. Progress of thermal hydraulic evaluation methods and experimental studies on a sodium-cooled fast reactor and its safety in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kamide, Hideki, E-mail: kamide.hideki@jaea.go.jp; Ohshima, Hiroyuki, E-mail: ohshima.hiroyuki@jaea.go.jp; Sakai, Takaaki, E-mail: sakai.takaaki@jaea.go.jp; Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp

    2017-02-15

    Highlights: • Thermal hydraulic issues for safety design criteria of sodium cooled fast reactors. • Measurement of velocity data in a subchannel surrounded by wire wrapped fuel-pins. • Statistical evaluation of core hot spot temperature during natural circulation. • Simulation of dynamics of molten fuel pool in a core disruptive accident. • V&V procedure of a multi-dimensional thermal hydraulic code on thermal striping. - Abstract: In the framework of the Generation-IV International Forum, the safety design criteria (SDC) incorporating safety-related R&D results on innovative technologies and lessons learned from Fukushima Dai-ichi nuclear power plants accident has been established to provide the set of general criteria for the safety designs of structures, systems and components of Generation-IV Sodium-cooled Fast Reactors (Gen-IV SFRs). A number of thermal-hydraulic evaluations are necessary to meet the concept of the criteria in the design studies of Gen-IV SFRs. This paper focuses on four kinds of thermal-hydraulic issues associated with the SDC, i.e., fuel subassembly thermal-hydraulics, natural circulation decay heat removal, core disruptive accidents, and thermal striping. Progress of evaluation methods on these issues is shown with activities on verification and validation (V&V) and experimental studies towards commercialization of SFR in Japan. These evaluation methods are planned to be eventually integrated into a comprehensive numerical simulation system that can be applied to all possible phenomena in SFR systems and that can be expected to become an effective tool for the development of human resource and the handing our knowledge and technologies down.

  20. Numerical models for the analysis of thermal behavior and coolability of a particulate debris bed in reactor lower head

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Sang Baik; Kim, Byung Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This report provides three distinctive, but closely related numerical models developed for the analysis of thermal behavior and coolability of a particulate debris bed that is may be formed inside the reactor lower head during severe accident late phases. The first numerical module presented in the report, MELTPRO-DRY, is used to analyze numerically heat-up and melting process of the dry particle bed, downward- and sideward-relocation of the liquid melt under gravity force and capillary force acting among porous particles, and solidification of the liquid melt relocated into colder region. The second module, MELTPROG-WET, is used to simulate numerically the cooling process of the particulate debris bed under the existence of water, which is subjected to two types of numerical models. The first type of WET module utilizes distinctive models that parametrically simulate the water cooling process, that is, quenching region, dryout region, and transition region. The choice of each parametric model depends on temperature gradient between the cooling water and the debris particles. The second type of WET module utilizes two-phase flow model that mechanically simulates the cooling process of the debris bed. For a consistent simulation from the water cooling to the dryout debris bed, on the other hand, the aforementioned two modules, MELTPROG-DRY and MELTPROG-WET, were integrated into a single computer program DBCOOL. Each of computational models was verified through limited applications to a heat-generating particulate bed contained in the rectangular cavity. 22 refs., 5 figs., 2 tabs. (Author)

  1. Analyses of deformation and thermal-hydraulics within a wire-wrapped fuel subassembly in a liquid metal fast reactor by the coupled code system

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp; Ohshima, Hiroyuki; Ito, Masahiro

    2017-06-15

    Highlights: • The coupled computational code system allowed for mechanical and thermal-hydraulic analyses in a fast reactor fuel subassembly. • In this system interactive calculations between flow area deformations and coolant temperature changes are repeated to their convergence state. • Effects on bundle-duct interaction on coolant temperature distributions were investigated by using the code system. - Abstract: The coupled numerical analysis of mechanical and thermal-hydraulic behaviors was performed for a wire-wrapped fuel pin bundle subassembly irradiated in a fast reactor. For the analysis, the fuel pin bundle deformation analysis code BAMBOO and the thermal-hydraulic analysis code ASFRE exchanged the deformation and temperature analysis results through the iterative calculations to attain convergence corresponding to the static balance between deformation and temperature. The analysis by the coupled code system showed that the radial distribution of coolant temperature in the subassembly tended to flatten as a result of the fuel pin bundle deformation governed by cladding void swelling and irradiation creep. Such flattening of temperature distribution was slightly observed as a result of fuel pin bowings due to the cladding-wire interaction even when no bundle-duct interaction occurred. The effect of the spacer wire-pitch on deformation and thermal-hydraulics was also investigated in this study.

  2. Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization of the Uranium Foil Target in the RSG-GAS Reactor

    Directory of Open Access Journals (Sweden)

    S. Pinem

    2016-12-01

    Full Text Available The G. A. Siwabessy Multipurpose Reactor (Reaktor Serba Guna G.A. Siwabessy, RSG-GAS has an average thermal neutron flux of 2×1014 neutron/(cm2 sec at the nominal power of 30 MW. With such a high thermal neutron flux, the reactor is suitable for the production of Mo-99 which is widely used as a medical diagnostic radioisotope. This paper describes a safety analysis to determine the optimum LEU foil target by using a coupled neutronic and thermal-hydraulic code, MTR-DYN. The code has been developed based on the three-dimensional multigroup neutron diffusion theory. The best estimated results can be achieved by using a coupled neutronic and thermal-hydraulic code. The calculation results show that the optimum LEU foil target is 54 g corresponding to the reactivity change of less than the limit value of 500 pcm. From the safety analysis for the case when the primary flow rate decreased by 15% from its nominal value, it was found that the peak temperatures of the coolant and cladding are 69.5°C and 127.9°C, respectively. It can be concluded that the optimum LEU foil target can be irradiated safely without exceeding the limit value.

  3. Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Kusuma, Mukhsinun Hadi; Putra, Nandy; Imawan, Ficky Augusta [Heat Transfer Laboratory, Department of Mechanical Engineering Universitas Indonesia, Kampus (Indonesia); Antariksawan, Anhar Riza [Centre for Nuclear Reactor Safety and Technology, National Nuclear Energy Agency of Indonesia (BATAN), Kawasan Puspiptek Serpong (Indonesia)

    2017-04-15

    The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of 0.22°C/W, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

  4. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  5. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  6. Investigation of V and V process for thermal fatigue issue in a sodium cooled fast reactor – Application of uncertainty quantification scheme in verification and validation with fluid-structure thermal interaction problem in T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaaki, E-mail: tanaka.masaaki@jaea.go.jp

    2014-11-15

    Highlights: • Outline of numerical simulation code MUGTHES for fluid-structure thermal interaction was described. • The grid convergence index (GCI) method was applied according to the ASME V and V-20 guide. • Uncertainty of MUGTHES can be successfully quantified for thermal-hydraulic problems and unsteady heat conduction problems in the structure. • Validation for fluid-structure thermal interaction problem in a T-junction piping system was well conducted. - Abstract: Thermal fatigue caused by thermal mixing phenomena is one of the most important issues in design and safety assessment of fast breeder reactors. A numerical simulation code MUGTHES consisting of two calculation modules for unsteady thermal-hydraulics analysis and unsteady heat conduction analysis in structure has been developed to predict thermal mixing phenomena and to estimate thermal response of structure under the thermal interaction between fluid and structure fields. Although verification and validation (V and V) of MUGTHES has been required, actual procedure for uncertainty quantification is not fixed yet. In order to specify an actual procedure of V and V, uncertainty quantifications with the grid convergence index (GCI) estimation according to the existing guidelines were conducted in fundamental laminar flow problems for the thermal-hydraulics analysis module, and also uncertainty for the structure heat conduction analysis module and conjugate heat transfer model was quantified in comparison with the theoretical solutions of unsteady heat conduction problems. After the verification, MUGTHES was validated for a practical fluid-structure thermal interaction problem in T-junction piping system compared with measured results of velocity and temperatures of fluid and structure. Through the numerical simulations in the verification and validation, uncertainty of the code was successfully estimated and applicability of the code to the thermal fatigue issue was confirmed.

  7. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    Science.gov (United States)

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  8. 日本文殊原型快堆堆芯出口腔室热分层现象数值模拟%Numerical Simulation of Thermal Stratification in Reactor Upper Plenum of Monju Prototype Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    薛秀丽; 付陟玮; 冯预恒; 刘一哲; 许义军; 杨红义

    2013-01-01

    Using a commercial CFD code STAR-CCM + and adopting rational meshing technology and physical models ,an approximate 1∶1 scale numerical simulation model for Monju Prototype Fast Reactor upper plenum was established ,a numerical investiga-tion of thermal-hydraulic phenomenon under 40% rated power output condition was car-ried out ,and the relatively complete process of thermal stratification within upper ple-num was studied .The results show that the steady thermal stratification is set up at 2 min after reactor shutdown and gets across the top of the up-flow barrel during 10-21 min ,the flow pattern is unstable during 10-140 min when thermal stratification locates near the top of the up-flow barrel ,and stable flow pattern close to that before reactor shutdown is resumed at 140 min after reactor shutdown .By comparing with test result ,it is shown that a good agreement is achieved at an early stage of the transient (0-4 min) ,which can be concluded that the present numerical simulation is applicable to investigate the thermal stratification phenomena .It is also demonstrated that the eleva-tion of the interface of the thermal stratification is overestimated after 4 min from the re-actor trip ,which is largely due to the difference of simulation boundaries and structure with the reality .%本文利用商业CFD程序STAR-CCM+,采用合理的网格生成技术及物理模型,对日本文殊原型快堆堆芯出口腔室建立近似1∶1的模型,模拟分析40%额定功率停堆过程中堆芯出口腔室的瞬态工况,获得腔室内较为完整的热分层进程。结果表明:停堆2 min后腔室内出现稳定热分层现象;10~21 min时热分层通过上升桶桶顶位置;10~140 min热分层处于上升筒顶端位置附近期间,腔室内流型不稳定;140 min后热分层完全处于上升桶顶,桶内流型稳定且接近于停堆前。模拟结果与实验数据对比表明,停堆初期4 min内两者符合较好,表明本

  9. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-12-02

    The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  10. Experimental investigations of thermal-hydraulic processes arising during operation of the passive safety systems used in new projects of nuclear power plants equipped with VVER reactors

    Science.gov (United States)

    Morozov, A. V.; Remizov, O. V.; Kalyakin, D. S.

    2014-05-01

    The results obtained from experimental investigations into thermal-hydraulic processes that take place during operation of the passive safety systems used in new-generation reactor plants constructed on the basis of VVER technology are presented. The experiments were carried out on the model rigs available at the Leipunskii Institute for Physics and Power Engineering. The processes through which interaction occurs between the opposite flows of saturated steam and cold water moving in the vertical steam line of the additional system for passively flooding the core from the second-stage hydro accumulators are studied. The specific features pertinent to undeveloped boiling of liquid on a single horizontal tube heated by steam and steam-gas mixture that is typical for of the condensing operating mode of a VVER reactor steam generator are investigated.

  11. In-situ catalytic synthesis of ammonia from urea in a semi-batch reactor for safe utilization in thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Sahu; A.V. Patwardhan; B.C. Meikap [Indian Institute of Technology (IIT), Kharagpur (India). Department of Chemical Engineering

    2010-05-15

    Urea as the source of ammonia for the flue gas conditioning/NOx reduction system in thermal power plant has the obvious advantages that no ammonia shipping, handling and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage and use of anhydrous and aqueous ammonia, as ammonia is a highly volatile noxious material. But no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a semi-batch reactors. The catalysts used in this study are: TiO{sub 2}, fly ash, mixture of Ni and Fe and Al{sub 2}O{sub 3}.A number of experiments was carried out in a semi-batch reactor at different catalyst doses, temperatures and concentration of urea solution from 10 to 30% by weight and equilibrium study has been made.

  12. Validation of CENDL and JEFF evaluated nuclear data files for TRIGA calculations through the analysis of integral parameters of TRX and BAPL benchmark lattices of thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.N. [Department of Physics, Jahangirnagar University, Dhaka (Bangladesh); Sarker, M.M. [Reactor Physics and Engineering Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Savar, GPO Box 3787, Dhaka 1000 (Bangladesh); Khan, M.J.H. [Reactor Physics and Engineering Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Savar, GPO Box 3787, Dhaka 1000 (Bangladesh)], E-mail: jahirulkhan@yahoo.com; Islam, S.M.A. [Department of Physics, Jahangirnagar University, Dhaka (Bangladesh)

    2009-10-15

    The aim of this paper is to present the validation of evaluated nuclear data files CENDL-2.2 and JEFF-3.1.1 through the analysis of the integral parameters of TRX and BAPL benchmark lattices of thermal reactors for neutronics analysis of TRIGA Mark-II Research Reactor at AERE, Bangladesh. In this process, the 69-group cross-section library for lattice code WIMS was generated using the basic evaluated nuclear data files CENDL-2.2 and JEFF-3.1.1 with the help of nuclear data processing code NJOY99.0. Integral measurements on the thermal reactor lattices TRX-1, TRX-2, BAPL-UO{sub 2}-1, BAPL-UO{sub 2}-2 and BAPL-UO{sub 2}-3 served as standard benchmarks for testing nuclear data files and have also been selected for this analysis. The integral parameters of the said lattices were calculated using the lattice transport code WIMSD-5B based on the generated 69-group cross-section library. The calculated integral parameters were compared to the measured values as well as the results of Monte Carlo Code MCNP. It was found that in most cases, the values of integral parameters show a good agreement with the experiment and MCNP results. Besides, the group constants in WIMS format for the isotopes U-235 and U-238 between two data files have been compared using WIMS library utility code WILLIE and it was found that the group constants are identical with very insignificant difference. Therefore, this analysis reflects the validation of evaluated nuclear data files CENDL-2.2 and JEFF-3.1.1 through benchmarking the integral parameters of TRX and BAPL lattices and can also be essential to implement further neutronic analysis of TRIGA Mark-II research reactor at AERE, Dhaka, Bangladesh.

  13. FLODIS: a computer model to determine the flow distribution and thermal response of the Fort St. Vrain reactor

    Energy Technology Data Exchange (ETDEWEB)

    Paul, D.D.

    1976-06-01

    FLODIS is a combined heat transfer and fluid flow analysis calculation written specifically for the core of the Fort St. Vrain reactor. It is a lumped-node representation of the 37 refueling regions in the active core. Heat conduction to the coolant and in the axial direction is represented; however, the effect of conduction between refueling regions is not included. The calculation uses the specified operating conditions for the reactor at power to determine appropriate loss coefficients for the variable orifices in each refueling region. Flow distributions following reactor trip and a reduction in coolant pressure and flow are determined assuming that the orifice coefficients remain constant. Iterative techniques are used to determine the distribution of coolant flow as a function of time during the transient. Results are presented for the evaluation of the transient for the Fort St. Vrain reactor following depressurization and cooling with two circulators operating at 8000 rpm.

  14. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  15. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  16. Ultrasonic meters in the feedwater flow to recover thermal power in the reactor of nuclear power plant of Laguna Verde U1 and U2; Medidores ultrasonicos en el flujo de agua de alimentacion para recuperar potencia termica en el reactor de la Central Nuclear Laguna Verde U1 and U2

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F. [CFE, Central Laguna Verde, Km. 42.5 Carretera Cardel-Nautla, Veracruz (Mexico)]. e-mail: francisco.tijerina@cfe.gob.mx

    2008-07-01

    The engineers in nuclear power plants BWRs and PWRs based on the development of the ultrasonic technology for the measurement of the mass, volumetric flow, density and temperature in fluids, have applied this technology in two primary targets approved by the NRC: the use for the recovery of thermal power in the reactor and/or to be able to realize an increase of thermal power licensed in a 2% (MUR) by 1OCFR50 Appendix K. The present article mentions the current problem in the measurement of the feedwater flow with Venturi meters, which affects that the thermal balance of reactor BWRs or PWRs this underestimated. One in broad strokes describes the application of the ultrasonic technology for the ultrasonic measurement in the flow of the feedwater system of the reactor and power to recover thermal power of the reactor. One is to the methodology developed in CFE for a calibration of the temperature transmitters of RTD's and the methodology for a calibration of the venturi flow transmitters using ultrasonic measurement. Are show the measurements in the feedwater of reactor of the temperature with RTD's and ultrasonic measurement, as well as the flow with the venturi and the ultrasonic measurement operating the reactor to the 100% of nominal thermal power, before and after the calibration of the temperature transmitters and flow. Finally, is a plan to be able to realize a recovery of thermal power of the reactor, showing as carrying out their estimations. As a result of the application of ultrasonic technology in the feedwater of reactor BWR-5 in Laguna Verde, in the Unit 1 cycle 13 it was recover an equivalent energy to a thermal power of 25 MWt in the reactor and an exit electrical power of 6 M We in the turbogenerator. Also in the Unit 2 cycle 10 it was recover an equivalent energy to a thermal power of 40 MWt in the reactor and an exit electrical power of 16 M We in the turbogenerator. (Author)

  17. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  18. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  19. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massacret, N.; Jeannot, J. P. [DEN/DTN/STPA/LIET, CEA Cadarache, Saint Paul Lez Durance (France); Moysan, J.; Ploix, M. A.; Corneloup, G. [Aix-Marseille Univ, LMA UPR 7051 CNRS, site LCND, 13625 Aix-en-Provence (France)

    2013-01-25

    In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  20. Modeling and simulation of a pseudo-two-phase gas-liquid column reactor for thermal hydrocracking of petroleum heavy fractions

    Directory of Open Access Journals (Sweden)

    E.M. Matos

    2002-07-01

    Full Text Available This work presents a model to predict the behavior of velocity, gas holdup and local concentration fields in a pseudo-two-phase gas-liquid column reactor applied for thermal hydrocracking of petroleum heavy fractions. The model is based on the momentum and mass balances for the system, using an Eulerian-Eulerian approach. Using the k-epsilon model,fluid dynamics accounts for both laminar and turbulent flows, with discrete small bubbles (hydrogen flowing in a continuous pseudohomogeneous liquid phase (oil and catalyst particles. The petroleum is assumed to be a mixture of pseudocomponents, grouped by similar chemical structural properties, and the thermal hydrocracking is taken into account using a kinetic network based on these pseudocomponents.

  1. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  2. Development of multi-dimensional thermal hydraulic modeling using mixing factors for wire wrapped fuel pin bundles with inter-subassembly heat transfer in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Kamide, H.; Ohshima, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-10-01

    Temperature distributions in fuel subassemblies of fast reactors interactively affect heat transfer from center to outer region of the core (inter-subassembly heat transfer) and cooling capability of an inter-wrapper flow, as well as maximum cladding temperature. The prediction of temperature distribution in the sub-assembly is, therefore one of the important issues for the reactor safety assessment. To treat the complex phenomena in the core, a multi-dimensional thermal hydraulic analysis is the most promising method. From the studies on the multi-dimensional thermal hydraulic modeling for the fuel sub-assemblies, the modeling have been recommended through the analysis of sodium experiments using driver subassembly test rig PLANDTL-DHX and blanket subassembly test rig CCTL-CFR. Computations of steady states experiments in the test rigs using the above modeling showed quite good agreement to the experimental data. In the present study, the use of this modeling was extended to transient analyses, and its applicability was examined. Firstly, non-dimensional parameters used to determine the mixing factors were modified from the ones based on bundle-averaged values to the ones by local values. Secondly, a new threshold function was derived and introduced to cut off the mixing factor of thermal plumes under inertia force dominant conditions. In the results of this validation, the accuracy was comparable between the modeling and the experimental instrumentation. Thus the present modeling is capable of predicting the thermal hydraulic fields of the wire wrapped fuel pin bundles with inter-subassembly heat transfer under the conditions from rated steady operations to transitions toward natural circulation decay heat removal modes. (J.P.N.)

  3. Steam feed and effect of steam-thermal seal in thermolysis of tire shreds in a screw-type reactor

    Science.gov (United States)

    Kalitko, V. A.

    2010-05-01

    On the basis of experience in commercial operation, the effect of steam seal in tire-shred pyrolysis in a screw-type reactor with superheated steam has been considered and analytically substantiated; there, local steam feed produces the above effect at the total reduced pressure and keeps air from entering the reactor without sluices or valves used for hermetization of its loading and unloading. It has been shown that the increase in the production rate of pyrolysis due to the heating by steam amounts to 10-15% and is limited by the diffusion transfer in the reactor’s charge bed.

  4. Kinetics of sub-2 nm TiO{sub 2} particle formation in an aerosol reactor during thermal decomposition of titanium tetraisopropoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Liu, Pai; Fang, Jiaxi; Wang, Wei-Ning; Biswas, Pratim, E-mail: pbiswas@wustl.edu [Washington University in St. Louis, Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental & Chemical Engineering (United States)

    2015-03-15

    Particle size distribution measurements from differential mobility analyzers (DMAs) can be utilized to study particle formation mechanisms. However, knowledge on the initial stages of particle formation is incomplete, since in conventional DMAs, the Brownian broadening effect limits their ability to measure sub-2 nm-sized particles. Previous studies have demonstrated the capability of high-flow DMAs, such as the Half Mini DMAs, to measure sub-2 nm particles with significantly higher resolutions than conventional DMAs. A Half Mini DMA was applied to study the kinetics of sub-2 nm TiO{sub 2} nanoparticle formation in a furnace aerosol reactor, through the thermal decomposition of titanium tetraisopropoxide (TTIP). The influence of parameters such as reaction temperature, residence time, precursor concentration, and the introduction of bipolar charges on sub-2 nm particle size distributions were studied. A first order reaction rate derived from the dependence of size distributions on reaction temperature matched well with existing literature data. The change in precursor residence time and precursor concentration altered the size distributions correspondingly, indicating the occurrence of TTIP thermal decomposition. The introduction of bipolar charges in aerosol reactors enhanced the consumption of reactants, possibly due to ion-induced nucleation and induced dipole effects.

  5. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  6. H2/Ar等离子体射流反应器的模拟%SIMULATION OF H2/Ar THERMAL PLASMA JET REACTOR

    Institute of Scientific and Technical Information of China (English)

    谢克昌; 陈宏刚; 田亚竣; 朱素渝

    2001-01-01

    The mathematical model based on Computational Fluid Dynamics (CFD) technique is developed for the direct current arc plasma jet reactor in order to optimize the reactor structure and operation conditions for the direct production of acetylene from coal by thermal plasma technique.In this model, fluid flow, convective heat transfer,and conjugate heat conductivity are considered simultaneously on the basis of rational assumption. It avoids the error caused by estimating the temperature of inner wall of the reactor. Realistic allowance is made for turbulent behavior,temperature-dependence property value,and boundary conditions.The thermodynamic and transport properties of H2/Ar system, which are usually expressed in the tables of discrete data, are fitted into the expressions that can be easily inserted in the program.Simulations of turbulence is carried out by commonly used standard k-ε two equation turbulence model.The temperature field and velocity field in the plasma jet reactor are calculated by using SIMPLEST algorithm.The conclusion obtained provides guidance for further experiment and technical development.%建立了直流电弧等离子体射流反应器的计算流体动力学模型,在模型中同时考虑流动、对流换热和共轭热传导等过程,消除了以往对反应器内壁温度估计造成的误差.对湍流的模拟采用了常见的标准k-ε双方程湍流模型.用SIMPLEST算法模拟与计算了反应器内等离子体的温度场和速度场.

  7. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The

  8. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Kalcheva, S [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Sikik, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-09-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).

  9. Formation of NO from N2/O2 mixtures in a flow reactor: Toward an accurate prediction of thermal NO

    DEFF Research Database (Denmark)

    Abian, Maria; Alzueta, Maria U.; Glarborg, Peter

    2015-01-01

    We have conducted flow reactor experiments for NO formation from N2/O2 mixtures at high temperatures and atmospheric pressure, controlling accurately temperature and reaction time. Under these conditions, atomic oxygen equilibrates rapidly with O2. The experimental results were interpreted......, is recommended for use in kinetic modeling....

  10. Thermal-hydraulic behavior of physical quantities at critical velocities in a nuclear research reactor core channel using plate type fuel

    Directory of Open Access Journals (Sweden)

    Sidi Ali Kamel

    2012-01-01

    Full Text Available The thermal-hydraulic study presented here relates to a channel of a nuclear reactor core. This channel is defined as being the space between two fuel plates where a coolant fluid flows. The flow velocity of this coolant should not generate vibrations in fuel plates. The aim of this study is to know the distribution of the temperature in the fuel plates, in the cladding and in the coolant fluid at the critical velocities of Miller, of Wambsganss, and of Cekirge and Ural. The velocity expressions given by these authors are function of the geometry of the fuel plate, the mechanical characteristics of the fuel plate’s material and the thermal characteristics of the coolant fluid. The thermal-hydraulic study is made under steady-state; the equation set-up of the thermal problem is made according to El Wakil and to Delhaye. Once the equation set-up is validated, the three critical velocities are calculated and then used in the calculations of the different temperature profiles. The average heat flux and the critical heat flux are evaluated for each critical velocity and their ratio reported. The recommended critical velocity to be used in nuclear channel calculations is that of Wambsganss. The mathematical model used is more precise and all the physical quantities, when using this critical velocity, stay in safe margins.

  11. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  12. Optimization study and neutronic and thermal-hydraulic design calculations of a 75 KWTH aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Garcia, Lorena P. Rodriguez; Llanes, Jesus Salomon; Hernandez, Carlos R. Garcia, E-mail: dperez@instec.cu, E-mail: dmilian@instec.cu, E-mail: lorenapilar@instec.cu, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Lira, Carlos A. Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Rodriguez, Manuel Cadavid, E-mail: mcadavid2001@yahoo.com [Tecnologia Nuclear Medica Spa, TNM (Chile)

    2015-07-01

    {sup 99m}Tc is the most common radioisotope used in nuclear medicine. It is a very useful radioisotope, which is used in about 30-40 million procedures worldwide every year. Medical diagnostic imaging techniques using {sup 99m}Tc represent approximately 80% of all nuclear medicine procedures. Although {sup 99m}Tc can be produced directly on a cyclotron or other type of particle accelerator, currently is almost exclusively produced from the beta-decay of its 66-h parent {sup 99}Mo. {sup 99}Mo production system in an Aqueous Homogeneous Reactor (AHR) is potentially advantageous because of its low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing and purification characteristics. In this paper, an AHR conceptual design using Low Enriched Uranium (LEU) is studied and optimized for the production of {sup 99}Mo. Aspects related with the neutronic behavior such as optimal reflector thickness, critical height, medical isotopes production and the reactivity feedback introduced in the solution by the volumetric expansion of the fuel solution due to thermal expansion of the fuel solution and the void volume generated by radiolytic gas bubbles were evaluated. Thermal-hydraulics studies were carried out in order to show that sufficient cooling capacity exists to prevent fuel overheating. The neutronic and thermal-hydraulics calculations have been performed with the MCNPX computational code and the version 14 of ANSYS CFX respectively. The neutronic calculations demonstrated that the reactor is able to produce 370 six-day curies of {sup 99}Mo in 5 days operation cycles and the CFD simulation demonstrated that the heat removal systems provide sufficient cooling capacity to prevent fuel overheating, the maximum temperature reached by the fuel (89.29 deg C) was smaller to the allowable temperature limit (90 deg C). (author)

  13. Verification and Validation of the PLTEMP/ANL Code for Thermal-Hydraulic Analysis of Experimental and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanan, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-07

    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  14. Evaluation of neutron dose and gamma dose at thermal facility of Peruvian research reactor RP-10; Evaluacion de la dosis gamma y de neutrones en la facilidad termica del reactor peruano de investigacion RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier; Miranda, Hector; Aparicio, Claudia; Lazaro, Gerardo [Instituto Peruano de Energia Nuclear (IPEN), Lima (Peru). Dept. de Calculo, Analisis y Seguridad (CASE)]. E-mail: hmcmiranda@hotmail.com; jjgb76@yahoo.com; caparicio@scientist.com; glazaro@ipen.gob.pe; Zuniga, Agustin [Instituto Peruano de Energia Nuclear (IPEN), Lima (Peru). Direccion General de Instalaciones (DGI)]. E-mail: azuniga@ipen.gob.pe

    2005-07-01

    One of main lines of work in the Peruvian nuclear reactor RP-10, is a complex systems simulation by mean of Monte Carlo technique, oriented in particular to characterization of irradiation facilities. In this work it is presented the comparison of experimental measurements, based in measure of thermal, epithermal and fast neutron flux distribution, neutron dose and gamma dose at thermal facility of RP-10, with the MCNP4B compute code, being observed a good agreement between both results. The neutron flux measures were carried out by irradiation of gold, indium and nickel metallic monitors; then it were measured the activities using a gamma spectrometry chain based on a hyperpure germanium (HPGe) detector. With these results the neutron dose was determined, and it was also measured, using a equipment based on a boron trifluoride detector (BF3, NRC-RemRad). A device based on Geiger Mueller detector (FAG-FH40FE) was used for the gamma dose rate measurement. Finally there were measured both gamma and neutron dose rate using TLD-600 and TLD-700 thermoluminescent dosimeters, which were previously characterized. (author)

  15. Preliminary experimental results using the thermal-hydraulic integral test facility (VISTA) for the pilot plant of the system integrated modular advanced reactor, SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; Pak, Hyun Sik; Cho, Seok; Pak, Choon Kyung; Lee, Sung Jae; Song, Chul Hwa; Chung, Moon Ki [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. Its scaled ratio with respect to the SMART-P is 1/1 in height and 1/96 in volume and heater power. So far, several steady states and transient tests have been carried out to verify the overall thermal hydraulic primary and secondary characteristics in a range of 10% to 100% power operation. As results of preliminary results, the steady state conditions were found to coincide with the expected design values of the SMART-P. But the major thermal hydraulic parameters are greatly affected by the initial water level and the nitrogen pressure in the reactor upper annular cavity. In the PRHR transient tests, the steam inlet temperature of the PRHR system is found to drop suddenly from a superheated condition to a saturated condition at the end period of PRHR operation.

  16. Effects of a Mixed Zone on TGO Displacement Instabilities of Thermal Barrier Coatings at High Temperature in Gas-Cooled Fast Reactors

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available Thermally grown oxide (TGO, commonly pure α-Al2O3, formed on protective coatings acts as an insulation barrier shielding cooled reactors from high temperatures in nuclear energy systems. Mixed zone (MZ oxide often grows at the interface between the alumina layer and top coat in thermal barrier coatings (TBCs at high temperature dwell times accompanied by the formation of alumina. The newly formed MZ destroys interface integrity and significantly affects the displacement instabilities of TGO. In this work, a finite element model based on material property changes was constructed to investigate the effects of MZ on the displacement instabilities of TGO. MZ formation was simulated by gradually changing the metal material properties into MZ upon thermal cycling. Quantitative data show that MZ formation induces an enormous stress in TGO, resulting in a sharp change of displacement compared to the alumina layer. The displacement instability increases with an increase in the MZ growth rate, growth strain, and thickness. Thus, the formation of a MZ accelerates the failure of TBCs, which is in agreement with previous experimental observations. These results provide data for the understanding of TBC failure mechanisms associated with MZ formation and of how to prolong TBC working life.

  17. Evolution of the tandem mirror reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Logan, B.G.

    1982-03-09

    We discuss the evolution of the tandem mirror reactor concept from the original conceptual reactor design (1977) through the first application of the thermal barrier concept to a reactor design (1979) to the beginning of the Mirror Advanced Reactor Study (1982).

  18. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  19. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  20. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    Energy Technology Data Exchange (ETDEWEB)

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  1. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Nuclear Reactor Lab.; Wilson, Erik [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings on avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.

  2. Possible pressurized thermal shock events during large primary to secondary leakage. The Hungarian AGNES project and PRISE accident scenarios in VVER-440/V213 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perneczky, L. [KFKI Atomic Energy Research Inst., Budabest (Hungary)

    1997-12-31

    Nuclear power plants of WWER-440/213-type have several special features. Consequently, the transient behaviour of such a reactor system should be different from the behaviour of the PWRs of western design. The opening of the steam generator (SG) collector cover, as a specific primary to secondary circuit leakage (PRISE) occurring in WWER-type reactors happened first time in Rovno NPP Unit I on January 22, 1982. Similar accident was studied in the framework of IAEA project RER/9/004 in 1987-88 using the RELAP4/mod6 code. The Hungarian AGNES (Advanced General and New Evaluation of Safety) project was performed in the period 1991-94 with the aim to reassess the safety of the Paks NPP using state-of-the-art techniques. The project comprised three type of analyses for the primary to secondary circuit leakages: Design Basis Accident (DBA) analyses, Pressurized Thermal Shock (PTS) study and deterministic analyses for Probabilistic Safety Analysis (PSA). Major part of the thermohydraulic analyses has been performed by the RELAP5/mod2.5/V251 code version with two input models. 32 refs.

  3. Using the Star CCM+ software system for modeling the thermal state and natural convection in the melt metal layer during severe accidents in VVER reactors

    Science.gov (United States)

    Kochetov, N. A.; Loktionov, V. D.; Sidorov, A. S.

    2015-09-01

    The possibility of using the Star CCM+ software system for analyzing the thermal state of the melt pool metal layer generated as a result of melt stratification during a severe accident in pressure-vessel nuclear reactors is considered. In order to verify and substantiate the possibility of using this software system for modeling the natural convection processes in the melt at high values of the Rayleigh number, test problems were solved. The obtained results were found to be in good agreement with the known solutions and with the experimental data. The behavior of the melt metal layer was subjected to a parametric analysis for different melt heating conditions, the results of which showed that certain parameters have a determining influence on the so-called focusing effect and on the specific features of current in this layer.

  4. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    Science.gov (United States)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  5. Synthesis of nanocrystalline Y{sub 2}O{sub 3} in a specially designed atmospheric pressure radio frequency thermal plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V. [University of Pune, Department of Physics (India); Sahasrabudhe, S. N.; Ghorui, S., E-mail: srikumarghorui@yahoo.com [Bhabha Atomic Research Centre, Laser and Plasma Technology Division (India)

    2015-10-15

    Synthesis of yttrium oxide nanoparticles in a specially designed radio frequency thermal plasma reactor is reported. Good crystallinity, narrow size distribution, low defect state concentration, high purity, good production rate, single-step synthesis, and simultaneous formation of nanocrystalline monoclinic and cubic phases are some of the interesting features observed. Synthesized particles are characterized through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermo-luminescence (TL), and Brunauer–Emmett–Teller surface area analysis. Polymorphism of the nanocrystalline yttria is addressed in detail. Synthesis mechanism is explored through in-situ emission spectroscopy. Post-synthesis environmental effects and possible methods to eliminate the undesired phases are probed. Defect states are investigated through the study of TL spectra.

  6. Thermal-hydraulics, physical chemistry, and technology at nuclear power stations equipped with fast-neutron sodium-cooled reactors

    Science.gov (United States)

    Alekseev, V. V.; Efanov, A. D.; Kozlov, F. A.; Sorokin, A. P.

    2007-12-01

    Main results of investigations aimed at developing a verified system of computer codes that take into account the interrelation among nuclear-physical, thermal-hydraulic, physicochemical, thermal-mechanical, mass-transfer, and technological processes in nuclear power installations and at substantiating the models used as the core of these codes are presented together with the results of tests carried out to obtain data for verifying the codes.

  7. Thermal pretreatment of the solid fraction of manure: Impact on the biogas reactor performance and microbial community

    DEFF Research Database (Denmark)

    Mladenovska, Z; Hartmann, H.; Kvist, T.

    2006-01-01

    Application of thermal treatment at 100-140 degrees C as a pretreatment method prior to anaerobic digestion of a mixture of cattle and swine manure was investigated. In a batch test, biogasification of manure with thermally pretreated solid fraction proceeded faster and resulted in the increase...... to be identical in both systems. However, a change in the abundance of the species present was detected....

  8. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. 3D thermal hydraulic simulation of the hot channel of a typical material testing reactor under normal operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Morshedy, Salah El-Din; Salama, Amgad [Atomic Energy Authority, Cairo (Egypt). Reactors Dept.

    2010-09-15

    The hot channel in a typical Material Testing Reactor (MTR) is subjected to 3D simulation. Because of the existence of similarity planes, only a quarter of the hot channel including meat thickness, clad, and coolant channel is considered for CFD analysis using the FLUENT code. For the simulation, steady state normal operation regime at the reactor nominal power is assumed. In order to build confidence in our modeling approach, the results obtained in this work are compared with those obtained from the one-dimensional simulation code, MTRTHA. That is, modified variables were generated in order to match those obtained by MTRTHA and to allow comparisons. Quite good agreement is generally observed, however, the maximum clad surface temperature predicted by the 3D calculations, located at the clad mid-width, is higher than the 1D prediction by about 8 C but still below the onset of subcooled boiling by adequate safety margin. The results show quite interesting 3D patterns in both the flow field and the heat transfer. Temperature profiles, velocity profiles and contours are all presented to highlight the essential 3D features of this system. (orig.)

  10. Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures.

    Science.gov (United States)

    Chauhan, R S; Gopinath, S; Razdan, P; Delattre, C; Nirmala, G S; Natarajan, R

    2008-11-01

    Expanded polystyrene is one of the polymers produced in large quantities due to its versatile application in different fields. This polymer is one of the most intractable components in municipal solid waste. Disposal of polymeric material by pyrolysis or catalytic cracking yields valuable hydrocarbon fuels or monomers. Literature reports different types of reactors and arrangements that have uniform temperatures during pyrolysis and catalytic cracking. The present study focuses on reducing the temperature to maximize the quantity of styrene monomer in the liquid product. A bench scale reactor has been developed to recover the styrene monomer and other valuable chemicals. Experiments were carried under partial oxidation and vacuum conditions in the temperature range of 300-500 degrees C. In the pyrolysis optimization studies, the best atmospheric condition was determined to be vacuum, the pyrolysis temperature should be 500 degrees C, yield of liquid product obtained was 91.7% and yield of styrene obtained was 85.5%. In the characterization studies, distillation and IR spectroscopy experiments were carried out. The remaining of the liquid product comprises of benzene, ethyl benzene, and styrene dimers and trimers.

  11. Sensitivity Evaluation of the Daily Thermal Predictions of the AGR-1 Experiment in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James Sterbentz; John Maki

    2011-05-01

    A temperature sensitivity evaluation has been performed for the AGR-1 fuel experiment on an individual capsule. A series of cases were compared to a base case by varying different input parameters into the ABAQUS finite element thermal model. These input parameters were varied by ±10% to show the temperature sensitivity to each parameter. The most sensitive parameters are the outer control gap distance, heat rate in the fuel compacts, and neon gas fraction. Thermal conductivity of the compacts and graphite holder were in the middle of the list for sensitivity. The smallest effects were for the emissivities of the stainless steel, graphite, and thru tubes. Sensitivity calculations were also performed varying with fluence. These calculations showed a general temperature rise with an increase in fluence. This is a result of the thermal conductivity of the fuel compacts and graphite holder decreasing with fluence.

  12. The effects of thermal aging on material behavior and strength of CF8M in nuclear reactor coolant system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Do; Lee, Yong Seon; Nam, Uk Hui; Park, Jung Cheol; Pae, Yong Tak; In, Jae Hyeon; Woo, Seung Wan [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    1998-03-15

    The following investigations are performed in order to estimate the mechanism of the thermal integrity, and the life prediction. The CF8M is observed a brittle behavior in the range of 475 .deg. C. The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 100, 300, 900, 1800 and 3600 hrs. at 430 .deg. C respectively, the specimen are water cooled to room temperature. The impact energy variations are measures for both the aged and virgin specimen at -173, -70, -32, 27 and 100 .deg. C respectively through the Charpy impact tests in addition to the hardness tests. The tests results are to be a guide line to predict the life of CF8M, a RCS component material caused by thermal aging. The critical flaw size can be estimated by KIC obtained from the impact energy.

  13. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin reactor structures. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    In several postulated LMFBR subassembly-to-subassembly failure propagation events, it is hypothesized that the duct wall of an accident subassembly fails and deposits molten fuel on the outer wall of an adjacent subassembly. It is therefore necessary to determine if the deposited fuel will fail the adjacent wall and thus propagate the event. This entails a thermal stress analysis, and since at times the adjacent subassembly is internally pressurized, thermomechanical analysis are also of value. Solutions are presented for several elastic plastic thermal problems. Some of these examples are compared to available analytic solutions. In addition, the hypothetical accident of molten fuel deposition on the adjacent hexcan is addressed. Combinations of pressure and thermal loading are considered. It is shown that the principal feature of the response is a large in-plane compressive stress which would undoubtedly cause buckling.

  14. Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Ayman Hawari

    2008-06-20

    The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

  15. 3D characterization of thermal fatigue damage in monofilament reinforced copper for heat sink applications in fusion reactor systems; 3D-Charakterisierung von thermischer Ermuedungsschaedigung in Monofilament verstaerktem Kupfer zur Anwendung als Waermeleiter in Kernfusionsreaktorsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schoebel, Michael; Degischer, H. Peter [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology; Brendel, Annegret [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Harrer, Bernhard [Upper Austria Univ. of Applied Sciences, Wels (Austria); Di Michiel, Marco [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France)

    2012-07-01

    Monofilament reinforced metals (MFRM) are developed as high temperature heat sink materials for fusion reactor applications. These composites combine the high thermal conductivity (TC) of a Cu matrix with low thermal expansion (CTE) of SiC or W filaments. The CTE mismatch between matrix and reinforcement lead to high micro stresses under operation conditions. Stress induced thermal fatigue damage such as interface delamination and fiber/matrix damage degrades the thermal properties of these composites. Different interface designs are developed for SiC as well as W filaments to improve bonding strength and increase the long term stability. Conventional as well as synchrotron tomography was applied on different MFRMs to characterize thermal fatigue damage and its propagation before, during and after thermal cycling. (orig.)

  16. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  17. Measurement of the Residual Stresses and Investigation of Their Effects on a Hardfaced Grid Plate due to Thermal Cycling in a Pool Type Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    S. Balaguru

    2016-01-01

    Full Text Available In sodium-cooled fast reactors (SFR, grid plate is a critical component which is made of 316 L(N SS. It is supported on core support structure. The grid plate supports the core subassemblies and maintains their verticality. Most of the components of SFR are made of 316 L(N/304 L(N SS and they are in contact with the liquid-metal sodium which acts as a coolant. The peak operating temperature in SFR is 550°C. However, the self-welding starts at 500°C. To avoid self-welding and galling, hardfacing of the grid plate has become necessary. Nickel based cobalt-free colmonoy 5 has been identified as the hardfacing material due to its lower dose rate by Plasma Transferred Arc Welding (PTAW. This paper is concerned with the measurement and investigations of the effects of the residual stress generated due to thermal cycling on a scale-down physical model of the grid plate. Finite element analysis of the hardfaced grid plate model is performed for obtaining residual stresses using elastoplastic analysis and hence the results are validated. The effects of the residual stresses due to thermal cycling on the hardfaced grid plate model are studied.

  18. Lead-Cooled Fast Reactor (LFR) Design: Safety, Neutronics, Thermal Hydraulics, Structural Mechanics, Fuel, Core, and Plant Design

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C

    2010-02-22

    The idea of developing fast spectrum reactors with molten lead (or lead alloy) as a coolant is not a new one. Although initially considered in the West in the 1950s, such technology was not pursued to completion because of anticipated difficulties associated with the corrosive nature of these coolant materials. However, in the Soviet Union, such technology was actively pursued during the same time frame (1950s through the 1980s) for the specialized role of submarine propulsion. More recently, there has been a renewal of interest in the West for such technology, both for critical systems as well as for Accelerator Driven Subcritical (ADS) systems. Meanwhile, interest in the former Soviet Union, primarily Russia, has remained strong and has expanded well beyond the original limited mission of submarine propulsion. This section reviews the past and current status of LFR development.

  19. An In-Core Power Deposition and Fuel Thermal Environmental Monitor for Long-Lived Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Don W. Miller

    2004-09-28

    The primary objective of this program is to develop the Constant Temperature Power Sensor (CTPS) as in-core instrumentation that will provide a detailed map of local nuclear power deposition and coolant thermal-hydraulic conditions during the entire life of the core.

  20. Neutronics and thermal hydraulics feedback models of the Harwell materials testing reactors DIDO and PLUTO: I Neutronics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Javadi, M.

    1986-10-01

    Neutronics modelling of the Harwell MTRs DIDO and PLUTO has been achieved in the WIMS-E framework using (r,z) and (x,y) two dimensional diffusion theory. The modelling takes into account fuel burnup and the presence of the coarse control arms and experimental rigs. The modelling is validated by comparisons with measurements of thermal and fast flux distributions.

  1. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Thermal and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Alvine, Kyle J.; Roosendaal, Timothy J.; Shin, Yongsoon; Nguyen, Ba Nghiep; Borlaug, Brennan A.; Jiang, Weilin

    2014-04-01

    SiC-polymers (pure polycarbosilane and polycarbosilane filled with SiC-particles) are being combined with Si and TiC powders to create a new class of polymer-derived ceramics for consideration as advanced nuclear materials in a variety of applications. Compared to pure SiC these materials have increased fracture toughness with only slightly reduced thermal conductivity. Future work with carbon nanotube (CNT) mats will be introduced with the potential to increase the thermal conductivity and the fracture toughness. At present, this report documents the fabrication of a new class of monolithic polymer derived ceramics, SiC + SiC/Ti3SiC2 dual phase materials. The fracture toughness of the dual phase material was measured to be significantly greater than Hexoloy SiC using indentation fracture toughness testing. However, thermal conductivity of the dual phase material was reduced compared to Hexoloy SiC, but was still appreciable, with conductivities in the range of 40 to 60 W/(m K). This report includes synthesis details, optical and scanning electron microscopy images, compositional data, fracture toughness, and thermal conductivity data.

  2. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  3. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  4. Fundamental Thermal Fluid Physics of High Temperature Flows in Advanced Reactor Systems - Nuclear Energy Research Initiative Program Interoffice Work Order (IWO) MSF99-0254 Final Report for Period 1 August 1999 to 31 December 2002

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, D.M.; Condie, K.G.; Foust, T.D.; McCreery, G.E.; Pink, R.J.; Stacey, D.E. (INEEL); Shenoy, A.; Baccaglini, G. (General Atomics); Pletcher, R.H. (Iowa State U.); Wallace, J.M.; Vukoslavcevic, P. (U. Maryland); Jackson, J.D. (U. Manchester, UK); Kunugi, T. (Kyoto U., Japan); Satake, S.-i. (Tokyo U. Science, Japan)

    2002-12-31

    The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of advanced reactors for higher efficiency and enhanced safety and for deployable reactors for electrical power generation, process heat utilization and hydrogen generation. While key applications would be advanced gas-cooled reactors (AGCRs) using the closed Brayton cycle (CBC) for higher efficiency (such as the proposed Gas Turbine - Modular Helium Reactor (GT-MHR) of General Atomics [Neylan and Simon, 1996]), results of the proposed research should also be valuable in reactor systems with supercritical flow or superheated vapors, e.g., steam. Higher efficiency leads to lower cost/kwh and reduces life-cycle impacts of radioactive waste (by reducing waters/kwh). The outcome will also be useful for some space power and propulsion concepts and for some fusion reactor concepts as side benefits, but they are not the thrusts of the investigation. The objective of the project is to provide fundamental thermal fluid physics knowledge and measurements necessary for the development of the improved methods for the applications.

  5. Assessment of the thorium fuel cycle in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled.

  6. SIEX: a correlated code for the prediction of Liquid Metal Fast Breeder Reactor (LMFBR) fuel thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Dutt, D.S.; Baker, R.B.

    1974-01-01

    The SIEX computer program is a steady state heat transfer code developed to provide thermal performance calculations for a mixed-oxide fuel element in a fast neutron environment. Fuel restructuring, fuel-cladding heat conduction and fission gas release are modeled to provide assessment of the temperatures. Modeling emphasis has been placed on correlations to measurable quantities from EBR-II irradiation tests and the inclusion of these correlations in a physically based computational scheme. SIEX is completely modular in construction allowing the user options for material properties and correlated models. Required code input is limited to geometric and environmental parameters, with a ``consistant`` set of material properties and correlated models provided by the code. The development of physically based correlations to model certain of the phenomana has resulted in a computer program which provides reliable estimates of thermal performance characteristics, yet requires a small amount of core storage and computer running time.

  7. First in-core simultaneous measurements of nuclear heating and thermal neutron flux obtained with the innovative mobile calorimeter CALMOS inside the OSIRIS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lepeltier, Valerie; Bubendorff, Jacques; Carcreff, Hubert [Nuclear studies and reactor irradiation Service, CEA Saclay 91191 Gif sur Yvette (France); Salmon, Laurent [Thermalhydraulics and Fluid Mechanics Section, CEA Saclay 91191 Gif sur Yvette, (France)

    2015-07-01

    Nuclear heating inside a MTR reactor has to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70 MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. This development required preliminary modelling and irradiation of mock-ups of the calorimetric probe in the ex-core area, where nuclear heating rate does not exceed 2 W.g{sup -1}. The calorimeter working modes, the different measurement procedures allowed with such a new probe, the main modeling and experimental results and expected advantages of this new technique have been already presented. However, these first in-core measurements were not performed beyond 6 W.g{sup -1}, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at the 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 10{sup 14} n.cm{sup -2}.s{sup -1} and nuclear heating up to 12 W.g{sup -1}. A comprehensive measurement campaign carried out from 2013 to 2015 inside all accessible irradiation locations of the core, allowed to qualify definitively this new device, not only in terms of measurement ability but also in terms of reliability. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a systematic comparison is made between results obtained by

  8. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  9. The effects of thermal aging on material behavior and strength of CF8M in nuclear reactor coolant system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Do; Lee, Yong Seon; Park, Jung Cheol; In, Jae Hyeon; Woo, Seung Wan; Pae, Yong Tak; Nam, Uk Hui; Park, Yun Won [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    1999-03-15

    The following investigations are performed in order to estimate the mechanism of the structural integrity, and the life prediction. The CF8M is observed a brittle behavior in the range of 475 .deg. C. The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 100, 300, 900, 1800 and 3600 hrs. at 430 .deg. C respectively, the specimen are water cooled to room temperature. In addition to the thermally aged specimens the specimens associated with {delta}-phase degradation are prepared. After the specimens are maintained for 20 min, 5, 15, 50 and 150 hrs. at 700 .deg. C, respectively. which is in the range of {delta}-phase degradation, all specimens are cooled in water. The impact energy variations are measured for both the aged and virgin specimen at -173, -70, -32, 27 and 100 .deg. C, respectively, through the Charpy impact tests in addition to the hardness tests. The characteristics of the fatigue crack growth and low cycle fatigue tests are investigated using both aged and virgin specimens. Also fractured surfaces of the specimen are observed using the scanning electronic microscopy. J-R curve and J{sub IC} of the aged and virgin specimens are found J{sub IC} in order to predict the critical flaw size and fatigue life.

  10. The effects of thermal aging on material behavior and strength of CF8M in nuclear reactor coolant system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Do; Lee, Yong Seon; Park, Jung Cheol; In, Jae Hyeon; Woo, Seung Wan; Pae, Yong Tak; Nam, Uk Hui; Park, Yun Won [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    1999-03-15

    The following investigations are performed in order to estimate the mechanism of the structural integrity, and the life prediction. The CF8M is observed a brittle behavior in the range of 475 .deg. C. The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 100, 300, 900, 1800 and 3600 hrs. at 430 .deg. C respectively, the specimen are water cooled to room temperature. In addition to the thermally aged specimens the specimens associated with {delta}-phase degradation are prepared. After the specimens are maintained for 20 min, 5, 15, 50 and 150 hrs. at 700 .deg. C, respectively. which is in the range of {delta}-phase degradation, all specimens are cooled in water. The impact energy variations are measured for both the aged and virgin specimen at -173, -70, -32, 27 and 100 .deg. C, respectively, through the Charpy impact tests in addition to the hardness tests. The characteristics of the fatigue crack growth and low cycle fatigue tests are investigated using both aged and virgin specimens. Also fractured surfaces of the specimen are observed using the scanning electronic microscopy. J-R curve and J{sub IC} of the aged and virgin specimens are found J{sub IC} in order to predict the critical flaw size and fatigue life.

  11. THERMAL NEUTRON FLUX MAPPING ON A TARGET CAPSULE AT RABBIT FACILITY OF RSG-GAS REACTOR FOR USE IN k0-INAA

    Directory of Open Access Journals (Sweden)

    Sutisna Sutisna

    2015-03-01

    Full Text Available Instrumental neutron activation analysis based on the k0 method (k0-INAA requires the availability of the accurate reactor parameter data, in particular a thermal neutron flux that interact with a targets inside the target capsule. This research aims to determine and map the thermal neutron flux inside the capsule and irradiation channels used for the elemental quantification using the k0-AANI. Mapping of the thermal neutron flux (фth on two type of irradiation capsule have been done for RS01 and RS02 facilities of RSG-GAS reactor. Thermal neutron flux determined using Al-0,1%Au alloy through 197Au(n,g 198Au nuclear reaction, while the flux mapping done using statistics R. Thermal neutron flux are calculated using k0-IAEA software provided by IAEA. The results showed the average thermal neutron flux is (5.6±0.3×10+13 n.cm-2.s-1; (5.6±0.4×10+13 n.cm-2.s-1; (5.2±0.4×10+13 n.cm-2.s-1 and (5.3±0.4×10+13 n.cm-2.s-1 for Polyethylene capsule of 1st , 2nd, 3rd and 4th layer respectively. In the case of Aluminum capsule, the thermal neutron flux was lower compared to that on Polyethylene capsule. There were (3.0±0.2×10+13 n.cm-2.s-1; (2.8±0.1×10+13 n.cm-2.s-1; (3.2±0.3×10+13 n.cm-2.s-1 for 1st, 2nd and 3rd layers respectively. For each layer in the capsule, the thermal neutron flux is not uniform and it was no degradation flux in the axial direction, both for polyethylene and aluminum capsules. Contour map of eight layer on polyethylene capsule and six layers on aluminum capsule for RS01 and RS02 irradiation channels had a similar pattern with a small diversity for all type of the irradiation capsule. Keywords: thermal neutron, flux, capsule, NAA   Analisis aktivasi neutron instrumental berbasis metode k0 (k0-AANI memerlukan ketersediaan data parameter reaktor yang akurat, khususnya data fluks neutron termal yang berinteraksi dengan inti sasaran di dalam kapsul target. Penelitian ini bertujuan menentukan dan memetakan fluks neutron termal

  12. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  13. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  14. A CONCEPTUAL DESIGN OF NEUTRON COLLIMATOR IN THE THERMAL COLUMN OF KARTINI RESEARCH REACTOR FOR IN VITRO AND IN VIVO TEST OF BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Nina Fauziah

    2015-03-01

    Full Text Available Studies were carried out to design a collimator which results in epithermal neutron beam for IN VITRO and IN VIVO of Boron Neutron Capture Therapy (BNCT at the Kartini research reactor by means of Monte Carlo N-Particle (MCNP codes. Reactor within 100 kW of thermal power was used as the neutron source. The design criteria were based on recommendation from the International Atomic Energy Agency (IAEA. All materials used were varied in size, according to the value of mean free path for each material. MCNP simulations indicated that by using 5 cm thick of Ni as collimator wall, 60 cm thick of Al as moderator, 15 cm thick of 60Ni as filter, 2 cm thick of Bi as γ-ray shielding, 3 cm thick of 6Li2CO3-polyethylene as beam delimiter, with 1 to 5 cm varied aperture size, epithermal neutron beam with maximum flux of 7.65 x 108 n.cm-2.s-1 could be produced. The beam has minimum fast neutron and γ-ray components of, respectively, 1.76 x 10-13 Gy.cm2.n-1 and 1.32 x 10-13 Gy.cm2.n-1, minimum thermal neutron per epithermal neutron ratio of 0.008, and maximum directionality of 0.73. It did not fully pass the IAEA’s criteria, since the epithermal neutron flux was below the recommended value, 1.0 x 109 n.cm-2.s-1. Nonetheless, it was still usable with epithermal neutron flux exceeding 5.0 x 108 n.cm-2.s-1. When it was assumed that the graphite inside the thermal column was not discharged but only the part which was going to be replaced by the collimator, the performance of the collimator became better within the positive effect from the surrounding graphite that the beam resulted passed all criteria with epithermal neutron flux up to 1.68 x 109 n.cm-2.s-1. Keywords: design, collimator, epithermal neutron beam, BNCT, MCNP, criteria   Telah dilakukan penelitian tentang desain kolimator yang menghasilkan radiasi netron epitermal untuk uji in vitro dan in vivo pada Boron Neutron Capture Therapy (BNCT di Reaktor Riset Kartini dengan menggunakan program Monte

  15. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  16. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  17. Evaluation of Computational Fluids Dynamics (CFD) code Open FOAM in the study of the pressurized thermal stress of PWR reactors. Comparison with the commercial code Ansys-CFX; Evaluacion del codigo de Dinamica de Fluidos Computacional (CFD) Open FOAM en el estudio del estres termico presurizado de los reactores PWR. Comparacion con el codigo comercial Ansys-CFX

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.; Barrachina, T.; Miro, R.; Verdu Martin, G.; Chiva, S.

    2012-07-01

    In this work is proposed to evaluate the potential of the OpenFOAM code for the simulation of typical fluid flows in reactors PWR, in particular for the study of pressurized thermal stress. Test T1-1 has been simulated , within the OECD ROSA project, with the objective of evaluating the performance of the code OpenFOAM and models of turbulence that has implemented to capture the effect of the thrust forces in the case study.

  18. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  19. Treatment of methyl orange by nitrogen non-thermal plasma in a corona reactor: The role of reactive nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Bruno Mena, E-mail: brunomenacadorin@gmail.com [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Tralli, Vitor Douglas [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Ceriani, Elisa [Department of Chemical Sciences, Università di Padova (Italy); Benetoli, Luís Otávio de Brito [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Marotta, Ester, E-mail: ester.marotta@unipd.it [Department of Chemical Sciences, Università di Padova (Italy); Ceretta, Claudio [Department of Industrial Engineering, Università di Padova (Italy); Debacher, Nito Angelo [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Paradisi, Cristina [Department of Chemical Sciences, Università di Padova (Italy)

    2015-12-30

    Highlights: • Nitration of methyl orange is one of the main processes in treatment with N{sub 2}-plasma. • MS/MS analysis shows preferred nitration of methyl orange in ortho position. • N{sub 2} plasma, N{sub 2}-PAW, reaction with NO{sub 2}{sup −} or NO{sub 2}{sup −}/H{sub 2}O{sub 2} at pH 2 give the same products. - Abstract: Methyl orange (MO) azo dye served as model organic pollutant to investigate the role of reactive nitrogen species (RNS) in non-thermal plasma (NTP) induced water treatments. The results of experiments in which MO aqueous solutions were directly exposed to N{sub 2}-NTP are compared with those of control experiments in which MO was allowed to react with nitrite, nitrate and hydrogen peroxide, which are species formed in water exposed to N{sub 2}-NTP. Treatment of MO was also performed in PAW, Plasma Activated Water, that is water previously exposed to N{sub 2}-NTP. Both direct N{sub 2}-NTP and N{sub 2}-PAW treatments induced the rapid decay of MO. No appreciable reaction was instead observed when MO was treated with NO{sub 3}{sup −} and H{sub 2}O{sub 2} either under acidic or neutral pH. In contrast, in acidic solutions MO decayed rapidly when treated with NO{sub 2}{sup −} and with a combination of NO{sub 2}{sup −} and H{sub 2}O{sub 2}. Thorough product analysis was carried out by HPLC coupled with UV–vis and ESI–MS/MS detectors. In all experiments in which MO reaction was observed, the major primary product was a derivative nitro-substituted at the ortho position with respect to the N,N-dimethylamino group of MO. The reactions of RNS are discussed and a mechanism for the observed nitration products is proposed.

  20. Mathematical Modeling for Simulation of Nuclear Reactor Analysis

    OpenAIRE

    Salah Ud-Din Khan; Shahab Ud-Din Khan

    2013-01-01

    In this paper, we have developed a mathematical model for the nuclear reactor analysis to be implemented in the nuclear reactor code. THEATRe is nuclear reactor analysis code which can only work for the cylindrical type fuel reactor and cannot applicable for the plate type fuel nuclear reactor. Therefore, the current studies encompasses on the modification of THEATRe code for the plate type fuel element. This mathematical model is applicable to the thermal analysis of the reactor which is ver...

  1. 催化型低温等离子体反应器净化废气研究进展%Advances in catalysis non-thermal plasma reactor for air pollution control

    Institute of Scientific and Technical Information of China (English)

    刘跃旭; 王少波; 原培胜; 赵瀛

    2009-01-01

    催化型低温等离子体反应器可有效地提高废气治理的能量效率和净化效果.现有数据表明,在一定能量密度下,催化型低温等离子体反应器比传统低温等离子体反应器能量效率有1.1~12倍的提高,这和污染物种类,反应器构型及催化剂参数有关.本文介绍了反应机理、反应器构型及催化剂参数选择等对反应器性能的影响,并指出今后研究的发展方向.%Catalysis non-thermal plasma reactor has been demonstrated to be effective in improving the energy efficiency and purification for air pollution control. According to the available experimental data, for a given specific energy density, the energy efficiency for gaseous pollutant abatement obtained with catalysis non-thermal plasma reactor could be improved with 1.1-12 times as compared to that of conventional reactors depending on the type of pollutants, reactor geometry and catalyst used. The influences of reaction mechanism, reactor geometry and catalyst parameters on the performance for gaseous pollutant removal are comprehensively discussed, and the further development trend of this technology is proposed.

  2. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  3. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  4. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  5. Membrane reactor. Membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y.; Wakabayashi, K. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-08-05

    Many reaction examples were introduced of membrane reactor, to be on the point of forming a new region in the field of chemical technology. It is a reactor to exhibit excellent function, by its being installed with membrane therein, and is generally classified into catalyst function type and reaction promotion type. What firstly belongs to the former is stabilized zirconia, where oxygen, supplied to the cathodic side of membrane with voltage, impressed thereon, becomes O {sup 2 {minus}} to be diffused through the membrane and supplied, as variously activated oxygenous species, on the anodic side. Examples with many advantages can be given such as methane coupling, propylene oxidation, methanating reaction of carbon dioxide, etc. Apart, palladium film and naphion film also belong to the former. While examples of the latter comprise, among others, decomposition of hydrogen sulfide by porous glass film and dehydrogenation of cyclohexane or palladium alloy film, which are expected to be developed and materialized in the industry. 33 refs., 8 figs.

  6. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-15

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis.

  7. Neutronic, thermal-hydraulics and accident analysis calculations for an irradiation device to be used in the qualification process of dispersion fuels in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Douglas Borges; Silva, Antonio Teixeira e; Umbehaun, Pedro Ernesto; Silva, Jose Eduardo Rosa da; Conti, Thadeu das Neves; Yamaguchi, Mitsuo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: douglasborgesdomingos@yahoo.com.br

    2009-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of an irradiation device placed in the IEA-R1 reactor core. The irradiation device will be used to receive miniplates of U{sub 3}O{sub 8}-Al e U{sub 3}Si{sub 2}-Al dispersion fuels, LEU type (19.9% of {sup 235}U), with uranium densities of, respectively, 3.0 gU/cm{sup 3} and 4.8gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor, now in the conception phase. For the neutronic calculation, the computer code CITATION was utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation of the fuel miniplates will happen without any adverse consequence in the IEA-R1 reactor. (author)

  8. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    OpenAIRE

    Djurcic, Z.(Argonne National Laboratory, Argonne, Illinois, 60439, U.S.A.); Detwiler, J. A.; Piepke, A.; Foster Jr., V. R.; Miller, L.; Gratta, G.

    2008-01-01

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  9. Parametric study on effect of break size during LOCA on thermal hydraulic conditions in an indian pressurized heavy water reactor (220 MWe)

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.S.; Gupta, S.K.; Raj, V.V. [Bhabha Atomic Research Centre, Mumbai (India)

    1999-07-01

    Loss Of Coolant Accident (LOCA) in a Pressurized Heavy Water Reactor (PHWR) leads to coolant expulsion in a primary heat transport system resulting in depressurization and possible core voiding. This results in deterioration of cooling conditions in reactor channels and increase in power before reactor shutdown, leading to higher fuel temperatures. Coolant expulsion rates during LOCA are dictated by critical flow conditions governed by initial plant conditions prior to the accident, break geometry, location of break, etc. In addition the PHWRs have positive void-coefficient of reactivity for coolant resulting in reactor power rise in earlier part of LOCA, when the stored heat of the fuel has yet not been removed. If, in addition, heat transfer to the coolant drops sharply very high fuel surface temperatures are expected. The paper describes analyses carried out for three different break sizes. (author)

  10. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  11. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  12. Production of {sup 48}V in a nuclear reactor via secondary tritons

    Energy Technology Data Exchange (ETDEWEB)

    Siri, S. [Comision Nacional de Energia Atomica, Centro Atomico Ezeiza, Gerencia de Capacitacion, Quimica Nuclear y Ciencias de la Salud, Ezeiza, Buenos Aires (Argentina); Cohen, I.M. [Univ. Tecnologica Nacional, Dept. de Ingenieria Quimica, Buenos Aires (Argentina)

    2009-07-01

    The production of {sup 48}V in a nuclear reactor, induced on titanium by tritons generated from the {sup 6}Li(n, t){sup 4} He reaction, and eventually {sup 7}Li(n, n't){sup 4}He, is described. Samples of lithium titanate were irradiated for an irradiation cycle (120 h) in the RA-3 reactor, belonging to Ezeiza Atomic Centre. After a radiochemical separation, the characteristic radiations from {sup 48}V were identified in the gamma ray spectra of the vanadium fractions. (orig.)

  13. 非热等离子体烃类燃料氧化重整反应器的研究进展%Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel

    Institute of Scientific and Technical Information of China (English)

    丁天英; 刘景林; 赵天亮; 朱爱民

    2015-01-01

    Oxidative reforming (partial oxidation) of fuel is mildly exothermic and has the advantages of fast reaction and low energy cost, which is especially suitable for on-line production of H2 or H2-rich gas. Atmospheric-pressure non-thermal plasma provides a very promising new technology for oxidative reforming of fuel with significant advantages of feed flexibility, fast response, and compact, efficient reactor. The recent developments of atmospheric pressure non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel are reviewed. The warm plasma generated by spark and gliding arc discharges and its fuel reforming reactors are presented. Compared with the reactors of cold plasma generated by corona and dielectric barrier discharges, the warm plasma reactor exhibits high fuel conversion as well as low energy cost.%燃料氧化重整(部分氧化)为温和的放热反应,其反应速率快、能耗低,特别适用于在线制取氢气或富氢气体。大气压非热等离子体为燃料氧化重整提供了一种应用前景广泛的新技术,展现了对燃料具有普适性、快速响应和反应器紧凑高效等优点。综述了大气压非热等离子体烃类燃料氧化重整反应器的研究进展,着重阐述了火花和滑动弧放电产生的暖等离子体及其烃类燃料重整反应器。与电晕和介质阻挡放电产生的冷等离子体反应器相比,暖等离子体反应器具有燃料转化率高和能耗低的优点。

  14. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  15. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  16. 反转压水反应堆热工水力特性初步研究%The Preliminary Research of Thermal-Hydraulic Behavior of an Inverted Pressurized Water Reactor

    Institute of Scientific and Technical Information of China (English)

    刘杰; 于涛; 谢金森; 曾正魁; 秦勉

    2012-01-01

    In this paper, CFD analysis is carried out to study the single fuel element and the coolant channel flow field of the Inverted Pressurized Water Reactor (IPWR) using commercial CFD code FLUENT,which analyses and compares the thermal-hydraulic char- acteristics of different grid size. The calculation results show that the dimensions of the IPWR fuel cell has greater influence on the temperature and heat transfer characteristics of coolant, and the study provides preliminary reference and basis for the next design of the IPWR fuel cell,fuel assembly, reactor core and the thermal-hydraulic analysis.%采用CFD软件FLUENT对反转压水反应堆(IPWR:Inverted PressurizedWaterReactor)单个燃料元件及冷却剂通道流场进行了数值模拟计算,分析比较了不同栅格尺寸情况下的热工水力特性.计算结果表明,栅格尺寸对IPWR燃料元件温度及冷却剂流动传热特性有较大影响,为今后IPWR燃料栅元、组件、堆芯设计和热工水力分析提供了初步参考和依据.

  17. Three-dimensional simulation of gas-solid mixing behavior in thermal plasma reactor for coal pyrolysis%等离子体裂解煤反应器内气固混合行为的三维模拟

    Institute of Scientific and Technical Information of China (English)

    马传奇; 程党国; 陈丰秋; 詹晓力

    2013-01-01

    采用FLUENT对2 MW和5 MW等离子体裂解煤反应器内气固混合行为进行了三维数值模拟.结果表明,2 MW反应器内的煤粉颗粒能够射入气流中心,气固两相混合均匀,而5 MW反应器内的煤粉颗粒不能穿透射流,主要集中在壁面附近,反应器放大效应明显,所得模拟结果与热态试验结果吻合较好.进而应用此模型对不同粒径和入射速度进行了模拟计算,结果表明适当地增大粒径和颗粒入射速度都有利于提高气固两相的混合效率.%Three-dimensional simulations of gas-solid mixing behavior in thermal plasma reactor for coal pyrolysis with power of 2 MW and 5 MW are performed.The results show that in the 2 MW plasma reactor,coal particles can penetrate through the gas to the center of the reactor,and the two phases mixed well.While in the 5 MW plasma reactor coal particles fails to penetrate the gas,most of which concentrate on the wall.The evident scale-up effect can be observed.The simulation results agree well with experimental values.The simulations with different particle diameters and feeding rates are further carried out.It shows that appropriate increase in particle diameter and feeding rate can strengthen the contact of the two phrases.

  18. 基于 Nyquist 准则的超临界水冷堆热工水力系统稳定性分析%Stability Analysis of Supercritical Water Cooled Reactor Thermal-hydraulic System Based on Nyquist Criterion

    Institute of Scientific and Technical Information of China (English)

    严舟; 赵福宇; 胡平; 唐贞鹏; 李罡; 张亚伟

    2013-01-01

    Aiming at the simplified model of supercritical water cooled reactor thermal-hydraulic system ,small perturbation linearization and Laplace transform method were adopted to linearize the nonlinear thermal-hydraulic system conservation equations . Then the closed-loop system transfer function was deduced .Matlab code was used to analyze and simulate the closed-loop system and obtain the stability boundary map of the closed-loop system ,and the effects of reactor core inlet flow velocity ,heating length , gravity acceleration and inlet throttling coefficient on the system stability boundary were analyzed finally .The results show that if the reactor core inlet flow rate ,the heating section length ,and the gravity acceleration increase ,the stability of the system will be better ,and however the inlet throttling coefficient rarely affects the stability boundary .%针对超临界水冷堆热工水力系统简化模型,采用微扰动线性化及L aplace变换的方法,对热工水力系统的非线性守恒方程进行线性化处理,推导出闭环系统传递函数。用M atlab软件对闭环系统进行了分析和仿真,得到模型闭环系统的稳定边界图,并分析了堆芯入口流速、加热段长度、重力加速度、入口节流系数对系统稳定边界的影响。结果表明,增大堆芯入口流速、加热段长度、重力加速度有利于系统的稳定,而入口节流系数对稳定性边界影响不大。

  19. Thermal radiation modeling inside a degraded reactor core in presence of steam and water droplets; Modelisation du rayonnement thermique dans un coeur de reacteur nucleaire degrade en presence de vapeur et de gouttes d'eau

    Energy Technology Data Exchange (ETDEWEB)

    Chahlafi, Miloud

    2011-01-19

    This work aims at modelling thermal radiation in a nuclear reactor, in the course of a severe accident leading to its degradation. Because the reactor coolant is water, radiative heat transfer occurs in presence of steam and water droplets. The 3D geometry of a fuel bundle with 21 damaged rods has been characterized from {gamma}-tomography images. The degradation of the rods has been simulated in the experimental small-scale facility PHEBUS. The homogenized radiative properties of the considered configurations with a transparent fluid phase have been completely characterized by both the extinction cumulated distribution function G{sub ext} and the scattering phase functions p. G{sub ext} strongly differs from the exponential function associated with the Beer law and p strongly depends on both the incidence and the scattering directions. By using the radiative transfer equation generalized for non Beerian porous media by Taine et al. the radiative conductivity tensor has been first determined with a transparent fluid phase, by a numerical perturbation method. Only the diagonal radial and axial components of this tensor are not equal to zero. They have been fitted by a simple law only depending on the porosity, the specific area and the wall absorptivity. In a second step, a radiative transfer equation based on three temperatures is established. This model takes into account a semi transparent fluid phase by coupling the radiative properties of fluid and solid phases. The radiative properties of water steam and droplets are calculated respectively with the CK approach and Mie theory, in typical thermal hydraulics conditions of reactor accidents. The radiative fluxes verify the Fourier law and are characterized by radiative coupled conductivity tensors associated with the temperatures of each phase. The radiative powers exchanged between phases per unit volume are also calculated from this model. (author)

  20. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  1. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  2. Measure of thermal neutron flux in the IPEN/MB-01 reactor using {sup 197} Au wire activation detectors; Medida do fluxo de neutrons termicos do reator IPEN/MB-01 com detectores de ativacao de fios de {sup 197} Au

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Andre Luis Ferreira

    1995-12-31

    This dissertation has aimed at developing a neutron flux measurement technique by means of detectors activation analysis. The main task of this work was the implementation of this thermal neutron flux measurement technique, using gold wires as activation detectors in the IPEN/MB-01 reactor core. The neutron thermal flux spatial distribution was obtained by gold wire activation technique, with wire diameters of 0.125 mm and 0.250 mm in seven selected reactor experimental channels. The values of thermal flux were about 10{sup 9} neutrons/cm{sup 2}.s. This experiment has been the first one conducted with gold wires in the IPEN/MB-01 reactor, being this technique implemented for use by experiments in flux mapping of the core 73 refs., 60 figs., 31 tabs.

  3. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    Science.gov (United States)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  4. Formation of NO from N2/O2 mixtures in a flow reactor: Toward an accurate prediction of thermal NO

    DEFF Research Database (Denmark)

    Abian, Maria; Alzueta, Maria U.; Glarborg, Peter

    2015-01-01

    We have conducted flow reactor experiments for NO formation from N2/O2 mixtures at high temperatures and atmospheric pressure, controlling accurately temperature and reaction time. Under these conditions, atomic oxygen equilibrates rapidly with O2. The experimental results were interpreted by a d...

  5. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors; Amelioration de la conductivite thermique des composites a matrice ceramique pour les reacteurs de 4. generation

    Energy Technology Data Exchange (ETDEWEB)

    Cabrero, J.

    2009-11-15

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  6. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  7. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  8. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  9. Reactor Engineering

    Science.gov (United States)

    Lema, Juan M.; López, Carmen; Eibes, Gemma; Taboada-Puig, Roberto; Moreira, M. Teresa; Feijoo, Gumersindo

    In this chapter, the engineering aspects of processes catalyzed by peroxidases will be presented. In particular, a discussion of the existing technologies that utilize peroxidases for different purposes, such as the removal of recalcitrant compounds or the synthesis of polymers, is analyzed. In the first section, the essential variables controlling the process will be investigated, not only those that are common in any enzymatic system but also those specific to peroxidative reactions. Next, different reactor configurations and operational modes will be proposed, emphasizing their suitability and unsuitability for different systems. Finally, two specific reactors will be described in detail: enzymatic membrane reactors and biphasic reactors. These configurations are especially valuable for the treatment of xenobiotics with high and poor water solubility, respectively.

  10. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  11. CFD Simulation on Ethylene Furnace Reactor Tubes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and