WorldWideScience

Sample records for r-process rich metal-poor

  1. NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS

    International Nuclear Information System (INIS)

    Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.; Cowan, John J.; Ivans, Inese I.

    2009-01-01

    We have derived new abundances of the rare earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low-metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally consistent Ba, rare earth, and Hf (56 ≤ Z ≤ 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  2. DETECTION OF THE SECOND r-PROCESS PEAK ELEMENT TELLURIUM IN METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Lawler, James E.; Cowan, John J.; Beers, Timothy C.; Frebel, Anna; Ivans, Inese I.; Schatz, Hendrik; Sobeck, Jennifer S.; Sneden, Christopher

    2012-01-01

    Using near-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, we detect neutral tellurium in three metal-poor stars enriched by products of r-process nucleosynthesis, BD +17 3248, HD 108317, and HD 128279. Tellurium (Te, Z = 52) is found at the second r-process peak (A ≈ 130) associated with the N = 82 neutron shell closure, and it has not been detected previously in Galactic halo stars. The derived tellurium abundances match the scaled solar system r-process distribution within the uncertainties, confirming the predicted second peak r-process residuals. These results suggest that tellurium is predominantly produced in the main component of the r-process, along with the rare earth elements.

  3. R-process signatures

    International Nuclear Information System (INIS)

    Kratz, K.L.; Pfeiffer, B.

    2003-01-01

    We compare r-process calculations with recent astronomical observations from the solar system and from ultra-metal-poor, neutron-capture-rich halo stars. These measurements include elemental as well as isotopic r-abundances. We deduce astrophysical conditions under which the observed r-patterns can be obtained, and derive criteria to determine Th/U chronometric ages. (orig.)

  4. Lithium-rich very metal-poor stars discovered with LAMOST and Subaru

    Science.gov (United States)

    Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-04-01

    Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.

  5. AN EXTREMELY CARBON-RICH, EXTREMELY METAL-POOR STAR IN THE SEGUE 1 SYSTEM

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.; Frebel, Anna

    2010-01-01

    We report the analysis of high-resolution, high signal-to-noise ratio, spectra of an extremely metal-poor, extremely C-rich red giant, Seg 1-7, in Segue 1-described in the literature alternatively as an unusually extended globular cluster or an ultra-faint dwarf galaxy. The radial velocity of Seg 1-7 coincides precisely with the systemic velocity of Segue 1, and its chemical abundance signature of [Fe/H] = -3.52, [C/Fe] = +2.3, [N/Fe] = +0.8, [Na/Fe] = +0.53, [Mg/Fe] = +0.94, [Al/Fe] = +0.23, and [Ba/Fe] < -1.0 is similar to that of the rare and enigmatic class of Galactic halo objects designated CEMP-no (carbon-rich, extremely metal-poor with no enhancement (over solar ratios) of heavy neutron-capture elements). This is the first star in a Milky Way 'satellite' that unambiguously lies on the metal-poor, C-rich branch of the Aoki et al. bimodal distribution of field halo stars in the ([C/Fe], [Fe/H])-plane. Available data permit us only to identify Seg 1-7 as a member of an ultra-faint dwarf galaxy or as debris from the Sgr dwarf spheroidal galaxy. In either case, this demonstrates that at extremely low abundance, [Fe/H ] <-3.0, star formation and associated chemical evolution proceeded similarly in the progenitors of both the field halo and satellite systems. By extension, this is consistent with other recent suggestions that the most metal-poor dwarf spheroidal and ultra-faint dwarf satellites were the building blocks of the Galaxy's outer halo.

  6. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    Science.gov (United States)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter

  7. Spectroscopic Comparison of Metal-rich RRab Stars of the Galactic Field with their Metal-poor Counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Chadid, Merieme [Université Nice Sophia–Antipolis, Observatoire de la Côte dAzur, UMR 7293, Parc Valrose, F-06108, Nice Cedex 02 (France); Sneden, Christopher [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W., E-mail: chadid@unice.fr, E-mail: chris@verdi.as.utexas.edu, E-mail: gwp@obs.carnegiescience.edu [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-02-01

    We investigate atmospheric properties of 35 stable RRab stars that possess the full ranges of period, light amplitude, and metal abundance found in Galactic RR Lyrae stars. Our results are derived from several thousand echelle spectra obtained over several years with the du Pont telescope of Las Campanas Observatory. Radial velocities of metal lines and the H α line were used to construct curves of radial velocity versus pulsation phase. From these we estimated radial velocity amplitudes for metal lines (formed near the photosphere) and H α Doppler cores (formed at small optical depths). We also measured H α emission fluxes when they appear during primary light rises. Spectra shifted to rest wavelengths, binned into small phase intervals, and co-added were used to perform model atmospheric and abundance analyses. The derived metallicities and those of some previous spectroscopic surveys were combined to produce a new calibration of the Layden abundance scale. We then divided our RRab sample into metal-rich (disk) and metal-poor (halo) groups at [Fe/H] = −1.0; the atmospheres of RRab families, so defined, differ with respect to (a) peak strength of H α emission flux, (b) H α radial velocity amplitude, (c) dynamical gravity, (d) stellar radius variation, (e) secondary acceleration during the photometric bump that precedes minimum light, and (f) duration of H α line-doubling. We also detected H α line-doubling during the “bump” in the metal-poor family, but not in the metal-rich one. Although all RRab probably are core helium-burning horizontal branch stars, the metal-rich group appears to be a species sui generis.

  8. The origin of light neutron-capture elements in very metal-poor stars

    International Nuclear Information System (INIS)

    Honda, S.; Aoki, W.; Kajino, T.; Ando, H.; Beers, T.C.

    2005-01-01

    We obtained high resolution spectra of 40 very metal-poor stars, and measured the abundances of heavy elements. The abundance pattern of the heavy neutron-capture elements (56=< Z=<70) in r-process-enhanced, metal-poor stars are quite similar to that of the r-process component in solar-system material. In contrast, the abundance ratios of the light neutron-capture elements (38=< Z=<40) to heavier ones show a large dispersion. We investigated the correlation between Sr(Z=38) and Ba(Z=56) abundances, and obtained two clear results: (1) Ba-enhanced stars also show large excess of Sr (there is no object which is Ba-rich and Sr-poor); (2) stars with low Ba abundance show large scatter in Sr abundance. This trend is naturally explained by hypothesizing the existence of two processes, one that produces Sr without Ba and the other that produces Sr and Ba in similar proportions

  9. METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY

    International Nuclear Information System (INIS)

    Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.; Gilmore, Gerard F.; Grebel, Eva K.; Bienaymé, Olivier; Siebert, Arnaud; Bland-Hawthorn, Joss; Freeman, Ken C.; Gibson, Brad K.; Munari, Ulisse; Navarro, Julio F.; Parker, Quentin A.; Watson, Fred G.; Reid, Warren; Seabroke, George M.; Siviero, Alessandro; Steinmetz, Matthias; Williams, Mary; Zwitter, Tomaz

    2011-01-01

    We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] 7 Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) 7 Be (which burns to 7 Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.

  10. The Lithium-, r- and s-Enhanced Metal-Poor Giant HK-II 17435-00532

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Prieto, Carlos Allende; Sneden, Christopher; Frebel, Anna; Shetrone, Matthew; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Beers, Timothy C.; Cowan, John J.

    2008-01-01

    We present the first detailed abundance analysis of the metal-poor giant HK-II 17435-00532. This star was observed as part of the University of Texas Long-Term Chemical Abundances of Stars in the Halo (CASH) Project. A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R∼15000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = -2.2) star has an unusually high lithium abundance (logε(Li) = +2.1), mild carbon ([C/Fe] = +0.7) and sodium ([Na/Fe] = +0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = +0.8) and r-process ([Eu/Fe] = +0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing mechanisms that connect the convective envelope with the outer regions of the H-burning shell. If so, HK-II 17435-00532 is the most metal-poor starin which this short-lived phase of Li enrichment has been observed. The r- and s-process material was not produced in this star but was either present in the gas from which HK-II 17435-00532 formed or was transferred to it from a more massive binary companion. Despite the current non-detection of radial velocity variations (over a time span of ∼180 days), it is possible that HK-II 17435-00532 is in a long-period binary system, similar to other stars with both r and s enrichment

  11. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Vinicius M.; Rossi, Silvia [Departamento de Astronomia-Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900 (Brazil); Frebel, Anna [Massachusetts Institute of Technology and Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Karakas, Amanda I.; Kennedy, Catherine R. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Christlieb, Norbert [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Stancliffe, Richard J. [Argelander-Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  12. The Most Metal-poor Stars in the Large Magellanic Cloud

    Science.gov (United States)

    Schlaufman, Kevin C.

    2018-06-01

    The chemical abundances of the most metal-poor stars in a galaxy can be used to investigate the earliest stages of its formation and chemical evolution. Differences between the abundances of the most metal-poor stars in the Milky Way and in its satellite dwarf galaxies have been noted and provide the strongest available constraints on the earliest stages of general galactic chemical evolution models. However, the masses of the Milky Way and its satellite dwarf galaxies differ by four orders of magnitude, leaving a gap in our knowledge of the early chemical evolution of intermediate mass galaxies like the Magellanic Clouds. To close that gap, we have initiated a survey of the metal-poor stellar populations of the Magellanic Clouds using the mid-infrared metal-poor star selection of Schlaufman & Casey (2014). We have discovered the three most metal-poor giant stars known in the Large Magellanic Cloud (LMC) and reobserved the previous record holder. The stars have metallicities in the range -2.70 < [Fe/H] < -2.00 and three show r-process enhancement: one has [Eu II/Fe] = +1.65 and two others have [Eu II/Fe] = +0.65. The probability that four randomly selected very metal-poor stars in the halo of the Milky Way are as r-process enhanced is 0.0002. For that reason, the early chemical enrichment of the heaviest elements in the LMC and Milky Way were qualitatively different. It is also suggestive of a possible chemical link between the LMC and the ultra-faint dwarf galaxies nearby with evidence of r-process enhancement (e.g., Reticulum II and Tucana III). Like Reticulum II, the most metal-poor star in our LMC sample is the only one not enhanced in r-process elements.

  13. THE INTERMEDIATE NEUTRON-CAPTURE PROCESS AND CARBON-ENHANCED METAL-POOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Melanie [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Stancliffe, Richard J. [Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Lugaro, Maria [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest (Hungary); Meyer, Bradley S., E-mail: mhampel@lsw.uni-heidelberg.de [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

    2016-11-10

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP- s / r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patterns of CEMP- s / r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 10{sup 7}–10{sup 15} cm{sup -3}. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s -process and r -process elements, but similar abundances of the light s -process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP- s / r stars shows that our modeled i -process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s -process nucleosynthesis. Because the i -process models fit the abundances of CEMP- s / r stars so well, we propose that this class should be renamed as CEMP- i .

  14. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    Science.gov (United States)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  15. DETAILED ABUNDANCES OF TWO VERY METAL-POOR STARS IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States)

    2012-12-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae (SNe). These SNe could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way (MW) halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two MW dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[{alpha}/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of SN yields is the cause. The earliest SNe in low-mass dSphs have less gas to pollute than the earliest SNe in massive halo progenitors. As a result, dSph stars at -3 < [Fe/H] < -2 sample SNe with [Fe/H] << -3, whereas halo stars in the same metallicity range sample SNe with [Fe/H] {approx} -3. Consequently, enhancements in [Na/Fe] and [r/Fe] were deferred to higher metallicity in dSphs than in the progenitors of the inner halo.

  16. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    International Nuclear Information System (INIS)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang; Wang, Wei; Yuan, Hailong; Christlieb, Norbert; Zhang, Yong; Hou, Yonghui

    2015-01-01

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data

  17. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  18. Understanding r-process nucleosynthesis with dwarf galaxies

    Science.gov (United States)

    Ji, Alexander P.

    2018-06-01

    The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.

  19. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    Science.gov (United States)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  20. Fluorine and Sodium in C-rich Low-metallicity Stars

    Science.gov (United States)

    Lucatello, Sara; Masseron, Thomas; Johnson, Jennifer A.; Pignatari, Marco; Herwig, Falk

    2011-03-01

    We present the N, O, F, and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars: 8 enhanced in s-process (CEMP-s) elements and 2 poor in n-capture elements (CEMP-no). The abundances are derived from IR, K-band, high-resolution CRIRES@VLT obtained spectra. The metallicity of our sample ranges from [Fe/H] = -3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe] = 0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe] = 1.44. For the remaining eight objects, including both CEMP-no stars in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in the [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity asymptotic giant branch (AGB) stars account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25-1.75 M sun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constrain the models. Based on observations made with ESO Telescopes at Paranal Observatories under program ID 080.D-0606A. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation.

  1. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known

    Science.gov (United States)

    Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna

    2018-06-01

    We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.

  2. Rich or poor: Who should pay higher tax rates?

    Science.gov (United States)

    Murilo Castro de Oliveira, Paulo

    2017-08-01

    A dynamic agent model is introduced with an annual random wealth multiplicative process followed by taxes paid according to a linear wealth-dependent tax rate. If poor agents pay higher tax rates than rich agents, eventually all wealth becomes concentrated in the hands of a single agent. By contrast, if poor agents are subject to lower tax rates, the economic collective process continues forever.

  3. Carbon-enhanced metal-poor stars and thermohaline mixing

    NARCIS (Netherlands)

    Stancliffe, R.J.; Glebbeek, E.; Izzard, R.G.; Pols, O.R.

    2007-01-01

    One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until

  4. Heavy elements abundances in metal-poor stars

    International Nuclear Information System (INIS)

    Magain, P.; Jehin, E.; Neuforge, C.; Noels, A.

    1998-01-01

    A sample of 21 metal-poor stars have been analysed on the basis of high resolution and high signal-to-noise spectra. Correlations between relative abundances of 16 elements have been studied, with a special emphasis on the neutron-capture ones. This analysis reveals the existence of two sub-populations of field halo stars, namely Pop IIa and Pop IIb. They differ by the behaviour of the s-process elements versus the α and r-process elements. We suggest a scenario of formation of these stars, which closely relates the field halo stars to the evolution of globular clusters. The two sub-populations would have evaporated the clusters during two different stages of their chemical evolution

  5. ADAPTIVE OPTICS IMAGING OF A MASSIVE GALAXY ASSOCIATED WITH A METAL-RICH ABSORBER

    International Nuclear Information System (INIS)

    Chun, Mark R.; Kulkarni, Varsha P.; Gharanfoli, Soheila; Takamiya, Marianne

    2010-01-01

    The damped and sub-damped Lyα absorption (DLA and sub-DLA) line systems in quasar spectra are believed to be produced by intervening galaxies. However, the connection of quasar absorbers to galaxies is not well-understood, since attempts to image the absorbing galaxies have often failed. While most DLAs appear to be metal poor, a population of metal-rich absorbers, mostly sub-DLAs, has been discovered in recent studies. Here we report high-resolution K-band imaging with the Keck laser guide star adaptive optics (LGSAO) system of the field of quasar SDSSJ1323-0021 in search of the galaxy producing the z = 0.72 sub-DLA absorber. With a metallicity of 2-4 times the solar level, this absorber is one of the most metal-rich systems found to date. Our data show a large bright galaxy with an angular separation of only 1.''25 from the quasar, well-resolved from the quasar at the high resolution of our data. The galaxy has a magnitude of K = 17.6-17.9, which corresponds to a luminosity of ∼3-6 L*. Morphologically, the galaxy is fitted with a model with an effective radius, enclosing half of the total light, of R e = 4 kpc and a bulge-to-total ratio of 0.4-1.0, indicating a substantial bulge stellar population. Based on the mass-metallicity relation of nearby galaxies, the absorber galaxy appears to have a stellar mass of ∼>10 11 M sun . Given the small impact parameter (9.0 kpc at the absorber redshift), this massive galaxy appears to be responsible for the metal-rich sub-DLA. The absorber galaxy is consistent with the metallicity-luminosity relation observed for nearby galaxies, but is near the upper end of metallicity. Our study marks the first application of LGSAO for the study of the structure of galaxies producing distant quasar absorbers. Finally, this study offers the first example of a massive galaxy with a substantial bulge producing a metal-rich absorber.

  6. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  7. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    Science.gov (United States)

    Siqueira-Mello, C.; Chiappini, C.; Barbuy, B.; Freeman, K.; Ness, M.; Depagne, E.; Cantelli, E.; Pignatari, M.; Hirschi, R.; Frischknecht, U.; Meynet, G.; Maeder, A.

    2016-09-01

    Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] ≈-1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims: The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ~ 45 000) and high-signal-to-noise (S/N> 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods: High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe I and Fe II. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results: We confirm that the analysed stars are moderately metal-poor (-1.04 ≤ [Fe/H] ≤-0.43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≤ + 0.2, and α-enhanced. We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na - O, Al - O, Al - Mg anti-correlations) were

  8. Gaia reveals a metal-rich in-situ component of the local stellar halo

    Science.gov (United States)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip; Keres, Dusan

    2018-01-01

    We use the first Gaia data release, combined with RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ~3 kpc from the Sun. We identify halo stars kinematically, as moving with a relative speed of at least 220 km/s with respect to the local standard of rest. These stars are in general more metal-poor than the disk, but surprisingly, half of our halo sample is comprised of stars with [Fe/H]>-1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the isotropic orbital distribution of the more metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, while lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the Solar neighborhood in fact formed in situ within the Galactic disk rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  9. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    Science.gov (United States)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  10. Astrophysical site(s of r-process elements in galactic chemodynamical evolution model

    Directory of Open Access Journals (Sweden)

    Hirai Yutaka

    2016-01-01

    Full Text Available Astrophysical site(s of rapid neutron-capture process (r-process is (are not identified yet. Although core-collapse supernovae have been regarded as one of the possible candidates of the astrophysical site of r-process, nucleosynthesis studies suggest that serious difficulties in core-collapse supernovae to produce heavy elements with mass number of ≳110. Recent studies show that neutron star mergers (NSMs can synthesize these elements due to their neutron rich environment. Some chemical evolution studies of the Milky Way halo, however, hardly reproduce the observed star-to-star scatters of the abundance ratios of r-process elements (e.g., Eu in extremely metal-poor stars. This is because of their low rate (∼ 10−4 yr−1 for a Milky Way size galaxy and long merger time (≳ 100 Myr. This problem might be solved if the stars in the Galactic halo are consisted of the stars formed in dwarf galaxies where the star formation efficiencies were very low. In this study, we carry out numerical simulations of galactic chemo-dynamical evolution using an N-body/smoothed particle hydrodynamics code. We construct detailed chemo-dynamical evolution model for the Local Group dwarf spheroidal galaxies (dSphs assuming that the NSMs are the major source of r-process elements. Our models successfully reproduce the observed dispersion in [Eu/Fe] as a function of [Fe/H] if we set merger time of NSMs, ≲ 300 Myr with the Galactic NSM rate of ∼ 10−4 yr−1. In addition, our results are consistent with the observed metallicity distribution of dSphs. In the early phase (≲1 Gyr of galaxy evolution is constant due to low star formation efficiency of dSphs. This study supports the idea that NSMs are the major site of r-process nucleosynthesis.

  11. Flood-rich and flood-poor periods in Spain in 1942-2009

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2016-04-01

    Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Mediero et al. (2015) studied flood trends by using the longest streamflow records available in Europe. They found a decreasing trend in the Atlantic, Continental and Scandinavian regions. More specifically, Mediero et al. (2014) found a general decreasing trend in flood series in Spain in the period 1959-2009. Trends in flood series are usually detected by the Mann-Kendall test applied to a given period. However, the result of the Mann-Kendall test can change in terms of the starting and ending year of the series. Flood oscillations can occur and flood-rich and flood-poor periods could condition the results, especially when they are located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to the longest series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. A flood-rich period in 1950-1970 and a flood-poor period in 1970-1990 are identified in most of the selected sites. The generalised decreasing trend in flood series found by Mediero et al. (2014) could be explained by a flood-rich period placed at the beginning of the series and a flood-poor period located at the end of the series. References: Mediero, L., Kjeldsen, T.R., Macdonald, N., Kohnova, S., Merz, B., Vorogushyn, S., Wilson, D., Alburquerque, T., Blöschl, G., Bogdanowicz, E., Castellarin, A., Hall, J., Kobold, M., Kriauciuniene, J., Lang, M., Madsen, H., Onuşluel Gül, G., Perdigão, R.A.P., Roald, L.A., Salinas, J.L., Toumazis, A.D., Veijalainen, N., Óðinn Þórarinsson. Identification of coherent flood

  12. On the Dearth of Ultra-faint Extremely Metal-poor Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Filho, M. E.; Vecchia, C. Dalla [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Skillman, E. D., E-mail: jos@iac.es [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN (United States)

    2017-02-01

    Local extremely metal-poor galaxies (XMPs) are of particular astrophysical interest since they allow us to look into physical processes characteristic of the early universe, from the assembly of galaxy disks to the formation of stars in conditions of low metallicity. Given the luminosity–metallicity relationship, all galaxies fainter than M{sub r} ≃ −13 are expected to be XMPs. Therefore, XMPs should be common in galaxy surveys. However, they are not common, because several observational biases hamper their detection. This work compares the number of faint XMPs in the SDSS-DR7 spectroscopic survey with the expected number, given the known biases and the observed galaxy luminosity function (LF). The faint end of the LF is poorly constrained observationally, but it determines the expected number of XMPs. Surprisingly, the number of observed faint XMPs (∼10) is overpredicted by our calculation, unless the upturn in the faint end of the LF is not present in the model. The lack of an upturn can be naturally understood if most XMPs are central galaxies in their low-mass dark matter halos, which are highly depleted in baryons due to interaction with the cosmic ultraviolet background and to other physical processes. Our result also suggests that the upturn toward low luminosity of the observed galaxy LF is due to satellite galaxies.

  13. Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo

    Science.gov (United States)

    Bonaca, Ana; Conroy, Charlie; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dušan

    2017-08-01

    We use the first Gaia data release, combined with the RAVE and APOGEE spectroscopic surveys, to investigate the origin of halo stars within ≲ 3 kpc from the Sun. We identify halo stars kinematically as moving at a relative speed of at least 220 km s-1 with respect to the local standard of rest. These stars are generally less metal-rich than the disk, but surprisingly, half of our halo sample is comprised of stars with [{Fe}/{{H}}]> -1. The orbital directions of these metal-rich halo stars are preferentially aligned with the disk rotation, in sharp contrast with the intrinsically isotropic orbital distribution of the metal-poor halo stars. We find similar properties in the Latte cosmological zoom-in simulation of a Milky Way-like galaxy from the FIRE project. In Latte, metal-rich halo stars formed primarily inside of the solar circle, whereas lower-metallicity halo stars preferentially formed at larger distances (extending beyond the virial radius). This suggests that metal-rich halo stars in the solar neighborhood actually formed in situ within the Galactic disk, rather than having been accreted from satellite systems. These stars, currently on halo-like orbits, therefore have likely undergone substantial radial migration/heating.

  14. Rich Man, Poor Man: Developmental Differences in Attributions and Perceptions

    Science.gov (United States)

    Sigelman, Carol K.

    2012-01-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N = 88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like…

  15. Comparison of early stages of precipitation in molybdenum-rich and molybdenum-poor maraging stainless steels

    International Nuclear Information System (INIS)

    Andersson, M.; Stiller, K.; Haettestrand, M.

    2004-01-01

    Full text: The precipitation hardening process in the molybdenum-rich Sandvik alloy 1RK91, with composition 12.8Cr-8.6Ni-2.3Mo-1.7Cu-1.2Ti-0.7Al (at. %), has previously been investigated with APFIM, energy-filtering transmission electron microscopy, and conventional transmission electron microscopy. The initial ageing response corresponds to Ni 3 (Al, Ti)-type precipitates, nucleating on copper clusters after only five minutes of ageing at 475 o C. After several hours of ageing, the precipitation hardening also includes contribution from molybdenum-rich quasicrystalline precipitates of icosahedral symmetry (R'), and another nickel-rich phase of type L1 0 . This complex precipitation behaviour, in combination with a resistance to coarsening of R', results in a continuous increase in material hardness for up to several hundred of hours of ageing. A significant difference in ageing response has been observed between the Sandvik alloy 1RK91 and molybdenum-poor alloy Carpenter 455 with composition 12.3Cr-7.9Ni-0.3Mo-1.8Cu-1.3Ti-0.1Al (at. %). During ageing at 475 o C, the hardness of Carpenter 455 saturates with a subsequent softening after just a few hours. The reason for the discrepancy in the ageing behaviour of the two steels is not well understood, since the precipitation reactions in Carpenter 455 have not been thoroughly surveyed. Therefore, the precipitation hardening process of Carpenter 455 has been studied, by using three-dimensional atom probe and energy-filtering transmission electron microscopy. The results have been compared with the precipitation hardening process of 1RK91 in order to explain the difference in ageing response of the two steels. Special interest has been devoted to understand the influence of molybdenum in the precipitation process of 1RK91. Refs 3 (author)

  16. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    International Nuclear Information System (INIS)

    Baruah, Sudarshan

    2008-07-01

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of 81 Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ( 72 Zn) down to 290 ms ( 81 Zn). In case of all the nuclides, the relative mass uncertainty (Δm=m) achieved was in the order of 10 -8 corresponding to a 100-fold improvement in precision over previous measurements. (orig.)

  17. Inner edges of compact debris disks around metal-rich white dwarfs

    OpenAIRE

    Rafikov, Roman R.; Garmilla, Jose A.

    2012-01-01

    A number of metal-rich white dwarfs (WDs) are known to host compact, dense particle disks, which are thought to be responsible for metal pollution of these stars. In many such systems the inner radii of disks inferred from their spectra are so close to the WD that particles directly exposed to starlight must be heated above 1500 K and are expected to be unstable against sublimation. To reconcile this expectation with observations we explore particle sublimation in H-poor debris disks around W...

  18. Astrophysical r- and rp-processes, and radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    1998-01-01

    The modern description of the r-process follows naturally from α-rich freezeout, thought to occur in the hot neutrino wind just beyond the nascent neutron star in a type II supernova. Initially, all pre-existing nuclei are reduced to α-particles and neutrons. As the environment cools, nuclei up to about mass 90 to 100 u are synthesized, in nuclear statistical equilibrium, in about 1 s. In the next few seconds, the remaining neutrons are captured to form the r-process progenitors, which then decay to the r-process nuclides. The rp-process occurs in a high-temperature H-rich environment. It is one of the processes that synthesize the p-process nuclei, the most neutron-poor nuclei in the periodic table. It is thought to occur during the explosion of a C-O white dwarf in a type Ia supernova or in a binary system during accretion onto a white dwarf or a neutron star. It appears to be capable of forming the p-nuclei up to about mass 90 u. Both processes pass through nuclei that are far from stability. Thus, their description requires the masses, half-lives, decay modes, and structure of these nuclei. The next generation of radioactive beam facilities promises to allow the study of many such nuclei. (author)

  19. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    Science.gov (United States)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  20. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    Energy Technology Data Exchange (ETDEWEB)

    Baruah, Sudarshan

    2008-07-15

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of {sup 81}Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ({sup 72}Zn) down to 290 ms ({sup 81}Zn). In case of all the nuclides, the relative mass uncertainty ({delta}m=m) achieved was in the order of 10{sup -8} corresponding to a 100-fold improvement in precision over previous measurements. (orig.)

  1. Metal-poor star formation triggered by the feedback effects from Pop III stars

    Science.gov (United States)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  2. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis

    Science.gov (United States)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (I process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the I process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the I process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is

  3. The Hamburg/ESO R-process Enhanced Star survey (HERES). XI. The highly r-process-enhanced star CS 29497-004

    Science.gov (United States)

    Hill, V.; Christlieb, N.; Beers, T. C.; Barklem, P. S.; Kratz, K.-L.; Nordström, B.; Pfeiffer, B.; Farouqi, K.

    2017-11-01

    We report an abundance analysis for the highly r-process-enhanced (r-II) star CS 29497-004, a very metal-poor giant with solar system Teff = 5013 K and [Fe/H] = -2.85, whose nature was initially discovered in the course of the HERES project. Our analysis is based on high signal-to-noise ratio, high-resolution (R 75 000) VLT/UVES spectra and MARCS model atmospheres under the assumption of local thermodynamic equilibrium, and obtains abundance measurements for a total of 46 elements, 31 of which are neutron-capture elements. As is the case for the other 25 r-II stars currently known, the heavy-element abundance pattern of CS 29497-004 well-matches a scaled solar system second peak r-process-element abundance pattern. We confirm our previous detection of Th, and demonstrate that this star does not exhibit an "actinide boost". Uranium is also detected (log ɛ(U) = -2.20 ± 0.30), albeit with a large measurement error that hampers its use as a precision cosmo-chronometer. Combining the various elemental chronometer pairs that are available for this star, we derive a mean age of 12.2 ± 3.7 Gyr using the theoretical production ratios from published waiting-point approximation models. We further explore the high-entropy wind model (Farouqi et al. 2010, ApJ, 712, 1359) production ratios arising from different neutron richness of the ejecta (Ye), and derive an age of 13.7 ± 4.4 Gyr for a best-fitting Ye = 0.447. The U/Th nuclei-chronometer is confirmed to be the most resilient to theoretical production ratios and yields an age of 16.5 ± 6.6 Gyr. Lead (Pb) is also tentatively detected in CS 29497-004, at a level compatible with a scaled solar r-process, or with the theoretical expectations for a pure r-process in this star. Based on observations collected at the European Southern Observatory, Paranal, Chile (Proposal Number 170.D-0010).Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  4. Discovery of a Metal-Poor Little Cub

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    The discovery of an extremely metal-poor star-forming galaxy in our local universe, dubbed Little Cub, is providing astronomers with front-row seats to the quenching of a near-pristine galaxy.SDSS image of NGC 3359 (left) and Little Cub (right), with overlying contours displaying the location of hydrogen gas. Little Cubs (also shown in the inset) stellar mass lies in the blue contour of the right-hand side. The outer white contours show the extended gas of the galaxy, likely dragged out as a tidal tail by Little Cubs interaction with NGC 3359. [Hsyu et al. 2017]The Hunt for Metal-Poor GalaxiesLow-metallicity, star-forming galaxies can show us the conditions under which the first stars formed. The galaxies with the lowest metallicities, however, also tend to be those with the lowest luminosities making them difficult to detect. Though we know that there should be many low-mass, low-luminosity, low-metallicity galaxies in the universe, weve detected very few of them nearby.In an effort to track down more of these metal-poor galaxies, a team of scientists led by Tiffany Hsyu (University of California Santa Cruz) searched through Sloan Digital Sky Survey data, looking for small galaxies with the correct photometric color to qualify a candidate blue compact dwarfs, a type of small, low-luminosity, star-forming galaxy that is often low-metallicity.Hsyu and collaborators identified more than 2,500 candidate blue compact dwarfs, and next set about obtaining follow-up spectroscopy for many of the candidates from the Keck and Lick Observatories. Though this project is still underway, around 100 new blue compact dwarfs have already been identified via the spectroscopy, including one of particular interest: the Little Cub.Little CubThis tiny star-forming galaxy gained its nickname from its location in the constellation Ursa Major. Little Cub is perhaps 50 or 60 million light-years away, and Hsyu and collaborators find it to be one of the lowest-metallicity star

  5. Investigation of a sample of carbon-enhanced metal-poor stars observed with FORS and GMOS

    Science.gov (United States)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    Aims: Carbon-enhanced metal-poor (CEMP) stars represent a sizeable fraction of all known metal-poor stars in the Galaxy. Their formation and composition remains a significant topic of investigation within the stellar astrophysics community. Methods: We analysed a sample of low-resolution spectra of 30 dwarf stars, obtained using the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (FORS/VLT) of the European Southern Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS) at the GEMINI telescope, to derive their metallicity and carbon abundance. Results: We derived C and Ca from all spectra, and Fe and Ba from the majority of the stars. Conclusions: We have extended the population statistics of CEMP stars and have confirmed that in general, stars with a high C abundance belonging to the high C band show a high Ba-content (CEMP-s or -r/s), while stars with a normal C abundance or that are C-rich, but belong to the low C band, are normal in Ba (CEMP-no). Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0791.Based on observations obtained at the Gemini Observatory (processed using the Gemini IRAF package), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68

  6. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    Science.gov (United States)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard

  7. Transition-metal interactions in aluminum-rich intermetallics

    International Nuclear Information System (INIS)

    Al-Lehyani, Ibrahim; Widom, Mike; Wang, Yang; Moghadam, Nassrin; Stocks, G. Malcolm; Moriarty, John A.

    2001-01-01

    The extension of the first-principles generalized pseudopotential theory (GPT) to transition-metal (TM) aluminides produces pair and many-body interactions that allow efficient calculations of total energies. In aluminum-rich systems treated at the pair-potential level, one practical limitation is a transition-metal overbinding that creates an unrealistic TM-TM attraction at short separations in the absence of balancing many-body contributions. Even with this limitation, the GPT pair potentials have been used effectively in total-energy calculations for Al-TM systems with TM atoms at separations greater than 4 Aa. An additional potential term may be added for systems with shorter TM atom separations, formally folding repulsive contributions of the three- and higher-body interactions into the pair potentials, resulting in structure-dependent TM-TM potentials. Towards this end, we have performed numerical ab initio total-energy calculations using the Vienna ab initio simulation package for an Al-Co-Ni compound in a particular quasicrystalline approximant structure. The results allow us to fit a short-ranged, many-body correction of the form a(r 0 /r) b to the GPT pair potentials for Co-Co, Co-Ni, and Ni-Ni interactions

  8. On social inequality: Analyzing the rich-poor disparity

    Science.gov (United States)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-05-01

    From the Old Testament to the Communist Manifesto, and from the French Revolution to the Occupy Wall Street protests, social inequality has always been at the focal point of public debate, as well as a major driver of political change. Although being of prime interest since Biblical times, the scientific investigation of the distributions of wealth and income in human societies began only at the close of the nineteenth century, and was pioneered by Pareto, Lorenz, Gini, and Pietra. The methodologies introduced by these trailblazing scholars form the bedrock of the contemporary science of social inequality. Based on this bedrock we present a new quantitative approach to the analysis of wealth and income distributions, which sets its spotlight on the most heated facet of the current global debate on social inequality-the rich-poor disparity. Our approach offers researchers highly applicable quantitative tools to empirically track and statistically analyze the growing gap between the rich and the poor.

  9. The best and brightest metal-poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.

  10. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang

    2015-01-01

    One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal–dielectric–metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm −1 is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry. (paper)

  11. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin; Lee, Young-Wook

    2013-01-01

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced by observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.

  12. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    García Pérez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Léo

    2013-01-01

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] ≤ –1.7), including two that are very metal-poor [Fe/H] ∼ –2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the α-elements O, Mg, and Si without significant α-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  13. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Cunha, Katia [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Johnson, Jennifer A.; Zasowski, Gail [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Smith, Verne V.; Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A' Ohoku Place, Hilo, HI 96720 (United States); Holtzman, Jon [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Nidever, David [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Allende Prieto, Carlos [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Eisenstein, Daniel J. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, 2800 South University Drive, Fort Worth, TX 76129 (United States); Girardi, Leo [Laboratorio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ - 20921-400 (Brazil); and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  14. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-01-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ∼15, 000) and corresponding high-resolution (R ∼35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from –2.9 to –3.9, including four new stars with [Fe/H] < –3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< – 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] ∼< –3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ∼500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  15. DISCOVERY OF A GAS-RICH COMPANION TO THE EXTREMELY METAL-POOR GALAXY DDO 68

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, John M.; Alfvin, Erik D. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Johnson, Megan; Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, NSW 1710, Epping (Australia); McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, P.O. Box 870324, Tuscaloosa, AL 35487-0324 (United States); Ford, H. Alyson [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Hirschauer, Alec S.; Janowiecki, Steven; Salzer, John J.; Van Sistine, Angela [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Dolphin, Andrew [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Elson, E. C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Marigo, Paola; Rosenfield, Philip [Dipartimento di Fisica e Astronomia Galileo Galilei, Universitá degli Studi di Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Rosenberg, Jessica L. [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117 (United States); Warren, Steven R., E-mail: jcannon@macalester.edu [Department of Astronomy, University of Maryland, CSS Bldg., Rm. 1024, Stadium Drive, College Park, MD 20742-2421 (United States)

    2014-05-20

    We present H I spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only ∼3% Z {sub ☉}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival H I spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M{sub H} {sub I} = 2.8 × 10{sup 7} M {sub ☉}), recently star-forming (SFR{sub FUV} = 1.4 × 10{sup –3} M {sub ☉} yr{sup –1}, SFR{sub Hα} < 7 × 10{sup –5} M {sub ☉} yr{sup –1}) companion has the same systemic velocity as DDO 68 (V {sub sys} = 506 km s{sup –1}; D = 12.74 ± 0.27 Mpc) and is located at a projected distance of ∼42 kpc. New H I maps obtained with the 100 m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness H I gas forms a bridge between these objects.

  16. INNER EDGES OF COMPACT DEBRIS DISKS AROUND METAL-RICH WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Rafikov, Roman R.; Garmilla, Jose A., E-mail: rrr@astro.princeton.edu, E-mail: garmilla@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2012-12-01

    A number of metal-rich white dwarfs (WDs) are known to host compact, dense particle disks, which are thought to be responsible for metal pollution of these stars. In many such systems, the inner radii of disks inferred from their spectra are so close to the WD that particles directly exposed to starlight must be heated above 1500 K and are expected to be unstable against sublimation. To reconcile this expectation with observations, we explore particle sublimation in H-poor debris disks around WDs. We show that because of the high metal vapor pressure the characteristic sublimation temperature in these disks is 300-400 K higher than in their protoplanetary analogs, allowing particles to survive at higher temperatures. We then look at the structure of the inner edges of debris disks and show that they should generically feature superheated inner rims directly exposed to starlight with temperatures reaching 2500-3500 K. Particles migrating through the rim toward the WD (and rapidly sublimating) shield the disk behind them from strong stellar heating, making the survival of solids possible close to the WD. Our model agrees well with observations of WD+disk systems provided that disk particles are composed of Si-rich material such as olivine, and have sizes in the range {approx}0.03-30 cm.

  17. INNER EDGES OF COMPACT DEBRIS DISKS AROUND METAL-RICH WHITE DWARFS

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Garmilla, José A.

    2012-01-01

    A number of metal-rich white dwarfs (WDs) are known to host compact, dense particle disks, which are thought to be responsible for metal pollution of these stars. In many such systems, the inner radii of disks inferred from their spectra are so close to the WD that particles directly exposed to starlight must be heated above 1500 K and are expected to be unstable against sublimation. To reconcile this expectation with observations, we explore particle sublimation in H-poor debris disks around WDs. We show that because of the high metal vapor pressure the characteristic sublimation temperature in these disks is 300-400 K higher than in their protoplanetary analogs, allowing particles to survive at higher temperatures. We then look at the structure of the inner edges of debris disks and show that they should generically feature superheated inner rims directly exposed to starlight with temperatures reaching 2500-3500 K. Particles migrating through the rim toward the WD (and rapidly sublimating) shield the disk behind them from strong stellar heating, making the survival of solids possible close to the WD. Our model agrees well with observations of WD+disk systems provided that disk particles are composed of Si-rich material such as olivine, and have sizes in the range ∼0.03-30 cm.

  18. Inner Edges of Compact Debris Disks around Metal-rich White Dwarfs

    Science.gov (United States)

    Rafikov, Roman R.; Garmilla, José A.

    2012-12-01

    A number of metal-rich white dwarfs (WDs) are known to host compact, dense particle disks, which are thought to be responsible for metal pollution of these stars. In many such systems, the inner radii of disks inferred from their spectra are so close to the WD that particles directly exposed to starlight must be heated above 1500 K and are expected to be unstable against sublimation. To reconcile this expectation with observations, we explore particle sublimation in H-poor debris disks around WDs. We show that because of the high metal vapor pressure the characteristic sublimation temperature in these disks is 300-400 K higher than in their protoplanetary analogs, allowing particles to survive at higher temperatures. We then look at the structure of the inner edges of debris disks and show that they should generically feature superheated inner rims directly exposed to starlight with temperatures reaching 2500-3500 K. Particles migrating through the rim toward the WD (and rapidly sublimating) shield the disk behind them from strong stellar heating, making the survival of solids possible close to the WD. Our model agrees well with observations of WD+disk systems provided that disk particles are composed of Si-rich material such as olivine, and have sizes in the range ~0.03-30 cm.

  19. Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy

    Science.gov (United States)

    van de Voort, Freeke; Quataert, Eliot; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André

    2015-02-01

    We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H] ≲ -2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduce an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.

  20. Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems

    Science.gov (United States)

    Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter G.; Lind, Karin

    2018-02-01

    We present updated stellar population models appropriate for old ages (>1 Gyr) and covering a wide range in metallicities (‑1.5 ≲ [Fe/H] ≲ 0.3). These models predict the full spectral variation associated with individual element abundance variation as a function of metallicity and age. The models span the optical–NIR wavelength range (0.37–2.4 μm), include a range of initial mass functions, and contain the flexibility to vary 18 individual elements including C, N, O, Mg, Si, Ca, Ti, and Fe. To test the fidelity of the models, we fit them to integrated light optical spectra of 41 Galactic globular clusters (GCs). The value of testing models against GCs is that their ages, metallicities, and detailed abundance patterns have been derived from the Hertzsprung–Russell diagram in combination with high-resolution spectroscopy of individual stars. We determine stellar population parameters from fits to all wavelengths simultaneously (“full spectrum fitting”), and demonstrate explicitly with mock tests that this approach produces smaller uncertainties at fixed signal-to-noise ratio than fitting a standard set of 14 line indices. Comparison of our integrated-light results to literature values reveals good agreement in metallicity, [Fe/H]. When restricting to GCs without prominent blue horizontal branch populations, we also find good agreement with literature values for ages, [Mg/Fe], [Si/Fe], and [Ti/Fe].

  1. ALFALFA DISCOVERY OF THE MOST METAL-POOR GAS-RICH GALAXY KNOWN: AGC 198691

    Energy Technology Data Exchange (ETDEWEB)

    Hirschauer, Alec S.; Salzer, John J.; Rhode, Katherine L., E-mail: ash@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: krhode@indiana.edu [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); and others

    2016-05-10

    We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of H i in Extremely Low-Mass Dwarfs project, which is a multi-wavelength study of galaxies with H i masses in the range of 10{sup 6}–10{sup 7.2} M {sub ⊙}, discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We have obtained spectra of the lone H ii region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph on the Mayall 4 m, as well as with the Blue Channel spectrograph on the MMT 6.5 m telescope. These observations enable the measurement of the temperature-sensitive [O iii] λ 4363 line and hence the determination of a “direct” oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 ± 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind H i survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.

  2. NEAR-IR PHOTOMETRIC PROPERTIES OF HB, MSTO, AND SGB FOR METAL POOR GALACTIC GLOBULAR CLUSTERS

    Directory of Open Access Journals (Sweden)

    J.-W. Kim

    2007-03-01

    Full Text Available We report photometric features of the HB, MSTO, and SGB for a set of metal-poor Galactic globular clusters on the near-IR CMDs. The magnitude and color of the MSTO and SGB are measured on the fiducial normal points of the CMDs by applying a polynomial fit. The near-IR luminosity functions of horizontal branch stars in the classical second parameter pair M3 and M13 indicate that HB stars in M13 are dominated by hot stars that are rotatively faint in the infrared, whereas HB stars in M3 are brighter than those in M13. The luminosity functions of HB stars in the observed bulge clusters, except for NGC 6717, show a trend that the fainter hot HB stars are dominated in the relatively metal-poor clusters while the relatively metal-rich clusters contain the brighter HB stars. It is suggestive that NGC 6717 would be an extreme example of the second-parameter phenomenon for the bulge globular clusters.

  3. The impact of global nuclear mass model uncertainties on r-process abundance predictions

    Directory of Open Access Journals (Sweden)

    Mumpower M.

    2015-01-01

    Full Text Available Rapid neutron capture or ‘r-process’ nucleosynthesis may be responsible for half the production of heavy elements above iron on the periodic table. Masses are one of the most important nuclear physics ingredients that go into calculations of r-process nucleosynthesis as they enter into the calculations of reaction rates, decay rates, branching ratios and Q-values. We explore the impact of uncertainties in three nuclear mass models on r-process abundances by performing global monte carlo simulations. We show that root-mean-square (rms errors of current mass models are large so that current r-process predictions are insufficient in predicting features found in solar residuals and in r-process enhanced metal poor stars. We conclude that the reduction of global rms errors below 100 keV will allow for more robust r-process predictions.

  4. CHEMICAL ANALYSIS OF A CARBON-ENHANCED VERY METAL-POOR STAR: CD-27 14351

    Energy Technology Data Exchange (ETDEWEB)

    Karinkuzhi, Drisya; Goswami, Aruna [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Masseron, Thomas [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-01-01

    We present, for the first time, an abundance analysis of a very metal-poor carbon-enhanced star CD-27 14351 based on a high-resolution ( R  ∼ 48,000) FEROS spectrum. Our abundance analysis performed using local thermodynamic equilibrium model atmospheres shows that the object is a cool star with stellar atmospheric parameters, effective temperature T {sub eff} = 4335 K, surface gravity log g  = 0.5, microturbulence ξ  = 2.42 km s{sup −1}, and metallicity [Fe/H] = −2.6. The star exhibits high carbon and nitrogen abundances with [C/Fe] = 2.89 and [N/Fe] = 1.89. Overabundances of neutron-capture elements are evident in Ba, La, Ce, and Nd, with estimated [X/Fe] > 1, the largest enhancement being seen in Ce with [Ce/Fe] = 2.63. While the first peak s -process elements Sr and Y are found to be enhanced with respect to Fe, ([Sr/Fe] = 1.73 and [Y/Fe] = 1.91), the third peak s -process element Pb could not be detected in our spectrum at the given resolution. Europium, primarily an r -process element also shows an enhancement with [Eu/Fe] = 1.65. With [Ba/Eu] = 0.12, the object CD-27 14351 satisfies the classification criterion for a CEMP-r/s star. The elemental abundance distributions observed in this star are discussed in light of the chemical abundances observed in other CEMP stars in the literature.

  5. The r-process nucleosynthesis and related challenges

    Directory of Open Access Journals (Sweden)

    Goriely Stephane

    2017-01-01

    Full Text Available The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Recently, special attention has been paid to neutron star (NS mergers following the confirmation by hydrodynamic simulations that a non-negligible amount of matter can be ejected and by nucleosynthesis calculations combined with the predicted astrophysical event rate that such a site can account for the majority of r-material in our Galaxy. We show here that the combined contribution of both the dynamical (prompt ejecta expelled during binary NS or NS-black hole (BH mergers and the neutrino and viscously driven outflows generated during the post-merger remnant evolution of relic BH-torus systems can lead to the production of r-process elements from mass number A ≳ 90 up to actinides. The corresponding abundance distribution is found to reproduce the solar distribution extremely well. It can also account for the elemental distributions observed in low-metallicity stars. However, major uncertainties still affect our understanding of the composition of the ejected matter. These concern (i the β-interactions of electron (antineutrinos with free neutrons and protons, as well as their inverse reactions, which may affect the neutron-richness of the matter at the early phase of the ejection, and (ii the nuclear physics of exotic neutron-rich nuclei, including nuclear structure as well as nuclear interaction properties, which impact the calculated abundance distribution. Both aspects are discussed in the light of recent hydrodynamical simulations of NS mergers and microscopic calculations of nuclear decay and reaction probabilities.

  6. Retainment of r-process material in dwarf galaxies

    Science.gov (United States)

    Beniamini, Paz; Dvorkin, Irina; Silk, Joe

    2018-04-01

    The synthesis of r-process elements is known to involve extremely energetic explosions. At the same time, recent observations find significant r-process enrichment even in extremely small ultra-faint dwarf (UFD) galaxies. This raises the question of retainment of those elements within their hosts. We estimate the retainment fraction and find that it is large ˜0.9, unless the r-process event is very energetic (≳ 1052erg) and / or the host has lost a large fraction of its gas prior to the event. We estimate the r-process mass per event and rate as implied by abundances in UFDs, taking into account imperfect retainment and different models of UFD evolution. The results are consistent with previous estimates (Beniamini et al. 2016b) and with the constraints from the recently detected macronova accompanying a neutron star merger (GW170817). We also estimate the distribution of abundances predicted by these models. We find that ˜0.07 of UFDs should have r-process enrichment. The results are consistent with both the mean values and the fluctuations of [Eu/Fe] in galactic metal poor stars, supporting the possibility that UFDs are the main 'building blocks' of the galactic halo population.

  7. Ruprecht 106 - A young metal-poor Galactic globular cluster

    International Nuclear Information System (INIS)

    Buonanno, R.; Buscema, G.; Fusi Pecci, F.; Richer, H.B.; Fahlman, G.G.

    1990-01-01

    The first CCD photometric survey in the Galactic globular cluster Ruprecht 106 has been performed. The results show that Ruprecht 106 is a metal-poor cluster with (Fe/H) about -2 located at about 25 kpc from the Galactic center. A sizable, high centrally concentrated population of blue stragglers was detected. Significant differences in the positions of the turnoffs in the color-magnitude diagram are found compared to those in metal-poor clusters. The cluster appears younger than other typical metal-poor Galactic globulars by about 4-5 Gyr; if true, this object would represent the first direct proof of the existence of a significant age spread among old, very metal-poor clusters. 51 refs

  8. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    important for metal substrates, as it is well-known that chloride increases corrosion of metals . 3 For metal -loaded primers, it has been established...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal -rich organic (MRO) coatings. Following design of...pH and chloride ion concentration levels over time. As the corrosion protection of the coating decreases, chloride ion concentration will increase

  9. The r-process nucleosynthesis: Nuclear physics challenges

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  10. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M. M. E.; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last......)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25......-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals...

  11. A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Daikopoulos, Chris [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, Athanasios B. [Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, Athens 15310 (Greece); Georgiou, Yiannis [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Deligiannakis, Yiannis, E-mail: ideligia@cc.uoi.gr [Laboratory of Physical Chemistry, Department of Environmental and Natural Resources Management, University of Patras, Seferi 2, Agrinio 30100 (Greece); Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University, Olomouc 77146 (Czech Republic); Karakassides, Michael A. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece)

    2014-04-01

    Highlights: • Novel phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild xerogel process. • Surface Complexation Modeling reveals that PSLM bears 2 types of functional groups able to bind heavy metal. • Maximum metal uptake capacities were found 2.72 mmol g{sup −1} for Cu{sup 2+}, 1.67 mmol g{sup −1} for Pb{sup 2+} and 1.00 mmol g{sup −1} for Cd{sup 2+} at pH 7. • EPR spectroscopy reveals local coordination environment for Cu{sup 2+} ions. - Abstract: A phosphonate-rich organosilica layered hybrid material (PSLM) made of 3-(trihydroxysilyl)propyl methylphosphonate, monosodium salt, as the single silica source, has been obtained from its aqueous solution through a xerogel process and mild thermal aging. The method is simple, affording bulk quantities of powdered PSLM in a single-step. The hybrid is stable in water and possesses a high content of phosphonate groups fixed on the solid matrix. In addition, PSLM shows good thermal stability, which exceeds 300 °C in air. The material was characterized using SEM, TEM, XRD, FT-IR and TGA techniques. Potentiometric titrations show that PSLM bears high-surface density of phosphonate groups (3 mmol g{sup −1}). As a result, the material displays high metal uptake capacity for heavy metal ions such as Cu{sup 2+} (2.72 mmol g{sup −1}), Pb{sup 2+} (1.67 mmol g{sup −1}) and Cd{sup 2+} (1.00 mmol g{sup −1}) at neutral pH values e.g. the pH of natural waters. Detailed theoretical modeling using a Surface Complexation Model combined with Electron Paramagnetic Resonance (EPR) spectroscopy shows that the surface distribution of surface bound Cu{sup 2+} ions is rather homogeneous e.g. copper-binding phosphonate sites are arranged in average distances 5–8 Å.

  12. Hydrometallurgical Approach for Leaching of Metals from Copper Rich Side Stream Originating from Base Metal Production

    Directory of Open Access Journals (Sweden)

    Udit Surya Mohanty

    2018-01-01

    Full Text Available Pyrometallurgical metal production results in side streams, such as dusts and slags, which are carriers of metals, though commonly containing lower metal concentrations compared to the main process stream. In order to improve the circular economy of metals, selective leaching of copper from an intermediate raw material originating from primary base metal production plant was investigated. The raw material investigated was rich in Cu (12.5%, Ni (2.6%, Zn (1.6%, and Fe (23.6% with the particle size D80 of 124 µm. The main compounds present were nickel ferrite (NiFe2O4, fayalite (Fe2SiO4, cuprite (Cu2O, and metallic copper. Leaching was studied in 16 different solutions. The results revealed that copper phases could be dissolved with high yield (>90% and selectivity towards nickel (Cu/Ni > 7 already at room temperature with the following solutions: 0.5 M HCl, 1.5 M HCl, 4 M NaOH, and 2 M HNO3. A concentration of 4 M NaOH provided a superior selectivity between Cu/Ni (340 and Cu/Zn (51. In addition, 1–2 M HNO3 and 0.5 M HCl solutions were shown to result in high Pb dissolution (>98%. Consequently, 0.5 M HCl leaching is suggested to provide a low temperature, low chemical consumption method for selective copper removal from the investigated side stream, resulting in PLS (pregnant leach solution which is a rich in Cu and lead free residue, also rich in Ni and Fe.

  13. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  14. RAVE J203843.2-002333: The First Highly R-process-enhanced Star Identified in the RAVE Survey

    Science.gov (United States)

    Placco, Vinicius M.; Holmbeck, Erika M.; Frebel, Anna; Beers, Timothy C.; Surman, Rebecca A.; Ji, Alexander P.; Ezzeddine, Rana; Points, Sean D.; Kaleida, Catherine C.; Hansen, Terese T.; Sakari, Charli M.; Casey, Andrew R.

    2017-07-01

    We report the discovery of RAVE J203843.2-002333, a bright (V = 12.73), very metal-poor ([{Fe}/{{H}}] = -2.91), r-process-enhanced ([{Eu}/{Fe}] = +1.64 and [{Ba}/{Eu}] = -0.81) star selected from the RAVE survey. This star was identified as a metal-poor candidate based on its medium-resolution (R ˜ 1600) spectrum obtained with the KPNO/Mayall Telescope, and followed up with high-resolution (R ˜ 66,000) spectroscopy with the Magellan/Clay Telescope, allowing for the determination of elemental abundances for 24 neutron-capture elements, including thorium and uranium. RAVE J2038-0023 is only the fourth metal-poor star with a clearly measured U abundance. The derived chemical abundance pattern exhibits good agreement with those of other known highly r-process-enhanced stars, and evidence suggests that it is not an actinide-boost star. Age estimates were calculated using U/X abundance ratios, yielding a mean age of 13.0 ± 1.1 Gyr. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; Kitt Peak National Observatory, National Optical Astronomy Observatory (NOAO Prop. ID: 14B-0231; PI: Placco), which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. The authors are honored to be permitted to conduct astronomical research on Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham.

  15. Stellar Archaeology -- Exploring the Universe with Metal-Poor Stars

    OpenAIRE

    Frebel, Anna

    2010-01-01

    The abundance patterns of the most metal-poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star- and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. T...

  16. Decrease in zinc adsorption onto soil in the presence of EPS-rich and EPS-poor Pseudomonas aureofaciens.

    Science.gov (United States)

    Drozdova, O Yu; Pokrovsky, O S; Lapitskiy, S A; Shirokova, L S; González, A G; Demin, V V

    2014-12-01

    The adsorption of Zn onto the humic and illuvial horizons of the podzol soil in the presence of soil bacteria was studied using a batch-reactor technique as a function of the pH (from 2 to 9) and the Zn concentration in solution (from 0.076mM to 0.760mM). Exopolysaccharides-forming aerobic heterotrophs Pseudomonas aureofaciens were added at 0.1 and 1.0gwetL(-1) concentrations to two different soil horizons, and Zn adsorption was monitored as a function of the pH and the dissolved-Zn concentration. The pH-dependent adsorption edge demonstrated more efficient Zn adsorption by the humic horizon than the mineral horizon at otherwise similar soil concentrations. The Zn adsorption onto the EPS-poor strain was on slightly lower than that onto EPS-rich bacteria. Similar differences in the adsorption capacities between the soil and bacteria were also detected by "langmuirian" constant-pH experiments conducted in soil-Zn and bacteria-Zn binary systems. The addition of 0.1gwetL(-1)P. aureofaciens to a soil-bacteria system (4gdryL(-1)soil) resulted in statistically significant decrease in the adsorption yield, which was detectable from both the pH-dependent adsorption edge and the constant-pH isotherm experiments. Increasing the amount of added bacteria to 1gwetL(-1) further decreased the overall adsorption in the full range of the pH. This decrease was maximal for the EPS-rich bacteria and minimal for the EPS-poor bacteria (a factor of 2.8 and 2.2 at pH=6.9, respectively). These observations in binary and ternary systems were further rationalized by linear-programming modeling of surface equilibria that revealed the systematic differences in the number of binding sites and the surface-adsorption constant of zinc onto the two soil horizons with and without bacteria. The main finding of this work is that the adsorption of Zn onto the humic soil-bacteria system is lower than that in pure, bacteria-free soil systems. This difference is statistically significant (psoil particles

  17. ENRICHMENT OF r-PROCESS ELEMENTS IN DWARF SPHEROIDAL GALAXIES IN CHEMO-DYNAMICAL EVOLUTION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Yutaka; Kajino, Toshitaka [Department of Astronomy, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ishimaru, Yuhri [Department of Material Science,International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 (Japan); Saitoh, Takayuki R. [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Fujii, Michiko S.; Hidaka, Jun, E-mail: yutaka.hirai@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa Mitaka, Tokyo 181-8588 (Japan)

    2015-11-20

    The rapid neutron-capture process (r-process) is a major process for the synthesis of elements heavier than iron-peak elements, but the astrophysical site(s) of the r-process has not yet been identified. Neutron star mergers (NSMs) are suggested to be a major r-process site according to nucleosynthesis studies. Previous chemical evolution studies, however, required unlikely short merger times of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements to iron: the [Eu/Fe] of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs), which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate the enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] due to NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. This is because metallicity is not correlated with time ∼300 Myr from the start of the simulation due to the low star formation efficiency in dSphs. We also confirm that this model is consistent with observed properties of dSphs such as radial profiles and metallicity distribution. The merger time and the Galactic rate of NSMs are suggested to be ≲300 Myr and ∼10{sup −4} year{sup −1}, respectively, which are consistent with the values suggested by population synthesis and nucleosynthesis studies. This study supports the argument that NSMs are the major astrophysical site of the r-process.

  18. Models of alien species richness show moderate predictive accuracy and poor transferability

    Directory of Open Access Journals (Sweden)

    César Capinha

    2018-06-01

    Full Text Available Robust predictions of alien species richness are useful to assess global biodiversity change. Nevertheless, the capacity to predict spatial patterns of alien species richness remains largely unassessed. Using 22 data sets of alien species richness from diverse taxonomic groups and covering various parts of the world, we evaluated whether different statistical models were able to provide useful predictions of absolute and relative alien species richness, as a function of explanatory variables representing geographical, environmental and socio-economic factors. Five state-of-the-art count data modelling techniques were used and compared: Poisson and negative binomial generalised linear models (GLMs, multivariate adaptive regression splines (MARS, random forests (RF and boosted regression trees (BRT. We found that predictions of absolute alien species richness had a low to moderate accuracy in the region where the models were developed and a consistently poor accuracy in new regions. Predictions of relative richness performed in a superior manner in both geographical settings, but still were not good. Flexible tree ensembles-type techniques (RF and BRT were shown to be significantly better in modelling alien species richness than parametric linear models (such as GLM, despite the latter being more commonly applied for this purpose. Importantly, the poor spatial transferability of models also warrants caution in assuming the generality of the relationships they identify, e.g. by applying projections under future scenario conditions. Ultimately, our results strongly suggest that predictability of spatial variation in richness of alien species richness is limited. The somewhat more robust ability to rank regions according to the number of aliens they have (i.e. relative richness, suggests that models of aliens species richness may be useful for prioritising and comparing regions, but not for predicting exact species numbers.

  19. Neutron-rich isotopes around the r-process 'waiting-point' nuclei 2979Cu50 and 3080Zn50

    International Nuclear Information System (INIS)

    Kratz, K.L.; Gabelmann, H.; Pfeiffer, B.; Woehr, A.

    1991-01-01

    Beta-decay half-lives (T 1/2 ) and delayed-neutron emission probabilities (P n ) of very neutron-rich Cu to As nuclei have been measured, among them the new isotopes 77 Cu 48 , 79 Cu 50 , 81 Zn 51 and 84 Ga 53 . With the T 1/2 and P n -values of now four N≅50 'waiting-point' nuclei known, our hypothesis that the r-process has attained a local β-flow equilibrium around A≅80 is further strengthened. (orig.)

  20. Three-dimensional models of metal-poor stars

    International Nuclear Information System (INIS)

    Collet, R

    2008-01-01

    I present here the main results of recent realistic, three-dimensional (3D), hydrodynamical simulations of convection at the surface of metal-poor red giant stars. I discuss the application of these convection simulations as time-dependent, 3D, hydrodynamical model atmospheres to spectral line formation calculations and abundance analyses. The impact of 3D models on derived elemental abundances is investigated by means of a differential comparison of the line strengths predicted in 3D under the assumption of local thermodynamic equilibrium (LTE) with the results of analogous line formation calculations performed with classical, 1D, hydrostatic model atmospheres. The low surface temperatures encountered in the upper photospheric layers of 3D model atmospheres of very metal-poor stars cause spectral lines of neutral metals and molecules to appear stronger in 3D than in 1D calculations. Hence, 3D elemental abundances derived from such lines are significantly lower than estimated by analyses with 1D models. In particular, differential 3D-1D LTE abundances for C, N and O derived from CH, NH and OH lines are found to be in the range -0.5 to - 1 dex. Large negative differential 3D-1D corrections to the Fe abundance are also computed for weak low-excitation Fe i lines. The application of metal-poor 3D models to the spectroscopic analysis of extremely iron-poor halo stars is discussed.

  1. A HOT URANUS ORBITING THE SUPER METAL-RICH STAR HD 77338 AND THE METALLICITY-MASS CONNECTION

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Hoyer, S.; Jones, M. I.; Rojo, P.; Day-Jones, A. C.; Ruiz, M. T.; Jones, H. R. A.; Tuomi, M.; Barnes, J. R.; Pavlenko, Y. V.; Pinfield, D. J.; Murgas, F.; Ivanyuk, O.; Jordán, A.

    2013-01-01

    We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD 77338 as part of our ongoing Calan-Hertfordshire Extrasolar Planet Search. The best-fit planet solution has an orbital period of 5.7361 ± 0.0015 days and with a radial velocity semi-amplitude of only 5.96 ± 1.74 ms –1 , we find a minimum mass of 15.9 +4.7 -5.3 M ⊕ . The best-fit eccentricity from this solution is 0.09 +0.25 -0.09 , and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35 ± 0.06 dex, whereas another recent work finds +0.47 ± 0.05 dex. Thus HD 77338b is one of the most metal-rich planet-host stars known and the most metal-rich star hosting a sub-Neptune-mass planet. We searched for a transit signature of HD 77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this low-mass planet desert is statistically significant with the current sample of 36 planets at the ∼4.5σ level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low mass planets can now be discovered with a relatively small number of data points using stable instrumentation.

  2. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Olsson, Sanna; Aguilera, Angeles

    2016-10-01

    Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.

  3. Detection of a Population of Carbon-enhanced Metal-poor Stars in the Sculptor Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Simon, Joshua D.; Frebel, Anna; Thompson, Ian B.; Shectman, Stephen A.; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.; Walker, Matthew

    2018-04-01

    The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor from medium-resolution (R ∼ 2000) spectra taken with the Magellan/Michigan Fiber System mounted on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We identify 24 extremely metal-poor star candidates ([Fe/H] 1.0). The existence of a large number of CEMP stars both in the halo and in Sculptor suggests that some halo CEMP stars may have originated from accreted early analogs of dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  4. The Shape of Extremely Metal-Poor Galaxies

    Science.gov (United States)

    Putko, Joseph; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana; Elmegreen, Bruce; Elmegreen, Debra

    2018-01-01

    This work is the first study on the 3D shape of starbursting extremely metal-poor galaxies (XMPs; a galaxy is said to be an XMP if its ionized gas-phase metallicity is less than 1/10 the solar value). A few hundred XMPs have been identified in the local universe primarily through mining the spectroscopic catalog of the Sloan Digital Sky Survey (SDSS), and follow-up observations have shown that metallicity drops significantly at the starburst (compared to the quiescent component of the galaxy). As the timescale for gas mixing is short, the metal-poor gas triggering the starburst must have been accreted recently. This is strong observational evidence for the cold flow accretion predicted by cosmological models of galaxy formation, and, in this respect, XMPs seem to be the best local analogs of the very first galaxies.The ellipsoidal shape of a class of galaxies can be inferred from the observed axial ratio (q) distribution (q = minor axis/major axis) of a large sample of randomly-oriented galaxies. Fitting ellipses to 200 XMPs using r-band SDSS images, we observe that the axial ratio distribution falls off at q ~0.8, and we determine that these falloffs are not due to biases in the data. The falloff at low axial ratio indicates that the XMPs are thick for their size, and the falloff at high axial ratio suggests the vast majority of XMPs are triaxial. We also observe that smaller XMPs are thicker in proportion to their size, and it is expected that for decreasing galaxy size the ratio of random to rotational motions increases, which correlates with increasing relative thickness. The XMPs are low-redshift dwarf galaxies dominated by dark matter, and our results are compatible with simulations that have shown dark matter halos to be triaxial, with triaxial stellar distributions for low-mass galaxies and with triaxiality increasing over time. We will offer precise constraints on the 3D shape of XMPs via Bayesian analysis of our observed axial ratio distribution.This work

  5. SPECTROSCOPIC STUDIES OF EXTREMELY METAL-POOR STARS WITH THE SUBARU HIGH DISPERSION SPECTROGRAPH. V. THE Zn-ENHANCED METAL-POOR STAR BS 16920-017

    International Nuclear Information System (INIS)

    Honda, Satoshi; Aoki, Wako; Beers, Timothy C.; Takada-Hidai, Masahide

    2011-01-01

    We report Zn abundances for 18 very metal-poor stars studied in our previous work, covering the metallicity range -3.2< [Fe/H] <-2.5. The [Zn/Fe] values of most stars show an increasing trend with decreasing [Fe/H] in this metallicity range, confirming the results found by previous studies. However, the extremely metal-poor star BS 16920-017([Fe/H] =-3.2) exhibits a significantly high [Zn/Fe] ratio ([Zn/Fe] = +1.0). Comparison of the chemical abundances of this object with HD 4306, which has similar atmospheric parameters to BS 16920-017, clearly demonstrates a deficiency of α elements and neutron-capture elements in this star, along with enhancements of Mn and Ni, as well as Zn. The association with a hypernova explosion that has been proposed to explain the high Zn abundance ratios found in extremely metal-poor stars is a possible explanation, although further studies are required to fully interpret the abundance pattern of this object.

  6. EXTREMELY METAL-POOR GALAXIES: THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E. [Universidad de Las Palmas de Gran Canaria–Universidad de La Laguna, CIE Canarias: Tri-Continental Atlantic Campus, Canary Islands (Spain); Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nuza, S. E.; Kitaura, F.; Heß, S., E-mail: mfilho@astro.up.pt [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-04-01

    We have analyzed bibliographical observational data and theoretical predictions, in order to probe the environment in which extremely metal-poor dwarf galaxies (XMPs) reside. We have assessed the H i component and its relation to the optical galaxy, the cosmic web type (voids, sheets, filaments and knots), the overdensity parameter and analyzed the nearest galaxy neighbors. The aim is to understand the role of interactions and cosmological accretion flows in the XMP observational properties, particularly the triggering and feeding of the star formation. We find that XMPs behave similarly to Blue Compact Dwarfs; they preferably populate low-density environments in the local universe: ∼60% occupy underdense regions, and ∼75% reside in voids and sheets. This is more extreme than the distribution of irregular galaxies, and in contrast to those regions preferred by elliptical galaxies (knots and filaments). We further find results consistent with previous observations; while the environment does determine the fraction of a certain galaxy type, it does not determine the overall observational properties. With the exception of five documented cases (four sources with companions and one recent merger), XMPs do not generally show signatures of major mergers and interactions; we find only one XMP with a companion galaxy within a distance of 100 kpc, and the H i gas in XMPs is typically well-behaved, demonstrating asymmetries mostly in the outskirts. We conclude that metal-poor accretion flows may be driving the XMP evolution. Such cosmological accretion could explain all the major XMP observational properties: isolation, lack of interaction/merger signatures, asymmetric optical morphology, large amounts of unsettled, metal-poor H i gas, metallicity inhomogeneities, and large specific star formation.

  7. SEARCHES FOR METAL-POOR STARS FROM THE HAMBURG/ESO SURVEY USING THE CH G BAND

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Vinicius M.; Rossi, Silvia [Departamento de Astronomia-Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, SP 05508-090 (Brazil); Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun [Department of Physics and Astronomy and JINA (Joint Institute for Nuclear Astrophysics), Michigan State University, East Lansing, MI 48824 (United States); Christlieb, Norbert [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, 69117 Heidelberg (Germany); Sivarani, Thirupathi [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Reimers, Dieter [Hamburger Sternwarte, Universitaet Hamburg, Gojenbergsweg 112, 21029 Hamburg (Germany); Wisotzki, Lutz, E-mail: vmplacco@astro.iag.usp.br [Astrophysical Institute Potsdam, An der Sternwarte 16, 14482 Potsdam (Germany)

    2011-12-15

    We describe a new method to search for metal-poor candidates from the Hamburg/ESO objective-prism survey (HES) based on identifying stars with apparently strong CH G-band strengths for their colors. The hypothesis we exploit is that large overabundances of carbon are common among metal-poor stars, as has been found by numerous studies over the past two decades. The selection was made by considering two line indices in the 4300 A region, applied directly to the low-resolution prism spectra. This work also extends a previously published method by adding bright sources to the sample. The spectra of these stars suffer from saturation effects, compromising the index calculations and leading to an undersampling of the brighter candidates. A simple numerical procedure, based on available photometry, was developed to correct the line indices and overcome this limitation. Visual inspection and classification of the spectra from the HES plates yielded a list of 5288 new metal-poor (and by selection, carbon-rich) candidates, which are presently being used as targets for medium-resolution spectroscopic follow-up. Estimates of the stellar atmospheric parameters, as well as carbon abundances, are now available for 117 of the first candidates, based on follow-up medium-resolution spectra obtained with the SOAR 4.1 m and Gemini 8 m telescopes. We demonstrate that our new method improves the metal-poor star fractions found by our pilot study by up to a factor of three in the same magnitude range, as compared with our pilot study based on only one CH G-band index. Our selection scheme obtained roughly a 40% success rate for identification of stars with [Fe/H] <-1.0; the primary contaminant is late-type stars with near-solar abundances and, often, emission line cores that filled in the Ca II K line on the prism spectrum. Because the selection is based on carbon, we greatly increase the numbers of known carbon-enhanced metal-poor stars from the HES with intermediate metallicities -2

  8. N-Heterocyclic Carbene Coinage Metal Complexes of the Germanium-Rich Metalloid Clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3

    Directory of Open Access Journals (Sweden)

    Felix S. Geitner

    2017-07-01

    Full Text Available We report on the synthesis of novel coinage metal NHC (N-heterocyclic carbene compounds of the germanium-rich metalloid clusters [Ge9R3]− and [Ge9RI2]2− with R = Si(iPr3 and RI = Si(TMS3. NHCDippCu{η3Ge9R3} with R = Si(iPr3 (1 represents a less bulky silyl group-substituted derivative of the known analogous compounds with R = Si(iBu3 or Si(TMS3. The coordination of the [NHCDippCu]+ moiety to the cluster unit occurs via one triangular face of the tri-capped trigonal prismatic [Ge9] cluster. Furthermore, a series of novel Zintl cluster coinage metal NHC compounds of the type (NHCM2{η3Ge9RI2} (RI = Si(TMS3 M = Cu, Ag and Au; NHC = NHCDipp or NHCMes is presented. These novel compounds represent a new class of neutral dinuclear Zintl cluster coinage metal NHC compounds, which are obtained either by the stepwise reaction of a suspension of K12Ge17 with Si(TMS3Cl and the coinage metal carbene complexes NHCMCl (M = Cu, Ag, Au, or via a homogenous reaction using the preformed bis-silylated cluster K2[Ge9(Si(TMS32] and the corresponding NHCMCl (M = Cu, Ag, Au complex. The molecular structures of NHCDippCu{η3Ge9(Si(iPr33} (1 and (NHCDippCu2{η3-Ge9(Si(TMS32} (2 were determined by single crystal X-ray diffraction methods. In 2, the coordination of the [NHCDippCu]+ moieties to the cluster unit takes place via both open triangular faces of the [Ge9] entity. Furthermore, all compounds were characterized by means of NMR spectroscopy (1H, 13C, 29Si and ESI-MS.

  9. Phase composition of iron-rich R-Fe-Si (R=Dy, Ho, Er) alloys

    International Nuclear Information System (INIS)

    Ivanova, G.V.; Makarova, G.M.; Shcherbakova, E.V.; Belozerov, E.V.

    2005-01-01

    Phase composition is studied in iron-rich alloys of R-Fe-Si (R=Dy, Ho, Er). In the as-cast state R 2 (Fe, Si) 17 of type Th 2 Ni 17 and R(Fe, Si) 12 compounds are observed; in the alloys of rated composition of R(Fe 0.85 Si 0.15 ) 8.5 (R=Dy, Er) a compound R 2 (Fe, Si) 17 of Th 2 Zn 17 -type is revealed as well. The annealing at 1273 K results in formation of Dy 3 (Fe, Si) 29 and also the compounds with the presumed composition of Dy 4 (Fe, Si) 41 and Ho 4 (Fe, Si) 41 . As this takes place the alloys contain a transition structure as well that represents a set of small-sized areas with various type short-range order in mutual displacement of Fe-Fe(Si) dumpbell chains. The process of phase formation at 1273 K is faced with difficulties. Even the annealing for 1000 h does not result in the state of equilibrium [ru

  10. The Pristine survey - I. Mining the Galaxy for the most metal-poor stars

    Science.gov (United States)

    Starkenburg, Else; Martin, Nicolas; Youakim, Kris; Aguado, David S.; Allende Prieto, Carlos; Arentsen, Anke; Bernard, Edouard J.; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond G.; Côté, Patrick; Fouesneau, Morgan; François, Patrick; Franke, Oliver; González Hernández, Jonay I.; Gwyn, Stephen D. J.; Hill, Vanessa; Ibata, Rodrigo A.; Jablonka, Pascale; Longeard, Nicolas; McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén; Tolstoy, Eline; Venn, Kim A.

    2017-11-01

    We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg2 in the Galactic halo ranging from b ˜ 30° to ˜78° and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and I photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ˜0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H]SEGUE < -3.0 stars among [Fe/H]Pristine < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.

  11. Oxygen and iron abundances in two metal-poor dwarfs

    Science.gov (United States)

    Spiesman, William J.; Wallerstein, George

    1991-11-01

    Oxygen abundances from the O I line at 6300 A in two metal-poor K dwarfs, HD 25329 and HD 134440, are derived. The spectra were obtained with the KPNO 4-m echelle spectrograph and long camera, yielding a resolution of 32,000 and an S/N of about 125. Model atmospheres with Te of 4770 were appropriate to both stars, whose metallicities were found to be -1.74 and -1.43 for HD 25329 and HD 134440, respectively. These oxygen abundances are 0.3 and 0.4 for the two stars. From the resolution an S/N a 3(sigma) upper limit of 0.8 is derived for each star, which may be combined into an upper limit of O/Fe of 0.6 for a generic K dwarf with Fe/H of 1.6. These values are more in line with O/Fe as seen in similarly metal-poor red giant than those reported in metal-poor subdwarfs by Abia and Rebolo (1989).

  12. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  13. Barium from a mini r-process in supernovae

    Science.gov (United States)

    Heymann, D.

    1983-01-01

    McCulloch and Wasserburg (1978) have reported nonlinear isotopic anomalies in barium for two Ca-Al-rich inclusions of the Allende carbonaceous chondrite, known as EK-1-4-1 and C-1. In an attempt to account for these anomalies, it has been proposed that Ba from an r-process of nucleosynthesis, containing Ba-135 and Ba-137, was injected into the primeval color system but was not totally homogenized. Questions arise in connection with the relations of Xe isotopes in carbonaceous chondrites. This has prompted Heymann and Dziczkaniec (1979, 1980, 1981) to study the formation of r-Xe, r-Kr, and r-Te by the mini r-process which is thought to occur in the O, Ne-rich shells of Type II supernovae. Lee et al. (1979) have studied the formation of r-Ba, r-Nd, and r-Sm by the same process. Certain differences regarding the approaches used by Lee et al. and by Heymann and Dziczkaniec make it necessary to restudy the work of Lee et al. Attention is given to the survival probabilities of nuclear species of interest, taking into accounts the elements Cs, Ba, I, and Xe.

  14. The metal-poor knee in the Fornax dwarf spheroidal galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Benjamin; Koch, Andreas [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117, Heidelberg (Germany); Lanfranchi, Gustavo A. [Núcleo de Astrofísica Teórica, Universidade Cruzeiro do Sul, R. Galvão Bueno 868, Liberdade, 01506-000, São Paulo, SP (Brazil); Boeche, Corrado [Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Walker, Matthew [McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States); Johnson, Christian I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Peñarrubia, Jorge [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Gilmore, Gerard, E-mail: ben.hendricks@lsw.uni-heidelberg.de [Institute of Astronomy, Cambridge University, Madingley Rd, Cambridge CB3 OHA (United Kingdom)

    2014-04-20

    We present α-element abundances of Mg, Si, and Ti for a large sample of field stars in two outer fields of the Fornax dwarf spheroidal (dSph) galaxy, obtained with Very Large Telescope/GIRAFFE (R ∼ 16, 000). Due to the large fraction of metal-poor (MP) stars in our sample, we are able to follow the α-element evolution from [Fe/H] ≈ –2.5 continuously to [Fe/H] ≈ –0.7. For the first time we are able to resolve the turnover from the Type II supernovae (SNe) dominated, α-enhanced plateau down to subsolar [α/Fe] values, due to the onset of SNe Ia, and thus to trace the chemical enrichment efficiency of the galaxy. Our data support the general concept of an α-enhanced plateau at early epochs, followed by a well-defined 'knee' caused by the onset of SNe Ia, and finally a second plateau with sub-solar [α/Fe] values. We find the position of this knee to be at [Fe/H] ≈ –1.9 and therefore significantly more MP than expected from comparison with other dSphs and standard evolutionary models. Surprisingly, this value is rather comparable to the knee in Sculptor, a dSph ∼10 times less luminous than Fornax. Using chemical evolution models, we find that the position of the knee and the subsequent plateau at the sub-solar level can hardly be explained unless the galaxy experienced several discrete star formation (SF) events with a drastic variation in SF efficiency, while a uniform SF can be ruled out. One possible evolutionary scenario is that Fornax experienced one or several major accretion events from gas-rich systems in the past, so that its current stellar mass is not indicative of the chemical evolution environment at ancient times. If Fornax is the product of several smaller buildings blocks, this may also have implications for the understanding of the formation process of dSphs in general.

  15. Long gamma-ray burst as a production site of r-process elements

    International Nuclear Information System (INIS)

    Nakamrua, Ko; Harikae, Seiji; Kajino, Toshitaka; Mathews, Grant J.

    2012-01-01

    We simulated the r-process nucleosynthesis in and around a high entropy jet from a long gamma-ray burst (GRB). Our simulation is based on the collapsar scenario for long GRBs and on relativistic magnetohydrodynamic simulations (Harikae et al. 2009, 2010) including ray-tracing neutrino transport, which describe the development of the black hole accretion disk and the heating of the funnel region to produce a relativistic jet. The time evolution of the jet was then extended to later phase via axi-symmetric special relativistic hydrodynamic simulation to follow the temperature, entropy, electron fraction, and density evolution for representative test particles. The evolution of nuclear abundances from nucleons to heavy nuclei for representative test particle trajectories was solved in a large nuclear reaction network including more than 5000 isotopes. We show that a robust r-process successfully occurs within the collapsar jet outflow and that sufficient mass is ejected within the flow to account for the observed r-process abundance distribution along with the large dispersion in r-process elements observed in metal-poor halo stars.

  16. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    Science.gov (United States)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  17. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan; Trenti, Michele; Roberts, Luke F.; Lee, William H.; Saladino-Rosas, Martha I.

    2015-01-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars

  18. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Roberts, Luke F. [TAPIR, California Institute of Technology, Pasadena, California 91125 (United States); Lee, William H.; Saladino-Rosas, Martha I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico)

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  19. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    Science.gov (United States)

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Modelling of spatially complex human-ecosystem, rural-urban and rich-poor interactions

    CSIR Research Space (South Africa)

    Naude, AH

    2008-06-01

    Full Text Available The paper outlines the challenges of modelling and assessing spatially complex human-ecosystem interactions, and the need to simultaneously consider rural-urban and rich-poor interactions. The context for exploring these challenges is South Africa...

  1. Physical conditions of the molecular gas in metal-poor galaxies

    Science.gov (United States)

    Hunt, L. K.; Weiß, A.; Henkel, C.; Combes, F.; García-Burillo, S.; Casasola, V.; Caselli, P.; Lundgren, A.; Maiolino, R.; Menten, K. M.; Testi, L.

    2017-10-01

    Studying the molecular component of the interstellar medium (ISM) in metal-poor galaxies has been challenging because of the faintness of carbon monoxide emission, the most common proxy of H2. Here we present new detections of molecular gas at low metallicities, and assess the physical conditions in the gas through various CO transitions for 8 galaxies. For one, NGC 1140 (Z/Z⊙ 0.3), two detections of 13CO isotopologues and atomic carbon, [Ci](1-0) and an upper limit for HCN(1-0) are also reported. After correcting to a common beam size, we compared 12CO(2-1)/12CO(1-0) (R21) and 12CO(3-2)/12CO(1-0) (R31) line ratios of our sample with galaxies from the literature and find that only NGC 1140 shows extreme values (R21 R31 2). Fitting physical models to the 12CO and 13CO emission in NGC 1140 suggests that the molecular gas is cool (kinetic temperature Tkin ≲ 20 K), dense (H2 volume density nH2 ≳ 106 cm-3), with moderate CO column density (NCO 1016 cm-2) and low filling factor. Surprisingly, the [12CO]/[13CO] abundance ratio in NGC 1140 is very low ( 8-20), lower even than the value of 24 found in the Galactic Center. The young age of the starburst in NGC 1140 precludes 13CO enrichment from evolved intermediate-mass stars; instead we attribute the low ratio to charge-exchange reactions and fractionation, because of the enhanced efficiency of these processes in cool gas at moderate column densities. Fitting physical models to 12CO and [Ci](1-0) emission in NGC 1140 gives an unusually low [12CO]/[12C] abundance ratio, suggesting that in this galaxy atomic carbon is at least 10 times more abundant than 12CO. Based on observations carried out with the IRAM 30 m and the Atacama Pathfinder Experiment (APEX). IRAM is supported by the INSU/CNRS (France), MPG (Germany), and IGN (Spain), and APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.

  2. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  3. A NON-LOCAL THERMODYNAMIC EQUILIBRIUM ANALYSIS OF BORON ABUNDANCES IN METAL-POOR STARS

    International Nuclear Information System (INIS)

    Tan Kefeng; Shi Jianrong; Zhao Gang

    2010-01-01

    The non-local thermodynamic equilibrium (NLTE) line formation of neutral boron in the atmospheres of cool stars are investigated. Our results confirm that NLTE effects for the B I resonance lines, which are due to a combination of overionization and optical pumping effects, are most important for hot, metal-poor, and low-gravity stars; however, the amplitude of departures from local thermodynamic equilibrium (LTE) found by this work is smaller than that of previous studies. In addition, our calculation shows that the line formation of B I will get closer to LTE if the strength of collisions with neutral hydrogen increases, which is contrary to the result of previous studies. The NLTE line formation results are applied to the determination of boron abundances for a sample of 16 metal-poor stars with the method of spectrum synthesis of the B I 2497 A resonance lines using the archived HST/GHRS spectra. Beryllium and oxygen abundances are also determined for these stars with the published equivalent widths of the Be II 3131 A resonance and O I 7774 A triplet lines, respectively. The abundances of the nine stars which are not depleted in Be or B show that, no matter what the strength of collisions with neutral hydrogen may be, both Be and B increase with O quasilinearly in the logarithmic plane, which confirms the conclusions that Be and B are mainly produced by the primary process in the early Galaxy. The most noteworthy result of this work is that B increases with Fe or O at a very similar speed as, or a bit faster than, Be does, which is in accord with the theoretical models. The B/Be ratios remain almost constant over the metallicity range investigated here. Our average B/Be ratio falls in the interval [13 ± 4, 17 ± 4], which is consistent with the predictions of the spallation process. The contribution of B from the ν-process may be required if the 11 B/ 10 B isotopic ratios in metal-poor stars are the same as the meteoric value. An accurate measurement of the

  4. WHY IS A FLARE-RICH ACTIVE REGION CME-POOR?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijuan; Wang, Yuming; Shen, Chenglong; Ye, Pinzhong; Liu, Rui; Chen, Jun; Zhang, Quanhao; Wang, S. [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Jingxiu, E-mail: ymwang@ustc.edu.cn, E-mail: ljliu@mail.ustc.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-08-01

    Solar active regions (ARs) are the major sources of two of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). The largest AR in the past 24 years, NOAA AR 12192, which crossed the visible disk from 2014 October 17 to 30, unusually produced more than one hundred flares, including 32 M-class and 6 X-class ones, but only one small CME. Flares and CMEs are believed to be two phenomena in the same eruptive process. Why is such a flare-rich AR so CME-poor? We compared this AR with other four ARs; two were productive in both and two were inert. The investigation of the photospheric parameters based on the SDO /HMI vector magnetogram reveals that the flare-rich AR 12192, as with the other two productive ARs, has larger magnetic flux, current, and free magnetic energy than the two inert ARs but, in contrast to the two productive ARs, it has no strong, concentrated current helicity along both sides of the flaring neutral line, indicating the absence of a mature magnetic structure consisting of highly sheared or twisted field lines. Furthermore, the decay index above the AR 12192 is relatively low, showing strong constraint. These results suggest that productive ARs are always large and have enough current and free energy to power flares, but whether or not a flare is accompanied by a CME is seemingly related to (1) the presence of a mature sheared or twisted core field serving as the seed of the CME, or (2) a weak enough constraint of the overlying arcades.

  5. Productivity is a poor predictor of plant species richness

    Science.gov (United States)

    P.B. Adler; E.T. Borer; H. Hillebrand; Y. Hautier; A. Hector; S. Harpole; L.R. O’Halloran; J.B. Grace; M. Anderson; J.D. Bakker; L.A. Biederman; C.S. Brown; Y.M. Buckley; L.B. Calabrese; C.-J. Chu; E.E. Cleland; S.L. Collins; K.L. Cottingham; M.J. Crawley; E.I. Damschen; K.W. Davies; N.M. DeCrappeo; P.A. Fay; J. Firn; P. Frater; E.I. Gasarch; D.S. Gruner; N. Hagenah; J. Hille. Ris Lambers

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent...

  6. Identification of flood-rich and flood-poor periods in flood series

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2015-04-01

    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  7. From Data-Poor to Data-Rich : System Dynamics in the Era of Big Data

    NARCIS (Netherlands)

    Pruyt, E.

    2014-01-01

    Although SD modeling is sometimes called theory-rich data-poor modeling, it does not mean SD modeling should per definition be data-poor. SD software packages allow one to get data from, and write simulation runs to, databases. Moreover, data is also sometimes used in SD to calibrate parameters or

  8. Social (in)stability, distributive conflicts, and investment in poor and rich economies

    NARCIS (Netherlands)

    Riedl, A.M.

    1999-01-01

    A recently much debated issue is why observed investment and growth rates inpoor countries are lower than traditional theory predicts. Empirical evidencesuggests that social and political instability is a major reason for thedivergence between poor and rich countries. However, there is still the

  9. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  10. Metal-Poor Stars and the Chemical Enrichment of the Universe

    OpenAIRE

    Frebel, Anna; Norris, John E.

    2011-01-01

    Metal-poor stars hold the key to our understanding of the origin of the elements and the chemical evolution of the Universe. This chapter describes the process of discovery of these rare stars, the manner in which their surface abundances (produced in supernovae and other evolved stars) are determined from the analysis of their spectra, and the interpretation of their abundance patterns to elucidate questions of origin and evolution. More generally, studies of these stars contribute to other ...

  11. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    Science.gov (United States)

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  12. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Science.gov (United States)

    Lemessa, Debissa; Hambäck, Peter A; Hylander, Kristoffer

    2015-01-01

    Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  13. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Directory of Open Access Journals (Sweden)

    Debissa Lemessa

    Full Text Available Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  14. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    Science.gov (United States)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  15. Metal-rich RRc Stars in the Carnegie RR Lyrae Survey

    Science.gov (United States)

    Sneden, Christopher; Preston, George W.; Kollmeier, Juna A.; Crane, Jeffrey D.; Morrell, Nidia; Prieto, José L.; Shectman, Stephen A.; Skowron, Dorota M.; Thompson, Ian B.

    2018-01-01

    We describe and employ a stacking procedure to investigate abundances derived from the low signal-to-noise ratio spectra obtained in the Carnegie RR Lyrae Survey (CARRS). We find iron metallicities that extend from [Fe/H] ∼ ‑2.5 to values at least as large as [Fe/H] ∼ ‑0.5 in the 274-spectrum CARRS RRc data set. We consider RRc sample contamination by high amplitude solar metallicity δ Scuti stars (HADS) at periods less than 0.3 days, where photometric discrimination between RRc and δ Scuti stars has proven to be problematic. We offer a spectroscopic discriminant, the well-marked overabundance of heavy elements, principally [Ba/H], that is a common, if not universal, characteristic of HADS of all periods and axial rotations. No bona fide RRc stars known to us have verified heavy-element overabundances. Three out of 34 stars in our sample with [Fe/H] > ‑0.7 exhibit anomalously strong features of Sr, Y, Zr, Ba, and many rare earths. However, carbon is not enhanced in these three stars, and we conclude that their elevated n-capture abundances have not been generated in interior neutron-capture nucleosynthesis. Contamination by HADS appears to be unimportant, and metal-rich RRc stars occur in approximately the same proportion in the Galactic field as do metal-rich RRab stars. An apparent dearth of metal-rich RRc is probably a statistical fluke. Finally, we show that RRc stars have a similar inverse period–metallicity relationship as has been found for RRab stars.

  16. Facilitation drives the positive effects of plant richness on trace metal removal in a biodiversity experiment.

    Directory of Open Access Journals (Sweden)

    Jiang Wang

    Full Text Available BACKGROUND: Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of species richness on soil trace metal removal in both natural and experimental plant communities. The root lengths and stem heights of each plant species were measured in order to calculate the functional diversity indices. Our results showed that trace metal (Cu, Cd, Pb and Zn concentrations in mine tailing soil declined as species richness increased in both the natural and experimental plant communities. Species richness, rather than functional diversity, positively affected the mineralomass of the experimental plant communities. The intensity of plant-plant facilitation increased with the species richness of experimental communities. Due to the incremental role of plant-plant facilitation, most of the species had higher biomasses, higher trace metal concentrations in their plant tissues and lower malondialdehyde concentrations in their leaves. Consequently, the positive effects of species richness on mineralomass were mostly attributable to facilitation among plants. CONCLUSIONS/SIGNIFICANCE: Our results provide clear evidence that, due to plant-plant facilitation, species richness positively affects the removal of trace metals from mine tailing soil through phytoextraction and provides further information on diversity conservation and environmental remediation in a mine tailing environment.

  17. May flood-poor periods be more dangerous than flood-rich periods?

    Science.gov (United States)

    Salinas, Jose Luis; Di Baldassarre, Giuliano; Viglione, Alberto; Kuil, Linda; Bloeschl, Guenter

    2014-05-01

    River floods are among the most devastating natural hazards experienced by populations that, since the earliest recorded civilisations, have settled in floodplains because they offer favourable conditions for trade, agriculture, and economic development. The occurrence of a flood may cause loss of lives and tremendous economic damages and, therefore, is rightly seen as a very negative event by the communities involved. Occurrence of many floods in a row is, of course, even more frustrating and is rightly considered a unbearable calamity. Unfortunately, the occurrence of many floods in a limited number of consecutive years is not unusual. In many places in the world, it has been observed that extreme floods do not arrive randomly but cluster in time into flood-poor and flood-rich periods consistent with the Hurst effect. If this is the case, when are the people more in danger? When should people be more scared? In flood-poor or flood-rich periods? In this work, a Socio-Hydrology model (Di Baldassarre et al., 2013; Viglione et al., 2014) is used to show that, maybe counter-intuitively, flood-poor periods may be more dangerous than flood-rich periods. The model is a conceptualisation of a hypothetical setting of a city at a river where a community evolves, making choices between flood management options on the floodplain. The most important feedbacks between the economic, political, technological and hydrological processes of the evolution of that community are represented in the model. In particular, the model also accounts in a dynamic way for the evolution of the the community awareness to flood risk. Occurrence of floods tends to increase peoples' recognition that their property is in an area that is potentially at risk of flooding, both at the scales of individuals and communities, which is one of the main reasons why flood coping actions are taken. It is shown through examples that frequent flood events may result in moderate damages because they ensure that the

  18. "Wealth Makes Many Friends": Children Expect More Giving From Resource-Rich Than Resource-Poor Individuals.

    Science.gov (United States)

    Ahl, Richard E; Dunham, Yarrow

    2017-08-21

    Young children show social preferences for resource-rich individuals, although few studies have explored the causes underlying such preferences. We evaluate the viability of one candidate cause: Children believe that resource wealth relates to behavior, such that they expect the resource rich to be more likely to materially benefit others (including themselves) than the resource poor. In Studies 1 and 2 (ages 4-10), American children from predominantly middle-income families (n = 94) and Indian children from lower income families (n = 30) predicted that the resource rich would be likelier to share with others than the resource poor. In Study 3, American children (n = 66) made similar predictions in an incentivized decision-making task. The possibility that children's expectations regarding giving contribute to prowealth preferences is discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  19. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications

    Science.gov (United States)

    Sayyed, M. I.; Lakshminarayana, G.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    In this work, we have evaluated the γ-ray shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), half value layer (HVL), mean free path (MFP) and exposure buildup factors (EBF) for heavy metal fluoride (PbF2) based tellurite-rich glasses. In addition, neutron total macroscopic cross sections (∑R) for these glasses were also calculated. The maximum value for μ/ρ, Zeff and ∑R was found for heavy metal (Bi2O3) oxide introduced glass. The results of the selected glasses have been compared, in terms of MFP with different glass systems. The shielding effectiveness of the selected glasses is found comparable or better than of common ones, which indicates that these glasses with suitable oxides could be developed for gamma ray shielding applications.

  20. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    International Nuclear Information System (INIS)

    Schlaufman, Kevin C.; Laughlin, Gregory

    2011-01-01

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the ∼150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars, the average g-r color of stars that host giant ECs is 4σ redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4σ redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M * ∼ 1 M sun , while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M * ∼ 0.7 M sun . These correlations are a natural consequence of the core-accretion model of planet formation.

  1. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    Science.gov (United States)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  2. Bad metal behaviour in the new Hg-rich amalgam KHg{sub 6} with polar metallic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The novel Hg-rich amalgam KHg{sub 6} was synthesised by electrocrystallisation. • The structure was investigated by single crystal and powder diffraction. • Thermal decomposition, electric resistance and magnetic susceptibiliy were examined. • Band structure, total and partial density of states and Bader charges were calculated. • Bad metal behaviour results from ionic, metallic and covalent bonding contributions. - Abstract: The new mercury-rich amalgam KHg{sub 6} crystallises with the BaHg{sub 6} structure type (orthorhombic, space group Pnma (No. 62), a = 13.394(9) Å, b = 5.270(3) Å, c = 10.463 Å). It was prepared by electrolysis of a solution of KI in N,N′-Dimethylformamide at 343 K at a reactive Hg cathode. The structure of KHg{sub 6} shows motifs of ionic packing, covalent Hg cluster formation and metallic properties. KHg{sub 6} decomposes peritectically at 443 K. The combination of alkali metals with a noble metal with moderate electron affinity results in the formation of polar metal–metal bonding with considerable but incomplete electron transfer from the electropositive to the electronegative sublattice, resulting in typical “bad metal behaviour”, illustrated by resistance and susceptibility measurements and quantum theoretical calculations.

  3. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    International Nuclear Information System (INIS)

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela

    2009-01-01

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of Hα and Hβ. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 ∼< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  4. A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME

    International Nuclear Information System (INIS)

    Sozzetti, Alessandro; Torres, Guillermo; Latham, David W.; Stefanik, Robert P.; Korzennik, Sylvain G.; Boss, Alan P.; Carney, Bruce W.; Laird, John B.

    2009-01-01

    We present an analysis of three years of precision radial velocity (RV) measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude RV variables worthy of followup with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semiamplitude K ∼> 100 m s -1 , or M p sin i ∼> 3.0 M J (P/yr) (1/3) , for orbital periods P ∼ p p ≅ 1%. Our results can usefully inform theoretical studies of the process of giant-planet formation across two orders of magnitude in metallicity.

  5. Sulphur in the metal poor globular cluster NGC 6397

    Science.gov (United States)

    Koch, A.; Caffau, E.

    2011-10-01

    Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  6. Carbon-enhanced metal-poor stars in dwarf galaxies

    OpenAIRE

    Salvadori, Stefania; Skuladottir, Asa; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation with dwarf galaxy luminosity of the observed: i) frequency and [Fe/H] range of CEMP stars; ii) metallicity distribution functions; iii) star formation histories. We show that if primordial faint sup...

  7. The r-process nucleosynthesis during the decompression of neutron star crust material

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Bauswein, A. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece and Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching (Germany); Janka, H.-T. [Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching (Germany); Sida, J.-L.; Lemaître, J.-F.; Panebianco, S. [C.E.A. Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette (France); Dubray, N.; Hilaire, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-05-02

    About half of the nuclei heavier than iron observed in nature are produced by the so-called rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved, for which essentially no experimental data exist. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Both the astrophysics and the nuclear physics difficulties are critically reviewed with special attention paid to the r-process taking place during the decompression of neutron star matter following the merging of two neutron stars.

  8. Persistence of Metal-rich Particles Downstream Zones of Acid Drainage Mixing in Andean Rivers

    Science.gov (United States)

    Pasten, P.; Montecinos, M.; Guerra, P. A.; Bonilla, C. A.; Escauriaza, C. R.; Dabrin, A.; Coquery, M.

    2016-12-01

    The Andes mountain range provides the setting for watersheds with high natural background of metals and for mining operations that enhance contaminant mobilization, notably in Northern and Central Chile. Dissolved and solid metal species are actively transported by streams to the Pacific Ocean from area and point sources, like acid drainage. We examine the response of metal rich particle suspensions downstream zones of mixing where shifts in the chemical environment occur. We propose a conceptual model which is used to analyze the fate of copper in the upper Mapocho watershed. The main source of copper is the Yerba Loca river, a naturally impacted stream with pH ranging from 3 to 7 and high concentrations of Cu (0.8 - 6.3 mg/L), Al (1.3 - 7.6 mg/L) and Fe (0.4 - 4.2 mg/L). Steep chemical shifts occur after the confluences with the San Francisco and the Molina rivers. We characterized stream chemistry, hydrological variables and suspended particles, including particle size distribution (PSD), turbidity, and total suspended solids. A marked seasonal behavior was observed, with a higher total Cu flux during smelting periods and a shift towards the dissolved phase during summer. When acid drainage is discharged into a receiving stream, incomplete mixing occurs thereby promoting the formation of a range of metal-rich solids with a characteristic PSD. Similarly, areas of chemical heterogeneity control the partition of metals associated to suspended geomaterials coming from bank and slope erosion. A highly dynamic process ensues where metastable phases shift to new equilibria as fully mixed conditions are reached. Depending on the reaction kinetics, some particles persist despite being exposed to thermodynamically unfavorable chemical environments. The persistence of metal-rich particles downstream zones of acid drainage mixing is important because it ultimately controls the flux of metals being delivered to the ocean by watersheds impacted by acid drainage. Funding from

  9. Productivity is a poor predictor of plant species richness

    Science.gov (United States)

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  10. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Conroy, Charlie, E-mail: phopkins@caltech.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  11. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Conroy, Charlie

    2017-01-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  12. The most metal-poor damped Lyα systems: insights into chemical evolution in the very metal-poor regime

    DEFF Research Database (Denmark)

    Cooke, Ryan; Pettini, Max; Steidel, Charles C.

    2011-01-01

    We present a high spectral resolution survey of the most metal-poor damped Lyα absorption systems (DLAs) aimed at probing the nature and nucleosynthesis of the earliest generations of stars. Our survey comprises 22 systems with iron abundance less than 1/100 solar; observations of seven...... agreement with the values measured in Galactic halo stars when the oxygen abundance is measured from the [O i] λ6300 line. We speculate that such good agreement in the observed abundance trends points to a universal origin for these metals. In view of this agreement, we construct the abundance pattern...... the near-solar values of C/O in DLAs at the lowest metallicities probed, and find that their distribution is in agreement with that seen in Galactic halo stars. We find that the O/Fe ratio in VMP DLAs is essentially constant, and shows very little dispersion, with a mean [〈O/Fe〉]=+0.39 ± 0.12, in good...

  13. Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires

    Czech Academy of Sciences Publication Activity Database

    Hájková, Petra; Hájek, Michal

    2004-01-01

    Roč. 39, č. 4 (2004), s. 335-351 ISSN 1211-9520 R&D Projects: GA ČR(CZ) GA206/02/0568 Institutional research plan: CEZ:AV0Z6005908 Keywords : fen * poor-rich gradient * water table Subject RIV: EF - Botanics Impact factor: 0.968, year: 2004

  14. Process technology - rare and refractory metals

    International Nuclear Information System (INIS)

    Gupta, C.K.; Bose, D.K.

    1989-01-01

    India has fairly rich resreves of rare and refractory metals. Abundant sources of ilmenite, rutile, zircon and rare earths are found in the placer deposits of the southern and eastern coasts of the country. Columbite-tantalite occur in mica and the mining belts of Bihar and cassiterite deposits are found in Bastar (Madhya Pradesh). Vanadium as a minor associate occurs in bauxites and in the vast deposits of titaniferrous magnetites. Over the years, research and development and pilot plant works in many research organisations in India have built up a sound technological base in the country for process metallurgy of many refractory and rare earth metals starting from their indigenous sources. The present paper provides a comprehensive view of the developments that have taken place till now on the processing of various refractory and rare earth metals with particular reference to the extensive work carried out at the Department of Atomic Energy. The coverage includes mineral benification separation of individual elements, preparation of pure intermediates, techniques of reduction to metal and final purification. The paper also reviews some of the recent developments that have been taken place in these fields and the potential application of these metals in the foreseeable future. (author). 22 refs., 18 fi g., 7 tabs

  15. Carbon-enhanced metal-poor stars in dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania; Skúladóttir, Ása; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation

  16. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars.

    Science.gov (United States)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-26

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars-typically old and metal-poor-that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ∼10  GeV. Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  17. THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Tonini, Chiara

    2013-01-01

    We build a theoretical model to study the origin of the globular cluster metallicity bimodality in the hierarchical galaxy assembly scenario. The model is based on empirical relations such as the galaxy mass-metallicity relation [O/H]-M star as a function of redshift, and on the observed galaxy stellar mass function up to redshift z ∼ 4. We make use of the theoretical merger rates as a function of mass and redshift from the Millennium simulation to build galaxy merger trees. We derive a new galaxy [Fe/H]-M star relation as a function of redshift, and by assuming that globular clusters share the metallicity of their original parent galaxy at the time of their formation, we populate the merger tree with globular clusters. We perform a series of Monte Carlo simulations of the galaxy hierarchical assembly, and study the properties of the final globular cluster population as a function of galaxy mass, assembly and star formation history, and under different assumptions for the evolution of the galaxy mass-metallicity relation. The main results and predictions of the model are the following. (1) The hierarchical clustering scenario naturally predicts a metallicity bimodality in the galaxy globular cluster population, where the metal-rich subpopulation is composed of globular clusters formed in the galaxy main progenitor around redshift z ∼ 2, and the metal-poor subpopulation is composed of clusters accreted from satellites, and formed at redshifts z ∼ 3-4. (2) The model reproduces the observed relations by Peng et al. for the metallicities of the metal-rich and metal-poor globular cluster subpopulations as a function of galaxy mass; the positions of the metal-poor and metal-rich peaks depend exclusively on the evolution of the galaxy mass-metallicity relation and the [O/Fe], both of which can be constrained by this method. In particular, we find that the galaxy [O/Fe] evolves linearly with redshift from a value of ∼0.5 at redshift z ∼ 4 to a value of ∼0.1 at

  18. A SEARCH FOR UNRECOGNIZED CARBON-ENHANCED METAL-POOR STARS IN THE GALAXY

    International Nuclear Information System (INIS)

    Placco, Vinicius M.; Rossi, Silvia; Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun; Christlieb, Norbert; Sivarani, Thirupathi; Reimers, Dieter; Wisotzki, Lutz

    2010-01-01

    We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 ≤ [Fe/H] ≤ -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B< 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 A. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.

  19. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications

    International Nuclear Information System (INIS)

    Sayyed, M.I.; Lakshminarayana, G.; Kityk, I.V.; Mahdi, M.A.

    2017-01-01

    In this work, we have evaluated the γ-ray shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Z eff ), half value layer (HVL), mean free path (MFP) and exposure buildup factors (EBF) for heavy metal fluoride (PbF 2 ) based tellurite-rich glasses. In addition, neutron total macroscopic cross sections (∑ R ) for these glasses were also calculated. The maximum value for µ/ρ, Z eff and ∑ R was found for heavy metal (Bi 2 O 3 ) oxide introduced glass. The results of the selected glasses have been compared, in terms of MFP with different glass systems. The shielding effectiveness of the selected glasses is found comparable or better than of common ones, which indicates that these glasses with suitable oxides could be developed for gamma ray shielding applications. - Highlights: • μ/ρ, Z eff , HVL and MFP for PbF 2 based tellurite-rich glasses have been calculated. • µ/ρ and Z eff depend on the photon energy and chemical composition of the glasses. • EBF values of these glasses have been calculated using G-P fitting method. • The maximum value for µ/ρ and Z eff was found for Bi 2 O 3 oxide introduced glass. • New types of non-traditional radiation shielding glasses are demonstrated.

  20. Spatial coherence of flood-rich and flood-poor periods across Germany

    Science.gov (United States)

    Merz, Bruno; Dung, Nguyen Viet; Apel, Heiko; Gerlitz, Lars; Schröter, Kai; Steirou, Eva; Vorogushyn, Sergiy

    2018-04-01

    Despite its societal relevance, the question whether fluctuations in flood occurrence or magnitude are coherent in space has hardly been addressed in quantitative terms. We investigate this question for Germany by analysing fluctuations in annual maximum series (AMS) values at 68 discharge gauges for the common time period 1932-2005. We find remarkable spatial coherence across Germany given its different flood regimes. For example, there is a tendency that flood-rich/-poor years in sub-catchments of the Rhine basin, which are dominated by winter floods, coincide with flood-rich/-poor years in the southern sub-catchments of the Danube basin, which have their dominant flood season in summer. Our findings indicate that coherence is caused rather by persistence in catchment wetness than by persistent periods of higher/lower event precipitation. Further, we propose to differentiate between event-type and non-event-type coherence. There are quite a number of hydrological years with considerable non-event-type coherence, i.e. AMS values of the 68 gauges are spread out through the year but in the same magnitude range. Years with extreme flooding tend to be of event-type and non-coherent, i.e. there is at least one precipitation event that affects many catchments to various degree. Although spatial coherence is a remarkable phenomenon, and large-scale flooding across Germany can lead to severe situations, extreme magnitudes across the whole country within one event or within one year were not observed in the investigated period.

  1. On the temperatures, colours, and ages of metal-poor stars predicted by stellar models

    International Nuclear Information System (INIS)

    Van den Berg, D A

    2008-01-01

    Most (but not all) of the investigations that have derived the effective temperatures of metal-poor, solar-neighbourhood field stars, from analyses of their spectra or from the infrared flux method, favour a T eff scale that is ∼100-120 K cooler than that given by stellar evolutionary models. This seems to be at odds with photometric results, given that the application of current colour-T eff relations to the observed subdwarf colours suggests a preference for hotter temperatures. Moreover, the predicted temperatures for main-sequence stars at the lowest metallicities ([Fe/H] eff for them unless some fundamental modification is made to the adopted physics. No such problems are found if the temperatures of metal-poor field stars are ∼100-120 K warmer than most determinations. In this case, stellar models would appear to provide consistent interpretations of both field and globular cluster (GC) stars of low metallicity. However, this would imply, e.g. that M 92 has an [Fe/H] value of approximately - 2.2, which is obtained from analyses of Fe I lines, instead of approximately equal to - 2.4, as derived from Fe II lines (and favoured by studies of three-dimensional model atmospheres). Finally, the age of the local, Population II subgiant HD 140283 (and GCs having similar metal abundances) is estimated to be ∼13 Gyr, if diffusive processes are taken into account.

  2. Simultaneous recovery of benzene-rich oil and metals by steam pyrolysis of metal-poly(ethylene terephthalate) composite waste.

    Science.gov (United States)

    Kumagai, Shogo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-03-18

    The possibility of simultaneous recovery of benzene and metals from the hydrolysis of poly(ethylene terephthalate) (PET)-based materials such as X-ray films, magnetic tape, and prepaid cards under a steam atmosphere at a temperature of 450 °C was evaluated. The hydrolysis resulted in metal-containing carbonaceous residue and volatile terephthalic acid (TPA). The effects of metals and additives on the recovery process were also investigated. All metals were quantitatively recovered, and silver, maghemite (γ-Fe2O3), and anatase (TiO2) were recovered without any changes in their crystal structures or compositions. In a second step, TPA was decarboxylized in the presence of calcium oxide (CaO) at 700 °C, producing benzene with an average yield of 34% and purity of 76%. Maghemite (γ-Fe2O3) incorporated in magnetic tape and prepaid cards could decarboxylate TPA. Aluminum present in the prepaid cards produced hydrogen by the reaction with steam. However, the presence of metals had no adverse influence on the recovery of benzene-rich oil in the presence of CaO. Therefore, this method can be applied to PET-based materials containing inorganic substances, which cannot be recycled effectively otherwise.

  3. Searching for chemical classes among metal-poor stars using medium-resolution spectroscopy

    Science.gov (United States)

    Cruz, Monique A.; Cogo-Moreira, Hugo; Rossi, Silvia

    2018-04-01

    Astronomy is in the era of large spectroscopy surveys, with the spectra of hundreds of thousands of stars in the Galaxy being collected. Although most of these surveys have low or medium resolution, which makes precise abundance measurements not possible, there is still important information to be extracted from the available data. Our aim is to identify chemically distinct classes among metal-poor stars, observed by the Sloan Digital Sky Survey, using line indices. The present work focused on carbon-enhanced metal-poor (CEMP) stars and their subclasses. We applied the latent profile analysis technique to line indices for carbon, barium, iron and europium, in order to separate the sample into classes with similar chemical signatures. This technique provides not only the number of possible groups but also the probability of each object to belong to each class. The method was able to distinguish at least two classes among the observed sample, with one of them being probable CEMP stars enriched in s-process elements. However, it was not able to separate CEMP-no stars from the rest of the sample. Latent profile analysis is a powerful model-based tool to be used in the identification of patterns in astrophysics. Our tests show the potential of the technique for the attainment of additional chemical information from `poor' data.

  4. The R-process: supernovae and other sources of the heaviest elements

    International Nuclear Information System (INIS)

    Thielemann, F.-K.; Moceli, D.; Panov, I.

    2007-01-01

    Rapid neutron capture in stellar explosions is responsible for the heaviest elements in nature, up to Th, U and beyond. This nucleosynthesis process, the r-process, is unique in the sense that a combination of nuclear physics far from stability (masses, half-lives, neutron-capture and photodisintegration, neutron-induced and beta-delayed fission and last but not least neutrino-nucleus interactions) is intimately linked to ejecta from astrophysical explosions (core collapse supernovae or other neutron star related events). The astrophysics and nuclear physics involved still harbor many uncertainties, either in the extrapolation of nuclear properties far beyond present experimental explorations or in the modeling of multidimensional, general relativistic (neutrino-radiation) hydrodynamics with rotation and possibly required magnetic fields. Observational clues about the working of the r-process are mostly obtained from solar abundances and from the abundance evolution of the heaviest elements as a function of galactic age, as witnessed in old extremely metal-poor stars. They contain information whether the r-process is identical for all stellar events, how abundance features develop with galactic time and whether the frequency of r-process events is comparable to that of average core collapse supernovae - producing oxygen through titanium, as well as iron-group nuclei. The theoretical modeling of the r-process has advanced from simple approaches, where the use of static neutron densities and temperatures can aid to test the influence of nuclear properties far from stability on abundance features, to more realistic expansions with a given entropy, global neutron/proton ratio and expansion timescales, as expected from explosive astrophysical events. The direct modeling in astrophysical events such as supernovae still faces the problem whether the required conditions can be met. (author)

  5. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Science.gov (United States)

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  6. Oxygen abundance in metal-poor dwarfs, derived from the forbidden line

    Science.gov (United States)

    Spite, M.; Spite, F.

    1991-12-01

    The oxygen abundance is redetermined in a few metal-poor dwarfs, using the oxygen forbidden line at 630 nm rather than the oxygen triplet at 777 nm previously used by Abia and Rebolo (1989). The ratios form O/Fe are clearly lower than the previous ones and are in agreement with the ratios found in the metal-poor red giants, suggesting that no real difference exists between dwarfs and giants. Finally, it can be argued that, pending the acquisition of additional information, the oxygen abundances derived from the forbidden line are more reliable than the abundances found from the triplet.

  7. β-decay half-lives of neutron-rich isotopes of Fe, Co, Ni involved in the beginning of the r-process

    International Nuclear Information System (INIS)

    Czajkowski, S.; Bernas, M.; Brissot, R.

    1992-01-01

    The very neutron-rich Fe- to Ni-isotopes are of interest since they are located at the very beginning of the astrophysical r-process path. The β-decay half-lives of several isotopes, identified in thermal fission of 235 U or 239 Pu, have been measured at the ILL high-flux reactor using the Lohengrin spectrometer. Half-lives have been determined from time-correlations analysis between the fragment implantation and the detection of the subsequent β-particles in the same detector. With the fragment separator FRS , at GSI, the projectile fragments of 86 Kr have been separated. The β-decay half-life of 65 Fe has been measured. Received: (from VMMAIL[FRSAC11 for XIN[IAEA1 via NJE)

  8. Priorities and realities: addressing the rich-poor gaps in health status and service access in Indonesia

    Directory of Open Access Journals (Sweden)

    Utomo Budi

    2011-11-01

    Full Text Available Abstract Introduction Over the past four decades, the Indonesian health care system has greatly expanded and the health of Indonesian people has improved although the rich-poor gap in health status and service access remains an issue. The government has been trying to address these gaps and intensify efforts to improve the health of the poor following the economic crisis in 1998. Methods This paper examines trends and levels in socio-economic inequity of health and identifies critical factors constraining efforts to improve the health of the poor. Quantitative data were taken from the Indonesian Demographic Health Surveys and the National Socio-Economic Surveys, and qualitative data were obtained from interviews with individuals and groups representing relevant stakeholders. Results The health of the population has improved as indicated by child mortality decline and the increase in community access to health services. However, the continuing prevalence of malnourished children and the persisting socio-economic inequity of health suggest that efforts to improve the health of the poor have not yet been effective. Factors identified at institution and policy levels that have constrained improvements in health care access and outcomes for the poor include: the high cost of electing formal governance leaders; confused leadership roles in the health sector; lack of health inequity indicators; the generally weak capacity in the health care system, especially in planning and budgeting; and the leakage and limited coverage of programs for the poor. Conclusions Despite the government's efforts to improve the health of the poor, the rich-poor gap in health status and service access continues. Factors at institutional and policy levels are critical in contributing to the lack of efficiency and effectiveness for health programs that address the poor.

  9. BOO-1137-AN EXTREMELY METAL-POOR STAR IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY BOOeTES I

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.

    2010-01-01

    We present high-resolution (R ∼ 40,000), high-signal-to-noise ratio (20-90) spectra of an extremely metal-poor giant star Boo-1137 in the 'ultra-faint' dwarf spheroidal galaxy (dSph) Booetes I, absolute magnitude M V ∼ -6.3. We derive an iron abundance of [Fe/H] = -3.7, making this the most metal-poor star as yet identified in an ultra-faint dSph. Our derived effective temperature and gravity are consistent with its identification as a red giant in Booetes I. Abundances for a further 15 elements have also been determined. Comparison of the relative abundances, [X/Fe], with those of the extremely metal-poor red giants of the Galactic halo shows that Boo-1137 is 'normal' with respect to C and N, the odd-Z elements Na and Al, the iron-peak elements, and the neutron-capture elements Sr and Ba, in comparison with the bulk of the Milky Way halo population having [Fe/H] ∼<-3.0. The α-elements Mg, Si, Ca, and Ti are all higher by Δ[X/Fe] ∼ 0.2 than the average halo values. Monte Carlo analysis indicates that Δ[α/Fe] values this large are expected with a probability ∼0.02. The elemental abundance pattern in Boo-1137 suggests inhomogeneous chemical evolution, consistent with the wide internal spread in iron abundances we previously reported. The similarity of most of the Boo-1137 relative abundances with respect to halo values, and the fact that the α-elements are all offset by a similar small amount from the halo averages, points to the same underlying galaxy-scale stellar initial mass function, but that Boo-1137 likely originated in a star-forming region where the abundances reflect either poor mixing of supernova (SN) ejecta, or poor sampling of the SN progenitor mass range, or both.

  10. Theoretical isochrones for old, super-metal-rich stars

    International Nuclear Information System (INIS)

    Vandenberg, D.A.; Laskarides, P.G.; National Capodistrian Univ., Athens, Greece)

    1987-01-01

    A new and up-to-date set of theoretical evolutionary sequences and isochrones for super-metal-rich stars is presented. Models have been constructed for metallicities as high as Z = 0.10 and masses in the range of mass/solar mass = 0.6-1.5, in order to calculate isochrones for ages from 6 to 18 Gyr. The latest Los Alamos opacities are utilized, which have a pronounced effect on predicted mass-luminosity relations, and a value of 1.5 is adopted for the mixing-length parameter, which is required to reproduce the properties of the sun. The detailed numerical results are expected to be particularly useful in the construction of population synthesis models. 48 references

  11. High-Temperature Nucleosynthesis Processes on the Proton-Rich Side of Stability: the Alpha-Rich Freezeout and the rp^2-Process

    Science.gov (United States)

    Meyer, Bradley S.

    2001-10-01

    Nucleosynthesis on the proton-rich side of stability has at least two intriguing aspects. First, the most abundant of the stable iron-group isotopes, such as ^48Ti, ^52Cr, and ^56,57Fe, are synthesized as proton-rich, radioactive parents in alpha-rich freezeouts from equilibrium. The production of these radioactive progenitors depends in large measure on reactions on the proton-rich side of stability. The second intriguing aspect is that explosive nucleosynthesis in a hydrogen-rich environment (namely, the rp-process) may be associated with exotic astrophysical settings, such as x-ray bursts, and may be responsible for production of some of the light p-process nuclei (for example, ^92,94Mo and ^96,98Ru). We have developed web-based tools to help nuclear physicists determine which nuclear reactions on the proton-rich side of stability govern the nucleosynthesis in these processes. For the alpha-rich freezeout, one may determine the effect of any one of 2,140 reactions on the yield of any isotope in the nuclear reaction network with the web calculator. As a relevant example, I will discuss the governing role of ^57Ni (n,p)^57Co in the synthesis of the important astronomical observable ^57Co. As for explosive, proton-rich burning, I will discuss the synthesis of p-process nuclei in the repetitive rp-process (the rp^2-process). movies/rp.html>Movies of the rp^2-process illustrate its important features and give some indications of the important nuclear reactions.

  12. Three-dimensional models of metal-poor stars

    OpenAIRE

    Collet, R.

    2008-01-01

    I present here the main results of recent realistic, 3D, hydrodynamical simulations of convection at the surface of metal-poor red giant stars. I discuss the application of these convection simulations as time-dependent, 3D, hydrodynamical model atmospheres to spectral line formation calculations and abundance analyses. The impact of 3D models on derived elemental abundances is investigated by means of a differential comparison of the line strengths predicted in 3D under the assumption of loc...

  13. Measurement of ground state properties of neutron-rich nuclei on the r-process path between the N=50 and N=82 shells

    CERN Multimedia

    2007-01-01

    The evolution of the unknown ground-state ${\\beta}$-decay properties of the neutron-rich $^{84-89}$Ge, $^{90-93}$Se and $^{102-104}$Sr isotopes near the r-process path is of high interest for the study of the abundance peaks around the N=50 and N=82 neutron shells. At ISOLDE, beams of certain elements with sufficient isotopic purity are produced as molecular sidebands rather than atomic beams. This applies e.g, to germanium, separated as GeS$^{+}$, selenium separated as SeCO$^{+}$ and strontium separated as SrF$^{+}$. However, in case of neutron-rich isotopes produced in actinide targets, new "isobaric" background of atomic ions appears on the mass of the molecular sideband. For this particular case, the ECR charge breeder, positioned in the experimental hall after ISOLDE first mass separation, can be advantageously used as a purification device, by breaking the molecules and removing the molecular contaminants. This proposal indicates our interest in the study of basic nuclear structure properties of neutron...

  14. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    Science.gov (United States)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  15. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    Science.gov (United States)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  16. Correlations between age, kinematics, and chemistry as seen by the RAVE survey

    Science.gov (United States)

    Wojno, Jennifer; Kordopatis, Georges; Steinmetz, Matthias; McMillan, Paul; Binney, James; Famaey, Benoit; Monari, Giacomo; Minchev, Ivan; Wyse, Rosemary F. G.; Antoja, Teresa; Siebert, Arnaud; Carrillo, Ismael; Bland-Hawthorn, Joss; K Grebel, Eva; Zwitter, Tomaž; Bienaymé, Olivier; Gibson, Brad; Kunder, Andrea; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren; Seabroke, George

    2018-04-01

    We explore the connections between stellar age, chemistry, and kinematics across a Galactocentric distance of 7.5 ages for RAVE stars are determined using a Bayesian method, taking TGAS parallaxes as a prior. We divide our sample into young (0 age groups. We find significant differences in kinematic trends of young and old, metal-poor and metal-rich, stellar populations. In particular, we find a strong metallicity dependence in the mean Galactocentric radial velocity as a function of radius (∂VR/∂R) for young stars, with metal-rich stars having a much steeper gradient than metal-poor stars. For ∂Vϕ/∂R, young, metal-rich stars significantly lag the LSR with a slightly positive gradient, while metal-poor stars show a negative gradient above the LSR. We interpret these findings as correlations between metallicity and the relative contributions of the non-axisymmetries in the Galactic gravitational potential (the spiral arms and the bar) to perturb stellar orbits.

  17. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge

    Science.gov (United States)

    Fabisch, Maria; Freyer, Gina; Johnson, Carol A.; Buchel, Georg; Akob, Denise M.; Neu, Thomas R.; Kusel, Kirsten

    2016-01-01

    Heavy metal-contaminated, pH 6 mine water discharge created new streams and iron-rich terraces at a creek bank in a former uranium-mining area near Ronneburg, Germany. The transition from microoxic groundwater with ~5 mm Fe(II) to oxic surface water may provide a suitable habitat for microaerobic iron-oxidizing bacteria (FeOB). In this study, we investigated the potential contribution of these FeOB to iron oxidation and metal retention in this high-metal environment. We (i) identified and quantified FeOB in water and sediment at the outflow, terraces, and creek, (ii) studied the composition of biogenic iron oxides (Gallionella-like twisted stalks) with scanning and transmission electron microscopy (SEM, TEM) as well as confocal laser scanning microscopy (CLSM), and (iii) examined the metal distribution in sediments. Using quantitative PCR, a very high abundance of FeOB was demonstrated at all sites over a 6-month study period. Gallionella spp. clearly dominated the communities, accounting for up to 88% ofBacteria, with a minor contribution of other FeOB such as Sideroxydans spp. and ‘Ferrovum myxofaciens’. Classical 16S rRNA gene cloning showed that 96% of the Gallionella-related sequences had ≥97% identity to the putatively metal-tolerant ‘Gallionella capsiferriformans ES-2’, in addition to known stalk formers such as Gallionella ferruginea and Gallionellaceae strain R-1. Twisted stalks from glass slides incubated in water and sediment were composed of the Fe(III) oxyhydroxide ferrihydrite, as well as polysaccharides. SEM and scanning TEM-energy-dispersive X-ray spectroscopy revealed that stalk material contained Cu and Sn, demonstrating the association of heavy metals with biogenic iron oxides and the potential for metal retention by these stalks. Sequential extraction of sediments suggested that Cu (52–61% of total sediment Cu) and other heavy metals were primarily bound to the iron oxide fractions. These results show the importance of

  18. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  19. Age Differences in Perceptions of Rich and Poor People: Is It Skill or Luck?

    Science.gov (United States)

    Sigelman, Carol K.

    2013-01-01

    To gain new perspective on the development of understandings and perceptions of income inequality, this study compared the reactions of six, eight, and 10-year-olds to a rich man and a poor man and the winners and losers of a contest of skill and a game of chance. Age differences in attributions for outcomes reflected a strengthening with age of…

  20. A Rich Man, Poor Man Story of S-Adenosylmethionine and Cobalamin Revisited.

    Science.gov (United States)

    Bridwell-Rabb, Jennifer; Grell, Tsehai A J; Drennan, Catherine L

    2018-06-20

    S-adenosylmethionine (AdoMet) has been referred to as both "a poor man's adenosylcobalamin (AdoCbl)" and "a rich man's AdoCbl," but today, with the ever-increasing number of functions attributed to each cofactor, both appear equally rich and surprising. The recent characterization of an organometallic species in an AdoMet radical enzyme suggests that the line that differentiates them in nature will be constantly challenged. Here, we compare and contrast AdoMet and cobalamin (Cbl) and consider why Cbl-dependent AdoMet radical enzymes require two cofactors that are so similar in their reactivity. We further carry out structural comparisons employing the recently determined crystal structure of oxetanocin-A biosynthetic enzyme OxsB, the first three-dimensional structural data on a Cbl-dependent AdoMet radical enzyme. We find that the structural motifs responsible for housing the AdoMet radical machinery are largely conserved, whereas the motifs responsible for binding additional cofactors are much more varied.

  1. Formation and Evolution of Carbon-Enhanced Metal-Poor Stars

    NARCIS (Netherlands)

    Abate, C.; Pols, O.R.; Izzard, R.G.

    2010-01-01

    Very metal-poor stars observed in the Galactic halo constitute a window on the primordial conditions under which the Milky Way was formed. A large fraction of these stars show a great enhancement in the abundance of carbon and other heavy elements. One explanation of this observation is that these

  2. Chances for earth-like planets and life around metal-poor stars

    OpenAIRE

    Zinnecker, Hans

    2003-01-01

    We discuss the difficulties of forming earth-like planets in metal-poor environments, such as those prevailing in the Galactic halo (Pop II), the Magellanic Clouds, and the early universe. We suggest that, with less heavy elements available, terrestrial planets will be smaller size and lower mass than in our solar system (solar metallicity). Such planets may not be able to sustain life as we know it. Therefore, the chances of very old lifeforms in the universe are slim, and a threshold metall...

  3. Neutron-Rich Silver Isotopes Produced by a Chemically Selective Laser Ion-Source: Test of the R-Process " Waiting-Point " Concept

    CERN Multimedia

    2002-01-01

    The r-process is an important nucleosynthesis mechanism for several reasons: \\begin{enumerate} \\item It is crucial to an understanding of about half of the A>60 elemental composition of the Galaxy; \\item It is the mechanism that forms the long-lived Th-U-Pu nuclear chronometers which are used for cosmochronolgy; \\item It provides an important probe for the temperature (T$ _{9} $)-neutron density ($n_{n}$) conditions in explosive events; and last but not least \\item It may serve to provide useful clues to and constraints upon the nuclear properties of very neutron-rich heavy nuclei. \\end{enumerate} \\\\ \\\\With regard to nuclear-physics data, of particular interest are the T$ _{1/2} $ and P$_{n-} $ values of certain$\\,$ "waiting-point"$\\,$ isotopes in the regions of the A $ \\approx $ 80 and 130. r-abundance peaks. Previous studies of $^{130}_{\\phantom{1}48}$Cd$_{82}$ and $^{79}_{29}$Cu$_{50}$. $\\beta$-decay properties at ISOLDE using a hot plasma ion source were strongly complicated by isobar and molecular-ion c...

  4. Design and R&D of RICH detectors for EIC experiments

    Science.gov (United States)

    Del Dotto, A.; Wong, C.-P.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Brooks, W.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; He, X.; van Hecke, H.; Horn, T.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stein, H.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A.; Toh, J.; Towell, C.; Towell, R.; Tsang, T.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-12-01

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C2F6 gas in a mirror-focused configuration. We present the simulations of the two detectors and their estimated performance.

  5. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  6. THE KENNICUTT–SCHMIDT RELATION IN EXTREMELY METAL-POOR DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E.; Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Amorín, R. [National Institute for Astrophysics, Astronomical Observatory of Rome, Via Frascati 33, I-00040 Monteporzio Catone (Rome) (Italy); Elmegreen, B. G. [IBM, T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M., E-mail: mfilho@astro.up.pt [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States)

    2016-04-01

    The Kennicutt–Schmidt (KS) relation between the gas mass and star formation rate (SFR) describes the star formation regulation in disk galaxies. It is a function of gas metallicity, but the low-metallicity regime of the KS diagram is poorly sampled. We have analyzed data for a representative set of extremely metal-poor galaxies (XMPs), as well as auxiliary data, and compared these to empirical and theoretical predictions. The majority of the XMPs possess high specific SFRs, similar to high-redshift star-forming galaxies. On the KS plot, the XMP H i data occupy the same region as dwarfs and extend the relation for low surface brightness galaxies. Considering the H i gas alone, a considerable fraction of the XMPs already fall off the KS law. Significant quantities of “dark” H{sub 2} mass (i.e., not traced by CO) would imply that XMPs possess low star formation efficiencies (SFE{sub gas}). Low SFE{sub gas} in XMPs may be the result of the metal-poor nature of the H i gas. Alternatively, the H i reservoir may be largely inert, the star formation being dominated by cosmological accretion. Time lags between gas accretion and star formation may also reduce the apparent SFE{sub gas}, as may galaxy winds, which can expel most of the gas into the intergalactic medium. Hence, on global scales, XMPs could be H i-dominated, high-specific-SFR (≳10{sup −10} yr{sup −1}), low-SFE{sub gas} (≲10{sup −9} yr{sup −1}) systems, in which the total H i mass is likely not a good predictor of the total H{sub 2} mass, nor of the SFR.

  7. R- and s-process nuclei in the early history of the galaxy: HD 122563

    International Nuclear Information System (INIS)

    Sneden, C.; Parthasarathy, M.

    1983-01-01

    New high-resolution, high signal-to-noise spectra in the blue and ultraviolet spectral regions have been obtained for the extremely metal-poor giant star HD 122563. A complete model atmosphere, spectrum synthesis analysis of this star has been performed, employing a large number of weak iron-peak species lines and laboratory oscillator strengths. Spectral features of many rare earth elements have been detected in the ultraviolet. The large overdeficiency of nearly a factor of 10 for the s-process element barium is confirmed and is shown to extend to the other s-process elements La, Ce, Pr, Nd, and Sm. The r-process elements Eu, Gd, Dy, and possibly Er and Yb are less deficient than the s-process elements but do exhibit lower ratios with respect to iron-peak elements than in the Sun. A supplementary differential analysis of HD 122563 with respect to the Sun shows that the heavy-element abundances are not very model-atmosphere dependent. The heavy-element abundances can be understood with nucleosynthesis models in which the progenitors of this star produce mainly r-process isotopes. A small contribution of the s-process to the creation of the elements Sr, Y, Zr, and possibly Ba is not ruled out, but such traditional s-process elements as La, Pr, and Nd appear to have been made in the r-process in stellar generations prior to the formation of HD 122563

  8. The Plant Leucine-Rich Repeat Receptor-Like Kinase PSY1R from Head to Toe

    DEFF Research Database (Denmark)

    Oehlenschlæger, Christian Berg

    PSY1R belongs to the family of plant leucine-rich repeat receptor-like kinases that play important roles in processes such as growth regulation and plant immunity response. PSY1R was proposed to be the receptor of the plant peptide hormone PSY1 which promotes cell expansion. PSY1R was furthermore...... is activated. This work provides the first study of the direct interaction between PSY1R and the peptide ligand PSY1. The binding was evaluated both for full length PSY1R expressed in plants and for the isolated extracellular domain expressed in insect cells. PSY1 binds to the extracellular domain of PSY1R...... shown to phosphorylate and regulate the activity of the plasma membrane localized H+-ATPase, AHA2. While the mechanism of PSY1R-mediated AHA2 phosphorylation has previously been studied in detail, little is known about how PSY1R binds PSY1 peptide ligand and how the intracellular PSY1R kinase domain...

  9. Sustainable development in an N-rich/n-poor world.

    Science.gov (United States)

    Perrings, Charles; Kinzig, Ann; Halkos, George

    2014-11-01

    Sustainable development requires that per capita inclusive wealth-produced, human, and natural capital-does not decline over time. We investigate the impact of changes in nitrogen on inclusive wealth. There are two sides to the nitrogen problem. Excess use of nitrogen in some places gives rise to N-pollution, which can cause environmental damage. Insufficient replacement of nitrogen in other places gives rise to N-depletion, or loss of nutrient stocks. Neither is explicitly accounted for in current wealth measures, but both affect wealth. We calculate an index of net N-replacement, and investigate its relationship to wealth. In countries with low levels of relative N-loss, we find that the uncompensated loss of soil nitrogen in poorer countries is associated with declining rates of growth of inclusive per capita wealth. What is less intuitive is that increasing fertilizer application in both rich and poor countries can increase per capita inclusive wealth.

  10. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  11. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  12. Abundances in very metal-poor stars

    Science.gov (United States)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  13. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  14. Evidence of enrichment by individual SN from elemental abundance ratios in the very metal-poor dSph galaxy Boötes I

    Science.gov (United States)

    Feltzing, S.; Eriksson, K.; Kleyna, J.; Wilkinson, M. I.

    2009-12-01

    Aims. We establish the mean metallicity from high-resolution spectroscopy for the recently found dwarf spheroidal galaxy Boötes I and test whether it is a common feature for ultra-faint dwarf spheroidal galaxies to show signs of inhomogeneous chemical evolution (e.g. as found in the Hercules dwarf spheroidal galaxy). Methods: We analyse high-resolution, moderate signal-to-noise spectra for seven red giant stars in the Boötes I dSph galaxy using standard abundance analysis techniques. In particular, we assume local thermodynamic equilibrium and employ spherical model atmospheres and codes that take the sphericity of the star into account when calculating the elemental abundances. Results: We confirm previous determinations of the mean metallicity of the Boötes I dwarf spheroidal galaxy to be -2.3 dex. Whilst five stars are clustered around this metallicity, one is significantly more metal-poor, at -2.9 dex, and one is more metal-rich at, -1.9 dex. Additionally, we find that one of the stars, Boo-127, shows an atypically high [Mg/Ca] ratio, indicative of stochastic enrichment processes within the dSph galaxy. Similar results have previously only been found in the Hercules and Draco dSph galaxies and appear, so far, to be unique to this type of galaxy. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  15. Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites

    Science.gov (United States)

    Taylor, G. J.

    2016-03-01

    The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.

  16. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    Science.gov (United States)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  17. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements.

    Science.gov (United States)

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-09

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

  18. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings.

    Science.gov (United States)

    Touceda-González, M; Álvarez-López, V; Prieto-Fernández, Á; Rodríguez-Garrido, B; Trasar-Cepeda, C; Mench, M; Puschenreiter, M; Quintela-Sabarís, C; Macías-García, F; Kidd, P S

    2017-01-15

    (Aided) phytostabilisation has been proposed as a suitable technique to decrease the environmental risks associated with metal(loid)-enriched mine tailings. Field scale evaluations are needed for demonstrating their effectiveness in the medium- to long-term. A field trial was implemented in spring 2011 in Cu-rich mine tailings in the NW of Spain. The tailings were amended with composted municipal solid wastes and planted with Salix spp., Populus nigra L. or Agrostis capillaris L. cv. Highland. Plant growth, nutritive status and metal accumulation, and soil physico- and bio-chemical properties, were monitored over three years (four years for plant growth). The total bacterial community, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae were studied by DGGE of 16s rDNA fragments. Compost amendment improved soil properties such as pH, CEC and fertility, and decreased soil Cu availability, leading to the establishment of a healthy vegetation cover. Both compost-amendment and plant root activity stimulated soil enzyme activities and induced important shifts in the bacterial community structure over time. The woody plant, S. viminalis, and the grassy species, A. capillaris, showed the best results in terms of plant growth and biomass production. The beneficial effects of the phytostabilisation process were maintained at least three years after treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Universality and the astrophysical sites for the r-process

    International Nuclear Information System (INIS)

    Otsuki, Kaori; Mathews, Grant J.; Wilson, James; Kajino, Toshitaka; Aoki, Wako; Honda, Satoshi

    2003-01-01

    Several observations of r-process elements in metal-deficient halo stars have been reported which show a Z>56 formed abundance distribution pattern similar to the Solar-system r-process distribution. It was believed that r-process elements for Z>56 in the same ratio and their astrophysical origin is unique because of this. However, quite recently, several controversial observational results have been reported. We calculated nucleosynthesis in various environments using a dynamical code. We find it is possible to reproduce the observed universal abundance distribution for stable Z>56 elements in various environments. Our results do not support a unique astrophysical site for Z>56 elements. These results significantly affect nuclear chronology using actinide elements. We also introduce a recent r-process nucleosynthesis calculation based on a supernovae simulation. Our tentative results indicate over-production of lighter elements and a shortage of actinide elements. (author)

  20. METALLICITIES, AGE-METALLICITY RELATIONSHIPS, AND KINEMATICS OF RED GIANT BRANCH STARS IN THE OUTER DISK OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Carrera, R.; Gallart, C.; Aparicio, A.; Hardy, E.

    2011-01-01

    The outer disk of the Large Magellanic Cloud (LMC) is studied in order to unveil clues about its formation and evolution. Complementing our previous studies in innermost fields (3 kpc ∼< R ∼< 7 kpc), we obtained deep color-magnitude diagrams in six fields with galactocentric distances from 5.2 kpc to 9.2 kpc and different azimuths. The comparison with isochrones shows that while the oldest population is approximately coeval in all fields, the age of the youngest populations increases with increasing radius. This agrees with the results obtained in the innermost fields. Low-resolution spectroscopy in the infrared Ca II triplet region has been obtained for about 150 stars near the tip of the red giant branch in the same fields. Radial velocities and stellar metallicities have been obtained from these spectra. The metallicity distribution of each field has been analyzed together with those previously studied. The metal content of the most metal-poor objects, which are also the oldest according to the derived age-metallicity relationships, is similar in all fields independently of the galactocentric distance. However, while the metallicity of the most metal-rich objects measured, which are the youngest ones, remains constant in the inner 6 kpc, it decreases with increasing radius from there on. The same is true for the mean metallicity. According to the derived age-metallicity relationships, which are consistent with being the same in all fields, this result may be interpreted as an outside-in formation scheme in opposition with the inside-out scenario predicted by ΛCDM cosmology for a galaxy like the LMC. The analysis of the radial velocities of our sample of giants shows that they follow a rotational cold disk kinematics. The velocity dispersion increases as metallicity decreases indicating that the most metal-poor/oldest objects are distributed in a thicker disk than the most metal-rich/youngest ones in agreement with the findings in other disks such as that of

  1. Survey of electrochemical metal winning processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vaaler, L.E.

    1979-03-01

    The subject program was undertaken to find electrometallurgical technology that could be developed into energy saving commercial metal winning processes. Metals whose current production processes consume significant energy (excepting copper and aluminum) are magnesium, zinc, lead, chromium, manganese, sodium, and titanium. The technology of these metals, with the exception of titanium, was reviewed. Growth of titanium demand has been too small to justify the installation of an electrolyte process that has been developed. This fact and the uncertainty of estimates of future demand dissuaded us from reviewing titanium technology. Opportunities for developing energy saving processes were found for magnesium, zinc, lead, and sodium. Costs for R and D and demonstration plants have been estimated. It appeared that electrolytic methods for chromium and manganese cannot compete energywise or economically with the pyrometallurgical methods of producing the ferroalloys, which are satisfactory for most uses of chromium and manganese.

  2. Bazı Kozmetik Ürünlerde Ağır Metal (Pb, Cd Tayini

    Directory of Open Access Journals (Sweden)

    Nazan DEMİR

    2014-12-01

    Full Text Available Özet: İlk insandan bu yana güzel görünmek, güzel kalmak insanlar için son derece önemli olmuştur. Günümüzde de kozmetik ürünlere yoğun bir ilgi vardır. Fakat bu ilgi artışı kozmetik ürünlerin güzelleştirirken, sağlığı tehdit edip etmediği sorusunu gündeme getirmektedir. Çünkü basit bir el kremi bile çok sayıda kimyasal içermekte ve bu kadar kimyasalın bir arada kullanıldığı ürünler, kullanım miktarı ve sıklığına bağlı olarak sağlığı tehdit etme ihtimali taşımaktadır. Bu kimyasallar içerisinde ağır metaller önemli bir yer teşkil etmektedir. Bu çalışmada amaç; bazı kozmetik ürünlerdeki ağır metallerin varlığının ve miktarlarının belirlenmesidir. Çalışma çerçevesinde piyasadan temin edilen farklı marka ve renklerde 10 adet saç boyası ve 10 adet ojede Atomik Absorpsiyon Spektroskopi (AAS cihazında grafit fırın tekniği kullanılarak bazı ağır metallerin (Pb, Cd tayini yapılmıştır. Sonuçlara göre; incelenen saç boyası ve ojelerde Pb ve Cd bulunduğu belirlenmiştir. Anahtar Kelimeler: Kozmetik, ağır metal, kurşun, kadminyum, saç boyası, oje. Determination of Heavy Metals (Pb, Cd in Some Cosmetic Products Abstract: The seem beautiful, staying nice have been extremely important for the people for ages. Today demand for cosmetic products is increasing. But this interest brings up a question that cosmetics are dangerous for health or not. Because even a simple hand cream contains a large number of chemical and this products threaten the health depending on the amount and frequency of use. These chemicals have a high percentage of heavy metals. Purpose of the study, determination of heavy metals and their amounts in some cosmetics. We bought different brands and colored ten hair dyes and ten nail polishes from public market. Then we analyze some heavy metals (Pb, Cd with Atomic Absorbsion Spektrometer (AAS. According to the results we determined lead

  3. Shell-model calculations of beta-decay rates for s- and r-process nucleosyntheses

    International Nuclear Information System (INIS)

    Takahashi, K.; Mathews, G.J.; Bloom, S.D.

    1985-01-01

    Examples of large-basis shell-model calculations of Gamow-Teller β-decay properties of specific interest in the astrophysical s- and r- processes are presented. Numerical results are given for: (1) the GT-matrix elements for the excited state decays of the unstable s-process nucleus 99 Tc; and (2) the GT-strength function for the neutron-rich nucleus 130 Cd, which lies on the r-process path. The results are discussed in conjunction with the astrophysics problems. 23 refs., 3 figs

  4. How Emerging Market Resource-poor Firms Compete and Outcompete Advanced Country Resource-Rich Rivals

    DEFF Research Database (Denmark)

    Li, Xin

    2018-01-01

    Purpose: The purpose of this paper is to comment on Professor Ming-Jer Chen’s recent publication titled “Competitive dynamics: Eastern roots, Western growth” and present an asymmetry reversing perspective on the competitive dynamics between two nonobvious, invisible or indirect competitors, namely......, how emerging market resource-poor firms compete and outcompete advanced country resource-rich rivals. Design/methodology/approach: The author first identifies an important neglect in Professor Chen’s scholarship on competitive dynamics, i.e., the neglect of the ubiquity of the less visible competition...... position, and try to avoid any direct competition with the strong incumbents. They often tactically appear to pursue different paths of development from those of the strong incumbents by focusing on particular product categories and market segments. Doing so allows the resource-poor firms to win times...

  5. The Origin of the Relation between Metallicity and Size in Star-forming Galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Dalla Vecchia, C.

    2018-06-01

    For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.

  6. New exploration methods for platinum and rhodium deposits poor in base-metal sulphides

    DEFF Research Database (Denmark)

    Ohnenstetter, M.; Johan, Z.; Cocherie, A.

    1999-01-01

    Platinum-group elements (PGE) are typically associated with mafic and ultramafic intrusive rocks and the main exploration targets are layers and zones rich in PGE-bearing sulphides. Some PGE occurences, however, are in sulphide-poor situations and this raises the possibility that PGE deposits may...

  7. Transcriptional effects of metal-rich acid drainage water from the abandoned Løkken Mine on Atlantic salmon (Salmo salar) smolt.

    Science.gov (United States)

    Olsvik, Pål A; Ulvund, John B; Teien, Hans C; Urke, Henning A; Lie, Kai K; Kristensen, Torstein

    2016-01-01

    Runoff of metals represents one of the major environmental challenges related to historic and ongoing mining activity. In this study, transcriptomics (direct RNA sequencing [RNA-seq] and reverse-transcription quantitative polymerase chain reaction [RT-qPCR]) was used to predict toxicity of metal-rich acid mine drainage (AMD) water collected in the abandoned copper (Cu) mine called Løkken Mine on Atlantic salmon liver and kidney, the main target organs of Cu-induced toxicity in fish. Smolts were exposed to control and diluted AMD water, which contains a mixture of metals but is especially enriched with Cu, at 4 concentrations in freshwater (FW) for 96 h, and then were transferred to and kept in seawater (SW) for another 24 h. Significant accumulation of Cu was observed in the gills, but not liver and kidney tissues, after 96 h of exposure. Short-term exposure to metal-rich ADM (high exposure group) significantly upregulated 3201 transcripts and downregulated 3782 transcripts in liver. The strongest effect attributed to exposure was observed on the KEGG pathway "protein processing in endoplasmic reticulum," followed by "steroid biosynthesis." Gene ontology (GO) analysis suggested that exposure predominantly affected "protein folding," possibly by disrupting disulfide bonds as a result of endoplasmic-reticulum-generated stress, and "sterol biosynthetic processes." Transfer to uncontaminated SW for 24 h amended the transcription of several genes, suggesting a transient effect of treatment on some mechanisms. In conclusion, the data show that trace metals in AMD from abandoned pyrite mines might disturb molecular mechanisms linked to protein folding in Atlantic salmon smolt endoplasmic reticulum.

  8. Properties and origin of the old, metal rich, star cluster, NGC 6791

    OpenAIRE

    Carraro, Giovanni

    2013-01-01

    In this contribution I summarize the unique properties of the old, metal rich, star cluster NGC 6791, with particular emphasis on its population of extreme blue horizontal branch stars. I then conclude providing my personal view on the origin of this fascinating star cluster.

  9. Neutrino-heated winds from millisecond protomagnetars as sources of the weak r-process

    Science.gov (United States)

    Vlasov, Andrey D.; Metzger, Brian D.; Lippuner, Jonas; Roberts, Luke F.; Thompson, Todd A.

    2017-06-01

    We explore heavy element nucleosynthesis in neutrino-driven winds from rapidly rotating, strongly magnetized protoneutron stars ('millisecond protomagnetars') for which the magnetic dipole is aligned with the rotation axis, and the field is assumed to be a static force-free configuration. We process the protomagnetar wind trajectories calculated by Vlasov, Metzger & Thompson through the r-process nuclear reaction network SkyNet using contemporary models for the evolution of the wind electron fraction during the protoneutron star cooling phase. Although we do not find a successful second or third-peak r-process for any rotation period P, we show that protomagnetars with P ˜ 1-5 ms produce heavy element abundance distributions that extend to higher nuclear mass number than from otherwise equivalent spherical winds (with the mass fractions of some elements enhanced by factors of ≳100-1000). The heaviest elements are synthesized by outflows emerging along flux tubes that graze the closed zone and pass near the equatorial plane outside the light cylinder. Due to dependence of the nucleosynthesis pattern on the magnetic field strength and rotation rate of the protoneutron star, natural variations in these quantities between core collapse events could contribute to the observed diversity of the abundances of weak r-process nuclei in metal-poor stars. Further diversity, including possibly even a successful third-peak r-process, could be achieved for misaligned rotators with non-zero magnetic inclination with respect to the rotation axis. If protomagnetars are central engines for GRBs, their relativistic jets should contain a high-mass fraction of heavy nuclei of characteristic mass number \\bar{A}≈ 100, providing a possible source for ultrahigh energy cosmic rays comprised of heavy nuclei with an energy spectrum that extends beyond the nominal Grezin-Zatsepin-Kuzmin cut-off for protons or iron nuclei.

  10. THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ∼< 1

    International Nuclear Information System (INIS)

    Lehner, N.; Howk, J. C.; Tripp, T. M.; Tumlinson, J.; Thom, C.; Fox, A. J.; Prochaska, J. X.; Werk, J. K.; O'Meara, J. M.; Ribaudo, J.

    2013-01-01

    We assess the metal content of the cool (∼10 4 K) circumgalactic medium (CGM) about galaxies at z ∼ H I ∼ H I selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N H I in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H] ≅ –1.6 and –0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z ∼< 1 galaxies.

  11. GRANULATION SIGNATURES IN THE SPECTRUM OF THE VERY METAL-POOR RED GIANT HD 122563

    International Nuclear Information System (INIS)

    RamIrez, I.; Collet, R.; Asplund, M.; Lambert, D. L.; Allende Prieto, C.

    2010-01-01

    A very high resolution (R = λ/Δλ = 200, 000), high signal-to-noise ratio (S/N ≅ 340) blue-green spectrum of the very metal-poor ([Fe/H] ≅ -2.6) red giant star HD 122563 has been obtained by us at McDonald Observatory. We measure the asymmetries and core wavelengths of a set of unblended Fe I lines covering a wide range of line strength. Line bisectors exhibit the characteristic C-shape signature of surface convection (granulation) and they span from about 100 m s -1 in the strongest Fe I features to 800 m s -1 in the weakest ones. Core wavelength shifts range from about -100 to -900 m s -1 , depending on line strength. In general, larger blueshifts are observed in weaker lines, but there is increasing scatter with increasing residual flux. Assuming local thermodynamic equilibrium (LTE), we synthesize the same set of spectral lines using a state-of-the-art three-dimensional (3D) hydrodynamic simulation for a stellar atmosphere of fundamental parameters similar to those of HD 122563. We find good agreement between model predictions and observations. This allows us to infer an absolute zero point for the line shifts and radial velocity. Moreover, it indicates that the structure and dynamics of the simulation are realistic, thus providing support to previous claims of large 3D-LTE corrections to elemental abundances and fundamental parameters of very metal-poor red giant stars obtained with standard 1D-LTE spectroscopic analyses, as suggested by the hydrodynamic model used here.

  12. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  13. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  14. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Merchant Boesgaard, Ann; Lum, Michael G. [Institute for Astronomy, University of Hawai' i at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Deliyannis, Constantine P., E-mail: boes@ifa.hawaii.edu, E-mail: mikelum@ifa.hawaii.edu, E-mail: cdeliyan@indiana.edu [Department of Astronomy, Indiana University 727 East 3rd Street, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  15. RESPIRATORY EFFECTS OF INHALED METAL-RICH PARTICULATE MATTER (PM) IN RATS: INFLUENCE OF SYSTEMIC ANTIOXIDANT DEPLETION

    Science.gov (United States)

    Metal-mediated generation of reactive oxygen species and resultant oxidative stress has been implicated in the pathogenesis of emission-source PM toxicity. We hypothesized that inducing an antioxidant deficit prior to inhalation of metal-rich PM would worsen adverse health outcom...

  16. Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce II Lines in the H-band Spectral Window

    Science.gov (United States)

    Cunha, Katia; Smith, Verne V.; Hasselquist, Sten; Souto, Diogo; Shetrone, Matthew D.; Allende Prieto, Carlos; Bizyaev, Dmitry; Frinchaboy, Peter; García-Hernández, D. Anibal; Holtzman, Jon; Johnson, Jennifer A.; Jőnsson, Henrik; Majewski, Steven R.; Mészáros, Szabolcs; Nidever, David; Pinsonneault, Mark; Schiavon, Ricardo P.; Sobeck, Jennifer; Skrutskie, Michael F.; Zamora, Olga; Zasowski, Gail; Fernández-Trincado, J. G.

    2017-08-01

    Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between λ1.51 and 1.69 μm). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R=λ /δ λ ={{100,000}}) Fourier Transform Spectrometer (FTS) spectrum of α Boo and an APOGEE spectrum (R = 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using α Boo as a standard star, with the absolute cerium abundance in α Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N- and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.

  17. Nuclear reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Horvat, Andrea [TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Schrock, Philipp [CNS, University of Tokyo (Japan); Johansen, Jacob [Aarhus University (Denmark); Collaboration: R3B-Collaboration

    2016-07-01

    Nuclei with a large neutron excess are expected to form a neutron-rich surface layer which is often referred to as the neutron skin. The investigation of this phenomenon is of great interest in nuclear-structure physics and offers a possibility to constrain the equation-of-state of neutron-rich matter. Assuming a geometrical description of reaction processes as in the eikonal approximation, nuclear-induced reactions are a good tool to probe the neutron skin. Measured reaction cross sections can be used to constrain the density distributions of protons and neutrons in the nucleus and therefore the neutron-skin thickness. For this purpose, reactions of neutron-rich tin isotopes in the A=124-134 mass range have been measured on a carbon target at the R{sup 3}B-setup at GSI in inverse kinematics in a kinematically complete manner. Preliminary results for the reaction cross sections of {sup 124}Sn are presented.

  18. Preparation of the pur uranium-metal

    International Nuclear Information System (INIS)

    Goldschmidt, B.; Vertes, P.

    1955-01-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [fr

  19. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada)

    Science.gov (United States)

    Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Mercadier, Julien; Banks, David A.; Cuney, Michel

    2016-02-01

    alteration. Finally, the metal concentrations in the NaCl-rich and CaCl2-rich brines are among the highest recorded compared to present-day sedimentary formation waters and fluid inclusions from basin-hosted base metal deposits (up to 600 ppm U, 3000 ppm Mn, 4000 ppm Zn, 6000 ppm Cu, 8000 ppm Pb, and 10,000 ppm Fe). The CaCl2-rich brine carries up to one order of magnitude more metal than the NaCl-rich brine. Though the exact origin of major cations and metals of the two brines remains uncertain, their contrasting compositions indicate that the two brines had distinct flow paths and fluid-rock interactions. Large-scale circulation of the brines in the Athabasca Basin and Basement was therefore a key parameter for metal mobility (including U) and formation of unconformity-related U deposits.

  20. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5 contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  1. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos, Vazquez De La Parra Luis Francisco

    2016-01-01

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  2. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor

    2016-01-21

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  3. ON THE r -PROCESS ENRICHMENT OF DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Bramante, Joseph [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Linden, Tim [Center for Cosmology and AstroParticle Physics (CCAPP) and Department of Physics The Ohio State University, Columbus OH, 43210 (United States)

    2016-07-20

    Recent observations of Reticulum II have uncovered an overabundance of r -process elements compared to similar ultra-faint dwarf spheroidal galaxies (UFDs). Because the metallicity and star formation history of Reticulum II appear consistent with all known UFDs, the high r -process abundance of Reticulum II suggests enrichment through a single, rare event, such as a double neutron star (NS) merger. However, we note that this scenario is extremely unlikely, as binary stellar evolution models require significant supernova natal kicks to produce NS–NS or NS–black hole (BH) mergers, and these kicks would efficiently remove compact binary systems from the weak gravitational potentials of UFDs. We examine alternative mechanisms for the production of r -process elements in UFDs, including a novel mechanism wherein NSs in regions of high dark matter (DM) density implode after accumulating a BH-forming mass of DM. We find that r -process proto-material ejection by tidal forces, when a single NS implodes into a BH, can occur at a rate matching the r -process abundance of both Reticulum II and the Milky Way. Remarkably, DM models which collapse a single NS in observed UFDs also solve the missing pulsar problem in the Milky Way Galactic Center. We propose tests specific to DM r -process production which may uncover or rule out this model.

  4. Jiangxi Copper Made Strategic Investment in Hami with Rich Nonferrous Metal Resources

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    On October 11,Hami region and Jiangxi Copper Group Corporation held a contractsigning ceremony for strategic cooperation,signaling that Hami region has become a key strategic investment base of Jiangxi Copper Group Corporation,a company with the biggest manufacture base of copper products in China.Hami region boasts rich nonferrous metal

  5. Rotational mixing in carbon-enhanced metal-poor stars with s-process enrichment

    Science.gov (United States)

    Matrozis, E.; Stancliffe, R. J.

    2017-10-01

    Carbon-enhanced metal-poor (CEMP) stars with s-process enrichment (CEMP-s) are believed to be the products of mass transfer from an asymptotic giant branch (AGB) companion, which has long since become a white dwarf. The surface abundances of CEMP-s stars are thus commonly assumed to reflect the nucleosynthesis output of the first AGB stars. We have previously shown that, for this to be the case, some physical mechanism must counter atomic diffusion (gravitational settling and radiative levitation) in these nearly fully radiative stars, which otherwise leads to surface abundance anomalies clearly inconsistent with observations. Here we take into account angular momentum accretion by these stars. We compute in detail the evolution of typical CEMP-s stars from the zero-age main sequence, through the mass accretion, and up the red giant branch for a wide range of specific angular momentum ja of the accreted material, corresponding to surface rotation velocities, vrot, between about 0.3 and 300 kms-1. We find that only for ja ≳ 1017 cm2s-1 (vrot > 20 kms-1, depending on mass accreted) angular momentum accretion directly causes chemical dilution of the accreted material. This could nevertheless be relevant to CEMP-s stars, which are observed to rotate more slowly, if they undergo continuous angular momentum loss akin to solar-like stars. In models with rotation velocities characteristic of CEMP-s stars, rotational mixing primarily serves to inhibit atomic diffusion, such that the maximal surface abundance variations (with respect to the composition of the accreted material) prior to first dredge-up remain within about 0.4 dex without thermohaline mixing or about 0.5-1.5 dex with thermohaline mixing. Even in models with the lowest rotation velocities (vrot ≲ 1 kms-1), rotational mixing is able to severely inhibit atomic diffusion, compared to non-rotating models. We thus conclude that it offers a natural solution to the problem posed by atomic diffusion and cannot be

  6. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  7. Investigation of Cu-poor and Cu-rich Cu(In,Ga)Se{sub 2}/CdS interfaces using hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ümsür, B., E-mail: buenyamin.uemsuer@helmholtz-berlin.de [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Calvet, W.; Höpfner, B.; Steigert, A.; Lauermann, I.; Gorgoi, M.; Prietzel, K.; Navirian, H.A.; Kaufmann, C.A.; Unold, T. [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Lux-Steiner, M. Ch. [Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Freie Universität Berlin, Department of Physics, Arnimallee 14, D-14195 Berlin (Germany)

    2015-05-01

    Cu-poor and Cu-rich Cu(In,Ga)Se{sub 2} (CIGSe) absorbers were used as substrates for the chemical bath deposition of ultrathin CdS buffer layers in the thickness range of a few nanometers in order to make the CIGSe/CdS interface accessible by hard X-ray photo-emission spectroscopy. The composition of both, the absorber and the buffer layer as well as the energetics of the interface was investigated at room temperature and after heating the samples to elevated temperatures (200 °C, 300 °C and 400 °C). It was found that the amount of Cd after the heating treatment depends on the near surface composition of the CIGSe absorber. No Cd was detected on the Cu-poor surface after the 400 °C treatment due to its diffusion into the CIGSe layer. In contrast, Cd was still present on the Cu-rich surface after the same treatment at 400 °C. - Highlights: • Cd diffusion into Cu(In,Ga)Se{sub 2} (CIGSe) absorber is investigated. • Cu-poor and Cu-rich CIGSe samples are compared. • Cd diffusion into CIGSe is found to be dependent on the surface composition of CIGSe.

  8. Huge poor-rich inequalities in maternity care: an international comparative study of maternity and child care in developing countries

    NARCIS (Netherlands)

    Houweling, Tanja A. J.; Ronsmans, Carine; Campbell, Oona M. R.; Kunst, Anton E.

    2007-01-01

    OBJECTIVE: Progress towards the Millennium Development Goals for maternal health has been slow, and accelerated progress in scaling up professional delivery care is needed. This paper describes poor-rich inequalities in the use of maternity care and seeks to understand these inequalities through

  9. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Méndez-Abreu, J., E-mail: jos@iac.es [School of Physics and Astronomy, University of St Andrews, St Andrews (United Kingdom)

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  10. Metal ion interaction of an oligopeptide fragment representing the regulatory metal binding site of a CueR protein

    DEFF Research Database (Denmark)

    Jancsó, Attila; Szokolai, Hajnalka; Roszahegyi, Livia

    2013-01-01

    Metalloregulatory proteins of the MerR family are transcriptional activators that sense/control the concentration of various metal ions inside bacteria.1 The Cu+ efflux regulator CueR, similarly to other MerR proteins, possesses a short multiple Cys-containing metal binding loop close to the C...... of cognate metal ions.2 Nevertheless, it is an interesting question whether the same sequence, when removed from the protein, shows a flexibility to adopt different coordination environments and may efficiently bind metal ions having preferences for larger coordination numbers....

  11. Pristine Survey : High-Resolution Spectral Analyses of New Metal-poor Stars

    Science.gov (United States)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Pristine survey (Starkenburg et al. 2017) is a new and very successful metal-poor star survey. Combining high-quality narrow-band CaHK CFHT/MegaCam photometry with existing broadband photometry from SDSS, then very metal-poor stars have been found as confirmed from low-resolution spectroscopy (Youakim et al. 2017). Furthermore, we have extended this survey towards the Galactic bulge in a pilot program to test the capabilities in the highly crowded and (inhomogeneously) extincted bulge (Arentsen et al. 2018). High resolution spectral follow-up analyses have been initiated at the CFHT with Espadons (Vevolution or changes in the IMF, e.g., carbon enrichment, high [alpha/Fe] ratios vs alpha-challenged stars, and details in the neutron capture element ratios. While these early studies are being carried out using classical model atmospheres and synthetic spectral fitting (Venn et al. 2017, 2018), we are also exploring the use of a neural network for the fast, efficient, and precise determination of these stellar parameters and chemical abundances (e.g., StarNet, Fabbro et al. 2018).

  12. A double metal process

    International Nuclear Information System (INIS)

    Hawley, F.; Vasche, G.; Caywood, J.M.; Houck, B.; Boyce, J.; Tso, L.

    1988-01-01

    A dual layer metallization process is studied using a Tungsten 10% Titanium/Molybdenum sandwich (TiW/Mo) first metal with an Al/.5% Cu for the second metal. This metallization process has: 1) very reliable shallow junction contacts without junction spiking, 2) very high electromigration resistance and (3) A very smooth defect free surface throughout the process. Contact resistance of 50 and 30 ohm-um2 for P and N type silicon respectively is achieved. The TiW/Mo film stress is studied and an optimum condition for low compressive stress is defined. The TiW/Mo is etched using a corrosion free etch process. Electromigration data is presented showing TiW/Mo to be at least an order of magnitude better than Al/Si. The intermetal oxide layer is a planarized sandwich of LTO/SOG/LTO providing a smooth positive slope surface for the Metal 2. Metal l/Metal 2 via resistances are studied with 1.25 ohm-um2 values obtained

  13. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    Science.gov (United States)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  14. On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927

    Science.gov (United States)

    D’Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V. F.; Elgueta, S. S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall’Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R. P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C. E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J. L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.

    2018-03-01

    We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91–1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = ‑0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = ‑ 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ± 0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. Based on spectra collected with the WINERED spectrograph available as a visitor instrument at the ESO New Technology Telescope (NTT), La Silla, Chile (ESO Proposal: 098.D-0878(A), PI: G. Bono).

  15. Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre Chisini

    2017-01-01

    Full Text Available The aim of this study was to evaluate the proliferation and adhesion of mesenchymal cells (3T3/NIH in Dulbecco’s Modified Eagle Medium (DMEM supplemented with Platelet-Poor Plasma (PPP in a Platelet-Rich Fibrin (PRF scaffold. Human blood was obtained and processed in a centrifuge considering the equation G=1.12xRx (RPM/1000² to obtain PRF and PPP. Cell adhesion and maintenance analyses were performed by MTT assays in a 96 well plate with supplemented DMEM: PPP (90:10 for 24 hours. Besides, the PRF was deposited in a 48 well plate and 10x104 cells were seeded above each PRF (n=3 with 800μl of DMEM: PPP (90:10 and cultured for 7 days. Histological analysis and the immunohistochemical staining for Vimentin were performed. Results were analyzed by one-way ANOVA in Stata12®. A significant decrease (p0.05. Fibroblasts culture for 7 days in PRF supplemented with PPP 10% was possible, showing positive staining for Vimentin. Therefore, PPP cell supplementation decreased the initial adhesion of cells but was able to maintain the proliferation of adhered cells and able to support their viability in PRF. It seems that this method has many clinical advantages since it provides an autologous and natural scaffold with their respective supplement for cell culture by only one process, without using xenogeneic compounds. This could improve the potential of clinical translational therapies based on the use of PRF cultured cells, promoting the regenerative potential for future use in medicine and dentistry.

  16. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States); Cooke, Ryan J. [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2017-08-20

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  17. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Science.gov (United States)

    Hsyu, Tiffany; Cooke, Ryan J.; Prochaska, J. Xavier; Bolte, Michael

    2017-08-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O III] λ4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy.

  18. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    International Nuclear Information System (INIS)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael; Cooke, Ryan J.

    2017-01-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  19. Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Søndergaard, Roar; Jørgensen, Mikkel

    2011-01-01

    The performance of printable metal back electrodes for polymer solar cells were investigated using light beam induced current (LBIC) mapping of the final solar cell device after preparation to identify the causes of poor performance. Three different types of silver based printable metal inks were...

  20. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences.

    Science.gov (United States)

    Backor, Martin; Peksa, Ondrej; Skaloud, Pavel; Backorová, Miriam

    2010-05-01

    The photobiont is considered as the more sensitive partner of lichen symbiosis in metal pollution. For this reason the presence of a metal tolerant photobiont in lichens may be a key factor of ecological success of lichens growing on metal polluted substrata. The photobiont inventory was examined for terricolous lichen community growing in Cu mine-spoil heaps derived by historical mining. Sequences of internal transcribed spacer (ITS) were phylogenetically analyzed using maximum likelihood analyses. A total of 50 ITS algal sequences were obtained from 22 selected lichen taxa collected at three Cu mine-spoil heaps and two control localities. Algae associated with Cladonia and Stereocaulon were identified as members of several Asterochloris lineages, photobionts of cetrarioid lichens clustered with Trebouxia hypogymniae ined. We did not find close relationship between heavy metal content (in localities as well as lichen thalli) and photobiont diversity. Presence of multiple algal genotypes in single lichen thallus has been confirmed. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries?

    OpenAIRE

    Samuel Fankhauser; Thomas K. J. McDermott

    2014-01-01

    Poor countries are more heavily affected by extreme weather events and future climate change than rich countries. This discrepancy is sometimes known as an adaptation deficit. This paper analyses the link between income and adaptation to climate events theoretically and empirically. We postulate that the adaptation deficit is due to two factors: A demand effect, whereby the demand for the good �climate security� increases with income, and an efficiency effect, which works as a spill-over exte...

  2. Heavy metals pollution influence the community structure of Cyanobacteria in nutrient rich tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jasmin, C.; Sheeba V.A.; Gireeshkumar, T.R; Nair, S.

    , Mn, Fe, Ni, Cu and Zn) on community structure of cyanobacteria in a nutrient rich tropical estuary, Cochin Estuary (CE), across the southwest coast of India. Dissolved heavy metals were higher in CE during dry season, with Zn as major pollutant...

  3. Process for improving metal production in steelmaking processes

    Science.gov (United States)

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  4. FORMATION OF CARBON-ENHANCED METAL-POOR STARS IN THE PRESENCE OF FAR-ULTRAVIOLET RADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, S.; Schleicher, D. R. G.; Latif, M. A. [Institut für Astrophysik Georg-August-Universität, Friedrich-Hund Platz 1, 37077 Göttingen (Germany); Grassi, T., E-mail: sbovino@astro.physik.uni-goettingen.de [Centre for Star and Planet Formation, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 Copenhagen (Denmark)

    2014-08-01

    Recent discoveries of carbon-enhanced metal-poor stars like SMSS J031300.36–670839.3 provide increasing observational insights into the formation conditions of the first second-generation stars in the universe, reflecting the chemical conditions after the first supernova explosion. Here, we present the first cosmological simulations with a detailed chemical network including primordial species as well as C, C{sup +}, O, O{sup +}, Si, Si{sup +}, and Si{sup 2+} following the formation of carbon-enhanced metal-poor stars. The presence of background UV flux delays the collapse from z = 21 to z = 15 and cool the gas down to the cosmic microwave background temperature for a metallicity of Z/Z {sub ☉} = 10{sup –3}. This can potentially lead to the formation of lower-mass stars. Overall, we find that the metals have a stronger effect on the collapse than the radiation, yielding a comparable thermal structure for large variations in the radiative background. We further find that radiative backgrounds are not able to delay the collapse for Z/Z {sub ☉} = 10{sup –2} or a carbon abundance as in SMSS J031300.36–670839.3.

  5. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Kohei; Yoshii, Yuzuru [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Carollo, Daniela [Department of Physics and Astronomy, Macquarie University, Sydney, 2109 NSW (Australia); Lee, Young Sun, E-mail: khattori@ioa.s.u-tokyo.ac.jp [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  6. R-process nucleosynthesis: a dynamical model

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrandt, W; Takahashi, K [Technische Hochschule Darmstadt (Germany, F.R.). Inst. fuer Kernphysik; Kodama, T [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro

    1976-10-01

    The synthesis of heavy and neutron-rich elements (with the mass number A > approximately 70) is reconsidered in the framework of a dynamical supernova model. The synthesis equation for the rapid neutron-capture (or, the r-) process and the hydrodynamical equations for the supernova explosion are solved simultaneously. Improved systematics of nuclear parameters are used, and the energy release due to ..beta..-decays as well as the energy loss due to neutrinos is taken into account. It is shown that the observed solar-system abundance curve can be reproduced fairly well by assuming only one supernova event on a time-scale of the order of 1 s. However there are still some discrepancies which may be explained by uncertainties in the nuclear data used.

  7. The origin of the hot metal-poor gas in NGC 1291 - Testing the hypothesis of gas dynamics as the cause of the gas heating

    NARCIS (Netherlands)

    Perez, [No Value; Freeman, K

    In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the

  8. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    International Nuclear Information System (INIS)

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-01-01

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process

  9. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    International Nuclear Information System (INIS)

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-01-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  10. Preparation of the pur uranium-metal; La preparation de l'uranium-metal pur

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B; Vertes, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [French] Description detaillee des procedes chimiques mis en jeu pour preparer a l'Usine du Bouchet du Commissariat a l'Energie Atomique (Seine-et-Oise) l'uranium metal pur a partir soit de minerais relativement riches, soit de concentres provenant de traitement physique ou chimique de minerais pauvres. Le traitement nitrique des minerais aboutit a la production d'uranate de soude impur. Ce dernier est a son tour dissous dans l'acide nitrique et le nitrate d'uranyle est extrait par du tributyl-phosphate dilue par un solvant inerte. Le nitrate d'uranyle pur reextrait est transforme successivement en peroxyde d'uranium, en oxyde orange puis en oxyde brun qui est transforme en fluorure par l'acide fluorhydrique anhydre. Le fluorure uraneux est reduit en metal par le calcium pur avec un rendement superieur a 99 %. (auteurs)

  11. Flood rich periods, flood poor periods and the need to look beyond instrumental records

    Science.gov (United States)

    Lane, S. N.

    2009-04-01

    For many, the later 20th Century and early 21st Century has become synonymous with a growing experience of flood risk. Scientists, politicians and the media have ascribed this to changing climate and there are good hypothetical reasons for human-induced climate change to be impacting upon the magnitude and frequency of extreme weather events. In this paper, I will interrogate this claim more carefully, using the UK's instrumental records of river flow, most of which begin after 1960, but a smaller number of which extend back into the 19th Century. Those records that extent back to the 19th Century suggest that major flood events tend to cluster into periods that are relatively flood rich and relatively flood poor, most notably in larger drainage basins: i.e. there is a clear scale issue. The timing (inset, duration, termination) of these periods varies systematically by region although there is a marked flood poor period for much of the UK during the late 1960s, 1970s and 1980s. It follows that at least some of the current experience of flooding, including why it has taken so many policy-makers and flood victims by surprise, may reflect a transition from a flood poor to a flood rich period, exacerbated by possible climate change impacts. These results point to the need to rethink how we think through what drives flood risk. First, it points to the need to look at some of the fundamental oscillations in core atmospheric drivers, such as the North Atlantic Multidecadal Oscillation, in explaining what drives flood risk. Consideration of precipitation, as opposed to river flow, is more advanced in this respect, and those of us working in rivers need to engage much more thoughtfully with atmospheric scientists. Second, it points to the severe inadequacies in using records of only a few decades duration. Even where these are pooled across adjacent sub-catchments, there is likely to be a severe bias in the estimation of flood return periods when we look at instrumental

  12. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.; Tafelmeyer, M.; Szeifert, T.; Babusiaux, C.

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of

  13. Change blindness and visual memory: visual representations get rich and act poor.

    Science.gov (United States)

    Varakin, D Alexander; Levin, Daniel T

    2006-02-01

    Change blindness is often taken as evidence that visual representations are impoverished, while successful recognition of specific objects is taken as evidence that they are richly detailed. In the current experiments, participants performed cover tasks that required each object in a display to be attended. Change detection trials were unexpectedly introduced and surprise recognition tests were given for nonchanging displays. For both change detection and recognition, participants had to distinguish objects from the same basic-level category, making it likely that specific visual information had to be used for successful performance. Although recognition was above chance, incidental change detection usually remained at floor. These results help reconcile demonstrations of poor change detection with demonstrations of good memory because they suggest that the capability to store visual information in memory is not reflected by the visual system's tendency to utilize these representations for purposes of detecting unexpected changes.

  14. THE MOST METAL-POOR DAMPED Lyα SYSTEMS: AN INSIGHT INTO DWARF GALAXIES AT HIGH-REDSHIFT

    International Nuclear Information System (INIS)

    Cooke, Ryan J.; Pettini, Max; Jorgenson, Regina A.

    2015-01-01

    In this paper we analyze the kinematics, chemistry, and physical properties of a sample of the most metal-poor damped Lyα systems (DLAs), to uncover their links to modern-day galaxies. We present evidence that the DLA population as a whole exhibits a ''knee'' in the relative abundances of the α-capture and Fe-peak elements when the metallicity is [Fe/H] ≅ –2.0, assuming that Zn traces the buildup of Fe-peak elements. In this respect, the chemical evolution of DLAs is clearly different from that experienced by Milky Way halo stars, but resembles that of dwarf spheroidal galaxies in the Local Group. We also find a close correspondence between the kinematics of Local Group dwarf galaxies and of high-redshift metal-poor DLAs, which further strengthens this connection. On the basis of such similarities, we propose that the most metal-poor DLAs provide us with a unique opportunity to directly study the dwarf galaxy population more than ten billion years in the past, at a time when many dwarf galaxies were forming the bulk of their stars. To this end, we have measured some of the key physical properties of the DLA gas, including their neutral gas mass, size, kinetic temperature, density, and turbulence. We find that metal-poor DLAs contain a warm neutral medium with T gas ≅ 9600 K predominantly held up by thermal pressure. Furthermore, all of the DLAs in our sample exhibit a subsonic turbulent Mach number, implying that the gas distribution is largely smooth. These results are among the first empirical descriptions of the environments where the first few generations of stars may have formed in the universe

  15. Conservation and Biodiversity of Rich Fens

    DEFF Research Database (Denmark)

    Andersen, Dagmar Kappel

    2014-01-01

    Rich fen is a habitat type dependent on a constant supply of nutrient poor, calcium rich groundwater. A high, stable groundwater table, relatively high pH combined with nutrient poor conditions support a special and very species rich vegetation including many rare and threatened plant species. In...

  16. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  17. The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star

    Science.gov (United States)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2017-12-01

    The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. SPITZER OBSERVATIONS OF GJ 3470 b: A VERY LOW-DENSITY NEPTUNE-SIZE PLANET ORBITING A METAL-RICH M DWARF

    International Nuclear Information System (INIS)

    Demory, Brice-Olivier; Seager, Sara; Torres, Guillermo; Neves, Vasco; Santos, Nuno; Rogers, Leslie; Gillon, Michaël; Horch, Elliott; Sullivan, Peter; Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Udry, Stephane; Smalley, Barry

    2013-01-01

    We present Spitzer/IRAC 4.5 μm transit photometry of GJ 3470 b, a Neptune-size planet orbiting an M1.5 dwarf star with a 3.3 day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M * = 0.539 +0.047 -0.043 M sun and a radius of R * = 0.568 +0.037 -0.031 R sun . We determine the host star of GJ 3470 b to be metal-rich, with a metallicity of [Fe/H] = +0.20 ± 0.10 and an effective temperature of T eff = 3600 ± 100 K. The revised stellar parameters yield a planetary radius R p = 4.83 -0.21 +0.22 R ⊕ that is 13% larger than the value previously reported in the literature. We find a planetary mass M p = 13.9 +1.5 -1.4 M ⊕ that translates to a very low planetary density, ρ p = 0.72 +0.13 -0.12 g cm –3 , which is 33% smaller than the original value. With a mean density half of that of GJ 436 b, GJ 3470 b is an example of a very low-density low-mass planet, similar to Kepler-11 d, Kepler-11 e, and Kepler-18 c, but orbiting a much brighter nearby star that is more conducive to follow-up studies.

  19. THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z {approx}< 1

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, N.; Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Tumlinson, J.; Thom, C.; Fox, A. J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Prochaska, J. X.; Werk, J. K. [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); O' Meara, J. M. [Department of Physics, Saint Michael' s College, Vermont, One Winooski Park, Colchester, VT 05439 (United States); Ribaudo, J. [Department of Physics, Utica College, 1600 Burrstone Road, Utica, New York 13502 (United States)

    2013-06-20

    We assess the metal content of the cool ({approx}10{sup 4} K) circumgalactic medium (CGM) about galaxies at z {approx}< 1 using an H I-selected sample of 28 Lyman limit systems (LLS; defined here as absorbers with 16.2 {approx}< log N{sub H{sub I}} {approx}< 18.5) observed in absorption against background QSOs by the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The N{sub H{sub I}} selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N{sub H{sub I}} in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H] {approx_equal} -1.6 and -0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z {approx}< 1 galaxies.

  20. Utilization of protein-rich residues in biotechnological processes.

    Science.gov (United States)

    Pleissner, Daniel; Venus, Joachim

    2016-03-01

    A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.

  1. Searching for dust around hyper metal poor stars

    International Nuclear Information System (INIS)

    Venn, Kim A.; Divell, Mike; Starkenburg, Else; Puzia, Thomas H.; Côté, Stephanie; Lambert, David L.

    2014-01-01

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <–5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T ≤ 290 K), or debris disks with inner radii ≤1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  2. Searching for dust around hyper metal poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Venn, Kim A.; Divell, Mike; Starkenburg, Else [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 7820436 Macul, Santiago (Chile); Côté, Stephanie [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Lambert, David L., E-mail: kvenn@uvic.ca [McDonald Observatory and the Department of Astronomy, University of Texas at Austin, RLM 15.308, Austin, TX 78712 (United States)

    2014-08-20

    We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <–5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T ≤ 290 K), or debris disks with inner radii ≤1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.

  3. Intratendon Delivery of Leukocyte-Poor Platelet-Rich Plasma Improves Healing Compared With Leukocyte-Rich Platelet-Rich Plasma in a Rabbit Achilles Tendinopathy Model.

    Science.gov (United States)

    Yan, Ruijian; Gu, Yanjia; Ran, Jisheng; Hu, Yejun; Zheng, Zefeng; Zeng, Mengfeng; Heng, Boon Chin; Chen, Xiao; Yin, Zi; Chen, Weishan; Shen, Weiliang; Ouyang, Hongwei

    2017-07-01

    Chronic tendinopathy is a commonly occurring clinical problem that affects both athletes and inactive middle-aged patients. Although some studies have shown that different platelet-rich plasma (PRP) preparations could exert various therapeutic effects in vitro, the role of leukocytes in PRP has not yet been defined under tendinopathy conditions in vivo. This study compared the effects of the intratendon delivery of leukocyte-poor PRP (Lp-PRP) versus leukocyte-rich PRP (Lr-PRP) in a rabbit chronic tendinopathy model in vivo. Controlled laboratory study. Four weeks after a local injection of collagenase in the Achilles tendon, the following treatments were randomly administered on the lesions: injections of (1) 200 μL of Lp-PRP (n = 8), (2) 200 μL of Lr-PRP (n = 8), or (3) 200 μL of saline (n = 8). Healing outcomes were assessed at 4 weeks after therapy with magnetic resonance imaging (MRI), cytokine quantification, real-time polymerase chain reaction analysis of gene expression, histology, and transmission electron microscopy (TEM). MRI revealed that the Lr-PRP and saline groups displayed higher signal intensities compared with the Lp-PRP group with T2 mapping. Histologically, the Lp-PRP group displayed significantly better general scores compared with the Lr-PRP ( P = .001) and saline ( P tendon healing and is a preferable option for the clinical treatment of tendinopathy. PRP is widely used in the clinical management of chronic tendinopathy. However, the clinical results are ambiguous. It is imperative to understand the influence of leukocytes on PRP-mediated tissue healing in vivo, which could facilitate the better clinical management of chronic tendinopathy. Further studies are needed to translate our findings to the clinical setting.

  4. Primordial Black Holes and r-Process Nucleosynthesis.

    Science.gov (United States)

    Fuller, George M; Kusenko, Alexander; Takhistov, Volodymyr

    2017-08-11

    We show that some or all of the inventory of r-process nucleosynthesis can be produced in interactions of primordial black holes (PBHs) with neutron stars (NSs) if PBHs with masses 10^{-14}  M_{⊙}rich material. This ejection process and the accompanying decompression and decay of nuclear matter can produce electromagnetic transients, such as a kilonova-type afterglow and fast radio bursts. These transients are not accompanied by significant gravitational radiation or neutrinos, allowing such events to be differentiated from compact object mergers occurring within the distance sensitivity limits of gravitational-wave observatories. The PBH-NS destruction scenario is consistent with pulsar and NS statistics, the dark-matter content, and spatial distributions in the Galaxy and ultrafaint dwarfs, as well as with the r-process content and evolution histories in these sites. Ejected matter is heated by beta decay, which leads to emission of positrons in an amount consistent with the observed 511-keV line from the Galactic center.

  5. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments.

    Science.gov (United States)

    Simpson, Stuart L; Batley, Graeme E

    2003-02-01

    Metal partitioning is altered when suboxic estuarine sediments containing Fe(II)-rich pore waters are disturbed during collection, preparation, and toxicity testing. Experiments with model Fe(II)-rich pore waters demonstrated the rates at which adsorptive losses of Cd, Cu, Ni, Mn, Pb, and Zn occur upon exposure to air. Experiments with Zn-contaminated estuarine sediments demonstrated large and often unpredictable changes to metal partitioning during sediment storage, removal of organisms, and homogenization before testing. Small modifications to conditions, such as aeration of overlying waters, caused large changes to the metal partitioning. Disturbances caused by sediment collection required many weeks for reestablishment of equilibrium. Bioturbation by benthic organisms led to oxidation of pore-water Fe(II) and lower Zn fluxes because of the formation of Fe hydroxide precipitates that adsorb pore-water Zn. For five weeks after the addition of organisms to sediments, Zn fluxes increased slowly as the organisms established themselves in the sediments, indicating that the establishment of equilibrium was not rapid. The results are discussed in terms of the dynamic nature of suboxic, Fe(II)-rich estuarine sediments, how organisms perturb their environment, and the importance of understanding chemistry in toxicity testing with whole sediments or pore water. Recommendations are provided for the handling of sediments for toxicity testing.

  6. Space-weathering processes and products on volatile-rich asteroids

    Science.gov (United States)

    Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.

    2014-07-01

    Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or

  7. Resolving Gas-Phase Metallicity In Galaxies

    Science.gov (United States)

    Carton, David

    2017-06-01

    with sizes approximately equal to the half width at half maximum of the point-spread function. However, we also find that the presence of star forming clumps can significantly complicate the interpretation of metallicity gradients in moderately resolved high-redshift galaxies. Therefore we emphasize that care should be taken when comparing nearby well-resolved observations to high-redshift observations of partially resolved galaxies. Chapter 4 We present gas-phase metallicity gradients for 94 star-forming galaxies between (0.08 , i.e. on average we find the centres of these galaxies to be more metal-rich than their outskirts. However, there is significant scatter underlying this and we find that 10% (9) galaxies have significantly positive metallicity gradients, 39% (37) have significantly negative gradients, 28% (26) have gradients consistent with being flat, the remainder 23% (22) are considered to have unreliable gradient estimates. We find a slight trend for a more negative metallicity gradient with both increasing stellar mass and increasing star formation rate (SFR). However, given the potential redshift and size selection effects, we do not consider these trends to be significant. Indeed when we normalize the SFR of our galaxies relative to the main sequence, we do not observe any trend between the metallicity gradient and the normalized SFR. This finding is contrary to other recent studies of galaxies at similar and higher redshifts. We do, however, identify a novel trend between the metallicity gradient of a galaxy and its size. Small galaxies ((r_d 3 kpc) with positive metallicity gradients, and overall there is less scatter in the metallicity gradient amongst the large galaxies. We suggest that these large (well-evolved) galaxies may be analogues of galaxies in the present-day Universe, which also present a common negative metallicity gradient. Chapter 5 The relationship between a galaxy's stellar mass and its gas-phase metallicity results from the complex

  8. The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances

    Science.gov (United States)

    Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.

    2018-03-01

    Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.

  9. Mineral composition and heavy metal contamination of sediments originating from radium rich formation water.

    Science.gov (United States)

    Bzowski, Zbigniew; Michalik, Bogusław

    2015-03-01

    Radium rich formation water is often associated with fossil fuels as crude oil, natural gas and hard coal. As a result of fossil fuels exploitation high amount of such water is released into environment. In spite of the high radium content such waters create a serious radiation risk neither to humans nor biota directly. First and foremost due to very high mineralization they are not drinkable at all. But after discharge chemical and physical conditions are substantially changed and sediments which additionally concentrated radium are arising. Due to features of technological processes such phenomenon is very intensive in underground coal mining where huge volume of such water must be pumped into surface in order to keep underground galleries dry. Slightly different situation occurs in oil rigs, but finally also huge volume of so called process water is pumped into environment. Regardless their origin arising sediments often contain activity concentration of radium isotopes exceeding the clearance levels set for naturally occurring radioactive materials (NORM) (Council Directive, 2013). The analysis of metals and minerals content showed that besides radioactivity such sediments contain high amount of metals geochemically similar to radium as barium, strontium and lead. Correlation analysis proved that main mechanism leading to sediment creation is co-precipitation radium with these metals as a sulfate. The absorption on clay minerals is negligible even when barium is not present in significant quantities. Owing to very low solubility of sulfates radium accumulated in this way should not migrate into environment in the neighborhood of a site where such sediment were deposited. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue; Ge, Qingchun; Liu, Xiangyang; Chung, Neal Tai-Shung

    2014-01-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  11. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  12. Extremely metal-poor stars in classical dwarf spheroidal galaxies : Fornax, Sculptor, and Sextans

    NARCIS (Netherlands)

    Tafelmeyer, M.; Jablonka, P.; Hill, V.; Shetrone, M.; Tolstoy, E.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Starkenburg, E.; Venn, K. A.; Abel, T.; Francois, P.; Kaufer, A.; North, P.; Primas, F.; Szeifert, T.

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to

  13. Extremely metal-poor stars in classical dwarf spheroidal galaxies: Fornax, Sculptor, and Sextans

    NARCIS (Netherlands)

    Tafelmeyer, M.; Jablonka, P.; Hill, V.; Shetrone, M.; Tolstoy, E.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Starkenburg, E.; Venn, K. A.; Abel, T.; Francois, P.; Kaufer, A.; North, P.; Primas, F.; Szeifert, T.

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to

  14. Local richness along gradients in the Siskiyou herb flora: R.H. Whittaker revisited

    Science.gov (United States)

    Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2011-01-01

    In his classic study in the Siskiyou Mountains (Oregon, USA), one of the most botanically rich forested regions in North America, R. H. Whittaker (1960) foreshadowed many modern ideas on the multivariate control of local species richness along environmental gradients related to productivity. Using a structural equation model to analyze his data, which were never previously statistically analyzed, we demonstrate that Whittaker was remarkably accurate in concluding that local herb richness in these late-seral forests is explained to a large extent by three major abiotic gradients (soils, topography, and elevation), and in turn, by the effects of these gradients on tree densities and the numbers of individual herbs. However, while Whittaker also clearly appreciated the significance of large-scale evolutionary and biogeographic influences on community composition, he did not fully articulate the more recent concept that variation in the species richness of local communities could be explained in part by variation in the sizes of regional species pools. Our model of his data is among the first to use estimates of regional species pool size to explain variation in local community richness along productivity-related gradients. We find that regional pool size, combined with a modest number of other interacting abiotic and biotic factors, explains most of the variation in local herb richness in the Siskiyou biodiversity hotspot.

  15. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  16. Fission and r-process nucleosynthesis in neutron star mergers

    International Nuclear Information System (INIS)

    Giuliani, Samuel Andrea

    2018-01-01

    Fission plays a crucial role for the r-process nucleosynthesis in neutron star mergers. Due to the high neutron densities achieved in this astrophysical scenario the sequence of neutron captures and beta decays that constitutes the r process produces superheavy neutron rich nuclei that become unstable against fission. Fission determines thus the heaviest nuclei that can be produced by the r process and the fission yields shape the abundances of lighter nuclei. But despite the key role of fission the sensitivity of the r-process nucleosynthesis to uncertainties in fission predictions has not been explored. Nowadays there are only few set of fission rates suited for r-process calculations and most of them rely on a simplified treatment of the fission process. In this thesis we go beyond these approximations and compute the fission properties of r-process nuclei using the energy density functional approach. Fission is described as a tunneling process where the nucleus ''moves'' in a collective space characterized by coordinates describing the nuclear shape. Thus fission depends on the evolution of the energy with the deformation but also on the inertia due to the motion in the collective space. This is analogous to the quantum mechanical tunneling of a particle inside a potential well. In our study the relevant quantities for the description of the fission process are consistently computed for 3642 nuclei following the Hartree-Fock-Bogolyubov theory with constraining operators. We perform an extensive benchmark against the available experimental data and explore the variations of the fission properties along the superheavy landscape. We find that while collective inertias have a strong impact in the fission probabilities of light nuclei their role becomes less relevant in r -process nuclei. Within the statistical model we compute the neutron induced stellar reaction rates relevant for the r-process nucleosynthesis. These sets of stellar reaction

  17. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  18. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-01-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y e , initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y e ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y e lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y e , but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y e , s, and τ to estimate whether or not the ejecta is lanthanide-rich

  19. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    International Nuclear Information System (INIS)

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio; Urbaneja, Miguel A.; Przybilla, Norbert; Evans, Christopher J.; Pietrzyński, Grzegorz; Gieren, Wolfgang; Carraro, Giovanni

    2014-01-01

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T eff indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  20. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    Energy Technology Data Exchange (ETDEWEB)

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Urbaneja, Miguel A.; Przybilla, Norbert [Institute for Astro and Particle Physics, A-6020 Innsbruck University (Austria); Evans, Christopher J. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh (United Kingdom); Pietrzyński, Grzegorz; Gieren, Wolfgang [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Carraro, Giovanni, E-mail: mwhosek@ifa.hawaii.edu, E-mail: kud@ifa.hawaii.edu, E-mail: bresolin@ifa.hawaii.edu, E-mail: Miguel.Urbaneja-Perez@uibk.ac.at, E-mail: Norbert.Przybilla@uibk.ac.at, E-mail: chris.evans@stfc.ac.uk, E-mail: pietrzyn@astrouw.edu.pl, E-mail: wgieren@astro-udec.cl, E-mail: gcarraro@eso.org [European Southern Observatory, La Silla Paranal Observatory (Chile)

    2014-04-20

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T {sub eff} indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  1. SPITZER OBSERVATIONS OF GJ 3470 b: A VERY LOW-DENSITY NEPTUNE-SIZE PLANET ORBITING A METAL-RICH M DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Demory, Brice-Olivier; Seager, Sara [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Neves, Vasco; Santos, Nuno [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Rogers, Leslie [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Gillon, Michaeel [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout, 17, Bat. B5C, Liege 1 (Belgium); Horch, Elliott [Department of Physics, 501 Crescent Street, Southern Connecticut State University, New Haven, CT 06515 (United States); Sullivan, Peter [Department of Physics and Kavli Institute for Astrophysics and Space Research, MIT, 77 Massachusetts Avenue, Cambridge, MA 02138 (United States); Bonfils, Xavier; Delfosse, Xavier; Forveille, Thierry [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Lovis, Christophe; Mayor, Michel; Udry, Stephane [Observatoire de Geneve, Universite de Geneve, 51 ch. des Maillettes, CH-1290 Versoix (Switzerland); Smalley, Barry, E-mail: demory@mit.edu [Astrophysics Group, Keele University, Staffordshire, ST55BG (United Kingdom)

    2013-05-10

    We present Spitzer/IRAC 4.5 {mu}m transit photometry of GJ 3470 b, a Neptune-size planet orbiting an M1.5 dwarf star with a 3.3 day period recently discovered in the course of the HARPS M-dwarf survey. We refine the stellar parameters by employing purely empirical mass-luminosity and surface brightness relations constrained by our updated value for the mean stellar density, and additional information from new near-infrared spectroscopic observations. We derive a stellar mass of M{sub *}= 0.539{sup +0.047}{sub -0.043} M{sub sun} and a radius of R{sub *}= 0.568{sup +0.037}{sub -0.031} R{sub sun}. We determine the host star of GJ 3470 b to be metal-rich, with a metallicity of [Fe/H] = +0.20 {+-} 0.10 and an effective temperature of T{sub eff} = 3600 {+-} 100 K. The revised stellar parameters yield a planetary radius R{sub p}= 4.83{sub -0.21}{sup +0.22} R{sub Circled-Plus} that is 13% larger than the value previously reported in the literature. We find a planetary mass M{sub p}= 13.9{sup +1.5}{sub -1.4} M{sub Circled-Plus} that translates to a very low planetary density, {rho}{sub p}= 0.72{sup +0.13}{sub -0.12} g cm{sup -3}, which is 33% smaller than the original value. With a mean density half of that of GJ 436 b, GJ 3470 b is an example of a very low-density low-mass planet, similar to Kepler-11 d, Kepler-11 e, and Kepler-18 c, but orbiting a much brighter nearby star that is more conducive to follow-up studies.

  2. Impact of Lyman alpha pressure on metal-poor dwarf galaxies

    Science.gov (United States)

    Kimm, Taysun; Haehnelt, Martin; Blaizot, Jérémy; Katz, Harley; Michel-Dansac, Léo; Garel, Thibault; Rosdahl, Joakim; Teyssier, Romain

    2018-04-01

    Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy embedded in a 1010 M⊙ halo, we show that the momentum transferred from resonantly scattered Lyman-α (Lyα) photons is an important source of stellar feedback which can shape the evolution of galaxies. We find that Lyα feedback suppresses star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each Lyα photon resonantly scatters and imparts ˜10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ˜5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong Lyα radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ˜5-10 near the mid-plane, while it is reduced to ˜1 at larger radii. Finally, we find that the escape of ionizing radiation and hence the reionization history of the Universe is unlikely to be strongly affected by Lyα feedback.

  3. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    International Nuclear Information System (INIS)

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-01-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M sun , [Fe/H]∼ sun . This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  4. A poor country clothing the rich countries: case of garment trade in Bangladesh

    OpenAIRE

    ALI MUHAMMAD MAHBOOB; MEDHEKAR ANITA

    2016-01-01

    The ready-made garment industry of Bangladesh is one of the largest formal manufacturing sectors. It has played a key role in the country’s process of industrialisation, empowerment of women, export oriented development and growth. Workers from poor socio-economic backgrounds are working in the garment industry. Their health, safety and working conditions are very poor and not protected. There is a lack of regular inspection and compliance with local law in buildings and factories. This led t...

  5. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  6. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Tolker-Nielsen, Tim; Holmstrøm, Kim

    1999-01-01

    . We have applied fluorescence in situ hybridization of pre-16S rRNA to Escherichia coli cells growing in vitro in extracts from two different compartments of the mouse intestine: the caecal mucus layer, where E. coli grew rapidly, and the contents of the caecum, which supported much slower bacterial...... content of pre-16S rRNA than cultures of the same strain growing rapidly in rich media. We present results suggesting that the mouse intestinal contents contain an agent that inhibits the growth of E. coli by disturbing its ability to process pre-16S rRNA....

  7. Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong

    2018-03-01

    Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I 2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.; Kelson, Daniel D.; Sneden, Christopher

    2014-01-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

  9. THE METALLICITIES OF LOW STELLAR MASS GALAXIES AND THE SCATTER IN THE MASS-METALLICITY RELATION

    International Nuclear Information System (INIS)

    Zahid, H. J.; Bresolin, F.; Kewley, L. J.; Coil, A. L.; Davé, R.

    2012-01-01

    In this investigation, we quantify the metallicities of low-mass galaxies by constructing the most comprehensive census to date. We use galaxies from the Sloan Digital Sky Survey (SDSS) and DEEP2 survey and estimate metallicities from their optical emission lines. We also use two smaller samples from the literature that have metallicities determined by the direct method using the temperature sensitive [O III]λ4363 line. We examine the scatter in the local mass-metallicity (MZ) relation determined from ∼20,000 star-forming galaxies in the SDSS and show that it is larger at lower stellar masses, consistent with the theoretical scatter in the MZ relation determined from hydrodynamical simulations. We determine a lower limit for the scatter in metallicities of galaxies down to stellar masses of ∼10 7 M ☉ which is only slightly smaller than the expected scatter inferred from the SDSS MZ relation and significantly larger than what has been previously established in the literature. The average metallicity of star-forming galaxies increases with stellar mass. By examining the scatter in the SDSS MZ relation, we show that this is mostly due to the lowest metallicity galaxies. The population of low-mass, metal-rich galaxies have properties that are consistent with previously identified galaxies that may be transitional objects between gas-rich dwarf irregulars and gas-poor dwarf spheroidals and ellipticals.

  10. THE FOSSIL RECORD OF TWO-PHASE GALAXY ASSEMBLY: KINEMATICS AND METALLICITIES IN THE NEAREST S0 GALAXY

    International Nuclear Information System (INIS)

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Chomiuk, Laura; Strader, Jay; Spitler, Lee R.; Forbes, Duncan A.; Benson, Andrew J.

    2011-01-01

    We present a global analysis of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging from Suprime-Cam on the Subaru telescope, and multi-slit spectra of the field stars and globular clusters (GCs) obtained using Keck-DEIMOS/LRIS and Magellan-IMACS. Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly (v/σ ∼> 1.5). At larger radii, the rotation declines dramatically to v/σ ∼ 0.7, but remains well aligned with the inner regions. The radial decrease in characteristic metallicity of both the metal-rich and metal-poor GC subpopulations produces strong gradients with power-law slopes of -0.17 ± 0.04 and -0.38 ± 0.06 dex dex -1 , respectively. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers with typical mass ratios of ∼15-20:1.

  11. DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT

    International Nuclear Information System (INIS)

    Fleming, Scott W.; Ge Jian; Mahadevan, Suvrath; Lee, Brian; Cuong Nguyen, Duy; Morehead, Robert C.; Wan Xiaoke; Zhao Bo; Liu Jian; Guo Pengcheng; Kane, Stephen R.; Eastman, Jason D.; Siverd, Robert J.; Scott Gaudi, B.; Niedzielski, Andrzej; Sivarani, Thirupathi; Stassun, Keivan G.; Gary, Bruce; Wolszczan, Alex; Barnes, Rory

    2010-01-01

    We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) pilot project. The host star has an effective temperature T eff = 6135 ± 40 K, logg = 4.4 ± 0.1, and [Fe/H] = 0.32 ± 0.01, indicating a mass of M = 1.25 ± 0.09 M sun and R = 1.15 ± 0.15 R sun . The companion has an orbital period of 5.69449 ± 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 M J , and thus may be an example of the rare class of brown dwarfs orbiting at distances comparable to those of 'Hot Jupiters'. We present relative photometry that demonstrates that the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius ∼>0.8 R J at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state where both rotational and orbital synchronization have been achieved. This is the first low-mass companion detected with a multi-object, dispersed, fixed-delay interferometer.

  12. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  13. Nuclear Power Plant Steam Pipes repairing with Tirant 3R Robot System

    International Nuclear Information System (INIS)

    Ruiz-Martinez, Jose-Tomas; Soto-Tomas, Marcelo; Curiel-Nieva, Marceliano; Monzo-Blasco, Enrique; Pineda-Rodriguez, Salvador; Vaquer-Perez, Juan-Ignacio

    2012-09-01

    The metallization arc spray process is based on the projection of molten metal, supplied by means of different stainless alloys wire, over a surface of carbon steel usually, with the object of serving as protection against flow assisted corrosion (FAC), increasing resistance to abrasion and deteriorations. A typical application functions covering the steam pipes inner surface in Coal-fired power station and Nuclear Power Plants. The results of this process are spectacular in terms of protection against flow assisted corrosion and abrasion, but its application has conditioning factors, such as: Severe application conditions for workers. Due to the worker's postural position (usually kneeling) in 32' diameter pipes and working with fireproof clothing and masks with outdoor air supplying, due to fumes, sparks and molten metal particles, radiological contamination, confined space, poor lighting... Coating uniformity. As metallization is a manual process, the carried out measurements show small variations in the thickness of the coating, always within the tolerance limits established by the applicable regulations and Quality Assurance. An increase in the uniformity of the projected coating, increase the resistance and give a better surface protection. For all these reasons, Lainsa has developed the TIRANT 3 R system, a worldwide innovative system, for metallization of steam pipes inner surface. TIRANT 3 R system is tele-operated from outside of the pipe, so that human intervention is reduced to the operations of robot positioning and change of metallization wire. As it is an independent system of the human factor, metallization process performance is significantly increased by reducing rest periods due only to the robot maintenance. Likewise, TIRANT 3 R system permits to increase resulting coating uniformity and thus its resistance, keeping selected parameters constant (forward speed, rotation speed and inner surface distance) depending on required type and

  14. Preparation of the pur uranium-metal; La preparation de l'uranium-metal pur

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.; Vertes, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [French] Description detaillee des procedes chimiques mis en jeu pour preparer a l'Usine du Bouchet du Commissariat a l'Energie Atomique (Seine-et-Oise) l'uranium metal pur a partir soit de minerais relativement riches, soit de concentres provenant de traitement physique ou chimique de minerais pauvres. Le traitement nitrique des minerais aboutit a la production d'uranate de soude impur. Ce dernier est a son tour dissous dans l'acide nitrique et le nitrate d'uranyle est extrait par du tributyl-phosphate dilue par un solvant inerte. Le nitrate d'uranyle pur reextrait est transforme successivement en peroxyde d'uranium, en oxyde orange puis en oxyde brun qui est transforme en fluorure par l'acide fluorhydrique anhydre. Le fluorure uraneux est reduit en metal par le calcium pur avec un rendement superieur a 99 %. (auteurs)

  15. Mobilizing science and technology to address the problems of the world's poor

    International Nuclear Information System (INIS)

    Sachs, J.

    2001-01-01

    removed or mitigated, yet most R and D is conducted by rich countries and focused on rich-country problems, not on tropical agriculture and medicine. 'If it were true that the poor were just like the rich but with less money, the global situation would be vastly easier than it is. As it happens, the poor live in different ecological zones, face different health conditions and must overcome agronomic limitations that are very different from those of rich countries. Those differences, indeed, are often a fundamental cause of persisting poverty....(For example)...populations are burdened by diseases such as malaria, hookworm, sleeping sickness and schistosomiasis, whose transmission generally depends on a warm climate....' '...poor food productivity in the tropics is not merely a problem of poor social organization....Using current technologies and seed types, the tropics are inherently less productive in annual food crops. Most agriculture in the equatorial tropics is of very low productivity....Scientific advances again offer great hope. Biotechnology could mobilise genetic engineering to breed hardier plants that are more resistant to drought and less sensitive to pests....(and) there are dozens, or perhaps hundreds, of underused foodstuffs that are well adapted to the tropics and could be improved through directed biotechnology research. Such R and D is now all but lacking in the poorest countries.' In tackling all these problems, Prof. Sachs remains very sanguine both about the ability of science and technology to solve them, as well as about the role that the UN agencies can play in implementing those solutions. '...rich and poor countries should direct their urgent attention to the mobilisation of science and technology for poor-country problems. The rich countries should understand that the IMF and World Bank are by themselves not equipped for that challenge. The specialised UN agencies have a great role to play, especially of they act as a bridge between the

  16. Gas discharge processes in the standard and metal channel PMTs

    International Nuclear Information System (INIS)

    Morozov, V.A.; Morozova, N.V.

    2015-01-01

    The effect of the potential difference at the focusing chamber electrodes of the XP2020, FEU-85, FEU-87, and FEU-93 photomultipliers on the intensity of afterpulses resulting from gas discharge processes is investigated. The time distribution of the afterpulses in the metal channel PMTs - H6780 and R7600U-200 - is studied as well

  17. VizieR Online Data Catalog: Carbon-enhanced metal-poor stars sample (Caffau+, 2018)

    Science.gov (United States)

    Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.

    2018-06-01

    We selected a sample of turn-off stars from the Sloan Digital Sky Survey (SDSS York et al. 2000AJ....120.1579Y; Yanny et al. 2009, Cat. J/AJ/137/4377) that were bright enough (gGMOS spectra were acquired in service mode on the nights of 21/07/2017 and 25/07/2017. Table 1 lists the stars we examined here, along with their coordinates, g-mag, and metallicities derived from Fe abundances computed using SDSS and FORS/GMOS spectra. (2 data files).

  18. Large-scale calculations of the beta-decay rates and r-process nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Borzov, I N; Goriely, S [Inst. d` Astronomie et d` Astrophysique, Univ. Libre de Bruxelles, Campus Plaine, Bruxelles (Belgium); Pearson, J M [Inst. d` Astronomie et d` Astrophysique, Univ. Libre de Bruxelles, Campus Plaine, Bruxelles (Belgium); [Lab. de Physique Nucleaire, Univ. de Montreal, Montreal (Canada)

    1998-06-01

    An approximation to a self-consistent model of the ground state and {beta}-decay properties of neutron-rich nuclei is outlined. The structure of the {beta}-strength functions in stable and short-lived nuclei is discussed. The results of large-scale calculations of the {beta}-decay rates for spherical and slightly deformed nuclides of relevance to the r-process are analysed and compared with the results of existing global calculations and recent experimental data. (orig.)

  19. Characterization of the Hamamatsu R11265-103-M64 multi-anode photomultiplier tube for the LHCb RICH Upgrade

    CERN Document Server

    Matteuzzi, C; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Khanji, B; Maino, M; Pessina, G

    2014-01-01

    The Hamamatsu R11265-103-M64 MaPMT is the baseline photon sensor to be used for the LHCb RICH Upgrade detector. This choice has been supported by a large number of tests of this device. This note summarizes the measurements performed by the INFN Milano Bicocca group to characterize the photon detector. A description is provided of the unpublished outcomes and particularly of the more recent developments about the aging of the R11265-103-M64 MaPMT and the test of a whole photon detector RICH Elementary Cell.

  20. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  1. Neutrino-induced neutral-current reaction cross sections for r-process nuclei

    CERN Document Server

    Langanke, K

    2002-01-01

    Neutrino-induced reactions play an important role during and after the r-process, if the latter occurs in an environment with extreme neutrino fluxes such as the neutrino-driven wind model or neutron star mergers. Recently we have evaluated the charged-current neutrino-nucleus cross sections relevant for r-process simulations. We extend our approach here to the neutral-current cross sections. Our tabulation considers neutron-rich nuclei with neutron numbers N=41-135 and charge numbers Z=21-82 and lists total as well as partial neutron spallation cross sections. The calculations have been performed within the random phase approximation considering multipole transitions with J<=3 and both parities. The supernova neutrino spectrum is described by a Fermi-Dirac distribution with various temperature parameters between T=2.8 MeV and T=10 MeV and with the degeneracy parameters alpha=0 and alpha=3.

  2. The effect of metal-rich growth conditions on the microstructure of Sc{sub x}Ga{sub 1-x}N films grown using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.C.L.; Moram, M.A. [Department of Materials, Imperial College London (United Kingdom); Goff, L.E. [Department of Materials, Imperial College London (United Kingdom); Department of Physics, University of Cambridge (United Kingdom); Barradas, N.P. [CTN - Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Alves, E. [IPFN - Instituto de Plasmas e Fusao Nuclear, Lisboa (Portugal); Laboratorio de Aceleradores e Tecnologias de Radiacao, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Pereira, S. [CICECO and Department of Physics, Universidade de Aveiro (Portugal); Beere, H.E.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A. [Department of Physics, University of Cambridge (United Kingdom)

    2015-12-15

    Epitaxial Sc{sub x}Ga{sub 1-x}N films with 0 ≤ x ≤ 0.50 were grown using molecular beam epitaxy under metal-rich conditions. The Sc{sub x}Ga{sub 1-x}N growth rate increased with increasing Sc flux despite the use of metal-rich growth conditions, which is attributed to the catalytic decomposition of N{sub 2} induced by the presence of Sc. Microstructural analysis showed that phase-pure wurtzite Sc{sub x}Ga{sub 1-x}N was achieved up to x = 0.26, which is significantly higher than that previously reported for nitrogen-rich conditions, indicating that the use of metal-rich conditions can help to stabilise wurtzite phase Sc{sub x}Ga{sub 1-x}N. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Hydrogen production by catalytic processing of renewable methane-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)

    2008-04-15

    Biomass-derived methane-rich gases such as landfill gas (LFG), biogas and digester gas are promising renewable resources for near-future production of hydrogen. The technical and economical feasibility of hydrogen production via catalytic reforming of LFG and other methane-rich gases is evaluated in this paper. The thermodynamic equilibrium calculations and experimental measurements of reformation of methane-rich CH{sub 4}-CO{sub 2} mixtures over Ni-based catalyst were conducted. The problems associated with the catalyst deactivation due to carbon lay down and effects of steam and oxygen on the process sustainability were explored. Two technological approaches distinguished by the mode of heat input to the endothermic process (i.e., external vs autothermal) were modeled using AspenPlus trademark chemical process simulator and validated experimentally. A 5 kW{sub th} pilot unit for hydrogen production from LFG-mimicking CH{sub 4}-CO{sub 2} mixture was fabricated and operated. A preliminary techno-economic assessment indicates that the liquid hydrogen production costs are in the range of 3.00-7.00 per kilogram depending upon the plant capacity, the process heat input option and whether or not carbon sequestration is included in the process. (author)

  4. Evidences of extragalactic origin and planet engulfment in the metal-poor twin pair HD 134439/HD 134440

    Science.gov (United States)

    Reggiani, Henrique; Meléndez, Jorge

    2018-04-01

    Recent studies of chemical abundances in metal-poor halo stars show the existence of different populations, which is important for studies of Galaxy formation and evolution. Here, we revisit the twin pair of chemically anomalous stars HD 134439 and HD 134440, using high resolution (R ˜ 72 000) and high S/N ratio (S/N ˜ 250) HDS/Subaru spectra. We compare them to the well-studied halo star HD 103095, using the line-by-line differential technique to estimate precise stellar parameters and LTE chemical abundances. We present the abundances of C, O, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Ba, La, Ce, Nd, and Sm. We compare our results to the precise abundance patterns of Nissen & Schuster (2010) and data from dwarf Spheroidal galaxies (dSphs). We show that the abundance pattern of these stars appears to be closely linked to that of dSphs with [α/Fe] knee below [Fe/H] < -1.5. We also find a systematic difference of 0.06 ± 0.01 dex between the abundances of these twin binary stars, which could be explained by the engulfment of a planet, thus suggesting that planet formation is possible at low metallicities ([Fe/H] = -1.4).

  5. Rare earth metals-primary resources and prospects of processing secondary resources in India

    International Nuclear Information System (INIS)

    Pandey, B.D.

    2015-01-01

    The importance of Rare earth metals (REMs) in modern technological applications is associated with their spectroscopic and magnetic properties. The occurrence of rare earths in mixed form is commonly reported and their separation to the individual metal is a challenging task because of the similar chemical properties. The economical processing of the primary ores of rare earths is limited to a few countries and their supply at the international level is currently dominated by China. Hence assessing the present scenario of the primary resources of rare earths vis-à-vis their applications and demand is crucial at this stage, besides looking at the alternate resources to ensure availability of REMs; such aspects are covered in the manuscript. In view of the environmental concerns in the processing of ores such as monazite, xenotime, bastnasite, etc, and increasing demand of REMs, corresponding increase in demand of the raw materials has been recorded. It is therefore, necessary to utilize the end-of the-life rare earth containing materials as a rich resource by developing an appropriate recycling technology, which is emerging as a high priority area. To recover the REMs, major secondary resources such as electronic wastes, industrial wastes, spent catalysts and magnets, and phosphors powder, etc, have been considered for now. This will not only open the prospects of utilizing the wastes containing REMs, but will also limit the imports while lowering the production cost and decreasing the load on the primary reserves. The paper also examines the efficient recycling methods to recover a fairly good amount of rare earths which are relevant to India in view of the limited exploitation of the ores. Recovery of REMs from secondary resources using mechanical treatment followed by hydrometallurgical methods is prevalent and the same is reviewed in some detail. The recent R and D work pursued at CSIR-NML to extract (leaching and metal separation using some phosphatic reagents

  6. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1980-01-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (Δm=3/sup m/.60), the CTIO 4-m telescope (Δm=6/sup m/.83), and the ESO 3.6-m telescope (Δm=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V) 0 =0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood [Astrophys. J. 159, 605 (1970)] and the isochrones of Demarque and McClure [(1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199], we deduce the cluster's age to be 14.5( +- 4.0) x 10 9 yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution

  7. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA.

    Science.gov (United States)

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-02-02

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.

  8. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Labs., Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  9. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    Science.gov (United States)

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Metallic elements occurrences within metallic fragments in the municipal waste incineration bottom ash

    Science.gov (United States)

    Kowalski, Piotr; Kasina, Monika; Michalik, Marek

    2017-04-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively

  11. A High-precision Trigonometric Parallax to an Ancient Metal-poor Globular Cluster

    Science.gov (United States)

    Brown, T. M.; Casertano, S.; Strader, J.; Riess, A.; VandenBerg, D. A.; Soderblom, D. R.; Kalirai, J.; Salinas, R.

    2018-03-01

    Using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST), we have obtained a direct trigonometric parallax for the nearest metal-poor globular cluster, NGC 6397. Although trigonometric parallaxes have been previously measured for many nearby open clusters, this is the first parallax for an ancient metal-poor population—one that is used as a fundamental template in many stellar population studies. This high-precision measurement was enabled by the HST/WFC3 spatial-scanning mode, providing hundreds of astrometric measurements for dozens of stars in the cluster and also for Galactic field stars along the same sightline. We find a parallax of 0.418 ± 0.013 ± 0.018 mas (statistical, systematic), corresponding to a true distance modulus of 11.89 ± 0.07 ± 0.09 mag (2.39 ± 0.07 ± 0.10 kpc). The V luminosity at the stellar main-sequence turnoff implies an absolute cluster age of 13.4 ± 0.7 ± 1.2 Gyr. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13817, GO-14336, and GO-14773.

  12. The post-depositional accumulation of metal-rich cyanide phases in submerged tailings deposits

    International Nuclear Information System (INIS)

    Jambor, J.L.; Martin, A.J.; Gerits, J.

    2009-01-01

    The characterization and accumulation pathway of metal-rich cyanide phases in mine-contaminated Balmer Lake (Ontario, Canada) were assessed through detailed examination of sediment mineralogy and porewater composition. The near-surface deposits in the lake consist of fine-grained calcareous tailings intermixed with natural organic-rich lake sediments. The tailings contain blue to greenish Fe-dominant cyanide that has formed in situ within the tailings. X-ray diffraction confirmed the presence of a mixed ferri/ferrocyanide [Fe 4 III (Fe II (CN) 6 ) 3 ], commonly referred to as 'Prussian Blue' but it is likely other metal-cyanide complexes are present as evidenced by the distinct colour variations. The cyanide phases occur in up to 1 wt.% as discrete particles and as bedded layers, where the cyanide phases act to cement other siliceous tailings components into a heterogeneous blend. Energy Dispersion X-ray Spectroscopy (EDS) analyses indicate that the authigenic cyanide precipitates contain variable amounts of Ni, Cu and Zn. Quantitatively, the cyanide compounds represent the dominant repository for Cu in Balmer Lake sediments. For Ni and Zn, cyanide associations are secondary in importance to Fe oxyhydroxides. High-resolution porewater profiles and solubility considerations suggest that the formation of the cyanide complexes is a feature of historical (pre-1990) conditions when aqueous cyanide concentrations were higher in the lake.

  13. The post-depositional accumulation of metal-rich cyanide phases in submerged tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jambor, J.L. [Leslie Research and Consulting, 316 Rosehill Wynd, Tsawwassen, BC, V4M 3L9 (Canada); Martin, A.J., E-mail: ajm@lorax.ca [Lorax Environmental Services, 2289 Burrard St., Vancouver, BC, V6J 3H9 (Canada); Gerits, J. [Lorax Environmental Services, 2289 Burrard St., Vancouver, BC, V6J 3H9 (Canada)

    2009-12-15

    The characterization and accumulation pathway of metal-rich cyanide phases in mine-contaminated Balmer Lake (Ontario, Canada) were assessed through detailed examination of sediment mineralogy and porewater composition. The near-surface deposits in the lake consist of fine-grained calcareous tailings intermixed with natural organic-rich lake sediments. The tailings contain blue to greenish Fe-dominant cyanide that has formed in situ within the tailings. X-ray diffraction confirmed the presence of a mixed ferri/ferrocyanide [Fe{sub 4}{sup III}(Fe{sup II}(CN){sub 6}){sub 3}], commonly referred to as 'Prussian Blue' but it is likely other metal-cyanide complexes are present as evidenced by the distinct colour variations. The cyanide phases occur in up to 1 wt.% as discrete particles and as bedded layers, where the cyanide phases act to cement other siliceous tailings components into a heterogeneous blend. Energy Dispersion X-ray Spectroscopy (EDS) analyses indicate that the authigenic cyanide precipitates contain variable amounts of Ni, Cu and Zn. Quantitatively, the cyanide compounds represent the dominant repository for Cu in Balmer Lake sediments. For Ni and Zn, cyanide associations are secondary in importance to Fe oxyhydroxides. High-resolution porewater profiles and solubility considerations suggest that the formation of the cyanide complexes is a feature of historical (pre-1990) conditions when aqueous cyanide concentrations were higher in the lake.

  14. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  15. Ca II triplet spectroscopy of RGB stars in NGC 6822: kinematics and metallicities

    Science.gov (United States)

    Swan, J.; Cole, A. A.; Tolstoy, E.; Irwin, M. J.

    2016-03-01

    We present a detailed analysis of the chemistry and kinematics of red giants in the dwarf irregular galaxy NGC 6822. Spectroscopy at ≈8500 Å was acquired for 72 red giant stars across two fields using FORS2 at the VLT. Line-of-sight extinction was individually estimated for each target star to accommodate the variable reddening across NGC 6822. The mean radial velocity was found to be = -52.8 ± 2.2 km s-1 with dispersion σv = 24.1 km s-1, in agreement with other studies. Ca II triplet equivalent widths were converted into [Fe/H] metallicities using a V magnitude proxy for surface gravity. The average metallicity was = -0.84 ± 0.04 with dispersion σ = 0.31 dex and interquartile range 0.48. Our assignment of individual reddening values makes our analysis more sensitive to spatial variations in metallicity than previous studies. We divide our sample into metal-rich and metal-poor stars; the former were found to cluster towards small radii with the metal-poor stars more evenly distributed across the galaxy. The velocity dispersion of the metal-poor stars was found to be higher than that of the metal-rich stars (σ _{v_MP}=27.4 km s-1; σ _{v_MR}=21.1 km s-1); combined with the age-metallicity relation this indicates that the older populations have either been dynamically heated during their lifetimes or were born in a less disc-like distribution than the younger stars.. The low ratio vrot/σv suggests that within the inner 10 arcmin, NGC 6822's stars are dynamically decoupled from the H I gas, and possibly distributed in a thick disc or spheroid structure.

  16. Oceanographic conditions structure forage fishes into lipid-rich and lipid-poor communities in lower Cook Inlet, Alaska, USA

    Science.gov (United States)

    Abookire, Alisa A.; Piatt, John F.

    2005-01-01

    Forage fishes were sampled with a mid-water trawl in lower Cook Inlet, Alaska, USA, from late July to early August 1996 to 1999. We sampled 3 oceanographically distinct areas of lower Cook Inlet: waters adjacent to Chisik Island, in Kachemak Bay, and near the Barren Islands. In 163 tows using a mid-water trawl, 229 437 fishes with fork length lipid-poor gadids (walleye pollock and Pacific cod), and significantly increased in lipid-rich species such as Pacific sand lance, Pacific herring, and capelin. ?? Inter-Research 2005.

  17. New routes to nitrogen-rich transition metal nitrides: Synthesis of novel polymorphs of Hf3N4

    Science.gov (United States)

    Salamat, Ashkan; Hector, A.; Gray, B.; Kimber, S.; Bouvier, P.; McMillan, P.

    2013-06-01

    One of the most obvious features of transition metal nitride chemistry is that the maximum formal oxidation state of the metal is rarely as high as in the corresponding oxides or fluorides. Much of the interest in the high oxidation phases stems from the desire to identify the next generation of photocatalytic materials with tuneable bandgaps. Experiments in the laser heated diamond anvil cell (LHDAC) between the direct reaction of metals and nitrogen have previously produced a number of important new main group nitride phases. This technique has also demonstrated its potential for formation of new nitrogen-rich transition metal nitride phases. Alternative methods with the development of ``soft'' routes to new phases with high nitrogen content also offer the possibility of obtaining metastable phases through topotactic conversions. Using LHDAC in situ with synchrotron angle dispersive diffraction techniques we have crystallised at high pressures and temperatures two novel polymorphs of Hf3N4. Starting with an amide-derived nanocrystalline Hf3N4 sample we have identified a novel tetragonal (I4/ m) polymorph at 15 GPa and 1500K and a second high pressure orthorhombic (Pnma) polymorph at 30 GPa and 2000 K. This study demonstrates that the combination of precursor-based synthesis and high-pressure crystallization could be very productive in synthesis of such nitrogen-rich phases.

  18. Observational Constraints on First-Star Nucleosynthesis. II. Spectroscopy of an Ultra metal-poor CEMP-no Star

    Science.gov (United States)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Yoon, Jinmi; Chiti, Anirudh; Heger, Alexander; Chan, Conrad; Casey, Andrew R.; Christlieb, Norbert

    2016-12-01

    We report on the first high-resolution spectroscopic analysis of HE 0020-1741, a bright (V = 12.9), ultra metal-poor ([{Fe}/{{H}}] = -4.1), carbon-enhanced ([{{C}}/{Fe}] = +1.7) star selected from the Hamburg/ESO Survey. This star exhibits low abundances of neutron-capture elements ([{Ba}/{Fe}] = -1.1) and an absolute carbon abundance A(C) = 6.1 based on either criterion, HE 0020-1741 is subclassified as a carbon-enhanced metal-poor star without enhancements in neutron-capture elements (CEMP-no). We show that the light-element abundance pattern of HE 0020-1741 is consistent with predicted yields from a massive (M = 21.5 {M}⊙ ), primordial-composition, supernova (SN) progenitor. We also compare the abundance patterns of other ultra metal-poor stars from the literature with available measures of C, N, Na, Mg, and Fe abundances with an extensive grid of SN models (covering the mass range 10{--}100 {M}⊙ ), in order to probe the nature of their likely stellar progenitors. Our results suggest that at least two classes of progenitors are required at [{Fe}/{{H}}] \\lt -4.0, as the abundance patterns for more than half of the sample studied in this work (7 out of 12 stars) cannot be easily reproduced by the predicted yields. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  19. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    OpenAIRE

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.

    2009-01-01

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of these stars is very limited because detailed chemical abundance measurements are needed from high resolution spectroscopy. Aims. To constrain the formation and chemical evolution of dwarf galaxi...

  20. Bio-processing of solid wastes and secondary resources for metal extraction – A review

    International Nuclear Information System (INIS)

    Lee, Jae-chun; Pandey, Banshi Dhar

    2012-01-01

    Highlights: ► Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. ► Bio-processing of certain effluents/wastewaters with metals is also included in brief. ► Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. ► Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. ► Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.

  1. TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Courtney R.; Johnson, Jennifer A.; Tayar, Jamie; Pinsonneault, Marc [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Elsworth, Yvonne P.; Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, Edgbaston Park Road, West Midlands, Birmingham B15 2TT (United Kingdom); Shetrone, Matthew [McDonald Observatory, The University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Mosser, Benoît [LESIA, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, F-92195 Meudon Cedex (France); Hekker, Saskia [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106-7215 (United States); Silva Aguirre, Víctor [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719, USA and JINA: Joint Institute for Nuclear Astrophysics (United States); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Bedding, Timothy R. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); García, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS, Universit Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191, Gif-sur-Yvette (France); Pérez, Ana E. García; Hearty, Fred R., E-mail: epstein@astronomy.ohio-state.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); and others

    2014-04-20

    Fundamental stellar properties, such as mass, radius, and age, can be inferred using asteroseismology. Cool stars with convective envelopes have turbulent motions that can stochastically drive and damp pulsations. The properties of the oscillation frequency power spectrum can be tied to mass and radius through solar-scaled asteroseismic relations. Stellar properties derived using these scaling relations need verification over a range of metallicities. Because the age and mass of halo stars are well-constrained by astrophysical priors, they provide an independent, empirical check on asteroseismic mass estimates in the low-metallicity regime. We identify nine metal-poor red giants (including six stars that are kinematically associated with the halo) from a sample observed by both the Kepler space telescope and the Sloan Digital Sky Survey-III APOGEE spectroscopic survey. We compare masses inferred using asteroseismology to those expected for halo and thick-disk stars. Although our sample is small, standard scaling relations, combined with asteroseismic parameters from the APOKASC Catalog, produce masses that are systematically higher (<ΔM > =0.17 ± 0.05 M {sub ☉}) than astrophysical expectations. The magnitude of the mass discrepancy is reduced by known theoretical corrections to the measured large frequency separation scaling relationship. Using alternative methods for measuring asteroseismic parameters induces systematic shifts at the 0.04 M {sub ☉} level. We also compare published asteroseismic analyses with scaling relationship masses to examine the impact of using the frequency of maximum power as a constraint. Upcoming APOKASC observations will provide a larger sample of ∼100 metal-poor stars, important for detailed asteroseismic characterization of Galactic stellar populations.

  2. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    Science.gov (United States)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  3. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Poterlowicz

    2017-09-01

    Full Text Available Mammalian genomes contain several dozens of large (>0.5 Mbp lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene

  4. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in massive stars

    International Nuclear Information System (INIS)

    Blake, J.B.; Woosley, S.E.; Weaver, T.A.; Schramm, D.N.

    1981-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using a hydrodynamical model of a 15 M/sub sun/ (Type II) supernovae and a n-process nuclear reaction network. The resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material, especially in the vicinity of Pt, nor are any actinides produced. These deficiencies reflect an inadequate supply of neutrons. However, some neutron-rich isotopes, normally associated with the r-process, are produced which may be significant for the production of isotopic anomalies in meteorites

  5. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  6. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  7. J0023+0307: A Mega Metal-poor Dwarf Star from SDSS/BOSS

    Science.gov (United States)

    Aguado, David S.; Allende Prieto, Carlos; González Hernández, Jonay I.; Rebolo, Rafael

    2018-02-01

    Only a handful of stars have been identified with an iron abundance [Fe/H] support from theoretical modeling, as the result of a top-heavy initial mass function. With zero or very low metal abundance limiting radiative cooling, the formation of low-mass stars could be inhibited. Currently, the star SDSS J1029+1729 sets the potential metallicity threshold for the formation of low-mass stars at {log}Z/{Z}ȯ ∼ -5. In our quest to push down the metallicity threshold we have identified SDSS J0023+0307, a primitive star with T eff = 6188 ± 84 K, and {log}g=4.9+/- 0.5, an upper limit [Fe/H] < ‑6.6, and a carbon abundance A(C) < 6.3. We find J0023+0307 to be one of the two most iron-poor stars known, and it exhibits less carbon that most of the stars at [Fe/H] < ‑5. Based on observations made with William Herschel Telescope (WHT) and the Gran Telescopio de Canarias (GTC), at the Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in La Palma.

  8. Metal dispersion in groundwater in an area with natural and processed black shale - Nationwide perspective and comparison with acid sulfate soils

    International Nuclear Information System (INIS)

    Lavergren, Ulf; Astroem, Mats E.; Falk, Helena; Bergbaeck, Bo

    2009-01-01

    Black shale is often rich in sulfides and trace elements, and is thus a potential environmental threat in a manner similar to acid sulfate soils and active or abandoned sulfide mines. This study aims at characterising how exposed and processed (mined and burnt) black shale (alum shale) in Degerhamn, SE Sweden, affects the chemistry (Al, As, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Si, Na, Sr, S, U, V and Zn) of the groundwater. There were large variations in groundwater chemistry between nearby sampling points, while the temporal variations generally were small. Acidic groundwater (around pH 4), found in deposits of burnt and carbonate-poor shale where the conditions for sulfide oxidation were favourable, was strongly elevated in Al, U and several chalcophilic metals (Cd, Co, Cu, Ni and Zn). Cadmium and U were also, together with Mo, abundant in many of the near-neutral waters, both in the non-mined black shale bedrock and in the deposits of burnt shale. An extrapolation to a national level suggests that the dispersion of Ni from naturally occurring black shale is similar to that from anthropogenic point sources, while for Cd and As it is assessed to be approximately one tenth of that from point sources. The processed shale was, however, a much larger source of metals than the black shale bedrock itself, showing this material's potential as a massive supplier of metals to the aquatic environment. A comparison of waters in contact with the processed Cambrian-Ordovician black shale in Degerhamn and acid sulfate soils of the region shows that these two sulfide-bearing materials, in many respects very different, delivers basically the same suite of trace elements to the aquatic environment. This has implications for environmental planning and protection in areas where these types of materials exist

  9. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps.

    Science.gov (United States)

    Gomes, Patrícia; Valente, Teresa; Pamplona, Jorge; Braga, Maria Amália Sequeira; Pissarra, José; Gil, José António Grande; de la Torre, Maria Luisa

    2014-01-01

    Waste dumps resulting from metal exploitation create serious environmental damage, providing soil and water degradation over long distances. Phytostabilization can be used to remediate these mining sites. The present study aims to evaluate the behavior of selected plant species (Erica arborea, Ulex europaeus, Agrostis delicatula, and Cytisus multiflorus) that grow spontaneously in three sulfide-rich waste-dumps (Lapa Grande, Cerdeirinha, and Penedono, Portugal). These sites represent different geological, climatic and floristic settings. The results indicate distinctive levels and types of metal contamination: Penedono presents highest sulfate and metal contents, especially As, with low levels of Fe. In contrast, at Lapa Grande and Cerdeirinha Fe, Mn, and Zn are the dominant metals. In accordance, each waste dump develops a typical plant community, providing a specific vegetation inventory. At Penedono, Agrostis delicatula accumulates As, Pb, Cu, Mn, and Zn, showing higher bioaccumulation factors (BF) for Mn (32.1) and As (24.4). At Cerdeirinha, Ulex europaeus has the highest BF for Pb (984), while at Lapa Grande, Erica arborea presents high BF for Mn (9.8) and Pb (8.1). Regarding TF, low values were obtained for most of the metals, especially As (TF < 1). Therefore, the results obtained from representative plant species suggest appropriate behavior for phytostabilization measures.

  10. Extraterrestrial Metals Processing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces iron, silicon, and light metals from Mars, Moon, or asteroid resources in support of advanced human...

  11. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM.

    Science.gov (United States)

    Mrdakovic Popic, Jelena; Salbu, Brit; Skipperud, Lindis

    2012-01-01

    Transfer of radionuclides ((232)Th and (238)U) and associated metals (As, Cd, Pb and Cr) from soil to free-living earthworm species was investigated in a thorium ((232)Th) rich area in Norway. Sampling took place within former mining sites representing the technologically enhanced naturally occurring radioactive materials (TENORM), at undisturbed site with unique bedrock geology representing the naturally occurring radioactive materials (NORM) and at site outside the (232)Th rich area taken as reference Background site. Soil analysis revealed the elevated levels of investigated elements at NORM and TENORM sites. Based on sequential extraction, uranium ((238)U) and cadmium (Cd) were quite mobile, while the other elements were strongly associated with mineral components of soil. Four investigated earthworm species (Aporrectodea caliginosa, Aporrectodea rosea, Dendrodrilus rubidus and Lumbricus rubellus) showed large individual variability in the accumulation of radionuclides and metals. Differences in uptake by epigeic and endogeic species, as well as differences within same species from the NORM, TENORM and Background sites were also seen. Based on total concentrations in soil, the transfer factors (TF) were in ranges 0.03-0.08 and 0.09-0.25, for (232)Th and (238)U, respectively. TFs for lead (Pb), chromium (Cr) and arsenic (As) were low (less than 0.5), while TFs for Cd were higher (about 10). Using the ERICA tool, the estimated radiation exposure dose rate of the earthworms ranged from 2.2 to 3.9 μGy/h. The radiological risk for investigated earthworms was low (0.28). The obtained results demonstrated that free-living earthworm species can survive in soil containing elevated (232)Th and (238)U, as well As, Cd, Pb and Cr levels, although certain amount of radionuclides was accumulated within their bodies. The present investigation contributes to general better understanding of complex soil-to-biota transfer processes of radionuclides and metals and to assessment

  12. Studies on the optimization of deformation processed metal metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  13. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    Science.gov (United States)

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  14. Evidence for halo kinematics among cool carbon-rich dwarfs

    Science.gov (United States)

    Farihi, J.; Arendt, A. R.; Machado, H. S.; Whitehouse, L. J.

    2018-04-01

    This paper reports preliminary yet compelling kinematical inferences for N ≳ 600 carbon-rich dwarf stars that demonstrate around 30% to 60% are members of the Galactic halo. The study uses a spectroscopically and non-kinematically selected sample of stars from the SDSS, and cross-correlates these data with three proper motion catalogs based on Gaia DR1 astrometry to generate estimates of their 3-D space velocities. The fraction of stars with halo-like kinematics is roughly 30% for distances based on a limited number of parallax measurements, with the remainder dominated by the thick disk, but close to 60% of the sample lie below an old, metal-poor disk isochrone in reduced proper motion. An ancient population is consistent with an extrinsic origin for C/O >1 in cool dwarfs, where a fixed mass of carbon pollution more readily surmounts lower oxygen abundances, and with a lack of detectable ultraviolet-blue flux from younger white dwarf companions. For an initial stellar mass function that favors low-mass stars as in the Galactic disk, the dC stars are likely to be the dominant source of carbon-enhanced, metal-poor stars in the Galaxy.

  15. Nucleosynthesis Modes in the High-Entropy-Wind Scenario of Type II Supernovae

    International Nuclear Information System (INIS)

    Farouqi, K.; Kratz, K.-L.; Cowan, J. J.; Mashonkina, L. I.; Pfeiffer, B.; Sneden, C.; Thielemann, F.-K.; Truran, J. W.

    2008-01-01

    In an attempt to constrain the astrophysical conditions for the nucleosynthesis of the classical r-process elements beyond Fe, we have performed large-scale dynamical network calculations within the model of an adiabatically expanding high- entropy wind (HEW) of type II supernovae (SN II). A superposition of several entropy-components (S) with model-inherent weightings results in an excellent reproduction of the overall Solar System (SS) isotopic r-process residuals (N r,· ), as well as the more recent observations of elemental abundances of metal-poor, r-process rich halo stars in the early Galaxy. For the heavy r-process elements beyond Sn, our HEW model predicts a robust abundance pattern up to the Th, U r-chronometer region. For the lighter neutron-capture region, an S-dependent superposition of (i) a normal α-component directly producing stable nuclei, including s-only isotopes, and (ii) a component from a neutron-rich α-freezeout followed by the rapid recapture of β-delayed neutrons (βdnrpar; emitted from the far-unstable seed nuclei is indicated. In agreement with several recent halo-star observations in the 60< A<110 region, our HEW model confirms a Z-dependent non-correlation, respectively partial correlation with the heavier ''main'' r-process elements

  16. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.

    Science.gov (United States)

    Frebel, Anna; Kirby, Evan N; Simon, Joshua D

    2010-03-04

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.

  17. Relativistic QRPA calculation of β-decay rates of r-process nuclei

    International Nuclear Information System (INIS)

    Marketin, T.; Paar, N.; Niksic, T.

    2009-01-01

    The rapid neutron-capture process (r-process) is responsible for the creation of many nuclei heavier than iron. To describe the r-process, precise data is needed on a large number of neutron-rich nuclei, most of which are not experimentally reachable. One crucial parameter in modeling the nucleosynthesis are the half-lives of the nuclei through which the r-process runs. Therefore, it is of great importance to develop a reliable predictive model which can be applied to the decay of exotic nuclei. A fully self-consistent calculation of β-decay rates is presented, based on a microscopic theoretical framework. Nuclear ground state is determined using the Relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-nucleon coupling constants. Momentum dependent terms are also included to improve the density of single-particle states around the Fermi level via an increase of the effective nucleon mass [1]. Transition rates are calculated within the proton-neutron relativistic quasiparticle RPA using the same interaction that was used in the RHB equations. In this way no additional parameters are introduced in the RPA calculation. Weak interaction rates are calculated using the current-current formalism previously employed in the study of other astrophysically significant weak processes [2,3], which systematically includes the contributions of forbidden transitions. This theoretical framework will be utilized to study the contributions of forbidden transitions to the total decay rate in several mass regions. We will compare the calculated half-lives for several isotopic chains with previous calculations and experimental data and discuss possible improvements to the model.(author)

  18. On the necessity of composition-dependent low-temperature opacity in models of metal-poor asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, Thomas; Campbell, Simon; Lattanzio, John [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Gil-Pons, Pilar, E-mail: thomas.constantino@monash.edu [Department of Applied Physics, Polytechnic University of Catalonia, 08860 Barcelona (Spain)

    2014-03-20

    The vital importance of composition-dependent low-temperature opacity in low-mass (M ≤ 3 M {sub ☉}) asymptotic giant branch (AGB) stellar models of metallicity Z ≥ 0.001 has recently been demonstrated. Its significance to more metal-poor, intermediate-mass (M ≥ 2.5 M {sub ☉}) models has yet to be investigated. We show that its inclusion in lower-metallicity models ([Fe/H] ≤–2) is essential and that there exists no threshold metallicity below which composition-dependent molecular opacity may be neglected. We find it to be crucial in all intermediate-mass models investigated ([Fe/H] ≤–2 and 2.5 ≤ M/M {sub ☉} ≤ 5), because of the evolution of the surface chemistry, including the orders of magnitude increase in the abundance of molecule-forming species. Its effect on these models mirrors that previously reported for higher-metallicity models—increase in radius, decrease in T {sub eff}, faster mass loss, shorter thermally pulsing AGB lifetime, reduced enrichment in third dredge-up products (by a factor of 3-10), and an increase in the mass limit for hot bottom burning. We show that the evolution of low-metallicity models with composition-dependent low-temperature opacity is relatively independent of initial metal abundance because its contribution to the opacity is far outweighed by changes resulting from dredge-up. Our results imply a significant reduction in the expected number of nitrogen-enhanced metal-poor stars, which may help explain their observed paucity. We note that these findings are partially a product of the macrophysics adopted in our models, in particular, the Vassiliadis and Wood mass loss rate which is strongly dependent on radius.

  19. Cytoplasmic Hu-Antigen R (HuR) Expression is Associated with Poor Survival in Patients with Surgically Resected Cholangiocarcinoma Treated with Adjuvant Gemcitabine-Based Chemotherapy.

    Science.gov (United States)

    Toyota, Kazuhiro; Murakami, Yoshiaki; Kondo, Naru; Uemura, Kenichiro; Nakagawa, Naoya; Takahashi, Shinya; Sueda, Taijiro

    2018-05-01

    Hu-antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm translocation of messenger RNAs (mRNAs). The aim of this study was to investigate the prognostic significance of HuR in cholangiocarcinoma patients who received adjuvant gemcitabine-based chemotherapy (AGC) after surgical resection. Nuclear and cytoplasmic HuR expression was investigated immunohistochemically in 131 patients with resected cholangiocarcinoma, including 91 patients administered AGC and 40 patients who did not receive adjuvant chemotherapy. The correlation between HuR expression and survival was evaluated by statistical analysis. High nuclear and cytoplasmic HuR expression was observed in 67 (51%) and 45 (34%) patients, respectively. Cytoplasmic HuR expression was significantly associated with lymph node metastasis (p < 0.01), while high cytoplasmic HuR expression was significantly associated with poor disease-free survival [DFS] (p = 0.03) and overall survival [OS] (p = 0.001) in the 91 patients who received AGC, but not in the 40 patients who did not receive AGC (DFS p = 0.17; OS p = 0.07). In the multivariate analysis of patients who received AGC, high cytoplasmic HuR expression was an independent predictor of poor DFS (hazard ratio [HR] 1.77; p = 0.04) and OS (HR 2.09; p = 0.02). Nuclear HuR expression did not affect the survival of enrolled patients. High cytoplasmic HuR expression was closely associated with the efficacy of AGC in patients with cholangiocarcinoma. The current findings warrant further investigations to optimize adjuvant chemotherapy regimens for resectable cholangiocarcinoma.

  20. Lithium isotopic abundances in metal-poor stars: a problem for standard big bang nucleosynthesis?

    International Nuclear Information System (INIS)

    Nissen, P.E.; Asplund, M.; Lambert, D.L.; Primas, F.; Smith, V.V.

    2005-01-01

    Spectral obtained with VLT/UVES suggest the existence of the 6 Li isotope in several metal-poor stars at a level that challenges ideas about its synthesis. The 7 Li abundance is, on the other hand, a factor of three lower than predicted by standard Big Bang nucleosynthesis theory. Both problems may be explained if decaying suppersymmetric particles affect the synthesis of light elements in the Big Bang. (orig.)

  1. Fabrication of subwavelength metallic structures by using a metal direct imprinting process

    International Nuclear Information System (INIS)

    Hsieh, C W; Hsiung, H Y; Lu, Y T; Sung, C K; Wang, W H

    2007-01-01

    This work employs a metal direct imprinting process, which possesses the characteristics of simplicity, low-cost and high resolution, for the fabrication of subwavelength structures on a metallic thin film. Herein, the mould featuring periodic line structures is manufactured by using E-beam lithography and followed by a dry etching process; meanwhile, the thin film is fabricated by sputtering Al on a silicon substrate. AFM section analyses are employed to measure imprinting depths of the subwavelength metallic structures and it is found that the uniformity of the imprinting depths is affected by the designed patterns, the material property of thin film and mould deformation. The process temperature and the mould filling that influence the transferred quality are investigated. In addition, TEM is also utilized to examine defects in the subwavelength metallic structures. Finally, good quality subwavelength metallic structures are fabricated under a pressure of 300 MPa for 60 s at room temperature. In this study, we have demonstrated that subwavelength metallic structures with a minimum linewidth of less than 100 nm on the Al thin film are successfully constructed by the metal direct imprinting process

  2. Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal.

    Science.gov (United States)

    Ávila, Paula F; Ferreira da Silva, Eduardo; Candeias, Carla

    2017-06-01

    Panasqueira mine is a tin-tungsten mineralization hosted by metasediments with quartz veins rich in ferberite. The mineralization also comprises wolframite, cassiterite, chalcopyrite, several sulfides, carbonates and silver sulfosalts. The mining and beneficiation processes produce arsenic-rich mine wastes laid up in huge tailings (Barroca Grande and Rio tailings). The contents of As, Cd, Cr, Cu, Pb and Zn were estimated in rhizosphere soils, irrigation waters, road dusts and in potatoes, cabbages, lettuces and beans, collected on local gardens of four neighborhood Panasqueira mine villages: S. Francisco de Assis (SFA) and Barroca suffering the influence of tailings; Unhais-o-Velho and Casegas considered as non-polluted areas. The mean concentrations of metals in rhizosphere soils and vegetables exceed the reference guidelines values and seem to be linked to the sulfides. The rhizosphere ecological risks were ranked in the order of Cd > As > Cu > Pb > Zn > Cr and SFA > Barroca > Casegas > Unhais-o-Velho. Metal concentrations, in vegetables, were found in the order of lettuce > cabbage > potatoes and SFA > Barroca > Casegas > Unhais-o-Velho. For cabbages and lettuces, the tendency of contamination is roots > leaves and for potatoes is roots > leaves > tubers. The risk for residents, due to ingesting of metals/metalloid, by consuming vegetables grown around the sampling area, was calculated and the result indicates that the inhabitants of these villages are probably exposed to some potential health risks through the intake of heavy metals and metalloids via consuming their vegetables.

  3. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. V. TOWARD AN EMPIRICAL METAL-POOR MASS–LUMINOSITY RELATION

    International Nuclear Information System (INIS)

    Horch, Elliott P.; Van Altena, William F.; Demarque, Pierre; Howell, Steve B.; Everett, Mark E.; Ciardi, David R.; Teske, Johanna K.; Henry, Todd J.; Winters, Jennifer G.

    2015-01-01

    In an effort to better understand the details of the stellar structure and evolution of metal-poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and six stars where no companion was detected to the limit of the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. The mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory

  4. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  5. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Poor glass-forming ability of Fe-based alloys

    DEFF Research Database (Denmark)

    Zheng, H.J.; Hu, L.N.; Zhao, X.

    2017-01-01

    processes. By using the concept of fluid cluster and supercooled liquid fragility in metallic liquids, it has been found that this dynamic transition makes the Fe-based supercooled liquids become more unstable, which leads to the poor GFA of Fe-based alloys. Further, it has been found that the degree...

  7. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP's off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described

  8. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM

    Energy Technology Data Exchange (ETDEWEB)

    Mrdakovic Popic, Jelena, E-mail: jelena.mrdakovic.popic@umb.no; Salbu, Brit; Skipperud, Lindis

    2012-01-01

    Transfer of radionuclides ({sup 232}Th and {sup 238}U) and associated metals (As, Cd, Pb and Cr) from soil to free-living earthworm species was investigated in a thorium ({sup 232}Th) rich area in Norway. Sampling took place within former mining sites representing the technologically enhanced naturally occurring radioactive materials (TENORM), at undisturbed site with unique bedrock geology representing the naturally occurring radioactive materials (NORM) and at site outside the {sup 232}Th rich area taken as reference Background site. Soil analysis revealed the elevated levels of investigated elements at NORM and TENORM sites. Based on sequential extraction, uranium ({sup 238}U) and cadmium (Cd) were quite mobile, while the other elements were strongly associated with mineral components of soil. Four investigated earthworm species (Aporrectodea caliginosa, Aporrectodea rosea, Dendrodrilus rubidus and Lumbricus rubellus) showed large individual variability in the accumulation of radionuclides and metals. Differences in uptake by epigeic and endogeic species, as well as differences within same species from the NORM, TENORM and Background sites were also seen. Based on total concentrations in soil, the transfer factors (TF) were in ranges 0.03-0.08 and 0.09-0.25, for {sup 232}Th and {sup 238}U, respectively. TFs for lead (Pb), chromium (Cr) and arsenic (As) were low (less than 0.5), while TFs for Cd were higher (about 10). Using the ERICA tool, the estimated radiation exposure dose rate of the earthworms ranged from 2.2 to 3.9 {mu}Gy/h. The radiological risk for investigated earthworms was low (0.28). The obtained results demonstrated that free-living earthworm species can survive in soil containing elevated {sup 232}Th and {sup 238}U, as well As, Cd, Pb and Cr levels, although certain amount of radionuclides was accumulated within their bodies. The present investigation contributes to general better understanding of complex soil-to-biota transfer processes of

  9. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  10. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  11. Process for the enhanced capture of heavy metal emissions

    Science.gov (United States)

    Biswas, Pratim; Wu, Chang-Yu

    2001-01-01

    This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.

  12. The large-scale structure of the halo of the Andromeda galaxy. I. Global stellar density, morphology and metallicity properties

    Energy Technology Data Exchange (ETDEWEB)

    Ibata, Rodrigo A.; Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de lUniversité, F-67000 Strasbourg (France); Lewis, Geraint F. [Institute of Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Irwin, Michael J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Ferguson, Annette M. N.; Bernard, Edouard J.; Peñarrubia, Jorge [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Babul, Arif; Navarro, Julio [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2 (Canada); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax NS B3H 4R2 (Canada); Collins, Michelle [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Fardal, Mark [University of Massachusetts, Department of Astronomy, LGRT 619-E, 710 North Pleasant Street, Amherst, MA 01003-9305 (United States); Mackey, A. D. [RSAA, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek ACT 2611 (Australia); Rich, R. Michael [Department of Physics and Astronomy, University of California, Los Angeles, PAB, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States); Tanvir, Nial [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Widrow, Lawrence, E-mail: rodrigo.ibata@astro.unistra.fr [Department of Physics, Engineering Physics, and Astronomy Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2014-01-10

    We present an analysis of the large-scale structure of the halo of the Andromeda galaxy, based on the Pan-Andromeda Archeological Survey (PAndAS), currently the most complete map of resolved stellar populations in any galactic halo. Despite the presence of copious substructures, the global halo populations follow closely power-law profiles that become steeper with increasing metallicity. We divide the sample into stream-like populations and a smooth halo component (defined as the population that cannot be resolved into spatially distinct substructures with PAndAS). Fitting a three-dimensional halo model reveals that the most metal-poor populations ([Fe/H]<−1.7) are distributed approximately spherically (slightly prolate with ellipticity c/a = 1.09 ± 0.03), with only a relatively small fraction residing in discernible stream-like structures (f {sub stream} = 42%). The sphericity of the ancient smooth component strongly hints that the dark matter halo is also approximately spherical. More metal-rich populations contain higher fractions of stars in streams, with f {sub stream} becoming as high as 86% for [Fe/H]>−0.6. The space density of the smooth metal-poor component has a global power-law slope of γ = –3.08 ± 0.07, and a non-parametric fit shows that the slope remains nearly constant from 30 kpc to ∼300 kpc. The total stellar mass in the halo at distances beyond 2° is ∼1.1 × 10{sup 10} M {sub ☉}, while that of the smooth component is ∼3 × 10{sup 9} M {sub ☉}. Extrapolating into the inner galaxy, the total stellar mass of the smooth halo is plausibly ∼8 × 10{sup 9} M {sub ☉}. We detect a substantial metallicity gradient, which declines from ([Fe/H]) = –0.7 at R = 30 kpc to ([Fe/H]) = –1.5 at R = 150 kpc for the full sample, with the smooth halo being ∼0.2 dex more metal poor than the full sample at each radius. While qualitatively in line with expectations from cosmological simulations, these observations are of great importance as

  13. A Study of the r-Process Path Nuclides,$^{137,138,139}$Sb using the Enhanced Selectivity of Resonance Ionization Laser Ionization

    CERN Multimedia

    Walters, W

    2002-01-01

    The particular features of the r-process abundances with 100 < A < 150 have demonstrated the close connection between knowledge of nuclear structure and decay along the r-process path and the astrophysical environement in which these elements are produced. Key to this connection has been the measurement of data for nuclides (mostly even-N nuclides) that lie in the actual r-process path. Such data are of direct use in r-process calculations and they also serve to refine and test the predictive power of nuclear models where little or no data now exist. In this experiment we seek to use the newly developed ionization scheme for the Resonance Ionization Laser Ion Source (RILIS) to achieve selective ionization of neutron-rich antimony isotopes in order to measure the decay properties of r-process path nuclides $^{137,138,139}$Sb. These properties include the half-lives, delayed neutron branches, and daughter $\\gamma$-rays. The new nuclear structure data for the daughter Te nuclides is also of considerable in...

  14. Processing method of radioactive metal wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Urata, Megumu; Sato, Masao.

    1985-01-01

    Purpose: To reduce the volume and increase the density of radioactive metal wastes easily while preventing scattering of radioactivity and process them into suitable form to storage and treatment. Method: Metal wastes mainly composed of zirconium are discharged from nuclear power plants or fuel re-processing plants, and these metals such as zirconium and titanium vigorously react with hydrogen and rapidly diffuse as hydrides. Since the hydrides are extremely brittle and can be pulverized easily, they can be volume-reduced. However, since metal hydrides have no ductility, dehydrogenation is applied for the molding fabrication in view of the subsequent storage and processing. The dehydrogenation is easy like the hydrogenation and fine metal pieces can be molded in a small compression device. For the dehydrogenation, a temperature is slightly increased as compared with that in the hydrogenation, pressure is reduced through the vacuum evacuation system and the removed hydrogen is purified for reuse. The upper limit for the temperature of the hydrogenation is 680 0 C in order to prevent the scttering of radioactivity. (Kamimura, M.)

  15. Helium-driven r-process in supernovae

    International Nuclear Information System (INIS)

    Truran, J.W.; Cowan, J.J.; Cameron, A.G.W.

    1978-01-01

    The discovery of r-process anomalies in two inclusions in the Allende meteorite, together with their associated oxygen and magnesium anomalies, has caused us to examine the consequences of supernova shocks in the helium zones of massive stars. We find that powerful r-processes can operate under such conditions. The details of these processes will vary in different stellar masses. The studied Allende inclusions apparently did not receive material which had been very extensively r-processed

  16. Richness, coverage and concentration of heavy metals in vascular epiphytes along an urbanization gradient.

    Science.gov (United States)

    Becker, Diego Fedrizzi Petry; Linden, Rafael; Schmitt, Jairo Lizandro

    2017-04-15

    Richness, coverage and concentration of heavy metals in vascular epiphytes were analyzed in isolated trees along an urbanization gradient in Southern Brazil. A total of 20 phorophytes were sampled in the main street of each site. Concentrations of chromium, cadmium, lead, manganese, nickel and zinc were measured in the leaves of Tillandsia recurvata L. using Graphite Furnace Atomic Absorption Spectrophotometry. A decreasing gradient of epiphyte richness and coverage was observed as urbanization increased. Vehicle fleet and demographic density were the parameters most correlated with the reduction of epiphytic diversity. In T. recurvata, significantly higher values of cadmium, lead and zinc were recorded in the most urbanized areas, and were strongly related to the vehicle fleet and to the demographic density in these sites. The results demonstrated that these parameters could be applied to the diagnosis of environmental quality in urban areas, allowing standardized analyses in other regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Epidermal Growth Factor Receptor Responsive miR-125a Represses Mesenchymal Morphology in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karen D. Cowden Dahl

    2009-11-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT that occurs during embryonic development is recapitulated during tumor metastasis. Important regulators of this process include growth factors, transcription factors, and adhesion molecules. New evidence suggests that microRNA (miRNA activity contributes to metastatic progression and EMT; however, the mechanisms leading to altered miRNA expression during cancer progression remain poorly understood. Importantly, overexpression of the epidermal growth factor receptor (EGFR in ovarian cancer correlates with poor disease outcome and induces EMT in ovarian cancer cells. We report that EGFR signaling leads to transcriptional repression of the miRNA miR-125a through the ETS family transcription factor PEA3. Overexpression of miR-125a induces conversion of highly invasive ovarian cancer cells from a mesenchymal to an epithelial morphology, suggesting miR-125a is a negative regulator of EMT. We identify AT-rich interactive domain 3B (ARID3B as a target of miR-125a and demonstrate that ARID3B is overexpressed in human ovarian cancer. Repression of miR-125a through growth factor signaling represents a novel mechanism for regulating ovarian cancer invasive behavior.

  18. Hg and Pt-metals in meteorite carbon-rich residues - Suggestions for possible host phase for Hg

    Science.gov (United States)

    Jovanovic, S.; Reed, G. W., Jr.

    1980-01-01

    Carbon-rich and oxide residual phases have been isolated from Allende and Murchison by acid demineralization for the determination of their Hg, Pt-metal, Cr, Sc, Co, and Fe contents. Experimental procedures used eliminated the possibility of exogenous and endogenous contaminant trace elements from coprecipitating with the residues. Large enrichments of Hg and Pt-metals were found in Allende but not in Murchison residues. Hg-release profiles from stepwise heating experiments suggest a sulfide as the host for Hg. Diffusion calculations for Hg based on these experiments indicate an activation energy of 7-8 kcal/mol, the same as that for Hg in troilite from an iron meteorite. This is further support for a sulfide host phase for Hg. Equilibration of Hg with this phase at approximately 900 K is indicated. Reasons for the presence of Pt-metals in noncosmic relative abundances are explored.

  19. A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bohang; Li, Wangda; Yan, Pengfei; Oh, Seung-Min; Wang, Chong-Min; Manthiram, Arumugam

    2016-09-01

    A facile synthesis method was developed to prepare xLi2MnO3·(1-x)LiNi0.7Co0.15Mn0.15O2 (x = 0, 0.03, 0.07, 0.10, 0.20, and 0.30 as molar ratio) cathode materials, combining the advantages of high specific capacity from Ni-rich layered phase and surface chemical stability from Li-rich layered phase. X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM) and electrochemical charge/discharge performance confirm the formation of a Li-rich layered phase with C2/m symmetry. Most importantly, high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) reveals a spatial relationship that Li-rich nano-domain islands are integrated into a conventional Ni-rich layered matrix (R$\\bar{3}$m). This is the first time that Li-rich phase has been directly observed inside a particle at the nano-scale, when the overall composition of layered compounds (Li1+δNixMnyM1-x-y-δO2, M refers to transition metal elements) is Ni-rich (x > 0.5) rather than Mn-rich (y > 0.5). Remarkably, xLi2MnO3·(1-x)LiNi0.7Co0.15Mn0.15O2 cathode with optimized x value shows superior electrochemical performance at C/3, i.e., 170 mA h g-1 with 90.3 % of capacity retention after 400 cycles at 25 °C and 164 mA h g-1 with 81.3 % capacity retention after 200 cycles at 55 °C.

  20. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  1. Comparison of metallothionein concentrations and tissue distribution of trace metals in crabs (Pachygrapsus marmoratus) from a metal-rich estuary, in and out of the reproductive season.

    Science.gov (United States)

    Mouneyrac, C; Amiard-Triquet, C; Amiard, J C; Rainbow, P S

    2001-07-01

    Crabs, Pachygrapsus marmoratus, were sampled in June 1997 and February 1998 from two sites (at the mouth and 25 km upstream) in the metal-rich Gironde estuary, France. Gills and hepatopancreas were analysed for metal (Cd, Cu, Zn) and metallothionein (MT) contents, in order to examine the influence of both biological and environmental factors on the physico-chemical forms of detoxified metal storage in the crabs. The concentrations of MT and both cytosolic and insoluble metals were not greatly different between males and females, and the influence of organ weights was also minimal. Intersite differences were observed, probably resulting from the gradient of salinity in the estuary, which interacts with both the chemical speciation and bioavailability of metals, and the general protein metabolism of the crabs. Seasonal changes were also important, probably in interaction with the moult and reproductive cycles. In February, concentrations of insoluble metals were generally higher than in June, in both organs, suggesting that essential metals, particularly Zn, are stored during winter then remobilised during the breeding season. The natural variability in the concentrations of MT often concealed any relationship with accumulated metal concentrations. Thus MT in crabs cannot be considered as a useful biomarker of metal pollution.

  2. 94 β-Decay Half-Lives of Neutron-Rich _{55}Cs to _{67}Ho: Experimental Feedback and Evaluation of the r-Process Rare-Earth Peak Formation.

    Science.gov (United States)

    Wu, J; Nishimura, S; Lorusso, G; Möller, P; Ideguchi, E; Regan, P-H; Simpson, G S; Söderström, P-A; Walker, P M; Watanabe, H; Xu, Z Y; Baba, H; Browne, F; Daido, R; Doornenbal, P; Fang, Y F; Gey, G; Isobe, T; Lee, P S; Liu, J J; Li, Z; Korkulu, Z; Patel, Z; Phong, V; Rice, S; Sakurai, H; Sinclair, L; Sumikama, T; Tanaka, M; Yagi, A; Ye, Y L; Yokoyama, R; Zhang, G X; Alharbi, T; Aoi, N; Bello Garrote, F L; Benzoni, G; Bruce, A M; Carroll, R J; Chae, K Y; Dombradi, Z; Estrade, A; Gottardo, A; Griffin, C J; Kanaoka, H; Kojouharov, I; Kondev, F G; Kubono, S; Kurz, N; Kuti, I; Lalkovski, S; Lane, G J; Lee, E J; Lokotko, T; Lotay, G; Moon, C-B; Nishibata, H; Nishizuka, I; Nita, C R; Odahara, A; Podolyák, Zs; Roberts, O J; Schaffner, H; Shand, C; Taprogge, J; Terashima, S; Vajta, Z; Yoshida, S

    2017-02-17

    The β-decay half-lives of 94 neutron-rich nuclei ^{144-151}Cs, ^{146-154}Ba, ^{148-156}La, ^{150-158}Ce, ^{153-160}Pr, ^{156-162}Nd, ^{159-163}Pm, ^{160-166}Sm, ^{161-168}Eu, ^{165-170}Gd, ^{166-172}Tb, ^{169-173}Dy, ^{172-175}Ho, and two isomeric states ^{174m}Er, ^{172m}Dy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β-decay half-lives are observed at neutron-number N=97 for _{58}Ce, _{59}Pr, _{60}Nd, and _{62}Sm, and N=105 for _{63}Eu, _{64}Gd, _{65}Tb, and _{66}Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.

  3. Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Pastorello, A.; Filippenko, Alexei V.; Kochanek, C. S.; Mauerhan, Jon; Romero-Cañizales, C.; Brink, Thomas G.; Chen, Ping; Prieto, J. L.; Post, R.; Ashall, Christopher; Grupe, Dirk; Tomasella, L.; Benetti, Stefano; Shappee, B. J.; Stanek, K. Z.; Cai, Zheng; Falco, E.; Lundqvist, Peter; Mattila, Seppo; Mutel, Robert; Ochner, Paolo; Pooley, David; Stritzinger, M. D.; Villanueva, S., Jr.; Zheng, WeiKang; Beswick, R. J.; Brown, Peter J.; Cappellaro, E.; Davis, Scott; Fraser, Morgan; de Jaeger, Thomas; Elias-Rosa, N.; Gall, C.; Gaudi, B. Scott; Herczeg, Gregory J.; Hestenes, Julia; Holoien, T. W.-S.; Hosseinzadeh, Griffin; Hsiao, E. Y.; Hu, Shaoming; Jaejin, Shin; Jeffers, Ben; Koff, R. A.; Kumar, Sahana; Kurtenkov, Alexander; Lau, Marie Wingyee; Prentice, Simon; Reynolds, T.; Rudy, Richard J.; Shahbandeh, Melissa; Somero, Auni; Stassun, Keivan G.; Thompson, Todd A.; Valenti, Stefano; Woo, Jong-Hak; Yunus, Sameen

    2018-01-01

    Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = ‑21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.

  4. Preferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film.

    Science.gov (United States)

    Zhao, Meng-Qiang; Tian, Gui-Li; Zhang, Qiang; Huang, Jia-Qi; Nie, Jing-Qi; Wei, Fei

    2012-04-07

    Direct bulk growth of single-walled carbon nanotubes (SWCNTs) with required properties, such as diameter, length, and chirality, is the first step to realize their advanced applications in electrical and optical devices, transparent conductive films, and high-performance field-effect transistors. Preferential growth of short aligned, metallic-rich SWCNTs is a great challenge to the carbon nanotube community. We report the bulk preferential growth of short aligned SWCNTs from perpendicular Mo-containing FeMgAl layered double hydroxide (LDH) film by a facile thermal chemical vapor deposition with CH(4) as carbon source. The growth of the short aligned SWCNTs showed a decreased growth velocity with an initial value of 1.9 nm s(-1). Such a low growth velocity made it possible to get aligned SWCNTs shorter than 1 μm with a growth duration less than 15 min. Raman spectra with different excitation wavelengths indicated that the as-grown short aligned SWCNTs showed high selectivity of metallic SWCNTs. Various kinds of materials, such as mica, quartz, Cu foil, and carbon fiber, can serve as the substrates for the growth of perpendicular FeMoMgAl LDH films and also the growth of the short aligned SWCNTs subsequently. These findings highlight the easy route for bulk preferential growth of aligned metallic-rich SWCNTs with well defined length for further bulk characterization and applications. This journal is © The Royal Society of Chemistry 2012

  5. Ferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes ferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  6. Nonferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  7. Lithium evolution in metal-poor stars: from Pre-Main Sequence to the Spite plateau

    OpenAIRE

    Fu, Xiaoting; Bressan, Alessandro; Molaro, Paolo; Marigo, Paola

    2015-01-01

    Lithium abundance derived in metal-poor main sequence stars is about three times lower than the value of primordial Li predicted by the standard Big Bang nucleosynthesis when the baryon density is taken from the CMB or the deuterium measurements. This disagreement is generally referred as the lithium problem. We here reconsider the stellar Li evolution from the pre-main sequence to the end of the main sequence phase by introducing the effects of convective overshooting and residual mass accre...

  8. Laser Processing Technology using Metal Powders

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jeong-Hwan; Moon, Young-Hoon [Pusan National University, Busan (Korea, Republic of)

    2012-03-15

    The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

  9. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    International Nuclear Information System (INIS)

    Nilsson, J.O.; Wilson, A.; Huhtala, T.; Karlsson, L.; Jonsson, P.

    1996-01-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 C to 1,110 C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ 2 ) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ 2 compared with primary austenite. The volume fraction of γ 2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ 2 in these

  10. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    Science.gov (United States)

    Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.

    1996-08-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.

  11. Interventions and gaps in the process of cushioning the urban poor ...

    African Journals Online (AJOL)

    Interventions and gaps in the process of cushioning the urban poor in Malawi. Felix Kakowa. Abstract. Over the years, Malawi has implemented a number of programmes aimed at cushioning the urban poor in the wake of rapid urbanization, growth of the informal sector and mushrooming squatter settlements. However ...

  12. Real time observation of phase formations by XRD during Ga-rich or In-rich Cu(In, Ga)Se{sub 2} growth by co-evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pistor, Paul; Zahedi-Azad, Setareh; Hartnauer, Stefan; Waegele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland [Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) (Germany)

    2015-09-15

    Solar cells with Cu(In, Ga)Se{sub 2} absorbers rely on the three-stage co-evaporation process with Cu-poor/Cu-rich/Cu-poor absorber deposition conditions for highest efficiency devices. During the three-stage process, the formation and evolution of different selenide phases with changing compositions throughout the process crucially determine the final absorber quality. In this contribution, we monitor the evolution of crystalline phases in real-time with an X-ray diffraction (XRD) line detector setup implemented into an evaporation setup. Using the common three-stage process, we prepare and compare samples covering the full alloying range from CuInSe{sub 2} to CuGaSe{sub 2}. The in situ XRD allows the detection of the crystalline phases present at all times of the process as well as an advanced analysis of the phase evolution through a closer look at peak shifts and the full width at half maximum. For samples with a Ga/(Ga + In) ratio (GGI) < 0.5, distinct phase transitions associated with the transition to the reported vacancy compounds Cu(In,Ga){sub 5}Se{sub 8} and Cu(In, Ga){sub 3}Se{sub 5} are observed. No such indication was found for samples with a GGI > 0.5. For Ga-rich Cu(In, Ga)Se{sub 2} phases with a GGI of 0.55, the XRD analysis evidenced a Ga-rich phase segregation before the stoichiometric point was reached. The above findings are discussed in view of their implication on wide gap solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Dissolved Massive Metal-rich Globular Clusters Can Cause the Range of UV Upturn Strengths Found among Early-type Galaxies

    Science.gov (United States)

    Goudfrooij, Paul

    2018-04-01

    I discuss a scenario in which the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is primarily due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs), which subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central giant elliptical galaxy in the Virgo cluster of galaxies. Data taken from the literature reveal a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parameterization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that the observed correlation between UV upturn strength and GC specific frequency can be explained by variations in the characteristic truncation mass {{ \\mathcal M }}{{c}} such that {{ \\mathcal M }}{{c}} increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in massive galactic spheroids. With this in mind, I predict that future studies will find that [N/Fe] decreases with increasing galactocentric radius in massive ETGs, and that such gradients have the largest amplitudes in ETGs with the strongest UV upturns.

  14. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); McCrum, M.; Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Roth, K. C. [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States); Scolnic, D., E-mail: rlunnan@cfa.harvard.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2013-07-10

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M{sub bol} {approx_equal} -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M{sub B} Almost-Equal-To -18 mag, diameter {approx}< 800 pc), with a low stellar mass (M{sub *} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 7} M{sub Sun }), young stellar population ({tau}{sub *} Almost-Equal-To 5 Myr), and a star formation rate of {approx}2-3 M{sub Sun} yr{sup -1}. The specific star formation rate is the highest seen in an SLSN host so far ({approx}100 Gyr{sup -1}). We detect the [O III] {lambda}4363 line, and find a low metallicity: 12 + (O/H) = 7.8 {+-} 0.2 ({approx_equal} 0.1 Z{sub Sun }). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  15. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  16. Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past.

    Science.gov (United States)

    Ochsner, K N

    2000-06-01

    The author used the remember/know paradigm and the dual process recognition model of A. P. Yonelinas, N. E. A. Kroll, I. Dobbins, M. Lazzara, and R. T. Knight (1998) to study the states of awareness accompanying recognition of affective images and the processes of recollection and familiarity that may underlie them. Results from all experiments showed that (a) negative stimuli tended to be remembered, whereas positive stimuli tended to be known; (b) recollection, but not familiarity, was boosted for negative or highly arousing and, to a lesser extent, positive stimuli; and (c) across experiments, variations in depth of encoding did not influence these patterns. These data suggest that greater recollection for affective events leads them to be more richly experienced in memory, and they are consistent with the idea that the states of remembering and knowing are experientially exclusive, whereas the processes underlying them are functionally independent.

  17. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    Science.gov (United States)

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  18. Process for cleaning radioactively contaminated metal surfaces

    International Nuclear Information System (INIS)

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  19. Recovery of palladium, cesium, and selenium from heavy metal alkali borosilicate glass by combination of heat treatment and leaching processes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2017-06-05

    Highlights: • A separation technique of both noble and less noble metal from glass is studied. • Via reductive heat treatment, 80% of palladium is extracted in liquid bismuth. • Sodium–potassium-rich materials with cesium and selenium are phase separated. • From the materials, over 80% of cesium and selenium are extracted in water. - Abstract: Reductive heat-treatment and leaching process were applied to a simulated lead or bismuth soda-potash-borosilicate glass with palladium, cesium, and selenium to separate these elements. In the reductive heat treatment, palladium is extracted in liquid heavy metal phase generated by the reduction of the heavy metal oxides, whereas cesium and selenium are concentrated in phase separated Na–K-rich materials on the glass surface. From the materials, cesium and selenium can be extracted in water, and the selenium extraction was higher in the treatment of the bismuth containing glass. The chemical forms of palladium in the glass affected the extraction efficiencies of cesium and selenium. Among the examined conditions, in the bismuth glass treatment, the cesium and selenium extraction efficiencies in water were over 80%, and that of palladium in liquid bismuth was over 80%.

  20. Magnetic properties of tetrataenite-rich meteorites. Pt. 2

    International Nuclear Information System (INIS)

    Nagata, T.; Funaki, M.; Danon, J.

    1985-01-01

    Magnetic hysteresis and thermomagnetic characteristics of St. Severin (LL 6 ), Appley Bridge (LL 6 ) and Tuxtuac (LL 5 ) chondrites, which contain tetrataenite in their metallic components, are measured and analyzed in comparison with another tetrataenite-rich chondrite, Yamato 74160. The magnetic properties of tetrataenite-rich meteorites are characterized by (a) high magnetic coercive force (H sub(C)) which amounts to 520 Oe for St. Severin and 160 Oe for Appley Bridge, (b) essential flatness up to about 500 0 C and then a sharp irreversible drop down to Curie point of the first-run heating thermomagnetic curve. Both characteristic features are broken down to the ordinary features of disordered taenite by a breakdown of tetrataenite structure at elevated temperatures beyond the order-disorder transition temperature. The natural remanent magnetization (NRM) of tetrataenite-rich meteorites is extremely stable against AF-demagnetization and other magnetic disturbances because of the high magnetic coercivity of tetrataenite. The breakdown processes of ordered tetrataenite structure by heat treatments are experimentally pursued for the purpose of research of a possible formation process of tetrataenite phase in meteorites. (Author) [pt

  1. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  2. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    Science.gov (United States)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  3. Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters

    KAUST Repository

    Wu, Zhennan

    2017-03-20

    Aggregation/assembly induced emission (AIE) has been observed for metal nanoclusters (NCs), but the origin of the enhanced emission is not fully understood, yet. In this work, the significant contribution of metal defects on AIE is revealed by engineering the self-assembly process of Cu NCs using ethanol. The presence of ethanol leads to a rapid assembly of NCs into ultrathin nanosheets, promoting the formation of metal defects-rich surface. Detailed studies and computer simulation confirm that the metal defects-rich nanosheets possess increased Cu(I)-to-Cu(0) ratio, which greatly influences ligand-to-metal-metal charge transfer and therewith facilitates the radiative relaxation of excitons. Consequently, the Cu NCs self-assembly nanosheets exhibit obvious emission enhancement.

  4. SYSTEMATIC SEARCH FOR EXTREMELY METAL-POOR GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Luis, A. B.; Sanchez Almeida, J.; Aguerri, J. A. L.; Munoz-Tunon, C., E-mail: abml@iac.es, E-mail: jos@iac.es, E-mail: cmt@iac.es, E-mail: jalfonso@iac.es [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2011-12-10

    We carry out a systematic search for extremely metal-poor (XMP) galaxies in the spectroscopic sample of Sloan Digital Sky Survey (SDSS) data release 7 (DR7). The XMP candidates are found by classifying all the galaxies according to the form of their spectra in a region 80 A wide around H{alpha}. Due to the data size, the method requires an automatic classification algorithm. We use k-means. Our systematic search renders 32 galaxies having negligible [N II] lines, as expected in XMP galaxy spectra. Twenty-one of them have been previously identified as XMP galaxies in the literature-the remaining 11 are new. This was established after a thorough bibliographic search that yielded only some 130 galaxies known to have an oxygen metallicity 10 times smaller than the Sun (explicitly, with 12 + log (O/H) {<=} 7.65). XMP galaxies are rare; they represent 0.01% of the galaxies with emission lines in SDSS/DR7. Although the final metallicity estimate of all candidates remains pending, strong-line empirical calibrations indicate a metallicity about one-tenth solar, with the oxygen metallicity of the 21 known targets being 12 + log (O/H) {approx_equal} 7.61 {+-} 0.19. Since the SDSS catalog is limited in apparent magnitude, we have been able to estimate the volume number density of XMP galaxies in the local universe, which turns out to be (1.32 {+-} 0.23) Multiplication-Sign 10{sup -4} Mpc{sup -3}. The XMP galaxies constitute 0.1% of the galaxies in the local volume, or {approx}0.2% considering only emission-line galaxies. All but four of our candidates are blue compact dwarf galaxies, and 24 of them have either cometary shape or are formed by chained knots.

  5. Application of Hydroforming Process in Sheet Metal Formation

    OpenAIRE

    GRIZELJ, Branko; CUMIN, Josip; ERGIĆ, Todor

    2009-01-01

    This article deals with the theory and application of a hydroforming process. Nowadays automobile manufacturers use high strength sheet metal plates. This high strength steel sheet metal plates are strain hardened in the process of metal forming. With the use of high strength steel, cars are made lightweight, which is intended for low fuel consumption because of high energy prices. Some examples of application of a hydroforming process are simulated with FEM.

  6. Formation of Globular Clusters with Internal Abundance Spreads in r -Process Elements: Strong Evidence for Prolonged Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan)

    2017-07-20

    Several globular clusters (GCs) in the Galaxy are observed to show internal abundance spreads in r -process elements (e.g., Eu). We propose a new scenario that explains the origin of these GCs (e.g., M5 and M15). In this scenario, stars with no/little abundance variations first form from a massive molecular cloud (MC). After all of the remaining gas of the MC is expelled by numerous supernovae, gas ejected from asymptotic giant branch stars can be accumulated in the central region of the GC to form a high-density intracluster medium (ICM). Merging of neutron stars then occurs to eject r -process elements, which can be efficiently trapped in and subsequently mixed with the ICM. New stars formed from the ICM can have r -process abundances that are quite different from those of earlier generations of stars within the GC. This scenario can explain both (i) why r -process elements can be trapped within GCs and (ii) why GCs with internal abundance spreads in r -process elements do not show [Fe/H] spreads. Our model shows (i) that a large fraction of Eu-rich stars can be seen in Na-enhanced stellar populations of GCs, as observed in M15, and (ii) why most of the Galactic GCs do not exhibit such internal abundance spreads. Our model demonstrates that the observed internal spreads of r -process elements in GCs provide strong evidence for prolonged star formation (∼10{sup 8} yr).

  7. Reduced connectivity in the self-processing network of schizophrenia patients with poor insight.

    Directory of Open Access Journals (Sweden)

    Edith J Liemburg

    Full Text Available Lack of insight (unawareness of illness is a common and clinically relevant feature of schizophrenia. Reduced levels of self-referential processing have been proposed as a mechanism underlying poor insight. The default mode network (DMN has been implicated as a key node in the circuit for self-referential processing. We hypothesized that during resting state the DMN network would show decreased connectivity in schizophrenia patients with poor insight compared to patients with good insight. Patients with schizophrenia were recruited from mental health care centers in the north of the Netherlands and categorized in groups having good insight (n= 25 or poor insight (n = 19. All subjects underwent a resting state fMRI scan. A healthy control group (n = 30 was used as a reference. Functional connectivity of the anterior and posterior part of the DMN, identified using Independent Component Analysis, was compared between groups. Patients with poor insight showed lower connectivity of the ACC within the anterior DMN component and precuneus within the posterior DMN component compared to patients with good insight. Connectivity between the anterior and posterior part of the DMN was lower in patients than controls, and qualitatively different between the good and poor insight patient groups. As predicted, subjects with poor insight in psychosis showed decreased connectivity in DMN regions implicated in self-referential processing, although this concerned only part of the network. This finding is compatible with theories implying a role of reduced self-referential processing as a mechanism contributing to poor insight.

  8. Ultracool Subdwarfs: Metal-poor Stars and Brown Dwarfs Extending into the Late-type M, L and T Dwarf Regimes

    OpenAIRE

    Burgasser, Adam J.; Kirkpatrick, J. Davy; Lepine, Sebastien

    2004-01-01

    Recent discoveries from red optical proper motion and wide-field near-infrared surveys have uncovered a new population of ultracool subdwarfs -- metal-poor stars and brown dwarfs extending into the late-type M, L and possibly T spectral classes. These objects are among the first low-mass stars and brown dwarfs formed in the Galaxy, and are valuable tracers of metallicity effects in low-temperature atmospheres. Here we review the spectral, photometric, and kinematic properties of recent discov...

  9. Transient heat transfer phenomena of the liquid metal layer cooled by overlying R113 coolant

    International Nuclear Information System (INIS)

    Cho, J. S.; Seo, K. R.; Jung, C. H.; Park, R. J.; Kim, S. B.

    1999-01-01

    To understand the fundamental relationship of the natural convection heat transfer in the molten metal pool and the boiling mechanism of the overlying coolant, experiments were performed for the transient heat transfer of the liquid metal pool with overlying R113 coolant with boiling. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. The metal pool is heated from the bottom surface and the coolant is injected onto the molten metal pool. Tests were conducted by changing the bottom surface boundary condition. The bottom heating condition was varied from 8kW to 14kW. As a result the boiling mechanism of the R113 coolant is changed from the nuclear boiling to film boiling. The Nusselt number and the Rayleigh number in the molten metal pool region obtained as functions of time. Analysis was made for the relationship between the heat flux and the temperature difference of the metal layer surface temperature and the boiling coolant bulk temperature

  10. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge.

    Science.gov (United States)

    Chen, Ying-Liang; Shih, Pai-Haung; Chiang, Li-Choung; Chang, Yi-Kuo; Lu, Hsing-Cheng; Chang, Juu-En

    2009-10-15

    The purpose of this study is to utilize an electroplating sludge for belite-rich clinker production and to observe the influence of heavy metals on the polymorphs of dicalcium silicate (C(2)S). Belite-rich clinkers prepared with 0.5-2% of NiO, ZnO, CuO, and Cr(2)O(3) were used to investigate the individual effects of the heavy metals in question. The Reference Intensity Ratio (RIR) method was employed to determine the weight fractions of gamma-C(2)S and beta-C(2)S in the clinkers, and their microstructures were examined by the transmission electron microscopy (TEM). The results showed that nickel, zinc, and chromium have positive effects on beta-C(2)S stabilization (Cr(3+)>Ni(2+)>Zn(2+)), whereas copper has a negative effect. The addition of up to 10% electroplating sludge did not have any negative influence on the formation of C(2)S. It was observed that gamma-C(2)S decreased while beta-C(2)S increased with a rise in the addition of the electroplating sludge. Moreover, nickel and chromium mainly contributed to stabilizing beta-C(2)S in the belite-rich clinkers produced from the electroplating sludge.

  11. Classification of extremely metal-poor stars: absent region in A(C)-[Fe/H] plane and the role of dust cooling

    Science.gov (United States)

    Chiaki, Gen; Tominaga, Nozomu; Nozawa, Takaya

    2017-11-01

    Extremely metal-poor (EMP) stars are the living fossils with records of chemical enrichment history at the early epoch of galaxy formation. By the recent large observation campaigns, statistical samples of EMP stars have been obtained. This motivates us to reconsider their classification and formation conditions. From the observed lower limits of carbon and iron abundances of Acr(C) ∼ 6 and [Fe/H]cr ∼ -5 for C-enhanced EMP (CE-EMP) and C-normal EMP (CN-EMP) stars, we confirm that gas cooling by dust thermal emission is indispensable for the fragmentation of their parent clouds to form such low mass, i.e. long-lived stars, and that the dominant grain species are carbon and silicate, respectively. We constrain the grain radius r_i^cool of a species i and condensation efficiency fij of a key element j as r_C^cool / f_C,C = 10 {μ m} and r_Sil^cool / f_Sil,Mg = 0.1 {μ m} to reproduce Acr(C) and [Fe/H]cr, which give a universal condition 10[C/H] - 2.30 + 10[Fe/H] > 10-5.07 for the formation of every EMP star. Instead of the conventional boundary [C/Fe] = 0.7 between CE-EMP and CN-EMP stars, this condition suggests a physically meaningful boundary [C/Fe]b = 2.30 above and below which carbon and silicate grains are dominant coolants, respectively.

  12. Mining the Sloan digital sky survey in search of extremely α-poor stars in the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Q. F.; Zhao, G., E-mail: qfxing@nao.cas.cn, E-mail: gzhao@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-20

    As we know, the majority of metal-poor Galactic halo stars appear to have chemical abundances that were enhanced by α-elements (e.g., O, Mg, Si, Ca, and Ti) during the early stage of the Galaxy. Observed metal-poor halo stars preserved this pattern by exhibiting abundance ratios [α/Fe] ∼+0.4. A few striking exceptions that show severe departures from the general enhanced α-element chemical abundance trends of the halo have been discovered in recent years. They possess relatively low [α/Fe] compared to other comparable-metallicity stars, with abundance ratios over 0.5 dex lower. These stars may have a different chemical enrichment history from the majority of the halo. Similarly, low-α abundances are also displayed by satellite dwarf spheroidal (dSph) galaxies. We present a method to select extremely α-poor (EAP) stars from the SDSS/SEGUE survey. The method consists of a two-step approach. In the first step, we select suspected metal-poor ([Fe/H] <–0.5) and α-poor ([Mg/Fe] <0) stars as our targets. In the second step, we determine [Mg/Fe] from low-resolution (R = 2000) stellar spectra for our targets and select stars with [Mg/Fe] <–0.1 as candidate EAP stars. In a sample of 40,000 stars with atmospheric parameters in the range of T{sub eff} = [4500, 7000] K, log g = [1.0, 5.0], and [Fe/H] = [–4.0, +0.5], 14 candidate stars were identified. Three of these stars are found to have already been confirmed by other research.

  13. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis.

    Science.gov (United States)

    Brennecka, Gregory A; Borg, Lars E; Wadhwa, Meenakshi

    2013-10-22

    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium-aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy.

  14. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.

    Science.gov (United States)

    Plegaria, Jefferson S; Dzul, Stephen P; Zuiderweg, Erik R P; Stemmler, Timothy L; Pecoraro, Vincent L

    2015-05-12

    De novo protein design is a biologically relevant approach that provides a novel process in elucidating protein folding and modeling the metal centers of metalloproteins in a completely unrelated or simplified fold. An integral step in de novo protein design is the establishment of a well-folded scaffold with one conformation, which is a fundamental characteristic of many native proteins. Here, we report the NMR solution structure of apo α3DIV at pH 7.0, a de novo designed three-helix bundle peptide containing a triscysteine motif (Cys18, Cys28, and Cys67) that binds toxic heavy metals. The structure comprises 1067 NOE restraints derived from multinuclear multidimensional NOESY, as well as 138 dihedral angles (ψ, φ, and χ1). The backbone and heavy atoms of the 20 lowest energy structures have a root mean square deviation from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, respectively. When compared to the parent structure α3D, the substitution of Leu residues to Cys enhanced the α-helical content of α3DIV while maintaining the same overall topology and fold. In addition, solution studies on the metalated species illustrated metal-induced stability. An increase in the melting temperatures was observed for Hg(II), Pb(II), or Cd(II) bound α3DIV by 18-24 °C compared to its apo counterpart. Further, the extended X-ray absorption fine structure analysis on Hg(II)-α3DIV produced an average Hg(II)-S bond length at 2.36 Å, indicating a trigonal T-shaped coordination environment. Overall, the structure of apo α3DIV reveals an asymmetric distorted triscysteine metal binding site, which offers a model for native metalloregulatory proteins with thiol-rich ligands that function in regulating toxic heavy metals, such as ArsR, CadC, MerR, and PbrR.

  15. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto

    conditions influence the resulting noble metal particles size in those systems [1]. For every specific application the particle size and the metal/metal oxide interaction affect the performance of these nano-composite materials [2]. Recently, aerosol processes have been successfully used to produce platinum...

  16. The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant *

    Science.gov (United States)

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Sayer, Lucy N.; Usón, Isabel; Huggins, Thomas G.; Robinson, Nigel J.; Pohl, Ehmke

    2016-01-01

    The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmRE64H gains responsiveness to Zn(II) and cobalt in vivo. Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro. Sensitivity to formaldehyde requires a cysteine (Cys35 in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmRE64H reveals that an FrmR-specific amino-terminal Pro2 is proximal to Cys35, and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmRP2S and RcnRS2P, respectively, impair and enhance formaldehyde reactivity in vitro. Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro. Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate. PMID:27474740

  17. Description of Latvian Metal Production and Processing Enterprises' Air Emissions

    OpenAIRE

    Pubule, J; Zahare, D; Blumberga, D

    2010-01-01

    The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and process...

  18. Media Rich, Media Poor: Two Studies of Diversity in Agenda-Holding

    Science.gov (United States)

    Chaffee, Steven H.; Wilson, Donna G.

    1977-01-01

    Results of a Wisconsin study and a national study indicate that media richness of a community is associated with greater diversity in the public problems agenda held by the citizens of that community. (GW)

  19. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  20. Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris

    Science.gov (United States)

    Tenenbaum, E. D.; Ziurys, L. M.

    2010-03-01

    A new interstellar molecule, AlOH, has been detected toward the envelope of VY Canis Majoris (VY CMa), an oxygen-rich red supergiant. Three rotational transitions of AlOH were observed using the facilities of the Arizona Radio Observatory (ARO). The J = 9 → 8 and J = 7 → 6 lines at 1 mm were measured with the ARO Submillimeter Telescope, while the J = 5 → 4 transition at 2 mm was observed with the ARO 12 m antenna on Kitt Peak. The AlOH spectra exhibit quite narrow line widths of 16-23 km s-1, as found for NaCl in this source, indicating that the emission arises from within the dust acceleration zone of the central circumstellar outflow. From a radiative transfer analysis, the abundance of AlOH relative to H2 was found to be ~1 × 10-7 for a source size of 0.26'' or 22 R* . In contrast, AlCl was not detected with f VY CMa is ~17. Therefore, AlOH appears to be the dominant gas-phase molecular carrier of aluminum in this oxygen-rich shell. Local thermodynamic equilibrium calculations predict that the monohydroxides should be the major carriers of Al, Ca, and Mg in O-rich envelopes, as opposed to the oxides or halides. The apparent predominance of aluminum-bearing molecules in VY CMa may reflect proton addition processes in H-shell burning.

  1. Corifollitropin alfa followed by rFSH in a GnRH antagonist protocol for poor ovarian responder patients

    DEFF Research Database (Denmark)

    Polyzos, Nikolaos P; Devos, Michel; Humaidan, Peter

    2013-01-01

    OBJECTIVE: To identify whether women with poor ovarian response may benefit from treatment with corifollitropin alfa in a GnRH antagonist protocol. DESIGN: Retrospective pilot study. SETTING: University-based tertiary care center. PATIENT(S): Poor ovarian responders fulfilling the Bologna criteria...... developed by European Society for Human Reproduction and Embryology Consensus Group. INTERVENTION(S): Corifollitropin alfa (150 μg) followed by 300 IU rFSH in a GnRH antagonist protocol. MAIN OUTCOME MEASURE(S): Endocrinologic profile and ongoing pregnancy rates. RESULT(S): Among 43 women treated...

  2. Metal impurity fluxes and plasma-surface interactions in EXTRAP T2R

    Science.gov (United States)

    Bergsåker, H.; Menmuir, S.; Rachlew, E.; Brunsell, P. R.; Frassinetti, L.; Drake, J. R.

    2008-03-01

    The EXTRAP T2R is a large aspect ratio Reversed Field Pinch device. The main focus of interest for the experiments is the active feedback control of resistive wall modes [1]. With feedback it has been possible to prolong plasma discharges in T2R from about 20 ms to nearly 100 ms. In a series of experiments in T2R, in H- and D- plasmas with and without feedback, quantitative spectroscopy and passive collector probes have been used to study the flux of metal impurities. Time resolved spectroscopic measurements of Cr and Mo lines showed large metal release towards discharge termination without feedback. Discharge integrated fluxes of Cr, Fe, Ni and Mo were also measured with collector probes at wall position. Reasonable quantitative agreement was found between the spectroscopic and collector probe measurements. The roles of sputtering, thermal evaporation and arcing in impurity production are evaluated based on the composition of the measured impurity flux.

  3. Metal impurity fluxes and plasma-surface interactions in EXTRAP T2R

    International Nuclear Information System (INIS)

    Bergsaaker, H; Brunsell, P R; Frassinetti, L; Drake, J R; Menmuir, S; Rachlew, E

    2008-01-01

    The EXTRAP T2R is a large aspect ratio Reversed Field Pinch device. The main focus of interest for the experiments is the active feedback control of resistive wall modes. With feedback it has been possible to prolong plasma discharges in T2R from about 20 ms to nearly 100 ms. In a series of experiments in T2R, in H- and D- plasmas with and without feedback, quantitative spectroscopy and passive collector probes have been used to study the flux of metal impurities. Time resolved spectroscopic measurements of Cr and Mo lines showed large metal release towards discharge termination without feedback. Discharge integrated fluxes of Cr, Fe, Ni and Mo were also measured with collector probes at wall position. Reasonable quantitative agreement was found between the spectroscopic and collector probe measurements. The roles of sputtering, thermal evaporation and arcing in impurity production are evaluated based on the composition of the measured impurity flux

  4. Atmospheric parameters and magnesium and calcium NLTE abundances for a sample of 16 ultra metal-poor stars

    Science.gov (United States)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Ezzeddine, Rana; Frebel, Anna

    2018-06-01

    The most metal-poor stars provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Accurate atmospheric parameters is a prerequisite of determination of accurate abundances. We present atmospheric parameters and abundances of calcium and magnesium for a sample of 16 ultra-metal poor (UMP) stars. In spectra of UMP stars, iron is represented only by lines of Fe I, while calcium is represented with lines of Ca I and Ca II, which can be used for determination/checking of effective temperature and surface gravity. Accurate calculations of synthetic spectra of UMP stars require non-local thermodynamic equilibrium (NLTE) treatment of line formation, since deviations from LTE grow with metallicity decreasing. The method of atmospheric parameter determination is based on NLTE analysis of lines of Ca I and Ca II, multi-band photometry, and isochrones. The method was tested in advance with the ultra metal-poor giant CD-38 245, where, in addition, trigonometric parallax measurements from Gaia DR1 and lines of Fe I and Fe II are available. Using photometric Teff = 4900 K and distance based log g = 2.0 for CD-38 245, we derived consistent within error bars NLTE abundances from Fe I and Fe II and Ca I and Ca II, while LTE leads to a discrepancy of 0.6 dex between Ca I and Ca II. We determined NLTE and LTE abundances of magnesium and calcium in 16 stars of the sample. For the majority of stars, as expected, [Ca/Mg] NLTE abundance ratios are close to 0, while LTE leads to systematically higher [Ca/Mg], by up to 0.3 dex, and larger spread of [Ca/Mg] for different stars. Three stars of our sample are strongly enhanced in magnesium, with [Mg/Ca] of 1.3 dex. It is worth noting that, for these three stars, we got very similar [Mg/Ca] of 1.30, 1.45, and 1.29, in contrast to the data from the literature, where, for the same stars, [Mg/Ca] vary from 0.7 to 1.4. Very similar [Mg/Ca] abundance ratios of these stars argue that

  5. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments

    International Nuclear Information System (INIS)

    Mench, Michel; Renella, Giancarlo; Gelsomino, Antonio; Landi, Loretta; Nannipieri, Paolo

    2006-01-01

    The effectiveness of two amendments for the in situ remediation of a Cd- and Ni-contaminated soil in the Louis Fargue long-term field experiment was assessed. In April 1995, one replicate plot (S1) was amended with 5% w/w of beringite (B), a coal fly ash (treatment S1 + B), and a second plot with 1% w/w zerovalent-Fe iron grit (SS) (treatment S1+SS), with the aim of increasing metal sorption and attenuating metal impacts. Long-term responses of daily respiration rates, microbial biomass, bacterial species richness and the activities of key soil enzymes (acid and alkaline phosphatase, arylsulfatase, β-glucosidase, urease and protease activities) were studied in relation to soil metal extractability. Seven years after initial amendments, the labile fractions of Cd and Ni in both the S1 + B and S1 + SS soils were reduced to various extents depending on the metal and fractions considered. The soil microbial biomass and respiration rate were not affected by metal contamination and amendments in the S1 + B and S1 + SS soils, whereas the activity of different soil enzymes was restored. The SS treatment was more effective in reducing labile pools of Cd and Ni and led to a greater recovery of soil enzyme activities than the B treatment. Bacterial species richness in the S1 soil did not alter with either treatment. It was concluded that monitoring of the composition and activity of the soil microbial community is important in evaluating the effectiveness of soil remediation practices. - Amendments (coal fly ash, zerovalent-Fe iron grit), reduced labile fractions of Cd and Ni in contaminated soils and restored the activity of key soil hydrolases

  6. The development of infants' use of property-poor sounds to individuate objects.

    Science.gov (United States)

    Wilcox, Teresa; Smith, Tracy R

    2010-12-01

    There is evidence that infants as young as 4.5 months use property-rich but not property-poor sounds as the basis for individuating objects (Wilcox, Woods, Tuggy, & Napoli, 2006). The current research sought to identify the age at which infants demonstrate the capacity to use property-poor sounds. Using the task of Wilcox et al., infants aged 7 and 9 months were tested. The results revealed that 9- but not 7-month-olds demonstrated sensitivity to property-poor sounds (electronic tones) in an object individuation task. Additional results confirmed that the younger infants were sensitive to property-rich sounds (rattle sounds). These are the first positive results obtained with property-poor sounds in infants and lay the foundation for future research to identify the underlying basis for the developmental hierarchy favoring property-rich over property-poor sounds and possible mechanisms for change. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Chemical Compositions of Stars in the Globular Cluster NGC 3201: Tracers of Multi-Epoch Star Formation

    Science.gov (United States)

    Simmerer, Jennifer A.; Ivans, I. I.; Filler, D.

    2012-01-01

    The retrograde halo globular cluster NGC 3201 contains stars of substantially different iron abundance ([Fe/H]), a property that puts it at odds with the vast majority of the Galactic cluster system. Though its unusual orbit prompted speculation that NGC 3201 was the remnant of a captured object, much like the multi-metallicity globular cluster Omega Centauri, NGC 3201 is much less massive than Omega Centauri and all of the other halo globular clusters that have internal metallicity variations. We present the abundances of 21 elements in 24 red giant branch stars in NGC 3201 based on high-resolution (R 40,000), high signal-to-noise (S/N 70) spectra. We find that the detailed abundance pattern of NGC 3201 is unique amongst multi-metallicity halo clusters. Unlike M22, Omega Centauri, and NGC 1851, neither metal-poor nor metal-rich stars show any evidence of s-process enrichment (a product of the advanced evolution of low- and intermediate-mass stars). We find that while Na, O, and Al vary from star to star as is typical in globular clusters, there is no systematic difference between the abundance pattern in the metal-poor cluster stars and that of the metal-rich cluster stars. Furthermore, we find that the metallicity variations in NGC 3201 are independent of the well-known Na-O anticorrelation, which separates it from every other multi-metallicity cluster. In the context of a multi-episode star formation model, this implies that NGC 3201 began life with the [Fe/H] variations we measure now.

  8. Characterization of Li-rich layered oxides by using transmission electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Zhao

    2017-07-01

    Full Text Available Lithium-rich layered oxides (LrLOs deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay. Keywords: Lithium-ion battery, Transmission electron microscope, Lithium-rich layered oxide, Cathode material

  9. Mass fractionation processes of transition metal isotopes

    Science.gov (United States)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  10. Engineering MerR for Sequestration and MerA for Reduction of Toxic Metals and Radionuclides

    International Nuclear Information System (INIS)

    Summers, Anne O.

    2008-01-01

    The objectives of this project were (1) to alter a metalloregulatory protein (MerR) so that it would bind other toxic metals or radionuclides with similar affinity so that the engineered protein itself and/or bacteria expressing it could be deployed in the environment to specifically sequester such metals and (2) to alter the mercuric reductase, MerA, to reduce radionuclides and render them less mobile. Both projects had a basic science component. In the first case, such information about MerR illuminates how proteins discriminate very similar metals/elements. In the second case, information about MerA reveals the criteria for transmission of reducing equivalents from NADPH to redox-active metals. The work involved genetic engineering of all or parts of both proteins and examination of their resultant properties both in vivo and in vitro, the latter with biochemical and biophysical tools including equilibrium and non-equilibrium dialysis, XAFS, NMR, x-ray crystallography, and titration calorimetry. We defined the basis for metal specificity in MerR, devised a bacterial strain that sequesters Hg while growing, characterized gold reduction by MerA and the role of the metallochaperone domain of MerA, and determined the 3-D structure of MerB, the organomercurial lyase.

  11. Kinetics and Mechanism of Metal Retention/Release in Geochemical Processes in Soil - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robert W.

    2000-12-29

    Effective, remediation of soils contaminated with heavy metals requires a better understanding of the mechanisms by which the metals are retained/released in soils over a long period of time. Studies on reaction of Cr(VI) with iron-rich clays indicated that structural iron (II) in these surfaces is capable of reducing chromate to chromium (III). We found that iron (II) either found naturally or produced by treatment of clay with sodium dithionite, effectively reduced Cr (VI) to Cr (III). Thus, in situ remediation of chromium combines reduction of Cr (VI) to Cr (III) and immobilization of chromium on mineral surfaces. During this study, lead sorption on a kaolin surface was found to be a rapid and a pH dependant process in which lead sorption significantly increased with the amount of phosphate on the clay surface. This study verifies that methylmercury cation remains intact when it binds to humic acids, forming a monodentate complex with some sub-population of humic thiol ligands .

  12. Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs.

    Science.gov (United States)

    Hatakeyama, Ichiro; Marukawa, Eriko; Takahashi, Yukinobu; Omura, Ken

    2014-02-01

    Alveolar bone resorption generally occurs during healing after tooth extraction. This study aimed to evaluate the effects of platelet-poor plasma (PPP), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) on healing in a ridge-augmentation model of the canine socket with dehiscence of the buccal wall. The third mandibular premolars of 12 beagle dogs were extracted and a 3 mm buccal dehiscence from the alveolar crest to the buccal wall of the extraction socket was created. These sockets were then divided into four groups on the basis of the material used to fill the sockets: PPP, PRP, PRF, and control (no graft material) groups. Results were evaluated at 4 and 8 weeks after surgery. The ultrastructural morphology and constructs of each blood product were studied by a scanning electron microscope (SEM) or calculating concentrations of platelets, fibrinogen, platelet-derived growth factor, and transforming growth factor-β. A total of five microcomputed tomography images of specimens were selected for measurement, and the area occupied by the newly formed bone as well as the horizontal bone width were measured. Moreover, decalcified tissue specimens from each defect were analyzed histologically. The median area of new bone at 4 and 8 weeks and median horizontal bone width at 8 weeks were the highest in the PPP group. However, bone maturation in the PRF and the PRP groups was more progressed than that in the PPP and control groups. By SEM findings, the PRF group showed a more highly condensed fibrin fiber network that was regularly arranged when compared with the PPP and PRP groups. The growth factors released from platelets in PRP indicated higher concentrations than that in PRF. Under more severe conditions for bone formation, as in this experiment, the growth factors released from platelets had a negative effect on bone formation. This study showed that PPP is an effective material for the preservation of sockets with buccal dehiscence.

  13. Uranium metal oxidation, grinding, and encapsulation in BorobondR: TRU waste management - 59279

    International Nuclear Information System (INIS)

    Cook, Kevin S.; Addington, Larry A.; Utley, Beth

    2012-01-01

    Hydrogen generation mitigation for K Basin sludge was examined by encapsulation of uranium metal in BoroBond R , pre-oxidation of uranium metal with Fenton's reagent and grinding of Densalloy SD170, an irradiated uranium metal surrogate. Encapsulation in BoroBond R resulted in pressure increase rates at 60 deg. C ranging from 0.116 torr/h to 0.186 torr/h compared to 0.240 torr/h for a uranium metal in water standard. Samples cast with higher water content led to increased rates. A Fenton's reagent system consisting of a simple reagent mix of FeSO 4 .7H 2 O, H 2 O 2 and HCl effectively oxidized 1/4'' cubes of uranium metal in under four days at room temperature. Increased peroxide addition rate, increased FeSO 4 .7H 2 O concentration and low pH all increase the corrosion rate. Densalloy SD170 with an average particle size of 581 μm with 7.63 % of particles less than 90 μm was milled so that over 90 % of the Densalloy mass measured less than 90 μm in 6 hours of milling. Acceptable wear rates were seen on wear components that were from standard materials (Nitronic SS and 440SS). (authors)

  14. A novel mechanism of “metal gel-shift” by histidine-rich Ni2+-binding Hpn protein from Helicobacter pylori strain SS1

    Science.gov (United States)

    Ito, Yuki; Masumoto, Junya; Morita, Eugene Hayato; Hayashi, Hidenori

    2017-01-01

    Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) is a universally used method for determining approximate molecular weight (MW) in protein research. Migration of protein that does not correlate with formula MW, termed “gel shifting” appears to be common for histidine-rich proteins but not yet studied in detail. We investigated “gel shifting” in Ni2+-binding histidine-rich Hpn protein cloned from Helicobacter pylori strain SS1. Our data demonstrate two important factors determining “gel shifting” of Hpn, polyacrylamide-gel concentration and metal binding. Higher polyacrylamide-gel concentrations resulted in faster Hpn migration. Irrespective of polyacrylamide-gel concentration, preserved Hpn-Ni2+ complex migrated faster (3–4 kDa) than apo-Hpn, phenomenon termed “metal gel-shift” demonstrating an intimate link between Ni2+ binding and “gel shifting”. To examine this discrepancy, eluted samples from corresponding spots on SDS-gel were analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The MW of all samples was the same (6945.66±0.34 Da) and identical to formula MW with or without added mass of Ni2+. MALDI-TOF-MS of Ni2+-treated Hpn revealed that monomer bound up to six Ni2+ ions non-cooperatively, and equilibrium between protein-metal species was reliant on Ni2+ availability. This corroborates with gradually increased heterogeneity of apo-Hpn band followed by compact "metal-gel shift" band on SDS-PAGE. In view of presented data metal-binding and “metal-gel shift” models are discussed. PMID:28207866

  15. The R package EchoviewR for automated processing of active acoustic data using Echoview

    Directory of Open Access Journals (Sweden)

    Lisa-Marie Katarina Harrison

    2015-02-01

    Full Text Available Acoustic data is time consuming to process due to the large data size and the requirement to often undertake some data processing steps manually. Manual processing may introduce subjective, irreproducible decisions into the data processing work flow, reducing consistency in processing between surveys. We introduce the R package EchoviewR as an interface between R and Echoview, a commercially available acoustic processing software package. EchoviewR allows for automation of Echoview using scripting which can drastically reduce the manual work required when processing acoustic surveys. This package plays an important role in reducing subjectivity in acoustic data processing by allowing exactly the same process to be applied automatically to multiple surveys and documenting where subjective decisions have been made. Using data from a survey of Antarctic krill, we provide two examples of using EchoviewR: krill estimation and swarm detection.

  16. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties

    Directory of Open Access Journals (Sweden)

    David Thompson

    2016-10-01

    Full Text Available This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

  17. Improving poor fill factors for solar cells via light-induced plating

    International Nuclear Information System (INIS)

    Xing Zhao; Jia Rui; Ding Wuchang; Meng Yanlong; Jin Zhi; Liu Xinyu

    2012-01-01

    Silicon solar cells are prepared following the conventional fabrication processes, except for the metallization firing process. The cells are divided into two groups with higher and lower fill factors, respectively. After light-induced plating (LIP), the fill factors of the solar cells in both groups with different initial values reach the same level. Scanning electron microscope (SEM) images are taken under the bulk silver electrodes, which prove that the improvement for cells with a poor factor after LIP should benefit from sufficient exploitation of the high density silver crystals formed during the firing process. Moreover, the application of LIP to cells with poor electrode contact performance, such as nanowire cells and radial junction solar cells, is proposed. (semiconductor devices)

  18. Neutron Star Mergers and the R process

    Science.gov (United States)

    Joniak, Ronald; Ugalde, Claudio

    2017-09-01

    About half of the elements of the periodic table that are present today in the Solar System were synthesized before the formation of the Sun via a rapid neutron capture process (r process). However, the astrophysical site of the r process is a longstanding problem that has captivated both experimental and theoretical astrophysicists. Up to date, two possible scenarios for the site of the r process have been suggested: the first involves the high entropy wind of core collapse supernovae, and the second corresponds to the merger of two compact stellar objects such as neutron stars. We will study the robustness of the nucleosynthesis abundance pattern between the second and third r process peaks as produced by neutron star mergers with r process-like neutron exposures. First, we will vary parameters to obtain an understanding of the astrophysical mechanisms that create the r process. Next, we will create a program to obtain the best possible parameters based on a chi-squared test. Once we have the best fits, we will test the effect of fission in the overall isotope abundance pattern distribution. Later on, we will vary the ratio of masses of the two fission fragments and study its effect on elemental abundances. This research was supported by the UIC College of Liberal Arts and Sciences Undergraduate Research Initiative (LASURI).

  19. Extraterrestrial Metals Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Extraterrestrial Metals Processing (EMP) system produces ferrosilicon, silicon monoxide, a glassy mixed oxide slag, and smaller amounts of alkali earth...

  20. Process control for sheet-metal stamping process modeling, controller design and shop-floor implementation

    CERN Document Server

    Lim, Yongseob; Ulsoy, A Galip

    2014-01-01

    Process Control for Sheet-Metal Stamping presents a comprehensive and structured approach to the design and implementation of controllers for the sheet metal stamping process. The use of process control for sheet-metal stamping greatly reduces defects in deep-drawn parts and can also yield large material savings from reduced scrap. Sheet-metal forming is a complex process and most often characterized by partial differential equations that are numerically solved using finite-element techniques. In this book, twenty years of academic research are reviewed and the resulting technology transitioned to the industrial environment. The sheet-metal stamping process is modeled in a manner suitable for multiple-input multiple-output control system design, with commercially available sensors and actuators. These models are then used to design adaptive controllers and real-time controller implementation is discussed. Finally, experimental results from actual shopfloor deployment are presented along with ideas for further...

  1. Assessment of radionuclide and metal contamination in a thorium rich area in Norway.

    Science.gov (United States)

    Popic, Jelena Mrdakovic; Salbu, Brit; Strand, Terje; Skipperud, Lindis

    2011-06-01

    The Fen Central Complex in southern Norway, a geologically well investigated area of magmatic carbonatite rocks, is assumed to be among the world largest natural reservoirs of thorium ((232)Th). These rocks, also rich in iron (Fe), niobium (Nb), uranium ((238)U) and rare earth elements (REE), were mined in several past centuries. Waste locations, giving rise to enhanced levels of both radionuclides and metals, are now situated in the area. Estimation of radionuclide and metal contamination of the environment and radiological risk assessment were done in this study. The average outdoor gamma dose rate measured in Fen, 2.71 μGy h(-1), was significantly higher than the world average dose rate of 0.059 μGy h(-1). The annual exposure dose from terrestrial gamma radiation, related to outdoor occupancy, was in the range 0.18-9.82 mSv. The total activity concentrations of (232)Th and (238)U in soil ranged from 69 to 6581 and from 49 to 130 Bq kg(-1), respectively. Enhanced concentrations were also identified for metals, arsenic (As), lead (Pb), chromium (Cr) and zinc (Zn), in the vicinity of former mining sites. Both radionuclide and heavy metal concentrations suggested leaching, mobilization and distribution from rocks into the soil. Correlation analysis indicated different origins for (232)Th and (238)U, but same or similar for (232)Th and metals As, Cr, Zn, nickel (Ni) and cadmium (Cd). The results from in situ size fractionation of water demonstrated radionuclides predominately present as colloids and low molecular mass (LMM) species, being potentially mobile and available for uptake in aquatic organisms of Norsjø Lake. Transfer factors, calculated for different plant species, showed the highest radionuclide accumulation in mosses and lichens. Uptake in trees was, as expected, lower. Relationship analysis of (232)Th and (238)U concentrations in moss and soil samples showed a significant positive linear correlation.

  2. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  3. Specificity of the metalloregulator CueR for monovalent metal ions

    DEFF Research Database (Denmark)

    Szunyogh, Dániel; Szokolai, Hajnalka; Thulstrup, Peter Waaben

    2015-01-01

    (II) , and Hg(II) binding to model systems encompassing the metal-ion-binding loop of CueR from E. coli and V. cholerae. In the presence of Ag(I) , a conserved cysteine residue displays a pKa value for deprotonation of the thiol that is close to the physiological pH value. This property is only observed...

  4. THE SYNTHETIC-OVERSAMPLING METHOD: USING PHOTOMETRIC COLORS TO DISCOVER EXTREMELY METAL-POOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A. A., E-mail: amiller@astro.caltech.edu [Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA 91109 (United States)

    2015-09-20

    Extremely metal-poor (EMP) stars ([Fe/H] ≤ −3.0 dex) provide a unique window into understanding the first generation of stars and early chemical enrichment of the universe. EMP stars are exceptionally rare, however, and the relatively small number of confirmed discoveries limits our ability to exploit these near-field probes of the first ∼500 Myr after the Big Bang. Here, a new method to photometrically estimate [Fe/H] from only broadband photometric colors is presented. I show that the method, which utilizes machine-learning algorithms and a training set of ∼170,000 stars with spectroscopically measured [Fe/H], produces a typical scatter of ∼0.29 dex. This performance is similar to what is achievable via low-resolution spectroscopy, and outperforms other photometric techniques, while also being more general. I further show that a slight alteration to the model, wherein synthetic EMP stars are added to the training set, yields the robust identification of EMP candidates. In particular, this synthetic-oversampling method recovers ∼20% of the EMP stars in the training set, at a precision of ∼0.05. Furthermore, ∼65% of the false positives from the model are very metal-poor stars ([Fe/H] ≤ −2.0 dex). The synthetic-oversampling method is biased toward the discovery of warm (∼F-type) stars, a consequence of the targeting bias from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding survey. This EMP selection method represents a significant improvement over alternative broadband optical selection techniques. The models are applied to >12 million stars, with an expected yield of ∼600 new EMP stars, which promises to open new avenues for exploring the early universe.

  5. Increasing the Stimulation Dose of rFSH in Unexpected Poor Responders Is Not Associated with Better IVF Outcome

    Directory of Open Access Journals (Sweden)

    Levent Tutuncu

    2012-01-01

    Full Text Available The aim of this retrospective study is to determine whether increasing the stimulation dose of rFSH in unexpected poor responders is associated with better in vitro fertilization (IVF outcome or not. A total of forty eligible women who fulfilled our definition of poor responders and who did not achieve an ongoing pregnancy in the first cycle and returned for a second higher rFSH dose IVF cycle with a long-agonist protocol were included to the study. The first low-dose cycles and the second high-dose cycles were compared to each other. Main outcome measures of the study were duration of stimulation, number of follicles, number of oocytes retrieved, number of embryos, and E2 level on day of hCG injection. There were no significant differences in duration of stimulation, number of follicles, number of oocytes retrieved, number of embryos, and E2 level on day of hCG injection between the first low- and second high-dose cycles. Daily dose and total dose of rFSH were significantly higher in the second high-dose cycles. Increasing the dose of rFSH in a second stimulation cycle after first unsuccessful treatment cycle will add only to the cost and discomfort of the treatment and might adversely affect pregnancy rates.

  6. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel; Ďurišová, Jana; Hrstka, Tomáš; Korbelová, Zuzana; Hložková Vaňková, M.; Vašinová Galiová, M.; Kanický, V.; Rambousek, P.; Knésl, I.; Dobeš, P.; Dosbaba, M.

    292/293, November (2017), s. 198-217 ISSN 0024-4937 R&D Projects: GA ČR GA14-13600S Institutional support: RVO:67985831 Keywords : rare-metal granite * Cínovec/Zinnwald deposit * rock textures * metasomatic processes * magmatic processes Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.677, year: 2016

  7. From Parasite Encounter to Infection: Multiple-Scale Drivers of Parasite Richness in a Wild Social Primate Population

    Science.gov (United States)

    Benavides J. A.; Huchard, E.; Pettorelli, N.; King, A. J.; Brown, M. E.; Archer, C. E.; Appleton, C. C.; Raymond, M.; Cowlishaw, G.

    2011-01-01

    Host parasite diversity plays a fundamental role in ecological and evolutionary processes, yet the factors that drive it are still poorly understood. A variety of processes, operating across a range of spatial scales, are likely to influence both the probability of parasite encounter and subsequent infection. Here, we explored eight possible determinants of parasite richness, comprising rainfall and temperature at the population level, ranging behavior and home range productivity at the group level, and age, sex, body condition, and social rank at the individual level. We used a unique dataset describing gastrointestinal parasites in a terrestrial subtropical vertebrate (chacma baboons, Papio ursinus), comprising 662 faecal samples from 86 individuals representing all age-sex classes across two groups over two dry seasons in a desert population. Three mixed models were used to identify the most important factor at each of the three spatial scales (population, group, individual); these were then standardised and combined in a single, global, mixed model. Individual age had the strongest influence on parasite richness, in a convex relationship. Parasite richness was also higher in females and animals in poor condition, albeit at a lower order of magnitude than age. Finally, with a further halving of effect size, parasite richness was positively correlated to day range and temperature. These findings indicate that a range of factors influence host parasite richness through both encounter and infection probabilities, but that individual-level processes may be more important than those at the group or population level.

  8. How countries become rich and reduce poverty

    DEFF Research Database (Denmark)

    Whitfield, Lindsay

    2012-01-01

    For the sake of less developed countries, it is time to adjust the discussion of international development assistance on poverty reduction. This article attempts to do so by reviewing new and old literature explaining why some countries are rich and others are poor. History has repeatedly shown...... that building up capabilities in manufacturing and improving the productivity of agriculture are the keys to wealth creation and long-term sustained poverty reduction. Furthermore, industrialisation and increased agricultural productivity are interdependent processes. Discussion about ending world poverty needs...

  9. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Ruth C. [SETI Institute and Astrophysical Advances, 607 Marion Place, Palo Alto, CA 94301 (United States); Kurucz, Robert L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ayres, Thomas R., E-mail: peterson@ucolick.org [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States)

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  10. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.

    Science.gov (United States)

    Sarvar, Mojtaba; Salarirad, Mohammad Mehdi; Shabani, Mohammad Amin

    2015-11-01

    In this paper, a novel mechanical process is proposed for enriching metal content of computer Printed Circuit Boards (PCBs). The PCBs are crushed and divided into three different size fractions namely: -0.59, +0.59 to 1.68 and +1.68 mm. Wet jigging and froth flotation methods are selected for metal enrichment. The coarse size fraction (+1.68 mm) is processed by jigging. The plastic free product is grinded and screened. The oversized product is separated as the first concentrate. It was rich of metal because the grinding process was selective. The undersized product is processed by froth flotation. Based on the obtained results, the middle size fraction (+0.59 to 1.68 mm) and the small size fraction (-0.59 mm) are processed by wet jigging and froth flotation respectively. The wet jigging process is optimized by investigating the effect of pulsation frequency and water flow rate. The results of examining the effect of particle size, solid to liquid ratio, conditioning time and using apolar collector showed that collectorless flotation is a promising method for separating nonmetals of PCBs. 95.6%, 97.5% and 85% of metal content of coarse size, middle size and small size fraction are recovered. The grades of obtained concentrates were 63.3%, 92.5% and 75% respectively. The total recovery is calculated as 95.64% and the grade of the final concentrate was 71.26%. Determining the grade of copper and gold in the final product reveals that 4.95% of copper and 24.46% of gold are lost during the concentration. The major part of the lost gold is accumulated in froth flotation tail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. On the nature of the Cu-rich aggregates in brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Brendan; Robison, Gregory; Osborn, Jenna; Kay, Martin; Thompson, Peter; Davis, Katherine; Zakharova, Taisiya; Antipova, Olga; Pushkar, Yulia

    2017-04-01

    Fulfilling a bevy of biological roles, copper is an essential metal for healthy brain function. Cu dyshomeostasis has been demonstrated to be involved in some neurological conditions including Menkes and Alzheimer’s diseases. We have previously reported localized Cu-rich aggregates in astrocytes of the subventricular zone (SVZ) in rodent brains with Cu concentrations in the hundreds of millimolar. Metallothionein, a cysteine-rich protein critical to metal homeostasis and known to participate in a variety of neuroprotective and neuroregenerative processes, was proposed as a binding protein. Here, we present an analysis of metallothionein(1,2) knockout (MTKO) mice and age-matched controls using X-ray fluorescence microscopy. In large structures such as the corpus callosum, cortex, and striatum, there is no significant difference in Cu, Fe, or Zn concentrations in MTKO mice compared to age-matched controls. In the astrocyte-rich subventricular zone where Cu-rich aggregates reside, approximately 1/3 as many Cu-rich aggregates persist in MTKO mice resulting in a decrease in periventricular Cu concentration. Aggregates in both wild-type and MTKO mice show XANES spectra characteristic of CuxSy multimetallic clusters and have similar [S]/[Cu] ratios. Consistent with assignment as a CuxSy multimetallic cluster, the astrocyte-rich SVZ of both MTKO and wild-type mice exhibit autofluorescent bodies, though MTKO mice exhibit fewer. Furthermore, XRF imaging of Au-labeled lysosomes and ubiquitin demonstrates a lack of co-localization with Cu-rich aggregates suggesting they are not involved in a degradation pathway. Overall, these data suggest that Cu in aggregates is bound by either metallothionein-3 or a yet unknown protein similar to metallothionein.

  12. Carbon-enhanced Metal-poor Stars in SDSS/SEGUE. I. Carbon Abundance Estimation and Frequency of CEMP Stars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [NMSU, Las Cruces; Beers, Timothy C. [Michigan State U., JINA; Masseron, Thomas [Brussels U.; Plez, Bertrand [U. Montpellier 2, LUPM; Rockosi, Constance M. [Lick Observ.; Sobeck, Jennifer [Chicago U.; Yanny, Brian [Fermilab; Lucatello, Sara [Padua Observ.; Sivarani, Thirupathi [Bangalore, Indian Inst. Astrophys.; Placco, Vinicius M. [Sao Paulo U., IAG; Carollo, Daniela [Macquarie U.

    2013-10-17

    We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the SDSS and SEGUE. By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N > 15 to a precision better than 0.35 dex. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] > +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] < -2.5, 31% for [Fe/H] < -3.0, and 33% for [Fe/H] < -3.5. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] < -2.5. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] < -2.5 to about 75% for [Fe/H] < -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather, decreases, due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] < -3.0. [abridged

  13. Metals and Alloys Material Stabilization Process Plan

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.; BURK, R.A.

    2000-05-18

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration.

  14. Metals and Alloys Material Stabilization Process Plan

    International Nuclear Information System (INIS)

    RISENMAY, H.R.; BURK, R.A.

    2000-01-01

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration

  15. Initial Evaluation of Processing Methods for an Epsilon Metal Waste Form

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Strachan, Denis M.; Zumhoff, Mac R.

    2012-01-01

    to have a high melting point as well, perhaps exceeding 1500 C. The purpose of the work reported here is to find a potential commercial process with which (var e psilon)-metal plus other components of UDS can be consolidated into a solid with minimum surface area and high strength Here, we report the results from the preliminary evaluation of spark-plasma sintering (SPS), hot-isostatic pressing (HIP), and microwave sintering (MS). Since bulk (var e psilon)-metal is not available and companies could not handle radioactive materials, we prepared mixtures of the five individual metal powders (Mo, Ru, Rh, Pd, and Re) and baddeleyite (ZrO 2 ) to send the vendors of SPS, HIP, and MS. The processed samples were then evaluated at the Pacific Northwest National Laboratory (PNNL) for bulk density and phase assemblage with X-ray diffraction (XRD) and phase composition with scanning electron microscopy (SEM). Physical strength was evaluated qualitatively. Results of these scoping tests showed that fully dense cermet (ceramic-metal composite) materials with up to 35 mass% of ZrO 2 were produced with SPS and HIP. Bulk density of the SPS samples ranged from 87 to 98% of theoretical density, while HIP samples ranged from 96 to 100% of theoretical density. Microwave sintered samples containing ZrO 2 had low densities of 55 to 60% of theoretical density. Structurally, the cermet samples showed that the individual metals alloyed in to (var e psilon)-phase - hexagonal-close-packed (HCP) alloy (4-95 mass %), the α-phase - face-centered-cubic (FCC) alloy structure (3-86 mass %), while ZrO 2 remained in the monoclinic structure of baddeleyite. Elementally, the samples appeared to have nearly uniform composition, but with some areas rich in Mo and Re, the two components with the highest melting points. The homogeneity in distribution of the elements in the alloy is significantly improved in the presence of ZrO 2 . However, ZrO 2 does not appear to react with the alloy, nor was Zr found in

  16. Process for electrolytically preparing uranium metal

    Science.gov (United States)

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  17. Jesus: Born Poor or Rich? | Osai | African Research Review

    African Journals Online (AJOL)

    The paper concludes that, like tailoring, smith, masonry etc. carpentry was part of a guild that only those with means practiced in Judaea of that epoch and, therefore Joseph was not poor; that Joachim, the maternal grandfather of Jesus, was a wealthy descendant of the royal house of David; that Joseph had the means to ...

  18. Trend and Development of Semisolid Metal Joining Processing

    Directory of Open Access Journals (Sweden)

    M. N. Mohammed

    2015-01-01

    Full Text Available The semisolid metal joining (SSMJ process or thixojoining process has recently been developed based on the principles of SSM processing, which is a technology that involves the formation of metal alloys between solidus and liquidus temperatures. Thixojoining has many potential benefits, which has encouraged researchers to carry out feasibility studies on various materials that could be utilized in this process and which could transform the production of metal components. This paper reviews the findings in the literature to date in this evolving field, specifically, the experimental details, technology considerations for industrialization, and advantages and disadvantages of the various types of SSMJ methods that have been proposed. It also presents details of the range of materials that have been joined by using the SSMJ process. Furthermore, it highlights the huge potential of this process and future directions for further research.

  19. Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells

    Science.gov (United States)

    Liang, Chao; Li, Pengwei; Zhang, Yiqiang; Gu, Hao; Cai, Qingbin; Liu, Xiaotao; Wang, Jiefei; Wen, Hua; Shao, Guosheng

    2017-12-01

    TiO2 is extensively used as electron-transporting material on perovskite solar cells (PSCs). However, traditional TiO2 processing method needs high annealing temperature (>450 °C) and pure TiO2 suffers from low electrical mobility and poor conductivity. In this study, a general one-pot solution-processed method is devised to grow uniform crystallized metal-doped TiO2 thin film as large as 15 × 15 cm2. The doping process can be controlled effectively via a series of doping precursors from niobium (V), tin (IV), tantalum (V) to tungsten (VI) chloride. As far as we know, this is so far the lowest processing temperature for metal-doped TiO2 compact layers, as low as 70 °C. The overall performance of PSCs employing the metal-doped TiO2 layers is significantly improved in term of hysteresis effect, short circuit current, open-circuit voltage, fill factor, power conversion efficiency, and device stability. With the insertion of metal ions into TiO2 lattice, the corresponding CH3NH3PbI3 PSC leads to a ∼25% improved PCE of over 16% under irradiance of 100 mW cm-2 AM1.5G sunlight, compared with control device. The results indicate that this mild solution-processed metal-doped TiO2 is an effective industry-scale way for fabricating hysteresis-less and high-performance PSCs.

  20. Narrative Processes in Psychotherapy: differences between Good and Poor Outcome Clients

    Directory of Open Access Journals (Sweden)

    Luis Botella

    2015-12-01

    Full Text Available This paper compares 30 patients with good therapeutic outcome to 30 with poor therapeutic outcome in terms of the differential distribution of (1 Intake Variables (2 Outcome and Process Variables, and (3 Narrative Variables. Results indicated that psychosocial functioning, motivation, pre-therapy symptoms, Working Alliance, total number of therapy sessions, total pre-post symptom reduction, and mean scoring for total working alliance in sessions 3, 4, and 8 discriminated between both groups. Results also showed that almost all narrative variables except some of them discriminated good outcome clients from poor outcome ones from the beginning, midpoint and final stage of their therapeutic process. These results are discussed according to their relevance for clinical practice.

  1. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  2. Microbiological metal extraction processes

    International Nuclear Information System (INIS)

    Torma, A.E.

    1991-01-01

    Application of biotechnological principles in the mineral processing, especially in hydrometallurgy, has created new opportunities and challenges for these industries. During the 1950's and 60's, the mining wastes and unused complex mineral resources have been successfully treated in bacterial assisted heap and dump leaching processes for copper and uranium. The interest in bio-leaching processes is the consequence of economic advantages associated with these techniques. For example, copper can be produced from mining wastes for about 1/3 to 1/2 of the costs of copper production by the conventional smelting process from high-grade sulfide concentrates. The economic viability of bio leaching technology lead to its world wide acceptance by the extractive industries. During 1970's this technology grew into a more structured discipline called 'bio hydrometallurgy'. Currently, bio leaching techniques are ready to be used, in addition to copper and uranium, for the extraction of cobalt, nickel, zinc, precious metals and for the desulfurization of high-sulfur content pyritic coals. As a developing technology, the microbiological leaching of the less common and rare metals has yet to reach commercial maturity. However, the research in this area is very active. In addition, in a foreseeable future the biotechnological methods may be applied also for the treatment of high-grade ores and mineral concentrates using adapted native and/or genetically engineered microorganisms. (author)

  3. Mapping and predictive variations of soil bacterial richness across France.

    Science.gov (United States)

    Terrat, Sébastien; Horrigue, Walid; Dequiedt, Samuel; Saby, Nicolas P A; Lelièvre, Mélanie; Nowak, Virginie; Tripied, Julie; Régnier, Tiffanie; Jolivet, Claudy; Arrouays, Dominique; Wincker, Patrick; Cruaud, Corinne; Karimi, Battle; Bispo, Antonio; Maron, Pierre Alain; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2017-01-01

    Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i) to describe the bacterial taxonomic richness variations across France, ii) to identify the ecological processes (i.e. selection by the environment and dispersal limitation) influencing this distribution, and iii) to develop a statistical predictive model of soil bacterial richness. We used the French Soil Quality Monitoring Network (RMQS), which covers all of France with 2,173 sites. The soil bacterial richness (i.e. OTU number) was determined by pyrosequencing 16S rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution, structured into patches of about 111km, where the main drivers were the soil physico-chemical properties (18% of explained variance), the spatial descriptors (5.25%, 1.89% and 1.02% for the fine, medium and coarse scales, respectively), and the land use (1.4%). Based on these drivers, a predictive model was developed, which allows a good prediction of the bacterial richness (R2adj of 0.56) and provides a reference value for a given pedoclimatic condition.

  4. Processing and Characterization of Functionally Graded Aluminum (A319)—SiCp Metallic Composites by Centrifugal Casting Technique

    Science.gov (United States)

    Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.

    2016-08-01

    Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.

  5. Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater

    Science.gov (United States)

    Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten

    2016-01-01

    The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.

  6. Interaction of iron with boron in metal-rich metallaboranes resulting in large deshielding and rapid relaxation processes of the boron-11 nucleus

    International Nuclear Information System (INIS)

    Rath, N.P.; Fehlner, T.P.

    1988-01-01

    A first-order, parameterized model for calculating 11 B chemical shifts in metal-rich ferraboranes and a correlation of chemical shift with boron Mulliken populations from Fenske-Hall calculations are presented. These correlations are qualitatively different from those reported earlier for boranes and suggest that direct iron-boron interactions lead to large deshielding due to substantial increases in multiple-bond contributions to the shielding tensor. Relaxation rates have been measured for [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 0-2) and correlated with electric field gradients at the boron nucleus estimated from Fenske-Hall calculations. These results demonstrate that formation of the boride, [Fe 4 (CO) 12 B] 3- , by deprotonation is accompanied by the development of large asymmetries in the electronic charge distribution around the boron nucleus. Finally, 7 Li NMR is used to probe the nature of the anions [Fe 4 (CO) 12 BH/sub 3-n/]/sup n-/ (n = 1-3), and observed line shapes suggest close association of Li + with the trianion. 28 references, 3 figures, 4 tables

  7. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak Malhotra

    2010-01-31

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  8. Proton-induced knockout reactions with netron-rich oxygen isotopes at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla [IKP, TU Darmstadt (Germany); GSI (Germany); Collaboration: R3B-Collaboration

    2014-07-01

    Proton-induced knockout reactions are one of the main goal of the experimental program at the future R{sup 3}B (Reactions with Relativistic Radioactive Beams) Experiment at FAIR. It allows us to obtain spectroscopic information about valence and deeply bound single-nucleon states and to study their evolution over a large variation in isospin. Recent studies have shown that the occupancies of loosely bound valence nucleons in neutron- or proton-rich nuclei have a spectroscopic factor close to unity, whereas single-particle strength for deeply bound nucleons is suppressed in isospin asymmetric systems compared to the predictions of the many-body shell model. Further experimental and theoretical studies are needed for a qualitative and quantitative understanding. For this aim a series of measurements have been performed on the complete oxygen isotopic chain using the existing experimental setup LAND/R{sup 3}B at GSI. We present the main scientific goals, the concepts of the experiment and the preliminary results.

  9. Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars

    Science.gov (United States)

    Reggiani, Henrique; Meléndez, Jorge; Kobayashi, Chiaki; Karakas, Amanda; Placco, Vinicius

    2017-12-01

    Context. The chemical abundances of metal-poor halo stars are important to understanding key aspects of Galactic formation and evolution. Aims: We aim to constrain Galactic chemical evolution with precise chemical abundances of metal-poor stars (-2.8 ≤ [Fe/H] ≤ -1.5). Methods: Using high resolution and high S/N UVES spectra of 23 stars and employing the differential analysis technique we estimated stellar parameters and obtained precise LTE chemical abundances. Results: We present the abundances of Li, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Sr, Y, Zr, and Ba. The differential technique allowed us to obtain an unprecedented low level of scatter in our analysis, with standard deviations as low as 0.05 dex, and mean errors as low as 0.05 dex for [X/Fe]. Conclusions: By expanding our metallicity range with precise abundances from other works, we were able to precisely constrain Galactic chemical evolution models in a wide metallicity range (-3.6 ≤ [Fe/H] ≤ -0.4). The agreements and discrepancies found are key for further improvement of both models and observations. We also show that the LTE analysis of Cr II is a much more reliable source of abundance for chromium, as Cr I has important NLTE effects. These effects can be clearly seen when we compare the observed abundances of Cr I and Cr II with GCE models. While Cr I has a clear disagreement between model and observations, Cr II is very well modeled. We confirm tight increasing trends of Co and Zn toward lower metallicities, and a tight flat evolution of Ni relative to Fe. Our results strongly suggest inhomogeneous enrichment from hypernovae. Our precise stellar parameters results in a low star-to-star scatter (0.04 dex) in the Li abundances of our sample, with a mean value about 0.4 dex lower than the prediction from standard Big Bang nucleosynthesis; we also study the relation between lithium depletion and stellar mass, but it is difficult to assess a correlation due to the limited mass range. We

  10. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  11. Advanced LIGO constraints on neutron star mergers and r-process sites

    International Nuclear Information System (INIS)

    Côté, Benoit; Belczynski, Krzysztof; Fryer, Chris L.; Ritter, Christian

    2017-01-01

    The role of compact binary mergers as the main production site of r-process elements is investigated by combining stellar abundances of Eu observed in the Milky Way, galactic chemical evolution (GCE) simulations, and binary population synthesis models, and gravitational wave measurements from Advanced LIGO. We compiled and reviewed seven recent GCE studies to extract the frequency of neutron star–neutron star (NS–NS) mergers that is needed in order to reproduce the observed [Eu/Fe] versus [Fe/H] relationship. We used our simple chemical evolution code to explore the impact of different analytical delay-time distribution functions for NS–NS mergers. We then combined our metallicity-dependent population synthesis models with our chemical evolution code to bring their predictions, for both NS–NS mergers and black hole–neutron star mergers, into a GCE context. Finally, we convolved our results with the cosmic star formation history to provide a direct comparison with current and upcoming Advanced LIGO measurements. When assuming that NS–NS mergers are the exclusive r-process sites, and that the ejected r-process mass per merger event is 0.01 M_⊙, the number of NS–NS mergers needed in GCE studies is about 10 times larger than what is predicted by standard population synthesis models. Here, these two distinct fields can only be consistent with each other when assuming optimistic rates, massive NS–NS merger ejecta, and low Fe yields for massive stars. For now, population synthesis models and GCE simulations are in agreement with the current upper limit (O1) established by Advanced LIGO during their first run of observations. Upcoming measurements will provide an important constraint on the actual local NS–NS merger rate, will provide valuable insights on the plausibility of the GCE requirement, and will help to define whether or not compact binary mergers can be the dominant source of r-process elements in the universe.

  12. Laser processing of metals and alloys

    International Nuclear Information System (INIS)

    Goswami, G.L.; Kumar, Dilip; Roy, P.R.

    1988-01-01

    Laser, due to its high degree of coherence can produce powder density in the range of 10 3 -10 11 W/mm 2 . This high power density of the laser beam enables it to be utilized for many industrial applications, e.g. welding, cutting, drilling, surface treatment, etc. Laser processing of materials has many advantages, e.g. good quality product at high processing speed, least heat affected zone, minimum distortion, etc. In addition, the same laser system can be utilized for different applications, a very cost effective factor for any industry. Therefore laser has been adopted for processing of different materials for a wide range of applications and is now replacing conventional materials processing techniques on commercial merits with several economic and metallurgical advantages. Applications of laser to process materials of different thicknesses varying from 0.1 mm to 100 mm have demonstrat ed its capability as an important manufacturing tool for engineering industries. While lasers have most widely been utilized in welding, cutting and drilling they have also found applications in surface treatment of metals and alloys, e.g. transfor mation hardening and annealing. More recently, there has been significant amount of research being undertaken in laser glazing, laser surface alloying and laser cladding for obtaining improved surface properties. This report reviews the stat us of laser processing of metals and alloys emphasising its metallurgical aspects a nd deals with the different laser processes like welding, cutting, drilling and surface treatment highlighting the types and choice of laser and its interaction with metals and alloys and the applications of these processes. (author). 93 refs., 32 figs., 7 tables

  13. Validity of manganese as a surrogate of heavy metals removal in constructed wetlands treating acidic mine water

    International Nuclear Information System (INIS)

    Royer, E.; Unz, R.F.; Hellier, W.W.

    1998-01-01

    The evaluation of manganese as a surrogate for heavy metal behavior in two wetland treatment systems receiving acidic coal mine drainage in central Pennsylvania was investigated. The use of manganese as an indicator is based on physical/chemical treatment processes quite different from wetland treatment. The treatment systems represented one anoxic, subsurface flow system and one oxic surface flow system. Water quality parameters measured included pH, alkalinity, acidity, and a suite of metals. Correlation and linear regression analysis were used to evaluate the ability of a candidate predictor variable (indicator) to predict heavy metal concentrations and removal. The use of manganese as a predictor of effluent quality proved to be poor in both wetland treatment systems, as evidenced by low linear R 2 values and negative correlations. Zinc emerged as the best predictor of the detectable heavy metals at the anoxic wetland. Zinc exhibited positive strong linear correlations with copper, cobalt, and nickel (R 2 values of 0.843, 0.881, and 0.970, respectively). Effluent pH was a slightly better predictor of effluent copper levels in the anoxic wetland. Iron and cobalt effluent concentrations showed the only strong relationship (R 2 value = 0.778) in the oxic system. The lack of good correlations with manganese strongly challenges its appropriateness as a surrogate for heavy metals in these systems

  14. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-01-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  15. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  16. Postprandial oxidative stress is increased after a phytonutrient-poor food but not after a kilojoule-matched phytonutrient-rich food.

    Science.gov (United States)

    Khor, Amanda; Grant, Ross; Tung, Chin; Guest, Jade; Pope, Belinda; Morris, Margaret; Bilgin, Ayse

    2014-05-01

    Research indicates that energy-dense foods increase inflammation and oxidative activity, thereby contributing to the development of vascular disease. However, it is not clear whether the high kilojoule load alone, irrespective of the nutritional content of the ingested food, produces the postprandial oxidative and inflammatory activity. This study investigated the hypothesis that ingestion of a high-fat, high-sugar, phytonutrient-reduced food (ice cream) would increase oxidative and inflammatory activity greater than a kilojoule-equivalent meal of a phytonutrient-rich whole food (avocado). The individual contributions of the fat/protein and sugar components of the ice cream meal to postprandial inflammation and oxidative stress were also quantified. Using a randomized, crossover design, 11 healthy participants ingested 4 test meals: ice cream, avocado, the fat/protein component in ice cream, and the sugar equivalent component in ice cream. Plasma glucose, cholesterol, triglycerides, and inflammatory and oxidative stress markers were measured at baseline and 1, 2, and 4 hours (t1, t2, t4) after ingestion. Lipid peroxidation was increased at 2 hours after eating fat/protein (t0-t2, P stress markers. These data indicate that the ingestion of a phytonutrient-poor food and its individual fat/protein or sugar components increase plasma oxidative activity. This is not observed after ingestion of a kilojoule-equivalent phytonutrient-rich food. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    DEFF Research Database (Denmark)

    Amarsi, A. M.; Lind, K.; Asplund, M.

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D...

  18. Sol-gel processing with inorganic metal salt precursors

    Science.gov (United States)

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  19. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers.

    Science.gov (United States)

    Mercorio, Roberta; Bonzini, Matteo; Angelici, Laura; Iodice, Simona; Delbue, Serena; Mariani, Jacopo; Apostoli, Pietro; Pesatori, Angela Cecilia; Bollati, Valentina

    2017-11-01

    Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (mean baseline = 56.7%5mC; mean post-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate

  20. Low-level radioactive waste from rare metals processing facilities

    International Nuclear Information System (INIS)

    Eng, J.; Hendricks, D.W.; Feldman, J.; Giardina, P.A.

    1980-01-01

    This paper reviews the situations at the existing Teledyne Wah Chang Co., Inc. located at Albany, Oregon, and the former Carborundum Corp./Amax Specialty Metals, Inc., facilities located at Parkersburg, West Virginia, and Akron, New York, in order to show the extent of the radioactivity problem at rare metals processing facilities and the need to identify for radiological review other rare metal and rare earth processing sites

  1. Endangered New Caledonian endemic mushroom coral Cantharellus noumeae in turbid, metal-rich, natural and artificial environments.

    Science.gov (United States)

    Gilbert, Antoine; Heintz, Tom; Hoeksema, Bert W; Benzoni, Francesca; Fernandez, Jean Michel; Fauvelot, Cécile; Andréfouët, Serge

    2015-11-15

    Since its description in 1984, little attention has been paid to the New Caledonian endemic mushroom coral Cantharellus noumeae (Fungiidae), an IUCN Red-listed, endangered coral species. Our study presents the first ever quantitative assessment conducted on C. noumeae populations for two contrasting sites in the same turbid bay. Sites differed by their substrates of artificial or natural origins. Metal concentrations of superficial sediment were measured. C. noumeae was found in high densities in metal-rich and turbid environments at both locations, reaching up to 288 individuals per 50m(2). It was 3.5 times more abundant on natural rock than on artificial substrates. Recruitment was also higher proportionally on rock (47% vs 7-14%). The composition of the associated coral communities included 30-37 species occurring in low densities. Our findings clarify the environmental niche of this species and its colonization potential, in order to eventually better characterize its conservation status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Extraction of metal ions by neutral β-diphosphoramides

    International Nuclear Information System (INIS)

    Madic, C.

    1990-01-01

    The extracting ability of β-diphosphoramides of the type R-N[P(O)(NMe 2 ) 2 ] 2 with R=-CH 3 (NIPA), -C 12 H 25 (ODIPA), or -C 16 H 33 (OHDIPA) for metal ions such as lanthanides, uranyl, and the transuranium elements Am(III) and Pu(IV) has been studied. Extraction yields depend on the nature of the ligand, the organic diluent (nitromethane, kerosene, tert-butylbenzene), the concentration of nitric acid in the aqueous phase, and the ligand-to-metal ratio, Q. The results show that the bidentate phosphoramides are very efficient extractants for all of the metals studied, even at low ratios Q. The presence of nitric acid generally enhances the extraction yields. On the other hand, selectivity is rather poor with these ligands. A particular effort has been made to determine the nature of extracted species by NMR spectroscopy

  3. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. N.; Zhao, G. [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang, Beijing 100012 (China); Ludwig, H.-G.; Caffau, E.; Christlieb, N., E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn, E-mail: hludwig@lsw.uni-heidelberg.de, E-mail: ecaffau@lsw.uni-heidelberg.de, E-mail: N.Christlieb@lsw.uni-heidelberg.de [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany)

    2013-03-01

    With abundances and 2{sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 A using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {nu}-process with a neutrino energy of E {sub {nu}} = 3 Multiplication-Sign 10{sup 53} erg. Our sample contains HD 110281, a retrograde orbiting low-{alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  4. Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Martínez, Constanza E; González, Sergio A; Palma, Verónica; Smith, Patricio C

    2016-02-01

    Plasma-derived fractions have been used as an autologous source of growth factors; however, limited knowledge concerning their biologic effects has hampered their clinical application. In this study, the authors analyze the content and specific effect of both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on osteoblastic differentiation using primary cultures of human periodontal ligament stem cells (HPLSCs). The authors evaluated the growth factor content of PRP and PPP using a proteome profiler array and enzyme-linked immunosorbent assay. HPLSCs were characterized by flow cytometry and differentiation assays. The effect of PRP and PPP on HPLSC bone differentiation was analyzed by quantifying calcium deposition after 14 and 21 days of treatment. Albeit at different concentrations, the two fractions had similar profiles of growth factors, the most representative being platelet-derived growth factor (PDGF) isoforms (PDGF-AA, -BB, and -AB), insulin-like growth factor binding protein (IGFBP)-2, and IGFBP-6. Both formulations exerted a comparable stimulus on osteoblastic differentiation even at low doses (2.5%), increasing calcium deposits in HPLSCs. PRP and PPP showed a similar protein profile and exerted comparable effects on bone differentiation. Further studies are needed to characterize and compare the effects of PPP and PRP on bone healing in vivo.

  5. Magnetization processes in amorphous R-Co/R'-Co/R-Co sandwiches (R, R'=Y, Nd, Gd, Er)

    International Nuclear Information System (INIS)

    Dieny, B.; Givord, D.; Ndjaka, J.M.B.; Alameda, J.M.

    1990-01-01

    Sandwiches consisting of three amorphous layers (R 0.33 ,Co 0.67 )( 1000 A / R ' 0.33 ,Co 0.67 ) 1000 A / (R 0.33 Co 0.67 ) 1000 A , have been prepared by dc triode sputtering (R, R' are rare-earth elements). The systems chosen are such that the bulk magnetization alternates from one layer to the next or the coercivity of each layer is significantly different. Magnetic transitions are observed under field. They have been quantitatively analyzed in terms of successive reversals of magnetization in the different layers. The creation or annihilation of planar Bloch walls parallel to the surface are associated with the magnetic transitions. The wall energy and wall width depend essentially on the competition between exchange energy and Zeeman energy. It is suggested that the existence of such Bloch walls may favor magnetization reversal in thin films by coherent processes

  6. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 24-204 (United States)

    2011-07-15

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  7. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın

    2011-07-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  8. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin

    2011-01-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  9. CHARACTERIZING THE HEAVY ELEMENTS IN GLOBULAR CLUSTER M22 AND AN EMPIRICAL s-PROCESS ABUNDANCE DISTRIBUTION DERIVED FROM THE TWO STELLAR GROUPS

    International Nuclear Information System (INIS)

    Roederer, I. U.; Marino, A. F.; Sneden, C.

    2011-01-01

    We present an empirical s-process abundance distribution derived with explicit knowledge of the r-process component in the low-metallicity globular cluster M22. We have obtained high-resolution, high signal-to-noise spectra for six red giants in M22 using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory. In each star we derive abundances for 44 species of 40 elements, including 24 elements heavier than zinc (Z = 30) produced by neutron-capture reactions. Previous studies determined that three of these stars (the 'r+s group') have an enhancement of s-process material relative to the other three stars (the 'r-only group'). We confirm that the r+s group is moderately enriched in Pb relative to the r-only group. Both groups of stars were born with the same amount of r-process material, but s-process material was also present in the gas from which the r+s group formed. The s-process abundances are inconsistent with predictions for asymptotic giant branch (AGB) stars with M ≤ 3 M ☉ and suggest an origin in more massive AGB stars capable of activating the 22 Ne(α,n) 25 Mg reaction. We calculate the s-process 'residual' by subtracting the r-process pattern in the r-only group from the abundances in the r+s group. In contrast to previous r- and s-process decompositions, this approach makes no assumptions about the r- and s-process distributions in the solar system and provides a unique opportunity to explore s-process yields in a metal-poor environment.

  10. The role of Fe and Ni for s-process nucleosynthesis in the early Universe and for innovative nuclear technologies

    CERN Multimedia

    Manousos, A; Heil, M; Plag, R

    The early universe was enriched in heavy elements by massive stars via their s- and r-process contributions. Ultra metal-poor stars were found to show abundance patterns that scale exactly with the solar r component. While this holds exactly for elements heavier than barium, there is still confusion about significant discrepancies in the mass region below A ${\\leq}$ 120. It is known that massive stars contribute significantly to the abundances between Fe and Zr. This so-called weak s-process component was found to exhibit large uncertainties due to the poorly known cross sections, especially in the Fe- i region. In view of this problem it is proposed to perform accurate state-of-the art measurements on highly enriched samples of the stable Fe and Ni isotopes at the n_TOF facility. Transformation of these results into significantly improved stellar cross section rates will allow to disentangle the s and r contributions observed in the oldest stars for a reliable comparison with galactic chemical evolution mode...

  11. Effect of heavy metals on nitrification performance in different activated sludge processes

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Tsai, Yung-Pin; Huang, Ru-Yi

    2009-01-01

    To understand the toxic effect of heavy metals on the nitrification mechanisms of activated sludge, this study identified the specific ammonia utilization rate (SAUR) inhibited by Pb, Ni and/or Cd shock loadings. Seven different heavy metal combinations (Pb, Ni, Cd, Pb + Ni, Ni + Cd, Pb + Cd, and Pb + Ni + Cd) with seven different heavy metal concentrations (0, 2, 5, 10, 15, 25, and 40 ppm, respectively) were examined by batch experiments, where the activated sludge was taken from either sequencing batch reactor (SBR) or anaerobic-anoxic-oxic (A 2 O) processes. The experimental results showed the SAUR inhibition rate was Ni > Cd > Pb. No significant inhibition in the nitrification reaction of the activated sludge was observed even when as much as 40 ppm Pb was added. In addition, no synergistic effect was found when different heavy metals were simultaneously added in different concentrations, and the overall inhibition effect depended on the heavy metal with the highest toxicity. Further, first order kinetic reaction could model the behavior of SAUR inhibition on activated sludge when adding heavy metals, and the SAUR inhibition formula was derived as SAUR=(SAUR max -SAUR min )xe -r i c +SAUR min . On the other hand, the heavy metal adsorption ability in both the activated sludge system was Pb = Cd > Ni. The specific adsorption capacity of activated sludge on heavy metal increased as the heavy metal concentration increased or the mixed liquid volatile suspended solid (MLVSS) decreased. The batch experiments also showed the heavy metal adsorption capacity of the SBR sludge was larger than the A 2 O sludge. Finally, the most predominant bacteria in the phylogenetic trees of SBR and A 2 O activated sludges were proteobacteria, which contributed to 42.1% and 42.8% of the total clones.

  12. Noise resistance applied to the study of zinc rich paints

    International Nuclear Information System (INIS)

    Espada Recarey, L.; Sanchez Bermudez, A.; Urrejola Madrinan, S.; Bouzada Alvela, F.

    2001-01-01

    Electrochemical Noise has been one of the more useful analysis methods to the study the corrosion processes due to the fact that it is simple and cheap. The objective of this work is to check the efficiency of this technique when it is applied to the study of Rich Zinc Paints and specifically the Noise Resistance parameter which is very efficiency to study metal-electrolyte systems. Then this technique was applied to Rich Zinc Paints systems of which we have already information by means of electrochemical impedance spectroscopy. The outcomes of this paper show the efficiency of applying Noise Resistance technique to explain the behavior of this kind of systems. (Author) 18 refs

  13. Fate and transport of metals in H2S-rich waters at a treatment wetland

    Directory of Open Access Journals (Sweden)

    Frandsen Angela K

    2001-02-01

    Full Text Available The aqueous geochemistry of Zn, Cu, Cd, Fe, Mn and As is discussed within the context of an anaerobic treatment wetland in Butte, Montana. The water being treated had a circum-neutral pH with high concentrations of trace metals and sulfate. Reducing conditions in the wetland substrate promoted bacterial sulfate reduction (BSR and precipitation of dissolved metal as sulfide minerals. ZnS was the most common sulfide phase found, and consisted of framboidal clusters of individual spheres with diameters in the submicron range. Some of the ZnS particles passed through the subsurface flow, anaerobic cells in suspended form. The concentration of "dissolved" trace metals (passing through a 0.45 μm filter was monitored as a function of H2S concentration, and compared to predicted solubilities based on experimental studies of aqueous metal complexation with dissolved sulfide. Whereas the theoretical predictions produce "U-shaped" solubility curves as a function of H2S, the field data show a flat dependence of metal concentration on H2S. Observed metal concentrations for Zn, Cu and Cd were greater than the predicted values, particularly at low H2S concentration, whereas Mn and As were undersaturated with their respective metal sulfides. Results from this study show that water treatment facilities employing BSR have the potential to mobilize arsenic out of mineral substrates at levels that may exceed regulatory criteria. Dissolved iron was close to equilibrium saturation with amorphous FeS at the higher range of sulfide concentrations observed (>0.1 mmol H2S, but was more likely constrained by goethite at lower H2S levels. Inconsistencies between our field results and theoretical predictions may be due to several problems, including: (i a lack of understanding of the form, valence, and thermodynamic stability of poorly crystalline metal sulfide precipitates; (ii the possible influence of metal sulfide colloids imparting an erroneously high "dissolved

  14. EXOTIC METAL MOLECULES IN OXYGEN-RICH ENVELOPES: DETECTION OF AlOH (X1Σ+) IN VY CANIS MAJORIS

    International Nuclear Information System (INIS)

    Tenenbaum, E. D.; Ziurys, L. M.

    2010-01-01

    A new interstellar molecule, AlOH, has been detected toward the envelope of VY Canis Majoris (VY CMa), an oxygen-rich red supergiant. Three rotational transitions of AlOH were observed using the facilities of the Arizona Radio Observatory (ARO). The J = 9 → 8 and J = 7 → 6 lines at 1 mm were measured with the ARO Submillimeter Telescope, while the J = 5 → 4 transition at 2 mm was observed with the ARO 12 m antenna on Kitt Peak. The AlOH spectra exhibit quite narrow line widths of 16-23 km s -1 , as found for NaCl in this source, indicating that the emission arises from within the dust acceleration zone of the central circumstellar outflow. From a radiative transfer analysis, the abundance of AlOH relative to H 2 was found to be ∼1 x 10 -7 for a source size of 0.26'' or 22 R * . In contrast, AlCl was not detected with f ≤ 5 x 10 -8 . AlOH is likely formed just beyond the photosphere via thermodynamic equilibrium chemistry and then disappears due to dust condensation. The AlOH/AlO abundance ratio found in VY CMa is ∼17. Therefore, AlOH appears to be the dominant gas-phase molecular carrier of aluminum in this oxygen-rich shell. Local thermodynamic equilibrium calculations predict that the monohydroxides should be the major carriers of Al, Ca, and Mg in O-rich envelopes, as opposed to the oxides or halides. The apparent predominance of aluminum-bearing molecules in VY CMa may reflect proton addition processes in H-shell burning.

  15. Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ríos Reyes

    2013-04-01

    Full Text Available The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O-Al2O3-SiO2-H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR and thermogravimetric analysis (TGA. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase occurring as a minor phase, compared with the presence of sodalite and cancrinite.

  16. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Luchuan; Lv, Bin; Chen, Bo [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Guan, Ming [Department of General Surgery, Qihe People' s Hospital, Qihe, Shandong 251100 (China); Sun, Yongfeng [Department of General Surgery, Licheng District People' s Hospital, Jinan, Shandong 250115 (China); Li, Haipeng [Department of General Surgery, Caoxian People' s Hospital, Caoxian, Shandong 274400 (China); Zhang, Binbin; Ding, Changyuan; He, Shan [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Zeng, Qingdong, E-mail: qingdz0201@163.com [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China)

    2015-07-10

    Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, was picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na{sup +}/I{sup −} symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC). - Highlights: • Significant upregulated miR-146b was picked up from thyroid relative miRNAs in DTC. • MiR-146b was negatively regulated by HDAC3 in normal thyroid carcinoma cells. • NIS activity and expression could be regulated by miR-146b in thyroid carcinoma. • MiR-146b inhibition could recover the decreased radioiodine-sensitivity of DTC cells.

  17. r-process nucleosynthesis in dynamic helium-burning environments

    International Nuclear Information System (INIS)

    Cowan, J.J.; Cameron, A.G.W.; Truran, J.W.

    1985-01-01

    The results of an extended examination of r-process nucleosynthesis in helium-burning environments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the 13 C neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be: 10 20 --10 21 neutrons cm -3 for times of 0.01--0.1 s and neutron number densities in excess of 10 19 cm -3 for times of approx.1 s. The amount of 13 C required is found to be exceedingly high: larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system

  18. Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint

    Science.gov (United States)

    Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong

    2018-01-01

    Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.

  19. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    organic paints, inert metallic layers, and protective oxide layers. 2 Although coatings have been commercially used for many years, the design of new...pigments found in chromates protect the substrate by passivating the metallic surface with an oxide layer. Sacrificial coatings prevent the self...surface, eliminating the components needed for a cathodic reaction to occur. Additionally, organic barrier coatings are protective by preventing

  20. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    International Nuclear Information System (INIS)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes; Benedetti, Celso Eduardo

    2007-01-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit

  1. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes, E-mail: beatriz@lnls.br; Benedetti, Celso Eduardo, E-mail: beatriz@lnls.br [Center for Molecular and Structural Biology, Brazilian Synchrotron Light Laboratory, Campinas, SP, CP 6192, CEP 13083-970 (Brazil)

    2007-07-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit.

  2. Metal Catalyzed Fusion: Nuclear Active Environment vs. Process

    Science.gov (United States)

    Chubb, Talbot

    2009-03-01

    To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.

  3. Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015.

    Science.gov (United States)

    Wang, Wei; Wang, Huasheng; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-05-01

    As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

  4. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  5. Mapping and predictive variations of soil bacterial richness across France.

    Directory of Open Access Journals (Sweden)

    Sébastien Terrat

    Full Text Available Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i to describe the bacterial taxonomic richness variations across France, ii to identify the ecological processes (i.e. selection by the environment and dispersal limitation influencing this distribution, and iii to develop a statistical predictive model of soil bacterial richness. We used the French Soil Quality Monitoring Network (RMQS, which covers all of France with 2,173 sites. The soil bacterial richness (i.e. OTU number was determined by pyrosequencing 16S rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution, structured into patches of about 111km, where the main drivers were the soil physico-chemical properties (18% of explained variance, the spatial descriptors (5.25%, 1.89% and 1.02% for the fine, medium and coarse scales, respectively, and the land use (1.4%. Based on these drivers, a predictive model was developed, which allows a good prediction of the bacterial richness (R2adj of 0.56 and provides a reference value for a given pedoclimatic condition.

  6. Direct electrochemical synthesis of metal alcoholates

    International Nuclear Information System (INIS)

    Shrejder, V.A.; Turevskaya, E.P.; Kozlova, N.I.; Turova, N.Ya.

    1981-01-01

    Conditions of electrochemical synthesis of Ga, Sc, Y, Ge, Ti, Zr, Nb and Ta alcoholates during anodic metal dissolution in absolute alcohols in the presence of background electrolyte are studied. R 4 NBr and R 4 NBF 4 salts are optimum background electrolytes. Application limits of this synthetical method using different metals as anode are determined. It is supposed that alkoxyhalogenides the nature of which determines further direction of electrode process, are the primary products of anodic oxidation of metals [ru

  7. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    Science.gov (United States)

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  8. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    International Nuclear Information System (INIS)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; Cerrato, José M.; Johnston, Michael D.; Wilkins, Michael J.

    2017-01-01

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  9. Method of processing radioactive metallic sodium with recycling alcohols

    International Nuclear Information System (INIS)

    Sakai, Takuhiko; Mitsuzuka, Norimasa.

    1980-01-01

    Purpose: To employ high safety alcohol procession and decrease the amount of wastes in the procession of radioactive metallic sodium discharged from LMFBR type reactors. Method: Radioactive metallic sodium containing long half-decay period nuclides such as cesium, strontium, barium, cerium, lanthanum or zirconium is dissolved in an alcohol at about 70% purity. After extracting the sodium alcoholate thus formed, gaseous hydrochloride is blown-in to separate the sodium alcoholate into alcohol and sodium chloride, and regenerated alcohol is used again for dissolving sodium metal. The sodium chloride thus separated is processed into solid wastes. (Furukawa, Y.)

  10. Overview of friction modelling in metal forming processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bay, Niels Oluf

    2017-01-01

    In metal forming processes, friction between tool and workpiece is an important parameter influencing the material flow, surface quality and tool life. Theoretical models of friction in metal forming are based on analysis of the real contact area in tool-workpiece interfaces. Several research...... groups have studied and modelled the asperity flattening of workpiece material against tool surface in dry contact or in contact interfaces with only thin layers of lubrication with the aim to improve understanding of friction in metal forming. This paper aims at giving a review of the most important...... future work in order to advance further in modelling of real contact area in relation to implementation of frictional conditions existing finite element codes for simulation of metal forming processes. © 2017 The Authors. Published by Elsevier Ltd....

  11. Process for etching zirconium metallic objects

    International Nuclear Information System (INIS)

    Panson, A.J.

    1988-01-01

    In a process for etching of zirconium metallic articles formed from zirconium or a zirconium alloy, wherein the zirconium metallic article is contacted with an aqueous hydrofluoric acid-nitric acid etching bath having an initial ratio of hydrofluoric acid to nitric acid and an initial concentration of hydrofluoric and nitric acids, the improvement, is described comprising: after etching of zirconium metallic articles in the bath for a period of time such that the etching rate has diminished from an initial rate to a lesser rate, adding hydrofluoric acid and nitric acid to the exhausted bath to adjust the concentration and ratio of hydrofluoric acid to nitric acid therein to a value substantially that of the initial concentration and ratio and thereby regenerate the etching solution without removal of dissolved zirconium therefrom; and etching further zirconium metallic articles in the regenerated etching bath

  12. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  13. Optimization and control of metal forming processes

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke

    2016-01-01

    Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the

  14. r-process nucleosynthesis in dynamic helium-burning environments

    Science.gov (United States)

    Cowan, J. J.; Cameron, A. G. W.; Truran, J. W.

    1985-01-01

    The results of an extended examination of r-process nucleosynthesis in helium-burning enviroments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the C-13 neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be 10 to the 20th-10 to the 21st neutrons per cubic centimeter for times of 0.01-0.1 s and neutron number densities in excess of 10 to the 19th per cubic centimeter for times of about 1 s. The amount of C-13 required is found to be exceedingly high - larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system.

  15. Nucleosynthesis of proton-rich nuclei. Experimental results on the rp-process

    International Nuclear Information System (INIS)

    Galaviz, D; Amthor, A M; Bazin, D; Becerril, A D; Brown, B A; Cole, A; Cook, J M; Elliot, T; Estrade, A; Gade, A; Glasmacher, T; Lorusso, G; Matos, M; Montes, F; Mueller, W; Chen, A A; Fueloep, Z S; Heger, A; Howard, M E; Kessler, R

    2010-01-01

    We report in this study the nuclear properties of proton-rich isotopes located along the rp-process path. The experiments have recently been performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The level properties above the proton separation energy of the nuclei 30 S, 36 K and 37 Ca were measured with precision of < 10 keV. This will allow a reduction in the determination of the astrophysical (p,γ) reaction rate under rp-process conditions.

  16. Relaxation processes during amorphous metal alloys heating

    International Nuclear Information System (INIS)

    Malinochka, E.Ya.; Durachenko, A.M.; Borisov, V.T.

    1982-01-01

    Behaviour of Te+15 at.%Ge and Fe+13 at.%P+7 at.%C amorphous metal alloys during heating has been studied using the method of differential scanning calorimetry (DSC) as the most convenient one for determination of the value of heat effects, activation energies, temperature ranges of relaxation processes. Thermal effects corresponding to high-temperature relaxation processes taking place during amorphous metal alloys (AMA) heating are detected. The change of ratio of relaxation peaks values on DSC curves as a result of AMA heat treatment can be explained by the presence of a number of levels of inner energy in amorphous system, separated with potential barriers, the heights of which correspond to certain activation energies of relaxation processes

  17. The neutron long counter NERO for studies of β-delayed neutron emission in the r-process

    International Nuclear Information System (INIS)

    Pereira, J.; Hosmer, P.; Lorusso, G.; Santi, P.; Couture, A.; Daly, J.; Del Santo, M.; Elliot, T.

    2010-01-01

    The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring β-delayed neutron-emission probabilities. The detector was designed to work in conjunction with a β-delay implantation station, so that β decays and β-delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring β-delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

  18. Origin of poor doping efficiency in solution processed organic semiconductors.

    Science.gov (United States)

    Jha, Ajay; Duan, Hong-Guang; Tiwari, Vandana; Thorwart, Michael; Miller, R J Dwayne

    2018-05-21

    Doping is an extremely important process where intentional insertion of impurities in semiconductors controls their electronic properties. In organic semiconductors, one of the convenient, but inefficient, ways of doping is the spin casting of a precursor mixture of components in solution, followed by solvent evaporation. Active control over this process holds the key to significant improvements over current poor doping efficiencies. Yet, an optimized control can only come from a detailed understanding of electronic interactions responsible for the low doping efficiencies. Here, we use two-dimensional nonlinear optical spectroscopy to examine these interactions in the course of the doping process by probing the solution mixture of doped organic semiconductors. A dopant accepts an electron from the semiconductor and the two ions form a duplex of interacting charges known as ion-pair complexes. Well-resolved off-diagonal peaks in the two-dimensional spectra clearly demonstrate the electronic connectivity among the ions in solution. This electronic interaction represents a well resolved electrostatically bound state, as opposed to a random distribution of ions. We developed a theoretical model to recover the experimental data, which reveals an unexpectedly strong electronic coupling of ∼250 cm -1 with an intermolecular distance of ∼4.5 Å between ions in solution, which is approximately the expected distance in processed films. The fact that this relationship persists from solution to the processed film gives direct evidence that Coulomb interactions are retained from the precursor solution to the processed films. This memory effect renders the charge carriers equally bound also in the film and, hence, results in poor doping efficiencies. This new insight will help pave the way towards rational tailoring of the electronic interactions to improve doping efficiencies in processed organic semiconductor thin films.

  19. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    Science.gov (United States)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] Cambridge Astronomy Survey Unit (CASU) at the Institute of Astronomy, University of Cambridge, and by the FLAMES/UVES reduction team at INAF/Osservatorio Astrofisico di Arcetri. These data have been obtained from the Gaia-ESO Survey Data Archive, prepared and hosted by the Wide Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, which is funded by the UK Science and Technology Facilities Council.

  20. Carbon-enhanced metal-poor stars in SDSS/Segue. II. Comparison of CEMP-star frequencies with binary population-synthesis models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Suda, Takuma [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Stancliffe, Richard J., E-mail: yslee@nmsu.edu [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-06-20

    We present a comparison of the frequencies of carbon-enhanced metal-poor (CEMP) giant and main-sequence turnoff (MSTO) stars with predictions from binary population-synthesis models involving asymptotic giant-branch (AGB) mass transfer. The giant and MSTO stars are selected from the Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration. We consider two initial mass functions (IMFs)—a Salpeter IMF, and a mass function with a characteristic mass of 10 M {sub ☉}. For giant stars, the comparison indicates a good agreement between the observed CEMP frequencies and the AGB binary model using a Salpeter IMF for [Fe/H] > – 1.5, and a characteristic mass of 10 M {sub ☉} for [Fe/H] < – 2.5. This result suggests that the IMF shifted from high- to low-mass dominated in the early history of the Milky Way, which appears to have occurred at a 'chemical time' between [Fe/H] =–2.5 and [Fe/H] =–1.5. The CEMP frequency for the turnoff stars with [Fe/H] < – 3.0 is much higher than the AGB model prediction from the high-mass IMF, supporting the previous assertion that one or more additional mechanisms, not associated with AGB stars, are required for the production of carbon-rich material below [Fe/H] =–3.0. We also discuss possible effects of first dredge-up and extra mixing in red giants and internal mixing in turnoff stars on the derived CEMP frequencies.

  1. Nature-Inspired Capillary-Driven Welding Process for Boosting Metal-Oxide Nanofiber Electronics.

    Science.gov (United States)

    Meng, You; Lou, Kaihua; Qi, Rui; Guo, Zidong; Shin, Byoungchul; Liu, Guoxia; Shan, Fukai

    2018-06-20

    Recently, semiconducting nanofiber networks (NFNs) have been considered as one of the most promising platforms for large-area and low-cost electronics applications. However, the high contact resistance among stacking nanofibers remained to be a major challenge, leading to poor device performance and parasitic energy consumption. In this report, a controllable welding technique for NFNs was successfully demonstrated via a bioinspired capillary-driven process. The interfiber connections were well-achieved via a cooperative concept, combining localized capillary condensation and curvature-induced surface diffusion. With the improvements of the interfiber connections, the welded NFNs exhibited enhanced mechanical property and high electrical performance. The field-effect transistors (FETs) based on the welded Hf-doped In 2 O 3 (InHfO) NFNs were demonstrated for the first time. Meanwhile, the mechanisms involved in the grain-boundary modulation for polycrystalline metal-oxide nanofibers were discussed. When the high-k ZrO x dielectric thin films were integrated into the FETs, the field-effect mobility and operating voltage were further improved to be 25 cm 2 V -1 s -1 and 3 V, respectively. This is one of the best device performances among the reported nanofibers-based FETs. These results demonstrated the potencies of the capillary-driven welding process and grain-boundary modulation mechanism for metal-oxide NFNs, which could be applicable for high-performance, large-scale, and low-power functional electronics.

  2. Characterizing the Heavy Elements in Globular Cluster M22 and an Empirical s-process Abundance Distribution Derived from the Two Stellar Groups

    Science.gov (United States)

    Roederer, I. U.; Marino, A. F.; Sneden, C.

    2011-11-01

    We present an empirical s-process abundance distribution derived with explicit knowledge of the r-process component in the low-metallicity globular cluster M22. We have obtained high-resolution, high signal-to-noise spectra for six red giants in M22 using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan-Clay Telescope at Las Campanas Observatory. In each star we derive abundances for 44 species of 40 elements, including 24 elements heavier than zinc (Z = 30) produced by neutron-capture reactions. Previous studies determined that three of these stars (the "r+s group") have an enhancement of s-process material relative to the other three stars (the "r-only group"). We confirm that the r+s group is moderately enriched in Pb relative to the r-only group. Both groups of stars were born with the same amount of r-process material, but s-process material was also present in the gas from which the r+s group formed. The s-process abundances are inconsistent with predictions for asymptotic giant branch (AGB) stars with M <= 3 M ⊙ and suggest an origin in more massive AGB stars capable of activating the 22Ne(α,n)25Mg reaction. We calculate the s-process "residual" by subtracting the r-process pattern in the r-only group from the abundances in the r+s group. In contrast to previous r- and s-process decompositions, this approach makes no assumptions about the r- and s-process distributions in the solar system and provides a unique opportunity to explore s-process yields in a metal-poor environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Evidence that communication impairment in schizophrenia is associated with generalized poor task performance.

    Science.gov (United States)

    Merrill, Anne M; Karcher, Nicole R; Cicero, David C; Becker, Theresa M; Docherty, Anna R; Kerns, John G

    2017-03-01

    People with schizophrenia exhibit wide-ranging cognitive deficits, including slower processing speed and decreased cognitive control. Disorganized speech symptoms, such as communication impairment, have been associated with poor cognitive control task performance (e.g., goal maintenance and working memory). Whether communication impairment is associated with poorer performance on a broader range of non-cognitive control measures is unclear. In the current study, people with schizophrenia (n =51) and non-psychiatric controls (n =26) completed speech interviews allowing for reliable quantitative assessment of communication impairment. Participants also completed multiple goal maintenance and working memory tasks. In addition, we also examined (a) simple measures of processing speed involving highly automatic prepotent responses and (b) a non-cognitive control measure of general task performance. Schizophrenia communication impairment was significantly associated with poor performance in all cognitive domains, with the largest association found with processing speed (r s =-0.52). Further, communication impairment was also associated with the non-cognitive control measure of poor general task performance (r s =-0.43). In contrast, alogia, a negative speech symptom, and positive symptoms were less if at all related to cognitive task performance. Overall, this study suggests that communication impairment in schizophrenia may be associated with relatively generalized poor cognitive task performance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Polyimide and Metals MEMS Multi-User Processes

    KAUST Repository

    Arevalo, Arpys

    2016-11-01

    The development of a polyimide and metals multi-user surface micro-machining process for Micro-electro-mechanical Systems (MEMS) is presented. The process was designed to be as general as possible, and designed to be capable to fabricate different designs on a single silicon wafer. The process was not optimized with the purpose of fabricating any one specific device but can be tweaked to satisfy individual needs depending on the application. The fabrication process uses Polyimide as the structural material and three separated metallization layers that can be interconnected depending on the desired application. The technology allows the development of out-of-plane compliant mechanisms, which can be combined with six variations of different physical principles for actuation and sensing on a single processed silicon wafer. These variations are: electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing, thermocouple-based sensing and radio frequency transmission and reception.

  5. Clot lysis time in platelet-rich plasma: method assessment, comparison with assays in platelet-free and platelet-poor plasmas, and response to tranexamic acid.

    Science.gov (United States)

    Panes, Olga; Padilla, Oslando; Matus, Valeria; Sáez, Claudia G; Berkovits, Alejandro; Pereira, Jaime; Mezzano, Diego

    2012-01-01

    Fibrinolysis dysfunctions cause bleeding or predisposition to thrombosis. Platelets contain several factors of the fibrinolytic system, which could up or down regulate this process. However, the temporal relationship and relative contributions of plasma and platelet components in clot lysis are mostly unknown. We developed a clot lysis time (CLT) assay in platelet-rich plasma (PRP-CLT, with and without stimulation) and compared it to a similar one in platelet-free plasma (PFP) and to another previously reported test in platelet-poor plasma (PPP). We also studied the differential effects of a single dose of tranexamic acid (TXA) on these tests in healthy subjects. PFP- and PPP-CLT were significantly shorter than PRP-CLT, and the three assays were highly correlated (p plasma PAI-1, von Willebrand factor, fibrinogen, LDL-cholesterol, and triglycerides (p platelet aggregation/secretion, platelet counts, and pro-coagulant tests to explore factor X activation by platelets, PRP clotting time, and thrombin generation in PRP. Among all the studied variables, PFP-CLT was independently associated with plasma PAI-1, LDL-cholesterol, and triglycerides and, additionally, stimulated PRP-CLT was also independently associated with plasma fibrinogen. A single 1 g dose of TXA strikingly prolonged all three CLTs, but in contrast to the results without the drug, the lysis times were substantially shorter in non-stimulated or stimulated PRP than in PFP and PPP. This standardized PRP-CLT may become a useful tool to study the role of platelets in clot resistance and lysis. Our results suggest that initially, the platelets enmeshed in the clot slow down the fibrinolysis process. However, the increased clot resistance to lysis induced by TXA is overcome earlier in platelet-rich clots than in PFP or PPP clots. This is likely explained by the display of platelet pro-fibrinolytic effects. Focused research is needed to disclose the mechanisms for the relationship between CLT and plasma

  6. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    International Nuclear Information System (INIS)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J.; Basurah, Hassan

    2014-01-01

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T e , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z ☉ /30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T e -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm –3 . We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z ☉ > 0.15.

  7. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Basurah, Hassan, E-mail: David.Nicholls@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203 Jeddah (Saudi Arabia)

    2014-05-10

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T{sub e} , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z {sub ☉}/30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T{sub e} -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm{sup –3}. We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z {sub ☉} > 0.15.

  8. Metallic Reactor Fuel Fabrication for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jong-Hwan; Ko, Young-Mo; Woo, Yoon-Myung; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The metal fuel for an SFR has such advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant, and inherent passive safety 1. U-Zr metal fuel for SFR is now being developed by KAERI as a national R and D program of Korea. The fabrication technology of metal fuel for SFR has been under development in Korea as a national nuclear R and D program since 2007. The fabrication process for SFR fuel is composed of (1) fuel slug casting, (2) loading and fabrication of the fuel rods, and (3) fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycled streams in this fabrication process. Fabrication on the rod type metallic fuel was carried out for the purpose of establishing a practical fabrication method. Rod-type fuel slugs were fabricated by injection casting. Metallic fuel slugs fabricated showed a general appearance was smooth.

  9. The Oldest Stars of the Extremely Metal-Poor Local Group Dwarf Irregular Galaxy Leo A

    Science.gov (United States)

    Schulte-Ladbeck, Regina E.; Hopp, Ulrich; Drozdovsky, Igor O.; Greggio, Laura; Crone, Mary M.

    2002-08-01

    We present deep Hubble Space Telescope (HST) single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. in order to expose the halo population of this galaxy. We report the detection of metal-poor red horizontal branch stars, which demonstrate that Leo A is not a young galaxy. In fact, Leo A is as least as old as metal-poor Galactic Globular Clusters that exhibit red horizontal branches and are considered to have a minimum age of about 9 Gyr. We discuss the distance to Leo A and perform an extensive comparison of the data with stellar isochrones. For a distance modulus of 24.5, the data are better than 50% complete down to absolute magnitudes of 2 or more. We can easily identify stars with metallicities between 0.0001 and 0.0004, and ages between about 5 and 10 Gyr, in their post-main-sequence phases, but we lack the detection of main-sequence turnoffs that would provide unambiguous proof of ancient (>10 Gyr) stellar generations. Blue horizontal branch stars are above the detection limits but difficult to distinguish from young stars with similar colors and magnitudes. Synthetic color-magnitude diagrams show it is possible to populate the blue horizontal branch in the halo of Leo A. The models also suggest ~50% of the total astrated mass in our pointing to be attributed to an ancient (>10 Gyr) stellar population. We conclude that Leo A started to form stars at least about 9 Gyr ago. Leo A exhibits an extremely low oxygen abundance, only 3% of solar, in its ionized interstellar medium. The existence of old stars in this very oxygen-deficient galaxy illustrates that a low oxygen abundance does not preclude a history of early star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  10. CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells.

    Science.gov (United States)

    Yu, Xue; Kuai, Long; Geng, Baoyou

    2012-09-21

    Pt-based nanocomposites have been of great research interest. In this paper, we design an efficient MO/rGO/Pt sandwich nanostructure as an anodic electrocatalyst for DMFCs with combination of the merits of rigid structure of metallic oxides (MOs) and excellent electronic conductivity of reduced oxidized graphene (rGO) as well as overcoming their shortcomings. In this case, the CeO(2)/rGO/Pt sandwich nanostructure is successfully fabricated through a facile hydrothermal approach in the presence of graphene oxide and CeO(2) nanoparticles. This structure has a unique building architecture where rGO wraps up the CeO(2) nanoparticles and Pt nanoparticles are homogeneously dispersed on the surface of rGO. This novel structure endows this material with great electrocatalytic performance in methanol oxidation: it reduces the overpotential of methanol oxidation significantly and its electrocatalytic activity and stability are much enhanced compared with Pt/rGO, CeO(2)/Pt and Pt/C catalysts. This work supplies a unique MO/rGO/Pt sandwich nanostructure as an efficient way to improve the electrocatalytic performance, which will surely shed some light on the exploration of some novel structures of electrocatalyst for DMFCs.

  11. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts.

    Science.gov (United States)

    Kakudo, Natsuko; Minakata, Tatsuya; Mitsui, Toshihito; Kushida, Satoshi; Notodihardjo, Frederik Zefanya; Kusumoto, Kenji

    2008-11-01

    This study evaluated changes in platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets by platelet-rich plasma activation, and the proliferation potential of activated platelet-rich plasma and platelet-poor plasma on human adipose-derived stem cells and human dermal fibroblasts. Platelet-rich plasma was prepared using a double-spin method, with the number of platelets counted in each preparation stage. Platelet-rich and platelet-poor plasma were activated with autologous thrombin and calcium chloride, and levels of platelet-released PDGF-AB and TGF-beta1 were determined by enzyme-linked immunosorbent assay. Cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 5% whole blood plasma, nonactivated platelet-rich plasma, nonactivated platelet-poor plasma, activated platelet-rich plasma, or activated platelet-poor plasma. In parallel, these cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 1%, 5%, 10%, or 20% activated platelet-rich plasma. The cultured human adipose-derived stem cells and human dermal fibroblasts were assayed for proliferation. Platelet-rich plasma contained approximately 7.9 times as many platelets as whole blood, and its activation was associated with the release of large amounts of PDGF-AB and TGF-beta1. Adding activated platelet-rich or platelet-poor plasma significantly promoted the proliferation of human adipose-derived stem cells and human dermal fibroblasts. Adding 5% activated platelet-rich plasma to the medium maximally promoted cell proliferation, but activated platelet-rich plasma at 20% did not promote it. Platelet-rich plasma can enhance the proliferation of human adipose-derived stem cells and human dermal fibroblasts. These results support clinical platelet-rich plasma application for cell-based, soft-tissue engineering and wound healing.

  12. Measuring Health Gaps between the Rich and the Poor: A Review of the Literature and its Implications for Health Research in Africa.

    Science.gov (United States)

    Sibanda, Amson; Doctor, Henry V

    2013-06-25

    Measuring variations and gaps in health and wellbeing across individuals, social groups and societies is a critical issue confronting social scientists in their quest to explain why gaps in health between the rich and the poor persist within and across societies. This article provides a systematic review of the measurement of inequalities and their implications on rural and remote health. A comprehensive literature review was conducted using online databases and other collections of published research on measuring health gaps between the rich and the poor in order to trace the development of this field of inquiry. Despite the enormous information on the subject area, it is not always easy to disentangle the independent effects of social class or socio-economic status (SES) on health inequalities from genetic or biological differences when analyzing racial/ethnic, gender or age gaps in mortality and morbidity. The meaning of SES or social class also varies from one culture to the other. Despite decades of work in this field, it is not clear what it is about SES or social class that is associated with inequalities in health. Is it simply a question of access to resources? And on the issue of measurement, studies from various disciplines have shown that it is important to employ a raft of measures in order to measure and present the distributions fully from various angles and value judgments. In the rural African context, tackling vertical and horizontal inequalities in health requires tackling the root causes of poverty and promoting social policies that empower individuals and communities. Hence, the review discusses recent methodological developments that hold promise for addressing the knowledge gap that remain. We hope that researchers will reflect on the dynamics in measures of inequalities discussed in this paper as they continue to assess the status of health in Africa's contemporary and largely dominated rural population.

  13. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Geha, Marla

    2016-01-01

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Its variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs

  14. MicroRNA profiling of salivary adenoid cystic carcinoma: association of miR-17-92 upregulation with poor outcome.

    Directory of Open Access Journals (Sweden)

    Yoshitsugu Mitani

    Full Text Available Salivary adenoid cystic carcinoma (ACC is a rare relentlessly progressive malignant tumor. The molecular events associated with ACC tumorigenesis are poorly understood. Variable microRNAs (miRNA have been correlated with tumorigenesis of several solid tumors but not in ACC. To investigate the association of miRNAs with the development and/or progression of ACC, we performed a comparative analysis of primary ACC specimens and matched normal samples and a pooled salivary gland standard and correlated the results with clinicopathologic factors and validated selected miRNAs in a separate set of 30 tumors.MiRNA array platform was used for the identification of target miRNAs and the data was subjected to informatics and statistical interrelations. The results were also collected with the MYB-NFIB fusion status and the clinicopathologic features.Differentially dysregulated miRNAs in ACC were characterized in comparison to normal expression. No significant differences in miRNA expression were found between the MYB-NFIB fusion positive and -negative ACCs. Of the highly dysregulated miRNA in ACC, overexpression of the miR-17 and miR-20a were significantly associated with poor outcome in the screening and validation sets.Our study indicates that the upregulation of miR-17-92 may play a role in the biology of ACC and could be potentially targeted in future therapeutic studies.

  15. Application of molten salts in pyrochemical processing of reactive metals

    International Nuclear Information System (INIS)

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide

  16. The proximate memory mechanism underlying the survival-processing effect: richness of encoding or interactive imagery?

    Science.gov (United States)

    Kroneisen, Meike; Erdfelder, Edgar; Buchner, Axel

    2013-01-01

    Nairne and collaborators showed that assessing the relevance of words in the context of an imagined survival scenario boosts memory for these words. Although this survival-processing advantage has attracted a considerable amount of research, little is known about the proximate memory mechanism mediating this effect. Recently, Kroneisen and Erdfelder (2011) argued that it is not survival processing itself that facilitates recall but rather the richness and distinctiveness of encoding that is triggered by the survival-processing task. Alternatively, however, it is also conceivable that survival processing fosters interactive imagery, a process known to improve associative learning. To test these explanations we compared relevance-rating and interactive imagery tasks for survival and control scenarios. Results show that the survival advantage replicates in the relevance-rating condition but vanishes in the interactive imagery condition. This refutes the interactive imagery explanation and corroborates the richness-of-encoding hypothesis of the survival-processing effect.

  17. Peptide-mediated vectorization of metal complexes: conjugation strategies and biomedical applications.

    Science.gov (United States)

    Soler, Marta; Feliu, Lidia; Planas, Marta; Ribas, Xavi; Costas, Miquel

    2016-08-16

    The rich chemical and structural versatility of transition metal complexes provides numerous novel paths to be pursued in the design of molecules that exert particular chemical or physicochemical effects that could operate over specific biological targets. However, the poor cell permeability of metallodrugs represents an important barrier for their therapeutic use. The conjugation between metal complexes and a functional peptide vector can be regarded as a versatile and potential strategy to improve their bioavailability and accumulation inside cells, and the site selectivity of their effect. This perspective lies in reviewing the recent advances in the design of metallopeptide conjugates for biomedical applications. Additionally, we highlight the studies where this approach has been directed towards the incorporation of redox active metal centers into living organisms for modulating the cellular redox balance, as a tool with application in anticancer therapy.

  18. Element Distribution in the Oxygen-Rich Side-Blow Bath Smelting of a Low-Grade Bismuth-Lead Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xiao, Hui; Chen, Lin; Chen, Wei; Liu, Weifeng; Zhang, Duchao

    2018-03-01

    Oxygen-rich side-blow bath smelting (OSBS) technology offers an efficient method for processing complex bismuth-lead concentrates; however, the element distributions in the process remain unclear. This work determined the distributions of elements, i.e., bismuth, lead, silver, copper, arsenic and antimony, in an industrial-scale OSBS process. The feed, oxidized slag and final products were collected from the respective sampling points and analyzed. For the oxidative smelting process, 65% of bismuth and 76% of silver in the concentrate report to the metal alloy, whereas less lead reports to the metal ( 31%) than the oxidized slag ( 44%). Approximately 50% of copper enters the matte, while more than 63% of arsenic and antimony report to the slag. For the reductive smelting process, less than 4.5% of bismuth, lead, silver and copper in the oxidized slag enter the reduced slag, indicating high recoveries of these metal values.

  19. Present status and future perspective of R and D on lead heavy metal-cooled fast reactors

    International Nuclear Information System (INIS)

    Takahashi, Minoru

    2007-01-01

    Since a lead heavy metal (lead-bismuth eutectic) is chemically inert and has higher boiling point compared to a sodium, a lead heavy metal-cooled fast reactor can be inherently safe and has good nuclear characteristics and is so suitable to a medium-small size of the reactor. R and D on corrosion of a lead heavy metal has been carried out in the world and this issue might be solved to choose specific corrosion resistant alloys for structural materials and fuel cans of a lead heavy metal-cooled reactor. This article reviews present status and future perspective on lead heavy metal-cooled fast reactors. (T. Tanaka)

  20. Mixed Media Richness and Computer-Mediated Communications

    OpenAIRE

    Atkins, Anthony B.

    2006-01-01

    Mixed richness communications occur when a participant in a conversation receives a different media or combination of media than they transmit. Mixed richness communications occur in the workplace when technical, physiological or practical limitations prevent the use of the same media on both ends of a conversation. Prior research in CMC has focused on same-richness communications, and the design guidelines that are available for same-richness communications may not be applicable to mixed-r...