WorldWideScience

Sample records for quinone ketoxy radical

  1. Chlorophyll-quinone photochemistry in liposomes: mechanisms of radical formation and decay

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.K.; Tollin, G.

    1980-01-01

    Laser flash photolysis has been used to investigate the mechanism of formation and decay of the radical species generated by light induced electron transfer from chlorophyll a triplet to quinone in egg phosphatidyl choline bilayer vesicles. Chlorophyll triplet quenching by quinone is controlled by diffusion occurring within the bilayer membrane and reflects bilayer viscosity. Radical formation via separation of the intermediate ion pair is also inhibited by increased bilayer viscosity. Cooperativity is observed in this process due to an enhancement of radical separation by electron transfer from semiquinone anion radical to a neighboring quinone molecule. Two modes of radical decay are observed, a rapid recombination occurring within the bilayer and a much slower recombination occurring across the bilayer. The slow decay is only observed with quinones which are not tightly anchored into the bilayer, and is probably the result of electron transfer from semiquinone anion radical formed within the bilayer to a quinone molecule residing at the bilayer-water interface. With benzoquinone, approximately 60% of the radical decay occurs via the slow mode. Triplet to radical conversion efficiencies in the bilayer systems are comparable to those obtained in fluid solution (approx. 60%). However, radical recombination, at least for the slow decay mechanism, is considerably retarded.

  2. Dielectric studies on the heterogeneity and interfacial property of composites made of polyacene quinone radical polymers and sulfonated polyurethanes.

    Science.gov (United States)

    Zhu, Dan; Zhang, Juan; Bin, Yuezhen; Xu, Chunye; Shen, Jian; Matsuo, Masaru

    2012-03-01

    Sulfonated polyurethane (PUI, matrix) is synthesized and composited with polyacene quinone radical polymers (PAQRs, filler). The polarization mechanism of these polymers and composites were investigated in terms of their frequency, temperature, and filler-concentration-dependent dielectric properties. We found that PUI/PAQR composites have a high permittivity, which is attributed to the filler-matrix interfacial polarization and the contact effect. The PAQR-concentration-dependent permittivity of different PUI/PAQR composites reveals a percolation threshold at 20-30 wt % with scaling exponents that indicate the intercluster polarization. The frequency dependence of dielectric response is well-fitted by using the Debye and Cole-Cole functions on the basis of the structural diagrams and equivalent circuit, leading to a detailed evaluation on heterogeneous structures of different PUI/PAQR composites.

  3. Free radical-derived quinone methide mediates skin tumor promotion by butylated hydroxytoluene hydroperoxide: expanded role for electrophiles in multistage carcinogenesis.

    Science.gov (United States)

    Guyton, K Z; Bhan, P; Kuppusamy, P; Zweier, J L; Trush, M A; Kensler, T W

    1991-01-01

    Free radical derivatives of peroxides, hydroperoxides, and anthrones are thought to mediate tumor promotion by these compounds. Further, the promoting activity of phorbol esters is attributed, in part, to their ability to stimulate the cellular generation of oxygen radicals. A hydroperoxide metabolite of butylated hydroxytoluene, 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHTOOH), has previously been shown to be a tumor promoter in mouse skin. BHTOOH is extensively metabolized by murine keratinocytes to several radical species. The primary radical generated from BHTOOH is a phenoxyl radical that can disproportionate to form butylated hydroxytoluene quinone methide, a reactive electrophile. Since electrophilic species have not been previously postulated to mediate tumor promotion, the present study was undertaken to examine the role of this electrophile in the promoting activity of BHTOOH. The biological activities of two chemical analogs of BHTOOH, 4-trideuteromethyl-BHTOOH and 4-tert-butyl-BHTOOH, were compared with that of the parent compound. 4-Trideuteromethyl-BHTOOH and 4-tert-butyl-BHTOOH have a reduced ability or inability, respectively, to form a quinone methide; however, like the parent compound, they both generate a phenoxyl radical when incubated with keratinocyte cytosol. The potency of BHTOOH, 4-trideuteromethyl-BHTOOH, and 4-tert-butyl-BHTOOH as inducers of ornithine decarboxylase, a marker of tumor promotion, was commensurate with their capacity for generating butylated hydroxytoluene quinone methide. These initial results were confirmed in a two-stage tumor promotion protocol in female SENCAR mice. Together, these data indicate that a quinone methide is mediating tumor promotion by BHTOOH, providing direct evidence that an electrophilic intermediate can elicit this stage of carcinogenesis. PMID:1846971

  4. A Novel Mechanism for Halogenated Quinone- Mediated and Metal-Independent Organic Fenton-Like Reaction%不依赖于过渡金属离子的卤代醌介导的新型有机类Fenton反应机理

    Institute of Scientific and Technical Information of China (English)

    朱本占; 任福荣; 夏海英; 邵杰

    2012-01-01

    卤代醌是许多卤芳香持久有机污染物的致癌代谢产物和饮用水消毒副产物.羟基自由基(OH)被公认为生物系统中最具活性的活性氧物种,能导致生物体内DNA等生物大分子的氧化损伤.目前,最被广泛接受的OH产生机理是过渡金属离子催化的Fenton反应.综合采用电子自旋共振二级自旋捕获和其他分析方法,发现四氯苯醌和其它卤代醌皆可通过不依赖于过渡金属离子的途径,显著促进氢过氧化物(H2O2或有机氢过氧化物)的分解而产生OH或烷氧自由基,并首次检测到一种新型的、以碳为中心的醌自由基.基于以上研究,提出一类不依赖于过渡金属离子的卤代醌介导的新型有机类Fenton反应机理.%Halogenated quinones are a class of carcinogenic metabolites of many halogenated persistent organic pollutants and new chlorination disinfection byproducts in drinking water. The hydroxyl radical ("OH) has been considered to be one of the most reactive oxygen species produced in biological systems. It has been shown that 'OH can cause oxidative damage to DNA and other macromolecuies. One of the most widely accepted mechanisms for OH production is through the transition metal-catalyzed Fenton reaction. Through the complementary application of electron spin resonance (ESR) secondary spin-trapping and other analytical methods, we found that tetrachloro-1,4-benzoquinone (TCBQ) and other halogenated quinones could markedly enhance the decomposition of hydroperoxides (H2O2 and organic hydroperoxides) and formation of "OH and alkoxyl radicals independent of transition metal ions. A novel carbon-centered quinone ketoxy radical was also detected and identified for the first time. Based on these data, we proposed a novel mechanism for metal-independent and halogenated quinone-mediated organic Fenton-like reaction.

  5. Synthesis of Polyacene Quinone Radical Polymers with the New Method of Molten Salt%新型熔盐法合成多省并醌

    Institute of Scientific and Technical Information of China (English)

    汪云龙; 唐先忠; 赵波; 张怡

    2011-01-01

    PAQRs (Polyacene quinone radical polymers) with certain dielectr/c constant were synthesized by anthraquinone (AQ) and pyromellitic dianhydride (PMA) with the aluminum chloride as catalyst, compared with the solution (nitrobenzene) method and the molten salt ( NaCl - AlCl3 ) method. The structures of products were identified by Fourier transform infrared spectroscopy ( FTIR) , and Thermo Gravimetric (TG) Analysis were done, finally the dielectrle constant of the PAQRs were tested. Results showed the thermal properties of both kind of PAQRs was good, and the dielectric constant was 4350 at 20 Hz with the molten salt method, while the dielectric constant was only 48.5.%以蒽醌(AQ)和均苯四甲酸酐(PMA)为原料在三氯化铝的催化作用下,对比采用溶液(硝基苯)法和熔盐(NaCl-AlCl3)法合成了具有一定介电常数的多省并醌聚合物(PAQR)。通过红外对产物进行结构表征,然后对产物进行热失重(TC)分析测试,最后测量两种方岳PAQR的介电常数。结果显示两种方法合成的PAQR热稳定性均良好:采用熔盐法得到了在20Hz频率下,介电常数为4350的PAQR,而溶液法的介电常数仅为48.5。

  6. Electrocoagulation of Quinone Pigments

    Directory of Open Access Journals (Sweden)

    Duang Buddhasukh

    2006-07-01

    Full Text Available Some representative quinones, viz. one naphthoquinone (plumbagin and five anthraquinones (alizarin, purpurin, chrysazin, emodin, and anthrarufin, were subjected to electrocoagulation. It was found that the rate and extent of coagulation of these compounds appears to correlate with the number and relative position of their phenolic substituent groups, and that all of the coagulated quinones could be recovered. Attempts were then made to electrochemically isolate three quinones, namely plumbagin, morindone and erythrolaccin, from natural sources.

  7. Quinone Reductase 2 Is a Catechol Quinone Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao (NYMEDCO)

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  8. Quinone diazides for olefin functionalization.

    Science.gov (United States)

    Dao, Hai T; Baran, Phil S

    2014-12-22

    The utility of quinone diazides in materials science is vast and well-documented, yet this potentially useful motif has languished in the annals of organic synthesis. Herein we show that modern tools of catalysis can be employed with free or suitably masked quinone diazides to unleash the power of these classic diazo compounds in the context of both inter- and intramolecular olefin cyclopropanation.

  9. Antitermitic quinones from Diospyros sylvatica.

    Science.gov (United States)

    Ganapaty, Seru; Thomas, Pannakal Steve; Fotso, Serge; Laatsch, Hartmut

    2004-05-01

    Six quinones were isolated from the chloroform extract of the roots of Diospyros sylvatica and identified as 2-methyl-anthraquinone, plumbagin, diosindigo, diospyrin, isodiospyrin and microphyllone. The effect of the root extract on the orientation and survival of the subterranean termite, Odontotermes obesus was tested. In addition, four of these quinones were tested on the survival of the subterranean termite. In a direct-choice experiment, exposure to an extract-treated filter disc had a significantly repellent effect over the solvent-treated filter disc. The no-choice experiment revealed the toxic property of the extract as well as the tested quinones and showed high mortality of the O. obesus workers after 48 h on forced exposure. The major termiticidal components identified were plumbagin, isodiospyrin and microphyllone while diospyrin was not toxic to termites at the concentration tested. All the quinones are reported for the first time from D. sylvatica.

  10. Protonated paramagnetic redox forms of di-o-quinone bridged with p-phenylene-extended TTF: A EPR spectroscopy study

    Directory of Open Access Journals (Sweden)

    Nikolay O. Chalkov

    2016-11-01

    Full Text Available The chemical oxidation and reduction processes of deprotonated, direduced o-quinone-exTTF-o-quinone in protic solvents were studied by EPR spectroscopy. The formation of relatively stable paramagnetic protonated redox forms of the parent triad was very surprising. The character of spin-density distribution in the semiquinone–quinone and semiquinone–catechol redox forms indicates that the p-phenylene-extended tetrathiafulvalene connector provides a quite effective electronic communication channel between dioxolene coordination sites. It was found that the deprotonated, direduced o-quinone-exTTF-o-quinone is capable to reduction of the metal copper in solution. The radical anion species formed in this reaction exists in solution as a solvent-separated ion pair with a copper cation. A character of spin-density distribution in a radical anion species leads to the conclusion that the ligand corresponds to type III of the Robin–Day classification.

  11. Semiquinone formation and DNA base damage by toxic quinones and inhibition by N-acetylcysteine (NAC)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.C.; Shibamoto, T.

    1986-03-05

    Toxic, mutagenic, carcinogenic, and teratogenic effects have been reported for some quinones as well as compounds metabolized to quinones. Semiquinone radical formation, thymidine degradation, and protection by NAC were studied in a hypoxanthine/xanthine oxidase (HX/XO) system. Quinone, benzo(a)pyrene-3,6-quinone, danthron, doxorubicin, emodin, juglone, menadione, and moniliformin were tested. Diethylstilbestrolquinone, N-acetylquinoneimine, and benzoquinonediimine, hypothesized toxic metabolites of diethylstilbestrol, acetaminophen and p-phenylenediamine, respectively, were synthesized and studied. Semiquinone radical formation was assessed in a HX/XO system monitoring cytochrome C reduction. Large differences in rates of semiquinone radical formation were noted for different quinones, with V/Vo values ranging from 1.2 to 10.6. DNA base degradation, thymine or thymidine glycol formation, and thiobarbituric acid reactive substance (TBARS) production were measured in a similar system containing thymine, thymidine, calf thymus DNA, or deoxyribose. TBARS formation was observed with deoxyribose, but thymidine degradation without TBARS formation was noted with thymidine. NAC (0.5 to 10 mM) caused dose-dependent inhibition of quinone-induced cytochrome C reduction.

  12. Structure activity study on the quinone/quinone methide chemistry of flavonoids

    NARCIS (Netherlands)

    Awad, H.M.; Boersma, M.G.; Boeren, S.; Bladeren, van P.J.; Vervoort, J.; Rietjens, I.M.C.M.

    2001-01-01

    A structure-activity study on the quinone/quinone methide chemistry of a series of 3',4'-dihydroxyflavonoids was performed. Using the glutathione trapping method followed by HPLC, 1H NMR, MALDI-TOF, and LC/MS analysis to identify the glutathionyl adducts, the chemical behavior of the quinones/quinon

  13. Abietane Quinones from Rabdosia serra

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new abietane quinone diterpenoid was isolated, together with horminone, 16-acetoxy-7-0-acetylhorminone, β-sitosterol, stigmasterol, ursolic acid and palmitic acid from the leaves of Rabdosia Serra (MAXIM) Hara. The new compound was elucidated as 16-acetoxy-7α-ethoxyroyleanone.

  14. Quinones in aerobic and anaerobic mitochondria

    NARCIS (Netherlands)

    van der Klei, S.A.

    2009-01-01

    Ubiquinone (UQ), also known as coenzyme Q, is a ubiquitous quinone and is known to have several functions. One of these functions is electron carrier in the mitochondrial electron transport chain of aerobically functioning bacteria and eukaryotes. In contrast to this aerobically functioning quinone,

  15. Quinones in aerobic and anaerobic mitochondria

    NARCIS (Netherlands)

    van der Klei, S.A.

    2009-01-01

    Ubiquinone (UQ), also known as coenzyme Q, is a ubiquitous quinone and is known to have several functions. One of these functions is electron carrier in the mitochondrial electron transport chain of aerobically functioning bacteria and eukaryotes. In contrast to this aerobically functioning quinone,

  16. Photoinduced electron transfer reactions of ruthenium(II)-complexes containing amino acid with quinones.

    Science.gov (United States)

    Eswaran, Rajkumar; Kalayar, Swarnalatha; Paulpandian, Muthu Mareeswaran; Seenivasan, Rajagopal

    2014-05-01

    With the aim of mimicking, at basic level the photoinduced electron transfer process in the reaction center of photosystem II, ruthenium(II)-polypyridyl complexes, carrying amino acids were synthesized and studied their photoinduced electron transfer reactions with quinones by steady state and time resolved measurements. The reaction of quinones with excited state of ruthenium(II)-complexes, I-V in acetonitrile has been studied by luminescence quenching technique and the rate constant, k(q), values are close to the diffusion controlled rate. The detection of the semiquinone anion radical in this system using time-resolved transient absorption spectroscopy confirms the electron transfer nature of the reaction. The semiclassical theory of electron transfer has been successfully applied to the photoluminescence quenching of Ru(II)-complexes with quinones.

  17. FAD semiquinone stability regulates single- and two-electron reduction of quinones by Anabaena PCC7119 ferredoxin:NADP+ reductase and its Glu301Ala mutant.

    Science.gov (United States)

    Anusevicius, Zilvinas; Miseviciene, Lina; Medina, Milagros; Martinez-Julvez, Marta; Gomez-Moreno, Carlos; Cenas, Narimantas

    2005-05-15

    Flavoenzymes may reduce quinones in a single-electron, mixed single- and two-electron, and two-electron way. The mechanisms of two-electron reduction of quinones are insufficiently understood. To get an insight into the role of flavin semiquinone stability in the regulation of single- vs. two-electron reduction of quinones, we studied the reactions of wild type Anabaena ferredoxin:NADP(+)reductase (FNR) with 48% FAD semiquinone (FADH*) stabilized at the equilibrium (pH 7.0), and its Glu301Ala mutant (8% FADH* at the equilibrium). We found that Glu301Ala substitution does not change the quinone substrate specificity of FNR. However, it confers the mixed single- and two-electron mechanism of quinone reduction (50% single-electron flux), whereas the wild type FNR reduces quinones in a single-electron way. During the oxidation of fully reduced wild type FNR by tetramethyl-1,4-benzoquinone, the first electron transfer (formation of FADH*) is about 40 times faster than the second one (oxidation of FADH*). In contrast, the first and second electron transfer proceeded at similar rates in Glu301Ala FNR. Thus, the change in the quinone reduction mechanism may be explained by the relative increase in the rate of second electron transfer. This enabled us to propose the unified scheme of single-, two- and mixed single- and two-electron reduction of quinones by flavoenzymes with the central role of the stability of flavin/quinone ion-radical pair.

  18. Structure activity study on the quinone/quinone methide chemistry of flavonoids

    NARCIS (Netherlands)

    Awad, H.M.; Boersma, M.G.; Boeren, S.; Bladeren, van P.J.; Vervoort, J.; Rietjens, I.M.C.M.

    2001-01-01

    A structure-activity study on the quinone/quinone methide chemistry of a series of 3',4'-dihydroxyflavonoids was performed. Using the glutathione trapping method followed by HPLC, 1H NMR, MALDI-TOF, and LC/MS analysis to identify the glutathionyl adducts, the chemical behavior of the

  19. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (Purdue); (Colorado); (UIC)

    2011-09-06

    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  20. Quinone exchange at the A{sub 1} site in photosystem I [PSI

    Energy Technology Data Exchange (ETDEWEB)

    Barkoff, A.; Brunkan, N.; Snyder, S.W.; Ostafin, A.; Werst, M.; Thurnauer, M.C. [Argonne National Lab., IL (United States); Biggins, J. [Brown Univ., Providence, RI (United States)

    1995-12-31

    Quinones play an essential role in light-induced electron transport in photosynthetic reaction centers (RC). Study of quinone binding within the protein matrix of the RC is a focal point of understanding the biological optimization of photosynthesis. In plant and cyanobacterial PSI, phylloquinone (K{sub 1}) is believed to be the secondary electron acceptor, A{sub 1}, similar to Q{sub a} in the purple bacterial RC. Photoinduced electron transfer is initiated by reduction of the electron acceptor (A{sub 0}), a chlorophyll species, by the photoexcited primary donor *P{sub 700}. A{sub 1} acts as a transient redox intermediate between A{sub 0} and the iron-sulfur centers (FeS). We have examined the characteristic PSI electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal as a marker of the interacting radical pairs developed during electron transfer.

  1. Quinones and Sulfhydryl-Dependent Immunotoxicity

    Science.gov (United States)

    1983-08-01

    Research Triangle Park, North Carolina 7 INTRODUCTION_ The work to be described is based on the use of immunologic models to understand mec-4tnisms of...and o-quinone metabolites of immunotoxic xenobiotics or analogous resonance struc- tures that possess SH-alkylating activity. Potency differences are...1765-1769. Lane, M. A. (1978)t Muscarinic cholinergic activation of mouse spleen cells cytotoxic to tumor cells in vitro, J. Natl. Cancer Inst., 61:923

  2. Quinone emissions from gasoline and diesel motor vehicles.

    Science.gov (United States)

    Jakober, Chris A; Riddle, Sarah G; Robert, Michael A; Destaillats, Hugo; Charles, M Judith; Green, Peter G; Kleeman, Michael J

    2007-07-01

    Gas- and particle-phase emissions from gasoline and diesel vehicles operated on chassis dynamometers were collected using annular denuders, quartz filters, and PUF substrates. Quinone species were measured using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization in conjunction with gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry. Nine quinones were observed, ranging from C6 to C16. New species identified in motor vehicle exhaust include methyl-1,4-benzoquinone, 2-methyl-1,4-naphthoquinone (MNQN), and aceanthrenequinone. Gas-phase motor vehicle emissions of quinones are also reported for the first time. Six gas-phase quinones were quantified with emission rates of 2-28 000 microg L(-1) fuel consumed. The most abundant gas-phase quinones were 1,4-benzoquinone (BON) and MNQN. The gas-phase fraction was > or = 69% of quinone mass for light-duty gasoline emissions, and > or = 84% for heavy-duty diesel emissions. Eight particle-phase quinones were observed between 2 and 1600 microg L(-1), with BQN the most abundant species followed by 9,10-phenanthrenequinone and 1,2-naphthoquinone. Current particle-phase quinone measurements agree well with the few available previous results. Further research is needed concerning the gas-particle partitioning behavior of quinones in ambient and combustion source conditions.

  3. Reactivities of Quinone Methides versus o-Quinones in Catecholamine Metabolism and Eumelanin Biosynthesis

    Directory of Open Access Journals (Sweden)

    Manickam Sugumaran

    2016-09-01

    Full Text Available Melanin is an important biopolymeric pigment produced in a vast majority of organisms. Tyrosine and its hydroxylated product, dopa, form the starting material for melanin biosynthesis. Earlier studies by Raper and Mason resulted in the identification of dopachrome and dihydroxyindoles as important intermediates and paved way for the establishment of well-known Raper–Mason pathway for the biogenesis of brown to black eumelanins. Tyrosinase catalyzes the oxidation of tyrosine as well as dopa to dopaquinone. Dopaquinone thus formed, undergoes intramolecular cyclization to form leucochrome, which is further oxidized to dopachrome. Dopachrome is either converted into 5,6-dihydroxyindole by decarboxylative aromatization or isomerized into 5,6-dihydroxyindole-2-carboxylic acid. Oxidative polymerization of these two dihydroxyindoles eventually produces eumelanin pigments via melanochrome. While the role of quinones in the biosynthetic pathway is very well acknowledged, that of isomeric quinone methides, however, remained marginalized. This review article summarizes the key role of quinone methides during the oxidative transformation of a vast array of catecholamine derivatives and brings out the importance of these transient reactive species during the melanogenic process. In addition, possible reactions of quinone methides at various stages of melanogenesis are discussed.

  4. The Diterpenoid Quinones from Coleus forskohlii

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two new diterpenoid quinones, coleon S and T were isolated from the chloroform extract of the leaves of Coleus forskohlii, and based on spectroscopic data, their structures were identified as 1,4-phenathrenedione-4b,5,6,8a,9,10-hexahydro-3,9b,10a-trihydroxy-4b,7,8-rimethyl -2-(2-ethoxypropyl)(1) and 1,4-phenathrenedione-2,3,4b,5,6, 8a,9,10-octahydro-3,9b,10a- tri-hydroxy-4b,7,8-trimethyl-2-propylene(2), respectively.

  5. Reversible redox chemistry of quinones: impact on biogeochemical cycles.

    Science.gov (United States)

    Uchimiya, Minori; Stone, Alan T

    2009-10-01

    The role of quinone biomolecules and quinone moieties of natural organic matter (NOM) as the electron transfer mediator in essential biogeochemical processes such as iron bioreduction and contaminant degradation has received considerable interests in the past decade. Hypothesized electron shuttling mechanism must be evaluated based on the availability and stability of quinones under a given environmental setting. The goal of this review is to examine the source, reactivity, and fate of potential quinone catalysts with respect to chemical interactions (e.g., with other quinones and nucleophiles) that will inevitably occur in complex environmental media. We will first discuss natural and anthropogenic sources of quinones in aqueous environments, and fundamental transformation pathways including cross reaction, autoxidation, and addition reactions. We will then assess how the described sources (molecular structure) and transformation pathways (stability) will impact the ability of a quinone molecule to catalyze a biogeochemical process. Thermodynamics and kinetics of electron transfer reactions with both the electron donor (e.g., hydrogen sulfide as a bulk reductant) and the terminal electron acceptor (e.g., nitroaromatic explosives in contaminant degradation), and stability towards irreversible side reactions are the key factors determining the geochemical conditions under which the catalysis by a quinone molecule will be operative.

  6. Antiprotozoal Isoflavan Quinones from Abrus precatorius ssp. africanus

    CSIR Research Space (South Africa)

    Hata, Y

    2013-04-01

    Full Text Available ) and abruquinone G (2), and three isoflavan quinones, abruquinone I (3), abruquinone B (4), and 7, 8, 3′‚5′- tetramethoxyisoflavan-1′,4′- quinone (5). Compounds 1 and 3 were new natural products. The absolute configuration of compounds was determined by comparison...

  7. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen).

    Science.gov (United States)

    Chin, Young-Won; Jung, Hyun-Ah; Chai, Heebyung; Keller, William J; Kinghorn, A Douglas

    2008-02-01

    Bioactivity-guided fractionation of a dichloromethane-soluble extract of Garcinia mangostana fruits has led to the isolation and identification of five compounds, including two xanthones, 1,2-dihydro-1,8,10-trihydroxy-2-(2-hydroxypropan-2-yl)-9-(3-methylbut-2-enyl)furo[3,2-a]xanthen-11-one (1) and 6-deoxy-7-demethylmangostanin (2), along with three known compounds, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone (3), mangostanin (4), and alpha-mangostin (5). The structures of compounds 1 and 2 were determined from analysis of their spectroscopic data. All isolated compounds in the present study together with eleven other compounds previously isolated from the pericarp of mangosteen, were tested in an in vitro quinone reductase-induction assay using murine hepatoma cells (Hepa 1c1c7) and an in vitro hydroxyl radical antioxidant assay. Of these, compounds 1-4 induced quinone reductase (concentration to double enzyme induction, 0.68-2.2microg/mL) in Hepa 1c1c7 cells and gamma-mangostin (6) exhibited hydroxyl radical-scavenging activity (IC50, 0.20microg/mL).

  8. The Three-Dimensional Structure of NAD(P)H:Quinone Reductase, a Flavoprotein Involved in Cancer Chemoprotection and Chemotherapy: Mechanism of the Two-Electron Reduction

    Science.gov (United States)

    Li, Rongbao; Bianchet, Mario A.; Talalay, Paul; Amzel, L. Mario

    1995-09-01

    Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-Å crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP^+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH_2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.

  9. Production and Radioprotective Effects of Pyrroloquinoline Quinone

    Directory of Open Access Journals (Sweden)

    De-Xuan Yang

    2011-12-01

    Full Text Available Pyrroloquinoline quinone (PQQ was produced by fermentation of the Methylovorus sp. MP688 strain and purified by ion-exchange chromatography, crystallization and recrystallization. The yield of PQQ reached approximately 125 mg/L and highly pure PQQ was obtained. To determine the optimum dose of PQQ for radioprotection, three doses (2 mg/kg, 4 mg/kg, 8 mg/kg of PQQ were orally administrated to the experimental animals subjected to a lethal dose of 8.0 Gy in survival test. Survival of mice in the irradiation + PQQ (4 mg/kg group was found to be significantly higher in comparison with the irradiation and irradiation + nilestriol (10 mg/kg groups. The numbers of hematocytes and bone marrow cells were measured for 21 days after sublethal 4 Gy gamma-ray irradiation with per os of 4 mg/kg of PQQ. The recovery of white blood cells, reticulocytes and bone marrow cells in the irradiation + PQQ group was faster than that in the irradiation group. Furthermore, the recovery of bone marrow cell in the irradiation + PQQ group was superior to that in irradiation + nilestriol group. Our results clearly indicate favourable effects on survival under higher lethal radiation doses and the ability of pyrroloquinoline quinine to enhance haemopoietic recovery after sublethal radiation exposure.

  10. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  11. Peltomexicanin, a Peltogynoid Quinone Methide from Peltogyne Mexicana Martínez Purple Heartwood

    Directory of Open Access Journals (Sweden)

    Paulina Gutiérrez-Macías

    2016-02-01

    Full Text Available Peltomexicanin (7,10-dihydroxy-6,12-dioxa-5H-tetraphen-3-one is a new peltogynoid quinone methide isolated from Palo Morado (Peltogyne mexicana Martínez heartwood by column chromatography. Its chemical structure was elucidated by IR, NMR (1H, 13C, 2D NMR experiments (COSY, NOESY, HMQC, and HSQC, ESI-MS, and UV-Vis spectroscopic analysis. According to HPLC quantification, this compound is the main pigment and accounts for 1.21% of Palo Morado heartwood material. The antioxidant activity of peltomexicanin and dried methanolic extract (DEx of purple heartwood was evaluated using the radical of 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assay, and the corresponding values expressed as Trolox equivalents (µmol TE/mg sample were 4.25 and 4.57, respectively.

  12. Electronic transport properties of a quinone-based molecular switch

    Science.gov (United States)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  13. Quinones as Strecker degradation reagents in wine oxidation processes.

    Science.gov (United States)

    Oliveira, Carla Maria; Santos, Sónia A O; Silvestre, Armando J D; Barros, António S; Ferreira, António César Silva; Silva, Artur M S

    2017-08-01

    The Strecker aldehydes formed during the reaction between α-amino acids (phenylalanine or methionine) and either gallic acid, caffeic acid or (+)-catechin ortho-quinones were evaluated in wine-model systems. It was demonstrated that phenylacetaldehyde was formed by quinone intermediates at wine pH. The highest amounts of phenylacetaldehyde during the 10days of experiment (69±5µg/L/day; 7x>Control) were obtained from (+) catechin, followed by gallic acid (61±4µg/L/day; 6x>Control) and caffeic acid (41±4µg/L/day; 4x>Control). The intermediate structures delivered from the reaction of ortho-quinones with α-amino acids were demonstrated by MS(n). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Terahertz time-domain spectroscopic investigation on quinones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Well resolved far-infrared spectra of 1,4-benzoquinone, 1,4-naphthoquinone, and 9, 10-anthraquinonme in polycrystalline form have been measured with terahertz time domain spectroscopy at room tem- perature. The characterizations of power absorption and index of refraction in the frequency range 0.3 -2.0 THz are presented. Theoretical calculation is applied to assist the analysis and assignment of individual THz absorption spectra of the p-quinones with semiempirical AM1, Hartree-Fock (HF), and density functional theory (DFT) method. Observed THz responses are assigned to the translational and torsional vibrations of p-quinone dimer held together by weak hydrogen bonds.

  15. Terahertz time-domain spectroscopic investigation on quinones

    Institute of Scientific and Technical Information of China (English)

    GE Min; ZHAO HongWei; WANG WenFeng; YU XiaoHan; LI WenXin

    2008-01-01

    Well resolved far-infrared spectra of 1,4-benzoquinone, 1,4-naphthoquinone, and 9, 10-anthraquinonme in polycrystalline form have been measured with terahertz time domain spectroscopy at room tem-perature. The characterizations of power absorption and index of refraction in the frequency range 0.3 -2.0 THz are presented. Theoretical calculation is applied to assist the analysis and assignment of individual THz absorption spectra of the p-quinones with semiempirical AM1, Hartree-Fock (HF), and density functional theory (DFT) method. Observed THz responses are assigned to the translational and torsional vibrations of p-quinone dimer held together by weak hydrogen bonds.

  16. The regioselectivity of glutathione adduct formation with flavonoid quinone methides is pH-dependent

    NARCIS (Netherlands)

    Awad, H.M.; Boersma, M.G.; Boeren, S.; Vervoort, J.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2002-01-01

    In the present study, the formation of glutathionyl adducts from a series of 3',4'-dihydroxy flavonoid o-quinone/p-quinone methides was investigated with special emphasis on the regioselectivity of the glutathione addition as a function of pH. The flavonoid o-quinones were generated using

  17. The regioselectivity of glutathione adduct formation with flavonoid quinone methides is pH-dependent

    NARCIS (Netherlands)

    Awad, H.M.; Boersma, M.G.; Boeren, S.; Vervoort, J.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2002-01-01

    In the present study, the formation of glutathionyl adducts from a series of 3',4'-dihydroxy flavonoid o-quinone/p-quinone methides was investigated with special emphasis on the regioselectivity of the glutathione addition as a function of pH. The flavonoid o-quinones were generated using horseradis

  18. Two New Abietane Quinones from Isodon lophanthoides var. Micranthus

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structures of two new abietane quinones, named micranthins A and B, weredetermined to be 7α-methoxy-14, 16-epoxy-8, 13-abietadiene-11, 12-dione (1) and 16-acetoxy-6,7-dehydroroyleanone (2) respectively, which were isolated from Isodon lophanthoides var.micranthus.

  19. Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions

    NARCIS (Netherlands)

    Oubrie, Arthur; Dijkstra, Bauke W.

    2000-01-01

    On the basis of crystal structures of the pyrroloquinoline quinone (PQQ) dependent enzymes methanol dehydrogenase (MDH) and soluble glucose dehydrogenase (s-GDH), different catalytic mechanisms have been proposed. However, several lines of biochemical and kinetic evidence are strikingly similar for

  20. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.

    Science.gov (United States)

    Kimura, Yuji; Takahashi, Ayumi; Kashiwada, Ayumi; Yamada, Kazunori

    2015-01-01

    In this study, the combined use of a biopolymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was systematically investigated for the removal of bisphenol derivatives from aqueous medium. The process parameters, such as the pH value, temperature, and PPO concentration, were estimated to conduct the enzymatic quinone oxidation of bisphenol derivatives by as little enzyme as possible. Bisphenol derivatives effectively underwent PPO-catalysed quinone oxidation without H2O2 unlike other oxidoreductases, such as peroxidase and tyrosinase, and the optimum conditions were determined to be pH 7.0 and 40°C for bisphenol B, bisphenol E, bisphenol O, and bisphenol Z; pH 7.0 and 30°C for bisphenol C and bisphenol F; and pH 8.0 and 40°C for bisphenol T. They were completely removed through adsorption of enzymatically generated quinone derivatives on chitosan beads or chitosan powders. Quinone adsorption on chitosan beads or chitosan powders in the heterogeneous system was found to be a more effective procedure than generation of aggregates in the homogeneous system with chitosan solution. The removal time was shortened by increasing the amount of chitosan beads or decreasing the size of the chitosan powders.

  1. Time-Resolved Electron Paramagnetic Resonance Study of Photoinduced Electron Transfer in Pd Porphyrin-Quinone and Zn Porphyrin-Quinone Dyads with a Cyclohexylene Spacer.

    Science.gov (United States)

    Perchanova, Maya; Kurreck, Harry; Berg, Alexander

    2015-07-23

    Peculiarities of the light induced intramolecular electron transfer processes in two ensembles where Pd porphyrin and Zn porphyrin donors with similar peripheral substituents are covalently linked via cyclohexylene spacer with a quinone acceptor, were studied by time-resolved electron paramagnetic resonance spectroscopy in different phases of the magnetically oriented nematic liquid crystal E-7. In the photoexcited PdP-Q the net absorptive signal was observed and ascribed to the thermally equilibrated spectrum of (3)*(PdP(•+)-Q(•-)). In ZnP-Q photoinduced intramolecular electron transfer was also found. It was demonstrated that the multiplet spectrum of the charge-separated state (3)*(ZnP(•+)-Q(•-)) consists of two signals with different widths and decay times. The signals were assigned to two spin-polarized triplets of the radical pairs formed in "stretched" and "folded" ensemble conformers, corresponding to different configurations of the cyclohexylene spacer. These findings were discussed in terms of differences in the properties of the porphyrin metal cores, macrocycle peripheral substituents and geometry of the donor-acceptor cyclohexylene spacer.

  2. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.

    Science.gov (United States)

    Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S

    2016-11-15

    Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed.

  3. Quinone-Enriched Gold Nanoparticles in Bioelectrochemistry and Charge Storage

    DEFF Research Database (Denmark)

    Wagner, Michal; Qvortrup, Katrine; Tanner, David Ackland

    We are aiming at the development of a general electrochemical platform suitable for multifarious investigations of biogenic materials. The new platform can be attained by grafting organic/metal hybrids with quinone functionality. In-house made and customized anthraquinone derivatives (with linking...... groups ranging from thiophenes to thiols) were chosen as model compounds for linking together bulk quantities of gold nanoparticles and providing desired functionality. Anthraquinone thiophene and thiol derivatives were synthetized via Sonogashira coupling-type reactions. The synthetic pathways...... for merging gold nanoparticles with resultant anthraquinones include one-pot microwave assisted synthesis or after-mixing of separately prepared gold nanoparticles with selected compounds. The quinone-enriched gold nanoparticles can be transferred onto different electrode surfaces, thus enabling facile...

  4. Two new quinones from the roots of Juglans mandshurica.

    Science.gov (United States)

    Jin, Mei; Sun, Jinfeng; Li, Ren; Diao, Shengbao; Zhang, Changhao; Cui, Jiongmo; Son, Jong-Keun; Zhou, Wei; Li, Gao

    2016-09-01

    Two new quinones, 1-hydroxy-5-pentyl-anthraquinone (1) and 4-(5-hydroxy-1,4-dioxo-1,4-dihydro-naphthalen-2-ylamino)-butyric acid methyl ester (2), together with two known quinones, 5-hydroxy-2-(2-hydroxy-ethylamino)-(1,4) naphthoquinone (3) and juglone (4) were isolated from the roots of Juglans mandshurica (Juglandaceae). Their structures were elucidated on the basis of spectral data. Compound 3 was isolated from the Juglans genus for the first time. Compounds 1-4 exhibited significant cytotoxicity towards cultured MDA-MB231, HepG2 and SNU638 cells with IC50 values ranging from 4.46 to 88.47 μM.

  5. Selective synthesis of the para-quinone region of geldanamycin.

    Science.gov (United States)

    Andrus, Merritt B; Hicken, Erik J; Meredith, Erik L; Simmons, Bryon L; Cannon, John F

    2003-10-16

    [structure: see text] The quinone portion of the ansamycin geldanamycin was made with complete selectivity from the 1,4-dihydroquinone generated from a 1,4-bis-methoxymethyl (MOM) ether intermediate. Palladium catalysis with air gave the desired product in 98% isolated yield. The structure was established using NMR, UV, and X-ray analysis with comparisons to geldanamycin, ortho-quino-geldanamycin and a model compound.

  6. Soluble and stable zethrenebis(dicarboximide) and its quinone

    KAUST Repository

    Sun, Zhe

    2010-10-15

    Soluble and stable zethrenebis(dicarboximide) (1) was synthesized by an in situ Stille cross coupling/transannular cyclization reaction. 1 showed largely improved photostability and solubility compared with the very unstable zethrene and it also exhibited far-red absorption and emission with high photoluminescence quantum yield. Bromination of 1 with NBS/DMF gave its quinone form 2 via an unusual pathway. © 2010 American Chemical Society.

  7. In vitro activity of almond skin polyphenols for scavenging free radicals and inducing quinone reductase

    Science.gov (United States)

    Observational studies and clinical trials suggest nut intake, including almonds, is associated with an enhancement in antioxidant defense and a reduction in risk of cancer and cardiovascular disease. Almond skins are rich in polyphenols (ASP) that may contribute to these putative benefits. To assess...

  8. Design and Synthesis of Novel Isoxazole Tethered Quinone-Amino Acid Hybrids

    Directory of Open Access Journals (Sweden)

    P. Ravi Kumar

    2014-01-01

    Full Text Available A new series of isoxazole tethered quinone-amino acid hybrids has been designed and synthesized involving 1,3-dipolar cycloaddition reaction followed by an oxidation reaction using cerium ammonium nitrate (CAN. Using this method, for the first time various isoxazole tethered quinone-phenyl alanine and quinone-alanine hybrids were synthesized from simple commercially available 4-bromobenzyl bromide, propargyl bromide, and 2,5-dimethoxybenzaldehyde in good yield.

  9. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2017-09-05

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  10. Radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Sønksen, Jens; Jakobsen, Henrik

    2014-01-01

    OBJECTIVE: The aim of this study was to compare oncological and functional outcomes between robot-assisted laparoscopic radical prostatectomy (RALP) and retropubic radical prostatectomy (RRP) during the initial phase with RALP at a large university hospital. MATERIAL AND METHODS: Patient and tumour...... surgery and at follow-up and they were asked to report their use of pads/diapers. Potency was defined as an IIEF-5 score of at least 17 with or without phosphodiesterase-5 inhibitors. Patients using up to one pad daily for security reasons only were considered continent. Positive surgical margins, blood...... loss and functional outcomes were compared between groups. RESULTS: Overall, 453 patients were treated with RRP and 585 with RALP. On multivariate logistic regression analyses, the type of surgery did not affect surgical margins (p = 0.96) or potency at 12 months (p = 0.7). Patients who had undergone...

  11. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-09-08

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L(-1) ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    Science.gov (United States)

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  13. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  14. Carbons, ionic liquids and quinones for electrochemical capacitors

    Science.gov (United States)

    Diaz, Raul; Doherty, Andrew

    2016-04-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL) capacitance and energy density. The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  15. Universal quinone electrodes for long cycle life aqueous rechargeable batteries

    Science.gov (United States)

    Liang, Yanliang; Jing, Yan; Gheytani, Saman; Lee, Kuan-Yi; Liu, Ping; Facchetti, Antonio; Yao, Yan

    2017-08-01

    Aqueous rechargeable batteries provide the safety, robustness, affordability, and environmental friendliness necessary for grid storage and electric vehicle operations, but their adoption is plagued by poor cycle life due to the structural and chemical instability of the anode materials. Here we report quinones as stable anode materials by exploiting their structurally stable ion-coordination charge storage mechanism and chemical inertness towards aqueous electrolytes. Upon rational selection/design of quinone structures, we demonstrate three systems that coupled with industrially established cathodes and electrolytes exhibit long cycle life (up to 3,000 cycles/3,500 h), fast kinetics (>=20C), high anode specific capacity (up to 200-395 mAh g-1), and several examples of state-of-the-art specific energy/energy density (up to 76-92 Wh kg-1/ 161-208 Wh l-1) for several operational pH values (-1 to 15), charge carrier species (H+, Li+, Na+, K+, Mg2+), temperature (-35 to 25 °C), and atmosphere (with/without O2), making them a universal anode approach for any aqueous battery technology.

  16. Phospholipid and Respiratory Quinone Analyses From Extreme Environments

    Science.gov (United States)

    Pfiffner, S. M.

    2008-12-01

    Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.

  17. Crystal structure and characterization of pyrroloquinoline quinone disodium trihydrate

    Directory of Open Access Journals (Sweden)

    Ikemoto Kazuto

    2012-06-01

    Full Text Available Abstract Background Pyrroloquinoline quinone (PQQ, a tricarboxylic acid, has attracted attention as a growth factor, and its application to supplements and cosmetics is underway. The product used for these purposes is a water-soluble salt of PQQ disodium. Although in the past, PQQ disodiumpentahydrates with a high water concentration were used, currently, low hydration crystals of PQQ disodiumpentahydrates are preferred. Results We prepared a crystal of PQQ disodium trihydrate in a solution of ethanol and water, studied its structure, and analyzed its properties. In the prepared crystal, the sodium atom interacted with the oxygen atom of two carboxylic acids as well as two quinones of the PQQ disodium trihydrate. In addition, the hydration water of the prepared crystal was less than that of the conventional PQQ disodium crystal. From the results of this study, it was found that the color and the near-infrared (NIR spectrum of the prepared crystal changed depending on the water content in the dried samples. Conclusions The water content in the dried samples was restored to that in the trihydrate crystal by placing the samples in a humid environment. In addition, the results of X-ray diffraction (XRD and X-ray diffraction-differential calorimetry (XRD-DSC analyses show that the phase of the trihydrate crystal changed when the crystallization water was eliminated. The dried crystal has two crystalline forms that are restored to the original trihydrate crystals in 20% relative humidity (RH. This crystalline (PQQ disodium trihydrate is stable under normal environment.

  18. Supercritical Fluid Extraction of Quinones from Compost for Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Ni Luh Gede Ratna Juliasih

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE was used to extract quinones from compost to monitor the microbial community dynamics during composting. The 0.3 g of dried compost was extracted using 3 mL min−1 of carbon dioxide (90% and methanol (10% at 45°C and 25 MPa for a 30 min extraction time. The extracted quinones were analysed using ultra performance liquid chromatography (UPLC with 0.3 mL min−1 of methanol mobile phase for a 50 min chromatographic run time. A comparable detected amount of quinones was obtained using the developed method and an organic solvent extraction method, being 36.06 μmol kg−1 and 34.54 μmol kg−1, respectively. Significantly low value of dissimilarity index (D between the two methods (0.05 indicated that the quinone profile obtained by both methods was considered identical. The developed method was then applied to determine the maturity of the compost by monitoring the change of quinone during composting. The UQ-9 and MK-7 were predominant quinones in the initial stage of composting. The diversity of quinone became more complex during the cooling and maturation stages. This study showed that SFE had successfully extracted quinones from a complex matrix with simplification and rapidity of the analysis that is beneficial for routine analysis.

  19. Electron affinity of p-quinones. Improved method of electrochemical estimation

    Science.gov (United States)

    Jaworski, Jan S.

    1986-06-01

    Electron affinities of four p-quinones are estimated from enthalpy changes obtained on the basis of measured formal potentials and reaction entropies in the electroreduction process. A linear correlation between electron affinities of p-quinones and parent hydrocarbons is found.

  20. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    Science.gov (United States)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    In this study, we attempted to establish quinone-stable-isotope probing (SIP) technique to link substrate-utilizing bacterial group to chemotaxonomic group in bacterial community. To identify metabolically active bacterial group in various environments, SIP techniques combined with biomarkers have been widely utilized as an attractive method for environmental study. Quantitative approaches of the SIP technique have unique advantage to assess substrate-incorporation into bacteria. As a most major quantitative approach, SIP technique based on phospholipid-derived fatty acids (PLFA) have been applied to simultaneously assess substrate-incorporation rate into bacteria and microbial community structure. This approach is powerful to estimate the incorporation rate because of the high sensitivity due to the detection by a gas chromatograph-combustion interface-isotope ratio mass spectrometer (GC-c-IRMS). However, its phylogenetic resolution is limited by specificity of a compound-specific marker. We focused on respiratory quinone as a biomarker. Our previous study found a good correlation between concentrations of bacteria-specific PLFAs and quinones over several orders of magnitude in various marine sediments, and the quinone method has a higher resolution (bacterial phylum level) for resolving differences in bacterial community composition more than that of bacterial PLFA. Therefore, respiratory quinones are potentially good biomarkers for quantitative approaches of the SIP technique. The LC-APCI-MS method as molecular-mass based detection method for quinone was developed and provides useful structural information for identifying quinone molecular species in environmental samples. LC-MS/MS on hybrid triple quadrupole/linear ion trap, which enables to simultaneously identify and quantify compounds in a single analysis, can detect high molecular compounds with their isotope ions. Use of LC-MS/MS allows us to develop quinone-SIP based on molecular mass differences due to

  1. Activation of Electron-Deficient Quinones through Hydrogen-Bond-Donor-Coupled Electron Transfer.

    Science.gov (United States)

    Turek, Amanda K; Hardee, David J; Ullman, Andrew M; Nocera, Daniel G; Jacobsen, Eric N

    2016-01-11

    Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron-deficient quinones are used. We have successfully employed HBD-coupled electron transfer as a strategy to activate electron-deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone-mediated model synthetic transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Theoretical Study of the Radical Scavenging Activity of Shikonin and Its Derivatives%Theoretical Study of the Radical Scavenging Activity of Shikonin and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    靳瑞岌; 李杰

    2012-01-01

    A series of shikonin derivatives have been designed and their radical scavenging activity has been characterized by the B3LYP/6-31 +G(d) approach. The hydrogen bond properties of the studied structures were investigated using the atoms in molecules (AIM) theory. The calculated results reveal that the hydrogen bond is important for good scavenging activity. The introduction of electron-drawing (electron-donating) groups increases (decreases) the scavenging activities of radical and radical cations of shikonin derivatives. Shikonin derivatives appear to be good candidates for the single-electron-transfer mechanism, particularly for -N(CH3)2 derivative. Taking this system as an example, we present an efficient method for the investigation of radical scavenging activity from theoretical point of view. With the current work, we hope to highlight the radical scavenging activity of hydroxynaphtho- quinones derivatives and stimulate the interest for further studies and exploitation in pharmaceutical industry.

  3. Cytotoxic Quinones from the Roots of Aloe dawei

    Directory of Open Access Journals (Sweden)

    Negera Abdissa

    2014-03-01

    Full Text Available Seven naphthoquinones and nine anthraquinones were isolated from the roots of Aloe dawei by chromatographic separation. The purified metabolites were identified by NMR and MS analyses. Out of the sixteen quinones, 6-hydroxy-3,5-dimethoxy-2-methyl-1,4-naphthoquinone is a new compound. Two of the isolates, 5,8-dihydroxy-3-methoxy-2-methylnaphthalene-1,4-dione and 1-hydroxy-8-methoxy-3-methylanthraquinone showed high cytotoxic activity (IC50 1.15 and 4.85 µM on MCF-7 breast cancer cells, whereas the others showed moderate to low cytotoxic activity against MDA-MB-231 (ER Negative and MCF-7 (ER Positive cancer cells.

  4. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.

    1985-12-01

    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  5. Identification of quinone imine containing glutathione conjugates of diclofenac in rat bile.

    Science.gov (United States)

    Waldon, Daniel J; Teffera, Yohannes; Colletti, Adria E; Liu, Jingzhou; Zurcher, Danielle; Copeland, Katrina W; Zhao, Zhiyang

    2010-12-20

    High-resolution accurate MS with an LTQ-Orbitrap was used to identify quinone imine metabolites derived from the 5-hydroxy (5-OH) and 4 prime-hydroxy (4'-OH) glutathione conjugates of diclofenac in rat bile. The initial quinone imine metabolites formed by oxidation of diclofenac have been postulated to be reactive intermediates potentially involved in diclofenac-mediated hepatotoxicity; while these metabolites could be formed using in vitro systems, they have never been detected in vivo. This report describes the identification of secondary quinone imine metabolites derived from 5-OH and 4'-OH diclofenac glutathione conjugates in rat bile. To verify the proposed structures, the diclofenac quinone imine GSH conjugate standards were prepared synthetically and enzymatically. The novel metabolite peaks displayed the identical retention times, accurate mass MS/MS spectra, and the fragmentation patterns as the corresponding authentic standards. The formation of these secondary quinone metabolites occurs only under conditions where bile salt homeostasis was experimentally altered. Standard practice in biliary excretion experiments using bile duct-cannulated rats includes infusion of taurocholic acid and/or other bile acids to replace those lost due to continuous collection of bile; for this experiment, the rats received no replacement bile acid infusion. High-resolution accurate mass spectrometry data and comparison with chemically and enzymatically prepared quinone imines of diclofenac glutathione conjugates support the identification of these metabolites. A mechanism for the formation of these reactive quinone imine containing glutathione conjugates of diclofenac is proposed.

  6. Monitoring Dopamine Quinone-Induced Dopaminergic Neurotoxicity Using Dopamine Functionalized Quantum Dots.

    Science.gov (United States)

    Ma, Wei; Liu, Hui-Ting; Long, Yi-Tao

    2015-07-08

    Dopamine (DA) quinone-induced dopaminergic neurotoxicity is known to occur due to the interaction between DA quinone and cysteine (Cys) residue, and it may play an important a role in pathological processes associated with neurodegeneration. In this study, we monitored the interaction process of DA to form DA quinone and the subsequent Cys residue using dopamine functionalized quantum dots (QDs). The fluorescence (FL) of the QD bioconjugates changes as a function of the structure transformation during the interaction process, providing a potential FL tool for monitoring dopaminergic neurotoxicity.

  7. Ignorance Radicalized

    Directory of Open Access Journals (Sweden)

    Gergo Somodi

    2009-12-01

    Full Text Available The aim of this paper is twofold. I criticize Michael Devitt's linguistic---as opposed to Chomsky's psychological---conception of linguistics on the one hand, and I modify his related view on linguistic intuitions on the other. I argue that Devitt's argument for the linguistic conception is in conflict with one of the main theses of that very conception, according to which linguistics should be about physical sentence tokens of a given language rather than about the psychologically real competence of native speakers. The basis of this conflict is that Devitt's view on language, as I will show, inherits too much from the criticized Chomskian view. This is also the basis of Devitt's strange claim that it is the linguist, and not the ordinary speaker, whose linguistic intuition should have an evidential role in linguistics. I will argue for the opposite by sketching a view on language that is more appropriate to the linguistic conception. That is, in criticizing Devitt, I am not defending the Chomskian approach. My aim is to radicalize Devitt's claims.

  8. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass.

    Science.gov (United States)

    Mathieu, Yann; Piumi, Francois; Valli, Richard; Aramburu, Juan Carro; Ferreira, Patricia; Faulds, Craig B; Record, Eric

    2016-04-01

    Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of the Pycnoporus cinnabarinus CIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously in Aspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase from Pleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 and PcAAQO3). Structural comparison of PcAAQO homology models with P. eryngii AAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability of PcAAQOs to reduce radical intermediates generated by laccase from P. cinnabarinus was demonstrated, shedding light on the ligninolytic system of this fungus.

  9. Water oxidation chemistry of a synthetic dinuclear ruthenium complex containing redox-active quinone ligands.

    Science.gov (United States)

    Isobe, Hiroshi; Tanaka, Koji; Shen, Jian-Ren; Yamaguchi, Kizashi

    2014-04-21

    We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, [Ru2(X)(Y)(3,6-tBu2Q)2(btpyan)](m+) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged μ-peroxo or μ-superoxo intermediates. The μ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged μ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1.

  10. Terrorism, radicalization, and de-radicalization

    NARCIS (Netherlands)

    Doosje, B.; Moghaddam, F.M.; Kruglanski, A.W.; de Wolf, A.; Mann, L.; Feddes, A.R.

    2016-01-01

    In this article, we review the literature and present a model of radicalization and de-radicalization. In this model, we distinguish three phases in radicalization: (1) a sensitivity phase, (2) a group membership phase and (3) an action phase. We describe the micro-level, meso-level and macro-level

  11. Solid state oxidation of phenols to quinones with sodium perborate on wet montmorillonite K10

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Mohammed M.; Eftekhari-Sis, Bagher; Khalili, Behzad; Karimi-Jaberi, Zahed [Sharif University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Chemistry]. E-mail: mhashemi@sharif.edu

    2005-09-15

    Phenols were oxidized to quinones using sodium perborate (SPB) on wet montmorillonite as oxidant. The reaction was carried out at ambient temperature on the solid phase under solvent free conditions. (author)

  12. Transimination of quinone imines: a mechanism for embedding exogenous redox activity into the nucleosome.

    Science.gov (United States)

    Ye, Wenjie; Seneviratne, Uthpala I; Chao, Ming-Wei; Ravindra, Kodihalli C; Wogan, Gerald N; Tannenbaum, Steven R; Skipper, Paul L

    2012-12-17

    Aminophenols can redox cycle through the corresponding quinone imines to generate ROS. The electrophilic quinone imine intermediate can react with protein thiols as a mechanism of immobilization in vivo. Here, we describe the previously unkown transimination of a quinone imine by lysine as an alternative anchoring mechanism. The redox properties of the condensation product remain largely unchanged because the only structural change to the redox nucleus is the addition of an alkyl substituent to the imine nitrogen. Transimination enables targeting of histone proteins since histones are lysine-rich but nearly devoid of cysteines. Consequently, quinone imines can be embedded in the nucleosome and may be expected to produce ROS in maximal proximity to the genome.

  13. Porphyrin-quinone compounds as synthetic models of the reaction centre in photosynthesis

    Science.gov (United States)

    Borovkov, V. V.; Evstigneeva, Rima P.; Strekova, L. N.; Filippovich, E. I.

    1989-06-01

    Data on the synthesis, steric structure, and photochemical properties of porphyrin-quinone compounds as synthetic models of the reaction centre in photosynthesis are examined and described systematically. The bibliography includes 113 references.

  14. Riboflavin is an active redox cofactor in the Na+-pumping NADH: quinone oxidoreductase (Na+-NQR) from Vibrio cholerae.

    Science.gov (United States)

    Juárez, Oscar; Nilges, Mark J; Gillespie, Portia; Cotton, Jennifer; Barquera, Blanca

    2008-11-28

    Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR.

  15. Mild and rapid method for the generation of ortho-(naphtho)quinone methide intermediates.

    Science.gov (United States)

    Shaikh, Abdul kadar; Cobb, Alexander J A; Varvounis, George

    2012-01-20

    A new mild method has been devised for generating o-(naphtho)quinone methides via fluoride-induced desilylation of silyl derivatives of o-hydroxybenzyl(or 1-naphthylmethyl) nitrate. The reactive o-(naphtho)quinone methide intermediates were trapped by C, O, N, and S nucleophiles and underwent "inverse electron-demand" hetero-Diels-Alder reaction with dienophiles to give stable adducts. The method has useful potential application in natural product synthesis and drug research.

  16. Terreic Acid, a Quinone Epoxide Inhibitor of Bruton's Tyrosine Kinase

    Science.gov (United States)

    Kawakami, Yuko; Hartman, Stephen E.; Kinoshita, Eiji; Suzuki, Hidefumi; Kitaura, Jiro; Yao, Libo; Inagaki, Naoki; Franco, Alessandra; Hata, Daisuke; Maeda-Yamamoto, Mari; Fukamachi, Hiromi; Nagai, Hiroichi; Kawakami, Toshiaki

    1999-03-01

    Bruton's tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.

  17. Syntrophic Growth via Quinone-Mediated Interspecies Electron Transfer

    Directory of Open Access Journals (Sweden)

    Jessica A Smith

    2015-02-01

    Full Text Available The mechanisms by which microbial species exchange electrons are of interest because interspecies electron transfer can expand the metabolic capabilities of microbial communities. Previous studies with the humic substance analog anthraquinone-2,6-disulfonate (AQDS suggested that quinone-mediated interspecies electron transfer (QUIET is feasible, but it was not determined if sufficient energy is available from QUIET to support the growth of both species. Furthermore, there have been no previous studies on the mechanisms for the oxidation of anthrahydroquinone-2,6-disulfonate (AHQDS. A co-culture of Geobacter metallireducens and Geobacter sulfurreducens metabolized ethanol with the reduction of fumarate much faster in the presence of AQDS, and there was an increase in cell protein. G. sulfurreducens was more abundant, consistent with G. sulfurreducens obtaining electrons from acetate that G. metallireducens produced from ethanol, as well as from AHQDS. Cocultures initiated with a citrate synthase-deficient strain of G. sulfurreducens that was unable to use acetate as an electron donor also metabolized ethanol with the reduction of fumarate and cell growth, but acetate accumulated over time. G. sulfurreducens and G. metallireducens were equally abundant in these co-cultures reflecting the inability of the citrate synthase-deficient strain of G. sulfurreducens to metabolize acetate. Evaluation of the mechanisms by which G. sulfurreducens accepts electrons from AHQDS demonstrated that a strain deficient in outer-surface c-type cytochromes that are required for AQDS reduction was as effective at QUIET as the wild-type strain. Deletion of additional genes previously implicated in extracellular electron transfer also had no impact on QUIET. These results demonstrate that QUIET can yield sufficient energy to support the growth of both syntrophic partners, but that the mechanisms by which electrons are derived from extracellular hydroquinones require

  18. Biotransformation of lepidocrocite in the presence of quinones and flavins

    Science.gov (United States)

    Bae, Sungjun; Lee, Woojin

    2013-08-01

    This study investigated the bioreduction of lepidocrocite (γ-FeIIIOOH) and its mineral transformation in the presence of exogenous (quinones) and endogenous (flavins) electron transfer mediators (ETMs) at low concentrations of the ETMs and bacterial cells (Shewanella putrefaciens CN32). It is very important to investigate the bioreduction of lepidocrocite in the presence of different ETMs because biotransformation of Fe(III)-containing minerals can be stimulated by ETMs and affect fate and transport of contaminants in contaminated environments. In the absence of phosphate, green rust formation was observed with fast Fe(II) production rate (0.44-0.56 mM d-1) during the bioreduction of lepidocrocite with exogenous ETMs, while goethite formed at slow Fe(II) production rate (0.24-0.29 mM d-1) with endogenous ETMs. In the presence of phosphate, formation of green rust and vivianite was observed with fast Fe(II) production rate (0.54-0.74 mM d-1) during the bioreduction of lepidocrocite with exogenous ETMs, while vivianite formed at moderate Fe(II) production rate (0.36-0.40 mM d-1) with endogenous ETMs. Vivianite formed in all experimental cases with phosphate in a broad range of Fe(II) production rates (0.23-0.74 mM d-1). Our results (1) suggest that exogenous and endogenous ETMs can significantly but differently affect the biotransformation of lepidocrocite, especially at low concentrations of the ETMs and bacterial cells, (2) highlight the importance of Fe(II) production rate to determine the formation of specific biogenic minerals, (3) provide additional evidence that phosphate can significantly affect the bioreduction rate and the mineral transformation, and (4) help to understand the basic knowledge about complex interactions among microbial cell, soil mineral, and ETM in natural environments and engineered systems.

  19. Structural Changes of Water Molecules Upon the Reduction of Quinones in The Reaction Center from Rhodobactery Sphaeroides

    Institute of Scientific and Technical Information of China (English)

    T.Iwata; M.L.Paddock; M.Y.Okamura; H.Kandori

    2007-01-01

    1 Results The photosynthetic bacterial reaction center (RC) is a membrane protein complex.The RC is composed of three protein subunits and redox components such as bacteriochlorophylls, bacteriopheophytins,and quinones.The RC performs the photochemical electron transfer from the bacteriochlorophyll dimer through a series of electron donor and acceptor molecules to a secondary quinone,QB.QB accepts electrons from a primary quinone,QA,in two sequential electron transfer reactions.The second electron trans...

  20. A radical approach to radical innovation

    NARCIS (Netherlands)

    D. Deichmann (Dirk); J.C.M. van den Ende (Jan)

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  1. A radical approach to radical innovation

    OpenAIRE

    Deichmann, Dirk; van der Ende, Jan

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  2. Synthesis, spectral characterization, molecular structure and pharmacological studies of N'-(1, 4-naphtho-quinone-2yl) isonicotinohyWdrazide

    Science.gov (United States)

    Kavitha Rani, P. R.; Fernandez, Annette; George, Annie; Remadevi, V. K.; Sudarsanakumar, M. R.; Laila, Shiny P.; Arif, Muhammed

    2015-01-01

    A simple and efficient procedure was employed for the synthesis of N'-(1,4-naphtho-quinone-2-yl) isonicotinohydrazide (NIH) by the reaction of 2-hydroxy-1,4-naphthaquinone (lawsone) and isonicotinoyl hydrazine in methanol using ultrasonic irradiation. Lawsone is the principal dye, isolated from the leaves of henna (Lawsonia inermis). Structural modification was done on the molecule aiming to get a more active derivative. The structure of the parent compound and the derivative was characterized by elemental analyses, infrared, electronic, 1H, 13C NMR and GC-MS spectra. The fluorescence spectral investigation of the compound was studied in DMSO and ethanol. Single crystal X-ray diffraction studies reveal that NIH crystallizes in monoclinic space group. The DNA cleavage study was monitored by gel electrophoresis method. The synthesized compound was found to have significant antioxidant activity against DPPH radical (IC50 = 58 μM). The in vitro cytotoxic studies of the derivative against two human cancer cell lines MCF-7 (human breast cancer) and HCT-15 (human colon carcinoma cells) using MTT assay revealed that the compound exhibited higher cytotoxic activity with a lower IC50 value indicating its efficiency in killing the cancer cells even at low concentrations. These results suggest that the structural modifications performed on lawsone could be considered a good strategy to obtain a more active drug.

  3. Radical theory of rings

    CERN Document Server

    Gardner, JW

    2003-01-01

    Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation

  4. NAD(PH:quinone oxidoreductase 1 (NQO1 localizes to the mitotic spindle in human cells.

    Directory of Open Access Journals (Sweden)

    David Siegel

    Full Text Available NAD(PH:quinone oxidoreductase 1 (NQO1 is an FAD containing quinone reductase that catalyzes the 2-electron reduction of a broad range of quinones. The 2-electron reduction of quinones to hydroquinones by NQO1 is believed to be a detoxification process since this reaction bypasses the formation of the highly reactive semiquinone. NQO1 is expressed at high levels in normal epithelium, endothelium and adipocytes as well as in many human solid tumors. In addition to its function as a quinone reductase NQO1 has been shown to reduce superoxide and regulate the 20 S proteasomal degradation of proteins including p53. Biochemical studies have indicated that NQO1 is primarily located in the cytosol, however, lower levels of NQO1 have also been found in the nucleus. In these studies we demonstrate using immunocytochemistry and confocal imaging that NQO1 was found associated with mitotic spindles in cells undergoing division. The association of NQO1 with the mitotic spindles was observed in many different human cell lines including nontransformed cells (astrocytes, HUVEC immortalized cell lines (HBMEC, 16HBE and cancer (pancreatic adenocarcinoma, BXPC3. Confocal analysis of double-labeling experiments demonstrated co-localization of NQO1with alpha-tubulin in mitotic spindles. In studies with BxPc-3 human pancreatic cancer cells the association of NQO1 with mitotic spindles appeared to be unchanged in the presence of NQO1 inhibitors ES936 or dicoumarol suggesting that NQO1 can associate with the mitotic spindle and still retain catalytic activity. Analysis of archival human squamous lung carcinoma tissue immunostained for NQO1 demonstrated positive staining for NQO1 in the spindles of mitotic cells. The purpose of this study is to demonstrate for the first time the association of the quinone reductase NQO1 with the mitotic spindle in human cells.

  5. [Lavoisier and radicals].

    Science.gov (United States)

    Lafont, Olivier

    2007-01-01

    Lavoisier and his co-workers (Guyton de Morveau, Bertholet, Fourcroy) considered that acids were constituted of oxygen and of something else that they called radicals. These radicals were known in some cases, i.e. nitrogen for nitrous acid, carbon for carbonic acid, phosphorus for phosphoric acid. In the case of sulfur, the sulfuric radical could be associated with different quantities of oxigen leading to sulfuric or sulfurous acids. In other cases radicals remained unknown at the time i.e. muriatic radical for muriatic acid, or benzoyl radical for benzoic acid. It is interesting to notice that Lavoisier evoked the case of compound radicals constituted of different substances such as carbon and hydrogen.

  6. Quinone-mediated decolorization of sulfonated azo dyes by cells and cell extracts from Sphingomonas xenophaga

    Institute of Scientific and Technical Information of China (English)

    JIAO Ling; LU Hong; ZHOU Jiti; WANG Jing

    2009-01-01

    The effects of various quinone compounds on the decolorization rates of sulfonated azo dyes by Sphingomonas xenophaga QYY were investigated. The results showed that anthraquinone-2-sulfonate (AQS) was the most effective redox mediator and AQS reduction was the rate-limited step of AQS-mediated decolorization of sulfonated azo dyes. Based on AQS biological toxicity tests, it was assumed that AQS might enter the cells to kill them. In the cytoplasmic extracts from strain QYY, AQS effectively increased decolorization rates of sulfonated azo dyes than other quinone compounds. In addition, we found a NADH/FMN-dependent AQS reductase using nondenaturing polyacrylamide gel electrophoresis (Native-PAGE).

  7. Substituent effects on carbocation stability: the pK(R) for p-quinone methide.

    Science.gov (United States)

    Toteva, Maria M; Moran, Michael; Amyes, Tina L; Richard, John P

    2003-07-23

    A value of k(H) = 1.5 x 10(-)(3) M(-)(1) s(-)(1) has been determined for the generation of simple p-quinone methide by the acid-catalyzed cleavage of 4-hydroxybenzyl alcohol in water at 25 degrees C and I = 1.0 (NaClO(4)). This was combined with k(s) = 5.8 x 10(6) s(-)(1) for the reverse addition of solvent water to the 4-hydroxybenzyl carbocation [J. Am. Chem. Soc. 2002, 124, 6349-6356] to give pK(R) = -9.6 as the Lewis acidity constant of O-protonated p-quinone methide. Values of pK(R) = 2.3 for the Lewis acidity constant of neutral p-quinone methide and pK(add) = -7.6 for the overall addition of solvent water to p-quinone methide to form 4-hydroxybenzyl alcohol are also reported. The thermodynamic driving force for transfer of the elements of water from formaldehyde hydrate to p-quinone methide to form formaldehyde and p-(hydroxymethyl)phenol (4-hydroxybenzyl alcohol) is determined as 6 kcal/mol. This relatively small driving force represents the balance between the much stronger chemical bonds to oxygen at the reactant formaldehyde hydrate than at the product p-(hydroxymethyl)phenol and the large stabilization of product arising from the aromatization that accompanies solvent addition to p-quinone methide. The Marcus intrinsic barrier for nucleophilic addition of solvent water to the "extended" carbonyl group at p-quinone methide is estimated to be 4.5 kcal/mol larger than that for the addition of water to the simple carbonyl group of formaldehyde. O-Alkylation of p-quinone methide to give the 4-methoxybenzyl carbocation and of formaldehyde to give a simple oxocarbenium ion results in very little change in the relative Marcus intrinsic barriers for the addition of solvent water to these electrophiles.

  8. New roles of flavoproteins in molecular cell biology: an unexpected role for quinone reductases as regulators of proteasomal degradation.

    Science.gov (United States)

    Sollner, Sonja; Macheroux, Peter

    2009-08-01

    Quinone reductases are ubiquitous soluble enzymes found in bacteria, fungi, plants and animals. These enzymes utilize a reduced nicotinamide such as NADH or NADPH to reduce the flavin cofactor (either FMN or FAD), which then affords two-electron reduction of cellular quinones. Although the chemical nature of the quinone substrate is still a matter of debate, the reaction appears to play a pivotal role in quinone detoxification by preventing the generation of potentially harmful semiquinones. In recent years, an additional role of quinone reductases as regulators of proteasomal degradation of transcription factors and possibly intrinsically unstructured protein has emerged. To fulfil this role, quinone reductase binds to the core particle of the proteasome and recruits certain transcription factors such as p53 and p73alpha to the complex. The latter process appears to be governed by the redox state of the flavin cofactor of the quinone reductase, thus linking the stability of transcription factors to cellular events such as oxidative stress. Here, we review the current evidence for protein complex formation between quinone reductase and the 20S proteasome in eukaryotic cells and describe the regulatory role of this complex in stabilizing transcription factors by acting as inhibitors of their proteasomal degradation.

  9. Contemporary Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2011-01-01

    Full Text Available Purpose. Patients diagnosed with clinically localized prostate cancer have more surgical treatment options than in the past. This paper focuses on the procedures' oncological or functional outcomes and perioperative morbidities of radical retropubic prostatectomy, radical perineal prostatectomy, and robotic-assisted laparoscopic radical prostatectomy. Materials and Methods. A MEDLINE/PubMed search of the literature on radical prostatectomy and other new management options was performed. Results. Compared to the open procedures, robotic-assisted radical prostatectomy has no confirmed significant difference in most literatures besides less blood loss and blood transfusion. Nerve sparing is a safe means of preserving potency on well-selected patients undergoing radical prostatectomy. Positive surgical margin rates of radical prostatectomy affect the recurrence and survival of prostate cancer. The urinary and sexual function outcomes have been vastly improved. Neoadjuvant treatment only affects the rate of positive surgical margin. Adjuvant therapy can delay and reduce the risk of recurrence and improve the survival of the high risk prostate cancer. Conclusions. For the majority of patients with organ-confined prostate cancer, radical prostatectomy remains a most effective approach. Radical perineal prostatectomy remains a viable approach for patients with morbid obesity, prior pelvic surgery, or prior pelvic radiation. Robot-assisted laparoscopic prostatectomy (RALP has become popular among surgeons but has not yet become the firmly established standard of care. Long-term data have confirmed the efficacy of radical retropubic prostatectomy with disease control rates and cancer-specific survival rates.

  10. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance.

    Science.gov (United States)

    Hardeland, Rüdiger

    2005-07-01

    Melatonin has been shown to protect against oxidative stress in various, highly divergent experimental systems. There are many reasons for its remarkable protective potential. Signaling effects comprise the upregulation of antioxidant enzymes, such as superoxide dismutases, peroxidases, and enzymes of glutathione supply, down-regulation of prooxidant enzymes, such as nitric oxide synthases and lipoxygenases, and presumably also the control of quinone reductase 2. Other mechanisms are based on direct interactions with several reactive oxygen and nitrogen species. Among these reactions, the capacity of easily undergoing single-electron transfer reactions is of particular importance. Electron donation by melatonin is not only an aspect of direct radical scavenging, but additionally represents the basis for formation of the protective metabolites AFMK (N1-ace-tyl-N2-formyl-5-methoxykynuramine) and AMK (N1-acetyl-5-methoxykynuramine). Recent investigations on mitochondrial metabolism indicate that melatonin as well as AMK are capable of supporting the electron flux through the respiratory chain, of preventing the breakdown of the mitochondrial membrane potential, and of decreasing electron leakage, thereby reducing the formation of superoxide anions. Radical avoidance is a new line of investigation, which exceeds mitochondrial actions and also comprises antiexcitatory effects and contributions to the maintenance of internal circadian phase relationships.

  11. Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus.

    Science.gov (United States)

    Krivanek, Roland; Kern, Jan; Zouni, Athina; Dau, Holger; Haumann, Michael

    2007-06-01

    The recent crystallographic structure at 3.0 A resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone Q(B). The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O(2) evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of Q(A) and Q(B) were found in the crystallized PSII. We propose that the extra quinones are located in the Q(B) cavity and serve as a PSII intrinsic pool of electron acceptors.

  12. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors

    NARCIS (Netherlands)

    Cervantes, F.J.; Dijksma, W.; Duong-Dac, T.; Ivanova, A.; Lettinga, G.; Field, J.A.

    2001-01-01

    The anaerobic microbial oxidation of toluene to CO2 coupled to humus respiration was demonstrated by use of enriched anaerobic sediments from the Amsterdam petroleum harbor (APH) and the Rhine River. Both highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound anthraquin

  13. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors

    NARCIS (Netherlands)

    Cervantes, F.J.; Dijksma, W.; Duong-Dac, T.; Ivanova, A.; Lettinga, G.; Field, J.A.

    2001-01-01

    The anaerobic microbial oxidation of toluene to CO2 coupled to humus respiration was demonstrated by use of enriched anaerobic sediments from the Amsterdam petroleum harbor (APH) and the Rhine River. Both highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound

  14. Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors

    NARCIS (Netherlands)

    Cervantes-Carillo, F.J.; Duong Dac, T.; Ivanova, A.E.; Roest, de K.; Akkermans, A.D.L.; Lettinga, G.; Field, J.A.

    2003-01-01

    A quinone-respiring, enrichment culture derived from methanogenic granular sludge was phylogenetically characterized by using a combined cloning-denaturing gradient gel electrophoresis (DGGE) method, which revealed that the consortium developed was dominated by a single microorganism: 97% related, i

  15. Induction of micronuclei and aneuploidy by the quinone-forming agents benzene and o-phenylphenol.

    Science.gov (United States)

    Eastmond, D A

    1993-04-01

    A number of carcinogens appear to exert their tumorigenic effects through the formation of quinone metabolites. These quinone-forming carcinogens are generally inactive or weakly active in standard gene mutation assays. Accumulating evidence indicates that this class of compounds may exert their genotoxic and carcinogenic effects through the induction of large-scale gene alterations. This article presents an overview of work that has been performed using recently developed molecular cytogenic techniques to investigate the aneuploidy-inducing and clastogenic properties of the major quinone-forming metabolites of benzene, a widely used industrial chemical, and o-phenylphenol, a fungicide and disinfectant. These metabolites of benzene (hydroquinone, catechol, and benzenetriol) and o-phenylphenol (phenylhydroquinone) have each been shown to be capable of interfering with chromosome segregation and inducing chromosomal breakage. These results indicate that both numerical and structural chromosomal aberrations induced by the quinone metabolites of benzene and o-phenylphenol may play a role in the carcinogenic effects of these two agents.

  16. Role of Catechin Quinones in the Induction of EpRE-Mediated Gene Expression

    NARCIS (Netherlands)

    Muzolf-Panek, M.; Gliszczynska-Swiglo, A.; Haan, de L.H.J.; Aarts, J.M.M.J.G.; Szymusiak, H.; Vervoort, J.J.M.; Tyrakowska, B.; Rietjens, I.M.C.M.

    2008-01-01

    In the present study, the ability of green tea catechins to induce electrophile-responsive element (EpRE)-mediated gene expression and the role of their quinones in the mechanism of this induction were investigated. To this end, Hepa1c1c7 mouse hepatoma cells were used, stably transfected with a luc

  17. Catalytic aerobic oxidation of phenols to ortho-quinones with air-stable copper precatalysts.

    Science.gov (United States)

    Askari, M S; Rodríguez-Solano, L A; Proppe, A; McAllister, B; Lumb, J-P; Ottenwaelder, X

    2015-07-21

    A range of air-stable copper species was examined for catalytic activity in the catalytic aerobic transformation of phenols into ortho-quinones. Efficient catalysis was obtained with commercially available copper(II) acetate. The stability of all constituents before mixing makes for a practical process that advances previously reported copper(I)-based oxygenations.

  18. EXAMINATION OF QUINONE TOXICITY USING YEAST SACCHAROMYCES CEREVISIAE MODEL SYSTEM. (R827352C007)

    Science.gov (United States)

    The toxicity of quinones is generally thought to occur by two mechanisms: the formation of covalent bonds with biological molecules by Michael addition chemistry and the catalytic reduction of oxygen to superoxide and other reactive oxygen species (ROS) (redox cycling). In an ...

  19. Preserving the adhesion of catechol-conjugated hydrogels by thiourea-quinone coupling.

    Science.gov (United States)

    Xu, Yang J; Wei, Kongchang; Zhao, Pengchao; Feng, Qian; Choi, Chun Kit K; Bian, Liming

    2016-11-15

    Mussel adhesion has inspired the development of catechol-based adhesive polymers. However, conventional strategies require basic pH conditions and lead to the loss of adhesion. To solve the problem, we report the first attempt to use thiourea-functionalized polymers for preserving hydrogel adhesion. We believe that this simple thiourea-quinone coupling chemistry is instrumental to synthetic adhesive materials.

  20. Studies on Antibacterial QSAR of Diterpene Quinones from Sclvic Przewalskii Maxim

    Institute of Scientific and Technical Information of China (English)

    XUE Ming; SHI Yan-bin; CUI Yin; ZHOU Zong-tian; ZHANG Bin; LUO Yong-jiang; XIA Wen-jiang; ZHAO Rong-cai; WANG Han-qing

    2001-01-01

    The antibacierial (staphylococcus aureus) activities of 23 diterpene quinones from the Salvia przewalskii Maxim, the artificial synthesis ones and that of the metabolism in pigs were examined in an effort to study the quantitative structure activity relationship with the Free-Wilson method. With the application of the multipiy regression, the Free-Wilson pattern was established by the dummy (indicator) variable of the structural fragments or substituents. The results showed: (1) The diketone moiety played the fundamental role in antibacterial activities, ortho-quinones was higher active than para-quinones. (2) The single bond existed between the C15 and the C16 at D-ring led to higher activity. (3) The saturation at the A-ring led to higher activity. (4) The components adjacent to nitrogen substituents at C15 led to higher activity. (5)The hydroxylation or dehydrogenation at A-ring led to less activity. The research results can provide the theoretical basis for developing a new antibacterial drug from the Salvia diterpene quinones.

  1. Genomic Analysis of the Human Gut Microbiome Suggests Novel Enzymes Involved in Quinone Biosynthesis

    Science.gov (United States)

    Ravcheev, Dmitry A.; Thiele, Ines

    2016-01-01

    Ubiquinone and menaquinone are membrane lipid-soluble carriers of electrons that are essential for cellular respiration. Eukaryotic cells can synthesize ubiquinone but not menaquinone, whereas prokaryotes can synthesize both quinones. So far, most of the human gut microbiome (HGM) studies have been based on metagenomic analysis. Here, we applied an analysis of individual HGM genomes to the identification of ubiquinone and menaquinone biosynthetic pathways. In our opinion, the shift from metagenomics to analysis of individual genomes is a pivotal milestone in investigation of bacterial communities, including the HGM. The key results of this study are as follows. (i) The distribution of the canonical pathways in the HGM genomes was consistent with previous reports and with the distribution of the quinone-dependent reductases for electron acceptors. (ii) The comparative genomics analysis identified four alternative forms of the previously known enzymes for quinone biosynthesis. (iii) Genes for the previously unknown part of the futalosine pathway were identified, and the corresponding biochemical reactions were proposed. We discuss the remaining gaps in the menaquinone and ubiquinone pathways in some of the microbes, which indicate the existence of further alternate genes or routes. Together, these findings provide further insight into the biosynthesis of quinones in bacteria and the physiology of the HGM. PMID:26904004

  2. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.

    Science.gov (United States)

    Huan, Long; Xie, Ju; Chen, Ming; Diao, Guowang; Zhao, Rongfang; Zuo, Tongfei

    2017-04-01

    The applicability of a novel macrocyclic multi-carbonyl compound, pillar[4]quinone (P4Q), as the cathode active material for lithium-ion batteries (LIBs) was assessed theoretically. The molecular geometry, electronic structure, Li-binding thermodynamic properties, and the redox potential of P4Q were obtained using density functional theory (DFT) at the M06-2X/6-31G(d,p) level of theory. The results of the calculations indicated that P4Q interacts with Li atoms via three binding modes: Li-O ionic bonding, O-Li···O bridge bonding, and Li···phenyl noncovalent interactions. Calculations also indicated that, during the LIB discharging process, P4Q could yield a specific capacity of 446 mAh g(-1) through the utilization of its many carbonyl groups. Compared with pillar[5]quinone and pillar[6]quinone, the redox potential of P4Q is enhanced by its high structural stability as well as the effect of the solvent. These results should provide the theoretical foundations for the design, synthesis, and application of novel macrocyclic carbonyl compounds as electrode materials in LIBs in the future. Graphical Abstract Schematic representation of the proposed charge-discharge mechanism of Pillar[4]quinone as cathode for lithium-ion batteries.

  3. Forgotten Radicals in Biology

    OpenAIRE

    2008-01-01

    Redox reactions play key roles in intra- and inter-cellular signaling, and in adaptative processes of tissues towards stress. Among the major free radicals with essential functions in cells are reactive oxygen species (ROS) including superoxide anion (O2 •-), hydroxyl radical (•OH) and reactive nitrogen species (RNS) such as nitric oxide (•NO). In this article, we review the forgotten and new radicals with potential relevance to cardiovascular pathophysiology. Approximately 0.3% of O2 •- pres...

  4. Identification of NAD(PH quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(PH quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes.

    Directory of Open Access Journals (Sweden)

    Ali Ryan

    Full Text Available Water soluble quinones are a group of cytotoxic anti-bacterial compounds that are secreted by many species of plants, invertebrates, fungi and bacteria. Studies in a number of species have shown the importance of quinones in response to pathogenic bacteria of the genus Pseudomonas. Two electron reduction is an important mechanism of quinone detoxification as it generates the less toxic quinol. In most organisms this reaction is carried out by a group of flavoenzymes known as NAD(PH quinone oxidoreductases. Azoreductases have previously been separate from this group, however using azoreductases from Pseudomonas aeruginosa we show that they can rapidly reduce quinones. Azoreductases from the same organism are also shown to have distinct substrate specificity profiles allowing them to reduce a wide range of quinones. The azoreductase family is also shown to be more extensive than originally thought, due to the large sequence divergence amongst its members. As both NAD(PH quinone oxidoreductases and azoreductases have related reaction mechanisms it is proposed that they form an enzyme superfamily. The ubiquitous and diverse nature of azoreductases alongside their broad substrate specificity, indicates they play a wide role in cellular survival under adverse conditions.

  5. Assorted Phenoxyl-Radical Polymers and Their Application in Lithium-Organic Batteries.

    Science.gov (United States)

    Jähnert, Thomas; Hager, Martin D; Schubert, Ulrich S

    2016-04-01

    The synthesis and electrochemical characterization of novel polymers bearing phenoxyl-radicals as redox-active side chains is described. The monomers are synthesized from the corresponding phenols and quinones, respectively. These compounds are subsequently poly-merized via ring-opening metathesis polymerization. The electrochemical properties of the phenoxyl-radical polymers are characterized using cyclic voltammetry and the most promising polymer is investigated as active material in a lithium coin-cell, creating the first phenoxyl-lithium battery. These phenoxyl-containing polymers represent interesting anode materials for organic radical and lithium batteries due to their suitable redox-potentials and possibility to create batteries with higher potentials as well as straightforward synthesis procedures.

  6. Mechanism and kinetics in reactions of caffeic acid with radicals by pulse radiolysis and calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xifeng; Cai, Zhongli; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The interaction of caffeic acid with e{sub aq}{sup -}, (CH{sub 3}){sub 2}(OH) CCH{sub 2}{sup {center_dot}}, CO{sub 2}{sup {center_dot}}{sup -}, H{sup {center_dot}}, {center_dot}OH and N{sub 3}{sup {center_dot}} radicals were studied by {gamma}-, pulse radiolysis and molecular orbital calculation. UV-visible spectra of electron/{center_dot}OH adducts, semi-quinone radicals of caffeic ions, and the stable products from the reactions were derived. The rate constants were determined. The attacked sites and the most favorable structures of the transient radicals were predicted. Reaction mechanisms were proposed. (author)

  7. Update of the NAD(PH:quinone oxidoreductase (NQO gene family

    Directory of Open Access Journals (Sweden)

    Vasiliou Vasilis

    2006-03-01

    Full Text Available Abstract The NAD(PH:quinone acceptor oxidoreductase (NQO gene family belongs to the flavoprotein clan and, in the human genome, consists of two genes (NQO1 and NQO2. These two genes encode cytosolic flavoenzymes that catalyse the beneficial two-electron reduction of quinones to hydroquinones. This reaction prevents the unwanted one-electron reduction of quinones by other quinone reductases; one-electron reduction results in the formation of reactive oxygen species, generated by redox cycling of semiquinones in the presence of molecular oxygen. Both the mammalian NQO1 and NQO2 genes are upregulated as a part of the oxidative stress response and are inexplicably overexpressed in particular types of tumours. A non-synonymous mutation in the NQO1 gene, leading to absence of enzyme activity, has been associated with an increased risk of myeloid leukaemia and other types of blood dyscrasia in workers exposed to benzene. NQO2 has a melatonin-binding site, which may explain the anti-oxidant role of melatonin. An ancient NQO3 subfamily exists in eubacteria and the authors suggest that there should be additional divisions of the NQO family to include the NQO4 subfamily in fungi and NQO5 subfamily in archaebacteria. Interestingly, no NQO genes could be identified in the worm, fly, sea squirt or plants; because these taxa carry quinone reductases capable of one- and two-electron reductions, there has been either convergent evolution or redundancy to account for the appearance of these enzyme functions whenever they have been needed during evolution.

  8. Free radicals in biological energy conversion: EPR studies of model systems. Final report. [Mechanism of chlorophyll participation in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Tollin, G.

    1976-08-31

    Energy conversion in photosynthesis is known to proceed via light-induced one-electron transfer reactions involving chlorophyll and electron donors and acceptors. Although the chemical identities of all of the components have not as yet been elucidated, considerable evidence has been accumulated which points to quinones (Q) as primary electron acceptors in both green plants and bacterial photosynthesis. Furthermore, it has been established that the initial photoprocess leads to the formation of a chlorophyll cation radical (C./sup +/). The research described in this report has as its goal the elucidation of the molecular-electronic mechanism of chlorophyll participation in photosynthesis. The following reactions have been observed: (a) Photoproduction of C./sup +/ in solution in the absence of added electron acceptors. This is a low quantum yield reaction which proceeds via the lowest excited singlet state. Bacteriochlorophyll also undergoes this reaction, whereas pheophytin does not. (b) One-electron phototransfer between the chlorophyll lowest triplet state and quinones to yield a radical pair (C./sup +/ - Q./sup +/). This may either recombine or separate. The C./sup +/ formed upon separation is unstable and reacts with hydroxylic compounds to regenerate chlorophyll. The Q./sup -/ species partly reacts with oxidized solvent and partly disproportionates. Both bacteriochlorophyll and pheophytin are also able to react with quinones in this manner. The quenching of the chlorophyll lowest singlet state by quinones does not, however, lead to detectable radical formation. These reactions seem to provide acceptable models for certain aspects of photosynthetic energy conversion, and thus elucidation of their detailed mechanisms should lead to useful insights into the nature of the biological process.

  9. The Radicalization Puzzle [video

    OpenAIRE

    Mohammed Hafez; Center for Homeland Defense and Security Naval Postgraduate School

    2015-01-01

    This 20 minute lecture, by Dr. Mohammad Hafez of the Naval Postgraduate School examines the driving factors behind the process of radicalization, turning seemingly ordinary men and women into potential terrorists. The lecture is based on the article "The Radicalization Puzzle: A Theoretical Synthesis of Empirical Approaches to Homegrown Extremism" in Studies in Conflict and Terrorism, by Mohammad Hafez and Creighton Mullins.

  10. Orgasm after radical prostatectomy

    NARCIS (Netherlands)

    Koeman, M; VanDriel, MF; Schultz, WCMW; Mensink, HJA

    1996-01-01

    Objective To evaluate the ability to obtain and the quality of orgasm after radical prostatectomy, Patients and methods The orgasms experienced after undergoing radical prostatectomy were evaluated in 20 men (median age 65 years, range 56-76) using a semi-structured interview and a self-administered

  11. Effects of gamma-irradiation on the free radical and antioxidant contents in nine aromatic herbs and spices.

    Science.gov (United States)

    Calucci, Lucia; Pinzino, Calogero; Zandomeneghi, Maurizio; Capocchi, Antonella; Ghiringhelli, Silvia; Saviozzi, Franco; Tozzi, Sabrina; Galleschi, Luciano

    2003-02-12

    Nine spice and aromatic herb samples (i.e., basil, bird pepper, black pepper, cinnamon, nutmeg, oregano, parsley, rosemary, and sage) were gamma-irradiated at a dose of 10 kGy according to commercial practices. The effects of the disinfection treatment on the content of organic radicals and some nutrients (namely, vitamin C and carotenoids) in the samples were investigated by chromatographic and spectroscopic techniques. Irradiation resulted in a general increase of quinone radical content in all of the investigated samples, as revealed by electron paramagnetic resonance spectroscopy. The fate of these radicals after storage for 3 months was also investigated. The cellulose radical was clearly observed in a few samples. Significant losses of total ascorbate were found for black pepper, cinnamon, nutmeg, oregano, and sage, whereas a significant decrease of carotenoids content was observed for cinnamon, oregano, parsley, rosemary, bird pepper, and sage.

  12. Taming reactive phenol tautomers and o-quinone methides with transition metals: a structure-reactivity relationship.

    Science.gov (United States)

    Amouri, Hani; Le Bras, Jean

    2002-07-01

    Quinone methides act as important intermediates in organic syntheses, as well as in chemical and biological processes; however, examples of such isolated species are scarce as a result of their high reactivity. Phenol tautomers (keto form of phenol) are also important intermediates in several organic and organometallic reactions; nevertheless, isolated complexes are rare. This Account reviews the recent progress on the synthesis and reactivity of iridium and rhodium o-quinone methide complexes as well as on iridium-mediated ortho functionalization of phenols. This reaction was at the origin of the discovery of a general synthetic procedure to prepare the first metal-stabilized o-quinone methide.

  13. Salvage robotic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Samuel D Kaffenberger

    2014-01-01

    Full Text Available Failure of non-surgical primary treatment for localized prostate cancer is a common occurrence, with rates of disease recurrence ranging from 20% to 60%. In a large proportion of patients, disease recurrence is clinically localized and therefore potentially curable. Unfortunately, due to the complex and potentially morbid nature of salvage treatment, radical salvage surgery is uncommonly performed. In an attempt to decrease the morbidity of salvage therapy without sacrificing oncologic efficacy, a number of experienced centers have utilized robotic assistance to perform minimally invasive salvage radical prostatectomy. Herein, we critically evaluate the existing literature on salvage robotic radical prostatectomy with a focus on patient selection, perioperative complications and functional and early oncologic outcomes. These results are compared with contemporary and historical open salvage radical prostatectomy series and supplemented with insights we have gained from our experience with salvage robotic radical prostatectomy. The body of evidence by which conclusions regarding the efficacy and safety of robotic salvage radical prostatectomy can be drawn comprises fewer than 200 patients with limited follow-up. Preliminary results are promising and some outcomes have been favorable when compared with contemporary open salvage prostatectomy series. Advantages of the robotic platform in the performance of salvage radical prostatectomy include decreased blood loss, short length of stay and improved visualization. Greater experience is required to confirm the long-term oncologic efficacy and functional outcomes as well as the generalizability of results achieved at experienced centers.

  14. Gnosticism and Radical Feminism

    DEFF Research Database (Denmark)

    Cahana, Jonathan

    2016-01-01

    and radical feminism would easily fall under this definition. There is, however, one major difference: since radical feminism is a relatively recent phenomenon which also benefited from modern modes of text production and preservation, almost all of the sources are still with us. This, in turn, may allow us...... to use radical feminism to make certain aspects of ancient Gnosticism re-emerge from their long submersion, provided that enough similarities can be independently drawn between the two phenomena to merit such a comparison. This paper therefore presents a comparison between concepts and positions...

  15. Radical aminomethylation of imines.

    Science.gov (United States)

    Fujii, Shintaro; Konishi, Takehito; Matsumoto, Yusuke; Yamaoka, Yousuke; Takasu, Kiyosei; Yamada, Ken-Ichi

    2014-09-05

    Taking advantage of the high level of performance of N-alkoxycarbonyl-imines, we achieved the first example of addition of the aminomethyl radical to imine. The reaction efficiency depended on the structure of the radical precursor, whether it is an iodide or a xanthate, and an electron-withdrawing group on the nitrogen atom of the radical. This reaction allows direct introduction of an N-substituted aminomethyl group onto imine to provide 1,2-diamine as well as the short-step synthesis of ICI-199,441.

  16. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  17. Radical chemistry of artemisinin

    Science.gov (United States)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  18. Heats of formation and protonation thermochemistry of gaseous benzaldehyde, tropone and quinone methides

    Science.gov (United States)

    Bouchoux, Guy

    2010-08-01

    Quantum chemistry calculations using composite G3B3, G3MP2B3 and CBS-QB3 methods were performed for benzaldehyde, 1, tropone, 2, ortho-quinone methide, 3, para-quinone methide, 4, their protonated forms 1H+- 4H+ and the isomeric meta-hydroxybenzyl cation 5H+. The G3B3 298 K heats of formation values obtained in this work are: -39, 61, 52, 39, 661, 679, 699, 680 and 733 kJ mol -1 for 1- 4, 1H+- 5H+, respectively. At the same level of theory, computed proton affinities are equal to 834, 916, 887 and 892 kJ mol -1 for molecules 1- 4. These results allow to correct discrepancies on the previously reported thermochemistry of molecules 2- 4 and cations 2H+- 5H+.

  19. Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. (Solanaceae).

    Science.gov (United States)

    Ji, Long; Yuan, Yonglei; Ma, Zhongjun; Chen, Zhe; Gan, Lishe; Ma, Xiaoqiong; Huang, Dongsheng

    2013-09-01

    In the present study, it was demonstrated that the dichloromethane extract of Physalis pubescens L. (DEPP) had weak potential quinone reductase (QR) inducing activity, but an UPLC-ESI-MS method with glutathione (GSH) as the substrate revealed that the DEPP had electrophiles (with an α,β-unsaturated ketone moiety). These electrophiles could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, four withanolides, including three new compounds physapubescin B (2), physapubescin C (3), physapubescin D (4), together with one known steroidal compound physapubescin (1) were isolated. Structures of these compounds were determined by spectroscopic analysis and that of physapubescin C (3) was confirmed by a combination of molecular modeling and quantum chemical DFT-GIAO calculations. Evaluation of the QR inducing activities of all withanolides indicated potent activities of compounds 1 and 2, which had a common α,β-unsaturated ketone moiety.

  20. An antibacterial ortho-quinone diterpenoid and its derivatives from Caryopteris mongolica.

    Science.gov (United States)

    Saruul, Erdenebileg; Murata, Toshihiro; Selenge, Erdenechimeg; Sasaki, Kenroh; Yoshizaki, Fumihiko; Batkhuu, Javzan

    2015-06-15

    To identify antibacterial components in traditional Mongolian medicinal plant Caryopteris mongolica, an ortho-quinone abietane caryopteron A (1) and three its derivatives caryopteron B-D (2-4) were isolated from the roots of the plant together with three known abietanes demethylcryptojaponol (5), 6α-hydroxydemethyl cryptojaponol (6), and 14-deoxycoleon U (7). The chemical structures of these abietane derivatives were elucidated on the basis of spectroscopic data. Compounds 1-4 had C-13 methylcyclopropane substructures, and 2-4 had a hexanedioic anhydride ring C instead of ortho-quinone in 1. The stereochemistry of these compound was assumed from NOE spectra and ECD Cotton effects. Compounds 1 and 5-7 showed antibacterial activities against the Gram-positive bacteria Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and Micrococcus luteus, being 1 the more potent.

  1. Synthesis and properties of polycyclic quinones condensed with 1,6-methano[10]annulene

    Directory of Open Access Journals (Sweden)

    Shigeyasu Kuroda et al

    2007-01-01

    Full Text Available Two types of polycyclic quinones condensed with 1,6-methano[10]annulenes as type A: 1,6-methanonaphtho[2,3-c][10]annulene-7,12-dione 5a, and type B: 1,6-methanonaphtho[2,3-c][10]annulene-5,14-dione 18, bis(1,6-methano[10]annuleno[3,4-b; 3,4-g]anthracene-10,21-dione 20, 1,6-methanoanthraceno[2,3-c][10]annulene-5,16-dione 22, 1,6-methanotetraceno[2,3-c][10]annulene-6,17-dione 23, and 1,6-methano phenanthreno[2,3-c][10]annulene-5,6-dione 24 have been synthesized. The acene derivative 6 corresponding to that of 5a was synthesized by the reduction of quinone 5a. The physical, spectral, and chemical properties of these new compounds have been investigated.

  2. Comparative evaluation of the acceptor properties of quinone derivatized polypyridinic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Norambuena, Ester [Departamento de Quimica, Facultad de Ciencias Basicas, Universidad Metropolitana de Ciencias de la Educacion, Santiago (Chile); Olea-Azar, Claudio [Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago (Chile); Delgadillo, Alvaro [Departamento de Quimica, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena (Chile); Barrera, Mauricio [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Loeb, Barbara, E-mail: bloeb@puc.cl [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile)

    2009-05-18

    The reduction properties of four acceptor polipyridyl ligands modified with quinones were studied by different experimental methods, as cyclic voltammetry and ESR spectroscopy, and by theoretical calculations. ESR spectra for the reduced ligands show different patterns among them, suggesting that the quinone moiety plays an important role in the delocalization of the received electron. The hyperfine coupling constants calculated for the magnetic nucleus were in good agreement with experimental data. The results were additionally interpreted with the help of two theoretical predictors: the electrophilicity index and the Fukui function obtained through the spin density. The results suggest that 12,17-dihydronaphtho-[2,3-h]dipyrido[3,2-a:2',3'-c]-phenazine-12,17-dione, Aqphen, shows the most promising behavior to be employed as an acceptor ligand in complexes with potential application in NLO devices.

  3. Ruthenium(II) complexes containing quinone based ligands: Synthesis, characterization, catalytic applications and DNA interaction

    Science.gov (United States)

    Anitha, P.; Manikandan, R.; Endo, A.; Hashimoto, T.; Viswanathamurthi, P.

    2012-12-01

    1,2-Naphthaquinone reacts with amines such as semicarbazide, isonicotinylhydrazide and thiosemicarbazide in high yield procedure with the formation of tridentate ligands HLn (n = 1-3). By reaction of ruthenium(II) starting complexes and quinone based ligands HLn (n = 1-3), a series of ruthenium complexes were synthesized and characterized by elemental and spectroscopic methods (FT-IR, electronic, 1H, 13C, 31P NMR and ESI-MS). The ligands were coordinated to ruthenium through quinone oxygen, imine nitrogen and enolate oxygen/thiolato sulfur. On the basis of spectral studies an octahedral geometry may be assigned for all the complexes. Further, the catalytic oxidation of primary, secondary alcohol and transfer hydrogenation of ketone was carried out. The DNA cleavage efficiency of new complexes has also been tested.

  4. New method for spectrophotometric determination of quinones and barbituric acid through their reaction. A kinetic study

    Science.gov (United States)

    Medien, H. A. A.

    1996-11-01

    A new and sensitive spectrophotometric method is described for the determination of p-benzoquinone, p-chloranil and 1.4-naphthoquinone. The method is based on the reaction between quinones and barbituric acid, by which a color is developed with maximum absorption between 485 and 555 nm in 50% methyl alcohol-water mixture. The absorption of the product obeys Beer's law within the concentration range 0.025-05 mM of orginal quinone. The kinetics of the reaction between p-benzoquinone and barbituric acid was studied in a range of methyl alcohol-water mixtures. The reaction follows overall second order kinetics, first order in each of the reactants. The rate increases with increasing dielectric constant. The method was applied for determination of barbituric acid with p-benzoquinone in the concentration range of 0.025-0.345 mM. Other barbiturates do not interfere.

  5. Radical prostatectomy - discharge

    Science.gov (United States)

    ... to 6 months. You will learn exercises (called Kegel exercises) that strengthen the muscles in your pelvis. ... Radical prostatectomy Retrograde ejaculation Urinary incontinence Patient Instructions Kegel exercises - self-care Suprapubic catheter care Urinary catheters - ...

  6. Copper Toxicity Affects Photosystem II Electron Transport at the Secondary Quinone Acceptor, QB1

    Science.gov (United States)

    Mohanty, Narendranath; Vass, Imre; Demeter, Sándor

    1989-01-01

    The nature of Cu2+ inhibition of photosystem II (PSII) photochemistry in pea (Pisum sativum L.) thylakoids was investigated monitoring Hill activity and light emission properties of photosystem II. In Cu2+-inhibited thylakoids, diphenyl carbazide addition does not relieve the loss of Hill activity. The maximum yield of fluorescence induction restored by hydroxylamine in Tris-inactivated thylakoids is markedly reduced by Cu2+. This suggests that Cu2+ does not act on the donor side of PSII but on the reaction center of PSII or on components beyond. Thermoluminescence and delayed luminescence studies show that charge recombination between the positively charged intermediate in water oxidation cycle (S2) and negatively charged primary quinone acceptor of pSII (QA−) is largely unaffected by Cu2+. The S2QB− charge recombination, however, is drastically inhibited which parallels the loss of Hill activity. This indicates that Cu2+ inhibits photosystem II photochemistry primarily affecting the function of the secondary quinone electron acceptor, QB. We suggest that Cu2+ does not block electron flow between the primary and secondary quinone acceptor but modifies the QB site in such a way that it becomes unsuitable for further photosystem II photochemistry. PMID:16666731

  7. Comparative Studies on Plastoquinones: V. Changes in Lipophilic Chloroplast Quinones during Development.

    Science.gov (United States)

    Barr, R; Crane, F L; Peak, S M

    1970-01-01

    Changes of lipophilic chloroplast quinones in corn, oats, peas, and Vicia faba are reported after 0, 4, 8, 12, 16, 20, 24, 48, 72, or 96 hours of exposure to light. There is a pronounced increase in plastoquinone A and chlorophyll levels and slight increase, in plastoquinone C(1-6), vitamin K(1), and alpha-tocopherylquinone content. Coenzyme Q levels, on the other hand, show little change upon exposure to light.THE SEQUENCE IN WHICH INDIVIDUAL QUINONES APPEAR DURING DEVELOPMENT IS AS FOLLOWS: plastoquinone A instantaneously after exposure to light, plastoquinone C(1-6) from 4 to 24 hours, vitamin K(1) from 12 to 24 hours, alpha-tocopherylquinone from 0 to 24 hours of illumination. Small amounts (<0.01 mumole/g, dry wt) of plastoquinone A and plastoquinone B are found in seeds and etiolated tissues. After exposure to light, the quinone tentatively identified as a member of the plastoquinone B series by reverse phase thin layer chromatography disappears and can be detected again in small amounts during maturity and toward senescence of the leaf.

  8. Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiaowei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Hongmei; Gao, Yu; Li, Mei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China); Chang, Wenrui, E-mail: wrchang@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 (China)

    2009-12-18

    Zeta-crystallin-like quinone oxidoreductase is NAD(P)H-dependent and catalyzes one-electron reduction of certain quinones to generate semiquinone. Here we present the crystal structures of zeta-crystallin-like quinone oxidoreductase from Pseudomonas syringae pv. tomato DC3000 (PtoQOR) and its complexes with NADPH determined at 2.4 and 2.01 A resolutions, respectively. PtoQOR forms as a homologous dimer, each monomer containing two domains. In the structure of the PtoQOR-NADPH complex, NADPH locates in the groove between the two domains. NADPH binding causes obvious conformational changes in the structure of PtoQOR. The putative substrate-binding site of PtoQOR is wider than that of Escherichia coli and Thermus thermophilus HB8. Activity assays show that PtoQOR has weak 1,4-benzoquinone catalytic activity, and very strong reduction activity towards large substrates such as 9,10-phenanthrenequinone. We propose a model to explain the conformational changes which take place during reduction reactions catalyzed by PtoQOR.

  9. Widespread ability of fungi to drive quinone redox cycling for biodegradation.

    Science.gov (United States)

    Krueger, Martin C; Bergmann, Michael; Schlosser, Dietmar

    2016-06-01

    Wood-rotting fungi possess remarkably diverse extracellular oxidation mechanisms, including enzymes, such as laccase and peroxidases, and Fenton chemistry. The ability to biologically drive Fenton chemistry by the redox cycling of quinones has previously been reported to be present in both ecologically diverging main groups of wood-rotting basidiomycetes. Therefore, we investigated whether it is even more widespread among fungal organisms. Screening of a diverse selection of a total of 18 ascomycetes and basidiomycetes for reduction of the model compound 2,6-dimethoxy benzoquinone revealed that all investigated strains were capable of reducing it to its corresponding hydroquinone. In a second step, depolymerization of the synthetic polymer polystyrene sulfonate was used as a proxy for quinone-dependent Fenton-based biodegradation capabilities. A diverse subset of the strains, including environmentally ubiquitous molds, white-rot fungi, as well as peatland and aquatic isolates, caused substantial depolymerization indicative for the effective employment of quinone redox cycling as biodegradation tool. Our results may also open up new paths to utilize diverse fungi for the bioremediation of recalcitrant organic pollutants.

  10. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles

    Science.gov (United States)

    Arangio, Andrea M.; Tong, Haijie; Socorro, Joanna; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-10-01

    Fine particulate matter plays a central role in the adverse health effects of air pollution. Inhalation and deposition of aerosol particles in the respiratory tract can lead to the release of reactive oxygen species (ROS), which may cause oxidative stress. In this study, we have detected and quantified a wide range of particle-associated radicals using electron paramagnetic resonance (EPR) spectroscopy. Ambient particle samples were collected using a cascade impactor at a semi-urban site in central Europe, Mainz, Germany, in May-June 2015. Concentrations of environmentally persistent free radicals (EPFR), most likely semiquinone radicals, were found to be in the range of (1-7) × 1011 spins µg-1 for particles in the accumulation mode, whereas coarse particles with a diameter larger than 1 µm did not contain substantial amounts of EPFR. Using a spin trapping technique followed by deconvolution of EPR spectra, we have also characterized and quantified ROS, including OH, superoxide (O2-) and carbon- and oxygen-centered organic radicals, which were formed upon extraction of the particle samples in water. Total ROS amounts of (0.1-3) × 1011 spins µg-1 were released by submicron particle samples and the relative contributions of OH, O2-, C-centered and O-centered organic radicals were ˜ 11-31, ˜ 2-8, ˜ 41-72 and ˜ 0-25 %, respectively, depending on particle sizes. OH was the dominant species for coarse particles. Based on comparisons of the EPR spectra of ambient particulate matter with those of mixtures of organic hydroperoxides, quinones and iron ions followed by chemical analysis using liquid chromatography mass spectrometry (LC-MS), we suggest that the particle-associated ROS were formed by decomposition of organic hydroperoxides interacting with transition metal ions and quinones contained in atmospheric humic-like substances (HULIS).

  11. Occurrence and Potential Sources of Quinones Associated with PM2.5 in Guadalajara, Mexico

    Directory of Open Access Journals (Sweden)

    Adriana Barradas-Gimate

    2017-07-01

    Full Text Available This study aims to establish the influence of primary emission sources and atmospheric transformation process contributing to the concentrations of quinones associated to particulate matter of less than 2.5 µm (PM2.5 in three sites within the Metropolitan Area of Guadalajara (MAG, namely Centro (CEN, Tlaquepaque (TLA and Las Águilas (AGU. Environmental levels of quinones extracted from PM2.5 filters were analyzed using Gas Chromatography coupled to Mass Spectrometry (GC-MS. Overall, primary emissions in combination with photochemical and oxidation reactions contribute to the presence of quinones in the urban atmosphere of MAG. It was found that quinones in PM2.5 result from the contributions from direct emission sources by incomplete combustion of fossil fuels such as diesel and gasoline that relate mainly to vehicular activity intensity in the three sampling sites selected. However, this also suggests that the occurrence of quinones in MAG can be related to photochemical transformation of the parent Polycyclic Aromatic Hydrocarbons (PAHs, to chemical reactions with oxygenated species, or a combination of both routes. The higher concentration of 1,4-Chrysenequinone during the rainy season compared to the warm-dry season indicates chemical oxidation of chrysene, since the humidity could favor singlet oxygen collision with parent PAH present in the particle phase. On the contrary, 9,10-Anthraquinone/Anthracene and 1,4-Naftoquinone/Naphthalene ratios were higher during the warm-dry season compared to the rainy season, which might indicate a prevalence of the photochemical formation during the warm-dry season favored by the large solar radiation typical of the season. In addition, the estimated percentage of photochemical formation of 9,10-Phenanthrenequinone showed that the occurrence of this compound in Tlaquepaque (TLA and Las Águilas (AGU sites is mainly propagated by conditions of high solar radiation such as in the warm-dry season and

  12. Free Radical Reactions in Food.

    Science.gov (United States)

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  13. Laparoscopic radical trachelectomy.

    Science.gov (United States)

    Rendón, Gabriel J; Ramirez, Pedro T; Frumovitz, Michael; Schmeler, Kathleen M; Pareja, Rene

    2012-01-01

    The standard treatment for patients with early-stage cervical cancer has been radical hysterectomy. However, for women interested in future fertility, radical trachelectomy is now considered a safe and feasible option. The use of minimally invasive surgical techniques to perform this procedure has recently been reported. We report the first case of a laparoscopic radical trachelectomy performed in a developing country. The patient is a nulligravid, 30-y-old female with stage IB1 adenocarcinoma of the cervix who desired future fertility. She underwent a laparoscopic radical trachelectomy and bilateral pelvic lymph node dissection. The operative time was 340 min, and the estimated blood loss was 100mL. There were no intraoperative or postoperative complications. The final pathology showed no evidence of residual disease, and all pelvic lymph nodes were negative. At 20 mo of follow-up, the patient is having regular menses but has not yet attempted to become pregnant. There is no evidence of recurrence. Laparoscopic radical trachelectomy with pelvic lymphadenectomy in a young woman who desires future fertility may also be an alternative technique in the treatment of early cervical cancer in developing countries.

  14. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    Science.gov (United States)

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier

  15. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones

    OpenAIRE

    Li eZhang; Yi eJin; Meng eHuang; Penning, Trevor M.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-...

  16. Sexuality Following Radical Prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Serefoglu, Ege C; Albersen, Maarten;

    2017-01-01

    INTRODUCTION: Radical prostatectomies can result in urinary incontinence and sexual dysfunction. Traditionally, these issues have been studied separately, and the sexual problem that has received the most focus has been erectile dysfunction. AIM: To summarize the literature on sexually related side...... effects and their consequences after radical prostatectomy and focus on the occurrence and management of problems beyond erectile dysfunction. METHODS: The literature on sexuality after radical prostatectomy was reviewed through a Medline search. Original research using quantitative and qualitative...... methodologies was considered. Priority was given to studies exploring aspects of sexuality other than erectile function. MAIN OUTCOME MEASURES: The prevalence, predictive factors, and management of post-prostatectomy sexual problems beyond erectile dysfunction. RESULTS: Most patients will develop urinary...

  17. Laparoscopic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Lipke Michael

    2005-01-01

    Full Text Available Millions of men are diagnosed annually with prostate cancer worldwide. With the advent of PSA screening, there has been a shift in the detection of early prostate cancer, and there are increased numbers of men with asymptomatic, organ confined disease. Laparoscopic radical prostatectomy is the latest, well accepted treatment that patients can select. We review the surgical technique, and oncologic and functional outcomes of the most current, large series of laparoscopic radical prostatectomy published in English. Positive margin rates range from 2.1-6.9% for pT2a, 9.9-20.6% for pT2b, 24.5-42.3% for pT3a, and 22.6-54.5% for pT3b. Potency rates after bilateral nerve sparing laparoscopic radical prostatectomy range from 47.1 to 67%. Continence rates at 12 months range from 83.6 to 92%.

  18. Gangs, Terrorism, and Radicalization

    Directory of Open Access Journals (Sweden)

    Scott Decker

    2011-01-01

    Full Text Available What can street gangs tell us about radicalization and extremist groups? At first glance, these two groups seem to push the boundaries of comparison. In this article, we examine the important similarities and differences across criminal, deviant, and extremist groups. Drawing from research on street gangs, this article explores issues such as levels of explanation,organizational structure, group process, and the increasingly important role of technology and the Internet in the context of radicalization. There are points of convergence across these groups, but it is important to understand the differences between these groups. This review finds little evidence to support the contention that American street gangs are becoming increasingly radicalized. This conclusion is based largely on organizational differences between gangs and terror groups.

  19. Radical dematerialization and degrowth

    Science.gov (United States)

    Kallis, Giorgos

    2017-05-01

    The emission targets agreed in Paris require a radical reduction of material extraction, use and disposal. The core claim of this article is that a radical dematerialization can only be part and parcel of degrowth. Given that capitalist economies are designed to grow, this raises the question of whether, and under what circumstances, the inevitable `degrowth' can become socially sustainable. Three economic policies are discussed in this direction: work-sharing, green taxes and public money. This article is part of the themed issue 'Material demand reduction'.

  20. Directly probing redox-linked quinones in photosystem II membrane fragments via UV resonance Raman scattering.

    Science.gov (United States)

    Chen, Jun; Yao, Mingdong; Pagba, Cynthia V; Zheng, Yang; Fei, Liping; Feng, Zhaochi; Barry, Bridgette A

    2015-01-01

    In photosynthesis, photosystem II (PSII) harvests sunlight with bound pigments to oxidize water and reduce quinone to quinol, which serves as electron and proton mediators for solar-to-chemical energy conversion. At least two types of quinone cofactors in PSII are redox-linked: QA, and QB. Here, we for the first time apply 257-nm ultraviolet resonance Raman (UVRR) spectroscopy to acquire the molecular vibrations of plastoquinone (PQ) in PSII membranes. Owing to the resonance enhancement effect, the vibrational signal of PQ in PSII membranes is prominent. A strong band at 1661 cm(-1) is assigned to ring CC/CO symmetric stretch mode (ν8a mode) of PQ, and a weak band at 469 cm(-1) to ring stretch mode. By using a pump-probe difference UVRR method and a sample jet technique, the signals of QA and QB can be distinguished. A frequency difference of 1.4 cm(-1) in ν8a vibrational mode between QA and QB is observed, corresponding to ~86 mV redox potential difference imposed by their protein environment. In addition, there are other PQs in the PSII membranes. A negligible anharmonicity effect on their combination band at 2130 cm(-1) suggests that the 'other PQs' are situated in a hydrophobic environment. The detection of the 'other PQs' might be consistent with the view that another functional PQ cofactor (not QA or QB) exists in PSII. This UVRR approach will be useful to the study of quinone molecules in photosynthesis or other biological systems.

  1. Complete phenotypic recovery of an Alzheimer's disease model by a quinone-tryptophan hybrid aggregation inhibitor.

    Directory of Open Access Journals (Sweden)

    Roni Scherzer-Attali

    Full Text Available The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated beta-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp, combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Abeta oligomerization and fibrillization, as well as the cytotoxic effect of Abeta oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Abeta while immuno-staining of the 3(rd instar larval brains showed a significant reduction in Abeta accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Abeta. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease.

  2. High On/Off Conductance Switching Ratio via H-Tautomerization in Quinone.

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Cui, X Y; Ringer, S P; Stampfl, C

    2015-09-01

    Through first-principles electron transport simulations using the nonequilibrium Green's function formalism together with density functional theory, we show that, upon H-tautomerization, a simple derivative of quinone can act as a molecular switch with high ON/OFF ratio, up to 70 at low bias voltage. This switching behavior is explained by the quantum interference effect, where the positional change of hydrogen atoms causes the energies of the transmission channels to overlap. Our results suggest that this molecule could have potential applications as an effective switching device.

  3. THz-Raman Identification of labile products in the system "phenol-semiquinone-quinone"

    CERN Document Server

    Polubotko, E A Iasenko V P Chelibanov A M

    2016-01-01

    The paper presents the results of SERS studies of the dynamic behavior of "phenol-semiquinone-quinone" system. This system is a key part of chemiluminescent sensors for reactive oxygen species. The dynamics of the system seems to be very important in the processes that determine the secondary metabolism at the cellular level in molecular biology. THz Raman spectra were recorded for the labile products formed in the processes initiated by proton transfer. A mechanism of the proton-transfer-initiated reaction is proposed.

  4. Homologation of α-aryl amino acids through quinone-catalyzed decarboxylation/Mukaiyama-Mannich addition.

    Science.gov (United States)

    Haugeberg, Benjamin J; Phan, Johnny H; Liu, Xinyun; O'Connor, Thomas J; Clift, Michael D

    2017-03-09

    A new method for amino acid homologation by way of formal C-C bond functionalization is reported. This method utilizes a 2-step/1-pot protocol to convert α-amino acids to their corresponding N-protected β-amino esters through quinone-catalyzed oxidative decarboxylation/in situ Mukaiyama-Mannich addition. The scope and limitations of this chemistry are presented. This methodology provides an alternative to the classical Arndt-Eistert homologation for accessing β-amino acid derivatives. The resulting N-protected amine products can be easily deprotected to afford the corresponding free amines.

  5. Radical School Reform.

    Science.gov (United States)

    Gross, Beatrice, Ed.; Gross, Ronald, Ed.

    This book provides a comprehensive examination of the nature of the school crisis and the ways in which radical thinkers and educators are dealing with it. Excerpts from the writings of Jonathan Kozol, John Holt, Kenneth Clark, and others are concerned with the realities of education in ghettos and suburbs. Paul Goodman, Marshall McLuhan, Sylvia…

  6. Homegrown religious radicalization

    DEFF Research Database (Denmark)

    Khawaja, Iram

    It has been reported that a growing number of youngsters from Western Europe are engaging in conflicts motivated by religious and political conflicts in the Middle East. This paper explores the reasons behind this seemingly religious radicalization from the point of view of the youngsters and the...

  7. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  8. Violent Radicalization in Europe

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2010-01-01

    When, why, and how do people living in a democracy become radicalized to the point of being willing to use or directly support the use of terrorist violence against fellow citizens? This question has been at the center of academic and public debate over the past years as terrorist attacks...

  9. Beyond Radical Educational Cynicism.

    Science.gov (United States)

    Wood, George H.

    1982-01-01

    An alternative is presented to counter current radical arguments that the schools cannot bring about social change because they are instruments of capitalism. The works of Samuel Bowles, Herbert Gintis, and Louis Althusser are discussed. Henry Giroux's "Ideology, Culture and the Process of Schooling" provides an alternative to cynicism.…

  10. Electromeric rhodium radical complexes

    NARCIS (Netherlands)

    Puschmann, F.F.; Harmer, J.; Stein, D.; Rüegger, H.; de Bruin, B.; Grützmacher, H.

    2010-01-01

    Radical changes: One single P-Rh-P angle determines whether the odd electron in the paramagnetic complex [Rh(trop2PPh)(PPh3)] is delocalized over the whole molecule (see picture, blue) or is localized on the P—Rh unit (red). The two energetically almost degenerate electromers exist in a fast equilib

  11. Homegrown religious radicalization

    DEFF Research Database (Denmark)

    Khawaja, Iram

    and their families. Existing literature and ways of thinking about the social psychological process of radicalization will be reviewed, such as social identity theory and transformative learning theory, and a theoretical framework based on a focus on belonging, recognition and the sense of community will be proposed...

  12. On Radical Feminism

    Institute of Scientific and Technical Information of China (English)

    翟良锴

    2015-01-01

    <正>All men are created equal.For centuries,human have been struggling for their rights.Women,as a special social force,are fighting vigorously for their equal rights with men.According to an introduction to feminism,there are three main types of feminism:socialist,reformist and radical(Feminism 101).In order

  13. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.

    Science.gov (United States)

    Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L

    2014-11-15

    Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative.

  14. Absence of large-scale displacement of quinone QB in bacterial photosynthetic reaction centers.

    Science.gov (United States)

    Breton, Jacques

    2004-03-30

    Photosynthesis transforms light into chemical energy by coupling electron transfer to proton uptake at the quinone Q(B). The possibility of initiating this process with a brief pulse of light and the known X-ray structure makes the photosynthetic bacterial reaction center a paradigm for studying coupled electron-proton transfer in biology. It has been established that electron transfer from the primary quinone Q(A) to Q(B) is gated by a protein conformational change. On the basis of a dramatic difference in the location of Q(B) in structures derived from crystals cooled to 90 K either under illumination or in the dark, a functional model for the gating mechanism was proposed whereby neutral Q(B) moves 4.5 A before receiving the electron from Q(A)(-) [Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science 276, 812-816]. Isotope-edited FTIR difference spectroscopy of Q(B) photoreduction at 290 and 85 K is used to investigate whether Q(B) moves upon reduction. We show that the specific interactions of the carbonyl groups of Q(B) and Q(B)(-) with the protein at a single binding site remain identical at both temperatures. Therefore, the different locations of Q(B) reported in many X-ray crystal structures probably are unrelated to functional electron transfer from Q(A)(-) to Q(B).

  15. Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein

    Science.gov (United States)

    Akagawa, Mitsugu; Minematsu, Kenji; Shibata, Takahiro; Kondo, Tatsuhiko; Ishii, Takeshi; Uchida, Koji

    2016-01-01

    Pyrroloquinoline quinone (PQQ), a redox-active o-quinone, is an important nutrient involved in numerous physiological and biochemical processes in mammals. Despite such beneficial functions, the underlying molecular mechanisms remain to be established. In the present study, using PQQ-immobilized Sepharose beads as a probe, we examined the presence of protein(s) that are capable of binding PQQ in mouse NIH/3T3 fibroblasts and identified five cellular proteins, including l-lactate dehydrogenase (LDH) A chain, as potential mammalian PQQ-binding proteins. In vitro studies using a purified rabbit muscle LDH show that PQQ inhibits the formation of lactate from pyruvate in the presence of NADH (forward reaction), whereas it enhances the conversion of lactate to pyruvate in the presence of NAD+ (reverse reaction). The molecular mechanism underlying PQQ-mediated regulation of LDH activity is attributed to the oxidation of NADH to NAD+ by PQQ. Indeed, the PQQ-bound LDH oxidizes NADH, generating NAD+, and significantly catalyzes the conversion of lactate to pyruvate. Furthermore, PQQ attenuates cellular lactate release and increases intracellular ATP levels in the NIH/3T3 fibroblasts. Our results suggest that PQQ, modulating LDH activity to facilitate pyruvate formation through its redox-cycling activity, may be involved in the enhanced energy production via mitochondrial TCA cycle and oxidative phosphorylation. PMID:27230956

  16. Direct and quinone-mediated palladium reduction by Geobacter sulfurreducens: mechanisms and modeling.

    Science.gov (United States)

    Pat-Espadas, Aurora M; Razo-Flores, Elías; Rangel-Mendez, J Rene; Cervantes, Francisco J

    2014-01-01

    Palladium(II) reduction to Pd(0) nanoparticles by Geobacter sulfurreducens was explored under conditions of neutral pH, 30 °C and concentrations of 25, 50, and 100 mg of Pd(II)/L aiming to investigate the effect of solid species of palladium on their microbial reduction. The influence of anthraquinone-2,6-disulfonate was reported to enhance the palladium reaction rate in an average of 1.7-fold and its addition is determining to achieve the reduction of solid species of palladium. Based on the obtained results two mechanisms are proposed: (1) direct, which is fully described considering interactions of amide, sulfur, and phosphoryl groups associated to proteins from bacteria on palladium reduction reaction, and (2) quinone-mediated, which implies multiheme c-type cytochromes participation. Speciation analysis and kinetic results were considered and integrated into a model to fit the experimental data that explain both mechanisms. This work provides elements for a better understanding of direct and quinone-mediated palladium reduction by G. sulfurreducens, which could facilitate metal recovery with concomitant formation of valuable palladium nanoparticles in industrial processes.

  17. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.

    Science.gov (United States)

    Kather, B; Stingl, K; van der Rest, M E; Altendorf, K; Molenaar, D

    2000-06-01

    The only enzyme of the citric acid cycle for which no open reading frame (ORF) was found in the Helicobacter pylori genome is the NAD-dependent malate dehydrogenase. Here, it is shown that in this organism the oxidation of malate to oxaloacetate is catalyzed by a malate:quinone oxidoreductase (MQO). This flavin adenine dinucleotide-dependent membrane-associated enzyme donates electrons to quinones of the electron transfer chain. Similar to succinate dehydrogenase, it is part of both the electron transfer chain and the citric acid cycle. MQO activity was demonstrated in isolated membranes of H. pylori. The enzyme is encoded by the ORF HP0086, which is shown by the fact that expression of the HP0086 sequence from a plasmid induces high MQO activity in mqo deletion mutants of Escherichia coli or Corynebacterium glutamicum. Furthermore, this plasmid was able to complement the phenotype of the C. glutamicum mqo deletion mutant. Interestingly, the protein predicted to be encoded by this ORF is only distantly related to known or postulated MQO sequences from other bacteria. The presence of an MQO shown here and the previously demonstrated presence of a 2-ketoglutarate:ferredoxin oxidoreductase and a succinyl-coenzyme A (CoA):acetoacetyl-CoA transferase indicate that H. pylori possesses a complete citric acid cycle, but one which deviates from the standard textbook example in three steps.

  18. Monitoring of BHT-quinone and BHT-CHO in the gas of capsules of Asclepias physocarpa.

    Science.gov (United States)

    Ma, Bing-Ji; Peng, Hua; Liu, Ji-Kai

    2006-01-01

    Three volatile components, namely benzoic acid ethyl ester (1), 2,6-di-tert-butyl-p-benzoquinone (BHT-quinone) (2), and 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) (3), were detected from the gas in the capsules of Asclepias physocarpa by means of GC/MS analysis. BHT-quinone and BHT-CHO as organic pollutants are the degradation products of the antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT). Ground water, lake water and/or rain water are a source of BHT metabolites in the plant Asclepias physocarpa.

  19. Evidence for the formation of a quinone methide during the oxidation of the insect cuticular sclerotizing precursor 1,2-dehydro-N-acetyldopamine.

    Science.gov (United States)

    Sugumaran, M; Semensi, V; Kalyanaraman, B; Bruce, J M; Land, E J

    1992-05-25

    1,2-Dehydro-N-acetyldopamine (dehydro-NADA) is an important catecholamine derivative involved in the cross-linking of insect cuticular components during sclerotization. Since sclerotization is a vital process for the survival of insects, and is closely related to melanogenesis, it is of interest to unravel the chemical mechanisms participating in this process. The present paper reports on the mechanism by which dehydro-NADA is oxidatively activated to form reactive intermediate(s) as revealed by pulse radiolysis, electron spin resonance spectroscopy, high performance liquid chromatography, and ultraviolet-visible spectroscopic analysis. Pulse radiolytic one-electron oxidation of dehydro-NADA by N3. (k = 5.3 x 10(9) M-1 s-1) or Br2.- (k = 7.5 x 10(8) M-1 s-1) at pH6 resulted in the rapid generation of the corresponding semiquinone radical, lambda max 400 nm, epsilon = 20,700 M-1 cm-1. This semiquinone decayed to form a second transient intermediate, lambda max 485 nm, epsilon = 8000 M-1 cm-1, via a second order disproportionation process, k = 6.2 x 10(8) M-1 s-1. At pH 6 in the presence of azide, the first order decay of this second intermediate occurred over milliseconds; the rate decreases at higher pH. At pH 6 in the presence of bromide, the intermediate decayed much more slowly over seconds, k = 0.15 s-1. Under such conditions, the dependence of the first order decay constant upon parent dehydro-NADA concentration led to a second order rate constant of 8.5 x 10(2) M-1 s-1 for reaction of the intermediate with the parent, probably to form benzodioxan "dimers." (The term dimer is used for convenience; the products are strictly bisdehydrodimers of dehydro-NADA (see "Discussion" and Fig. 11)) Rate constants of 5.9 x 10(5), 4.5 x 10(5), 2.8 x 10(4) and 3.5 x 10(4) M-1 s-1 were also obtained for decay of the second intermediate in the presence of cysteine, cysteamine, o-phenylenediamine, and p-aminophenol, respectively. By comparison with the UV-visible spectroscopic

  20. Breaking the dogma: PCB-derived semiquinone free radicals do not form covalent adducts with DNA, GSH, and amino acids.

    Science.gov (United States)

    Wangpradit, Orarat; Rahaman, Asif; Mariappan, S V Santhana; Buettner, Garry R; Robertson, Larry W; Luthe, Gregor

    2016-02-01

    Covalent bond formations of free radical metabolites with biomolecules like DNA and proteins are thought to constitute a major mechanism of toxicity and carcinogenesis. Glutathione (GSH) is generally accepted as a radical scavenger protecting the cell. In the present study, we investigated a semiquinone radical (SQ(●-)) metabolite of the semivolatile 4-chlorobiphenyl, using electron paramagnetic resonance spectroscopy, and oxygen consumption. Proton nuclear magnetic resonance ((1)H NMR) and liquid chromatography-mass spectrometry (LC-MS) were also employed to elucidate the radical interaction with DNA, amino acids, and GSH. We found that DNA and oligonucleotides stabilized SQ(●-) by electron delocalization in the π-stacking system, resulting in persistent radical intercalated, rather than forming a covalent bond with SQ(●-). This finding was strongly supported by the semiempirical calculation of the semioccupied molecular orbital and the linear combination of the atomic orbitals, indicating 9.8 kcal mol(-1) energy gain. The insertion of SQ(●-) into the DNA strand may result in DNA strand breaks and interruption of DNA replication process or even activate radical mediated secondary reactions. The presence of amino acids resulted in a decrease of the electron paramagnetic resonance (EPR) signal of SQ(●-) and correlated with their isoelectric points. The pH shifts the equilibrium of the dianions of hydroquinone and influenced indirectly the formation of SQ(●-). Similar findings were observed with GSH and Cys. GSH and Cys functioned as indirect radical scavengers; their activities depend on their chemical equilibria with the corresponding quinones, and their further reaction via Michael addition. The generally accepted role of GSH as radical scavenger in biological systems should be reconsidered based upon these findings, questioning the generally accepted view of radical interaction of semiquinones with biologically active compounds, like DNA, amino acids

  1. A physiological threshold for protection against menadione toxicity by human NAD(P)H : quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells

    NARCIS (Netherlands)

    Haan, de L.H.J.; Boerboom, A.M.J.F.; Rietjens, I.M.C.M.; Capelle, van D.; Ruijter, de A.J.M.; Jaiswal, A.K.; Aarts, J.M.M.J.G.

    2002-01-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by stabl

  2. Women and radicalization

    OpenAIRE

    Badran, Margot

    2006-01-01

    The paper focuses on women and radicalization within the context of Muslim societies (majority, minority, and half Muslim) societies and groups, mainly in Asia and Africa. The basic argument advanced in this paper is that Islamic feminism with its gender-egalitarian discourse and practices has a major role to play in the empowerment of Muslim women—and of men and society as a whole—and should be brought to bear in devising policy, strategy, and tools.

  3. Probability and radical behaviorism

    Science.gov (United States)

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforcement and extinction, respectively. PMID:22478114

  4. Probability and radical behaviorism

    OpenAIRE

    Espinosa, James M.

    1992-01-01

    The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforc...

  5. Radical chic, javisst!

    NARCIS (Netherlands)

    Hartle, J.F.

    2012-01-01

    Det är lätt att raljera över engagerade människor, i synnerhet när engagemanget framstår som ytligt och chict snarare än grundläggande och autentiskt. Men vad ligger bakom ett sådant avfärdande? Johan Frederik Hartle läser om Tom Wolfes klassiska essä "Radical Chic" och visar hur Wolfe −− genom att

  6. Radical substitution with azide

    DEFF Research Database (Denmark)

    Pedersen, Christian Marcus; Marinescu, Lavinia Georgeta; Bols, Mikael

    2005-01-01

    and the substrate. A primary deuterium kinetic isotope effect was found for the azidonation of benzyl ethers both with TMSN3-PhI(OAc)2 and with IN3. Also a Hammett free energy relationship study of this reaction showed good correlation with sigma+ constants giving with rho-values of -0.47 for TMSN3-PhI(OAc)2 and -0.......39 for IN3. On this basis a radical mechanism of the reaction was proposed....

  7. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide by the carcinogenic halogenated quinones%致癌性卤代醌介导的脂质氢过氧化物分解的分子机制

    Institute of Scientific and Technical Information of China (English)

    刘庆林; 覃浩; 黄春华; 刘蒲; 朱本占

    2014-01-01

    Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection byproducts in drinking water. 13-Hydroperoxy-9, 11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions, and if so, what are the unique characteristics and similarities? We found that halogenated quinones such as 2,5-dichloro-1,4-benzoquinone ( DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of the reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal ( HNE ) , through the complementary application of ESR spin-trapping, HPLC-MS and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. We propose that the enhanced decomposition of the endogenous lipid hydroperoxide 13-HPODE by halogenated quinones and formation of reactive lipid alkyl radicals and genotoxic HNE is through a novel metal-independent nucelophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity.%卤代醌是许多卤芳香持久有机污染物的致癌代谢产物和饮用水消毒副产物.13-过氧羟基-9,11-十八碳二烯酸(13-HPODE)是最为广泛研究的内源性脂质过氧化物.众所周知,过渡金属离子可以催化分解13-HPODE,但尚不清楚卤代醌是否可以通过不依赖金属离子的途径促进其分解;若是如此,又有什么特异性和相似性?我们发现卤化醌如2,5-二氯-1,4-苯醌( DCBQ)可显著促进13-HPODE的分解.综合采用电子自旋共振-自旋捕获、HPLC-MS和GC-MS等分析方法,可检测到反

  8. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  9. [Radical prostatectomy - pro robotic].

    Science.gov (United States)

    Gillitzer, R

    2012-05-01

    Anatomical radical prostatectomy was introduced in the early 1980s by Walsh and Donker. Elucidation of key anatomical structures led to a significant reduction in the morbidity of this procedure. The strive to achieve similar oncological and functional results to this gold standard open procedure but with further reduction of morbidity through a minimally invasive access led to the establishment of laparoscopic prostatectomy. However, this procedure is complex and difficult and is associated with a long learning curve. The technical advantages of robotically assisted surgery coupled with the intuitive handling of the device led to increased precision and shortening of the learning curve. These main advantages, together with a massive internet presence and aggressive marketing, have resulted in a rapid dissemination of robotic radical prostatectomy and an increasing patient demand. However, superiority of robotic radical prostatectomy in comparison to the other surgical therapeutic options has not yet been proven on a scientific basis. Currently robotic-assisted surgery is an established technique and future technical improvements will certainly further define its role in urological surgery. In the end this technical innovation will have to be balanced against the very high purchase and running costs, which remain the main limitation of this technology.

  10. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones.

    Science.gov (United States)

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  11. Reaction of 5-aminosalicylic acid with peroxyl radicals: protection and recovery by ascorbic acid and amino acids.

    Science.gov (United States)

    López-Alarcón, Camilo; Rocco, Claudia; Lissi, Eduardo; Carrasco, Catalina; Squella, J Arturo; Nuñez-Vergara, Luis; Speisky, Hernan

    2005-10-01

    The aims of the study are to analyze the interaction between 5-aminosalicylic acid (5-ASA) and peroxyl radicals and to evaluate the effect of some endogenous compounds such as ascorbic acid and amino acids on the oxidation of 5-ASA induced by 2,2'-azo-bis(2-amidinopropane) dihydrochloride. The consumption and/or the recovery of 5-ASA (7.6 microM) exposed to a peroxyl radical source [2,2'-azo-bis(2-amidinopropane)] was followed by techniques such as spectrofluorescence, high-performance liquid chromatography, and differential pulse voltammetry. 5-Aminosalicylic acid was found to readily react with peroxyl radicals at micromolar concentrations and to protect c-Phycocyanin in a very similar fashion to that shown by Trolox. Exposure of 5-ASA to peroxyl radicals led to its oxidation into the corresponding quinone-imine. Disappearance of 5-ASA was prevented by tryptophan, cysteine, glutathione, and ascorbic acid. Furthermore, some of these compounds induced the partial (cysteine and glutathione) or total (ascorbic acid) recovery of 5-ASA when added after its almost total consumption. 5-Aminosalicylic acid is a very efficient peroxyl radical scavenger. The 5-ASA oxidation by peroxyl radicals was prevented by ascorbic acid, cysteine, and glutathione. In addition, 5-ASA can be regenerated by these endogenous compounds, which would be a valuable mechanism to preserve 5-ASA in tissues undergoing oxidative stress conditions.

  12. Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H(+)/2e(-) processes.

    Science.gov (United States)

    Amić, Ana; Lučić, Bono; Stepanić, Višnja; Marković, Zoran; Marković, Svetlana; Dimitrić Marković, Jasmina M; Amić, Dragan

    2017-03-01

    Reaction energetics of the double (2H(+)/2e(-)), i.e., the first 1H(+)/1e(-) (catechol→ phenoxyl radical) and the second 1H(+)/1e(-) (phenoxyl radical→ quinone) free radical scavenging mechanisms of quercetin and its six colonic catecholic metabolites (caffeic acid, hydrocaffeic acid, homoprotocatechuic acid, protocatechuic acid, 4-methylcatechol, and catechol) were computationally studied using density functional theory, with the aim to estimate the antiradical potency of these molecules. We found that second hydrogen atom transfer (HAT) and second sequential proton loss electron transfer (SPLET) mechanisms are less energy demanding than the first ones indicating 2H(+)/2e(-) processes as inherent to catechol moiety. The Gibbs free energy change for reactions of inactivation of selected free radicals indicate that catecholic colonic metabolites constitute an efficient group of more potent scavengers than quercetin itself, able to deactivate various free radicals, under different biological conditions. They could be responsible for the health benefits associated with regular intake of flavonoid-rich diet.

  13. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates

    NARCIS (Netherlands)

    Rozeboom, Henriette J.; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J.; Dijkstra, Bauke W.

    2015-01-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The

  14. The interaction of quinones, herbicides and bicarbonate with their binding environment and the acceptor side of photosystem II in photosynthesis

    NARCIS (Netherlands)

    Vermaas, W.

    1984-01-01

    In this thesis experiments are described which are directed towards a further characterization of the interaction of the native bound plastoquinone Q B , artificial quinones, herbicides and bicarbonate with their binding environment at the acceptor side of Photosystem II in the thylakoid

  15. Hydroquinone and quinone-grafted porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading

    NARCIS (Netherlands)

    Wang, J.; Krishna, R.; Yang, J.; Deng, S.

    2015-01-01

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were

  16. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, F. J.; Gutierrez, C. H.; Lopez, K. Y.; Estrada-Alvarodo, M. I.; Meza-Escalante, E. R.; Texier, A. C.; Cuervo, F.; Gomez, J.

    2009-07-01

    Reduction of humic substances (HS) has recently been recognized as a microbial respiratory process supporting growth of several distinct microorganisms. Quinone moieties, which are very abundant in the humic acid fraction of humus, are the main functional groups conferring electron-accepting capacity to HS. The capacity to reduce HS has been reported in anaerobic consortia from a wide diversity of environments. (Author)

  17. Cathodic Voltammetric Behavior of Pillar[5]quinone in Nonaqueous Media. Symmetry Effects on the Electron Uptake Sequence.

    Science.gov (United States)

    Cheng, Beijun; Kaifer, Angel E

    2015-08-12

    The cathodic voltammetric behavior of pillar[5]quinone was investigated in dichloromethane solution. Our data show that the symmetry of the macrocycle has a pronounced effect on the electron uptake sequence. The uptake of the first five electrons follows a 2-1-2 pattern, and only a total of eight electrons could be injected into the macrocycle under our experimental conditions.

  18. The effect of glassy carbon surface oxides in non-aqueous voltammetry: the case of quinones in acetonitrile.

    Science.gov (United States)

    Staley, Patrick A; Newell, Christina M; Pullman, David P; Smith, Diane K

    2014-11-04

    Glassy carbon (GC) electrodes are well-known to contain oxygenated functional groups such as phenols, carbonyls, and carboxylic acids on their surface. The effects of these groups on voltammetry in aqueous solution are well-studied, but there has been little discussion of their possible effects in nonaqueous solution. In this study, we show that the acidic functional groups, particularly phenols, are likely causes of anomalous features often seen in the voltammetry of quinones in nonaqueous solution. These features, a too small second cyclic voltammetric wave and extra current between the two waves that sometimes appears to be a small, broad third voltammetric wave, have previously been attributed to different types of dimerization. In this work, concentration-dependent voltammetry in acetonitrile rules out dimerization with a series of alkyl-benzoquinones because the anomalous features get larger as the concentration decreases. At low concentrations, solution bimolecular reactions will be relatively less important than reactions with surface groups. Addition of substoichiometric amounts of naphthol at higher quinone concentrations produces almost identical behavior as seen at low quinone concentrations with no added naphthol. This implicates hydrogen bonding and proton transfer from the surface phenolic groups as the cause of the anomalous features in quinone voltammetry at GC electrodes. This conclusion is supported by the perturbation of surface oxide coverage on GC electrodes through different electrode pretreatments.

  19. The interaction of quinones, herbicides and bicarbonate with their binding environment at the acceptor side of photosystem II in photosynthesis

    NARCIS (Netherlands)

    Vermaas, W.F.J.

    1984-01-01

    In this thesis experiments are described which are directed towards a further characterization of the interaction of the native bound plastoquinone Q B , artificial quinones, herbicides and bicarbonate with their binding environment at the acceptor side of Photosystem II in

  20. Catalysis of Radical Reactions: A Radical Chemistry Perspective.

    Science.gov (United States)

    Studer, Armido; Curran, Dennis P

    2016-01-04

    The area of catalysis of radical reactions has recently flourished. Various reaction conditions have been discovered and explained in terms of catalytic cycles. These cycles rarely stand alone as unique paths from substrates to products. Instead, most radical reactions have innate chains which form products without any catalyst. How do we know if a species added in "catalytic amounts" is a catalyst, an initiator, or something else? Herein we critically address both catalyst-free and catalytic radical reactions through the lens of radical chemistry. Basic principles of kinetics and thermodynamics are used to address problems of initiation, propagation, and inhibition of radical chains. The catalysis of radical reactions differs from other areas of catalysis. Whereas efficient innate chain reactions are difficult to catalyze because individual steps are fast, both inefficient chain processes and non-chain processes afford diverse opportunities for catalysis, as illustrated with selected examples.

  1. Anti-inflammatory and Quinone Reductase Inducing Compounds from Fermented Noni (Morinda citrifolia) Juice Exudates.

    Science.gov (United States)

    Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Sang-Ngern, Mayuramas; Wall, Marisa M; Wei, Yanzhang; Pezzuto, John M; Chang, Leng Chee

    2016-06-24

    A new fatty acid ester disaccharide, 2-O-(β-d-glucopyranosyl)-1-O-(2E,4Z,7Z)-deca-2,4,7-trienoyl-β-d-glucopyranose (1), a new ascorbic acid derivative, 2-caffeoyl-3-ketohexulofuranosonic acid γ-lactone (2), and a new iridoid glycoside, 10-dimethoxyfermiloside (3), were isolated along with 13 known compounds (4-16) from fermented noni fruit juice (Morinda citrifolia). The structures of the new compounds, together with 4 and 5, were determined by 1D and 2D NMR experiments, as well as comparison with published values. Compounds 2 and 7 showed moderate inhibitory activities in a TNF-α-induced NF-κB assay, and compounds 4 and 6 exhibited considerable quinone reductase-1 (QR1) inducing effects.

  2. Photochemical formation and chemistry of long-lived adamantylidene-quinone methides and 2-adamantyl cations.

    Science.gov (United States)

    Basarić, Nikola; Zabcić, Ivana; Mlinarić-Majerski, Kata; Wan, Peter

    2010-01-01

    Hydroxymethylphenols strategically substituted with the 2-hydroxy-2-adamantyl moiety, AdPh 8-10, were synthesized, and their photochemical reactivity was investigated. On excitation to the singlet excited state, AdPh 8 undergoes intramolecular proton transfer coupled with a loss of H(2)O giving quinone methide 8QM. The presence of 8QM has been detected by laser flash photolysis (CH(3)CN-H(2)O 1:1, tau = 0.55 s) and UV-vis spectroscopy. Singlet excited states of AdPh 9 and 10 in the presence of H(2)O dehydrate giving 9QM and 10QM. Photochemically formed QMs are trapped by nucleophiles giving the addition products (e.g., Phi for methanolysis of 8 is 0.55). In addition, the zwitterionic 9QM undergoes an unexpected rearrangement involving transformation of the 2-phenyl-2-adamantyl cation into the 4-phenyl-2-adamantyl cation (Phi approximately 0.03). An analogous rearrangement was observed with methoxy derivatives 9a and 10a. Zwitterionic 9QM was characterized by LFP in 2,2,2-trifluoroethanol (tau = 1 mus). In TFE, in the ground state, AdPh 10 is in equilibrium with 10QM, which allowed for recording the (1)H and (13)C NMR spectra of the QM. Introduction of the adamantyl substituent into the o-hydroxymethylphenol moiety increased the quantum yield of the associated QM formation by up to 3-fold and significantly prolonged their lifetimes. Furthermore, adamantyl substituent made the study of the alkyl-substituted quinone methides easier by LFP by prolonging their lifetimes and increasing the quantum yields of formation.

  3. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity.

    Science.gov (United States)

    Xia, Tian; Korge, Paavo; Weiss, James N; Li, Ning; Venkatesen, M Indira; Sioutas, Constantinos; Nel, Andre

    2004-10-01

    Particulate pollutants cause adverse health effects through the generation of oxidative stress. A key question is whether these effects are mediated by the particles or their chemical compounds. In this article we show that aliphatic, aromatic, and polar organic compounds, fractionated from diesel exhaust particles (DEPs), exert differential toxic effects in RAW 264.7 cells. Cellular analyses showed that the quinone-enriched polar fraction was more potent than the polycyclic aromatic hydrocarbon (PAH)-enriched aromatic fraction in O2 .- generation, decrease of membrane potential (Delta-Psi m), loss of mitochondrial membrane mass, and induction of apoptosis. A major effect of the polar fraction was to promote cyclosporin A (CsA)-sensitive permeability transition pore (PTP) opening in isolated liver mitochondria. This opening effect is dependent on a direct effect on the PTP at low doses as well as on an effect on Delta-Psi m at high doses in calcium (Ca2+)-loaded mitochondria. The direct PTP effect was mimicked by redox-cycling DEP quinones. Although the aliphatic fraction failed to perturb mitochondrial function, the aromatic fraction increased the Ca2+ retention capacity at low doses and induced mitochondrial swelling and a decrease in Delta-Psi m at high doses. This swelling effect was mostly CsA insensitive and could be reproduced by a mixture of PAHs present in DEPs. These chemical effects on isolated mitochondria could be reproduced by intact DEPs as well as ambient ultrafine particles (UFPs). In contrast, commercial polystyrene nanoparticles failed to exert mitochondrial effects. These results suggest that DEP and UFP effects on the PTP and Delta-Psi m are mediated by adsorbed chemicals rather than the particles themselves.

  4. Metabolomic profiling unravels DNA adducts in human breast that are formed from peroxidase mediated activation of estrogens to quinone methides.

    Directory of Open Access Journals (Sweden)

    Nilesh W Gaikwad

    Full Text Available Currently there are three major hypotheses that have been proposed for estrogen induced carcinogenicity, however exact etiology remains unknown. Based on the chemical logic, studies were undertaken to investigate if estrogens could generate quinone methides in an oxidative environment which then could cause DNA damage in humans. In presence of MnO2 estrogens were oxidized to quinone methides. Surprisingly quinone methides were found to be stable with t1/2 of 20.8 and 4.5 min respectively. Incubation of estrogens with lactoperoxidase (LPO and H2O2 resulted in formation of respective quinone methides (E1(E2-QM. Subsequent addition of adenine to the assay mixture lead to trapping of E1(E2-QM, resulting in formation of adenine adducts of estrogens, E1(E2-9-N-Ade. Targeted ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS based metabolomic analysis of the breast tissue extracts showed the presence of adenine adducts of estrogens, E1(E2-9-N-Ade, along with other estrogen related metabolites. Identity of E1(E2-N-Ade in LPO assay extracts and breast tissue extracts were confirmed by comparing them to pure synthesized E1(E2-9-N-Ade standards. From these results, it is evident that peroxidase enzymes or peroxidase-like activity in human breast tissue could oxidize estrogens to electrophilic and stable quinone methides in a single step that covalently bind to DNA to form adducts. The error prone repair of the damaged DNA can result in mutation of critical genes and subsequently cancer. This article reports evidence for hitherto unknown estrogen metabolic pathway in human breast, catalyzed by peroxidase, which could initiate cancer.

  5. Radically innovative steelmaking technologies

    Science.gov (United States)

    Szekely, Julian

    1980-09-01

    The steel industry is faced with serious problems caused by the increasing cost of energy, labor and capital and by tough overseas competition, employing new highly efficient process plants. The very high cost of capital and of capital equipment renders the construction of new green field site plants, exemplifying the best available technology economically unattractive. For this reason, over the long term the development radically innovative steelmaking technologies appears to be the only satisfactory resolution of this dilemma. The purpose of this article is to present a critical review of some of the radically innovative steelmaking technologies that have been proposed during the past few years and to develop the argument that these indeed do deserve serious consideration at the present time. It should be stressed, however, that these innovative technologies can be implemented only as part of a carefully conceived long range plan, which contains as a subset short term solutions, such as trigger prices improved investment credits, and so forth and intermediate term solutions, such as more extensive use of continuous casting, external desulfurization and selective modernization in general.

  6. Bursectomy at radical gastrectomy

    Institute of Scientific and Technical Information of China (English)

    Cuneyt; Kayaalp

    2015-01-01

    Radical gastrectomy with extended lymph node dissec tion and prophylactic resection of the omentum, peri toneum over the posterior lesser sac, pancreas and/o spleen was advocated at the beginning of the 1960 s in Japan. In time, prophylactic routine resections of the pancreas and/or spleen were abandoned because of the high incidence of postoperative complications. However omentectomy and bursectomy continued to be standard parts of traditional radical gastrectomy. The bursaomentalis was thought to be a natural barrier against invasion of cancer cells into the posterior part of the stomach. The theoretical rationale for bursectomy was to reduce the risk of peritoneal recurrences by eliminating the peritoneum over the lesser sac, which might include free cancer cells or micrometastases. Over time, the indication for bursectomy was gradually reduced to only patients with posterior gastric wall tumors penetrating the serosa. Despite its theoretical advantages, its benefit for recurrence or survival has not been proven yet. The possible reasons for this inconsistency are discussed in this review. In conclusion, the value of bursectomy in the treatment of gastric cancer is still under debate and large-scale randomized studies are necessary. Until clear evidence of patient benefit is obtained, its routine use cannot be recommended.

  7. Studies using structural analogs and inbred strain differences to support a role for quinone methide metabolites of butylated hydroxytoluene (BHT) in mouse lung tumor promotion.

    Science.gov (United States)

    Thompson, J A; Carlson, T J; Sun, Y; Dwyer-Nield, L D; Malkinson, A M

    2001-03-07

    Chronic treatment of BALB and GRS mice with BHT (2,6-di-tert-butyl-4-methylphenol) following a single urethane injection increases lung tumor multiplicity, but this does not occur in CXB4 mice. Previous data suggest that promotion requires the conversion of BHT to a tert-butyl-hydroxylated metabolite (BHTOH) in lung and the subsequent oxidation of this species to an electrophilic quinone methide. To obtain additional evidence for the importance of quinone methide formation, structural analogs that form less reactive quinone methides were tested and found to lack promoting activity in BHT-responsive mice. The possibility that promotion-unresponsive strains are unable to form BHTOH was tested by substituting this compound for BHT in the promotion protocol using CXB4 mice. No promotion occurred, and in-vitro work demonstrated that CXB4 mice are, in fact, capable of producing BHTOH and its quinone methide, albeit in smaller quantities. Incubations with BALB lung microsomes and radiolabeled substrates confirmed that more covalent binding to protein occurs with BHTOH than with BHT and, in addition, BHTOH quinone methide is considerably more toxic to mouse lung epithelial cells than BHT quinone methide. These data are consistent with the hypothesis that a two-step oxidation process, i.e. hydroxylation and quinone methide formation, is required for the promotion of mouse lung tumors by BHT.

  8. Radicals in Berkeley?

    Science.gov (United States)

    Linn, Stuart

    2015-04-03

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595-605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually.

  9. Quinone-induced inhibition of urease: elucidation of its mechanisms by probing thiol groups of the enzyme.

    Science.gov (United States)

    Zaborska, Wiesława; Krajewska, Barbara; Kot, Mirosława; Karcz, Waldemar

    2007-06-01

    In this work we studied the reaction of four quinones, 1,4-benzoquinone (1,4-BQ), 2,5-dimethyl-1,4-benzoquinone (2,5-DM-1,4-BQ), tetrachloro-1,4-benzoquinone (TC-1,4-BQ) and 1,4-naphthoquinone (1,4-NQ) with jack bean urease in phosphate buffer, pH 7.8. The enzyme was allowed to react with different concentrations of the quinones during different incubation times in aerobic conditions. Upon incubation the samples had their residual activities assayed and their thiol content titrated. The titration carried out with use of 5,5'-di-thiobis(2-nitrobenzoic) acid was done to examine the involvement of urease thiol groups in the quinone-induced inhibition. The quinones under investigation showed two distinct patterns of behaviour, one by 1,4-BQ, 2,5-DM-1,4-BQ and TC-1,4-BQ, and the other by 1,4-NQ. The former consisted of a concentration-dependent inactivation of urease where the enzyme-inhibitor equilibrium was achieved in no longer than 10min, and of the residual activity of the enzyme being linearly correlated with the number of modified thiols in urease. We concluded that arylation of the thiols in urease by these quinones resulting in conformational changes in the enzyme molecule is responsible for the inhibition. The other pattern of behaviour observed for 1,4-NQ consisted of time- and concentration-dependent inactivation of urease with a nonlinear residual activity-modified thiols dependence. This suggests that in 1,4-NQ inhibition, in addition to the arylation of thiols, operative are other reactions, most likely oxidations of thiols provoked by 1,4-NQ-catalyzed redox cycling. In terms of the inhibitory strength, the quinones studied formed a series: 1,4-NQ approximately 2,5-DM-1,4-BQ<1,4-BQ

  10. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  11. Radical chic? Yes we are!

    OpenAIRE

    Hartle, J.F.

    2012-01-01

    Ever since Tom Wolfe in a classical 1970 essay coined the term "radical chic", upper-class flirtation with radical causes has been ridiculed. But by separating aesthetics from politics Wolfe was actually more reactionary than the people he criticized, writes Johan Frederik Hartle.

  12. Melatonin scavenges phenylglyoxylic ketyl radicals.

    Science.gov (United States)

    Sersen, F; Vencel, T; Annus, J

    2004-12-01

    The antioxidant properties of melatonin were tested in this work by EPR technique. It was found that melatonin scavenges phenylglyoxylic ketyl radicals. Its effectiveness was 10-times lower than that of vitamin C. A new method of generation of phenylglyoxylic ketyl radicals by spontaneous decomposition of D,L-2,3-diphenyltartaric acid in propan-2-ol was used.

  13. In vivo induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids

    Directory of Open Access Journals (Sweden)

    Ahmad Hassan

    2010-09-01

    Full Text Available Abstract Background Several cell culture and animal studies demonstrated that citrus bioactive compounds have protective effects against certain types of cancer. Among several classes of citrus bioactive compounds, limonoids were reported to prevent different types of cancer. Furthermore, the structures of citrus limonoids were reported to influence the activity of phase II detoxifying enzymes. The purpose of the study was to evaluate how variations in the structures of citrus limonoids (namely nomilin, deacetyl nomilin, and isoobacunoic acid and a mixture of limonoids would influence phase II enzyme activity in excised tissues from a mouse model. Methods In the current study, defatted sour orange seed powder was extracted with ethyl acetate and subjected to silica gel chromatography. The HPLC, NMR and mass spectra were used to elucidate the purity and structure of compounds. Female A/J mice were treated with three limonoids and a mixture in order to evaluate their effect on phase II enzymes in four different tissues. Assays for glutathione S-transferase and NAD(PH: quinone reductase (QR were used to evaluate induction of phase II enzymatic activity. Results The highest induction of GST against 1-chloro-2,4-dinitrobenzene (CDNB was observed in stomach (whole, 58% by nomilin, followed by 25% isoobacunoic acid and 19% deacetyl nomilin. Deacetyl nomilin in intestine (small as well as liver significantly reduced GST activity against CDNB. Additionally isoobacunoic acid and the limonoid mixture in liver demonstrated a significant reduction of GST activity against CDNB. Nomilin significantly induced GST activity against 4-nitroquinoline 1-oxide (4NQO, intestine (280% and stomach (75% while deacetyl nomilin showed significant induction only in intestine (73%. Induction of GST activity was also observed in intestine (93% and stomach (45% treated with the limonoid mixture. Finally, a significant induction of NAD(PH: quinone reductase (QR activity was

  14. Successful removal of p-quinone with chitosan in an aqueous phase in relation to degree of deacetylation.

    Science.gov (United States)

    Takahashi, Tomoki; Imai, Masanao; Suzuki, Isao

    2004-01-01

    Phenol oxidant is successfully removed by using chitosan particles in the aqueous phase. Removal of p-quinone by chitosan from crab shells was investigated kinetically from molecular weight (MW) of chitosan, deacetylation degree (DD) and reaction temperature. The rate constant assuming first-ordered reaction on removal of p-quinone in aqueous phase primarily depended on the MW of chitosan, not on the DD. Quantities of chitosan exceeding 5 x 10(5) MW are able to obtain a sufficiently high rate constant (10(-3) s(-1)). At higher temperatures, higher rate constants were obtained in the entire experimental MW and DD. The activation energy obtained was 43.8 kJ x mol(-1).

  15. The sodium pumping NADH:quinone oxidoreductase (Na⁺-NQR), a unique redox-driven ion pump.

    Science.gov (United States)

    Barquera, Blanca

    2014-08-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is a unique Na(+) pumping respiratory complex found only in prokaryotes, that plays a key role in the metabolism of marine and pathogenic bacteria, including Vibrio cholerae and other human pathogens. Na(+)-NQR is the main entrance for reducing equivalents into the respiratory chain of these bacteria, catalyzing the oxidation of NADH and the reduction of quinone, the free energy of this redox reaction drives the selective translocation of Na(+) across the cell membrane, which energizes key cellular processes. In this review we summarize the unique properties of Na(+)-NQR in terms of its redox cofactor composition, electron transfer reactions and a possible mechanism of coupling and pumping.

  16. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against triple-negative breast cancer.

    Science.gov (United States)

    Morales, Paula; Blasco-Benito, Sandra; Andradas, Clara; Gómez-Cañas, María; Flores, Juana María; Goya, Pilar; Fernández-Ruiz, Javier; Sánchez, Cristina; Jagerovic, Nadine

    2015-03-12

    Triple-negative breast cancer (TNBC) represents a subtype of breast cancer characterized by high aggressiveness. There is no current targeted therapy for these patients whose prognosis, as a group, is very poor. Here, we report the synthesis and evaluation of a potent antitumor agent in vivo for this type of breast cancer designed as a combination of quinone/cannabinoid pharmacophores. This new compound (10) has been selected from a series of chromenopyrazolediones with full selectivity for the nonpsychotropic CB2 cannabinoid receptor and with efficacy in inducing death of human TNBC cell lines. The dual concept quinone/cannabinoid was supported by the fact that compound 10 exerts antitumor effect by inducing cell apoptosis through activation of CB2 receptors and through oxidative stress. Notably, it did not show either cytotoxicity on noncancerous human mammary epithelial cells nor toxic effects in vivo, suggesting that it may be a new therapeutic tool for the management of TNBC.

  17. 3-Methoxy-2-methyl-carbazole-1,4-quinone, carbazomycins D and F from Streptomyces sp. CMU-JT005.

    Science.gov (United States)

    Ruanpanun, Pornthip; Dame, Zerihun Teklemariam; Laatsch, Hartmut; Lumyong, Saisamorn

    2011-09-01

    3-Methoxy-2-methyl-carbazole-1,4-quinone (1) together with carbazomycins D (2) and F (3) were isolated from the crude extract of Streptomyces CMU-JT005, an actinomycete with nematicidal activity. 3-Methoxy-2-methyl-carbazole-1,4-quinone is reported here for the first time from nature. In this paper, we describe the isolation and structure elucidation of the compounds together with the characterization of the Streptomyces strain CMU-JT005.

  18. Novel synthesis of 3-substituted 2,3-dihydrobenzofurans via ortho-quinone methide intermediates generated in situ.

    Science.gov (United States)

    Shaikh, Abdul kadar; Varvounis, George

    2014-03-01

    A new method is presented for the regioselective one-pot synthesis of 3-substituted 2,3-dihydrobenzofurans from 2-bromo-1-{2-[(triisopropylsilyl)oxy]phenyl}ethyl nitrate by fluoride-induced desilylation leading to o-quinone methide generation, Michael addition of different C, N, O, and S nucleophiles, and intramolecular 5-exo-tet elimination of a bromide anion. The method has potential synthetic applications in drug discovery.

  19. The key role of glutamate 172 in the mechanism of type II NADH:quinone oxidoreductase of Staphylococcus aureus.

    Science.gov (United States)

    Sousa, Filipe M; Sena, Filipa V; Batista, Ana P; Athayde, Diogo; Brito, José A; Archer, Margarida; Oliveira, A Sofia F; Soares, Cláudio M; Catarino, Teresa; Pereira, Manuela M

    2017-10-01

    Type II NADH:quinone oxidoreductases (NDH-2s) are membrane bound enzymes that deliver electrons to the respiratory chain by oxidation of NADH and reduction of quinones. In this way, these enzymes also contribute to the regeneration of NAD(+), allowing several metabolic pathways to proceed. As for the other members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, the enzymatic mechanism of NDH-2s is still little explored and elusive. In this work we addressed the role of the conserved glutamate 172 (E172) residue in the enzymatic mechanism of NDH-2 from Staphylococcus aureus. We aimed to test our earlier hypothesis that E172 plays a key role in proton transfer to allow the protonation of the quinone. For this we performed a complete biochemical characterization of the enzyme's variants E172A, E172Q and E172S. Our steady state kinetic measurements show a clear decrease in the overall reaction rate, and our substrate interaction studies indicate the binding of the two substrates is also affected by these mutations. Interestingly our fast kinetic results show quinone reduction is more affected than NADH oxidation. We have also determined the X-ray crystal structure of the E172S mutant (2.55Ǻ) and compared it with the structure of the wild type (2.32Ǻ). Together these results support our hypothesis for E172 being of central importance in the catalytic mechanism of NDH-2, which may be extended to other members of the tDBDF superfamily. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Free radicals and male reproduction.

    Science.gov (United States)

    Agarwal, Ashok; Allamaneni, Shyam S R

    2011-03-01

    Male factor accounts for almost 50% cases of infertility. The exact mechanism of sperm dysfunction is not known in many cases. Extensive research in the last decade has led to the identification of free radicals (reactive oxygen species) as mediators of sperm dysfunction in both specific diagnoses and idiopathic cases of male infertility. Elevated levels of reactive oxygen species are seen in up to 30-80% of men with male infertility. The role of free radicals has been studied extensively in the process of human reproduction. We know now that a certain level of free radicals is necessary for normal sperm function, whereas an excessive level of free radicals can cause detrimental effect on sperm function and subsequent fertilisation and offspring health. Oxidative stress develops when there is an imbalance between generation of free radicals and scavenging capacity of anti-oxidants in reproductive tract. Oxidative stress has been shown to affect both standard semen parameters and fertilising capacity. In addition, high levels of free radicals have been associated with lack of or poor fertility outcome after natural conception or assisted reproduction. Diagnostic techniques to quantify free radicals in infertile patients can assist physicians treating patients with infertility to plan for proper treatment strategies. In vivo anti-oxidants can be used against oxidative stress in male reproductive tract. Supplementation of in vitro anti-oxidants can help prevent the oxidative stress during sperm preparation techniques in assisted reproduction.

  1. Insight into the kinetics and thermodynamics of the hydride transfer reactions between quinones and lumiflavin: a density functional theory study.

    Science.gov (United States)

    Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep

    2016-09-01

    The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.

  2. Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite.

    Science.gov (United States)

    Doong, Ruey-an; Lee, Chun-chi; Lien, Chia-min

    2014-02-01

    The effect of naturally occurring quinones including lawsone (LQ), ubiquinone (UQ), juglone (JQ), and 1,4-naphthoquinone (NQ) on the biotransformation of carbon tetrachloride (CT) in the presence of Geobacter sulfurreducens and ferrihydrite was investigated. AQDS was used as the model compound for comparison. The reductive dissolution of ferrihydrite by G. sulfurreducens was enhanced by AQDS, NQ, and LQ. However, addition of UQ and JQ had little enhancement effect on Fe(II) production. The bioreduction efficiency and rate of ferrihydrite was highly dependent on the natural property and concentration of quinone compounds and the addition of low concentrations of LQ and NQ significantly accelerated the biotransformation rate of CT. The pseudo-first-order rate constants for CT dechlorination (kobsCT) in AQDS-, LQ- and NQ-amended batches were 5.4-5.8, 4.6-7.4 and 2.4-5.8 times, respectively, higher than those in the absence of quinone. A good relationship between kobsCT for CT dechlorination and bioreduction ratio of ferrihydrite was observed, indicating the important role of biogenic Fe(II) in dechlorination of CT under iron-reducing conditions. Spectroscopic analysis showed that AQDS and NQ could be reduced to semiquinones and hydroquinones, while only hydroquinones were generated in LQ-amended batches.

  3. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    Science.gov (United States)

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  4. A new approach to evaluating the extent of Michael adduct formation to PAH quinones: tetramethylammonium hydroxide (TMAH) thermochemolysis with GC/MS.

    Science.gov (United States)

    Briggs, Mary K; Desavis, Emmanuel; Mazzer, Paula A; Sunoj, R B; Hatcher, Susan A; Hadad, Christopher M; Hatcher, Patrick G

    2003-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that are converted to cytotoxic and carcinogenic metabolites, quinones, by detoxifying enzyme systems in animals. PAH metabolites such as the quinones can form Michael adducts with biological macromolecules containing reactive nucleophiles, making detection of exposure to PAHs difficult using conventional techniques. A technique has been developed for detecting exposure to PAHs. Tetramethylammonium hydroxide (TMAH) thermochemolysis coupled with GC/MS is proposed as an assay method for PAH quinones that have formed Michael adducts with biological molecules. Three PAH quinones (1,4-naphthoquinone, 1,2-naphthoquinone, and 1,4-anthraquinone) and 1,4-benzoquinone were reacted with cysteine, and the TMAH thermochemolysis method was used to assay for both thiol and amine adduction between the quinones and the cysteine. Additional studies with 1,4-naphthoquinone adducts to glutathione and bovine serum albumin showed the same thiol and amine TMAH thermochemolysis products with larger peptides as was observed with cysteine adducts. The TMAH GC/MS method clearly shows great promise for detecting PAH quinones, produced by enzymatic conversion of PAHs in biological systems, that have been converted to respective Michael adducts.

  5. Guest Editorial: Processes of Radicalization and De-Radicalization

    Directory of Open Access Journals (Sweden)

    Donatella Della Porta

    2012-05-01

    Full Text Available The study of radicalization and de-radicalization, understood as processes leading towards the increased or decreased use of political violence, is central to the question of how political violence emerges, how it can be prevented, and how it can be contained. The focus section of this issue of the International Journal of Conflict and Violence addresses radicalization and de-radicalization, seeking to develop a more comprehensive understanding of the processes, dynamics, and mechanisms involved and taking an interdisciplinary approach to overcome the fragmentation into separate disciplines and focus areas. Contributions by Pénélope Larzillière, Felix Heiduk, Bill Kissane, Hank Johnston, Christian Davenport and Cyanne Loyle, Veronique Dudouet, and Lasse Lindekilde address repressive settings, legitimacy, institutional aspects, organizational outcomes, and dynamics in Europe, Asia, Africa, and North and South America.

  6. Lipoprotein-like particles in a prokaryote: quinone droplets of Thermoplasma acidophilum.

    Science.gov (United States)

    Nagy, István; Knispel, Roland Wilhelm; Kofler, Christine; Orsini, Massimiliano; Boicu, Marius; Varga, Sándor; Weyher-Stingl, Elisabeth; Sun, Na; Fernandez-Busnadiego, Ruben; Kukolya, József; Nickell, Stephan; Baumeister, Wolfgang

    2016-09-01

    Cytosolic, globular droplets with an average diameter of 50 nm were observed in vitrified Thermoplasma acidophilum cells by means of cryo-electron tomography. These droplets were isolated by column chromatography and immunoprecipitation protein purification methods. Subsequent chemical and biochemical analyses identified lipid and protein components, respectively. Two major lipid components, comigrating menaquinones at the solvent front and the slower migrating Thermoplasma polar lipid U4, were detected by TLC experiments. The major protein component was identified as the 153 amino acid long Ta0547 vitellogenin-N domain protein. This domain has been found so far exclusively in large lipid transport proteins of vertebrates and non-vertebrates. Blast protein database homology searches with Ta0547 did not return any eukaryal hits; homologous sequences were found only in thermo-acidophilic archaeons. However, a profile-sequence domain search performed with the vitellogenin-N domain (PF01347) hmm-profile against the T. acidophilum proteome returned Ta0547 as hit. Electron microscopy appearance of isolated droplets resembled to lipoprotein particles. However, no (tetraether) lipid layer could be detected on the droplets surface, rather hydrophobic compounds of the electron dense lumen were surrounded by a denser discontinuous protein boundary. Based on described features, these particles qualify for a novel lipoprotein particle category, what we nominated Thermoplasma Quinone Droplet.

  7. Quinone-formaldehyde polymer as an active material in Li-ion batteries

    Science.gov (United States)

    Pirnat, Klemen; Mali, Gregor; Gaberscek, Miran; Dominko, Robert

    2016-05-01

    A benzoquinone polymer is synthesized by the polymerisation of hydrobenzoquinone and formaldehyde, followed by oxidation process using a hydrogen peroxide to convert hydroquinone to quinone. As prepared materials are characterized with FTIR, 1H-13C CPMAS NMR, pyrolysis coupled with gas chromatography (GC) and mass spectrometer (MS), TGA-MS analysis, EDX, elemental analysis, XRD, SEM and TEM microscopies and BET nitrogen adsorption. The benzoquinone polymer shows an excellent electrochemical performance when used as a positive electrode material in Li-ion secondary batteries. Using an electrolyte consisting 1 M bis(trifluoromethane)-sulfonimide lithium salt dissolved in 1,3-dioxolane and dimethoxyethane in a vol. ratio 1:1 (1 M LiTFSI/DOL + DME = 1:1) a stable capacity close to 150 mAh/g can be obtained. Compared to other electroactive materials based on benzoquinones it has a supreme capacity stability and is prepared by a simple synthesis using easily accessible starting materials. Further improvements in the capacity value (up to the theoretical value of 406 mAh/g) can be foreseen by achieving a higher degree of oxidation and by modification of polymerization process to enhance the electronic and ionic conductivity.

  8. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.

    Science.gov (United States)

    Leung, Kevin Ka Ki; Litchfield, David W; Shilton, Brian H

    2012-01-01

    Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.

  9. Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats.

    Science.gov (United States)

    Kumar, Narendra; Kar, Anand; Panda, Sunanda

    2014-08-01

    Pyrroloquinoline quinone (PQQ) is believed to be a strong antioxidant. In this study, we have evaluated its hitherto unknown role in l-thyroxin (L-T4 )-induced hyperthyroidism considering laboratory rat as a model. Alterations in the serum concentration of thyroxin (T4 ) and triiodothyronine (T3 ); lipid peroxidation (LPO) of liver, kidney, heart, muscles and brain; in the endogenous antioxidants such as superoxide dismutase, catalase and glutathione and in serum total cholesterol, high-density lipoprotien, triglycerides, serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and urea were evaluated. Administration of l-T4 (500-µg kg(-1) body weight) enhanced not only the serum T3 and T4 levels but also the tissue LPO, serum SGOT, SGPT and urea with a parallel decrease in the levels of antioxidants and serum lipids. However, on simultaneous administration of PQQ (5 mg kg(-1) for 6 days), all these adverse effects were ameliorated, indicating the potential of PQQ in the amelioration of hyperthyroidism and associated problems. Possibly, the curative effects were mediated through inhibition of oxidative stress. We suggest that PQQ may be considered for therapeutic use for hyperthyroidism after dose standardization.

  10. Glycosylation of quinone-fused polythiophene for reagentless and label-free detection of E. coli.

    Science.gov (United States)

    Ma, Fen; Rehman, Abdul; Liu, Haiying; Zhang, Jingtuo; Zhu, Shilei; Zeng, Xiangqun

    2015-02-03

    In this report, a new polythiophene interface is fabricated containing fused quinone moieties which are then glycosylated to form a carbohydrate platform for bacterial detection. Very importantly, this interface can be used for label-free and reagentless detection, both by electrochemical and Quartz Crystal Microbalance (QCM) transducers and by using the direct pili-mannose binding as well as Concanavalin A (Con A) mediated lipopolysaccharides (LPS)-mannose binding. The conductive polymer's unique collective properties are very sensitive to very minor perturbations, which result in significant changes of electrical conductivity and providing amplified sensitivity and improved limits of detection (i.e., 25 cell/mL for electrochemical sensor and 50 cells/mL for QCM sensor), a widened logarithmic range of detection (i.e., 3-7 for pili-mannose binding and 2-8 for Con A mediated binding), high specificity and selectivity, and an extraordinary reliability by a mechanism of internal validation. With these analytical performances, the described biosensor is envisaged for being capable of differentiating Gram-negative bacterial strain and species, for many important applications.

  11. Origin of the Giant Honeycomb Network of Quinones on Cu(111)

    Science.gov (United States)

    Einstein, T. L.; Kim, Kwangmoo; Wyrick, Jon; Cheng, Zhihai; Bartels, Ludwig; Berland, Kristian; Hyldgaard, Per

    2011-03-01

    We discuss the factors that lead to the amazing regular giant honeycomb network formed by quinones on Cu(111). Using a related lattice gas model with many characteristic energies, we can reproduce many experimental features. These models require a long-range attraction, which can be attributed to indirect interactions mediated by the Shockley surface state of Cu(111). However, Wyrick's preceding talk gave evidence that the network self-selects for the size of the pore rather than for the periodicity of the superstructure, suggesting that confined states are the key ingredient. We discuss this phenomenon in terms of the magic numbers of 2D quantum dots. We also report calculations of the effects of anthraquinones (AQ) in modifying the surface states by considering a superlattice of AQ chains with various separations. We discuss implications of these results for tuning the electronic states and, thence, superstructures. Supported by (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471, (JW & LB) NSF CHE NSF CHE 07-49949, (KB & PH) Swedish Vetenskapsrådet VR 621-2008-4346.

  12. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.

    Science.gov (United States)

    Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun

    2014-11-26

    The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

  13. Hydrolysis of the quinone methide of butylated hydroxytoluene in aqueous solutions.

    Science.gov (United States)

    Willcockson, Maren Gulsrud; Toteva, Maria M; Stella, Valentino J

    2013-10-01

    Butylated hydroxytoluene or BHT is an antioxidant commonly used in pharmaceutical formulations. BHT upon oxidation forms a quinone methide (QM). QM is a highly reactive electrophilic species that can undergo nucleophilic addition. Here, the kinetic reactivity of QM with water at various apparent pH values in a 50% (v/v) water-acetonitrile solution at constant ionic strength of I = 0.5 (NaCl)4 , was studied. The hydrolysis of QM in the presence of added acid, base, sodium chloride, and phosphate buffer resulted in the formation of only one product--the corresponding 3,5-di-tert-butyl-4-hydroxybenzyl alcohol (BA). The rate of BA formation was catalyzed by the addition of acid and base, but not chloride and phosphate species. Nucleophilic excipients, used in the pharmaceutical formulation, or nucleophilic groups on active pharmaceutical ingredient molecule may form adducts with QM, the immediate oxidative product of BHT degradation, thus having implications for drug product impurity profiles. Because of these considerations, BHT should be used with caution in formulations containing drugs or excipients capable of acting as nucleophiles.

  14. NAD(P)H:quinone oxidoreductase 1 inducer activity of some novel anilinoquinazoline derivatives

    Science.gov (United States)

    Ghorab, Mostafa M; Alsaid, Mansour S; Higgins, Maureen; Dinkova-Kostova, Albena T; Shahat, Abdelaaty A; Elghazawy, Nehal H; Arafa, Reem K

    2016-01-01

    The Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements pathway enables cells to survive oxidative stress conditions through regulating the expression of cytoprotective enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1). This work presents the design and synthesis of novel anilinoquinazoline derivatives (2–16a) and evaluation of their NQO1 inducer activity in murine cells. Molecular docking of the new compounds was performed to assess their ability to inhibit Keap1–Nrf2 protein–protein interaction through occupying the Keap1–Nrf2-binding domain, which leads to Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed that all compounds can potentially interact with Keap1; however, 1,5-dimethyl-2-phenyl-4-(2-phenylquinazolin-4-ylamino)-1,2-dihydropyrazol-3-one (9), the most potent inducer, showed the largest number of interactions with key amino acids in the binding pocket (Arg483, Tyr525, and Phe478) compared to the native ligand or any other compound in this series. PMID:27540279

  15. Quinone molecules encapsulated in SWCNTs for low-temperature Na ion batteries

    Science.gov (United States)

    Li, Canghao; Ishii, Yosuke; Inayama, Shunya; Kawasaki, Shinji

    2017-09-01

    We have performed Li and Na ion charge-discharge experiments of 9,10-phenanthrene quinone (PhQ) molecules encapsulated in single-walled carbon nanotubes (SWCNTs) with mean tube diameters of 1.5 and 2.5 nm at room temperature and also at low temperatures. The Na ion reversible capacity of PhQ encapsulated in the larger diameter SWCNTs, measured at a low temperature of 0 °C, remained as high as that measured at room temperature (RT), while the capacity of PhQ in the smaller diameter SWCNTs at 0 °C was about a half of that at RT. The diameter dependence of the capacity should be attributed to the difference in the interactions between the encapsulated PhQ molecules and the host SWCNTs, which was revealed by Raman peak profile analysis. Charge-transfer reaction from metallic tubes to PhQ molecules encapsulated in the smaller diameter SWCNTs was detected by Raman measurements. The electrostatic interaction between charged SWCNTs and PhQ molecules, induced by the charge-transfer reaction, would partly contribute to the stabilization of PhQ molecules in the smaller diameter SWCNTs, while only van der Waals interaction stabilizes PhQ molecules in the larger diameter SWCNTs. The difference in stability was confirmed by thermogravimetric, x-ray photoelectron spectroscopy, and Raman measurements. Charge-discharge curves of PhQ encapsulated in SWCNTs were also discussed based on the stability difference.

  16. Up-regulation of NAD(P)H quinone oxidoreductase 1 during human liver injury

    Institute of Scientific and Technical Information of China (English)

    Lauren M Aleksunes; Michael Goedken; José E Manautou

    2006-01-01

    AIM: To investigate the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in human liver specimens obtained from patients with liver damage due to acetaminophen (APAP) overdose or primary biliary cirrhosis (PBC).METHODS: NQO1 activity was determined in cytosol from normal, APAP and PBC liver specimens. Western blot and immunohistochemical staining were used to determine patterns of NQO1 expression using a specific antibody against NQO1.RESULTS: NQO1 protein was very low in normal human livers. In both APAP and PBC livers, there was strong induction of NQO1 protein levels on Western blot.Correspondingly, significant up-regulation of enzyme activity (16- and 22-fold, P< 0.05) was also observed in APAP and PBC livers, respectively. Immunohistochemical analysis highlighted injury-specific patterns of NQO1 staining in both APAP and PBC livers.CONCLUSION: These data demonstrate that NQO1 protein and activity are markedly induced in human livers during both APAP overdose and PBC. Up-regulation of this cytoprotective enzyme may represent an adaptive stress response to limit further disease progression by detoxifying reactive species.

  17. Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro.

    Science.gov (United States)

    Sakuma, Satoru; Nakanishi, Masahiko; Morinaga, Kazuhiro; Fujitake, Mihoyo; Wada, Shun-ichi; Fujimoto, Yohko

    2010-01-01

    In the present study, we assessed the influence of bisphenol A (BPA) and bisphenol A 3,4-quinone (BPAQ) on the conversion of xanthine dehydrogenase (XD) into xanthine oxidase (XO) in the rat liver in vitro. BPA up to 100 micromol/L did not affect the XO and XD activities in the partially purified cytosolic fraction from rat liver, whereas BPAQ (2-10 micromol/L) dose-dependently enhanced the XO activity concomitant with a decrease in the XD activity, implying that BPAQ, but not BPA, can convert XD into the reactive oxygen species (ROS) producing the form XO. Furthermore, it was found that BPAQ could increase the generation of ROS and oxidize the guanine moiety of deoxyguanosine in the DNA of primary rat hepatocyte cultures. These results suggest that BPAQ has the potential to convert XD into XO in the liver, which in turn may lead to ROS generation and oxidative DNA damage in this region. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2014-07-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  19. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2013-01-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  20. Redox Properties of Free Radicals.

    Science.gov (United States)

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  1. Reprodcutive results of radical trachelectomy

    National Research Council Canada - National Science Library

    Martínez-Chapa, Arnulfo; Alonso-Reyes, Nelly; Luna-Macías, Miguel

    2015-01-01

    .... Between March 1999 and December 2013, 27 cases with cervical cancer in early stages were treated with vaginal or abdominal radical trachelectomy in the ISSSTE Regional Hospital in Monterrey, NL (Mexico...

  2. Identification of a lactate-quinone oxidoreductase (Lqo in staphylococcus aureus that is essential for virulence

    Directory of Open Access Journals (Sweden)

    James R Fuller

    2011-12-01

    Full Text Available Staphylococcus aureus is an important human pathogen commonly infecting nearly every host tissue. The ability of S. aureus to resist innate immunity is critical to its success as a pathogen, including its propensity to grow in the presence of host nitric oxide (NO·. Upon exogenous NO· exposure, S. aureus immediately excretes copious amounts of L-lactate to maintain redox balance. However, after prolonged NO·-exposure, S. aureus reassimilates L-lactate specifically and in this work, we identify the enzyme responsible for this L-lactate consumption as a L-lactate-quinone oxidoreductase (Lqo, SACOL2623. Originally annotated as Mqo2 and thought to oxidize malate, we show that this enzyme exhibits no affinity for malate but reacts specifically with L-lactate (KM = ~330 µM. In addition to its requirement for reassimilation of L-lactate during NO·-stress, Lqo is also critical to respiratory growth on L-lactate as a sole carbon source. Moreover, ∆lqo mutants exhibit attenuation in a murine model of sepsis, particularly in their ability to cause myocarditis. Interestingly, this cardiac-specific attenuation is completely abrogated in mice unable to synthesize inflammatory NO· (iNOS-/-. We demonstrate that S. aureus NO·-resistance is highly dependent on the availability of a glycolytic carbon sources. However, S. aureus can utilize the combination of peptides and L-lactate as carbon sources during NO·-stress in an Lqo-dependent fashion. Murine cardiac tissue has markedly high levels of L-lactate in comparison to renal or hepatic tissue consistent with the NO·-dependent requirement for Lqo in S. aureus myocarditis. Thus, Lqo provides S. aureus with yet another means of replicating in the presence of host NO·.

  3. Binding of DNA-Intercalating Agents to Oxidized and Reduced Quinone Reductase 2.

    Science.gov (United States)

    Leung, Kevin K K; Shilton, Brian H

    2015-12-29

    Quinone reductase 2 (NQO2) is an enzyme that might have intracellular signaling functions. NQO2 can exist in either an oxidized state or a reduced state, and binding of compounds to one or both of these states inhibits enzymatic activity and could also affect intracellular signaling. A wide range of planar aromatic compounds bind NQO2, and we have identified three DNA-intercalating agents [ethidium bromide, acridine orange (AO), and doxorubicin] as novel nanomolar inhibitors of NQO2. Ethidium and AO, which carry a positive charge in their aromatic ring systems, bound reduced NQO2 with an affinity 50-fold higher than that of oxidized NQO2, while doxorubicin bound only oxidized NQO2. Crystallographic analyses of oxidized NQO2 in complex with the inhibitors indicated that the inhibitors were situated deep in the active site. The aromatic faces were sandwiched between the isoalloxazine ring of FAD and the phenyl ring of F178, with their edges making direct contact with residues lining the active site. In reduced NQO2, ethidium and AO occupied a more peripheral position in the active site, allowing several water molecules to interact with the polar end of the negatively charged isoalloxazine ring. We also showed that AO inhibited NQO2 at a nontoxic concentration in cells while ethidium was less effective at inhibiting NQO2 in cells. Together, this study shows that reduced NQO2 has structural and electrostatic properties that yield a preference for binding of planar, aromatic, and positively charged molecules that can also function as DNA-intercalating agents.

  4. Crystal Structure and Function of PqqF Protein in the Pyrroloquinoline Quinone Biosynthetic Pathway.

    Science.gov (United States)

    Wei, Qiaoe; Ran, Tingting; Ma, Chencui; He, Jianhua; Xu, Dongqing; Wang, Weiwu

    2016-07-22

    Pyrroloquinoline quinone (PQQ) has received considerable attention due to its numerous important physiological functions. PqqA is a precursor peptide of PQQ with two conserved residues: glutamate and tyrosine. After linkage of the Cγ of glutamate and Cϵ of tyrosine by PqqE, these two residues are hypothesized to be cleaved from PqqA by PqqF. The linked glutamate and tyrosine residues are then used to synthesize PQQ. Here, we demonstrated that the pqqF gene is essential for PQQ biosynthesis as deletion of it eliminated the inhibition of prodigiosin production by glucose. We further determined the crystal structure of PqqF, which has a closed clamshell-like shape. The PqqF consists of two halves composed of an N- and a C-terminal lobe. The PqqF-N and PqqF-C lobes form a chamber with the volume of the cavity of ∼9400 Å(3) The PqqF structure conforms to the general structure of inverzincins. Compared with the most thoroughly characterized inverzincin insulin-degrading enzyme, the size of PqqF chamber is markedly smaller, which may define the specificity for its substrate PqqA. Furthermore, the 14-amino acid-residue-long tag formed by the N-terminal tag from expression vector precisely protrudes into the counterpart active site; this N-terminal tag occupies the active site and stabilizes the closed, inactive conformation. His-48, His-52, Glu-129 and His-14 from the N-terminal tag coordinate with the zinc ion. Glu-51 acts as a base catalyst. The observed histidine residue-mediated inhibition may be applicable for the design of a peptide for the inhibition of M16 metalloproteases.

  5. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue.

    Science.gov (United States)

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties 'Dwarf Blue Curled Vates' and 'Red Winter' in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar 'Red Winter' in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, Pkale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined increases in phenolics (quercetin and kaempferol) and GS hydrolysis product concentrations rather than by individual products alone.

  6. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes.

    Science.gov (United States)

    Mavelli, Fabio; Trotta, Massimo; Ciriaco, Fulvio; Agostiano, Angela; Giotta, Livia; Italiano, Francesca; Milano, Francesco

    2014-07-01

    Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.

  7. Peroxy radical partitioning during the AMMA radical intercomparison exercise

    Directory of Open Access Journals (Sweden)

    M. D. Andrés-Hernández

    2010-04-01

    Full Text Available Peroxy radicals were measured onboard two scientific aircrafts during the AMMA (African Monsoon Multidisciplinary Analysis campaign in summer 2006. This paper reports results from the flight on 16 August 2006 during which measurements of HO2 by laser induced fluorescence spectroscopy at low pressure (LIF-FAGE and total peroxy radicals (RO2*=HO2+ΣRO2, R= organic chain by two similar instruments based on the peroxy radical chemical amplification (PerCA technique were subject of a blind intercomparison. The German DLR-Falcon and the British FAAM-BAe-146 flew wing tip to wing tip for about 30 min making concurrent measurements on 2 horizontal level runs at 697 and 485 hPa over the same geographical area in Burkina Faso. A full set of supporting measurements comprising photolysis frequencies, and relevant trace gases like CO, NO, NO2, NOy, O3 and a wider range of VOCs were collected simultaneously.

    Results are discussed on the basis of the characteristics and limitations of the different instruments used. Generally, no data bias are identified and the RO2* data available agree quite reasonably within the instrumental errors. The [RO2*]/[HO2] ratios, which vary between 1:1 and 3:1, as well as the peroxy radical variability, concur with variations in photolysis rates and in other potential radical precursors. Model results provide additional information about dominant radical formation and loss processes.

  8. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; Lymar, Sergei V.; Merenyi, Gabor; Neta, Pedatsur; Ruscic, Branko; Stanbury, David M.; Steenken, Steen; Wardman, Peter

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  9. Radical formation by heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Beuter, W.

    1982-09-01

    Certain reduced heavy metal ions can convert oxygen to a ''reactive oxygen species'' by donation of an electron. The reactive oxygen then attacks structures susceptible to oxidation, in particular unsaturated fatty acids, and peroxidizes them in a radical reaction. This process is inhibited by the presence of vitamin E and by other means. Peroxidized lipids decay forming free radicals in the process which themselves can peroxidise neighbouring lipids in a radical chain reaction. This decay is, moreover, catalysed by reduced heavy metal ions but on the other hand retarded by selenium-containing glutathione peroxidase. Radical formation by heavy metals is considerably involved in (i) the production of parenteral iron poisoning of the piglet (ii) haemolytic crisis occurring in ruminants through chronic copper poisoning (iii) the production of lead poisoning in ruminants and other animals. These types of poisonings are made worse by a deficiency of vitamin E and/or selenium. Factors which increase the bio-availability of the free heavy metal ion or reduce the redox potential thereof can aid radical formation as well as factors which lead to a reduction of the heavy metal ion e.g. cysteine, ascorbic acid or glucose.

  10. Affinity and activity of non-native quinones at the QB site of bacterial photosynthetic reaction centers

    Science.gov (United States)

    Zhang, Xinyu; Gunner, M. R.

    2014-01-01

    Purple, photosynthetic reaction centers (RCs) from Rb. sphaeroides bacteria use UQ10 as primary (QA) and secondary (QB) electron acceptors. Many quinones reconstitute QA function, while few will act as QB. Nine quinones were tested for their ability to bind and reconstitute QA and QB function. Only ubiquinone (UQ) reconstitutes both QA and QB function in the same protein. The affinities of the non-native quinones for the QB site were determined by a competitive inhibition assay. The affinities of benzoquinones (BQ), napthoquinone (NQ) and 2-methyl-NQ for the QB site are 7±3 times weaker than for the QA site. However, di-ortho substituted NQs and anthraquinone bind tightly to the QA site (Kd ≤200 nM) and ≥1000 times more weakly to the QB site, perhaps setting a limit on the size of the site. With a low potential electron donor (2-methyl, 3-dimethylamino-1,4-Napthoquinone (Me-diMeAm-NQ)) at QA, QB reduction is 260 meV more favorable than with UQ as QA. Electron transfer from Me-diMeAm-NQ at the QA site to NQ at the QB site can be detected. In the QB site the NQ semiquinone is estimated to be ≈ 60–100 meV higher in energy than the UQ semiquinone, while in the QA site the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the QA than QB site. In contrast, the native UQ semiquinone is ≈ 60 meV lower in energy in the QB than the QA site, stabilizing forward electron transfer from QA to QB. PMID:23715773

  11. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Yan LI; Yue-wei GUO; Hua-liang JIANG; Xu SHEN

    2009-01-01

    Aim: The sesquiterpene hydroquinones/quinones belong to one class of marine sponge metabolites, and they have Accepted considerable attention due to their varied biological activities, including anti-tumor, anti-HIV, and anti-inflammatory action. In order to probe the potential anti-diabetic effect of the sesquiterpene hydroquinones/quinones, the effect of dysi-dine on the insulin pathway was studied.Methods: The promotion of glucose uptake by dysidine was studied in differentiated 3T3-L1 cells. The increase in membrane-located GLUT4 by dysidine was studied in CHO-K1/GLUT4 and 3T3-L1 cells by immuno-staining. The activation of the insulin signaling pathway by dysidine was probed by Western blotting. The inhibition of PTPases by dysidine was detected in vitro.Results: Dysidine, found in the Hainan sponge Dysidea villosa in the Chinese South Sea, effectively activated the insulin signaling pathway, greatly promoted glucose uptake in 3T3-L1 ceils, and showed strong insulin-sensitizing activities. The potential targets of action for dysidine were probed, and the results indicated that dysidine exhibited its cellular effects through activation of the insulin pathway, possibly through the inhibition of protein tyrosine phosphatases, with more specific inhibition against protein tyrosine phosphatase 1B (PTPIB). Conclusion: Our findings are expected to expand understanding of the biological activities of sesquiterpene hydroquino-nes/quinones, and they show that dysidine could be a potential lead compound in the development of an alternative adju-vant in insulin therapy.

  12. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2

    Energy Technology Data Exchange (ETDEWEB)

    Calamini, Barbara; Santarsiero, Bernard D.; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (UIC)

    2008-09-12

    Melatonin exerts its biological effects through at least two transmembrane G-protein-coupled receptors, MT1 and MT2, and a lower-affinity cytosolic binding site, designated MT3. MT3 has recently been identified as QR2 (quinone reductase 2) (EC 1.10.99.2) which is of significance since it links the antioxidant effects of melatonin to a mechanism of action. Initially, QR2 was believed to function analogously to QR1 in protecting cells from highly reactive quinones. However, recent studies indicate that QR2 may actually transform certain quinone substrates into more highly reactive compounds capable of causing cellular damage. Therefore it is hypothesized that inhibition of QR2 in certain cases may lead to protection of cells against these highly reactive species. Since melatonin is known to inhibit QR2 activity, but its binding site and mode of inhibition are not known, we determined the mechanism of inhibition of QR2 by melatonin and a series of melatonin and 5-hydroxytryptamine (serotonin) analogues, and we determined the X-ray structures of melatonin and 2-iodomelatonin in complex with QR2 to between 1.5 and 1.8 {angstrom} (1 {angstrom} = 0.1 nm) resolution. Finally, the thermodynamic binding constants for melatonin and 2-iodomelatonin were determined by ITC (isothermal titration calorimetry). The kinetic results indicate that melatonin is a competitive inhibitor against N-methyldihydronicotinamide (K{sub i} = 7.2 {mu}M) and uncompetitive against menadione (K{sub i} = 92 {mu}M), and the X-ray structures shows that melatonin binds in multiple orientations within the active sites of the QR2 dimer as opposed to an allosteric site. These results provide new insights into the binding mechanisms of melatonin and analogues to QR2.

  13. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    Science.gov (United States)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  14. Postirradiation fibrosarcoma following radical mastectomy

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Nagamitsu, S.; Tsuneyoshi, M.

    1978-03-01

    A case of fibrosarcoma arising in the scar of the radical mastectomy with postoperative irradiation of breast carcinoma is reported. The tumors arose five times in spite of the extirpations including surrounding tissue since 11 years after radical mastectomy and postoperative irradiation. All of arisen tumors were diagnosed fibrosarcoma histologically and with every recurrence the aggravation of malignancy of tumors was shown. In this case, the primary tumor of the breast was infiltrating carcinoma and no sign of fibrosarcoma was noted histologically. The mastectomy scar was indicated the irradiation therapy postoperatively and fibrosarcoma developed 11 years after postoperative irradiation. Namely, this case agreed to the strict criteria of the postirradiation sarcoma proposed by Cahan et al. In this paper, a case of postirradiation fibrosarcoma arising in the scar of radical mastectomy for carcinoma is presented.

  15. Epistemological barriers to radical behaviorism.

    Science.gov (United States)

    O'Donohue, W T; Callaghan, G M; Ruckstuhl, L E

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers.

  16. Epistemological barriers to radical behaviorism

    Science.gov (United States)

    O'Donohue, William T.; Callaghan, Glenn M.; Ruckstuhl, L. E.

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers. PMID:22478314

  17. Computation of the Redox and Protonation Properties of Quinones: Towards the Prediction of Redox Cycling Natural Products.

    Energy Technology Data Exchange (ETDEWEB)

    Cape, Jonathan L.; Bowman, Michael K.; Kramer, David M.

    2006-08-01

    Quinone metabolites perform a variety of key functions in plants, including pathogen protection, oxidative phosphorylation, and redox signaling. Many of these structurally diverse compounds have been shown to exhibit potent antimicrobial, anticancer, and anti-inflammatory properties, although the exact mechanisms of action are far from understood. Redox cycling has been proposed as a possible mechanism of action for many quinine species. Experimental determination of the essential thermodynamic data (i.e. electrochemical and pKa values) required to predict the propensity towards redox cycling is often difficult or impossible to obtain due to the experimental limitations. We demonstrate a practical computational approach to obtain reasonable estimates of these parameters.

  18. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna

    DEFF Research Database (Denmark)

    Frigaard, N-U; Tokita, S; Matsuura, K

    1999-01-01

    In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence and o...... antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus....

  19. Pyrroloquinoline Quinone-Dependent Cytochrome Reduction in Polyvinyl Alcohol-Degrading Pseudomonas sp. Strain VM15C

    OpenAIRE

    1989-01-01

    A polyvinyl alcohol (PVA) oxidase-deficient mutant of Pseudomonas sp. strain VM15C, strain ND1, was shown to possess PVA dehydrogenase, in which pyrroloquinoline quinone (PQQ) functions as a coenzyme. The mutant grew on PVA and required PQQ for utilization of PVA as an essential growth factor. Incubation of the membrane fraction of the mutant with PVA caused cytochrome reduction of the fraction. Furthermore, it was found that in spite of the presence of PVA oxidase, the membrane fraction of s...

  20. Biphasic kinetic behavior of E. coli WrbA, an FMN-dependent NAD(PH:quinone oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Iryna Kishko

    Full Text Available The E. coli protein WrbA is an FMN-dependent NAD(PH:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(PH or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(PH:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An

  1. Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1.

    OpenAIRE

    Nunome, Kana; Miyazaki, Shin; Nakano, Masahiko; Iguchi-Ariga, Sanae; Ariga, Hiroyoshi

    2008-01-01

    Pyrroloquinoline quinone (PQQ) has been shown to play a role as an anti-oxidant in neuronal cells and prevent neuronal cell death in a rodent stroke model. DJ-1, a causative gene product for a familial form of Parkinson's disease, plays a role in anti-oxidative stress function by self-oxidation of DJ-1. In this study, the expression level and oxidation status of DJ-1 were examined in SHSY-5Y cells and primary cultured neurons treated with 6-hydroxydopamine (6-OHDA) or H(2)O(2) in the presence...

  2. Comparison of epoxide and free-radical mechanisms for activation of benzo(a)pyrene by Sprague-Dawley rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Selkirk, J.K.

    1980-04-01

    Coincubation of (6-/sup 3/H)benzo(a)pyrene ((6-/sup 3/H)BP) and (/sup 14/C)BP with SD rat liver microsomes produced metabolic profiles that showed that the C-6 of BP was not affected by formation of 4,5-dihydro-4,5-dihydroxy-BP, 7,8-dihydro-7,8-dihydroxy-BP, and 9,10-dihydro-9,10-dihydroxy-BP nor the 3- and 9-phenols of BP. Complete retention of tritium at C-6, except in the three quinones, confirmed the radical-cation model for formation of the 6-oxo-radical followed by oxidation to quinone. Epoxide formation at the carcinogenically active regions of BP appeared to biochemically isolate from 6-position activation and suggested that the microsomal epoxide pathway is unrelated to the radicalcation scheme. These molar ratios derived from double-label experiments reinforced the current literature that indicates the epoxide mechanism as the major pathway toward carcinogenic forms of BP.

  3. Dietary supplementation of pyrroloquinoline quinone disodium protects against oxidative stress and liver damage in laying hens fed an oxidized sunflower oil-added diet.

    Science.gov (United States)

    Wang, J; Zhang, H J; Xu, L; Long, C; Samuel, K G; Yue, H Y; Sun, L L; Wu, S G; Qi, G H

    2016-07-01

    The protective effects of dietary pyrroloquinoline quinone disodium (PQQ.Na2) supplementation against oxidized sunflower oil-induced oxidative stress and liver injury in laying hens were examined. Three hundred and sixty 53-week-old Hy-Line Gray laying hens were randomly allocated into one of the five dietary treatments. The treatments included: (1) a diet containing 2% fresh sunflower oil; (2) a diet containing 2% thermally oxidized sunflower oil; (3) an oxidized sunflower oil diet with 100 mg/kg of added vitamin E; (4) an oxidized sunflower oil diet with 0.08 mg/kg of PQQ.Na2; and (5) an oxidized sunflower oil diet with 0.12 mg/kg of PQQ.Na2. Birds fed the oxidized sunflower oil diet showed a lower feed intake compared to birds fed the fresh oil diet or oxidized oil diet supplemented with vitamin E (P=0.009). Exposure to oxidized sunflower oil increased plasma malondialdehyde (Pdiet were modulated by dietary vitamin E or PQQ.Na2 supplementation to levels comparable to the fresh oil group. Dietary supplementation with PQQ.Na2 or vitamin E increased the activities of total superoxide dismutase and glutathione peroxidase in plasma and the liver, when compared with the oxidized sunflower oil group (Pdiet induced elevation of liver weight (P=0.026), liver to BW ratio (P=0.001) and plasma activities of alanine aminotransferase (P=0.001) and aspartate aminotransferase (Pdiet. Furthermore, oxidized sunflower oil increased hepatic DNA tail length (Pdiet induced DNA tail length and tail moment to the basal levels in fresh oil diet. These results indicate that PQQ.Na2 is a potential antioxidant and is as effective against oxidized oil-related liver injury in laying hens as vitamin E. The protective effects of PQQ.Na2 against liver damage induced by oxidized oil may be partially due to its role in the scavenging of free radicals, inhibiting of lipid peroxidation and enhancing of antioxidant defense systems.

  4. Effects of Low to Intermediate Water Concentrations on Proton-Coupled Electron Transfer (PCET) Reactions of Flavins in Aprotic Solvents and a Comparison with the PCET Reactions of Quinones.

    Science.gov (United States)

    Tan, Serena L J; Novianti, Maria L; Webster, Richard D

    2015-11-05

    The electrochemical reduction mechanisms of 2 synthesized flavins (Flox) were examined in detail in deoxygenated solutions of DMSO containing varying amounts of water, utilizing variable scan rate cyclic voltammetry (ν = 0.1-20 V s(-1)), controlled-potential bulk electrolysis, and UV-vis spectroscopy. Flavin 1, which contains a hydrogen atom at N(3), is capable of donating its proton to other reduced flavin species. After 1e(-) reduction, the initially formed Fl(•-) receives a proton from another Flox to form FlH(•) (and concomitantly produce the deprotonated flavin, Fl(-)), although the equilibrium constant for this process favors the back reaction. Any FlH(•) formed at the electrode surface immediately undergoes another 1e(-) reduction to form FlH(-), which reacts with Fl(-) to form 2 molecules of Fl(•-). Further 1e(-) reduction of Fl(•-) at more negative potentials produces the dianion, Fl(2-), which can also be protonated by another Flox to form FlH(-) and Fl(-). Flavin 2, which is methylated at N(3) (and therefore has no acidic proton), undergoes a simple chemically reversible 1e(-) reduction process in DMSO provided the water content is low (solvents results in protonation of the anion radical species, Fl(•-), for both flavins, causing an increase in the amount of FlH(-) in solution. This behavior contrasts with what is observed for quinones, which are also reduced in two 1e(-) steps in aprotic organic solvents to form the radical anions and dianions, but are able to exist in hydrogen-bonded forms (with trace or added water) without undergoing protonation.

  5. Vaginal radical trachelectomy: an update.

    Science.gov (United States)

    Plante, Marie

    2008-11-01

    The vaginal radical trachelectomy has emerged as a valuable fertility-preserving treatment option for young women with early-stage disease. Cancer-related infertility is associated with feelings of depression, grief, stress, and sexual dysfunction. Data have shown that the overall oncological outcome is safe and that the obstetrical outcome is promising. In this article, we analyze the data on the vaginal radical trachelectomy published over the last 10 years in the context of what we have learned, what issues remain unclear, and what the future holds.

  6. Radical democratic politics and feminism

    Directory of Open Access Journals (Sweden)

    Martínez Labrin, Soledad

    2006-05-01

    Full Text Available In the article I present a reflection around the radical democratic project proposed by Chantal Mouffe and Ernesto Laclau. Specifically, I examine the application of the project in the context of the “new social movements” and especially, of feminist movement. I state the need of drawing attention to universalism and essentialism as the main obstacles to generate a collective proposal without margins. Nevertheless, doubts remind about the possibility of building up a feminism tailored by the radical democratic project, in a stage in which the political action of such a movement is characterized by categories that are closed and crystallized

  7. Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer's disease.

    Science.gov (United States)

    SantaCruz, Karen S; Yazlovitskaya, Eugenia; Collins, Julie; Johnson, Jeff; DeCarli, Charles

    2004-01-01

    Converging evidence supports the role of oxidative stress in the pathology of Alzheimer's disease (AD). This notion is further supported by recent findings of increased NAD(P)H:quinone oxidodreductase (NQO1) activity, a potent antioxidant system, in association with hippocampal AD pathology. If increased NQO1 activity is truly related to the AD process, however, we would expect to see regional co-localization of NQO1 activity with AD pathology throughout affected brain regions and the absence of NQO1 activity in regions unaffected by AD. We examined this hypothesis by measuring NQO1 enzymatic activity and NQO1 immunohistochemical staining in regions commonly affected by the AD process such as frontal cortex and compared this to regions generally unaffected by the AD process such as occipital cortex, cerebellum, and substantia nigra for a group of AD patients and controls. The ratio of frontal to cerebellar NQO1 enzymatic activity was significantly increased in patients with AD (2.07 +/- 1.90) versus controls (0.60 +/- 0.31; P < 0.03). Moreover, regional immunohistochemical staining revealed specific localization of NQO1 staining to astrocytes and neurites surrounding senile plaques. The extent of immunohistochemical staining also closely correlated with the extent of local AD pathology across the various brain regions examined. Neuronal NQO1 staining seen in frontal cortex of AD patients was absent in frontal cortex of controls, but was found to the same extent in neurons of the substantia nigra of both AD patients and controls. We conclude that NQO1 activity co-localizes closely with AD pathology supporting a presumed role as an antioxidant system upregulated in response to the oxidative stress of the AD process. The antioxidant role for NQO1 is further supported by finding increased neuronal NQO1 activity in substantia nigra neurons of both AD patients and controls as this neuronal population is known to be under constant oxidative stress. While requiring further

  8. Exploring the Theories of Radicalization

    Directory of Open Access Journals (Sweden)

    Maskaliūnaitė Asta

    2015-12-01

    Full Text Available After the London bombings in July 2005, the concern of terrorism scholars and policy makers has turned to “home-grown” terrorism and potential for political violence from within the states. “Radicalization” became a new buzz word. This article follows a number of reviews of the literature on radicalization and offers another angle for looking at this research. First, it discusses the term “radicalization” and suggests the use of the following definition of radicalization as a process by which a person adopts belief systems which justify the use of violence to effect social change and comes to actively support as well as employ violent means for political purposes. Next, it proposes to see the theories of radicalization focusing on the individual and the two dimensions of his/her motivation: whether that motivation is internal or external and whether it is due to personal choice or either internal (due to some psychological traits or external compulsion. Though not all theories fall neatly within these categories, they make it possible to make comparisons of contributions from a variety of different areas thus reflecting on the interdisciplinary nature of the study of terrorism in general and radicalization as a part of it.

  9. Detecting Social Polarization and Radicalization

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    This paper proposes a novel system to detect social polarization and to estimate the chances of violent radicalization associated with it. The required processes for such a system are indicated; it is also analyzed how existing technologies can be integrated into the proposed system to fulfill...

  10. Students' Ideas and Radical Constructivism

    Science.gov (United States)

    Sánchez Gómez, Pedro J.

    2016-01-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of "narrow mental states"; that is, the idea that the mental content of an individual can be fully characterised without…

  11. Is Radical Innovation Management Misunderstood?

    DEFF Research Database (Denmark)

    Kristiansen, Jimmi Normann; Gertsen, Frank

    2015-01-01

    This paper poses a critical view on radical innovation (RI) management research and practice. The study investigates how expected RI performance influences firms’ under- standing of their RI capability. RI performance is often based on output measures such as market shares or fiscal return...

  12. Penile rehabilitation after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Ohl, Dana A; Ralph, David

    2013-01-01

    The pathophysiology of erectile dysfunction after radical prostatectomy (RP) is believed to include neuropraxia, which leads to temporarily reduced oxygenation and subsequent structural changes in penile tissue. This results in veno-occlusive dysfunction, therefore, penile rehabilitation programmes...... rehabilitation improves erectile function after RP so many times that it becomes a truth even without the proper scientific backing....

  13. Students' Ideas and Radical Constructivism

    Science.gov (United States)

    Sánchez Gómez, Pedro J.

    2016-01-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of "narrow mental states"; that is, the idea that the mental content of an individual can be fully characterised without…

  14. Radical review of NHS funding.

    Science.gov (United States)

    1988-02-06

    The Government is to carry out a radical review of the way the NHS is funded, Prime Minister Margaret Thatcher confirmed last week. And she hinted that she herself would be taking a leading role in drawing up proposals for reform.

  15. The Other Women: Radicalizing Feminism.

    Science.gov (United States)

    Puigvert, Lidia; Darder, Antonia; Merrill, Barbara; de los Reyes, Eileen; Stromquist, Nelly

    A recent international symposium on radicalizing feminism explored ways of developing a dialogic feminism that emphasizes working in different settings under the common goal of including women who have been invisible in the dominant feminist literature by furthering theories and practices based on the principles of dialogic feminism. The seminar…

  16. Wild radical square zero algebras

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It is shown that a radical square zero algebra is wild, if and only if it is of Corner's type, and it is strictly wild if and only if it is Endo-wild. This gives a negative answer to a problem posed by Simson.

  17. Radical Innovation and Network Evolution

    NARCIS (Netherlands)

    S.M.W. Phlippen (Sandra); M. Riccaboni

    2007-01-01

    textabstractThis paper examines how a radical technological innovation affects alliance formation of firms and subsequent network structures. We use longitudinal data of interfirm R&D collaborations in the biopharmaceutical industry in which a new technological regime is established. Our findings su

  18. Detecting Social Polarization and Radicalization

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    This paper proposes a novel system to detect social polarization and to estimate the chances of violent radicalization associated with it. The required processes for such a system are indicated; it is also analyzed how existing technologies can be integrated into the proposed system to fulfill...

  19. [Reprodcutive results of radical trachelectomy].

    Science.gov (United States)

    Martínez-Chapa, Arnulfo; Alonso-Reyes, Nelly; Luna-Macías, Miguel

    2015-12-01

    Historically, cervical cancer in early stages has been treated with radical hysterectomy and radiotherapy with no option in keeping the uterine-ovarian function. Since two decades ago, evidence shows these cases are candidates for radical trachelectomy, a procedure capable of preserving the fertility without affecting the oncological outcome. To analyze reproductive results among patients treated with radical trachelectomy, in a reference center from the northeast of Mexico. Between March 1999 and December 2013, 27 cases with cervical cancer in early stages were treated with vaginal or abdominal radical trachelectomy in the ISSSTE Regional Hospital in Monterrey, NL (Mexico). We obtained the gynecological, medical and surgical clinical history. Plan of analysis consisted of descriptive statistics. Age range was 27-39 years. Main complications were cervical stenosis (n=1) and erosion of cerclaje (n=2). Eighteen patients tried to get pregnant, 8 of them got a spontaneous pregnancy; 1 more patient required assisted reproduction technics and did not succeed. All pregnancies were delivered by cesarean section and were preterm births; 3 underwent premature rupture of membranes. Two pregnancies ended in abortion, one at 10 weeks with severe hemorrhage that needed hysterectomy; the second one, at 1 7 weeks, received a fine uterine curettage. Only 6 cases (33%) got a live birth. Only one third of the attempted pregnancies got a live birth. Assisted reproduction technics play an important role and should be offer to all cases. Cerclaje is an important factor to carry a pregnancy up to the third trimester.

  20. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang, E-mail: songyangwenrong@hotmail.com

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  1. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels.

    Science.gov (United States)

    Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr

    2010-12-01

    The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.

  2. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer. © 2015 The Protein Society.

  3. Quinone-rich polydopamine functionalization of yttria stabilized zirconia for apatite biomineralization: The effects of coating temperature

    Science.gov (United States)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Abdul Kadir, Mohammed Rafiq

    2015-08-01

    The use of yttria stabilized zirconia (YSZ) as biomedical implants is often offset by its bioinert nature that prevents its osseointegration to occur. Therefore, the functionalization of YSZ surface by polydopamine to facilitate the biomineralization of apatite layer on top of the coated film has incessantly been studied. In this study YSZ discs were first immersed in 2 mg/mL of stirred dopamine solution at coating temperatures between 25 and 80 °C. The specimens were then incubated for 7d in 1.5 SBF. The effect of coating temperature on the properties (chemical compositions and wettability) and the apatite mineralization on top of the generated films was investigated. It was found that at 50 °C, the specimen displayed the highest intensity of Ca 2p peak (1.55 ± 0.42 cps) with Ca/P ratio of 1.67 due to the presence of abundant quinone groups (Cdbnd O). However, the hydrophilicity (40.9 ± 01.7°) was greatly improved at 60 °C accompanied by the highest film thickness of 306 nm. Therefore, it was concluded that the presence of high intensity of quinone groups (Cdbnd O) in polydopamine film at elevated temperature affects the chelation of Ca2+ ions and thus enhance the growth of apatite layer on top of the functionalized YSZ surface.

  4. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation.

    Science.gov (United States)

    Kato, Yuki; Nagao, Ryo; Noguchi, Takumi

    2016-01-19

    Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB (-)/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB (-)/QB), in combination with the known large upshift of Em(QA (-)/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA (-).

  5. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation

    Science.gov (United States)

    Kato, Yuki; Nagao, Ryo; Noguchi, Takumi

    2016-01-01

    Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB−/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB−/QB), in combination with the known large upshift of Em(QA−/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA−. PMID:26715751

  6. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death.

    Science.gov (United States)

    Bana, Emilie; Sibille, Estelle; Valente, Sergio; Cerella, Claudia; Chaimbault, Patrick; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc; Bagrel, Denyse

    2015-03-01

    Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure.

  7. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.

    Science.gov (United States)

    Wang, Jun; Krishna, Rajamani; Yang, Jiangfeng; Deng, Shuguang

    2015-08-04

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were characterized with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. CO2, CH4, and N2 adsorption isotherms were measured and correlated with the Langmuir model. An ideal adsorbed solution theory (IAST) selectivity for the CO2/N2 separation of 26.5 (298 K, 1 atm) was obtained on the hydroquinone-grafted carbon, which is 58.7% higher than that of the pristine porous carbon, and a CO2/CH4 selectivity value of 4.6 (298 K, 1 atm) was obtained on the quinone-grafted carbon (OAC-2), which represents a 28.4% improvement over the pristine porous carbon. The highest CO2 adsorption capacity on the oxygen-doped carbon adsorbents is 3.46 mmol g(-1) at 298 K and 1 atm. In addition, transient breakthrough simulations for CO2/CH4/N2 mixture separation were conducted to demonstrate the good separation performance of the oxygen-doped carbons in fixed bed adsorbers. Combining excellent adsorption separation properties and low heats of adsorption, the oxygen-doped carbons developed in this work appear to be very promising for flue gas treatment and natural gas upgrading.

  8. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE and ultra performance liquid chromatography (UPLC method for the analysis of bacterial respiratory quinones (RQ in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA detector was successfully applied to the simultaneous determination of ubiquinones (UQ and menaquinones (MK without tedious pretreatment. Supercritical carbon dioxide (scCO2 extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost and biological samples (swine and Japanese quail feces.

  9. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    Science.gov (United States)

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  10. Reaction between protein radicals and other biomolecules

    DEFF Research Database (Denmark)

    Østdal, Henrik; Davies, Michael Jonathan; Andersen, Henrik J

    2002-01-01

    The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2......)-activated immobilized horseradish peroxidase (im-HRP). Subsequently, each of the three different biomolecules was separately added to the BSA radicals, after removal of im-HRP by centrifugation. Electron spin resonance (ESR) spectroscopy showed that all three biomolecules quenched the BSA radicals....... Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid...

  11. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)

    1986-01-01

    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  12. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress ...... examples of radical formation on proteins....

  13. Highly durable photochromic radical complexes having no steric protections of radicals.

    Science.gov (United States)

    Kobayashi, Yoichi; Mishima, Yasuhiro; Mutoh, Katsuya; Abe, Jiro

    2017-04-21

    Steric protection groups are usually necessary for stable radicals. However, here, we developed novel photochromic radical complexes which generate sterically unprotected imidazolyl and phenoxyl radicals upon UV light irradiation based on the phenoxyl-imidazolyl radical complex (PIC) framework. These photochromic compounds show excellent durability against repeated irradiation of intense nanosecond laser pulses even in polar protic solvents, such as ethanol.

  14. DNA binding hydroxyl radical probes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Vicky J.; Konigsfeld, Katie M.; Aguilera, Joe A. [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States); Milligan, Jamie R., E-mail: jmilligan@ucsd.edu [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States)

    2012-01-15

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores, which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA. - Highlights: > Examined four aromatic groups as a means to detect hydroxyl radicals by fluorescence. > Coumarin system suffers from the fewest disadvantages. > Characterized its reactivity when linked to a hexa-arginine peptide.

  15. Geoscientists and the Radical Middle

    Science.gov (United States)

    Tinker, S. W.

    2015-12-01

    Addressing the great challenges facing society requires industry, government, and academia to work together. I call this overlap space, where compromises are made and real solutions determined, the Radical Middle. Radical because it can appear at times as if the loudest and most publicly influential voices lie outside of the actual solution space, content to provoke but not problem-solve. One key area where geoscientists can play a lead role in the Radical Middle is in the overlap between energy, the environment, and the economy. Globally, fossil fuels still represent 85% of the aggregate energy mix. As existing conventional oil and natural-gas reservoir production continues to slowly decline, unconventional reservoirs, led today by shale and other more expensive resources, will represent a growing part of the oil and gas production mix. Many of these unconventional reservoirs require hydraulic fracturing. The positive economic impact of hydraulic fracturing and associated natural gas and oil production on the United States economy is well documented and undeniable. Yet there are environmental concerns about fracking, and some states and nations have imposed moratoria. This energy-environment-economy space is ideal for leadership from the geosciences. Another such overlap space is the potential for geoscience leadership in relations with China, whose economy and global presence continue to expand. Although China is building major hydropower and natural-gas power plants, as well as nuclear reactors, coal is still king—with the associated environmental impacts. Carbon sequestration—onshore in brine and to enhance oil recovery, as well as offshore—could prove viable. It is vital that educated and objective geoscientists from industry, government, and academia leave their corners and work together in the Radical Middle to educate the public and develop and deliver balanced, economically sensible energy and environmental strategies.

  16. Photochemistry of free and bound Zn-chlorophyll analogues to synthetic peptides depend on the quinone and pH.

    Science.gov (United States)

    Razeghifard, Reza

    2015-11-01

    A synthetic peptide was used as a scaffold to bind Zn-Chlorophyll (ZnChl) analogues through histidine ligation to study their photochemistry in the presence of different type of quinones. The Chl analogues were chlorin e6 (Ce6), chlorin e6 trimethyl ester, pyropheophorbide a, and pheophorbide a while the quinones were PPBQ, DMBQ, NPHQ, DBTQ, DCBQ and PBQ. The binding of each ZnChl analogue to the peptide was verified by native gel electrophoresis. First the photo-stability of the ZnChl analogues were tested under continuous light. The ZnCe6 and ZnCe6TM analogues showed the least stability judged by the loss of optical signal intensity at their Qy band. The photoactivity of each ZnChl analogue was measured in the presence of each of the six quinones using time-resolved EPR spectroscopy. DMBQ was found to be the most efficient electron acceptor when all four ZnChl analogues were compared. The light-induced electron transfer between the ZnChl analogues complexed with the peptide and DMBQ were also measured using time-resolved EPR spectroscopy. The ZnCe6-peptide complex exhibited the highest photoactivity. The electron transfer in the complex was faster and the photoactivity yield was higher than those values obtained for free ZnCe6 and DMBQ. The fast phase of kinetics can be attributed to intra-protein electron transfer in the complex since it was not observed in the presence of DMBQ-glutathione adduct. Unlike free ZnCe6, the ZnCe6-peptide complex was robust and demonstrated very similar photoactivity efficiency in pH values 10, 8.0 and 5.0. The electron transfer kinetics were pH dependent and appeared to be modulated by the peptide charge and possibly fold. The charge recombination rate was slowed by an order of magnitude when the pH value was changed from 10.0 to 5.0. The implications of constructing the photoactive peptide complexes in terms of artificial photosynthesis are discussed.

  17. REACTIONS OF BENZO[A]PYRENE-7,8-QUINONE WITH DEOXYGUANOSINE AND DEOXYADENOSINE AT PHYSIOLOGICAL pH: IDENTIFICATION AND CHARACTERIZATION OF STABLE ADDUCTS

    Science.gov (United States)

    Reactions of Benzo[a]pyrene-7,8-quinone with Deoxyguanosine and Deoxyadenosine at Physiological pH: Identification and Characterization of Stable AdductsNarayanan Balu, William T. Padgett, Guy Lambert, Adam E. Swank,Ann M. Richard, and Stephen NesnowEnvironmen...

  18. Synthesis of {alpha}- and {beta}-lapachone derivatives from hetero diels-alder trapping of alkyl and aryl o-quinone methides

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fernando de C. da; Ferreira, Sabrina B.; Ferreira, Vitor F. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Organica], e-mail: cegvito@vm.uff.br; Kaiser, Carlos R.; Pinto, Angelo C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica

    2009-07-01

    Methylene and aryl o-quinone methides (o-QMs) generated by Knoevenagel condensation of 2-hydroxy-1,4-naphthoquinone with formaldehyde and arylaldehydes, undergo facile hetero Diels-Alder reaction with some substituted styrenes (as dienophiles) in aqueous ethanol media providing derivatives of {alpha}- and {beta}-lapachone (author)

  19. LETTING GO: DE-RADICALIZATION IN EGYPT

    Directory of Open Access Journals (Sweden)

    Zeynep Kaya

    2016-03-01

    Full Text Available The literature on the causes of how terrorist organizations are formed and how counter terrorism measures can be more effective is immense. What is novel in terrorism literature is de-radicalization in terrorist organizations. This paper hopes to shed light on the de-radicalization process in terrorist organizations based in Egypt. In order to achieve that goal, the first part of the paper will deal with the de-radicalization process. The second part will briefly describe the major radical terrorist organizations that are effective in Egypt. The last part will combine the two parts and bring in suggestions on the de-radicalization process itself. Terrorism and de-radicalization are complicated threats to nearly all societies. Therefore, it is important to go beyond security and intelligence approaches and take proactive measures. It is best to view what is de-radicalization and how it can be achieved.

  20. Oxidative stress, free radicals and protein peroxides.

    Science.gov (United States)

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.

  1. Chlorinated biphenyl quinones and phenyl-2,5-benzoquinone differentially modify the catalytic activity of human hydroxysteroid sulfotransferase hSULT2A1.

    Science.gov (United States)

    Qin, Xiaoyan; Lehmler, Hans-Joachim; Teesch, Lynn M; Robertson, Larry W; Duffel, Michael W

    2013-10-21

    Human hydroxysteroid sulfotransferase (hSULT2A1) catalyzes the sulfation of a broad range of environmental chemicals, drugs, and other xenobiotics in addition to endogenous compounds that include hydroxysteroids and bile acids. Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and oxidized metabolites of PCBs may play significant roles in the etiology of their adverse health effects. Quinones derived from the oxidative metabolism of PCBs (PCB-quinones) react with nucleophilic sites in proteins and also undergo redox cycling to generate reactive oxygen species. This, along with the sensitivity of hSULT2A1 to oxidative modification at cysteine residues, led us to hypothesize that electrophilic PCB-quinones react with hSULT2A1 to alter its catalytic function. Thus, we examined the effects of four phenylbenzoquinones on the ability of hSULT2A1 to catalyze the sulfation of the endogenous substrate, dehydroepiandrosterone (DHEA). The quinones studied were 2'-chlorophenyl-2,5-benzoquinone (2'-Cl-BQ), 4'-chlorophenyl-2,5-benzoquinone (4'-Cl-BQ), 4'-chlorophenyl-3,6-dichloro-2,5-benzoquinone (3,6,4'-triCl-BQ), and phenyl-2,5-benzoquinone (PBQ). At all concentrations examined, pretreatment of hSULT2A1 with the PCB-quinones decreased the catalytic activity of hSULT2A1. Pretreatment with low concentrations of PBQ, however, increased the catalytic activity of the enzyme, while higher concentrations inhibited catalysis. A decrease in substrate inhibition with DHEA was seen following preincubation of hSULT2A1 with all of the quinones. Proteolytic digestion of the enzyme followed by LC/MS analysis indicated PCB-quinone- and PBQ-adducts at Cys55 and Cys199, as well as oxidation products at methionines in the protein. Equilibrium binding experiments and molecular modeling suggested that changes due to these modifications may affect the nucleotide binding site and the entrance to the sulfuryl acceptor binding site of hSULT2A1.

  2. Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor QA- to QB by iron deficiency.

    Science.gov (United States)

    Msilini, Najoua; Zaghdoudi, Maha; Govindachary, Sridharan; Lachaâl, Mokhtar; Ouerghi, Zeineb; Carpentier, Robert

    2011-03-01

    The effect of iron deficiency on photosynthetic electron transport in Photosystem II (PS II) was studied in leaves and thylakoid membranes of lettuce (Lactuca sativa, Romaine variety) plants. PS II electron transport was characterized by oxygen evolution and chlorophyll fluorescence parameters. Iron deficiency in the culture medium was shown to affect water oxidation and the advancement of the S-states. A decrease of maximal quantum yield of PS II and an increase of fluorescence intensity at step J and I of OJIP kinetics were also observed. Thermoluminescence measurements revealed that charge recombination between the quinone acceptor of PS II, Q(B), and the S(2) state of the Mn-cluster was strongly perturbed. Also the dark decay of Chl fluorescence after a single turnover white flash was greatly retarded indicating a slower rate of Q(A)(-) reoxidation.

  3. Generalized Mulliken-Hush analysis of electronic coupling interactions in compressed pi-stacked porphyrin-bridge-quinone systems.

    Science.gov (United States)

    Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N

    2005-08-17

    Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.

  4. A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xi [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Du, Zhi-Fang [Taishan College, Shandong University, Jinan 250100 (China); Wang, Li-Hong; Miao, Jun-Ying [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2016-05-30

    We have designed and synthesized a simple but effective fluorescent probe for sensing glutathione (GSH) by PET process based on coumarin and quinone, which worked as fluorophore and reaction site, respectively. The probe could discriminate GSH from cysteine and homocysteine within 1 min in PBS-buffered solution. The sensing mechanism was confirmed by density functional theory (DFT), viscosity test, fluorescence spectrum analysis and HRMS, respectively. The probe has a low limit of detection (0.1 μM) and finally been used in cell imaging successfully. - Highlights: • This probe can discriminate glutathione from sulfhydryl compound by PET process. • This probe can be used to determine glutathione in aqueous solution within 1 min. • This probe has been successfully applied in living cell image.

  5. Simultaneous Synthesis of both Rings of Chromenes via a Benzannulation/o-Quinone Methide Formation/Electrocyclization Cascade

    Science.gov (United States)

    Majumdar, Nilanjana; Korthals, Keith A.; Wulff, William D.

    2011-01-01

    A new route to the chromene ring system has been developed which involves the reaction of an α,β-unsaturated Fischer carbene complex of chromium with a propargyl ether bearing an alkenyl group on the propargylic carbon. This transformation involves a cascade of reactions that begins with a benzannulation reaction and is followed by the formation of an o-quinone methide and finally, results in the emergence of a chromene upon an electrocyclization. This reaction was extended to the provide access to by employing an aryl carbene complex. This constitutes the first synthesis of chromenes in which both rings of the chromene system are generated in a single step and is highlighted in the synthesis of lapachenole and Vitamin E. PMID:22176537

  6. Pyrroloquinoline quinone from Gluconobacter oxydans fermentation broth enhances superoxide anion-scavenging capacity of Cu/Zn-SOD.

    Science.gov (United States)

    Ma, Ke; Cui, Jun-Zhu; Ye, Jian-Bin; Hu, Xian-Mei; Ma, Ge-Li; Yang, Xue-Peng

    2017-09-01

    A bioassay-guided fractionation of extract from Gluconobacter oxydans fermentation broth afforded Compound 1, which was identified as pyrroloquinoline quinone (PQQ) by spectroscopic methods. PQQ has been shown to enhance the superoxide anion-scavenging capacity significantly for Cu/Zn-SOD. To illustrate the mechanism, the interaction between PQQ and Cu/Zn-SOD was investigated. The multiple binding sites involving hydrogen bonds and van der Waals force between PQQ and Cu/Zn-SOD were revealed by isothermal titration calorimetry. The α-helix content was increased in the Cu/Zn-SOD structure with the addition of PQQ into the solution through ultraviolet (UV) spectroscopy. These results indicated that PQQ could change the conformation of Cu/Zn-SOD through interaction, which could enhance its superoxide anion-scavenging capacity. Therefore, PQQ is a potential natural antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Activity-guided isolation of constituents of Tephrosia purpurea with the potential to induce the phase II enzyme, quinone reductase.

    Science.gov (United States)

    Chang, L C; Gerhäuser, C; Song, L; Farnsworth, N R; Pezzuto, J M; Kinghorn, A D

    1997-09-01

    An isoflavone, 7,4'-dihydroxy-3',5'-dimethoxyisoflavone (1), and a chalcone, (+)-tephropurpurin (2), both novel compounds, as well as six constituents of known structure, (+)-purpurin (3), pongamol (4), lanceolatin B (5), (-)-maackiain (6), (-)-3-hydroxy-4-methoxy-8,9-methylene-dioxypterocarpan (7), and (-)-medicarpin (8), were obtained as active compounds from Tephrosia purpurea, using a bioassay based on the induction of quinone reductase (QR) activity with cultured Hepa 1c1c7 mouse hepatoma cells. Additionally, three inactive compounds of known structure, 3'-methoxydaidzein, desmoxyphyllin B, and 3,9-dihydroxy-8-methoxycoumestan, were isolated and identified. The structure elucidation of compounds 1 and 2 was carried out by spectral data interpretation.

  8. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.

    Science.gov (United States)

    Qian, Hongmei; Sun, Bo; Miao, Huiying; Cai, Congxi; Xu, Chaojiong; Wang, Qiaomei

    2015-02-01

    The variation of glucosinolates and quinone reductase (QR) activity in fourteen varieties of Chinese kale (Brassica oleracea var. alboglabra Bailey) was investigated in the present study. Results showed that gluconapin (GNA), instead of glucoraphanin (GRA), was the most predominant glucosinolate in all varieties, and QR activity was remarkably positively correlated with the glucoraphanin level. AOP2, a tandem 2-oxoglutarate-dependent dioxygenase, catalyzes the conversion of glucoraphanin to gluconapin in glucosinolate biosynthesis. Here, antisense AOP2 was transformed into Gailan-04, the variety with the highest gluconapin content and ratio of GNA/GRA. The glucoraphanin content and corresponding QR activity were notably increased in transgenic plants, while no significant difference at the level of other main nutritional compounds (total phenolics, vitamin C, carotenoids and chlorophyll) was observed between the transgenic lines and the wide-type plants. Taken together, metabolic engineering is a good practice for improvement of glucoraphanin in Chinese kale.

  9. Odoriferous Defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the red flour beetle, Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Jianwei Li

    Full Text Available Chemical defense is one of the most important traits, which endow insects the ability to conquer a most diverse set of ecological environments. Chemical secretions are used for defense against anything from vertebrate or invertebrate predators to prokaryotic or eukaryotic parasites or food competitors. Tenebrionid beetles are especially prolific in this category, producing several varieties of substituted benzoquinone compounds. In order to get a better understanding of the genetic and molecular basis of defensive secretions, we performed RNA sequencing in a newly emerging insect model, the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae. To detect genes that are highly and specifically expressed in the odoriferous gland tissues that secret defensive chemical compounds, we compared them to a control tissue, the anterior abdomen. 511 genes were identified in different subtraction groups. Of these, 77 genes were functionally analyzed by RNA interference (RNAi to recognize induced gland alterations morphologically or changes in gland volatiles by gas chromatography-mass spectrometry. 29 genes (38% presented strong visible phenotypes, while 67 genes (87% showed alterations of at least one gland content. Three of these genes showing quinone-less (ql phenotypes - Tcas-ql VTGl; Tcas-ql ARSB; Tcas-ql MRP - were isolated, molecularly characterized, their expression identified in both types of the secretory glandular cells, and their function determined by quantification of all main components after RNAi. In addition, microbe inhibition assays revealed that a quinone-free status is unable to impede bacterial or fungal growth. Phylogenetic analyses of these three genes indicate that they have evolved independently and specifically for chemical defense in beetles.

  10. Quinone-induced activation of Keap1/Nrf2 signaling by aspirin prodrugs masquerading as nitric oxide.

    Science.gov (United States)

    Dunlap, Tareisha; Piyankarage, Sujeewa C; Wijewickrama, Gihani T; Abdul-Hay, Samer; Vanni, Michael; Litosh, Vladislav; Luo, Jia; Thatcher, Gregory R J

    2012-12-17

    The promising therapeutic potential of the NO-donating hybrid aspirin prodrugs (NO-ASA) includes induction of chemopreventive mechanisms and has been reported in almost 100 publications. One example, NCX-4040 (pNO-ASA), is bioactivated by esterase to a quinone methide (QM) electrophile. In cell cultures, pNO-ASA and QM-donating X-ASA prodrugs that cannot release NO rapidly depleted intracellular GSH and caused DNA damage; however, induction of Nrf2 signaling elicited cellular defense mechanisms including upregulation of NAD(P)H:quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase (GCL). In HepG2 cells, the "NO-specific" 4,5-diaminofluorescein reporter, DAF-DA, responded to NO-ASA and X-ASA, with QM-induced oxidative stress masquerading as NO. LC-MS/MS analysis demonstrated efficient alkylation of Cys residues of proteins including glutathione-S-transferase-P1 (GST-P1) and Kelch-like ECH-associated protein 1 (Keap1). Evidence was obtained for alkylation of Keap1 Cys residues associated with Nrf2 translocation to the nucleus, nuclear translocation of Nrf2, activation of antioxidant response element (ARE), and upregulation of cytoprotective target genes. At least in cell culture, pNO-ASA acts as a QM donor, bioactivated by cellular esterase activity to release salicylates, NO(3)(-), and an electrophilic QM. Finally, two novel aspirin prodrugs were synthesized, both potent activators of ARE, designed to release only the QM and salicylates on bioactivation. Current interest in electrophilic drugs acting via Nrf2 signaling suggests that QM-donating hybrid drugs can be designed as informative chemical probes in drug discovery.

  11. Online radicalization: the net or the netizen?

    Directory of Open Access Journals (Sweden)

    Femi Richard Omotoyinbo

    2014-10-01

    Full Text Available Purpose - Radicalization has gained some unusual prominence in the academic circles; maintaining a generic existence not only in the political sector. And with the advent of the Information Communication Technology (ICT, radicalization has begun to have some virtual dimension even in the remotest of human communities. This study seeks to mobilize a universal awareness on the collective urgency to oppose Online Radicalization (a radicalization that happens through the internet due to its propensity to engendering conflicts. It also aims at identifying the principal cause of online radicalization and steer a clear course for a practical reversal in the systems of online radicalization.Design/methodology/approach - The study is divided into three primary parts. The general notion of radicalization is the focus of the first part; which is further analysed into the levels of online radicalization with its accompanying developments and segments. The second part utilizes analytic and historical method to pinpoint the principal cause of online radicalization amidst the suspected causal factors (the Net and the Netizen. The final part analytically focuses on the Netizen (a user/citizen of the internet as the primary cause of online radicalization, and how the global community can bring about a corresponding change in the Net by the application of some measures on the Netizen.Findings - By virtue of the analytic plus historical methods employed by this study; it was initially identified that radicalization is basically having two versions which are online and offline. Further emphasis on the online version reveals that its existence is only made possible by the availability of the internet (the Net. Since the Net is a global phenomenon online radicalization is considered to be worldwide: a menace of globalization. However, the study later indicated that the Net is a facilitator and a cause of online radicalization. A view was deduced that the Netizen is

  12. Radical constructivism: Between realism and solipsism

    Science.gov (United States)

    Martínez-Delgado, Alberto

    2002-11-01

    This paper criticizes radical constructivism of the Glasersfeld type, pointing out some contradictions between the declared radical principles and their theoretical and practical development. These contradictions manifest themselves in a frequent oscillation between solipsism and realism, despite constructivist claims to be an anti-realist theory. The paper also points out the contradiction between the relativism of the radical constructivist principles and the constructivist exclusion of other epistemological or educational paradigms. It also disputes the originality and importance of the radical constructivist paradigm, suggesting the idea of an isomorphism between radical constructivist theory and contemplative realism. In addition, some pedagogical and scientific methodological aspects of the radical constructivist model are examined. Although radical constructivism claims to be a rational theory and advocates deductive thinking, it is argued that there is no logical deductive connection between the radical principles of constructivism and the radical constructivist ideas about scientific research and learning. The paper suggests the possibility of an ideological substratum in the construction and hegemonic success of subjective constructivism and, finally, briefly advances an alternative realist model to epistemological and educational radical constructivism.

  13. Laser spectroscopy of hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    The author reports the application of supersonic jet flash pyrolysis to the specific preparation of a range of organic radicals, biradicals, and carbenes in a skimmed molecular beam. Each species was produced cleanly and specifically, with little or no secondary reactions by the thermal dissociation of appropriately designed and synthesized organic precursors. Photoelectron spectra of the three isomeric C{sub 3}H{sub 2} carbenes, ortho-benzyne, and the {alpha},3-dehydrotoluene biradical, were used to establish adiabatic ionization potentials for use in thermochemical determinations.

  14. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

    1993-12-01

    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  15. Radical conservatism and Danish imperialism

    DEFF Research Database (Denmark)

    2013-01-01

    on the basis of a close reading of their imperialist program in the pamphlet Danmark Udslettes! from 1918. Rige had been a vague term for the larger Danish polity that originated in a pre-national conceptualization of the polity as a realm. The article suggests that rige-as-realm was translated by the radical...... to signify the ambition of being a great power, the spiritual elevation of the nation through the transcendence of the decaying liberal modernity. The program addressed the tension between a conservative political attitude and modernity and thus signified a kind of reactionary modernism, which rejected...

  16. Remembering Dutch-Moluccan radicalism

    DEFF Research Database (Denmark)

    Marselis, Randi Lorenz

    2016-01-01

    This article examines memory politics in relation to radical actions of young Dutch-Moluccans, more specifically a train hijacking in 1977 at the village of De Punt in the Netherlands. The article examines how these historical events were remembered in the drama-documentary television film, De Punt......, as well as in user-generated comments in an online discussion. The television film represented an inclusive memory culture that made room for the difficult memories of all parties involved, including the radicalised, young hijackers. Based on a multidimensional model of mass media reception, the analysis...

  17. Radical Reactions and Its Synthetic Application

    Institute of Scientific and Technical Information of China (English)

    Takeaki Naito

    2005-01-01

    @@ 1Introduction Strategies involving radical reactions have become preeminent tools in organic synthesis. Free radical-mediated cyclization has developed as a powerful method for preparing various types of cyclic compounds via carbon-carbon bond-forming processes. In order to develop effective and convenient methods for the synthesis of biologically active cyclic amines, we have focused our efforts on radical reactions using aldehydes, ketones,and C-C multiple bonds as a radical precursor and/or an oxime ether, hydrazone, and nitrone as a radical acceptor. In this lecture, I would like to talk on radical addition-cyclization of oxime ether and its application to the synthesis of martinellines.

  18. Radicalization In Pakistan And The Spread Of Radical Islam In Pakistan

    Directory of Open Access Journals (Sweden)

    Bahir ahmad

    2015-08-01

    Full Text Available ABSTRACT It is pertinent to mention that radicalism is not intrinsic to Islam and radical interpretations of the religion or for that matter may occur within any way of life and religion Saikal 2003 and yet the question remains as to why Muslims in certain geographical regions have more radical approaches towards their religion and also that what are the causes of such radicalization. Becoming a radical Muslim is not even a matter of a day nor is it a sudden process. There are several reasons behind making a person radical peaceful angry smiling or tolerant. For knowing the reason behind radicalization or radicals persons one has to understand the causes. Tracing these causes is one of the ways to eliminate such behavior. The first step in the elimination of the radical sentiments in a person is to develop peace in his personality Fair Malhotra amp Shapiro 2010. The chapter which has been addressed here is going to shed light on the roots and symptoms of the radicalism. There will be a brief discussion on how the roots of radicalism can be traced and can be eliminated. The assessment and discussion will be conducted on the parameters of the economy media politics and theology from social cultural point of view. According to the analysis of Ahrari 2000 political factor is one of the major and direct factors which have resulted in causing of the radicalism. These factors however intertwine with one another. Radical actions cannot take place only because of the political factors.

  19. Protective Effect of Sinapine against Hydroxyl Radical-Induced Damage to Mesenchymal Stem Cells and Possible Mechanisms.

    Science.gov (United States)

    Li, Xican; Han, Lu; Li, Yunrong; Zhang, Jing; Chen, Jiemin; Lu, Wenbiao; Zhao, Xiaojun; Lai, Yingtao; Chen, Dongfeng; Wei, Gang

    2016-01-01

    As a phenolic alkaloid occurring in Cruciferous plants, sinapine was observed to protect mesenchymal stem cells (MSCs) against ·OH-induced damage in this study. It was also found to prevent DNA from damage, to scavenge various free radicals (·OH, ·O2(-), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt) (ABTS)(+·), and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)), and to reduce Cu(2+) to Cu(+). To further explore the mechanism, the end-product of sinapine reaction with DPPH· was determined using HPLC-electrospray ionization (ESI)-MS/MS and HPLC-diode array detector (DAD). Four molecular ion peaks (m/z 701, 702, 703, and 351) in HPLC-ESI-MS/MS analysis indicated a radical adduct formation (RAF) pathway; while a bathochromic shift (λ(max) 334→475 nm) in HPLC-DAD indicated the formation of quinone as the oxidized product of the phenolic -OH group. Based on these results, it may be concluded that, (i) sinapine can effectively protect against ·OH-induced damage to DNA and MSCs; such protective effect may provide evidence for a potential role for sinapine in MSC transplantation therapy, and be responsible for the beneficial effects of Cruciferous plants. (ii) The possible mechanism for sinapine to protect against ·OH-induced oxidative damage is radical-scavenging, which is thought to be via hydrogen atom (H·) transfer (HAT) (or sequential electron (e) proton transfer (SEPT))→RAF pathways.

  20. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds.

    Science.gov (United States)

    Wojtyla, Łukasz; Garnczarska, Małgorzata; Zalewski, Tomasz; Bednarski, Waldemar; Ratajczak, Lech; Jurga, Stefan

    2006-12-01

    The aim of this study was to investigate whether there is a relationship between hydration of the embryo axes and cotyledons and the resumption of the oxidative metabolism in both organs of germinating seeds of pea (Pisum sativum L. cv. Piast). Nuclear magnetic resonance ((1)H-NMR) spectroscopy and imaging were used to study temporal and spatial water uptake and distribution in pea seeds. The observations revealed that water penetrates into the seed through the hilum, micropyle and embryo axes, and cotyledons hydrate to different extents. Thus, inhomogeneous water distribution may influence the resumption of oxidative metabolism. Electron paramagnetic resonance (EPR) measurements showed that seed germination was accompanied by the generation of free radicals with g(1) and g(2) values of 2.0032 and 2.0052, respectively. The values of spectroscopic splitting coefficients suggest that they are quinone radicals. The highest content of free radicals was observed in embryo axes immediately after emergence of the radicle. Glutathione content decreased during the entire germination period in both embryo axes and cotyledons. A different profile was observed for ascorbate, with significant increases in embryo axes, coinciding with radicle protrusion. Electrophoretic analysis showed that superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) were present in dry seeds and were activated later during germination, especially in embryo axes. The presence of all antioxidative enzymes as well as low molecular antioxidants in dry seeds allowed the antioxidative machinery to be active as soon as the enzymes were reactivated by seed imbibition. The observed changes in free radical levels, antioxidant contents and enzymatic activities in embryo axes and cotyledons appear to be more closely related to metabolic and developmental processes

  1. Photodynamically generated bovine serum albumin radicals

    DEFF Research Database (Denmark)

    Silvester, J A; Timmins, G S; Davies, Michael Jonathan

    1998-01-01

    Porphyrin-sensitized photoxidation of bovine serum albumin (BSA) results in oxidation of the protein at (at least) two different, specific sites: the Cys-34 residue giving rise to a thiyl radical (RS.); and one or both of the tryptophan residues (Trp-134 and Trp-214) resulting in the formation of...... of proteases. The generation of protein-derived radicals also results in an enhancement of photobleaching of the porphyrin, suggesting that protein radical generation is linked to porphyrin photooxidation....

  2. Quantitative determination of atmospheric hydroperoxyl radical

    Science.gov (United States)

    Springston, Stephen R.; Lloyd, Judith; Zheng, Jun

    2007-10-23

    A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

  3. Radical-free biology of oxidative stress

    OpenAIRE

    2008-01-01

    Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the “redox hypothesis,” is that oxidative stress occurs as a consequence of disruption of thi...

  4. Superspecial radical%超特殊根

    Institute of Scientific and Technical Information of China (English)

    于淑兰

    2001-01-01

    定义了超特殊根,即由无零因子的绝对半素环类所确定的上根,并证明了它是一个特殊根。%The superspecial radical is defined, it is the upper radical, determined by the rings class consisted without divisors of zero and absolutely semiprings. And it is a special radical.

  5. Aromatic Radicals-Acetylene Particulate Matter Chemistry

    Science.gov (United States)

    2011-12-01

    Ethynylcylcopentadiene (C5H5C2H) C CH m-Formylphenyl radical (C6H4CHO) C O Formyl cyclopentadiene (C5H5CHO) O Table 12. Structures of the species...FINAL REPORT Aromatic Radicals -Acetylene Particulate Matter Chemistry SERDP Project WP-1575 DECEMBER 2011 Kenneth Brezinsky University... Radicals -Acetylene Particulate Matter Chemistry W912HQ-07-C-0019 WP-1575Dr. Kenneth Brezinsky University of Illinois DBA: Office of Business and Financial

  6. Serendipitous Findings While Researching Oxygen Free Radicals

    OpenAIRE

    Floyd, Robert A.

    2009-01-01

    This review is based on the honor of receiving the Discovery Award from the Society of Free Radical Biology and Medicine. The review is reflective and presents our thinking which led to experiments that yielded novel observations. Critical questioning of our understanding of oxygen free radicals in biomedical problems led us to use and develop more direct and extremely sensitive methods. This included nitrone free radical spin-trapping and HPLC-electrochemical detection. This technology led t...

  7. Neurotoxins: Free Radical Mechanisms and Melatonin Protection

    OpenAIRE

    2010-01-01

    Toxins that pass through the blood-brain barrier put neurons and glia in peril. The damage inflicted is usually a consequence of the ability of these toxic agents to induce free radical generation within cells but especially at the level of the mitochondria. The elevated production of oxygen and nitrogen-based radicals and related non-radical products leads to the oxidation of essential macromolecules including lipids, proteins and DNA. The resultant damage is referred to as oxidative and nit...

  8. Bioinspired terpene synthesis: a radical approach.

    Science.gov (United States)

    Justicia, José; Álvarez de Cienfuegos, Luis; Campaña, Araceli G; Miguel, Delia; Jakoby, Verena; Gansäuer, Andreas; Cuerva, Juan M

    2011-07-01

    This tutorial review highlights the development of radical-based bioinspired synthesis of terpenes from the initial proposal to the development of modern catalytic methods for performing such processes. The power of the radical approach is demonstrated by the straightforward syntheses of many natural products from readily available starting materials. The efficiency of these processes nicely complements the described cationic polyolefin cyclisations and even suggests that modern radical methods provide means to improve upon nature's synthetic pathways.

  9. Near-Ring Radicals and Class Pairs

    Institute of Scientific and Technical Information of China (English)

    L.Godloza; N.J.Groenewald; W.A.Olivier

    2005-01-01

    For near-ring ideal mappings p1 and p2, we investigate radical theoretical properties of and the relationship among the class pairs (p1: p2), (Sp2: Sp1) and (Rp2:Rp1). Conditions on p1 and p2 are given for a general class pair to form a radical class of various types. These types include the Plotkin and KA-radical varieties. A number of examples are shown to motivate the suitability of the theory of Hoehnke-radicals over KA-radicals when radical pairs of near-rings are studied. In particular, it is shown that (pc: P3) forms a KA-radical class, where Pc denotes the class of completely prime nearrings and P3 the class of 3-prime near-rings. This gives another near-ring generalization of the 2-primal ring concept. The theory of radical pairs are also used to show that in general the class of 3-semiprime near-rings is not the semisimple class of the 3-prime radical.

  10. Free radicals in the aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, A.; Laurence, G. [Adelaide Univ., SA (Australia)

    1996-12-31

    Full text: The chemistry of the degradation of organic herbicides and fungicides in natural systems is important in determining operationally important parameters such as withholding times before planting or consumption. Disappearance rates in the field are frequently many time larger than expected from reactions such as hydrolysis arid photochemical- and radical-initiated reactions are frequently cited as causes of the degradation reactions. Reactions of OH and O{sub 2}{sup -} radicals and secondary radicals derived from these are increasingly postulated as being important in many aqueous environmental reactions. Free radical reactions may contribute to the degradation of organic pesticides and are directly implicated in the use of radical generating systems such as Fenton`s Reagent or hydrogen peroxide in the removal of chlorinated organic chemicals from drinking water. Natural sources of these radicals in aqueous systems are predominantly photochemical reactions or reactions initiated by transition metal ions. Hydrogen peroxide is present in many aqueous environments in relatively high concentrations and we are attempting to establish the presence of superoxide radicals in natural systems. The measurement of stationary state concentrations of free radicals as low as 10{sup -} {sup 15} M is a challenge to analytical and free radical chemists. Long term scavenging studies are difficult and generally non-specific. Current ideas will be reviewed and our approach to the measurement of superoxide in natural systems will be outlined.

  11. Formation of free radicals during phacoemulsification.

    Science.gov (United States)

    Holst, A; Rolfsen, W; Svensson, B; Ollinger, K; Lundgren, B

    1993-04-01

    During phacoemulsification cavitation bubbles are formed. These bubbles are believed to be one source of damage to corneal endothelium seen after phacoemulsification. Free radicals are induced whenever cavitation bubbles implode. The aim of this study was to confirm the initiation of free radicals by phacoemulsification and to correlate the power of ultrasound in the phacoemulsification process to the amount of free radicals formed, using both in vitro and in vivo techniques. The formation of free radicals was determined by adding luminol to a buffer and measuring the chemoluminescence in vitro and in rabbit eyes (Lumacounter 2080 or a single-photon-counting apparatus) during phacoemulsification. The data obtained show that free radicals are formed during phacoemulsification and that the amount of free radicals correlates with the power of ultrasound. Furthermore, the radical formation could be inhibited by the radical scavengers SOD, Healon and Healon GV. These results were achieved both in vitro in the test tube and in vivo in rabbit eyes. By showing that the addition of SOD to the irrigation buffer during phacoemulsification decreases the corneal endothelial cell damage, we show that free radicals could have a role in postoperative complications seen clinically.

  12. Inhibitory effects of chitosan on superoxide anion radicals and lipid free radicals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the electron spin resonance (ESR) technique, the inhibitory effects of chitosan on superoxide anion radicals and linoleic acid lipid radicals were found. The inhibitory ratio E for these two kinds of radicals is in proportion to the concentration of chitosan. It was also observed that E for linoleic acid lipid radicals increased with the increase of the degree of deacetylation and decreased with the increase of the molecular weight of chitosan.

  13. Supporting radical front end innovation

    DEFF Research Database (Denmark)

    Aagaard, Annabeth; Gertsen, Frank

    2011-01-01

    ). Pharmaceutical innovation is unique, as it opposed to most other industries’ product development is science-driven and not customer-driven. In addition, the pharmaceutical FEI, as represented by research, lasts up to 5 years and the entire R&D process constitutes a period of 10-12 years, which is highly...... regulated by external authorities, e.g. The American Food and Drug Administration (FDA). The research aim of this paper is: to contribute to the field of FEI by studying how FEI can be actively supported within the industry specific context of the pharmaceutical industry, and through a conceptual discussion...... of FEI, pharmaceutical FEI and radical innovation. Based on this understanding, empirical research through exploratory and inductive case studies is analyzed. The value added and the contribution of this article to the existing FEI literature is in the study of the theoretical fields of research...

  14. Photoionisation of the tropyl radical

    Directory of Open Access Journals (Sweden)

    Kathrin H. Fischer

    2013-04-01

    Full Text Available We present a study on the photoionisation of the cycloheptatrienyl (tropyl radical, C7H7, using tunable vacuum ultraviolet synchrotron radiation. Tropyl is generated by flash pyrolysis from bitropyl. Ions and electrons are detected in coincidence, permitting us to record mass-selected photoelectron spectra. The threshold photoelectron spectrum of tropyl, corresponding to the X+ 1A1’ ← X 2E2” transition, reveals an ionisation energy of 6.23 ± 0.02 eV, in good agreement with Rydberg extrapolations, but slightly lower than the value derived from earlier photoelectron spectra. Several vibrations can be resolved and are reassigned to the C–C stretch mode ν16+ and to a combination of ν16+ with the ring breathing mode ν2+. Above 10.55 eV dissociative photoionisation of tropyl is observed, leading to the formation of C5H5+ and C2H2.

  15. Students' Ideas and Radical Constructivism

    Science.gov (United States)

    Sánchez Gómez, Pedro J.

    2016-08-01

    In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students' ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of narrow mental states; that is, the idea that the mental content of an individual can be fully characterised without any reference external to her or him. I show that this fact imposes some severe restrictions to SIS to be incorporated into RC. In particular, I argue that only qualitative studies can comply with the requirement of narrowness. Nevertheless, I propose that quantitative works can be employed as sources of types in order to study token actual students. I use this type-token dichotomy to put forward an outline of a theory of the relation between school contents and mental contents. In this view, token mental contents regarding a given topic can be defined, and probed, only by resorting to typical school contents.

  16. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  17. Unprecedented stable aqueous semiquinone methide radical formation interferes with adsorptive cathodic stripping voltammetry of cobalt methyl thymol blue.

    Science.gov (United States)

    Niztayev, Alidin N; Hagen, Wilfred R

    2005-09-15

    A putatively highly sensitive and selective method for the determination of cobalt in aqueous samples by catalytic adsorptive cathodic stripping voltammetry using methyl thymol blue (MTB) as the ligand has been documented [A. Safavi, E. Shams, Talanta 51 (2000) 1117] and its underlying mechanism has been briefly explored [A. Safavi, E. Shams, Electroanalysis 14 (2002) 708]. In an attempt to adapt the method for application in metalloprotein analysis we obtained erratic results, which were traced down to the redox non-innocence of the free ligand in the potential range prescribed for the metal analysis. On the hanging mercury drop electrode free methyl thymol blue is reversibly one-electron reduced to the semiquinone form with E(m,7.0)=-482mV versus NHE at 22 degrees C, and the radical is subsequently quasi-reversibly one-electron reduced to the quinol form with E(m,7) approximately -0.9V. This observation invalidates the use of MTB in electrochemical analysis of metal ions. This is also the first observation ever of a stable quinone methide radical in aqueous solution.

  18. Clinical Physiology and Mechanism of Dizocilpine (MK-801: Electron Transfer, Radicals, Redox Metabolites and Bioactivity

    Directory of Open Access Journals (Sweden)

    Peter Kovacic

    2010-01-01

    Full Text Available Dizocilpine (MK-801, an extensively investigated drug possessing secondary amine and benzenoid functions, displays a wide array of biological properties, including anticonvulsant and anesthetic. There is scant discussion of biomechanism. A relevant, important finding is formation of oxidative metabolites in the hydroxylamine and phenolic categories. Analogy to cocaine metabolites suggests participation of redox entities, such as, hydroxylamine, nitroxide and nitrosonium, which can lead to electron transfer and radical formation. There is also similarity to metabolism by 3,3′-iminodipropionitrile and phencyclidine. Alternatively, the phenolic metabolites are well-known precursors of ET quinones. The review documents various physiological effects, mainly involving the central nervous system. Also of interest are the pro- and anti-oxidant properties. Considerable attention has been paid to MK-801 as an antagonist of the N-methyl-D-aspartate receptor in the glutamate category. This aspect is often associated with effects on the central nervous system. The review also provides recent literature dealing with MK-801/NMDA receptor in various areas of bioactivity. Studies were made of MK-801 involvement in working memory processing. Deficits in behavior were noted after administration of the drug. Treatment of mice with dizocilpine induced learning impairment. The influence of MK-801 on fear has been investigated. The substance is known to exert an analgesic effect in pain control. A number of reports deal with anesthetic properties.

  19. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae.

    Science.gov (United States)

    Muras, Valentin; Dogaru-Kinn, Paul; Minato, Yusuke; Häse, Claudia C; Steuber, Julia

    2016-09-01

    We searched for a source of reactive oxygen species (ROS) in the cytoplasm of the human pathogen Vibrio cholerae and addressed the mechanism of ROS formation using the dye 2',7'-dichlorofluorescein diacetate (DCFH-DA) in respiring cells. By comparing V. cholerae strains with or without active Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), this respiratory sodium ion redox pump was identified as a producer of ROS in vivo The amount of cytoplasmic ROS detected in V. cholerae cells producing variants of Na(+)-NQR correlated well with rates of superoxide formation by the corresponding membrane fractions. Membranes from wild-type V. cholerae showed increased superoxide production activity (9.8 ± 0.6 μmol superoxide min(-1) mg(-1) membrane protein) compared to membranes from the mutant lacking Na(+)-NQR (0.18 ± 0.01 μmol min(-1) mg(-1)). Overexpression of plasmid-encoded Na(+)-NQR in the nqr deletion strain resulted in a drastic increase in the formation of superoxide (42.6 ± 2.8 μmol min(-1) mg(-1)). By analyzing a variant of Na(+)-NQR devoid of quinone reduction activity, we identified the reduced flavin adenine dinucleotide (FAD) cofactor of cytoplasmic NqrF subunit as the site for intracellular superoxide formation in V. cholerae The impact of superoxide formation by the Na(+)-NQR on the virulence of V. cholerae is discussed. In several studies, it was demonstrated that the Na(+)-NQR in V. cholerae affects virulence in a yet unknown manner. We identified the reduced FAD cofactor in the NADH-oxidizing NqrF subunit of the Na(+)-NQR as the site of superoxide formation in the cytoplasm of V. cholerae Our study provides the framework to understand how reactive oxygen species formed during respiration could participate in the regulated expression of virulence factors during the transition from aerobic to microaerophilic (intestinal) habitats. This hypothesis may turn out to be right for many other pathogens which, like V. cholerae, depend on the Na

  20. Hydroxyl radical reaction with trans-resveratrol: initial carbon radical adduct formation followed by rearrangement to phenoxyl radical.

    Science.gov (United States)

    Li, Dan-Dan; Han, Rui-Min; Liang, Ran; Chen, Chang-Hui; Lai, Wenzhen; Zhang, Jian-Ping; Skibsted, Leif H

    2012-06-21

    In the reaction between trans-resveratrol (resveratrol) and the hydroxyl radical, kinetic product control leads to a short-lived hydroxyl radical adduct with an absorption maximum at 420 nm and a lifetime of 0.21 ± 0.01 μs (anaerobic acetonitrile at 25 °C) as shown by laser flash photolysis using N-hydroxypyridine-2(1H)-thione (N-HPT) as a "photo-Fenton" reagent. The transient spectra of the radical adduct are in agreement with density functional theory (DFT) calculations showing an absorption maximum at 442 or 422 nm for C2 and C6 hydroxyl adducts, respectively, and showing the lowest energy for the transition state leading to the C2 adduct compared to other radical products. From this initial product, the relative long-lived 4'-phenoxyl radical of resveratrol (τ = 9.9 ± 0.9 μs) with an absorption maximum at 390 nm is formed in a process with a time constant (τ = 0.21 ± 0.01 μs) similar to the decay constant for the C2 hydroxyl adduct (or a C2/C6 hydroxyl adduct mixture) and in agreement with thermodynamics identifying this product as the most stable resveratrol radical. The hydroxyl radical adduct to phenoxyl radical conversion with concomitant water dissociation has a rate constant of 5 × 10(6) s(-1) and may occur by intramolecular hydrogen atom transfer or by stepwise proton-assisted electron transfer. Photolysis of N-HPT also leads to a thiyl radical which adds to resveratrol in a parallel reaction forming a sulfur radical adduct with a lifetime of 0.28 ± 0.04 μs and an absorption maximum at 483 nm.

  1. The Role of Human Aldo-Keto Reductases (AKRs in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH-catechols and PAH o-Quinones

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2012-11-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAH are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quiniones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  2. Organic chemistry: A radical step forward

    Science.gov (United States)

    Zhang, Wenhao; Li, Ang

    2017-02-01

    Free radicals are notorious for unselective coupling reactions; however, the coupling of free radicals generated from acyl tellurides has now been shown to form C-C bonds with remarkable fidelity, which enables easy one-step assembly of densely oxygenated natural product motifs.

  3. Victimology: A Consideration of the Radical Critique.

    Science.gov (United States)

    Friedrichs, David O.

    1983-01-01

    Discusses the emergence of a new radical model in criminology and a new subdisciplinary area of concern, victimology, with roots in Marx and Engels' original formulations. Argues that the radical understanding of victimization provides an important corrective to mainstream approaches and broadens the focus of the concept of victimization. (JAC)

  4. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  5. Radical Behaviorism and Buddhism: Complementarities and Conflicts

    Science.gov (United States)

    Diller, James W.; Lattal, Kennon A.

    2008-01-01

    Comparisons have been made between Buddhism and the philosophy of science in general, but there have been only a few attempts to draw comparisons directly with the philosophy of radical behaviorism. The present review therefore considers heretofore unconsidered points of comparison between Buddhism and radical behaviorism in terms of their…

  6. Radical Behaviorism and Buddhism: Complementarities and Conflicts

    Science.gov (United States)

    Diller, James W.; Lattal, Kennon A.

    2008-01-01

    Comparisons have been made between Buddhism and the philosophy of science in general, but there have been only a few attempts to draw comparisons directly with the philosophy of radical behaviorism. The present review therefore considers heretofore unconsidered points of comparison between Buddhism and radical behaviorism in terms of their…

  7. Catalytic Radical Domino Reactions in Organic Synthesis.

    Science.gov (United States)

    Sebren, Leanne J; Devery, James J; Stephenson, Corey R J

    2014-02-07

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes.

  8. Moment matrices, border bases and radical computation

    NARCIS (Netherlands)

    Mourrain, B.; Lasserre, J.B.; Laurent, M.; Rostalski, P.; Trebuchet, P.

    2011-01-01

    In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-denite programming.

  9. Moment matrices, border bases and radical computation

    NARCIS (Netherlands)

    Mourrain, B.; Lasserre, J.B.; Laurent, M.; Rostalski, P.; Trebuchet, P.

    2013-01-01

    In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-denite programming.

  10. Free Radical Mechanisms in Autoxidation Processes.

    Science.gov (United States)

    Simic, Michael G.

    1981-01-01

    Discusses the use of steady-state radiation chemistry and pulse radiolysis for the generation of initial free radicals and formation of peroxy radicals in the autoxidation process. Provides information regarding the autoxidation process. Defines autoxidation reactions and antioxidant action. (CS)

  11. QSAR studies on 1,2-dithiole-3-thiones: modeling of lipophilicity, quinone reductase specific activity, and production of growth hormone.

    Science.gov (United States)

    Khadikar, Padmakar; Jaiswal, Mona; Gupta, Madhu; Mandloi, Dheeraj; Sisodia, Raj Singh

    2005-02-15

    Studies on modeling of lipophilicity (logP) quinone reductase specific activity (logCDQR) and production of growth hormone (logCDGH) of 1,2-dithiole-3-thiones have been carried out using distance-based topological indices. The regression analysis of the data has shown that the set of compounds exhibit 'familial' relationships in that excellent results are obtained by dividing the data set into two or more classes (families).

  12. Quinone (QB) reduction by B-branch electron transfer in mutant bacterial reaction centers from Rhodobacter sphaeroides: quantum efficiency and X-ray structure.

    Science.gov (United States)

    Paddock, M L; Chang, C; Xu, Q; Abresch, E C; Axelrod, H L; Feher, G; Okamura, M Y

    2005-05-10

    The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --> Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --> Asp, Tyr-M210 --> Phe, Leu-M214 --> His) and one to promote transfer along the B-branch (Phe-L181 --> Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.

  13. [3+2] versus [4+2] cycloadditions of quinone monoimide with azadienes: a Lewis acid-free access to 5-amino-2,3-dihydrobenzofuranes.

    Science.gov (United States)

    Lomberget, Thierry; Baragona, Fabien; Fenet, Bernard; Barret, Roland

    2006-08-31

    The reaction between p-quinone monoimide 1a and various azadienes 2 is described in the absence of a Lewis acid promoter. When alpha,beta-unsaturated hydrazones are substituted by proton or alkyl groups, 2,3-dihydrobenzofuranes 4, a motif that is present in numerous biologically active products, are obtained in moderate to excellent yields. The regio- and stereoselectivity of this reaction has been proved by a complete NMR study, including 1H-15N correlations.

  14. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study.

    Science.gov (United States)

    Zhou, Ailing; Sadik, Omowunmi A

    2008-12-24

    Quercetin, the most abundant flavonoid in dietary fruits and vegetables, acts as antioxidant or prooxidant depending on the environmental conditions. The antioxidant behavior is believed to involve initial oxidative steps with subsequent changes in the flavonoid skeleton, which ultimately alters the chemical and biological properties of these molecules. Although the mechanism is still unclear, it has been suggested to be strongly influenced by the surrounding media. This paper reports the oxidation of quercetin by air oxygen or autoxidation, bulk electrolysis, mushroom tyrosinase, and azodiisobutyronitrile (AIBN). The central aim of this study is to systematically examine how the similarities and differences of quercetin transformation can be affected by the nature of the oxidation systems. Using a range of molecular and structural characterization techniques (UV-vis, LC-MS, GC-MS, and NMR), the oxidation of quercetin was found to result in the generation of somewhat similar metabolites including depside, phenolic acids, and quercetin-solvent adducts, although the transformation process and quantities of each product depend on the type of oxidation method employed. The rate of quercetin autoxidation can be fitted to a monoexponential first-order decay with a k value of 6.45 x 10(-2) M(-1) s(-1). Comparison of quercetin oxidative products in the different systems provides a deeper insight into the underlying mechanism involved in the oxidation process. This work demonstrates that the presence of water and/or nucleophiles as well as different catalysts (tyrosinase, AIBN, or air oxygen in solution) may have very important implications for the formation of quinone with subsequent oxidative cleavage or polymerization. Moreover, the apparent first-order kinetics of autoxidation can indicate a rate-determining, one-electron oxidation of quercetin anions followed by two fast steps of radical disproportionation and solvent addition on the resulting quinone.

  15. Place of Schauta's radical vaginal hysterectomy.

    Science.gov (United States)

    Roy, Michel; Plante, Marie

    2011-04-01

    Women affected by early stage invasive cancer of the cervix are usually treated by surgery. Radical abdominal hysterectomy with pelvic lymphadenectomy is the most widely used technique. Because the morbidity of the abdominal approach can be important, the radical vaginal hysterectomy has gained acceptance in gynaecologic oncology. New instrumentation in laparoscopy also opens the possibility of treating cervical cancer by laparoscopically assisted vaginal radical hysterectomy and also total laparoscopic radical hysterectomy. Before these techniques become widely accepted, it has to be shown that safety and efficacy are comparable with the 'standard' abdominal approach. In this chapter, we review the technique of radical vaginal hysterectomy with pelvic lymphadenectomy and evaluate results of published studies, comparing the abdominal, vaginal and laparoscopic approaches.

  16. Polymers based on stable phenoxyl radicals for the use in organic radical batteries.

    Science.gov (United States)

    Jähnert, Thomas; Häupler, Bernhard; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2014-05-01

    Polymers with pendant phenoxyl radicals are synthesized and the electrochemical properties are investigated in detail. The monomers are polymerized using ring-opening metathesis polymerization (ROMP) or free-radical polymerization methods. The monomers and polymers, respectively, are oxidized to the radical either before or after the polymerization. These phenoxyl radicals containing polymers reveal a reversible redox behavior at a potential of -0.6 V (vs Ag/AgCl). Such materials can be used as anode-active material in organic radical batteries (ORBs).

  17. Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis.

    Science.gov (United States)

    Mogi, Tatsushi; Murase, Yoshiro; Mori, Mihoko; Shiomi, Kazuro; Omura, Satoshi; Paranagama, Madhavi P; Kita, Kiyoshi

    2009-10-01

    Tuberculosis is the leading cause of death due to a single infectious agent in the world and the emergence of multidrug-resistant strains prompted us to develop new drugs with novel targets and mechanism. Here, we screened a natural antibiotics library with Mycobacterium smegmatis membrane-bound dehydrogenases and identified polymyxin B (cationic decapeptide) and nanaomycin A (naphtoquinone derivative) as inhibitors of alternative NADH dehydrogenase [50% inhibitory concentration (IC(50)) values of 1.6 and 31 microg/ml, respectively] and malate: quinone oxidoreductase (IC(50) values of 4.2 and 49 microg/ml, respectively). Kinetic analysis on inhibition by polymyxin B showed that the primary site of action was the quinone-binding site. Because of the similarity in K(m) value for ubiquinone-1 and inhibitor sensitivity, we examined amino acid sequences of actinobacterial enzymes and found possible binding sites for L-malate and quinones. Proposed mechanisms of polymyxin B and nanaomycin A for the bacteriocidal activity were the destruction of bacterial membranes and production of reactive oxygen species, respectively, while this study revealed their inhibitory activity on bacterial membrane-bound dehydrogenases. Screening of the library with bacterial respiratory enzymes resulted in unprecedented findings, so we are hoping that continuing efforts could identify lead compounds for new drugs targeting to mycobacterial respiratory enzymes.

  18. Vitamins K interact with N-terminus α-synuclein and modulate the protein fibrillization in vitro. Exploring the interaction between quinones and α-synuclein.

    Science.gov (United States)

    da Silva, Fernanda Luna; Coelho Cerqueira, Eduardo; de Freitas, Mônica Santos; Gonçalves, Daniela Leão; Costa, Lilian Terezinha; Follmer, Cristian

    2013-01-01

    In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinson's disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro.

  19. The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones.

    Science.gov (United States)

    Coates, Christopher S; Ziegler, Jessica; Manz, Katherine; Good, Jacob; Kang, Bernard; Milikisiyants, Sergey; Chatterjee, Ruchira; Hao, Sijie; Golbeck, John H; Lakshmi, K V

    2013-06-20

    Quinones function as electron transport cofactors in photosynthesis and cellular respiration. The versatility and functional diversity of quinones is primarily due to the diverse midpoint potentials that are tuned by the substituent effects and interactions with surrounding amino acid residues in the binding site in the protein. In the present study, a library of substituted 1,4-naphthoquinones are analyzed by cyclic voltammetry in both protic and aprotic solvents to determine effects of substituent groups and hydrogen bonds on the midpoint potential. We use continuous-wave electron paramagnetic resonance (EPR) spectroscopy to determine the influence of substituent groups on the electronic properties of the 1,4-naphthoquinone models in an aprotic solvent. The results establish a correlation between the presence of substituent group(s) and the modification of electronic properties and a corresponding shift in the midpoint potential of the naphthoquinone models. Further, we use pulsed EPR spectroscopy to determine the effect of substituent groups on the strength and planarity of the hydrogen bonds of naphthoquinone models in a protic solvent. This study provides support for the tuning of the electronic properties of quinone cofactors by the influence of substituent groups and hydrogen bonding interactions.

  20. Regiospecific attack of nitrogen and sulfur nucleophiles on quinones derived from poison oak/ivy catechols (urushiols) and analogues as models for urushiol-protein conjugate formation.

    Science.gov (United States)

    Liberato, D J; Byers, V S; Dennick, R G; Castagnoli, N

    1981-01-01

    Attempts to characterize potential biologically important covalent interactions between electrophilic quinones derived from catechols present in poison oak/ivy (urushiol) and biomacromolecules have led to the analysis of model reactions involving sulfur and amino nucleophiles with 3-heptadecylbenzoquinone. Characterization of the reaction products indicates that this quinone undergoes regiospecific attack by (S)-N-acetylcysteine at C-6 and by 1-aminopentane at C-5. The red solid obtained with 1-aminopentane proved to be 3-heptadecyl-5-(pentylamino)-1,2-benzoquinone. Analogous aminobenzoquinones were obtained with the quinones derived from the 4- and 6-methyl analogues of 3-pentadecylcatechol. All three adducts absorbed visible light at different wavelengths. When the starting catechols were incubated with human serum albumin almost identical chromophores were formed. These results establish that cathechols responsible for the production of the poison oak/ivy contact dermatitis in humans undergo a sequence of reactions in the presence of human serum albumin that lead to covalent attachment of the catechols to the protein via carbon-nitrogen bonds. Estimations of the extent of this binding indicate that, at least with human serum albumin, the reaction is quantitative.

  1. Quinone 1 e and 2 e /2 H + Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Mioy T.; Anson, Colin W.; Cavell, Andrew C.; Stahl, Shannon S.; Hammes-Schiffer, Sharon

    2016-11-10

    Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. An experimental study of common quinones reveals a non-linear correlation between the 1 e and 2 e/2 H+ reduction potentials. This unexpected observation prompted a computational study of 128 different quinones, probing their 1 e reduction potentials, pKa values, and 2 e/2 H+ reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident for quinones that feature halogen substituents, charged substituents, intramolecular hydrogen bonding in the hydroquinone, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e versus 2 e /2 H+ reduction potentials, have important implications for designing quinones with tailored redox properties.

  2. Pilot study of radical hysterectomy versus radical trachelectomy on sexual distress.

    Science.gov (United States)

    Brotto, Lori A; Smith, Kelly B; Breckon, Erin; Plante, Marie

    2013-01-01

    Radical trachelectomy, which leaves the uterus intact, has emerged as a desirable surgical option for eligible women with early-stage cervical cancer who wish to preserve fertility. The available data suggest excellent obstetrical outcomes with radical trachelectomy, and no differences in sexual responding between radical trachelectomy and radical hysterectomy. There is a need to examine the effect of radical hysterectomy on sexual distress given that it is distinct from sexual function. Participants were 34 women diagnosed with early-stage cervical cancer. The authors report 1-month postsurgery data for 29 women (radical hysterectomy group: n = 17, M age = 41.8 years; radical trachelectomy group: n = 12, M age = 31.8 years), and 6-month follow-up data on 26 women. Whereas both groups experienced an increase in sex-related distress immediately after surgery, distress continued to increase 6 months after surgery for the radical hysterectomy group but decreased in the radical trachelectomy group. There were no between-group differences in mood, anxiety, or general measures of health. The decrease in sex-related distress in the radical trachelectomy but not in the radical hysterectomy group suggests that the preservation of fertility may have attenuated sex-related distress. Care providers should counsel women exploring surgical options for cervical cancer about potential sex distress-related sequelae.

  3. Investigations on some metabolites of Tecoma stans Juss. callus tissue. Part II. Chromatographical analysis of alkaloid and quinone compounds

    Directory of Open Access Journals (Sweden)

    Barbara Dohnal

    2015-01-01

    Full Text Available Tecoma stans Juss. callus tissue grown on Murashige-Mei Lie Lin (M-L and Murashige-Skoog (RT-k medium supplemented with Tecoma alkaloid precursors like lysine, mevalonic acid lactone and quinolinic acid, were investigated for their alkaloid content by thin-layer (TLC and paper (PC chromatography methods. The results were compared with those obtained by parallel analysis of greenhouse plant leaves. Seven alkaloid spots were detected in the leaf extracts, namely: actinidine, 4-noractinidine, boschniakine, tecomanine, two spots of skytanthine derivatives and one unidentified spot. Only l spot corresponding to skytanthine derivatives appeard in the extracts of callus tissues cultured on basal M-L medium or supplemented with lysine or mevalonic acid lactone. However, 3 alkaloid spots were revealed in extracts of homogeneous parenchyma-like callus tissues obtained o-n, RT-k medium. Beside the skytanthine derivatives rnentioned above, actinidine and tecomanine were identified, and moreover, in callus tissues growing on the same medium (RT-k supplemented with quinolinic acid, boschniakine was found. It was found that T. stans leaves as well as callus tissues cultured on RT-k medium contained traces of lapachol and another quinone-type compound.

  4. Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells.

    Science.gov (United States)

    Zhang, Jian; Meruvu, Sunitha; Bedi, Yudhishtar Singh; Chau, Jason; Arguelles, Andrix; Rucker, Robert; Choudhury, Mahua

    2015-09-01

    Sirtuin (Sirt) 1 and Sirt 3 are nicotinamide adenine dinucleotide ((+))-dependent protein deacetylases that are important to a number of mitochondrial-related functions; thus, identification of sirtuin activators is important. Herein, we hypothesize that pyrroloquinoline quinone (PQQ) can act as a Sirt1/Sirt3 activator. In HepG2 cell cultures, PQQ increased the expression of Sirt1 and Sirt3 gene, protein, and activity levels (P < .05). We also observed a significant increase in nicotinamide phosphoribosyltransferase gene expression (as early as 18 hours) and increased NAD(+) activity at 24 hours. In addition, targets of Sirt1 and Sirt3 (peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1 and 2, and mitochondrial transcription factor A) were increased at 48 hours. This is the first report that demonstrates PQQ as an activator of Sirt1 and Sirt3 expression and activity, making it an attractive therapeutic agent for the treatment of metabolic diseases and for healthy aging. Based on our study and the available data in vivo, PQQ has the potential to serve as a therapeutic nutraceutical, when enhancing mitochondrial function.

  5. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A.

    Science.gov (United States)

    Li, Xianghui; Guo, Weilin; Liu, Zhonghua; Wang, Ruiqin; Liu, Hua

    2017-02-15

    A novel quinone-modified metal-organic frameworks NH2-MIL-101(Fe) was synthesized using a simple chemical method under mild condition. The introduced 2-anthraquinone sulfonate (AQS) can be covalently modified with NH2-MIL-101(Fe) and acts as a redox mediator to enhance the degradation of bisphenol A (BPA) via persulfate activation. The obtained AQS-NH-MIL-101(Fe) was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectra, cyclic voltammetry and electrochemical impedance spectroscopy. AQS-NH-MIL-101(Fe) exhibited better catalytic performance compared with NH2-MIL-101(Fe) and NH2-MIL-101(Fe) with free AQS (NH2-MIL-101(Fe)/AQS). That is, AQS-NH-MIL-101(Fe) was proved to be the most effective in that more than 97.7% of BPA was removed. The degradation rate constants (k) of AQS-NH-MIL-101(Fe) was 9-fold higher than that of NH2-MIL-101(Fe) and 7-fold higher than NH2-MIL-101(Fe)/AQS, indicating that AQS is a great electron-transfer mediator when modified with NH2-MIL-101(Fe). Based on the above results, the possible mechanism of catalytic reaction has been investigated in view of the trapping experiments. In addition, the AQS-NH-MIL-101(Fe) catalyst exhibited excellent stability and can be used several times without significant deterioration in performance.

  6. Role of Quinones in Electron Transfer of PQQ–Glucose Dehydrogenase Anodes—Mediation or Orientation Effect

    Energy Technology Data Exchange (ETDEWEB)

    Babanova, Sofia; Matanovic, Ivana; Chavez, Madelaine Seow; Atanassov, Plamen

    2015-06-24

    In this study, the influence of two quinones (1,2- and 1,4-benzoquinone) on the operation and mechanism of electron transfer in PQQ-dependent glucose dehydrogenase (PQQ–sGDH) anodes has been determined. Benzoquinones were experimentally explored as mediators present in the electrolyte. The electrochemical performance of the PQQ–sGDH anodes with and without the mediators was examined and for the first time molecular docking simulations were used to gain a fundamental understanding to explain the role of the mediator molecules in the design and operation of the enzymatic electrodes. It was proposed that the higher performance of the PQQ–sGDH anodes in the presence of 1,2- and 1,4-benzoquinones introduced in the solution is due to the shorter distance between these molecules and PQQ in the enzymatic molecule. It was also hypothesized that when 1,4-benzoquinone is adsorbed on a carbon support, it would play the dual role of a mediator and an orienting agent. At the same time, when 1,2-benzoquinone and ubiquinone are adsorbed on the electrode surface, the enzyme would transfer the electrons directly to the support, and these molecules would primarily play the role of an orienting agent.

  7. Profiles of Glucosinolates, Their Hydrolysis Products, and Quinone Reductase Inducing Activity from 39 Arugula (Eruca sativa Mill.) Accessions.

    Science.gov (United States)

    Ku, Kang-Mo; Kim, Moo Jung; Jeffery, Elizabeth H; Kang, Young-Hwa; Juvik, John A

    2016-08-31

    Glucosinolates, their hydrolysis product concentrations, and the quinone reductase (QR) inducing activity of extracts of leaf tissue were assayed from 39 arugula (Eruca sativa Mill.) accessions. Arugula accessions from Mediterranean countries (n = 16; Egypt, Greece, Italy, Libya, Spain, and Turkey) and Northern Europe (n = 2; Poland and United Kingdom) were higher in glucosinolates and their hydrolysis products, especially glucoraphanin and sulforaphane, compared to those from Asia (n = 13; China, India, and Pakistan) and Middle East Asia (n = 8; Afghanistan, Iran, and Israel). The QR inducing activity was also the highest in Mediterranean and Northern European arugula accessions, possibly due to a significant positive correlation between sulforaphane and QR inducing activity (r = 0.54). No nitrile hydrolysis products were found, suggesting very low or no epithiospecifier protein activity from these arugula accessions. Broad sense heritability (H(2)) was estimated to be 0.91-0.98 for glucoinolates, 0.55-0.83 for their hydrolysis products, and 0.90 for QR inducing activity.

  8. A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery.

    Science.gov (United States)

    Ma, Ting; Zhao, Qing; Wang, Jianbin; Pan, Zeng; Chen, Jun

    2016-05-23

    We report a rational design of a sulfur heterocyclic quinone (dibenzo[b,i]thianthrene-5,7,12,14-tetraone=DTT) used as a cathode (uptake of four lithium ions to form Li4 DTT) and a conductive polymer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)= PSS) used as a binder for a high-performance rechargeable lithium-ion battery. Because of the reduced energy level of the lowest unoccupied molecular orbital (LUMO) caused by the introduced S atoms, the initial Li-ion intercalation potential of DTT is 2.89 V, which is 0.3 V higher than that of its carbon analog. Meanwhile, there is a noncovalent interaction between DTT and PSS, which remarkably suppressed the dissolution and enhanced the conductivity of DTT, thus leading to the great improvement of the electrochemical performance. The DTT cathode with the PSS binder displays a long-term cycling stability (292 mAh g(-1) for the first cycle, 266 mAh g(-1) after 200 cycles at 0.1 C) and a high rate capability (220 mAh g(-1) at 1 C). This design strategy based on a noncovalent interaction is very effective for the application of small organic molecules as the cathode of rechargeable lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan); Tanabe-Fujimura, Chiaki; Fujita, Yu; Abe, Chihiro; Nanakida, Yoshino; Zou, Kun; Liu, Junjun; Liu, Shuyu [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan); Nakajima, Toshihiro [Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku, Tokyo, Tokyo, 160-8402 (Japan); Komano, Hiroto, E-mail: hkomano@iwate-med.ac.jp [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan)

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targeting of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.

  10. Structure-based de novo design, molecular docking and molecular dynamics of primaquine analogues acting as quinone reductase II inhibitors.

    Science.gov (United States)

    Murce, Erika; Cuya-Guizado, Teobaldo Ricardo; Padilla-Chavarria, Helmut Isaac; França, Tanos Celmar Costa; Pimentel, Andre Silva

    2015-11-01

    Primaquine is a traditional antimalarial drug with low parasitic resistance and generally good acceptance at higher doses, which has been used for over 60 years in malaria treatment. However, several limitations related to its hematotoxicity have been reported. It is believed that this toxicity comes from the hydroxylation of the C-5 and C-6 positions of its 8-aminoquinoline ring before binding to the molecular target: the quinone reductase II (NQO2) human protein. In this study we propose primaquine derivatives, with substitution at position C-6 of the 8-aminoquinoline ring, planned to have better binding to NQO2, compared to primaquine, but with a reduced toxicity related to the C-5 position being possible to be oxidized. On this sense the proposed analogues were suggested in order to reduce or inhibit hydroxylation and further oxidation to hemotoxic metabolites. Five C-6 substituted primaquine analogues were selected by de novo design and further submitted to docking and molecular dynamics simulations. Our results suggest that all analogues bind better to NQO2 than primaquine and may become better antimalarials. However, the analogues 3 and 4 are predicted to have a better activity/toxicity balance.

  11. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Hoshino, Juma; Jermihov, Katie; Marler, Laura; Pezzuto, John M.; Mesecar, Andrew D.; Cushman, Mark (Hawaii); (Purdue); (UIC)

    2012-07-11

    A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC{sub 50} 0.59 {mu}M) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC{sub 50} 70 nM) and 84 (IC{sub 50} 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC{sub 50} of 80 {mu}M. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC{sub 50} 1.7 {mu}M and 0.27 {mu}M, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.

  12. Central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) in sodium bioenergetics of Vibrio cholerae.

    Science.gov (United States)

    Steuber, Julia; Halang, Petra; Vorburger, Thomas; Steffen, Wojtek; Vohl, Georg; Fritz, Günter

    2014-12-01

    Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na(+) gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na(+)-dependent transport processes and describe the central role of the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), a primary Na(+) pump, in maintaining a Na(+)-motive force. The Na(+)-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na(+) across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na(+)-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported.

  13. Pyrroloquinoline quinone and a quinoprotein kinase support γ-radiation resistance in Deinococcus radiodurans and regulate gene expression.

    Science.gov (United States)

    Rajpurohit, Yogendra Singh; Desai, Shruti Sumeet; Misra, Hari Sharan

    2013-06-01

    Deinococcus radiodurans is known for its extraordinary resistance to various DNA damaging agents including γ-radiation and desiccation. The pqqE:cat and Δdr2518 mutants making these cells devoid of pyrroloquinoline quinone (PQQ) and a PQQ inducible Ser/Thr protein kinase, respectively, became sensitive to γ-radiation. Transcriptome analysis of these mutants showed differential expression of the genes including those play roles in oxidative stress tolerance and (DSB) repair in D. radiodurans and in genome maintenance and stress response in other bacteria. Escherichia coli cells expressing DR2518 and PQQ showed improved resistance to γ-radiation, which increased further when both DR2518 and PQQ were present together. Although, profiles of genes getting affected in these mutants were different, there were still a few common genes showing similar expression trends in both the mutants and some others as reported earlier in oxyR and pprI mutant of this bacterium. These results suggested that PQQ and DR2518 have independent roles in γ-radiation resistance of D. radiodurans but their co-existence improves radioresistance further, possibly by regulating differential expression of the genes important for bacterial response to oxidative stress and DNA damage. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural effects on the reactivity 1,4-dihydropyridines with alkylperoxyl radicals and ABTS radical cation.

    Science.gov (United States)

    Yáñez, C; López-Alarcón, C; Camargo, C; Valenzuela, V; Squella, J A; Núñez-Vergara, L J

    2004-05-01

    A series of eight commercial C-4 substituted 1,4-dihydropyridines and other synthesized related compounds were tested for direct potential scavenger effect towards alkylperoxyl radicals and ABTS radical cation in aqueous Britton-Robinson buffer pH7.4. A direct quenching radical species was established. The tested 1,4-dihydropyridines were 8.3-fold more reactive towards alkylperoxyl radicals than ABTS cation radical, expressed by their corresponding kinetic rate constants. Furthermore, NPD a photolyte of nifedipine and the C-4 unsubstituted 1,4-DHP were the most reactive derivatives towards alkylperoxyl radicals. The pyridine derivative was confirmed by GC/MS technique as the final product of reaction. In consequence, the reduction of alkylperoxyl and ABTS radicals by 1,4-dihydropyridines involved an electron transfer process. Also, the participation of the hydrogen of the 1-position appears as relevant on the reactivity. Results of reactivity were compared with Trolox.

  15. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications.

    Science.gov (United States)

    Kovacic, Peter; Pozos, Robert S

    2006-12-01

    This article deals with a novel, simple, integrated approach to cell signaling involving basic biochemical principles, and their relationship to reproductive toxicity. Initially, an overview of the biological aspects is presented. According to the hypothetical approach, cell signaling entails interaction of redox chains, involving initiation, propagation, and termination. The messengers are mainly radicals and electrons that are generated during electron transfer (ET) and hydrogen atom abstraction reactions. Termination and initiation processes in the chain occur at relay sites occupied by redox functionalities, including quinones, metal complexes, and imines, as well as redox amino acids. Conduits for the messengers, comprising species with nonbonding electrons, are omnipresent. Details are provided for the various electron transfer processes. In relation to the varying rates of cell communication, rationale is based on electrons and size of radicals. Another fit is similarly seen in inspection of endogenous precursors of reactive oxygen species (ROS); namely, proteins bearing redox moieties, lipid oxidation products, and carbohydrate radicals. A hypothesis is advanced in which electromagnetic fields associated with mobile radicals and electrons play a role. Although radicals have previously been investigated as messengers, the area occupies a minor part of the research, and it has not attracted broad consensus as an important component. For the first time, an integrated framework is presented composed of radicals, electrons, relays, conduits, and electrical fields. The approach is in keeping with the vast majority of experimental observations. Cell signaling also plays an important role in reproductive toxicity. The main classes that cause birth defects, including ROS, radiation, metal compounds, medicinals, abused drugs, and miscellaneous substances, are known to participate in the signaling process. A unifying basis exists, in that both signaling and

  16. Antioxidant and free radical scavenging activities of edible weeds ...

    African Journals Online (AJOL)

    ... hydrogen peroxide, and hydroxyl, nitric oxide radicals, play an important role in ... Active (or reactive) oxygen species and free radical-mediated reactions are ... of medicinal plants as antioxidants in reducing such free radical induced tissue ...

  17. Involvement of free radicals in breast cancer.

    Science.gov (United States)

    Ríos-Arrabal, Sandra; Artacho-Cordón, Francisco; León, Josefa; Román-Marinetto, Elisa; Del Mar Salinas-Asensio, María; Calvente, Irene; Núñez, Maria Isabel

    2013-08-27

    Researchers have recently shown an increased interest in free radicals and their role in the tumor microenvironment. Free radicals are molecules with high instability and reactivity due to the presence of an odd number of electrons in the outermost orbit of their atoms. Free radicals include reactive oxygen and nitrogen species, which are key players in the initiation and progression of tumor cells and enhance their metastatic potential. In fact, they are now considered a hallmark of cancer. However, both reactive species may contribute to improve the outcomes of radiotherapy in cancer patients. Besides, high levels of reactive oxygen species may be indicators of genotoxic damage in non-irradiated normal tissues. The purpose of this article is to review recent research on free radicals and carcinogenesis in order to understand the pathways that contribute to tumor malignancy. This review outlines the involvement of free radicals in relevant cellular events, including their effects on genetic instability through (growth factors and tumor suppressor genes, their enhancement of mitogenic signals, and their participation in cell remodeling, proliferation, senescence, apoptosis, and autophagy processes; the possible relationship between free radicals and inflammation is also explored. This knowledge is crucial for evaluating the relevance of free radicals as therapeutic targets in cancer.

  18. COMPLICATIONS OF EXTRAPERITONEOSCOPIC RADICAL PROSTATECTOMIES

    Directory of Open Access Journals (Sweden)

    I. V. Chernyshev

    2012-01-01

    Full Text Available Background. Radical prostatectomy (RPE is today the gold standard treatment option for locally advanced prostate cancer (PC. These operations are performed both openly and using video-assisted endosurgery. Since 2009, the Research Institute of Urology has been made 70 extraperitoneoscopic RPEs (ERPE.Objective: to assess the complications of ERPE with the validated Clavien complication scale.Materials and methods. The authors retrospectively analyzed the case histories of 70 patients with locally advanced PC who had undergone ERPE. The complications were allocated to 3 groups: intraoperative, early (within 1 month and late (over 1 month postoperative ones. All found complications were stratified using Clavien classification scale.Results. The total number of ERPE complications accounted for 35.7%. The most common complications, such as anastomotic incompetence and blood loss that required hemotransfusion, were 9.8 and 11.3%, respectively. Rectal damage was intraoperatively found in 2 cases. Obturator nerve damage was also recognized intraoperatively and did not result in the occurrence of neurological symptoms. The severest complication (Clavien scale grade V was pulmonary embolism causing death.Conclusion. Postoperative complications of ERPE were observed in a small percentage of the patients and posed no serious threat to their life. The analysis of the complications of ERPE suggests that this treatment for locally advanced PC is a current safe and low-traumatic method.

  19. COMPLICATIONS OF EXTRAPERITONEOSCOPIC RADICAL PROSTATECTOMIES

    Directory of Open Access Journals (Sweden)

    I. V. Chernyshev

    2014-08-01

    Full Text Available Background. Radical prostatectomy (RPE is today the gold standard treatment option for locally advanced prostate cancer (PC. These operations are performed both openly and using video-assisted endosurgery. Since 2009, the Research Institute of Urology has been made 70 extraperitoneoscopic RPEs (ERPE.Objective: to assess the complications of ERPE with the validated Clavien complication scale.Materials and methods. The authors retrospectively analyzed the case histories of 70 patients with locally advanced PC who had undergone ERPE. The complications were allocated to 3 groups: intraoperative, early (within 1 month and late (over 1 month postoperative ones. All found complications were stratified using Clavien classification scale.Results. The total number of ERPE complications accounted for 35.7%. The most common complications, such as anastomotic incompetence and blood loss that required hemotransfusion, were 9.8 and 11.3%, respectively. Rectal damage was intraoperatively found in 2 cases. Obturator nerve damage was also recognized intraoperatively and did not result in the occurrence of neurological symptoms. The severest complication (Clavien scale grade V was pulmonary embolism causing death.Conclusion. Postoperative complications of ERPE were observed in a small percentage of the patients and posed no serious threat to their life. The analysis of the complications of ERPE suggests that this treatment for locally advanced PC is a current safe and low-traumatic method.

  20. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.

    Science.gov (United States)

    Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-02-01

    Peroxyl radicals were derived from the one-electron oxidation of polyunsaturated fatty acids by sulfate radicals that were generated by the photodissociation of peroxodisulfate anions in air-equilibrated aqueous solutions. Reactions of these peroxyl and neutral guanine radicals, also generated by oxidation with sulfate radicals, were investigated by laser kinetic spectroscopy, and the guanine oxidation products were identified by HPLC and mass spectrometry methods. Sulfate radicals rapidly oxidize arachidonic (ArAc), linoleic (LnAc), and palmitoleic (PmAc) acids with similar rate constants, (2-4) x 10 (9) M (-1) s (-1). The C-centered radicals derived from the oxidation of ArAc and LnAc include nonconjugated Rn(.) ( approximately 80%) and conjugated bis-allylic Rba(.) ( approximately 20%) radicals. The latter were detectable in the absence of oxygen by their prominent, narrow absorption band at 280 nm. The Rn(.) radicals of ArAc (containing three bis-allylic sites) transform to the Rba(.) radicals via an intramolecular H-atom abstraction [rate constant (7.5 +/- 0.7) x 10 (4) s (-1)]. In contrast, the Rn(.) radicals of LnAc that contain only one bis-allylic site do not transform intramolecularly to the Rba(.) radicals. In the case of PmAc, which contains only one double bond, the Rba(.) radicals are not observed. The Rn(.) radicals of PmAc rapidly combine with oxygen with a rate constant of (3.8 +/- 0.4) x 10(9) M(-1) s(-1). The Rba(.) radicals of ArAc are less reactive and react with oxygen with a rate constant of (2.2 +/- 0.2) x 10 (8) M (-1) s (-1). The ArAc peroxyl radicals formed spontaneously eliminate superoxide radical anions [rate constant = (3.4 +/- 0.3) x 10 (4) M (-1) s (-1)]. The stable oxidative lesions derived from the 2',3',5'-tri- O-acetylguanosine or 2',3',5'-tri- O-acetyl-8-oxo-7,8-dihydroguanosine radicals and their subsequent reactions with ArAc peroxyl radicals were also investigated. The major products found were the 2,5-diamino-4 H

  1. Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites.

    Science.gov (United States)

    Kim, Su Jin; Joo, Jeong Chan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2015-04-01

    Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack.

  2. Radical pancreaticoduodenectomy for benign disease.

    LENUS (Irish Health Repository)

    Kavanagh, D O

    2008-01-01

    Whipple\\'s procedure is the treatment of choice for pancreatic and periampullary malignancies. Preoperative histological confirmation of malignancy is frequently unavailable and some patients will subsequently be found to have benign disease. Here, we review our experience with Whipple\\'s procedure for patients ultimately proven to have benign disease. The medical records of all patients who underwent Whipple\\'s procedure during a 15-year period (1987-2002) were reviewed; 112 patients underwent the procedure for suspected malignancy. In eight cases, the final histology was benign (7.1%). One additional patient was known to have benign disease at resection. The mean age was 50 years (range: 30-75). The major presenting features included jaundice (five), pain (two), gastric outlet obstruction (one), and recurrent gastrointestinal haemorrhage (one). Investigations included ultrasound (eight), computerised tomography (eight), endoscopic retrograde cholangiopancreatography (seven; of these, four patients had a stent inserted and three patients had sampling for cytology), and endoscopic ultrasound (two). The pathological diagnosis included benign biliary stricture (two), chronic pancreatitis (two), choledochal cyst (one), inflammatory pseudotumour (one), cystic duodenal wall dysplasia (one), duodenal angiodysplasia (one), and granular cell neoplasm (one). There was no operative mortality. Morbidity included intra-abdominal collection (one), anastomotic leak (one), liver abscess (one), and myocardial infarction (one). All patients remain alive and well at mean follow-up of 41 months. Despite recent advances in diagnostic imaging, 8% of the patients undergoing Whipple\\'s procedure had benign disease. A range of unusual pathological entities can mimic malignancy. Accurate preoperative histological diagnosis may have allowed a less radical operation to be performed. Endoscopic ultrasound-guided fine needle aspirate (EUS-FNA) may reduce the need for Whipple\\'s operation

  3. User involvement competence for radical innovation

    DEFF Research Database (Denmark)

    Lettl, Christopher

    2007-01-01

    -assisted navigation systems. The case study analysis reveals that firms who closely interact with specific users benefit significantly for their radical innovation work. These users have a high motivation toward new solutions, are open to new technologies, possess diverse competencies, and are embedded into a very......One important market related capability for firms which seek to develop radical innovations is the competence to involve the 'right' users at the 'right' time in the 'right' form. While former studies have identified a rather passive role of users in the radical innovation process, this paper...... focuses on the involvement of such users that are in the position to play an active role as inventors and (co)-developers. A multiple case study analysis was conducted in the field of medical technology. Five radical innovation projects within four firms were selected including medical robots and computer...

  4. Fast beam studies of free radical photodissociation

    Energy Technology Data Exchange (ETDEWEB)

    Neumark, D.M. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The authors have developed a novel technique for studying the photodissociation spectroscopy and dynamics of free radicals. In these experiments, radicals are generated by laser photodetachment of a fast (6-8 keV) mass-selected negative ion beam. The resulting radicals are photodissociated with a second laser, and the photofragments are collected and detected with high efficiency using a microchannel plate detector. The overall process is: ABC{sup -} {yields} ABC + e{sup -} {yields} A + BC, AB + C. Two types of fragment detection schemes are used. To map out the photodissociation cross-section of the radical, the photodissociation laser is scanned and the total photofragment yield is measured as a function of wavelength. In other experiments, the photodissociation frequency is fixed and the photofragment masses, kinetic energy release, and scattering angle is determined for each photodissociation event.

  5. Radicalization and the Use of Social Media

    Directory of Open Access Journals (Sweden)

    Robin Thompson

    2011-01-01

    Full Text Available The use of social media tools by individuals and organizations to radicalize individuals for political and social change has become increasingly popular as the Internet penetrates more of the world and mobile computing devices are more accessible. To establish a construct for radicalization,the power and reach of social media will be described so there is common understanding of what social media is and how it is utilized by various individuals and groups. The second section will answer the question of why social media applications are the perfect platform for the radical voice. Finally, the use of social media and its influence in radicalizing populations in Northern Africa and the Middle East during 2011 will be analyzed and recommendations proposed.

  6. Optimal pain management for radical prostatectomy surgery

    DEFF Research Database (Denmark)

    Joshi, Grish P; Jaschinski, Thomas; Bonnet, Francis;

    2015-01-01

    of evidence to develop an optimal pain management protocol in patients undergoing radical prostatectomy. Most studies assessed unimodal analgesic approaches rather than a multimodal technique. There is a need for more procedure-specific studies comparing pain and analgesic requirements for open and minimally......BACKGROUND: Increase in the diagnosis of prostate cancer has increased the incidence of radical prostatectomy. However, the literature assessing pain therapy for this procedure has not been systematically evaluated. Thus, optimal pain therapy for patients undergoing radical prostatectomy remains...... invasive surgical procedures. Finally, while we wait for appropriate procedure specific evidence from publication of adequate studies assessing optimal pain management after radical prostatectomy, we propose a basic analgesic guideline....

  7. Radical-Local Teaching and Learning

    DEFF Research Database (Denmark)

    Hedegaard, Mariane; Chaiklin, Seth

    Radical-Local Teaching and Learning presents a theoretical perspective for analyzing and planning educational programmes for schoolchildren. To realize both general societal interests and worthwhile personal development, the content of educational programmes for children must be grounded...... radical-local teaching and learning approach. The first half of the book introduces the idea of radical-local teaching and learning and develops the theoretical background for this perspective, drawing on the cultural-historical research tradition, particularly from Vygotsky, El'konin, Davydov......, and Aidarova. The second half of the book addresses the central concern of radical-local teaching and learning - how to relate educational practices to children's specific historical and cultural conditions. The experiment was conducted for an academic year in an afterschool programme in the East Harlem...

  8. Neo-liberal Governing of 'Radicals'

    DEFF Research Database (Denmark)

    Lindekilde, Lasse

    2012-01-01

    The Danish government’s counter-radicalization Action Plan of 2009 had intended and unintended effects. Primarily targeting Danish Muslims, it employs neoliberal governmentality approaches of governance through individual support and response, information and knowledge, empowerment, surveillance ...

  9. Rigid Ideals and Radicals of Ore Extensions

    Institute of Scientific and Technical Information of China (English)

    Chan Yong Hong; Tai Keun Kwak; S. Tariq Rizvi

    2005-01-01

    For an endomorphism σ of a ring R, Krempa called σ a rigid endomorphism if aσ(a) = 0 implies a= 0 for a ∈ R. A ring R is called rigid if there exists a rigid endomorphism of R. In this paper, we extend the σ-rigid property of a ring R to an ideal of R. For a σ-ideal Ⅰ of a ring R, we call Ⅰ a σ-rigid ideal if aσ(a) ∈Ⅰ implies a ∈Ⅰ for a ∈ R. We characterize σ-rigid ideals and study related properties. The connections of the prime radical and the upper nil radical of R with the prime radical and the upper nil radical of the Ore extension R[x; σ, δ], respectively, are also investigated.

  10. Psychopathology according to behaviorism: a radical restatement.

    Science.gov (United States)

    Pérez-Alvarez, Marino

    2004-11-01

    This article is a radical restatement of the predominant psychopathology, which is characterized by nosological systems and by its approach towards a neurobiological conception of the so-called mental disorders. The "radical" sense of this restatement is that of radical behaviorism itself. As readers will recall, "radical" applied to behaviorism means total (not ignoring anything that interests psychology), pragmatic (referring to the practical sense of knowledge), and it also derives from the Latin word for "root" (and thus implies change beginning at a system's roots or getting to the root of things, in this case, of psychological disorders). Based on this, I introduce the Aristotelian distinction of material and form, which, besides being behaviorist avant la lettre, is used here as a critical instrument to unmask the hoax of psychopathology as it is presented. The implications of this restatement are discussed, some of them already prepared for clinical practice.

  11. Radicals involved in photoallergen/protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Delahanty, J.N.; Evans, J.C.; Rowlands, C.C.; Barratt, M.D.; Pendlington, R.U. (University College, Cardiff (England))

    1989-01-01

    Aqueous solutions (pH = 8) of both 3,3'-dimethyl and 4,4'-dimethyl substituted analogues of the photoallergen fentichlor (bis(2-hydroxy-5-chlorophenyl)sulphide) produced stable semiquinone radicals when irradiated with u.v. light (greater than 310 nm). These radicals have been characterised using electron spin resonance techniques: the results confirm the assignment of hyperfine coupling constants for the parent fentichlor radical. The binding of fentichlor to HSA was found to be partly oxygen dependent demonstrating a role for semiquinone type radicals in the binding mechanism. The stoichiometry and specificity of the binding of the dimethyl analogues to soluble proteins were found to be similar to that of fentichlor itself.

  12. Long term complications after radical cystoprostatectomy with ...

    African Journals Online (AJOL)

    Long term complications after radical cystoprostatectomy with orthotopic diversion in male ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... Objective: To evaluate the long-term outcomes beyond 1 year, both ...

  13. Magnetic Trapping of Cold Methyl Radicals

    CERN Document Server

    Liu, Yang; Djuricanin, Pavle; Zhou, Sida; Zhong, Wei; Mittertreiner, Tony; Carty, David; Momose, Takamasa

    2016-01-01

    We have demonstrated that a supersonic beam of methyl radicals (CH3) in the ground rotational state of both para and ortho species has been slowed down to a standstill with a magnetic molecular decelerator, and successfully captured spatially in an anti-Helmholtz magnetic trap for > 1 s. The translational temperature of the trapped CH3 radicals was about 200 mK. The methyl radical is a non-polar polyatomic molecule, which is predicted to be an ideal system for further cooling below 1 mK via sympathetic cooling with ultracold atoms. In addition, it is a highly reactive intermediate that plays an important role in various processes in cold environments such as planetary atmospheres and the interstellar medium. The demonstrated trapping capability of methyl radicals opens up various possibilities for realizing ultracold ensembles of molecules towards Bose-Einstein condensation of polyatomic molecules and investigations of reactions governed by quantum statistics.

  14. Magnetic Trapping of Cold Methyl Radicals

    Science.gov (United States)

    Liu, Yang; Vashishta, Manish; Djuricanin, Pavle; Zhou, Sida; Zhong, Wei; Mittertreiner, Tony; Carty, David; Momose, Takamasa

    2017-03-01

    We have demonstrated that a supersonic beam of methyl radicals (CH3 ) in the ground rotational state of both para and ortho species has been slowed down to standstill with a magnetic molecular decelerator, and successfully captured spatially in an anti-Helmholtz magnetic trap for >1 s . The trapped CH3 radicals have a mean translational temperature of about 200 mK with an estimated density of >5.0 ×1 07 cm-3 . The methyl radical is an ideal system for the study of cold molecules not only because of its high reactivities at low temperatures, but also because further cooling below 1 mK is plausible via sympathetic cooling with ultracold atoms. The demonstrated trapping capability of methyl radicals opens up various possibilities for realizing ultracold ensembles of molecules towards Bose-Einstein condensation of polyatomic molecules and investigations of reactions governed by quantum statistics.

  15. Leflunomide induces NAD(P)H quinone dehydrogenase 1 enzyme via the aryl hydrocarbon receptor in neonatal mice.

    Science.gov (United States)

    Shrestha, Amrit Kumar; Patel, Ananddeep; Menon, Renuka T; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2017-03-25

    Aryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1). The toxicity profiles of the classical AhR ligands such as 3-methylcholanthrene and dioxins limit their use as a therapeutic agent in humans. Hence, there is a need to identify nontoxic AhR ligands to develop AhR as a clinically relevant druggable target. Recently, we demonstrated that leflunomide, a FDA approved drug, used to treat rheumatoid arthritis in humans, induces CYP1A enzymes in adult mice via the AhR. However, the mechanisms by which this drug induces NQO1 in vivo are unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic NQO1 enzyme in neonatal mice via AhR-dependent mechanism(s). Leflunomide elicited significant induction of pulmonary CYP1A1 and NQO1 expression in neonatal mice. Interestingly, the dose at which leflunomide increased NQO1 was significantly higher than that required to induce CYP1A1 enzyme. Likewise, it also enhanced hepatic CYP1A1, 1A2 and NQO1 expression in WT mice. In contrast, leflunomide failed to induce these enzymes in AhR-null mice. Our results indicate that leflunomide induces pulmonary and hepatic CYP1A and NQO1 enzymes via the AhR in neonatal mice. These findings have important implications to prevent and/or treat disorders such as bronchopulmonary dysplasia in human infants where AhR may play a crucial role in the disease pathogenesis.

  16. Inhibitory effects of different forms of tocopherols, tocopherol phosphates, and tocopherol quinones on growth of colon cancer cells.

    Science.gov (United States)

    Dolfi, Sonia C; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S

    2013-09-11

    Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols (T), tocopheryl phosphates (TP), and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation, and inducing apoptosis; however, α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ forms of TP and TQ were more active than the δ forms in inhibiting cancer cell growth, whereas the α forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 values of ∼0.8 and ∼2 μM on HCT116 cells after a 72 h incubation, respectively) were greater than 100-fold and greater than 20-fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP, and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ forms of TP and TQ, and the ineffectiveness of the α forms of tocopherol and their metabolites against colon cancer cells.

  17. Effects of dietary pyrroloquinoline quinone disodium on growth performance, carcass yield and antioxidant status of broiler chicks.

    Science.gov (United States)

    Samuel, K G; Zhang, H J; Wang, J; Wu, S G; Yue, H Y; Sun, L L; Qi, G H

    2015-03-01

    Pyrroloquinoline quinone (PQQ), a putative essential nutrient and redox modulator in microorganisms, cell and animal models, has been recognized as a growth promoter in rodents. Growth performance, carcass yield and antioxidant status were evaluated on broiler chickens fed different levels of PQQ disodium (PQQ.Na2). A total of 784 day-old male Arbor Acres (AA) broilers were randomly allotted into seven dietary groups: negative control group (NC) fed a basal diet without virginiamycin (VIR) or PQQ.Na2; a positive control group (PC) fed a diet with 15 mg of VIR/kg diet; and PQQ.Na2 groups fed with 0.05, 0.10, 0.20, 0.40 or 0.80 mg PQQ.Na2/kg diet. Each treatment contained eight replicates with 14 birds each. The feeding trial lasted for 6 weeks. The results showed that chicks fed 0.2 mg PQQ.Na2/kg diet significantly improved growth performance comparable to those in PC group, and the feed efficiency enhancement effects of dietary PQQ.Na2 was more apparent in grower phase. Dietary addition of PQQ.Na2 had the potential to stimulate immune organs development, and low level dietary addition (<0.1 mg/kg) increased plasma lysozyme level. Broilers fed 0.2 mg PQQ.Na2/kg diet gained more carcasses at day 42, and had lower lipid peroxide malondialdehyde content and higher total antioxidant power in plasma. The results indicated that dietary PQQ.Na2 (0.2 mg/kg diet) had the potential to act as a growth promoter comparable to antibiotic in broiler chicks.

  18. Residue-free wines: fate of some quinone outside inhibitor (QoI) fungicides in the winemaking process.

    Science.gov (United States)

    Garau, Vincenzo Luigi; De Melo Abreu, Susana; Caboni, Pierluigi; Angioni, Alberto; Alves, Arminda; Cabras, Paolo

    2009-03-25

    The fate of three fungicide residues (fenamidone, pyraclostrobin, and trifloxystrobin) from vine to wine was studied to evaluate the decay ratio and the influence of the technological process. The aim of this work was to identify pesticides that can degrade rapidly or be eliminated together with byproduct (lees and cake) of the winemaking process to obtain wine free of residues. The disappearance rate on grapes was calculated as pseudo-first-order kinetics, and the half-life (t(1/2)) was in the range from 5.4 +/- 1.9 to 12.2 +/- 1.2 days. The mechanism of dissipation of the three quinone outside inhibitor (QoI) fungicides was studied using different model systems. It was observed that the main mechanism responsible for disappearance was photodegradation. For active ingredients (ai) the half-lives of fenamidone, pyraclostrobin, and trifloxystrobin were 10.2 +/- 0.8, 20.1 +/- 0.1, and 8.6 +/- 1.0 h, respectively, whereas for formulation higher half-lives were observed when epicuticular waxes were present (from 13.8 +/- 0.2 to 26.6 +/- 0.1 h). After winemaking, fenamidone, pyraclostrobin, and trifloxystrobin residues were not detected in the wine, but they were present in the cake and lees. This was due to the adsorption of pesticide residues to the solid parts, which are always eliminated at the end of the alcoholic fermentation. The data obtained in these experiments suggest that these three active ingredients could be used in a planning process to obtain residue-free wines.

  19. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    Science.gov (United States)

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-01

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process.

  20. Prodrugs Bioactivated to Quinones Target NF-κB and Multiple Protein Networks: Identification of the Quinonome.

    Science.gov (United States)

    Pierce, Emily N; Piyankarage, Sujeewa C; Dunlap, Tareisha; Litosh, Vladislav; Siklos, Marton I; Wang, Yue-Ting; Thatcher, Gregory R J

    2016-07-18

    Electrophilic reactive intermediates resulting from drug metabolism have been associated with toxicity and off-target effects and in some drug discovery programs trigger NO-GO decisions. Many botanicals and dietary supplements are replete with such reactive electrophiles, notably Michael acceptors, which have been demonstrated to elicit chemopreventive mechanisms; and Michael acceptors are gaining regulatory approval as contemporary cancer therapeutics. Identifying protein targets of these electrophiles is central to understanding potential therapeutic benefit and toxicity risk. NO-donating NSAID prodrugs (NO-NSAIDs) have been the focus of extensive clinical and preclinical studies in inflammation and cancer chemoprevention and therapy: a subset exemplified by pNO-ASA, induces chemopreventive mechanisms following bioactivation to an electrophilic quinone methide (QM) Michael acceptor. Having previously shown that these NO-independent, QM-donors activated Nrf2 via covalent modification of Keap-1, we demonstrate that components of canonical NF-κB signaling are also targets, leading to the inhibition of NF-κB signaling. Combining bio-orthogonal probes of QM-donor ASA prodrugs with mass spectrometric proteomics and pathway analysis, we proceeded to characterize the quinonome: the protein cellular targets of QM-modification by pNO-ASA and its ASA pro-drug congeners. Further comparison was made using a biorthogonal probe of the "bare-bones", Michael acceptor, and clinical anti-inflammatory agent, dimethyl fumarate, which we have shown to inhibit NF-κB signaling. Identified quinonome pathways include post-translational protein folding, cell-death regulation, protein transport, and glycolysis; and identified proteins included multiple heat shock elements, the latter functionally confirmed by demonstrating activation of heat shock response.

  1. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    Science.gov (United States)

    1991-06-30

    frequent mechanism of xenobiotic liver toxicity is biotransformation by cytochrome P,5o- enzymes to toxic free radical intermediates. The primary objective...vascular cells was to incubate the cells with both the spin trapping agent methyl nitroso propane ( MNP ) and IRP chemicals to determine if free radical...gave a reasonably strong MNP -adduct signal. Figure 1 gives the MNP adduct signal for carbon tetrachloride and trichloroethylene, as well as that for

  2. Catalytic Radical Domino Reactions in Organic Synthesis

    Science.gov (United States)

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  3. Hydroxyl radical generation by red tide algae.

    Science.gov (United States)

    Oda, T; Akaike, T; Sato, K; Ishimatsu, A; Takeshita, S; Muramatsu, T; Maeda, H

    1992-04-01

    The unicellular marine phytoplankton Chattonella marina is known to have toxic effects against various living marine organisms, especially fishes. However, details of the mechanism of the toxicity of this plankton remain obscure. Here we demonstrate the generation of superoxide and hydroxyl radicals from a red tide unicellular organism, C. marina, by using ESR spectroscopy with the spin traps 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and N-t-butyl-alpha-phenylnitrone (PBN), and by using the luminol-enhanced chemiluminescence response. The spin-trapping assay revealed productions of spin adduct of superoxide anion (O2-) (DMPO-OOH) and that of hydroxyl radical (.OH) (DMPO-OH) in the algal suspension, which was not observed in the ultrasonic-ruptured suspension. The addition of superoxide dismutase (500 U/ml) almost completely inhibited the formation of both DMPO-OOH and DMPO-OH, and carbon-centered radicals were generated with the disappearance of DMPO-OH after addition of 5% dimethyl sulfoxide (Me2SO) and 5% ethanol. Furthermore, the generation of methyl and methoxyl radicals, which are thought to be produced by the reaction of hydroxyl radical and Me2SO under aerobic condition, was identified using spin trapping with a combination of PBN and Me2SO. Luminol-enhanced chemiluminescence assay also supported the above observations. These results clearly indicate that C. marina generates and releases the superoxide radical followed by the production of hydroxyl radical to the surrounding environment. The velocity of superoxide generation by C. marina was about 100 times faster than that by mammalian phagocytes per cell basis. The generation of oxygen radical is suggested to be a pathogenic principle in the toxication of red tide to susceptible aquaculture fishes and may be directly correlated with the coastal pollution by red tide.

  4. Moment matrices, border bases and radical computation

    OpenAIRE

    Mourrain, B.; J. B. Lasserre; Laurent, Monique; Rostalski, P.; Trebuchet, Philippe

    2013-01-01

    In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-denite programming. While the border basis algorithms of [17] are ecient and numerically stable for computing complex roots, algorithms based on moment matrices [12] allow the incorporation of additional polynomials, ...

  5. Inactivation of Bacillus atrophaeus by OH radicals

    Science.gov (United States)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He-H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  6. Free radicals in biology. Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. (ed.)

    1977-01-01

    This volume covers topics ranging from radiation chemistry to biochemistry, biology, and medicine. This volume attempts to bridge the gap between chemical investigations and the medical applications and implications of free radical reactions. Chapter 1 provides a general introduction to the technique of radiation chemistry, the thermodynamics and kinetic factors that need be considered, the use of pulse radiolysis and flow techniques, and the application of these methods to free radicals of biological interest. Chapter 3 discusses the mechanisms of carbon tetrachloride toxicity. Chapter 4 reviews the morphological, histochemical, biochemical, and chemical nature of lipofuscin pigments. This chapter brings together the evidence that lipofuscin pigments arise from free radical pathology and that the formation of these pigments proves the presence of lipid peroxidation in vivo. Chapter 5 reviews the evidence for production of free (i.e., scavengeable) radicals from the reactions of selected enzymes with their substrates. Chapter 6 discusses one of the systems in which free radical damage is clearly important in vivo, both for man and animal, the damage caused to skin by sunlight. The evidence that free radical reactions can contribute to carcinogenesis dates from the earliest observations that ionizing radiation often produces higher incidences of tumors. A current working hypothesis is that chemical toxins cause damage to DNA and that the repair of this damge may incorporate viral genetic information into the host cell's chromosomes, producing cell transformation and cancer. The mechanism whereby chemical carcinogens become bound to DNA to produce point defects is discussed in Chapter 7.

  7. Radical Scavenging Effects of Different Veronica species

    Directory of Open Access Journals (Sweden)

    Ummuhan Şebnem Harput

    2011-01-01

    Full Text Available It is well known that the excessive production of reactive oxygen species is hazardous for living organisms and damages major cellular constituents such as DNA, lipid and protein. To find new products reducing free radical damage is very important researches in recent pharmaceutical investigations. Considering this information, fourteen Veronica species are decided to research in the view point of their antioxidant capacity and the chemical content. Water extracts of the plants were tested for their radical scavenging activity against 2,2-diphenyl-1-picryl hydrazyl (DPPH, superoxide (SO and nitric oxide (NO radicals spectroscopically. Dose dependent radical scavenging activity was observed and the results were found to be comparable to that of ascorbic acid, quercetin and BHA which are known antioxidative compounds. In addition, gallic acid equivalent total phenolic contents of the plants were also determined using Folin-Ciocalteau reagent. The most significant scavenging activity was found for V. chamaedrys against SO radical (IC50 113.40 μg/ml and V. officinalis against DPPH and NO radicals (IC50 40.93 μg/ml, 570.33 μg/ml, respectively .

  8. Oxygen radicals, inflammation, and tissue injury.

    Science.gov (United States)

    Ward, P A; Warren, J S; Johnson, K J

    1988-01-01

    Inflammatory reactions often result in the activation and recruitment of phagocytic cells (e.g., neutrophils and/or tissue macrophages) whose products result in injury to the tissue. In killing of endothelial cells by activated neutrophils as well as in lung injury produced by either activated neutrophils or activated macrophages there is evidence that H2O2 and iron play a role. HO. may be a key oxygen product related to the process of injury. Endothelial cells in some vascular compartments may be susceptible to neutrophil mediated injury in a manner that is independent of oxygen radicals. On the basis of in vitro observations, a synergy exits between platelets and neutrophils, resulting in enhanced oxygen radical formation by the latter. Finally, the cytokines, interleukin 1 and tumor necrosis factor, released from macrophages have both direct stimulatory effects on oxygen radical formation in neutrophils and can "prime" macrophages for enhanced oxygen radical responses to other agonists. Cytokines may also alter endothelial cells rendering them more susceptible to oxygen radical mediated injury by neutrophils. This suggests a complex network of interactions between phagocytic cells and peptide mediators, the result of which is acute, oxygen radical mediated tissue injury.

  9. Radioprotective thermally generated free-radical dextrins

    Institute of Scientific and Technical Information of China (English)

    Piotr TOMASIK; Oskar MICHALSKI; Ewa BIDZINSKA; Antonina CEBULSKA-WASILEWSKA; Krystyna DYREK; Maciej FIEDOROWICZ; Pawel OLKO

    2008-01-01

    Effect of doses of the X-ray radiation from 0 to 400 Gy upon granular cornstarch and dextrins (British gums, BG) thermally generated from it at 230-300℃ was recognized with quantitative EPR and IR ab-sorption spectroscopy, molecular mass distribution in the depolymerization products, Scanning Elec-tron Microscopy, and X-ray diffractometry. Fractal analysis of the profiles of molecular mass distribu-tion showed that the depolymerization involved debranching of amylopectin. Roasting of cornstarch produced BG which differed in concentration and EPR parameters of stable free radicals from BG generated by X-ray radiation. Two types of stable free radicals, with Gaussian and Lorentzian shapes of EPR signals, were recognized. The shapes of the signals and temperature dependence on free radical intensity indicated exchanging interactions of the antiferromagnetic type, causing partial quenching of the spins at -196℃ (77K). Upon X-ray irradiation, new radicals were generated, the number and stability of which strongly depended on the types of radicals present before irradiation. These radicals slowly ceased because of a repolymerization of BG on storage.

  10. Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies

    Science.gov (United States)

    Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun

    2016-07-01

    Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions.

  11. Ferromagnetic behavior of formyl-group-carrying stable thioaminyl radicals.

    Science.gov (United States)

    Miura, Yozo; Nakamura, Shogo; Teki, Yoshio

    2003-10-17

    Four formyl-group-carrying thioaminyl radicals were generated, and one radical could be isolated as radical crystals. Magnetic susceptibility measurements of the isolated radical showed a ferromagnetic regular linear-chain interaction of 2J/k(B) = 3.2 K, which was explained in terms of the X-ray crystallographic results.

  12. Quercetin 7-O-glucoside suppresses nitrite-induced formation of dinitrosocatechins and their quinones in catechin/nitrite systems under stomach simulating conditions.

    Science.gov (United States)

    Morina, Filis; Takahama, Umeo; Yamauchi, Ryo; Hirota, Sachiko; Veljovic-Jovanovic, Sonja

    2015-01-01

    Foods of plant origin contain flavonoids. In the adzuki bean, (+)-catechin, quercetin 3-O-rutinoside (rutin), and quercetin 7-O-β-D-glucopyranoside (Q7G) are the major flavonoids. During mastication of foods prepared from the adzuki bean, the flavonoids are mixed with saliva and swallowed into the stomach. Here we investigated the interactions between Q7G and (+)-catechin at pH 2, which may proceed in the stomach after the ingestion of foods prepared from the adzuki bean. Q7G reacted with nitrous acid producing nitric oxide (˙NO) and a glucoside of 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone. (+)-Catechin reacted with nitrous acid producing ˙NO and 6,8-dinitrosocatechin. The production of the dinitrosocatechin was partly suppressed by Q7G, and the suppression resulted in the enhancement of Q7G oxidation. 6,8-Dinitrosocatechin reacted further with nitrous acid generating the o-quinone, and the quinone formation was effectively suppressed by Q7G. In the flavonoids investigated, the suppressive effect decreased in the order Q7G≈quercetin>kaempferol>quercetin 4'-O-glucoside>rutin. Essentially the same results were obtained when (-)-epicatechin was used instead of (+)-catechin. The results indicate that nitrous acid-induced formation of 6,8-dinitrosocatechins and the o-quinones can be suppressed by flavonols in the stomach, and that both a hydroxyl group at C3 and ortho-hydroxyl groups in the B-ring are required for efficient suppression.

  13. An isotope-edited FTIR investigation of the role of Ser-L223 in binding quinone (QB) and semiquinone (QB-) in the reaction center from Rhodobacter sphaeroides.

    Science.gov (United States)

    Nabedryk, Eliane; Paddock, Mark L; Okamura, Melvin Y; Breton, Jacques

    2005-11-08

    In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B). To obtain information on the interaction between Ser-L223 and Q(B) and Q(B)(-), isotope-edited Q(B)(-)/Q(B) FTIR difference spectra were measured in a mutant RC in which Ser-L223 is replaced with Ala and compared to the native RC. The isotope-edited IR fingerprint spectra for the C=O [see text] and C=C [see text] modes of Q(B) (Q(B)(-)) in the mutant are essentially the same as those of the native RC. These findings indicate that highly equivalent interactions of Q(B) and Q(B)(-) with the protein occur in both native and mutant RCs. The simplest explanation of these results is that Ser-L223 is not hydrogen bonded to Q(B) or Q(B)(-) but presumably forms a hydrogen bond to a nearby acid group, preferentially Asp-L213. The rotation of the Ser OH proton from Asp-L213 to Q(B)(-) is expected to be an important step in the proton transfer to the reduced quinone. In addition, the reduced quinone remains firmly bound, indicating that other distinct hydrogen bonds are more important for stabilizing Q(B)(-). Implications on the design features of the Q(B) binding site are discussed.

  14. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    Science.gov (United States)

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection.

  15. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.

    Science.gov (United States)

    Biniek, Catherine; Heyno, Eiri; Kruk, Jerzy; Sparla, Francesca; Trost, Paolo; Krieger-Liszkay, Anja

    2017-04-01

    The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2(•-) in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2(•-) and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2(•-) production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.

  16. Investigation of the cumulative body burden of estrogen-3,4-quinone in breast cancer patients and controls using albumin adducts as biomarkers.

    Science.gov (United States)

    Lin, Che; Chen, Dar-Ren; Hsieh, Wei-Chung; Yu, Wen-Fa; Lin, Ching-Chiuan; Ko, Mao-Huei; Juan, Chang-Hsin; Tsuang, Ben-Jei; Lin, Po-Hsiung

    2013-04-26

    Both 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q) are reactive metabolites of estrogen. Elevation of E2-3,4-Q to E2-2,3-Q ratio is thought to be an important indicator of estrogen-induced carcinogenesis. Our current study compared the cumulative body burden of these estrogen quinones in serum samples taken from Taiwanese women with breast cancer (n=152) vs healthy controls (n=75) by using albumin (Alb) adducts as biomarkers. Results clearly demonstrated the presence of cysteinyl adducts of E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb in all study population at levels ranging from 61.7-1330 to 66.6-1,590 pmol/g, respectively. Correlation coefficient between E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb was 0.610 for controls and 0.767 for breast cancer patients (pQ-2-S-Alb was inversely proportional to BMI with about 25% increase in E2-3,4-Q-2-S-Alb per 5 kg/m(2) decrease in BMI (pQ-2-S-Alb in breast cancer patients were ∼5-fold greater than in those of controls (pQ may play a role in the development of breast cancer.

  17. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027 is essential for growth of Corynebacterium glutamicum on D-lactate

    Directory of Open Access Journals (Sweden)

    Oikawa Tadao

    2010-12-01

    Full Text Available Abstract Background Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032. Results Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer. Conclusions Cg1067 encodes quinone-dependent D-lactate dehydrogenase Dld of Corynebacterium glutamicum. Dld is essential for growth with D-lactate as sole carbon source. The genomic region of dld likely has been acquired by horizontal gene transfer.

  18. Rh(III)-Catalyzed Diastereoselective Annulation of Amides with Quinone Monoacetals: Access to Bridged Nine-Membered Heterocycles via C-H Activation.

    Science.gov (United States)

    Yang, Wei; Dong, Jinhuan; Wang, Jingyi; Xu, Xianxiu

    2017-02-03

    An unprecedented Rh(III)-catalyzed annulation of various benzamides and acrylamides with quinone monoacetals was developed for the facile and efficient one-pot synthesis of bridged nine-membered benzo[c]azonine-1,5(2H)-diones and 2-azabicyclo[4.3.1]dec-4-ene-3,8-diones. It is the first example of synthesis of nine-membered heterocycles through Rh(III)-catalyzed C-H bond functionalization, and both aryl and vinyl C-H bonds are tolerant in this reaction. A plausible mechanism is proposed on the basis of control experiments.

  19. How Radical is a Radical Innovation? An Outline for a Computational Approach

    NARCIS (Netherlands)

    Kasmire, J.; Korhonen, J.M.; Nikolic, I.

    2012-01-01

    Radical innovations prompt significant subsequent technological development and exhibit novelty and “architectural” innovation, i.e. rearranging the way design elements are put together in a system. Thus, radical innovations often serve as the foundation for new technological systems, industries or

  20. How Radical is a Radical Innovation? An Outline for a Computational Approach

    NARCIS (Netherlands)

    Kasmire, J.; Korhonen, J.M.; Nikolic, I.

    2012-01-01

    Radical innovations prompt significant subsequent technological development and exhibit novelty and “architectural” innovation, i.e. rearranging the way design elements are put together in a system. Thus, radical innovations often serve as the foundation for new technological systems, industries or

  1. Environmentally persistent free radicals (EPFRs)-2. Are free hydroxyl radicals generated in aqueous solutions?

    Science.gov (United States)

    Khachatryan, Lavrent; Dellinger, Barry

    2011-11-01

    A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.

  2. How to counter radical narratives: Dutch deradicalization policy in the case of Moluccan and Islamic radicals

    NARCIS (Netherlands)

    Demant, F.; de Graaf, B.

    2010-01-01

    This article deals with the role of government in encouraging the decline of radical movements. The question posed is: "Which story can the government tell to encourage the decline of radical groups and the disengagement of their members?" The article makes use of the survey of factors promoting

  3. Modeling Radicalization Phenomena in Heterogeneous Populations.

    Directory of Open Access Journals (Sweden)

    Serge Galam

    Full Text Available The phenomenon of radicalization is investigated within a mixed population composed of core and sensitive subpopulations. The latest includes first to third generation immigrants. Respective ways of life may be partially incompatible. In case of a conflict core agents behave as inflexible about the issue. In contrast, sensitive agents can decide either to live peacefully adjusting their way of life to the core one, or to oppose it with eventually joining violent activities. The interplay dynamics between peaceful and opponent sensitive agents is driven by pairwise interactions. These interactions occur both within the sensitive population and by mixing with core agents. The update process is monitored using a Lotka-Volterra-like Ordinary Differential Equation. Given an initial tiny minority of opponents that coexist with both inflexible and peaceful agents, we investigate implications on the emergence of radicalization. Opponents try to turn peaceful agents to opponents driving radicalization. However, inflexible core agents may step in to bring back opponents to a peaceful choice thus weakening the phenomenon. The required minimum individual core involvement to actually curb radicalization is calculated. It is found to be a function of both the majority or minority status of the sensitive subpopulation with respect to the core subpopulation and the degree of activeness of opponents. The results highlight the instrumental role core agents can have to hinder radicalization within the sensitive subpopulation. Some hints are outlined to favor novel public policies towards social integration.

  4. Modeling Radicalization Phenomena in Heterogeneous Populations

    Science.gov (United States)

    2016-01-01

    The phenomenon of radicalization is investigated within a mixed population composed of core and sensitive subpopulations. The latest includes first to third generation immigrants. Respective ways of life may be partially incompatible. In case of a conflict core agents behave as inflexible about the issue. In contrast, sensitive agents can decide either to live peacefully adjusting their way of life to the core one, or to oppose it with eventually joining violent activities. The interplay dynamics between peaceful and opponent sensitive agents is driven by pairwise interactions. These interactions occur both within the sensitive population and by mixing with core agents. The update process is monitored using a Lotka-Volterra-like Ordinary Differential Equation. Given an initial tiny minority of opponents that coexist with both inflexible and peaceful agents, we investigate implications on the emergence of radicalization. Opponents try to turn peaceful agents to opponents driving radicalization. However, inflexible core agents may step in to bring back opponents to a peaceful choice thus weakening the phenomenon. The required minimum individual core involvement to actually curb radicalization is calculated. It is found to be a function of both the majority or minority status of the sensitive subpopulation with respect to the core subpopulation and the degree of activeness of opponents. The results highlight the instrumental role core agents can have to hinder radicalization within the sensitive subpopulation. Some hints are outlined to favor novel public policies towards social integration. PMID:27166677

  5. Reactivity of 1,4-dihydropyridines toward alkyl, alkylperoxyl radicals, and ABTS radical cation.

    Science.gov (United States)

    López-Alarcón, C; Navarrete, P; Camargo, C; Squella, J A; Núñez-Vergara, L J

    2003-02-01

    A series of C4-substituted 1,4-dihydropyridines (DHP) with either secondary or tertiary nitrogen in the dihydropyridine ring were synthesized. All of these compounds together with some commercial DHP derivatives were tested for potential scavenger effects toward alkyl, alkylperoxyl radicals, and ABTS radical cation in aqueous media at pH 7.4. Kinetic rate constants were assessed either by UV/vis spectroscopy or GC/MS techniques. Tested compounds reacted faster toward alkylperoxyl radicals and ABTS radical cation than alkyl ones. N-Ethyl-substituted DHPs showed the lowest reactivity. Kinetic results were compared with either trolox or nisoldipine. Using deuterium kinetic isotope effect studies, we have proved that the hydrogen of the 1-position of the DHP ring is involved in the proposed mechanism. This fact is mostly noticeable in the case of alkyl radicals. In all cases, the respective pyridine derivative was detected as the main product of the reaction.

  6. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates.

    Science.gov (United States)

    Good, Nathan M; Vu, Huong N; Suriano, Carly J; Subuyuj, Gabriel A; Skovran, Elizabeth; Martinez-Gomez, N Cecilia

    2016-11-15

    Lanthanides are utilized by microbial methanol dehydrogenases, and it has been proposed that lanthanides may be important for other type I alcohol dehydrogenases. A triple mutant strain (mxaF xoxF1 xoxF2; named MDH-3), deficient in the three known methanol dehydrogenases of the model methylotroph Methylobacterium extorquens AM1, is able to grow poorly with methanol if exogenous lanthanides are added to the growth medium. When the gene encoding a putative quinoprotein ethanol dehydrogenase, exaF, was mutated in the MDH-3 background, the quadruple mutant strain could no longer grow on methanol in minimal medium with added lanthanum (La(3+)). ExaF was purified from cells grown with both calcium (Ca(2+)) and La(3+) and with Ca(2+) only, and the protein species were studied biochemically. Purified ExaF is a 126-kDa homodimer that preferentially binds La(3+) over Ca(2+) in the active site. UV-visible spectroscopy indicates the presence of pyrroloquinoline quinone (PQQ) as a cofactor. ExaF purified from the Ca(2+)-plus-La(3+) condition readily oxidizes ethanol and has secondary activities with formaldehyde, acetaldehyde, and methanol, whereas ExaF purified from the Ca(2+)-only condition has minimal activity with ethanol as the substrate and activity with methanol is not detectable. The exaF mutant is not affected for growth with ethanol; however, kinetic and in vivo data show that ExaF contributes to ethanol metabolism when La(3+) is present, expanding the role of lanthanides to multicarbon metabolism. ExaF is the most efficient PQQ-dependent ethanol dehydrogenase reported to date and, to our knowledge, the first non-XoxF-type alcohol oxidation system reported to use lanthanides as a cofactor, expanding the importance of lanthanides in biochemistry and bacterial metabolism beyond methanol dehydrogenases to multicarbon metabolism. These results support an earlier proposal that an aspartate residue near the catalytic aspartate residue may be an indicator of rare

  7. Radicality of surgical treatment for cervical cancer.

    Science.gov (United States)

    Mirković, L; Petković, S; Mirković, D; Jeremić, K; Milenković, V; Maksimović, M

    2009-01-01

    Analyses were carried out on 545 Wertheim-Meigs radical hysterectomies performed at the Institute of Gynecology and Obstetrics of the Clinical Center of Serbia during a four-year period from 2002 to 2006. More than ten lymphatic glands in 84.4% of patients were removed. The apical part of the vagina was removed in 77.8% of cases, and 77.6% of patients had the right part of the vagina removed. Distribution of surgical radicality according to FIGO stage of disease has been demonstrated. Comparison of research results in the period from 1996 to 2000 shows a significantly more radical approach concerning the number of lymphatic glands removed during this period.

  8. A Radically Configurable Six-State Compound

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J.C.; Fahrenbach, Albert C.; Cao, Dennis; Dyar, Scott M.; Frasconi, M.; Giesener, M. A.; Benítez, D.; Tkatchouk, E.; Li, H.; Stern, Charlotte L.; Sarjeant, Amy A.; Hartlieb, K.J.; Liu, Z.; Carmieli, Raanan; Botros, Y.Y.; Wasielewski, M. R.; Goddard III, W.A.; Stoddart, J. Fraser

    2013-01-24

    Most organic radicals possess short lifetimes and quickly undergo dimerization or oxidation. Here, we report on the synthesis by radical templation of a class of air- and water-stable organic radicals, trapped within a homo[2]catenane composed of two rigid and fixed cyclobis(paraquat-p-phenylene) rings. The highly energetic octacationic homo[2]catenane, which is capable of accepting up to eight electrons, can be configured reversibly, both chemically and electrochemically, between each one of six experimentally accessible redox states (0, 2+, 4+, 6+, 7+, and 8+) from within the total of nine states evaluated by quantum mechanical methods. All six of the observable redox states have been identified by electrochemical techniques, three (4+, 6+, and 7+) have been characterized by x-ray crystallography, four (4+, 6+, 7+, and 8+) by electron paramagnetic resonance spectroscopy, one (7+) by superconducting quantum interference device magnetometry, and one (8+) by nuclear magnetic resonance spectroscopy.

  9. Exploring how lead users develop radical innovation

    DEFF Research Database (Denmark)

    Lettl, Christopher; Gemuenden, Hans Georg; Hienerth, C.

    2008-01-01

    In this study, we explore how lead users develop radical innovations outside of manufacturing firms. We analyze the transition from a very early stage of activities to the ultimate commercialization of these innovations. The focus in this context is on the initiatives undertaken by lead users...... lead users as surgeons launch entrepreneurial activities and bridge periods in which established medical equipment manufacturers would not risk investing in radical innovations. By doing so, lead users create the conditions usually provided in manufacturer-initiated lead user projects, including...... the supply of diversified knowledge, the development and coordination of a network for further development of the innovation, and initial tests of technical or market feasibility. Our findings have implications for manufacturing firms that wish to design radical innovation projects with (individual) lead...

  10. Resveratrol products resulting by free radical attack

    Science.gov (United States)

    Bader, Yvonne; Quint, R. M.; Getoff, Nikola

    2008-06-01

    Trans-resveratrol ( trans-3,4',5-trihydroxystilbene; RES), which is contained in red wine and many plants, is one of the most relevant and extensively investigated stilbenes with a broad spectrum of biological activities. Among other duties, RES has been reported to have anti-carcinogenetic activities, which could be attributed to its antioxidant properties. The degradation of RES was studied under various conditions. The products (aldehydes, carboxylic acids, etc.) generated from RES by the attack of free radicals were registered as a function of the radical concentration (absorbed radiation dose). Based on the obtained data it appears that the OH radicals are initiating the rather complicated process, which involves of the numerous consecutive reactions. A possible starting reaction mechanism is presented.

  11. Resveratrol products resulting by free radical attack

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Yvonne; Quint, R.M. [Section Radiation Biology, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, UZAII, Althanstrasse 14, A-1090 Vienna (Austria); Getoff, Nikola [Section Radiation Biology, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, UZAII, Althanstrasse 14, A-1090 Vienna (Austria)], E-mail: nikola.getoff@univie.ac.at

    2008-06-15

    Trans-resveratrol (trans-3,4',5-trihydroxystilbene; RES), which is contained in red wine and many plants, is one of the most relevant and extensively investigated stilbenes with a broad spectrum of biological activities. Among other duties, RES has been reported to have anti-carcinogenetic activities, which could be attributed to its antioxidant properties. The degradation of RES was studied under various conditions. The products (aldehydes, carboxylic acids, etc.) generated from RES by the attack of free radicals were registered as a function of the radical concentration (absorbed radiation dose). Based on the obtained data it appears that the OH radicals are initiating the rather complicated process, which involves of the numerous consecutive reactions. A possible starting reaction mechanism is presented.

  12. Mechanically controlled radical polymerization initiated by ultrasound

    Science.gov (United States)

    Mohapatra, Hemakesh; Kleiman, Maya; Esser-Kahn, Aaron Palmer

    2017-02-01

    In polymer chemistry, mechanical energy degrades polymeric chains. In contrast, in nature, mechanical energy is often used to create new polymers. This mechanically stimulated growth is a key component of the robustness of biological materials. A synthetic system in which mechanical force initiates polymerization will provide similar robustness in polymeric materials. Here we show a polymerization of acrylate monomers initiated and controlled by mechanical energy provided by ultrasonic agitation. The activator for an atom-transfer radical polymerization is generated using piezochemical reduction of a Cu(II) precursor complex, which thus converts a mechanical activation of piezoelectric particles to the synthesis of a new material. This polymerization reaction has some characteristics of controlled radical polymerization, such as narrow molecular-weight distribution and linear dependence of the polymeric chain length on the time of mechanical activation. This new method of controlled radical polymerization complements the existing methods to synthesize commercially useful well-defined polymers.

  13. High-Power-Density Organic Radical Batteries.

    Science.gov (United States)

    Friebe, Christian; Schubert, Ulrich S

    2017-02-01

    Batteries that are based on organic radical compounds possess superior charging times and discharging power capability in comparison to established electrochemical energy-storage technologies. They do not rely on metals and, hence, feature a favorable environmental impact. They furthermore offer the possibility of roll-to-roll processing through the use of different printing techniques, which enables the cost-efficient fabrication of mechanically flexible devices. In this review, organic radical batteries are presented with the focus on the hitherto developed materials and the key properties thereof, e.g., voltage, capacity, and cycle life. Furthermore, basic information, such as significant characteristics, housing approaches, and applied additives, are presented and discussed in the context of organic radical batteries.

  14. Free radicals, antioxidant defense systems, and schizophrenia.

    Science.gov (United States)

    Wu, Jing Qin; Kosten, Thomas R; Zhang, Xiang Yang

    2013-10-01

    The etiopathogenic mechanisms of schizophrenia are to date unknown, although several hypotheses have been suggested. Accumulating evidence suggests that excessive free radical production or oxidative stress may be involved in the pathophysiology of schizophrenia as evidenced by increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. This review aims to summarize the basic molecular mechanisms of free radical metabolism, the impaired antioxidant defense system and membrane pathology in schizophrenia, their interrelationships with the characteristic clinical symptoms and the implications for antipsychotic treatments. In schizophrenia, there is accumulating evidence of altered antioxidant enzyme activities and increased levels of lipid peroxidation, as well as altered levels of plasma antioxidants. Moreover, free radical-mediated abnormalities may contribute to specific aspects of schizophrenic symptomatology and complications of its treatment with antipsychotic drugs, as well as the development of tardive dyskinesia (TD). Finally, the potential therapeutic strategies implicated by the accumulating data on oxidative stress mechanisms for the treatment of schizophrenia are discussed.

  15. Reconsidering the Relationship Between Integration and Radicalization

    Directory of Open Access Journals (Sweden)

    Sadiq Rahimi

    2015-12-01

    Full Text Available Research literature suggests a number of possible causes leading to radicalization of young Muslims living in Western countries, including poverty, social marginalization, weak or threatened identities, lack of connection to native culture, etc.. Regardless of the diversity of causes, academic literature as well as governmental strategies have shown a consistent interest in the basic formula that a lack of cultural integration equals an increased threat of radicalization. The lacking evidence for the simple correlation, however, has become increasingly difficult to ignore. Based on a review of existing ideas and evidence concerning the relationship between integration and radicalization, this paper concludes that the presumed relationship needs to be reconsidered, because it is not supported by evidence, and because it can lead to ineffective or potentially harmful interventions.

  16. Nitrene Radical Intermediates in Catalytic Synthesis.

    Science.gov (United States)

    Kuijpers, Petrus; van der Vlugt, Jarl Ivar; Schneider, Sven; de Bruin, Bas

    2017-07-04

    Nitrene radical complexes are reactive intermediates with discrete spin density at the nitrogen-atom of the nitrene moiety. These species have become important intermediates for organic synthesis, being invoked in a broad range of C-H functionalization and aziridination reactions. Nitrene radical complexes have intriguing electronic structures, and are best described as one-electron reduced Fischer-type nitrenes. They can be generated by intramolecular single electron transfer to the 'redox non-innocent' nitrene moiety at the metal. Nitrene radicals generated at open-shell cobalt(II) have thus far received most attention in terms of spectroscopic characterization, reactivity screening, catalytic application and (computational and experimental) mechanistic studies, but some interesting iron and precious metal catalysts have also been employed in related reactions involving nitrene radicals. In some cases, redox-active ligands are used to facilitate intramolecular single electron transfer from the complex to the nitrene moiety. Organic azides are among the most attractive nitrene precursors in this field, typically requiring pre-activated organic azides (e.g. RSO2N3, (RO)2P(=O)N3, ROC(=O)N3 and alike) to achieve efficient and selective catalysis. Challenging, non-activated aliphatic organic azides were recently added to the palette of synthetically useful reactions proceeding via nitrene radical intermediates. This concept article describes the electronic structure of nitrene radical complexes, emphasizes on their usefulness in the catalytic synthesis of various organic products, and highlights the important developments in the field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Update on Robotic Laparoscopic Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Garrett S. Matsunaga

    2006-01-01

    Full Text Available The da Vinci surgical robot has been shown to help shorten the learning curve for laparoscopic radical prostatectomy (LRP for both laparoscopically skilled and na surgeons[1,2]. This approach has shown equal or superior outcomes to conventional laparoscopic prostatectomy with regard to ease of learning, initial complication rates, conversion to open, blood loss, complications, continence, potency, and margin rates. Although the data are immature to compare oncologic and functional outcomes to open prostatectomy, preliminary data are promising.Herein, we review the technique and outcomes of robotic-assisted laparoscopic radical prostatectomy (RALP.

  18. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  19. Radical Islamism and Migrant Integration in Denmark

    DEFF Research Database (Denmark)

    Goli, Marco; Rezaei, Shahamak

    2011-01-01

    It has been suggested that alienation and failed integration may be causes of “Homegrown Radical Islamism” in Western societies. Western countries often expect that migrants and their descendants residing there as citizens will embrace or support common democratic ideals as a predicate for – or c......It has been suggested that alienation and failed integration may be causes of “Homegrown Radical Islamism” in Western societies. Western countries often expect that migrants and their descendants residing there as citizens will embrace or support common democratic ideals as a predicate...

  20. Elementary reaction allyl radical with oxygen

    Institute of Scientific and Technical Information of China (English)

    DONG Feng; KONG Fanao

    2003-01-01

    The elementary reaction between allyl radical with oxygen molecule wasexperimentally investigated. The allyl radical was produced via laser photolysis of C3H5Br in gaseous phase. Nascent vibrational excited products HCO, CO2, CH3CHO and HCOOH were recorded by the time- resolved Fourier transform infrared spectroscopy. The product channels of C2H5+CO2, CH3CHO+HCO, and HCOOH + C2H3 have been identified. The vibrational populations of product CO2 are obtained by spectral simulation. A mechanism forming a series of three-membered ring-struc- ture intermediates is suggested.

  1. The 2-Methoxy Group Orientation Regulates the Redox Potential Difference between the Primary (QA) and Secondary (QB) Quinones of Type II Bacterial Photosynthetic Reaction Centers

    Science.gov (United States)

    2015-01-01

    Recent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from purple bacteria such as Rb. sphaeroides. 13C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQA and SQB, were compared with DFT calculations of the 13C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of 175–193 mV. A model having a methyl group substituted for the 2-methoxy group exhibits no electron affinity difference. This is consistent with the failure of a 2-methyl ubiquinone analogue to function as QB in mutant reaction centers with a ΔEm of ∼160–195 mV. The conclusion reached is that the 2-methoxy group is the principal determinant of electron transfer from QA to QB in type II photosynthetic reaction centers with ubiquinone serving as both acceptor quinones. PMID:25126386

  2. The 2-Methoxy Group Orientation Regulates the Redox Potential Difference between the Primary (QA) and Secondary (QB) Quinones of Type II Bacterial Photosynthetic Reaction Centers.

    Science.gov (United States)

    de Almeida, Wagner B; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; O'Malley, Patrick J

    2014-08-07

    Recent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from purple bacteria such as Rb. sphaeroides. (13)C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQA and SQB, were compared with DFT calculations of the (13)C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of 175-193 mV. A model having a methyl group substituted for the 2-methoxy group exhibits no electron affinity difference. This is consistent with the failure of a 2-methyl ubiquinone analogue to function as QB in mutant reaction centers with a ΔEm of ∼160-195 mV. The conclusion reached is that the 2-methoxy group is the principal determinant of electron transfer from QA to QB in type II photosynthetic reaction centers with ubiquinone serving as both acceptor quinones.

  3. Fluorescence quenching studies on the interaction of catechin-quinone with CdTe quantum dots. Mechanism elucidation and feasibility studies.

    Science.gov (United States)

    Dwiecki, Krzysztof; Neunert, Grażyna; Nogala-Kałucka, Małgorzata; Polewski, Krzysztof

    2015-01-01

    Changes of the photoluminescent properties of QD in the presence of oxidized catechin (CQ) were investigated by absorption, steady-state fluorescence, fluorescence lifetime and dynamic light scattering measurements. Photoluminescence intensity and fluorescence lifetime was decreasing with increasing CQ concentration. Dynamic light scattering technique found the hydrodynamic diameter of QD suspension in water is in range of 45 nm, whereas in presence of CQ increased to mean values of 67 nm. Calculated from absorption peak position of excition band indicated on average QD size of 3.2 nm. Emission spectroscopy and time-resolved emission studies confirmed preservation of electronic band structure in QD-CQ aggregates. On basis of the presented results, the elucidated mechanism of QD fluorescence quenching is a result of the interaction between QD and CQ due to electron transfer and electrostatic attraction. The results of fluorescence quenching of water-soluble CdTe quantum dot (QD) capped with thiocarboxylic acid were used to implement a simple and fast method to determine the presence of native antioxidant quinones in aqueous solutions. Feasibility studies on this method carried out with oxidized catechin showed a linear relation between the QD emission and quencher concentration, in range from 1 up to 200 μM. The wide linear range of concentration dependence makes it possible to apply this method for the fast and sensitive detection of quinones in solutions.

  4. Antiplasmodial, cytotoxic activities and characterization of a new naturally occurring quinone methide pentacyclic triterpenoid derivative isolated from Salacia leptoclada Tul. (Celastraceae) originated from Madagascar

    Institute of Scientific and Technical Information of China (English)

    Fatiany Pierre Ruphin; Robijaona Baholy; Randrianarivo Emmanuel; Raharisololalao Amelie; Marie-Therese Martin; Ngbolua Koto-te-Nyiwa

    2013-01-01

    Objective:To validate scientifically the traditional use of Salacia leptoclada Tul. (Celastraceae) (S. leptoclada) and to isolate and elucidate the structure of the biologically active compound. Methods:Bioassay-guided fractionation of the acetonic extract of the stem barks of S. leptoclada was carried out by a combination of chromatography technique and biological experiments in viro using Plasmodium falciparum and P388 leukemia cell lines as models. The structure of the biologically active pure compound was elucidated by 1D and 2D NMR spectroscopy and mass spectrometry. Results:Biological screening of S. leptoclada extracts resulted in the isolation of a pentacyclic triterpenic quinone methide. The pure compound exhibited both in vitro a cytotoxic effect on murine P388 leukemia cells with IC50 value of (0.041±0.020) µg/mL and an antiplasmodial activity against the chloroquine-resistant strain FC29 of Plasmodium falciparum with an IC50 value of (0.052±0.030) µg/mL. Despite this interesting anti-malarial property of the lead compound, the therapeutic index was weak (0.788). In the best of our knowledge, the quinone methide pentacyclic triterpenoid derivative compound is reported for the first time in S. leptoclada. Conclusions:The results suggest that furthers studies involving antineoplastic activity is needed for the development of this lead compound as anticancer drug.

  5. Quinone/hydroquinone meroterpenoids with antitubercular and cytotoxic activities produced by the sponge-derived fungus Gliomastix sp. ZSDS1-F7.

    Science.gov (United States)

    He, Wei-Jun; Zhou, Xiao-Jiang; Qin, Xiao-Chu; Mai, Yong-Xin; Lin, Xiu-Ping; Liao, Sheng-Rong; Yang, Bin; Zhang, Tianyu; Tu, Zheng-Chao; Wang, Jun-Feng; Liu, Yonghong

    2017-03-01

    Fifteen compounds, including six quinone/hydroquinone meroterpenoids, purpurogemutantin (1), macrophorin A (2), 4'-oxomacrophorin (3), 7-deacetoxyyanuthone A (4), 2,3-hydro-deacetoxyyanuthone A (5), 22-deacetylyanuthone A (6), anicequol (7), three roquefortine derivatives, roquefortine C (8), (16S)-hydroxyroquefortine C (9), (16R)-hydroxyroquefortine C (10), dihydroresorcylide (11), nectriapyrone (12), together with three fatty acid derivatives, methyl linoleate (13), phospholipase A2 (14), methyl elaidate (15), were isolated from the sponge-derived fungus Gliomastix sp. ZSDS1-F7 isolated from the sponge Phakellia fusca Thiele collected in the Yongxing island of Xisha. Their structures were elucidated mainly by extensive NMR spectroscopic and mass spectrometric analyses. Among these compounds, compounds 1-3 and 5-7 showed significant in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U937, H1975, SGC-7901, A549, MOLT-4 and HL60 cell lines, with IC50 values ranging from 0.19 to 35.4 μM. And compounds 2-4 exhibited antitubercular activity with IC50 values of 22.1, 2.44 and 17.5 μM, respectively. Furthermore, compound 7 had anti-enterovirus 71 activity with MIC value of 17.8 μM. To the best of our knowledge, this is the first report to product two quinone/hydroquinone meroterpenoids skeletons (linear skeleton and drimane skeleton) from the same fungal strain.

  6. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Jonatan C. Campillo-Brocal

    2015-12-01

    Full Text Available Amino acid oxidases (AAOs catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.

  7. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria.

    Science.gov (United States)

    Campillo-Brocal, Jonatan C; Lucas-Elío, Patricia; Sanchez-Amat, Antonio

    2015-12-16

    Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.

  8. Peroxy Radical Chemistry and Partitioning under a Ponderosa Pine Canopy

    Science.gov (United States)

    Wolfe, G. M.; Cantrell, C. A.; Mauldin, L.; Kim, S.; Henry, S. B.; Boyle, E. S.; Karl, T.; Harley, P. C.; Turnipseed, A.; Zheng, W.; Flocke, F. M.; Apel, E. C.; Hornbrook, R. S.; Hall, S. R.; Ullmann, K.; Guenther, A. B.; DiGangi, J. P.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Graus, M.; Nakashima, Y.; Kajii, Y. J.; Keutsch, F. N.

    2012-12-01

    As the first intermediates in the OH-initiated oxidation of hydrocarbons, peroxy radicals are central to the photochemistry of the lower atmosphere. Peroxy radical abundance and partitioning controls relative rates of radical propagation and termination in low-NOx regimes, and the coupled cycling of these molecules lies at the heart of recently-highlighted deficiencies in traditional chemical mechanisms. Using observations of hydroperoxy (HO2) and total peroxy (HO2 + RO2) radicals acquired during the summer 2010 BEACHON-ROCs campaign, we explore the processes affecting radical-mediated chemistry within a rural Ponderosa pine forest in central Colorado. Steady-state and fully-coupled 0-D modeling studies are used to provide complementary perspectives on our understanding of the radical budget in this environment. Analysis will focus on the nature and impact of unidentified radical sources and sinks and on how the composition of the peroxy radical pool modulates radical regeneration.

  9. Competing with the radical right. Distances between the European radical right and other parties on typical radical right issues

    NARCIS (Netherlands)

    Immerzeel, T.; Lubbers, M.; Coffe, H.R.

    2015-01-01

    The popularity of European Radical Right Populist parties (RRPs) has led to investigations into the distances between RRPs’ and other parties’ stances regarding immigration. This article adds to this literature by investigating the distance between RRPs and the other parties on a wider variety of

  10. Competing with the radical right: Distances between the European radical right and other parties on typical radical right issues

    NARCIS (Netherlands)

    Immerzeel, T.; Lubbers, M.; Coffé, H.

    2016-01-01

    The popularity of European Radical Right Populist parties (RRPs) has led to investigations into the distances between RRPs' and other parties' stances regarding immigration. This article adds to this literature by investigating the distance between RRPs and the other parties on a wider variety of

  11. Competing with the radical right. Distances between the European radical right and other parties on typical radical right issues

    NARCIS (Netherlands)

    Immerzeel, T.; Lubbers, M.; Coffe, H.R.

    2015-01-01

    The popularity of European Radical Right Populist parties (RRPs) has led to investigations into the distances between RRPs’ and other parties’ stances regarding immigration. This article adds to this literature by investigating the distance between RRPs and the other parties on a wider variety of ty

  12. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    Directory of Open Access Journals (Sweden)

    Béla Fiser

    Full Text Available Non-reactive, comparative (2 × 1.2 μs molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule and hydroxyl radical (OH(•, guest molecule. From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  13. Lens Aldose Reductase Inhibitory and Free Radical Scavenging Activity of Fractions of Chromolaena odorata (Siam Weed: Potential for Cataract Remediation

    Directory of Open Access Journals (Sweden)

    Emmanuel O. AJANI

    2016-09-01

    Full Text Available Searching for effective and safe aldose reductase (AR inhibitor agent is a major thrust area in the mainstream of anti-cataractogenic research. This study was set up to investigate the in vitro aldose reductase inhibitory (ARI activity of fractions of methanolic extract of Chromolaena odorata leaves, on partially purified AR from goat lens, for potential use in the development of anticataractogenic agent. The phyto-constituents of the leaves were screened in aqueous and methanolic extracts and the free radical scavenging activities of the fractions were evaluated. The kinetics of the enzyme in the presence of fractions of the leaves was then compared. Phenol, flavonoid, alkaloid, saponin, terpenoid, quinones and phlobatannins were detected in both extracts. All the fractions inhibited AR in an uncompetitive manner, showing a reduced V max and Km when compared with glyceraldehyde. ARI activity was found to be the highest with aqueous fraction (IC50, 0.22 ± 0.01 mg/ml. All other fractions showed mild to moderate AR inhibition capacity, while it was found to be the lowest within hexane fraction (IC50, 1.20 ± 0.10 mg/ml. All the fractions showed free radical scavenging activity and metal chelating activity. The study confirmed the ARI and antioxidant capacity of Chromolaena odorata which may be due to its phenolic constituents, indicating that the plant may serve as a base for the development of anticataract agent.

  14. Neohesperidin Dihydrochalcone versus CCl₄-Induced Hepatic Injury through Different Mechanisms: The Implication of Free Radical Scavenging and Nrf2 Activation.

    Science.gov (United States)

    Su, Chuanyang; Xia, Xiaomin; Shi, Qiong; Song, Xiufang; Fu, Juanli; Xiao, Congxue; Chen, Hongjun; Lu, Bin; Sun, Zhiyin; Wu, Shanmei; Yang, Siyu; Li, Xuegang; Ye, Xiaoli; Song, Erqun; Song, Yang

    2015-06-10

    Neohesperidin dihydrochalcone (NHDC), a sweetener derived from citrus, belongs to the family of bycyclic flavonoids dihydrochalcones. NHDC has been reported to act against CCl4-induced hepatic injury, but its mechanism is still unclear. We first discovered that NHDC showed a strong ability to scavenge free radicals. In addition, NHDC induces the phase II antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H/quinone oxidoreductase 1 (NQO1) through the activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) signaling. Further assays demonstrated that NHDC induces accumulation of Nrf2 in the nucleus and augmented Nrf2-ARE binding activity. Moreover, NHDC inhibits the ubiquitination of Nrf2 and suggests the modification of Kelch-like ECH-associated protein 1 (Keap1) and the disruption of the Keap1/Nrf2 complex. c-Jun N-terminal kinase (JNK) and p38 but not extracellular signal-regulated protein kinase (ERK) phosphorylations were up-regulated by NHDC treatment. Taken together, NHDC showed its protective antioxidant effect against CCl4-induced oxidative damage via the direct free radical scavenging and indirect Nrf2/ARE signaling pathway.

  15. Identity and Islamic Radicalization in Western Europe

    NARCIS (Netherlands)

    S.M. Murshed (Syed); S. Pavan (Sara)

    2009-01-01

    textabstractThis paper argues that both socio-economic disadvantage and political factors, such as the West’s foreign policy with regard to the Muslim world, along with historical grievances, play a part in the development of Islamic radicalized collective action in Western Europe. We emphasise the

  16. Radical recombinations in acetylene-air flames

    NARCIS (Netherlands)

    Zeegers, P.J.Th.; Alkemade, C.T.J.

    1965-01-01

    In this paper an analysis is given of the behaviour of excess radical concentrations, H, OH and O as a function of height above the reaction zone in premixed acetylene-air flames at 2–200° to 2400°K and 1 atmosphere pressure. The intensity was measured of the Li resonance line which is related to th

  17. User involvement competence for radical innovation

    DEFF Research Database (Denmark)

    Lettl, Christopher

    2007-01-01

    -assisted navigation systems. The case study analysis reveals that firms who closely interact with specific users benefit significantly for their radical innovation work. These users have a high motivation toward new solutions, are open to new technologies, possess diverse competencies, and are embedded into a very...

  18. The Radical Faculty -- What Are Its Goals?

    Science.gov (United States)

    Kampf, Louis

    According to radical faculty members and students, universities have been contradicting their humanistic educational ideals by concentrating on competitive professionalism and non-academic research in a struggle for institutional power in a preponderantly capitalistic society. It is their belief that meaningful education provides intellectual…

  19. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.

    1997-01-01

    equivalent aniline moieties. Introduction of a 4-methoxy group on the aromatic ring allows increased stabilization of the radical ion character on one moiety, and charge delocalization across the piperazine ring is suppressed, as shown by optical absorption and resonance Raman spectroscopy. The possibility...

  20. Identity and Islamic Radicalization in Western Europe

    NARCIS (Netherlands)

    S.M. Murshed (Syed); S. Pavan (Sara)

    2009-01-01

    textabstractThis paper argues that both socio-economic disadvantage and political factors, such as the West’s foreign policy with regard to the Muslim world, along with historical grievances, play a part in the development of Islamic radicalized collective action in Western Europe. We emphasise the

  1. Radical Welfare State Retrenchment: A Comparative Analysis

    DEFF Research Database (Denmark)

    Starke, Peter

    as electoral suicide, but this changed in the 1980s when Margaret Thatcher's government began a series of cutbacks in the UK. During the 1990s, the New Zealand government announced the most radical social benefit cutbacks the country had ever seen. Examining these cases in detail, and contrasting them...

  2. Albert Einstein: Radical Pacifist and Democrat

    Science.gov (United States)

    Jayaraman, T.

    We draw attention here to the radical political grounding of Einstein's pacifism. We also drescribe some less commonly known aspects of his commitment to civil liberties, particularly in the context of the anti-l hysteria and anti-racism current in the United States of the late 1940s and 1950s. We also examine briefly his views on socialism.

  3. Serendipitous findings while researching oxygen free radicals.

    Science.gov (United States)

    Floyd, Robert A

    2009-04-15

    This review is based on the honor of receiving the Discovery Award from the Society of Free Radical Biology and Medicine. The review is reflective and presents our thinking that led to experiments that yielded novel observations. Critical questioning of our understanding of oxygen free radicals in biomedical problems led us to use and develop more direct and extremely sensitive methods. This included nitrone free radical spin trapping and HPLC-electrochemical detection. This technology led to the pioneering use of salicylate to trap hydroxyl free radicals and show increased flux in ischemia/reperfused brain regions and also to first sensitively detect 8-hydroxyl-2-deoxyguanosine in oxidatively damaged DNA and help assess its role in cancer development. We demonstrated that methylene blue (MB) photoinduces formation of 8-hydroxyguanine in DNA and RNA and discovered that MB sensitively photoinactivates RNA viruses, including HIV and the West Nile virus. Studies in experimental stroke led us serendipitously to discover that alpha-phenyl-tert-butylnitrone (PBN) was neuroprotective if given after the stroke. This led to extensive commercial development of NXY-059, a PBN derivative, for the treatment of stroke. More recently we discovered that PBN nitrones have potent anti-cancer activity and are active in preventing hearing loss caused by acute acoustical trauma.

  4. Radical Change: Digital Age Literature and Learning.

    Science.gov (United States)

    Dresang, Eliza T.; McClelland, Kathryn

    1999-01-01

    Describes the concept of radical change, a theoretical construct that identifies and explains books with characteristics reflecting the types of interactivity, connectivity, and access that permeate the emerging digital society. Highlights innovative ways that authors, illustrators, and designers incorporate these features into books for…

  5. Radical Negativity: Music Education for Social Justice

    Science.gov (United States)

    McLaren, Peter

    2011-01-01

    According to Hedges (2010), the real enemies of the liberal class are radical thinkers such as Noam Chomsky and Ralph Nader, iconoclastic intellectuals who possess the moral autonomy to defy the power elite. While this author agrees with Hedges, he would take this argument even further. In this article, the author argues that the real enemy of…

  6. Radical Negativity: Music Education for Social Justice

    Science.gov (United States)

    McLaren, Peter

    2011-01-01

    According to Hedges (2010), the real enemies of the liberal class are radical thinkers such as Noam Chomsky and Ralph Nader, iconoclastic intellectuals who possess the moral autonomy to defy the power elite. While this author agrees with Hedges, he would take this argument even further. In this article, the author argues that the real enemy of…

  7. Designed metalloprotein stabilizes a semiquinone radical

    Science.gov (United States)

    Ulas, Gözde; Lemmin, Thomas; Wu, Yibing; Gassner, George T.; Degrado, William F.

    2016-04-01

    Enzymes use binding energy to stabilize their substrates in high-energy states that are otherwise inaccessible at ambient temperature. Here we show that a de novo designed Zn(II) metalloprotein stabilizes a chemically reactive organic radical that is otherwise unstable in aqueous media. The protein binds tightly to and stabilizes the radical semiquinone form of 3,5-di-tert-butylcatechol. Solution NMR spectroscopy in conjunction with molecular dynamics simulations show that the substrate binds in the active site pocket where it is stabilized by metal-ligand interactions as well as by burial of its hydrophobic groups. Spectrochemical redox titrations show that the protein stabilized the semiquinone by reducing the electrochemical midpoint potential for its formation via the one-electron oxidation of the catechol by approximately 400 mV (9 kcal mol-1). Therefore, the inherent chemical properties of the radical were changed drastically by harnessing its binding energy to the metalloprotein. This model sets the basis for designed enzymes with radical cofactors to tackle challenging chemistry.

  8. Combined radical retropubic prostatectomy and rectal resection.

    Science.gov (United States)

    Klee, L W; Grmoljez, P

    1999-10-01

    To present our experience with a small series of men who underwent simultaneous radical retropubic prostatectomy and rectal resection. Three men with newly diagnosed prostate cancer were found to have concurrent rectal tumors requiring resection. All three men underwent non-nerve-sparing radical retropubic prostatectomy and abdominoperineal resection (APR) or low anterior resection (LAR) of the rectum at the same operation. In the 2 patients undergoing APR, the levators were approximated posterior to the urethra, and the bladder was secured to the pubis. The patient undergoing LAR had urinary diversion stents placed and a diverting transverse loop colostomy. All 3 patients had excellent return of urinary continence. One patient required reoperation in the early postoperative period for small bowel adhesiolysis and stoma revision. Another patient had a mild rectal anastomotic stricture and a bladder neck stricture; both were successfully treated with a single dilation. No other significant complications occurred in these patients. Radical retropubic prostatectomy can safely be performed with partial or complete rectal resection in a single operation. A few minor modifications of the standard radical retropubic prostatectomy in this setting are suggested.

  9. Free radicals in adolescent varicocele testis.

    Science.gov (United States)

    Romeo, Carmelo; Santoro, Giuseppe

    2014-01-01

    We examine the relationship between the structure and function of the testis and the oxidative and nitrosative stress, determined by an excessive production of free radicals and/or decreased availability of antioxidant defenses, which occur in the testis of adolescents affected by varicocele. Moreover, the effects of surgical treatment on oxidative stress were provided. We conducted a PubMed and Medline search between 1980 and 2014 using "adolescent," "varicocele," "free radicals," "oxidative and nitrosative stress," "testis," and "seminiferous tubules" as keywords. Cross-references were checked in each of the studies, and relevant articles were retrieved. We conclude that increased concentration of free radicals, generated by conditions of hypoxia, hyperthermia, and hormonal dysfunction observed in adolescent affected by varicocele, can harm germ cells directly or indirectly by influencing nonspermatogenic cells and basal lamina. With regard to few available data in current literature, further clinical trials on the pre- and postoperative ROS and RNS levels together with morphological studies of the cellular component of the testis are fundamental for complete comprehension of the role played by free radicals in the pathogenesis of adolescent varicocele and could justify its pharmacological treatment with antioxidants.

  10. Radical Change: Digital Age Literature and Learning.

    Science.gov (United States)

    Dresang, Eliza T.; McClelland, Kathryn

    1999-01-01

    Describes the concept of radical change, a theoretical construct that identifies and explains books with characteristics reflecting the types of interactivity, connectivity, and access that permeate the emerging digital society. Highlights innovative ways that authors, illustrators, and designers incorporate these features into books for…

  11. Customers as Partners in Radical Service Innovation

    DEFF Research Database (Denmark)

    Scupola, Ada; Nicolajsen, Hanne Westh

    2009-01-01

      Purpose- The main purpose of this paper is to investigate customer involvement and related challenges in radical service innovations in engineering consulting services Design/methodology/approach - The paper uses a case study approach and so called rich descriptions to investigate customer invo...

  12. [Radical prostatectomy--100 years of evolution].

    Science.gov (United States)

    Gofrit, Ofer N; Shalhav, Arieh L

    2008-07-01

    Prostate cancer is the most common malignant disease in men. The incidence of prostate cancer has been rising since the early 1990s. Not all men inflicted by prostate cancer will develop clinical disease. Therefore, sorting these cases is a great clinical challenge. Radical prostatectomy has undergone evolution in the last 100 years. Better understanding of the pelvic anatomy has led to a decrease in the blood loss during surgery and in the rate of urinary incontinence and erectile dysfunction following surgery. The introduction of laparoscopy in the late 1990s to this surgery provided the surgeon with a magnified multi-angle field of view and facilitated accurate dissection and suturing. Decreased damage to neighboring tissue made recovery hastier. Nevertheless, laparoscopic radical prostatectomy is a technically challenging surgery and did not become popular. The last step in the evolution of radical prostatectomy is the introduction of robotic systems for assistance in laparoscopic radical prostatectomy. A master-slave robotic system is composed of console and mechanical arms. The surgeon is provided with a magnified three dimensional view of the operative field and with two mechanical arms that accurately replicate its fingers movements. The initial results of robotic-assisted laparoscopic prostatectomy seem promising, however, long-term follow-up and comparison to open surgeries are lacking. Robotic systems were rapidly implemented in the American market and in the year 2006, 40% of all radical prostatectomies were robotic assisted. Future systems may reveal deep structures to the visualized surface by superimposing MRI images on the surgical field.

  13. Pressure effects on the radical-radical recombination reaction of photochromic bridged imidazole dimers.

    Science.gov (United States)

    Mutoh, Katsuya; Abe, Jiro

    2014-09-07

    The bridged imidazole dimers are some of the attractive fast photochromic compounds which have potential applications to the ophthalmic lenses, real-time hologram and molecular machines. The strategy for expanding their photochromic properties such as the colour variation and tuning the decolouration rates has been vigorously investigated, but the insight into the structural changes along the photochromic reactions has not been demonstrated in detail. Here, we demonstrated the pressure dependence of the radical-radical recombination reaction of the bridged imidazole dimers. The radical-radical interaction can be controlled by applying high pressure. Our results give fundamental information about the molecular dynamics of the bridged imidazole dimers, leading to the development of new functional photochromic machines and pressure-sensitive photochromic materials.

  14. Synthesis and Characterization of Ethylenedithio-MPTTF-PTM Radical Dyad as a Potential Neutral Radical Conductor

    DEFF Research Database (Denmark)

    Souto, Manuel; Bendixen, Dan; Jensen, Morten

    2016-01-01

    ) unit by a π-conjugated bridge (1) that behaves as a semiconductor under high pressure. With the aim of developing a new material with improved conducting properties, we have designed and synthesized the radical dyad 2 which was functionalized with an ethylenedithio (EDT) group in order to improve......During the last years there has been a high interest in the development of new purely-organic single-component conductors. Very recently, we have reported a new neutral radical conductor based on the perchlorotriphenylmethyl (PTM) radical moiety linked to a monopyrrolo-tetrathiafulvalene (MPTTF...... the intermolecular interactions of the tetrathiafulvalene (TTF) subunits. The physical properties of the new radical dyad 2 were studied in detail in solution to further analyze its electronic structure....

  15. Radical scavenging activity of antioxidants evaluated by means of electrogenerated HO radical.

    Science.gov (United States)

    Oliveira, Raquel; Geraldo, Dulce; Bento, Fátima

    2014-11-01

    A method is proposed and tested concerning the characterization of antioxidants by means of their reaction with electrogenerated HO radicals in galvanostatic assays with simultaneous O2 evolution, using a Pt anode fairly oxidized. The consumption of a set of species with antioxidant activity, ascorbic acid (AA), caffeic acid (CA), gallic acid (GA) and trolox (T), is described by a first order kinetics. The rate of the processes is limited by the kinetics of reaction with HO radicals and by the kinetics of charge transfer. Information regarding the scavenger activity of antioxidants is obtained by the relative value of the rate constant of the reaction between antioxidants and HO radicals, k(AO,HO)/k(O2). The number of HO radicals scavenged per molecule of antioxidant is also estimated and ranged from 260 (ascorbic acid) to 500 (gallic acid). The method is applied successfully in the characterization of the scavenger activity of ascorbic acid in a green-tea based beverage.

  16. THE RADICAL ONLINE: INDIVIDUAL RADICALIZATION PROCESSES AND THE ROLE OF THE INTERNET

    Directory of Open Access Journals (Sweden)

    Daniel Koehler

    2014-12-01

    Full Text Available This paper examines in detail the role of the Internet in individual radicalization processes of eight German former right-wing extremists. Applying Grounded Theory methodology the qualitative interviews were analyzed in several coding and re-coding phases. The findings are integrated into the existing literature afterwards. Besides well known factors, such as more effective communication, anonymity and better networking opportunities, this study found evidence that the Internet is a major driving factor to establish and foster the development of radical contrast societies (cf. Koehler, 2015 transmitting radical and violent ideologies and translating them into political activism. As a venue for information exchange, ideological development and training, the individual radicalization process was characteristically shaped or even made possible through the Internet. This paper also shows the high value of qualitative research regarding the topic in contrast to usually employed quantitative analysis of webpage content.

  17. Charge transfer from 2-aminopurine radical cation and radical anion to nucleobases: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Manoj, P. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Mohan, H. [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mittal, J.P. [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Manoj, V.M. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Aravindakumar, C.T. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India)], E-mail: CT-Aravindakumar@rocketmail.com

    2007-01-08

    Pulse radiolysis study has been carried out to investigate the properties of the radical cation of 2-aminopurine (2AP) and the probable charge transfer from the radical cation and radical anion of 2AP to natural nucleobases in aqueous medium. The radical cation of 2AP was produced by the reaction of sulfate radical anion (SO{sub 4}{sup dot-}). The time resolved absorption spectra obtained by the reaction of SO{sub 4}{sup dot-} with 2AP at neutral pH have two distinct maxima at 380 and 470nm and is assigned to the formation of a neutral radical of the form 2AP-N{sup 2}(-H){sup dot} (k{sub 2}=4.7x10{sup 9}dm{sup 3}mol{sup -1}s{sup -1} at pH 7). This neutral radical is formed from the deprotonation reaction of a very short-lived radical cation of 2AP. The transient absorption spectra recorded at pH 10.2 have two distinct maxima at 400 and 480nm and is assigned to the formation of a nitrogen centered radical (2AP-N(9){sup dot}). As the hole transport from 2AP to guanine is a highly probable process, the reaction of SO{sub 4}{sup dot-} is carried out in the presence of guanosine, adenosine and inosine. The spectrum obtained in the presence of guanosine was significantly different from that in the absence and it showed prominent absorption maxima at 380 and 470nm, and a weak broad maximum centered around 625nm which match well with the reported spectrum of a neutral guanine radical (G(-H){sup dot}). The electron transfer reaction from the radical anion of 2AP to thymine (T), cytidine (Cyd) and uridine (Urd) was also investigated at neutral pH. Among the three pyrimidines, only the transient spectrum in the presence of T gave a significant difference from the spectral features of the electron adduct of 2AP, which showed a prominent absorption maximum at 340nm and this spectrum is similar to the electron adduct spectrum of T. The preferential reduction of thymine by 2AP{sup dot-} and the oxidation of guanosine by 2AP{sup dot+} clearly follow the oxidation

  18. Signaling and Damaging Functions of Free Radicals in Aging-Free Radical Theory, Hormesis, and TOR.

    Science.gov (United States)

    Afanas'ev, Igor

    2010-10-01

    Harman's Free Radical Theory of Aging has been considered as a major theory of aging for more than 50 years. In 1956 Dr. Harman proposed that the accumulation of free radicals with the age causes the damage of biomolecules by these reactive species and the development of pathological disorders resulting in cell senescence and organismal aging. His hypothesis was supported by numerous experimental studies demonstrated an increase in free radical levels in cells and living organisms with aging. In subsequent years important discoveries of new physiological free radicals superoxide and nitric oxide have been made that led to understanding of other important functions of free radicals. It has been shown that superoxide and nitric oxide together with their diamagnetic reaction products hydrogen peroxide and peroxynitrite (all are now named reactive oxygen and nitrogen species, ROS and RNS) function as signaling species in many physiological enzymatic/gene processes. Furthermore, the disturbance of ROS and RNS physiological signaling can be an origin of various pathologies and aging. These discoveries demanded to widen original free radical theory of aging and to consider the damaging ROS signaling as an important, maybe major route to cell senescence and organismal aging. However, some experimental findings such as the extension of lifespan by calorie restriction of yeast, flies, worms, and mice, and favorable effects of physical exercises stimulated criticism of free radical theory because the expansion of lifespan accompanied in some cases by increasing oxidative stress. On these grounds such theories as Hormesis and Target of rapamycin (mTOR) theories refute the role of ROS and oxidative stress in aging. Accordingly, a major purpose of this review to show that ROS signaling is probably the most important enzyme/gene pathway responsible for the development of cell senescence and organismal aging and that ROS signaling might be considered as further development of free

  19. The Reaction Kinetics of Neutral Free Radicals and Radical Ions Studied by Laser Flash Photolysis

    OpenAIRE

    Friedline, Robert Alan

    2004-01-01

    t-Butoxyl radical has been used as a chemical model for hydrogen abstractions in many enzymatic and biological systems. However, the question has arisen as to how well this reactive intermediate mimics these systems. In addressing this concern, absolute rate constants and Arrhenius parameters for hydrogen abstraction by t-butoxyl radical were measured for a broad class of substrates including amines, hydrocarbons, and alcohols using laser flash photolysis. Initially, no obvious reactivity ...

  20. Evaluation of the radical scavenging activity of a series of synthetic hydroxychalcones towards the DPPH radical

    Directory of Open Access Journals (Sweden)

    STOYAN P. PARUSHEV

    2011-04-01

    Full Text Available Sixteen hydroxychalcones were synthesized in sufficient purity by the Claisen–Schmidt condensation between appropriate acetophenones and aromatic aldehydes. All the compounds were evaluated for their ability to scavenge the stable free 2,2-diphenyl-1-picrylhydrazyl (DPPH radical. Important structure–activity relationships were observed that strongly contribute to the knowledge for the design of DPPH radical scavenging chalcones. Relevant theoretical parameters were computed in an attempt to understand and explain the obtained experimental results.

  1. Some Pluses and Minuses of Radical Constructivism in Mathematics Education.

    Science.gov (United States)

    Ellerton, Nerida; Clements, M. A.

    1992-01-01

    Reviews the radical constructivism movement in mathematics education. Benefits identified include learner ownership of mathematical learning; importance of social interaction; and identification of principles for improving mathematics teaching and learning. Weaknesses identified include overzealousness of some radical constructivists; downplaying…

  2. Ovarian recurrence after radical trachelectomy for adenocarcinoma of the cervix.

    Science.gov (United States)

    Piketty, Mathilde; Barranger, Emmanuel; Najat, Mourra; François, Paye; Daraï, Emile

    2005-10-01

    Radical trachelectomy is an effective fertility-sparing treatment for women with early-stage cervical cancer. We describe the first reported ovarian recurrence after radical trachelectomy for stage IB1 adenocarcinoma cervical cancer.

  3. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.

    1998-01-01

    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...

  4. Pyrimidine Nucleobase Radical Reactivity in DNA and RNA.

    Science.gov (United States)

    Greenberg, Marc M

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  5. Pyrimidine nucleobase radical reactivity in DNA and RNA

    Science.gov (United States)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  6. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations

    Science.gov (United States)

    Starcke, Jan Hendrik; Wormit, Michael; Dreuw, Andreas

    2009-10-01

    Due to the close relation of the polyenyl radicals C2n+1H2n+3• and polyene radical cations C2nH2n+2•+ to the neutral linear polyenes, one may suspect their excited states to possess substantial double excitation character, similar to the famous S1 state of neutral polyenes and thus to be equally problematic for simple excited state theories. Using the recently developed unrestricted algebraic-diagrammatic construction scheme of second order perturbation theory and the equation-of-motion coupled-cluster method, the vertical excitation energies, their corresponding oscillator strengths, and the nature of the wave functions of the lowest excited electronic states of the radicals are calculated and analyzed in detail. For the polyenyl radicals two one-photon allowed states are found as D1 and D4 states, with two symmetry-forbidden D2 and D3 states in between, while in the polyene radical cations D1 and D2 are allowed and D3 is forbidden. The order of the states is conserved with increasing chain length. It is found that all low-lying excited states exhibit a significant but similar amount of doubly excited configuration in their wave functions of 15%-20%. Using extrapolation, predictions for the excitation energies of the five lowest excited states of the polyene radical cations are made for longer chain lengths.

  7. Radical surgery compared with intracavitary cesium followed by radical surgery in cervical carcinoma stage IB

    Energy Technology Data Exchange (ETDEWEB)

    Tinga, D.J.; Bouma, J.; Aalders, J.G. (Dept. of Obstetrics and Gynaecology, State Univ. Hospital, Groningen (Netherlands)); Hollema, H. (Dept. of Pathology, State Univ. Hospital, Groningen (Netherlands))

    1990-01-01

    Forty-nine patients aged {le} 45 years, with cervical carcinoma stage IB ({le} 3 cm) were treated with either primary radical surgery (n = 26), or intracavitary irradiation followed by radical surgery (n = 23). With primary surgery, ovarian function had been preserved in 15 of the 25 patients, who were alive and well. Seven of the primary surgery patients were irradiated postoperatively and 2 others with a central recurrence were cured by irradiation. One other patient, who was not irradiated postoperatively, had an intestinal metastasis and died of the disease. If any of the adverse prognostic factors (as reported in the literature) had been considered as an indication for postoperative irradiation, 17 patients instead of 7 would have been irradiated after primary radical surgery. In the comparable group of 23 patients treated by intracavitary irradiation and radical surgery (and in 4 cases postoperative irradiation as well) there was no recurrence. There was no significant statistical difference between the treatment results in the cesium + surgery group and those who underwent primary radical surgery. Young patients with early cervical carcinoma without prognostic indicators for postoperative irradiation can benefit from primary radical surgery, because their ovarian function can be preserved. (authors).

  8. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.

    Science.gov (United States)

    Grabbe, Roman; Schmitz, Ruth A

    2003-04-01

    In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.

  9. A Comparative Study of the Radical-scavenging Activity of the Phenolcarboxylic Acids Caffeic Acid, p-Coumaric Acid, Chlorogenic Acid and Ferulic Acid, With or Without 2-Mercaptoethanol, a Thiol, Using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2008-10-01

    Full Text Available Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione, a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME, as a substitute for GSH, was investigated by the induction period (IP method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R. and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO. using differential scanning calorimetry (DSC. Upon PhCOO. radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R. radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (kinh/kp declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME mixture (1:1 molar ratio (A to the calculated IP (the simple sum of phenol acid antioxidant and ME (B was investigated. Upon R. scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO. scavenging, the corresponding mixture was A/B < 1, particularly the latter was 0.7, suggesting an antagonistic effect. Upon both radicals scavenging, the A/B for the ferulic acid or chlorogenic acid

  10. Radical production from photosensitization of imidazoles

    Science.gov (United States)

    Corral Arroyo, P.; Gonzalez, L.; Steimer, S.; Aellig, R.; Volkamer, R. M.; George, C.; Bartels-Rausch, T.; Ammann, M.

    2015-12-01

    Reactions promoted by light are key in atmospheric chemistry. Some of them occur in the condensed phase of aerosols containing light absorbing organic compounds (George et al., 2015). This work explores the radical reactions initiated by near-UV light in mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) using NO as a probe molecule for HO2, by means of coated wall flow tube experiments. Citric acid may act as H atom or electron donor in condensed phase radical cycles. IC may act as a photosensitizer. The loss of NO was measured by a chemiluminescence detector. The dependence of the NO loss on the NO concentration, the IC/CA ratio in the film, relative humidity, light intensity, oxygen molar fraction were investigated as well as the HONO and NO2 yields. We also added halide salts to investigate the effect of a competing electron donor in the system and the output of halogens to the gas phase. We found a correlation between the loss of NO above the film and the molar ratio of IC/CA and the light intensity. The variation of the NO loss with oxygen corroborates a mechanism, in which the triplet excited state of IC is reduced by citric acid, to a reduced ketyl radical that transfers an electron to molecular oxygen, which in turn leads to production of HO2 radicals. Therefore, the NO loss in the gas phase is related to the production of HO2 radicals. Relative humidity had a strong impact on the HO2 output, which shows a maximum production rate at around 30%. The addition of halide ions (X- = Cl-, Br-, I-) increases the HO2 output at low concentration and decrease it at higher concentration when X2- radical ions likely scavenge HO2. We could preliminarily quantify for the first time the contribution of these processes to the oxidative capacity in the atmosphere and conclude that their role is significant for aerosol aging and potentially a significant source of halogen compounds to the gas phase.

  11. Hybrid radical energy storage device and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Gennett, Thomas; Ginley, David S.; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2016-04-26

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  12. Neutral pion and {eta} meson production in proton-proton collisions at {radical}(s)=0.9 TeV and {radical}(s)=7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Abelev, B. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Abrahantes Quintana, A. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Havana (Cuba); Adamova, D. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez u Prahy (Czech Republic); Adare, A.M. [Yale University, New Haven, CT (United States); Aggarwal, M.M. [Physics Department, Panjab University, Chandigarh (India); Aglieri Rinella, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Agocs, A.G. [KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest (Hungary); Agostinelli, A. [Dipartimento di Fisica dell' Universita and Sezione INFN, Bologna (Italy); Aguilar Salazar, S. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Ahammed, Z. [Variable Energy Cyclotron Centre, Kolkata (India); Ahmad, N.; Ahmad Masoodi, A. [Department of Physics, Aligarh Muslim University, Aligarh (India); Ahn, S.U. [Laboratoire de Physique Corpusculaire (LPC), Clermont Universite, Universite Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand (France); Gangneung-Wonju National University, Gangneung (Korea, Republic of); Akindinov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Aleksandrov, D. [Russian Research Centre Kurchatov Institute, Moscow (Russian Federation); Alessandro, B. [Sezione INFN, Turin (Italy); Alfaro Molina, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); and others

    2012-10-22

    The first measurements of the invariant differential cross sections of inclusive {pi}{sup 0} and {eta} meson production at mid-rapidity in proton-proton collisions at {radical}(s)=0.9 TeV and {radical}(s)=7 TeV are reported. The {pi}{sup 0} measurement covers the ranges 0.4radical}(s)=7 TeV in the range 0.4radical}(s)=0.9 TeV, overestimate those of {pi}{sup 0} and {eta} mesons at {radical}(s)=7 TeV, but agree with the measured {eta}/{pi}{sup 0} ratio at {radical}(s)=7 TeV.

  13. Responsibility for radical change in addressing climate change

    NARCIS (Netherlands)

    Bouvrie, des N.; Karlsson-Vinkhuyzen, S.I.S.E.; Jollands, N.

    2014-01-01

    To radically address the problem of climate change, it is not enough to modify specific attitudes and behaviors while upholding the present paradigms. This article aims to show why modifications will never bring about radical carbon emission reductions. We discuss what it implies to desire radical c

  14. α-Carbonyl Radical Cyclizatio n in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    SHA Chin-Kang; CHIU Rei-Torng; LIH Shinn-Horng; SANTHOSH K. C.; CHANG Ching-Jung; TSENG Wei-Hong; HO Wen-Yueh

    2001-01-01

    @@ Intramolecular radical cyclization reactions are now used routinely to synthesize carbocyclic and heterocyclic structures. We have reported that α-carbonyl radicals 1, generated from the corresponding iodo ketones or enones, underwent intramolecular radical cyclization smoothly to afford products 2.1, 2,3

  15. Biochemistry and pathology of radical-mediated protein oxidation

    DEFF Research Database (Denmark)

    Dean, R T; Fu, S; Stocker, R

    1997-01-01

    Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several catego...

  16. Freedom Now! Radical Jazz and Social Movements

    Directory of Open Access Journals (Sweden)

    Przemysław Pluciński

    2014-01-01

    Full Text Available Music is obviously not only an aesthetic phenomenon. It is embeddedin a dense network of social relations. However, its social involvementis rather ambiguous, particularly since the second half of the twentiethcentury. On the one hand, music is one of the main elements of culturalcapitalism and a part of the system of domination. On the other hand,music provokes, (coproduces or possibly strengthens and coexists witha number of counterdiscourses and social projects of counterhegemoniccharacter.The main objective of the paper is to examine relationships between both, revolutionary jazz and revolutionary social movements, namely the civil rights movement, but above all radical movements, especially black power movement. The crucial questions I am interested in are problems of selforganization, performative social practices, as well as alternatives elaborated by radical-oriented jazz circles in various social dimensions, for instance economic or symbolic.

  17. Regularities and Radicals in Near-rings

    Institute of Scientific and Technical Information of China (English)

    N.J. Groenewald

    2002-01-01

    Let F be a regularity for near-rings and F(R) the largest FR-regular ideal in R. In the first part of this paper, we introduce the concepts of maximal Fmodular ideals and F-primitive near-rings to characterize F(R) for any near-ring regularity F. Under certain conditions, F(R) is equal to the intersection of all the maximal F-modular ideals of R. As examples, we apply this to the different analogs of the Brown-McCoy radicals and also the Behrens radicals. In the last part of this paper, we show that for certain regularities, the class of F-primitive near-rings forms a special class.

  18. Editorial: RADICALISM AND POLITICS OF RELIGION

    Directory of Open Access Journals (Sweden)

    Editorial Al-Jami'ah: Journal of Islamic Studies

    2008-02-01

    Full Text Available Radical Islamism has become the “sexiest” issue in the international scholarship of religion since the September 11 tragedy in 2001. It has been associated with a number of terrorist attacks not only in the West but also in Muslim countries. Every single of radical Islamism has caught the interest of not only scholars and policy makers but also general public. Interestingly, the general assumption that religion is the source of peace has been seriously challenged, not by non-religious communities, but by the violent practices of particular religious groups, however small they are. Indeed, there are certain groups striving for Islam but by using acts which could give awful image on Islam itself and against humanity.

  19. Enacting a social ecology: radically embodied intersubjectivity.

    Science.gov (United States)

    McGann, Marek

    2014-01-01

    Embodied approaches to cognitive science frequently describe the mind as "world-involving," indicating complementary and interdependent relationships between an agent and its environment. The precise nature of the environment is frequently left ill-described, however, and provides a challenge for such approaches, particularly, it is noted here, for the enactive approach which emphasizes this complementarity in quite radical terms. This paper argues that enactivists should work to find common cause with a dynamic form of ecological psychology, a theoretical perspective that provides the most explicit theory of the psychological environment currently extant. In doing so, the intersubjective, cultural nature of the ecology of human psychology is explored, with the challenges this poses for both enactivist and ecological approaches outlined. The theory of behavior settings (Barker, 1968; Schoggen, 1989) is used to present a framework for resolving some of these challenges. Drawing these various strands together an outline of a radical embodied account of intersubjectivity and social activity is presented.

  20. International Radical Cystectomy Consortium: A way forward

    Directory of Open Access Journals (Sweden)

    Syed Johar Raza

    2014-01-01

    Full Text Available Robot-assisted radical cystectomy (RARC is an emerging operative alternative to open surgery for the management of invasive bladder cancer. Studies from single institutions provide limited data due to the small number of patients. In order to better understand the related outcomes, a world-wide consortium was established in 2006 of patients undergoing RARC, called the International Robotic Cystectomy Consortium (IRCC. Thus far, the IRCC has reported its findings on various areas of operative interest and continues to expand its capacity to include other operative modalities and transform it into the International Radical Cystectomy Consortium. This article summarizes the findings of the IRCC and highlights the future direction of the consortium.

  1. Mechanisms of radical removal by SO2

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Glarborg, Peter; Marshall, Paul

    2007-01-01

    It is well established from experiments in premixed, laminar flames, jet-stirred reactors, flow reactors, and batch reactors that SO2 acts to catalyze hydrogen atom removal at stoichiometric and reducing conditions. However, the commonly accepted mechanism for radical removal, SO2 + H...... that the interaction of SO, with the radical pool is more complex than previously assumed, involving HOSO and SO, as well as, at high temperatures also HSO, SH, and S. The revised mechanism with a high rate constant for H + SO2 recombination and with SO + H2O, rather than SO2 + H-2, as major products of the HOSO + H...... reaction is in agreement with a range of experimental results from batch and flow reactors, as well as laminar flames....

  2. 8-Methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase

    Directory of Open Access Journals (Sweden)

    Zani Carlos L

    2003-01-01

    Full Text Available The enzyme trypanothione reductase is a recognised drug target in trypanosomatids and has been used in the search of new compounds with potential activity against diseases such as leishmaniasis, Chagas disease and African trypanosomiasis. 8-Methoxy-naphtho [2,3-b] thiophen-4,9-quinone was selected in a screening of natural and synthetic compounds using an in vitro assay with the recombinant enzyme from Trypanosoma cruzi. Its mode of inhibition fits a non-competitive model with respect to the substrate (trypanothione and to the co-factor (NADPH, with Ki-values of 5 and 3.6 µM, respectively. When tested against human glutathione reductase, this compound did not display any significant inhibition at 100 µM, indicating a good selectivity against the parasite enzyme.

  3. Determination of the absolute configuration of perylene quinone-derived mycotoxins by measurement and calculation of electronic circular dichroism spectra and specific rotations.

    Science.gov (United States)

    Podlech, Joachim; Fleck, Stefanie C; Metzler, Manfred; Bürck, Jochen; Ulrich, Anne S

    2014-09-01

    Altertoxins I-III, alterlosins I and II, alteichin (alterperylenol), stemphyltoxins I-IV, stemphyperylenol, stemphytriol, 7-epi-8-hydroxyaltertoxin I, and 6-epi-stemphytriol are mycotoxins derived from perylene quinone, for which the absolute configuration was not known. Electronic circular dichroism (ECD) spectra were calculated for these compounds and compared with measured spectra of altertoxins I-III, alteichin, and stemphyltoxin III and with reported Cotton effects. Specific rotations were calculated and compared with reported specific rotations. The absolute configuration of all the toxins, except for stemphyltoxin IV, could thus be determined. The validity of the assignment was high whenever reported ECD data were available for comparison, and the validity was lower when the assignment was based only on the comparison of calculated and reported specific rotations. ECD spectra are intrinsically different for toxins with a biphenyl substructure and for toxins derived from dihydroanthracene.

  4. A Radical New Mach 7 Engine

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Most engines compress air, add fuel and burn it, and then allow theheated gas to expand, creating power or thrust. A radical aircraft enginedevised by ONERA, France’s equivalent of NASA, does the opposite.The Priam inverse-cycle" engine is designed for hypersonic speedsabove Mach 4 (2, 650 mph). Conventional jets do not work at suchspeeds, because the air becomes so hot when it is rammed into the

  5. Can the United States Defeat Radical Islam

    Science.gov (United States)

    2008-05-22

    or expatriate communities, identify with Al Qaeda’s radical message and find a new source of spiritual commitment in it. Albert Bandura in his...first Century. New York: Berkley Books, 2004. Bandura , Albert . “Mechanisms of moral disengagement.” Origins of Terrorism: Psychologies, Ideologies...standards that their families, their religious leaders, and their government seek to instill. This disengagement is activated, according to Bandura

  6. Oxygen radical functionalization of boron nitride nanosheets

    OpenAIRE

    MAY, PETER; Coleman, Jonathan; MCGOVERN, IGNATIUS; GOUNKO, IOURI; Satti, Amro

    2012-01-01

    PUBLISHED The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalisation of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-Vis, F...

  7. Ultraviolet photodissociation dynamics of the phenyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Song Yu; Lucas, Michael; Alcaraz, Maria; Zhang Jingsong [Department of Chemistry, University of California at Riverside, Riverside, California 92521 (United States); Brazier, Christopher [Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, California 90840 (United States)

    2012-01-28

    Ultraviolet (UV) photodissociation dynamics of jet-cooled phenyl radicals (C{sub 6}H{sub 5} and C{sub 6}D{sub 5}) are studied in the photolysis wavelength region of 215-268 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The phenyl radicals are produced from 193-nm photolysis of chlorobenzene and bromobenzene precursors. The H-atom photofragment yield spectra have a broad peak centered around 235 nm and are in good agreement with the UV absorption spectra of phenyl. The H + C{sub 6}H{sub 4} product translational energy distributions, P(E{sub T})'s, peak near {approx}7 kcal/mol, and the fraction of average translational energy in the total excess energy, , is in the range of 0.20-0.35 from 215 to 268 nm. The H-atom product angular distribution is isotropic. The dissociation rates are in the range of 10{sup 7}-10{sup 8} s{sup -1} with internal energy from 30 to 46 kcal/mol above the threshold of the lowest energy channel H +o-C{sub 6}H{sub 4} (ortho-benzyne), comparable with the rates from the Rice-Ramsperger-Kassel-Marcus theory. The results from the fully deuterated phenyl radical are identical. The dissociation mechanism is consistent with production of H +o-C{sub 6}H{sub 4}, as the main channel from unimolecular decomposition of the ground electronic state phenyl radical following internal conversion of the electronically excited state.

  8. [Ageing free radicals and cellular stress].

    Science.gov (United States)

    Barouki, Robert

    2006-03-01

    A number of theories have attempted to account for ageing processes in various species. Following the theory of Pearl, Harman suggested fifty years ago that the accumulation of oxidants could explain the alteration of physical and cognitive functions with ageing. Oxygen metabolism leads to reactive species, including free radicals, which tend to oxidize surrounding molecules such as DNA, proteins and lipids. As a consequence various functions of cells and tissues can be altered, leading to DNA instability, protein denaturation and accumulation of lipid byproducts. Oxidative stress is an adaptive process which is triggered upon oxidant accumulation and which comprises the induction of protective and survival functions. Experimental evidence suggests that the ageing organism is in a state of oxidative stress, which supports the free radical theory. A number of other theories have been proposed ; some of these are actually compatible with the free radical theory. Caloric restriction is among the best models to increase life span in many species. While the relationship between caloric restriction and corrected metabolic rate is controversial, the decrease in ROS production by mitochondria appears to be experimentally supported. The ROS and mitochondrial theories of ageing appear to be compatible. Genetic models of increased life span, particularly those affecting the Foxo pathway, are usually accompanied by an increased resistance to oxidative insult. The free radical theory is not consistent with programmed senescence theories involving the cell division dependent decrease in telomere length ; however, oxidants are known to alter telomere structure. An appealing view of the role of oxidative stress in ageing is the trade-off principle which states that a phenotypic trait can be evolutionarily conserved because of its positive effects on development, growth or fertility, and despite its negative effect on somatic functions and ageing. It is likely that most cellular

  9. How Hume's Philosophy Informed Radical Behaviorism.

    Science.gov (United States)

    Nuzzolilli, Andrew E; Diller, James W

    2015-05-01

    The present paper analyzes consistencies between the philosophical systems of David Hume and B. F. Skinner, focusing on their conceptualization of causality and attitudes about scientific behavior. The ideas that Hume initially advanced were further developed in Skinner's writings and shaped the behavior-analytic approach to scientific behavior. Tracing Skinner's logical antecedents allows for additional historical and philosophical clarity when examining the development of radical behaviorism.

  10. AQUEOUS STABLE FREE RADICAL POLYMERIZATION PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Andrea R. Szkurhan; Michael K. Georges

    2004-01-01

    An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations,under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process.

  11. Preventing Radicalization and Discrimination in Aarhus

    Directory of Open Access Journals (Sweden)

    Toke Agershou

    2014-12-01

    Full Text Available Work in this area began as a pilot project in 2007. The aim of the project was to prevent the radicalization - political as well as religious - of young people thereby promoting safety and well-being. On the 1st of January 2011, the project, its operations and leadership were passed over to SSP Aarhus. (SSP is an alliance between Social Services, Schools and The Police

  12. Internet Radicalization: Actual Threat or Phantom Menace?

    Science.gov (United States)

    2012-09-01

    morphine of ideas—self-induced at initiation, but involuntary once hooked. In correlation with this picture, juveniles have been identified at risk...network that she ultimately sought to assist. 5. Mohammed Hassan Khalid: Mohammed Hassan Khalid was radicalized as a juvenile and is believed to be...Sulejah Hadzovic Betim Kaziu and Sulejah Hadzovic came from Muslim families and grew up in Brooklyn, New York. Kaziu was convicted and sentenced to

  13. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance.

    Science.gov (United States)

    Minato, Yusuke; Fassio, Sara R; Kirkwood, Jay S; Halang, Petra; Quinn, Matthew J; Faulkner, Wyatt J; Aagesen, Alisha M; Steuber, Julia; Stevens, Jan F; Häse, Claudia C

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology.

  14. Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR on vibrio cholerae metabolism, motility and osmotic stress resistance.

    Directory of Open Access Journals (Sweden)

    Yusuke Minato

    Full Text Available The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I. Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog, transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology.

  15. Chemical Nonlinearities and Radical Pair Lifetime Estimation

    Science.gov (United States)

    Robinson, Gregory

    2013-03-01

    Much attention has recently developed around chemical reactions that depend on applied static magnetic fields as weak as earth's. This interest is largely motivated by experiments that implicate the role of spin-selective radical pair recombination in biological magnetic sensing. Existing literature uses a straightforward calculation to approximate the expected lifetime of coherent radical pairs as a function of the minimum RF amplitude that is observed to disrupt magnetic navigation, apparently by decohering the radical pair via electronic Zeeman excitations. But we show that chemical nonlinearities can preclude direct computation of coherent pair lifetime without considering the cellular signalling mechanisms involved, and discuss whether it can explain the surprising fragility of some animals' compass sense. In particular, we demonstrate that an autocatalytic cycle can introduce threshold effects on the disruption sensitivity to applied oscillatory magnetic fields. We will show examples in the mean-field limit and consider the consequences of noise and fluctuations in the Freidlin-Wentzell picture of perturbed dynamical systems.

  16. Complications of Radical Cystectomy and Orthotopic Reconstruction

    Directory of Open Access Journals (Sweden)

    Wei Shen Tan

    2015-01-01

    Full Text Available Radical cystectomy and orthotopic reconstruction significant morbidity and mortality despite advances in minimal invasive and robotic technology. In this review, we will discuss early and late complications, as well as describe efforts to minimize morbidity and mortality, with a focus on ileal orthotopic bladder substitute (OBS. We summarise efforts to minimize morbidity and mortality including enhanced recovery as well as early and late complications seen after radical cystectomy and OBS. Centralisation of complex cancer services in the UK has led to a fall in mortality and high volume institutions have a significantly lower rate of 30-day mortality compared to low volume institutions. Enhanced recovery pathways have resulted in shorter length of hospital stay and potentially a reduction in morbidity. Early complications of radical cystectomy occur as a direct result of the surgery itself while late complications, which can occur even after 10 years after surgery, are due to urinary diversion. OBS represents the ideal urinary diversion for patients without contraindications. However, all patients with OBS should have regular long term follow-up for oncological surveillance and to identify complications should they arise.

  17. Removal of NOx by radical injection

    Institute of Scientific and Technical Information of China (English)

    LIN He; GAO Xiang; LUO Zhongyang; CEN Kefa; PEI Meixiang; HUANG Zhen

    2004-01-01

    Removal of NOx ( DeNOx, NOx is the total of NO and NO2) from flue gas by radical injection has been investigated . The discharge characteristics were examined and the steady streamer corona was acquired by adjusting the nozzle gases properly. It was found that an increase in the voltage resulted in a decrease in the NO concentration and the concentration of the NO2 increased at low voltages but decreased as the voltage rose to a certain level. The DeNOx efficiency increased as the applied voltage rose and reached a maximum of 70% when the voltage approached the breakdown voltage. The hypothetical mechanism of NOx removal suggested that the radicals formed in the discharge process converted the NO and NO2 into acidic species. The Monte Carlo method was used to calculate the rate coefficients and the productivity of the radicals, and then the concentrations of both NO and NO2 and the DeNOx efficiencies were calculated with chemical kinetics. The calculated DeNOx efficiencies were comparable with the experimental DeNOx efficiencies at low voltages, but were lower at high voltages.

  18. Radical induction theory of ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Jay Pravda

    2005-01-01

    To propose a new pathogenesis called Radical Induction to explain the genesis and progression of ulcerative colitis (UC). UC is an inflammatory bowel disease. Colonic inflammation in UC is mediated by a buildup of white blood cells (WBCs) within the colonic mucosal lining; however,to date there is no answer for why WBCs initially enter the colonic mucosa to begin with. A new pathogenesis termed "Radical Induction Theory" is proposed to explain this and states that excess un-neutralized hydrogen peroxide, produced within colonic epithelial cells as a result of aberrant cellular metabolism, diffuses through cell membranes to the extracellular space where it is converted to the highly damaging hydroxyl radical resulting in oxidative damage to structures comprising the colonic epithelial barrier. Once damaged, the barrier is unable to exclude highly immunogenic fecal bacterial antigens from invading the normally sterile submucosa. This antigenic exposure provokes an initial immune response of WBC infiltration into the colonic mucosa. Once present in the mucosa,WBCs are stimulated to secrete toxins by direct exposure to fecal bacteria leading to mucosal ulceration and bloody diarrhea characteristic of this disease.

  19. Radical correction of Budd-Chiari syndrome

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-qiang; WANG Zhong-gao; MENG Qing-you; SANG Hong-fei; QIAN Ai-min; DUAN Peng-fei; RONG Jian-jie

    2007-01-01

    Background Interventional therapy is widely accepted as the first choice for the treatment of the Budd-Chiari syndrome,but the use of radical correctional therapy should not be discarded. This study describes radical correction by controlling bleeding from distal end of pathological segment of the inferior vena cava (IVC) and discusses potential surgical errors and postoperative complications.Methods Of the 216 patients in the study, 78 were treated with simple membranectomy, 64 with dissection of the pathological segment of the IVC and vascular prosthesis or pericardial patch plasty, 60 with resection of the pathological segment of the IVC and orthotopic graft transplantation with vascular prosthesis, and 14 with resection of the occlusive main hepatic vein and its upper IVC, hepatic venous outflow plasty and vascular prosthesis orthotopic graft transplantation from the hepatic venous entrance to the IVC of right atrial ostium.Results Except 14 cases who were discharged after hepatic vein outflow plasty, four cases died postoperatively, and 198 patients were discharged without complications. The symptoms of 15 patients were relieved partially and 2 without any change. There were no deaths intraoperatively. Of the 112 cases who were followed up for 72 months, 13 suffered from a relapse.Conclusions Radical correction is a beneficial therapy in the treatment of Budd-Chiari syndrome.

  20. The Spectroscopy of the Formyl Radical.

    Science.gov (United States)

    Adamson, George William

    Fluorescence-excitation and stimulated emission pumping (SEP) spectroscopies were used to study the properties of photolytically generated, gas phase, formyl radical (HCO). This work focused on the ground doublet electronic state, between 4000-11 200cm^{-1} of energy, and the second excited doublet electronic state, between 38 590-38 750cm^{-1 } of energy. From the fluorescence-excitation spectrum the rotational, centrifugal distortion, and spin -rotational constants were determined for the vibrationless level of the second excited doublet electronic state. From the stimulated emission pumping spectrum vibrational term values, rotational constants, spin-rotational constants, and rotational linewidths were determined for ground electronic state vibrational levels--both above and below the dissociation limit for formyl radical dissociating to hydrogen atom and carbon monoxide. The systematics of the dissociation lifetimes, inferred from the observed rotational linewidths, for rovibrational levels of the ground electronic state were studied. The dissociating lifetimes were found to be strongly correlated with bending vibrational excitation and the amount of angular momentum about the minimum inertial axis of formyl radical. The observed dissociation lifetimes indicates the need for an upward adjustment of the currently accepted dissociation limit and barrier height. (Copies available exclusively from MIT Libraries, Rm. 14-0951, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).