International Nuclear Information System (INIS)
Baranová, Lucia; Orendáčová, Alžbeta; Čižmár, Erik; Tarasenko, Róbert; Tkáč, Vladimír; Orendáč, Martin; Feher, Alexander
2016-01-01
Organo-metallic compounds Cu(en)(H 2 O) 2 SO 4 (en=C 2 H 8 N 2 ) and Cu(tn)Cl 2 (tn=C 3 H 10 N 2 ) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k B ≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H 2 O) 2 SO 4 at T C =0.9 K while hidden in Cu(tn)Cl 2 . A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H 2 O) 2 SO 4 (1) and Cu(tn)Cl 2 (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Energy Technology Data Exchange (ETDEWEB)
Baranová, Lucia [Civil Engineering Faculty, Department of Applied Mathematics, Technical University of Košice, Vysokoškolská 4 SK-042 00, Košice (Slovakia); Orendáčová, Alžbeta, E-mail: alzbeta.orendacova@upjs.sk [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Čižmár, Erik [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Tarasenko, Róbert; Tkáč, Vladimír [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5 12116, Prague (Czech Republic); Orendáč, Martin; Feher, Alexander [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia)
2016-04-15
Organo-metallic compounds Cu(en)(H{sub 2}O){sub 2}SO{sub 4} (en=C{sub 2}H{sub 8}N{sub 2}) and Cu(tn)Cl{sub 2} (tn=C{sub 3}H{sub 10}N{sub 2}) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k{sub B}≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H{sub 2}O){sub 2}SO{sub 4} at T{sub C}=0.9 K while hidden in Cu(tn)Cl{sub 2}. A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H{sub 2}O){sub 2}SO{sub 4} (1) and Cu(tn)Cl{sub 2} (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.
Dipolar local field in homogeneously magnetized quasi-two-dimensional crystals
International Nuclear Information System (INIS)
Leon, H; Estevez-Rams, E
2009-01-01
A formalism to calculate the dipolar local field in homogeneously magnetized quasi-two-dimensional (Q2D) crystals is comprehensively presented. Two fundamental tests for this formalism are accomplished: the transition from the Q2D quantities to the corresponding 3D ones; and the recovering of the macroscopic quantities of the 3D continuum theory. The additive separation between lattice and shape contributions to the local field allows an unambiguous interpretation of the respective effects. Calculated demagnetization tensors for square and circular lateral geometries of dipole layers show that for a single crystal layer an extremely thin film, but still with a finite thickness, is a better physical representation than a strictly 2D plane. Distinct close-packed structures are simulated and calculations of the local field at the nodes of the stacked 2D lattices allow one to establish the number of significantly coupled dipole layers, depending on the ratio between the interlayer distance and the 2D lattice constant. The conclusions drawn are of interest for the study of the dipolar interaction in magnetic ultrathin films and other nanostructured materials, where magnetic nanoparticles are embedded in non-magnetic matrices.
Magnetic structure of the quasi-two-dimensional compound CoTa{sub 2}O{sub 6}
Energy Technology Data Exchange (ETDEWEB)
Kinast, E.J. [Universidade Estadual do Rio Grande do Sul, Rua 7 de Setembro, 1156, 90010-191 Porto Alegre (Brazil); Santos, C.A. dos [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre (Brazil); Schmitt, D. [Laboratoire de Geophysique Interne et Tectonophysique, Universite Joseph Fourier, B. P. 53, 38041 Grenoble Cedex 9 (France); Isnard, O., E-mail: olivier.isnard@grenoble.cnrs.f [Institut Neel, CNRS/Universite Jospeh Fourier, avenue des martyrs B. P. 166, 38042 Grenoble Cedex 9 (France); Gusmao, M.A.; Cunha, J.B.M. da [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre (Brazil)
2010-02-18
We report on a detailed investigation of magnetic properties of CoTa{sub 2}O{sub 6} using several techniques: neutron and X-ray diffraction, specific-heat, magnetic susceptibility, and magnetization measurements. The compound shows quasi-two-dimensional behavior due to its layered structure of alternating Co-O and Ta-O planes. We find that all magnetic moments lie entirely in the Co-O planes, along easy axes determined by the orientations of oxygen octahedra that surround the Co ions. The easy axes in successive magnetic planes have relative orientations that differ by 90{sup o}. Antiferromagnetic ordering is observed below 6.6 K, with propagation vectors ({+-}1/4,1/4,1/4) associated to the two non-equivalent sets of Co{sup 2+} ions, whose magnetic moments are perpendicularly oriented.
Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system
Brandt, F. T.; Sánchez-Monroy, J. A.
2018-03-01
The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.
Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.
2018-01-01
Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.
Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.
2005-12-01
We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.
Dumas, Jean; Guyot, Hervé; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-04-01
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.
Energy Technology Data Exchange (ETDEWEB)
Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-04-30
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo{sub 6}O{sub 17} . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations.
International Nuclear Information System (INIS)
Dumas, Jean; Guyot, Herve; Balaska, Hafid; Marcus, Jacques; Vignolles, David; Sheikin, Ilya; Audouard, Alain; Brossard, Luc; Schlenker, Claire
2004-01-01
Magnetic torque and magnetoresistance measurements have been performed in high magnetic field on the quasi-two-dimensional charge density wave (CDW) oxide bronze KMo 6 O 17 . Several anomalies have been found below 28 T either on the torque or on the magnetoresistance data. They can be attributed predominantly to orbital effects. Magnetoresistance data obtained up to 55 T show that a transition takes place above 30 T. This transition may be due to the Pauli coupling. The new field-induced density wave state exhibits Shubnikov-de Haas (SdH) oscillations
Lebed, A. G.
2018-04-01
We theoretically study the orbital destructive effect against superconductivity in a parallel magnetic field in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO or LOFF) phase at zero temperature in a quasi-two-dimensional (Q2D) conductor. We demonstrate that at zero temperature a special parameter, λ =l⊥(H ) /d , is responsible for strength of the orbital effect, where l⊥(H ) is a typical "size" of the quasiclassical electron orbit in a magnetic field and d is the interplane distance. We discuss applications of our results to the existing experiments on the FFLO phase in the organic Q2D conductors κ -(ET) 2Cu (NCS) 2 and κ -(ET) 2Cu [N (CN) 2] Cl .
Magnetic ground state of quasi-two-dimensional organic conductor, τ-(EDO-S,S-DMEDT-TTF)2(AuCl2)1+y
International Nuclear Information System (INIS)
Nakanishi, T; Yasuzuka, S; Yoshino, H; Fujiwara, H; Sugimoto, T; Nishio, Y; Kajita, K; Anyfantis, G A; Papavassiliou, G C; Murata, K
2006-01-01
To understand the interplay between transport and magnetic properties, quasi-two-dimensional (Q2D) organic conductor τ-(EDO-S,S-DMEDTTTF) 2 (AuCl 2 ) 1+y was studied by measurements of electric resistivity ( ρ a , ρ c ), magnetoresistance (MR), susceptibility (χ) and specific heat (C) in the temperature region between 1 K and 300 K. In spite of the fact that the drastic changes were observed in ρ a , ρ c , MR and χ at T C = 20 K, no anomaly was seen in C. The concentration of spins estimated from M-H curve is about 360 ppm, which is difficult to detect anomaly in C. These data suggest that the number of spins is very small in the ground state like spin-glass system
Czech Academy of Sciences Publication Activity Database
Smrčka, Ludvík
2016-01-01
Roč. 77, Mar (2016), s. 108-113 ISSN 1386-9477 Institutional support: RVO:68378271 Keywords : lateral superlattices * commensurability oscillations * in-plane magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 2.221, year: 2016
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Yamamoto, Etsuji
2018-02-01
The critical behavior of dc magnetization in the uranium ferromagnet URhAl with the hexagonal ZrNiAl-type crystal structure has been studied around the ferromagnetic transition temperature TC. The critical exponent β for the temperature dependence of the spontaneous magnetization below TC,γ for the magnetic susceptibility, and δ for the magnetic isotherm at TC, have been obtained with a modified Arrott plot, a Kouvel-Fisher plot, the critical isotherm analysis, and the scaling analysis. We have determined the critical exponents as β =0.287 ±0.005 , γ =1.47 ±0.02 , and δ =6.08 ±0.04 by the scaling analysis and the critical isotherm analysis. These critical exponents satisfy the Widom scaling law δ =1 +γ /β . URhAl has strong uniaxial magnetic anisotropy, similar to its isostructural UCoAl that has been regarded as a three-dimensional (3D) Ising system in previous studies. However, the universality class of the critical phenomenon in URhAl does not belong to the 3D Ising model (β =0.325 , γ =1.241 , and δ =4.82 ) with short-range exchange interactions between magnetic moments. The determined exponents can be explained with the results of the renormalization group approach for a two-dimensional (2D) Ising system coupled with long-range interactions decaying as J (r ) ˜r-(d +σ ) with σ =1.44 . We suggest that the strong hybridization between the uranium 5 f and rhodium 4 d electrons in the U-RhI layer in the hexagonal crystal structure is a source of the low-dimensional magnetic property. The present result is contrary to current understandings of the physical properties in a series of isostructural UTX uranium ferromagnets (T: transition metals, X: p -block elements) based on the 3D Ising model.
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Akaki, M.; Tozawa, J.; Akahoshi, D.; Kuwahara, H.
2009-05-01
We have investigated the magnetic and dielectric properties of Ca2CoSi2O7 crystal. The dielectricity and magnetism of Ca2CoSi2O7 are strongly coupled below a canted antiferromagnetic transition temperature (TN). Magnetic fields induce electric polarization below TN. Interestingly, the magnetic-field-induced electric polarization is detected even without poling electric fields. Below TN, a canted antiferromagnetic-paramagnetic transition is induced by magnetic fields. The large magnetocapacitance is observed around TN. The origin of the large magnetocapacitance is due to the magnetic-field-induced the canted antiferromagnetic-paramagnetic transition.
Chen, Xi; Lin, Zheng-Zhe
2018-05-01
Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.
Quasi-two-dimensional thermoelectricity in SnSe
Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.
2018-01-01
Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.
Few helium atoms in quasi two-dimensional space
International Nuclear Information System (INIS)
Kilic, Srecko; Vranjes, Leandra
2003-01-01
Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established
Electrical conductivity of quasi-two-dimensional foams.
Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina
2015-04-01
Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.
Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures
Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.
2018-01-01
We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.
Critical phenomena in quasi-two-dimensional vibrated granular systems.
Guzmán, Marcelo; Soto, Rodrigo
2018-01-01
The critical phenomena associated to the liquid-to-solid transition of quasi-two-dimensional vibrated granular systems is studied using molecular dynamics simulations of the inelastic hard sphere model. The critical properties are associated to the fourfold bond-orientational order parameter χ_{4}, which measures the level of square crystallization of the system. Previous experimental results have shown that the transition of χ_{4}, when varying the vibration amplitude, can be either discontinuous or continuous, for two different values of the height of the box. Exploring the amplitude-height phase space, a transition line is found, which can be either discontinuous or continuous, merging at a tricritical point and the continuous branch ends in an upper critical point. In the continuous transition branch, the critical properties are studied. The exponent associated to the amplitude of the order parameter is β=1/2, for various system sizes, in complete agreement with the experimental results. However, the fluctuations of χ_{4} do not show any critical behavior, probably due to crossover effects by the close presence of the tricritical point. Finally, in quasi-one-dimensional systems, the transition is only discontinuous, limited by one critical point, indicating that two is the lower dimension for having a tricritical point.
Segregation in quasi-two-dimensional granular systems
International Nuclear Information System (INIS)
Rivas, Nicolas; Cordero, Patricio; Soto, Rodrigo; Risso, Dino
2011-01-01
Segregation for two granular species is studied numerically in a vertically vibrated quasi-two-dimensional (quasi-2D) box. The height of the box is smaller than two particle diameters so that particles are limited to a submonolayer. Two cases are considered: grains that differ in their density but have equal size, and grains that have equal density but different diameters, while keeping the quasi-2D condition. It is observed that in both cases, for vibration frequencies beyond a certain threshold-which depends on the density or diameter ratios-segregation takes place in the lateral directions. In the quasi-2D geometry, gravity does not play a direct role in the in-plane dynamics and gravity does not point to the segregation directions; hence, several known segregation mechanisms that rely on gravity are discarded. The segregation we observe is dominated by a lack of equipartition between the two species; the light particles exert a larger pressure than the heavier ones, inducing the latter to form clusters. This energy difference in the horizontal direction is due to the existence of a fixed point characterized by vertical motion and hence vanishing horizontal energy. Heavier and bigger grains are more rapidly attracted to the fixed point and the perturbations are less efficient in taking them off the fixed point when compared to the lighter grains. As a consequence, heavier and bigger grains have less horizontal agitation than lighter ones. Although limited by finite size effects, the simulations suggest that the two cases we consider differ in the transition character: one is continuous and the other is discontinuous. In the cases where grains differ in mass on varying the control parameter, partial segregation is first observed, presenting many clusters of heavier particles. Eventually, a global cluster is formed with impurities; namely lighter particles are present inside. The transition looks continuous when characterized by several segregation order
International Nuclear Information System (INIS)
Zimbovskaya, Natalya A
2011-01-01
We theoretically analyze weakly attenuated electromagnetic waves in quasi-two-dimensional (Q2D) metals in high magnetic fields. Within the chosen geometry, the magnetic field is directed perpendicular to the conducting layers of a Q2D conductor. We have shown that longitudinal collective modes could propagate along the magnetic field provided that the Fermi surface is moderately corrugated. The considered wave speeds strongly depend on the magnetic field magnitude. Also, we have analyzed interactions of these quantum waves with sound waves of suitable polarization and propagation direction, and we have shown that such interaction may bring significant changes to the low temperature magnetoacoustic response of Q2D conductors.
Correlation induced electron-hole asymmetry in quasi- two-dimensional iridates.
Pärschke, Ekaterina M; Wohlfeld, Krzysztof; Foyevtsova, Kateryna; van den Brink, Jeroen
2017-09-25
The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates Ba 2 IrO 4 and Sr 2 IrO 4 to La 2 CuO 4 points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different. An added electron forms a spin polaron, similar to the cuprates, but the situation of a removed electron is far more complex. Many-body 5d 4 configurations form which can be singlet and triplet states of total angular momentum that strongly affect the hole motion. This not only has ramifications for the interpretation of (inverse-)photoemission experiments but also demonstrates that correlation physics renders electron- and hole-doped iridates fundamentally different.Some iridate compounds such as Sr 2 IrO 4 have electronic and atomic structures similar to quasi-2D copper oxides, raising the prospect of high temperature superconductivity. Here, the authors show that there is significant electron-hole asymmetry in iridates, contrary to expectations from the cuprates.
Heisenberg Model in a Rotating Magnetic Field
Institute of Scientific and Technical Information of China (English)
LIN Qiong-Gui
2005-01-01
We study the Heisenberg model under the influence of a rotating magnetic field. By using a time-dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are calculated, and are expressed in terms of the solid angle subtended by the closed trace of the total spin vector, as well as in terms of those of the individual spins.
Crucial role of sidewalls in velocity distributions in quasi-two-dimensional granular gases
van Zon, J.S.; Kreft, J.; Goldman, D.L.; Miracle, D.; Swift, J. B.; Swinney, H. L.
2004-01-01
The significance of sidewalls which yield velocity distributions with non-Gaussian tails and a peak near zero velocity in quasi-two-dimensional granular gases, was investigated. It was observed that the particles gained energy only through collisions with the bottom of the container, which was not
Institute of Scientific and Technical Information of China (English)
YANG YongHong; WANG YongGang; LIU Mei; WANG Jin
2002-01-01
Two kinds of spin-depcndcnt scattering effects (magnetic-iinpurity and spin-orbit scatterings) axe investi-gated theoretically in a quasi-two-dimensional (quasi-2D) disordered electron system. By making use of the diagrammatictechniques in perturbation theory, we have calculated the dc conductivity and magnetoresistance due to weak-localizationeffects, the analytical expressions of them are obtained as functions of the interlayer hopping energy and the charac-teristic times: elastic, inelastic, magnetic and spin-orbit scattering times. The relevant dimensional crossover behaviorfrom 3D to 2D with decreasing the interlayer coupling is discussed, and the condition for the crossover is shown to bedependent on the aforementioned scattering times. At low temperature there exists a spin-dcpendent-scattering-induccddimensional crossover in this system.
Charge density wave properties of the quasi two-dimensional purple molybdenum bronze KMo 6O 17
Balaska, H.; Dumas, J.; Guyot, H.; Mallet, P.; Marcus, J.; Schlenker, C.; Veuillen, J. Y.; Vignolles, D.
2005-06-01
The purple molybdenum bronze KMo 6O 17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic CDW state. Electron spectroscopy (ARUPS), Scanning Tunnelling Microscopy (STM) and spectroscopy (STS) as well as high magnetic field studies are reported. ARUPS studies corroborate the model of the hidden nesting and provide a value of the CDW vector in good agreement with other measurements. STM studies visualize the triple- q CDW in real space. This is consistent with other measurements of the CDW vector. STS studies provide a value of several 10 meV for the average CDW gap. High magnetic field measurements performed in pulsed fields up to 55 T establish that first order transitions to smaller gap states take place at low temperature. These transitions are ascribed to Pauli type coupling. A phase diagram summarizing all observed anomalies and transitions is presented.
Quasi-two-dimensional metallic hydrogen in diphosphide at a high pressure
International Nuclear Information System (INIS)
Degtyarenko, N. N.; Mazur, E. A.
2016-01-01
The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH k are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH 3 , a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.
Boundary effects in a quasi-two-dimensional driven granular fluid.
Smith, N D; Smith, M I
2017-12-01
The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.
Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates.
Chaudhuri, M; Semenov, I; Nosenko, V; Thomas, H M
2016-05-01
A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.
Hall Conductivity in a Quasi-Two-Dimensional Disordered Electron System
Institute of Scientific and Technical Information of China (English)
YANG Yong-Hong; WANG Yong-Gang; LIU Mei
2002-01-01
By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two-dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the Kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction t,o the Hall coefficient.
Elementary excitations and quasi-two-dimensional behaviour in a GaAs field effect transistor
International Nuclear Information System (INIS)
Tomak, M.; Sernelius, B.E.; Berggren, K.F.
1983-09-01
The elementary excitation modes in a narrow channel of conducting electrons in a special GaAs FET are evaluated within the RPA-approximation. The system is found to be quasi-two-dimensional when the width of the channel is small, i.e. there are collective excitations with a dispersion very close to the strictly 2D form. In addition to the low-lying quasi-2D-mode there are higher collective modes associated with the sub-band structure of the device. (author)
Thermoelectric power and topological transitions in quasi-two-dimensional electronic systems
International Nuclear Information System (INIS)
Blanter, Ya.M.; Pantsulaya, A.V.; Varlamov, A.A.
1991-05-01
Electron-impurity relaxation time and the thermoelectric power (TEP) of quasi-two-dimensional electron gas are calculated. Two cases are discussed: the isotropic spectrum and the electronic topological transition (ETT) of the ''neck-breaking'' type. Methods of thermal diagramatic technique are used for the calculation. It is found that the TEP in the vicinity of the ETT greatly exceeds its background value. The results of experimental investigations of the TEP in the metal-oxide-semiconductor structures are compared with the predictions of the proposed theory. (author). 17 refs, 5 figs
Transient response in granular quasi-two-dimensional bounded heap flow.
Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B
2017-10-01
We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.
Quasi-two-dimensional metallic hydrogen in diphosphide at a high pressure
Energy Technology Data Exchange (ETDEWEB)
Degtyarenko, N. N.; Mazur, E. A., E-mail: eugen-mazur@mail.ru [National Research Nuclear University MEPhI (Russian Federation)
2016-08-15
The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH{sub k} are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH{sub 3}, a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.
Kinetic Theory of a Confined Quasi-Two-Dimensional Gas of Hard Spheres
Directory of Open Access Journals (Sweden)
J. Javier Brey
2017-02-01
Full Text Available The dynamics of a system of hard spheres enclosed between two parallel plates separated a distance smaller than two particle diameters is described at the level of kinetic theory. The interest focuses on the behavior of the quasi-two-dimensional fluid seen when looking at the system from above or below. In the first part, a collisional model for the effective two-dimensional dynamics is analyzed. Although it is able to describe quite well the homogeneous evolution observed in the experiments, it is shown that it fails to predict the existence of non-equilibrium phase transitions, and in particular, the bimodal regime exhibited by the real system. A critical revision analysis of the model is presented , and as a starting point to get a more accurate description, the Boltzmann equation for the quasi-two-dimensional gas has been derived. In the elastic case, the solutions of the equation verify an H-theorem implying a monotonic tendency to a non-uniform steady state. As an example of application of the kinetic equation, here the evolution equations for the vertical and horizontal temperatures of the system are derived in the homogeneous approximation, and the results compared with molecular dynamics simulation results.
On the magnetism of Heisenberg double-layer antiferromagnets
International Nuclear Information System (INIS)
Uijen, C.M.J. van.
1980-01-01
The author investigates the sublattice magnetization and the susceptibility of the double-layer Heisenberg antiferromagnet K 3 M 2 F 7 by employing the techniques of elastic and quasi-elastic critical magnetic scattering of neutrons. (G.T.H.)
International Nuclear Information System (INIS)
Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef
2016-01-01
The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.
Low-temperature specific heat of the quasi-two-dimensional charge-density wave compound KMo6O17
Wang, Junfeng; Xiong, Rui; Yin, Di; Li, Changzhen; Tang, Zheng; Wang, Ququan; Shi, Jing; Wang, Yue; Wen, Haihu
2006-05-01
Low temperature specific heat (Cp) of quasi-two-dimensional charge-density wave (CDW) compound KMo6O17 has been studied by a relaxation method from 2to48K under zero and 12T magnetic fields. The results show that no specific heat anomaly is found at 16K under both zero and 12T magnetic fields, although an anomaly is clearly observed in the resistivity and magnetoresistance measurements. From the data between 2 and 4K , the density of states at Fermi level is estimated as 0.2eV-1permolecule and the Debye temperature is extracted to be 418K . A bump appearing in Cp/T3 is found between 4 and 48K centered around 12.5-15K , indicating that the phason excitations contribute to the total specific heat similarly as in quasi-one-dimensional CDW conductors. Using a modified Debye model, a pinning frequency of 0.73THz for KMo6O17 is estimated from the phason contribution.
Complex Quasi-Two-Dimensional Crystalline Order Embedded in VO2 and Other Crystals
Lovorn, Timothy; Sarker, Sanjoy K.
2017-07-01
Metal oxides such as VO2 undergo structural transitions to low-symmetry phases characterized by intricate crystalline order, accompanied by rich electronic behavior. We derive a minimal ionic Hamiltonian based on symmetry and local energetics which describes structural transitions involving all four observed phases, in the correct order. An exact analysis shows that complexity results from the symmetry-induced constraints of the parent phase, which forces ionic displacements to form multiple interpenetrating groups using low-dimensional pathways and distant neighbors. Displacements within each group exhibit independent, quasi-two-dimensional order, which is frustrated and fragile. This selective ordering mechanism is not restricted to VO2 : it applies to other oxides that show similar complex order.
Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis
International Nuclear Information System (INIS)
Chomaz, L; Corman, L; Yefsah, T; Desbuquois, R; Dalibard, J
2012-01-01
Absorption imaging with quasi-resonant laser light is a commonly used technique for probing ultra-cold atomic gases in various geometries. In this paper, we investigate some non-trivial aspects of this method when applying the method to in situ diagnosis of a quasi-two-dimensional (2D) gas. Using Monte Carlo simulations we study the modification of the absorption cross-section of a photon when it undergoes multiple scattering in the gas. We determine the variations of the optical density with various parameters, such as the detuning of the light from the atomic resonance and the thickness of the gas. We compare our results to the known 3D result (the Beer-Lambert law) and outline the specific features of the 2D case. (paper)
International Nuclear Information System (INIS)
Pastoriza, H.; Arribere, A.; Goffman, M.F.; Cruz, F. de la; Mitzi, D.B.; Kapitulnik, A.
1994-01-01
AC susceptibility and dc magnetization measurements on Bi 2 Sr 2 CaCu 2 O 8 (BSCCO) single crystals in a wide range of temperatures clearly show that below the dc irreversibility line the vortex system loss the long range order in the c direction. The susceptibility data taken at 7 Hz show the different nature of two dissipation peaks: One related to the interplane currents at temperatures well below the dc irreversibility line and the other associated with the intraplane ones at temperatures above that line. In this sense the irreversibility line corresponds to the temperature where quasi-two dimensional vortices are depinned. (orig.)
Electron-phonon heat exchange in quasi-two-dimensional nanolayers
Anghel, Dragos-Victor; Cojocaru, Sergiu
2017-12-01
We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film's surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron-phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (Te for the electrons temperature and Tph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, Te) or (d, Tph), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find P ∝ Te3.5 - Tph3.5. From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.
Sawada, A.; Koga, T.
2017-02-01
We have developed a method to calculate the weak localization and antilocalization corrections based on the real-space simulation, where we provide 147 885 predetermined return orbitals of quasi-two-dimensional electrons with up to 5000 scattering events that are repeatedly used. Our model subsumes that of Golub [L. E. Golub, Phys. Rev. B 71, 235310 (2005), 10.1103/PhysRevB.71.235310] when the Rashba spin-orbit interaction (SOI) is assumed. Our computation is very simple, fast, and versatile, where the numerical results, obtained all at once, cover wide ranges of the magnetic field under various one-electron interactions H' exactly. Thus, it has straightforward extensibility to incorporate interactions other than the Rashba SOI, such as the linear and cubic Dresselhaus SOIs, Zeeman effect, and even interactions relevant to the valley and pseudo spin degrees of freedom, which should provide a unique tool to study new classes of materials like emerging 2D materials. Using our computation, we also demonstrate the robustness of a persistent spin helix state against the cubic Dresselhaus SOI.
Many-particle correlations in quasi-two-dimensional electron-hole systems
International Nuclear Information System (INIS)
Nikolaev, Valentin
2002-01-01
This thesis reports a theoretical investigation of many-particle correlation effects in semiconductor heterostructures containing quantum wells. Particular attention is paid towards quasi-particle pair correlations. Using the Green's function technique and the ladder approximation as a basis, the generalized mass action law, which describes the redistribution of particles between correlated and uncorrelated states in quasi-two-dimensional systems for different temperatures and total densities, is derived. The expression is valid beyond the low-density limit, which allows us to investigate the transition of the system from a dilute exciton gas to a dense electron-hole plasma. A generalized Levinson theorem, which takes k-space filling into account, is formulated. Screening in quasi-two-dimensional systems is analyzed rigorously. Firstly, the qualitatively new mechanism of static local screening by indirect excitons is studied using the simple Thomas-Fermi approximation. Then, a detailed many-body description suitable for a proper account of dynamic screening by a quasi-2D electron-hole plasma, and consistent with the previously derived mass action law, is provided. The generalized Lindhard approximation and excitonic plasmon-pole approximations are also derived. The theory is applied to single and double quantum wells. A self-consistent procedure is developed for numerical investigation of the ionization degree of an electron-hole plasma at different values of temperature/exciton Rydberg ratios. This procedure accounts for screening, k-space filling (exciton bleaching), and the formation of excitons. An abrupt jump in the value of the ionization degree that happens with an increase of the carrier density or temperature (Mott transition) is found in a certain density-temperature region. It has been found that the critical density of the Mott transition for indirect excitons may be much smaller than that for direct excitons. A suggestion has been made that some of the
International Nuclear Information System (INIS)
Lowndes, D.H.; Norton, D.P.
1993-01-01
Epitaxial trilayer and superlattice structures grown by pulsed laser ablation have been used to study the superconducting-to-normal transition of ultrathin (one and two c-axis unit cells) YBa 2 Cu 3 O 7-x layers. The normalized flux-flow resistances for several epitaxial structures containing two-cell-thick YBa 2 Cu 3 O 7-x films collapse onto the ''universal'' curve of the Ginzburg-Landau Coulomb Gas (GLCG) model. Analysis of normalized resistance data for a series of superlattices containing one-cell-thick YBa 2 Cu 3 O 7-x layers also is consistent with the behavior expected for quasi-two-dimensional layers in a highly anisotropic, layered three-dimensional superconductor. Current-voltage measurements for one of the trilayer structures also are consistent with the normalized resistance data, and with the GLCG model. Scanning tunneling microscopy, transmission electron microscopy, and electrical transport studies show that growth-related steps in ultrathin YBa 2 Cu 3 O 7-x layers affect electrical continuity over macroscopic distances, acting as weak links. However , the perturbation of the superconducting order parameter can be minimized by utilizing hole-doped buffer and cap layers, on both sides of the YBa 2 Cu 3 O 7-x layer, in trilayers and superlattices. These results demonstrate the usefulness of epitaxial trilayer and superlattice structures as tools for systematic, fundamental studies of high-temperature superconductivity
Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots
International Nuclear Information System (INIS)
Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.
2010-01-01
The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The 1 Π u singlet state and the 3 Π u triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.
Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures
Bondarev, Igor V.; Vladimirova, Maria R.
2018-04-01
We discuss neutral and charged complexes (biexcitons and trions) formed by indirect excitons in layered quasi-two-dimensional semiconductor heterostructures. Indirect excitons—long-lived neutral Coulomb-bound pairs of electrons and holes of different layers—have been known for semiconductor coupled quantum wells and have recently been reported for van der Waals heterostructures such as double bilayer graphene and transition-metal dichalcogenides. Using the configuration space approach, we derive the analytical expressions for the trion and biexciton binding energies as a function of interlayer distance. The method captures essential kinematics of complex formation to reveal significant binding energies, up to a few tens of meV for typical interlayer distances ˜3 -5 Å , with the trion binding energy always being greater than that of the biexciton. Our results can contribute to the understanding of more complex many-body phenomena such as exciton Bose-Einstein condensation and Wigner-like electron-hole crystallization in layered semiconductor heterostructures.
Generation of acoustic phonons from quasi-two-dimensional hole gas
International Nuclear Information System (INIS)
Singh, J.; Oh, I.K.
2002-01-01
Full text: Generation of phonons from two dimensional electron and hole gases in quantum wells has attracted much attraction recently. The mechanism of phonon emission plays an important role in the phonon spectroscopy which enables us to study the angular and polarization dependence of phonon emission. The acoustic phonon emission from a quasi-two-dimensional hole gas (2DHG) in quantum wells is influenced by the anisotropic factors in the valence band structure, screening, elastic property, etc. The anisotropy in the valence band structure gives rise to anisotropic effective mass and deformation potential and that in the elastic constants leads to anisotropic sound velocity. Piezoelectric coupling in non-centrosymmetric materials such as GaAs is also anisotropic. In this paper, considering the anisotropy in the effective mass, deformation potential, piezoelectric coupling and screening effect, we present a theory to study the angular and polarization dependence of acoustic phonon emission from a quasi-2DHG in quantum wells. The theory is finally applied to calculate the rate of acoustic phonon emission in GaAs quantum wells
Coupling motion of colloidal particles in quasi-two-dimensional confinement
International Nuclear Information System (INIS)
Ma, Jun; Jing, Guangyin
2014-01-01
The Brownian motion of colloidal particles in quasi-two-dimensional (q2D) confinement displays a distinct kinetic character from that in bulk. Here we experimentally report dynamic coupling motion of Brownian particles in a relatively long process (∼100 h), which displays a quasi-equilibrium state in the q2D system. In the quasi-equilibrium state, the q2D confinement results in the coupling of particle motions, which slowly damps the motion and interaction of particles until the final equilibrium state is reached. The process of approaching the equilibrium is a random relaxation of a many-body interaction system of Brownian particles. As the relaxation proceeds for ∼100 h, the system reaches the equilibrium state in which the energy gained by the particles from the stochastic collision in the whole system is counteracted by the dissipative energy resulting from the collision. The relaxation time of this stochastic q2D system is 17.7 h. The theory is developed to explain coupling motions of Brownian particles in q2D confinement. (paper)
Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G
2016-10-01
We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.
Long-lived trimers in a quasi-two-dimensional Fermi system
Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper
2018-04-01
We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.
General solution of the Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.
Guyot, H.; Dumas, J.; Kartsovnik, M. V.; Marcus, J.; Schlenker, C.; Sheikin, I.; Vignolles, D.
2007-07-01
The purple molybdenum bronze KMo6O17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic charge density wave (CDW) state. High magnetic field measurements have revealed several transitions at low temperature and have provided an unusual phase diagram “temperature-magnetic field”. Angular studies of the interlayer magnetoresistance are now reported. The results suggest that the orbital coupling of the magnetic field to the CDW is the most likely mechanism for the field induced transitions. The angular dependence of the magnetoresistance is discussed on the basis of a warped quasi-cylindrical Fermi surface and provides information on the geometry of the Fermi surface in the low temperature density wave state.
Quasi-two-dimensional Fermi-liquid state in Sr2RhO4-δ
International Nuclear Information System (INIS)
Nagai, Ichiro; Shirakawa, Naoki; Umeyama, Norio; Ikeda, Shin-ichi
2010-01-01
Single crystals of layered perovskite Sr 2 RhO 4-δ (δ=0.0 and 0.1) are successfully grown by the floating-zone method. Stoichiometric single crystals (Sr 2 RhO 4.0 ) are obtained by O 2 -annealing the as-grown crystals (Sr 2 RhO 3.9 ). Sr 2 RhO 4.0 and Sr 2 RhO 3.9 show quasi-two-dimensional Fermi-liquid behavior at low temperatures, whereas there are large differences in the anisotropy of electrical resistivity ρ c (3 K)/ρ ab (3 K) and Wilson ratio R w between Sr 2 RhO 4.0 and Sr 2 RhO 3.9 : ρ c (3 K)/ρ ab (3 K)=2400 (19000) and R w =3.8 (6.4) for Sr 2 RhO 4.0 (Sr 2 RhO 3.9 ). The differences observed between the temperature dependence of the in-plane electrical resistivity (T 2 RhO 4.0 and Sr 2 RhO 3.9 are mainly derived from those between the density of states and band structure near the corresponding Fermi level. This indicates that the changes in these physical properties, which are accompanied by oxygen defects in the Sr 2 RhO 4-δ system, can be explained by the rigid band model. Moreover, these results suggest that t 2g band-filling can be controlled by adjusting the oxygen defect content δ in the Sr 2 RhO 4-δ system. Although many similarities are observed in this study between the physical properties of Sr 2 RhO 4.0 and Sr 2 RuO 4 . Sr 2 RhO 4.0 does not exhibit superconductivity down to 36 mK. (author)
Applications of the Heisenberg magnetic model in nanoscience
International Nuclear Information System (INIS)
Labuz, M.; Kuzma, M.; Wal, A.
2003-01-01
The theoretical Heisenberg magnet model and its solution given by Bethe and Hulthen (B.H.) known as Bethe Ansatz (BA) is widely applied in physics (solid state physics, quantum dots, statistical physics, high-temperatures superconductivity, low-dimensional systems, etc.), chemistry (polymers, organic metals and magnets), biology (biological molecular arrays and chains), etc. In most of the applications, the Heisenberg model is applied to infinite chains (asymptotic case), which is a good reality approximation for objects of macroscopic size. In such a case, the solutions of the model are well known. However, for objects of nanoscale size, one has to find solutions of the Heisenberg model of a finite chain consisting of N nodes. For such a chain, the problem of solving of B.H. equations is very complicated (because of the strange nonlinearity of these equations) even for very small objects N N (combinatorial explosion). In such cases, even numerical methods are helpless. In our paper, we propose an approach in which numerical methods could be adapted to such a large numerical problem, as B.H. solutions for objects consisting of N>100, which responds to nanoscale physical or biological objects. This method is based on the 'experimental' observation that B.H. solutions change in a quasi-continuous way with respect to N
Ho, Hau My; Lin, Binhua; Rice, Stuart A
2006-11-14
We report the results of experimental determinations of the triplet correlation functions of quasi-two-dimensional one-component and binary colloid suspensions in which the colloid-colloid interaction is short ranged. The suspensions studied range in density from modestly dilute to solid. The triplet correlation function of the one-component colloid system reveals extensive ordering deep in the liquid phase. At the same density the ordering of the larger diameter component in a binary colloid system is greatly diminished by a very small amount of the smaller diameter component. The possible utilization of information contained in the triplet correlation function in the theory of melting of a quasi-two-dimensional system is briefly discussed.
Magnetic Weyl Semimetal in Quasi Two-dimensional Half Metallic Co$_3$Sn$_2$Se$_2$
Xu, Qiunan; Liu, Enke; Shi, Wujun; Muechler, Lukas; Felser, Claudia; Sun, Yan
2017-01-01
We have found a ferromagnetic Weyl semimetal (WSM) in half metallic Co$_3$Sn$_2$Se$_2$. The three pairs of Weyl points near Fermi level (E$_F$) are derived from nodal lines gapped by spin-orbit coupling (SOC). Though the Weyl points are 0.11 eV above the charge neutral point, Fermi arc related states in the cleaved surface can range from E$_F$ -0.15 to E$_F$ +0.11 eV in energy space, due to the surface bands dispersion. Hence, Weyl points related physics should be detected by surface measurem...
Tokman, Mikhail; Long, Zhongqu; AlMutairi, Sultan; Wang, Yongrui; Belkin, Mikhail; Belyanin, Alexey
2018-04-01
We consider a quantum-electrodynamic problem of the spontaneous emission from a two-dimensional (2D) emitter, such as a quantum well or a 2D semiconductor, placed in a quasi-2D waveguide or cavity with subwavelength confinement in one direction. We apply the Heisenberg-Langevin approach, which includes dissipation and fluctuations in the electron ensemble and in the electromagnetic field of a cavity on equal footing. The Langevin noise operators that we introduce do not depend on any particular model of dissipative reservoir and can be applied to any dissipation mechanism. Moreover, our approach is applicable to nonequilibrium electron systems, e.g., in the presence of pumping, beyond the applicability of the standard fluctuation-dissipation theorem. We derive analytic results for simple but practically important geometries: strip lines and rectangular cavities. Our results show that a significant enhancement of the spontaneous emission, by a factor of order 100 or higher, is possible for quantum wells and other 2D emitters in a subwavelength cavity.
Energy Technology Data Exchange (ETDEWEB)
Selyukov, A. S., E-mail: vslebedev.mobile@gmail.com; Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Vasiliev, R. B.; Sokolikova, M. S. [Moscow State University (Russian Federation)
2015-04-15
We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.
International Nuclear Information System (INIS)
Selyukov, A. S.; Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.
2015-01-01
We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages
Influence of magnetic field on swap operation in Heisenberg XXZ model
Energy Technology Data Exchange (ETDEWEB)
Liu Jia [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Zhang Guofeng, E-mail: gf1978zhang@buaa.edu.c [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)
2009-05-01
Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.
Influence of magnetic field on swap operation in Heisenberg XXZ model
International Nuclear Information System (INIS)
Liu Jia; Zhang Guofeng; Chen Ziyu
2009-01-01
Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.
Phase transition in Ising, XY and Heisenberg magnetic films
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid - BP 63 46000 Safi (Morocco); LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Hamedoun, M. [Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco); Benyoussef, A. [LMPHE, Faculte des Sciences, Universite Mohamed V, Rabat (Morocco); Institute for Nanomaterials and Nanotechnologies, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco)
2012-01-01
The phase transition and magnetic properties of a ferromagnet spin-S, a disordered diluted thin and semi-infinite film with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system {tau}{sub c} is studied as function of the thickness of the thin film and the exchange interactions in the bulk, and within the surfaces J{sub b}, J{sub s} and J{sub Up-Tack }, respectively. It is found that {tau}{sub c} increases with the exchange interactions of surface. The magnetic phase diagrams ({tau}{sub c} versus the dilution x) and the percolation threshold are obtained. The shifts of the critical temperatures T{sub c}(l) from the bulk value (T{sub c}({infinity})/T{sub c}(l) - 1) can be described by a power law l{sup -{lambda}}, where {lambda} = 1/{upsilon} is the inverse of the correlation length exponent.
Xu, Ping; Du, An
2017-09-01
A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.
Energy Technology Data Exchange (ETDEWEB)
Quinn, John
2009-11-30
Work related to this project introduced the idea of an effective monopole strength Q* that acted as the effective angular momentum of the lowest shell of composite Fermions (CF). This allowed us to predict the angular momentum of the lowest band of energy states for any value of the applied magnetic field simply by determining N{sub QP} the number of quasielectrons (QE) or quasiholes (QH) in a partially filled CF shell and adding angular momenta of the N{sub QP} Fermions excitations. The approach reported treated the filled CF level as a vacuum state which could support QE and QH excitations. Numerical diagonalization of small systems allowed us to determine the angular momenta, the energy, and the pair interaction energies of these elementary excitations. The spectra of low energy states could then be evaluated in a Fermi liquid-like picture, treating the much smaller number of quasiparticles and their interactions instead of the larger system of N electrons with Coulomb interactions.
Coexistence of superconductivity and density waves in quasi-two-dimensional metals
Energy Technology Data Exchange (ETDEWEB)
Ismer, Jan-Peter
2011-06-03
This dissertation deals with the high-temperature superconductivity in the hole- and electron-doped copper superconductors. In the first part, superconducting phases are investigated on a background of different types of density waves. Singlet superconductivity is studied with s- and d-wave symmetry on a background of spin, charge or D-density waves with respect to stability as well as phase structure and impulse dependence of the gap function. In the second part, the dynamic spin susceptibility for different phases is calculated and compared with experimental data extracted from results of inelastic neutron scattering experiments. The observed phases are d-wave superconductivity, D-density wave, and coexistence of the two. For d-wave superconductivity, the influence of a magnetic field parallel to the copper oxide layer and the temperature development of the susceptibility when for T >> T{sub c} a spin density wave phase is present are investigated. [German] Diese Dissertation beschaeftigt sich mit der Hochtemperatursupraleitung in den loch- und elektron-dotierten Kuprat-Supraleitern. Im ersten Teil der Arbeit werden supraleitende Phasen auf einem Hintergrund verschiedener Typen von Dichtewellen untersucht. Es wird Singlett-Supraleitung mit s- und d-Wellen-Symmetrie auf einem Hintergrund von Spin-, Ladungs- oder D-Dichtewelle hinsichtlich Stabilitaet sowie Phasenstruktur und Impulsabhaengigkeit der Gapfunktion untersucht. Im zweiten Teil wird die dynamische Spinsuszeptibilitaet fuer verschiedene Phasen berechnet und mit experimentellen Daten verglichen, die aus Ergebnissen von Inelastischen Neutronenstreuungsexperimenten extrahiert wurden. Die betrachteten Phasen sind d-Wellen-Supraleitung, D-Dichtewelle und Koexistenz der beiden. Fuer d-Wellen-Supraleitung werden der Einfluss eines Magnetfelds parallel zur Kupferoxidschicht und die Temperaturentwicklung der Suszeptibilitaet, wenn fuer T >> T{sub c} eine Spin-Dichtewelle-Phase vorliegt, untersucht.
Schimming, C. D.; Durian, D. J.
2017-09-01
For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.
International Nuclear Information System (INIS)
Lyo, S.K.
2012-01-01
Photon-mediated energy transfer is shown to play an important role for transfer of an electron–hole plasma between two quasi-two-dimensional quantum wells separated by a wide barrier. The magnitude and the dependence of the transfer rate of an electron–hole plasma on the temperature, the well-to-well distance, and the plasma density are compared with those of the standard Förster (i.e., dipolar) rate and also with the exciton transfer rate. The plasma transfer rate through the photon-exchange mechanism decays very slowly as a function of the well-to-well distance and is larger than the dipolar rate except for short distances. The transfer rate of plasmas saturates at high densities and decays rapidly with the temperature. - Highlights: ► We study energy transfer (ET) between two two-dimensional semiconductor quantum wells. ► We compare the ET rates of an electron–hole plasma (at a high density) and Mott excitons. ► We show that the proposed photon-exchange rate is practically dominant over the Förster rate. ► We examine the dependences of the ET rate on the temperature, density, and well-to-well distance.
International Nuclear Information System (INIS)
Babadi, Mehrtash; Demler, Eugene
2011-01-01
We theoretically analyze a quasi-two-dimensional system of fermionic polar molecules trapped in a harmonic transverse confining potential. The renormalized energy bands are calculated by solving the Hartree-Fock equation numerically for various trap and dipolar interaction strengths. The intersubband excitations of the system are studied in the conserving time-dependent Hartree-Fock (TDHF) approximation from the perspective of lattice modulation spectroscopy experiments. We find that the excitation spectrum consists of both intersubband particle-hole excitation continua and antibound excitons whose antibinding behavior is associated to the anisotropic nature of dipolar interactions. The excitonic modes are shown to capture the majority of the spectral weight. We evaluate the intersubband transition rates in order to investigate the nature of the excitonic modes and find that they are antibound states formed from particle-hole excitations arising from several subbands. We discuss the sum rules in the context of lattice modulation spectroscopy experiments and utilize them to check the consistency of the obtained results. Our results indicate that the excitonic effects persist for interaction strengths and temperatures accessible in the current experiments with polar molecules.
Energy Technology Data Exchange (ETDEWEB)
Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India)
2016-05-06
We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.
Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field
International Nuclear Information System (INIS)
Rezania, H.
2017-01-01
We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.
Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field
Energy Technology Data Exchange (ETDEWEB)
Rezania, H., E-mail: rezania.hamed@gmail.com
2017-02-01
We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.
Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model
Institute of Scientific and Technical Information of China (English)
SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian
2007-01-01
By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.
Clercx, H J H; van Heijst, G J F; Zoeteweij, M L
2003-06-01
The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the power-law behavior of the compensated kinetic energy E0(t)=E(t)e(2lambda t), with E(t) the total kinetic energy of the flow and lambda the bottom-drag coefficient, and the compensated enstrophy Omega(0)(t)=Omega(t)e(2lambda t), with Omega(t) the total enstrophy of the flow, have been studied. We also report on the scaling exponents of the ratio Omega(t)/E(t), which is considered as a measure of the characteristic length scale in the flow, for different values of lambda. The numerical simulations on square bounded domains with no-slip boundaries revealed bottom-friction independent power-law exponents for E0(t), Omega(0)(t), and Omega(t)/E(t). By applying a discrete wavelet packet transform technique to the numerical data, we have been able to compute the power-law exponents of the average number density of vortices rho(t), the average vortex radius a(t), the mean vortex separation r(t), and the averaged normalized vorticity extremum omega(ext)(t)/square root E(t). These decay exponents proved to be independent of the bottom friction as well. In the experiments we have varied the fluid layer depth, and it was found that the decay exponents of E0(t), Omega(0)(t), Omega(t)/E(t), and omega(ext)(t)/square root E(t) are virtually independent of the fluid layer depth. The experimental data for rho(t) and a(t) are less conclusive; power-law exponents obtained for small fluid layer depths agree with those from previously reported experiments, but significantly larger power-law exponents are found for experiments with larger fluid layer depths.
Energy Technology Data Exchange (ETDEWEB)
Pastoriza, H [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina); Arribere, A [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina); Goffman, M F [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina); Cruz, F de la [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina); Mitzi, D B [Dept. of Applied Physics, Stanford Univ., CA (United States); Kapitulnik, A [Dept. of Applied Physics, Stanford Univ., CA (United States)
1994-02-01
AC susceptibility and dc magnetization measurements on Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8] (BSCCO) single crystals in a wide range of temperatures clearly show that below the dc irreversibility line the vortex system loss the long range order in the c direction. The susceptibility data taken at 7 Hz show the different nature of two dissipation peaks: One related to the interplane currents at temperatures well below the dc irreversibility line and the other associated with the intraplane ones at temperatures above that line. In this sense the irreversibility line corresponds to the temperature where quasi-two dimensional vortices are depinned. (orig.)
Optical probe of Heisenberg-Kitaev magnetism in α -RuCl3
Sandilands, Luke J.; Sohn, C. H.; Park, H. J.; Kim, So Yeun; Kim, K. W.; Sears, Jennifer A.; Kim, Young-June; Noh, Tae Won
2016-11-01
We report a temperature-dependent optical spectroscopic study of the Heisenberg-Kitaev magnet α -RuCl3 . Our measurements reveal anomalies in the optical response near the magnetic ordering temperature. At higher temperatures, we observe a redistribution of spectral weight over a broad energy range that is associated with nearest-neighbor spin-spin correlations. This finding is consistent with highly frustrated magnetic interactions and in agreement with theoretical expectations for this class of material. The optical data also reveal significant electron-hole interaction effects, including a bound excitonic state. These results demonstrate a clear coupling between charge and spin degrees of freedom and provide insight into the properties of thermally disordered Heisenberg-Kitaev magnets.
Ignatenko, A. N.; Irkhin, V. Yu.
2016-01-01
We have studied the Heisenberg antiferromagnets characterized by the magnetic structures with the periods being two times larger than the lattice period. We have considered all the types of the Bravais lattices (simple cubic, bcc and fcc) and divided all these antiferromagnets into 7 classes i.e. 3 plus 4 classes denoted with symbols A and B correspondingly. The order parameter characterizing the degeneracies of the magnetic structures is an ordinary Neel vector for A classes and so-called 4-...
Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field
Energy Technology Data Exchange (ETDEWEB)
Yeo Ye [Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Liu Tongqi [Department of Engineering, Trumpington Street, Cambridge CB3 1PZ (United Kingdom); Lu Yuen [Computer Laboratory, William Gates Building, 15 J J Thomson Avenue, Cambridge CB3 0FD (United Kingdom); Yang Qizhong [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)
2005-04-08
In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains.
Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field
International Nuclear Information System (INIS)
Yeo Ye; Liu Tongqi; Lu Yuen; Yang Qizhong
2005-01-01
In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains
Spin nematic and orthogonal nematic states in S=1 non-Heisenberg magnet
International Nuclear Information System (INIS)
Fridman, Yu.A.; Kosmachev, O.A.; Klevets, Ph.N.
2013-01-01
Phases of S=1 non-Heisenberg magnet at various relationships between the exchange integrals are studied in the mean-field limit at zero temperature. It is shown that four phases can be realized in the system under consideration: the ferromagnetic, antiferromagnetic, nematic, and the orthogonal nematic states. The phase diagram is constructed. It is shown that the phase transitions between the ferromagnetic phase and the orthogonal nematic phase and between the antiferromagnetic phase and the orthogonal nematic phase are the degenerated first-order transitions. For the first time the spectra of elementary excitations in all phases are obtained within the mean-field limit. - Highlights: ► We investigated phases of S=1 non-Heisenberg magnet. ► Found four phases: ferromagnetic, antiferromagnetic, nematic, and orthogonal nematic. ► The phase diagram is determined. ► The spectra of elementary excitations are obtained in all phases for the first time.
Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet
Energy Technology Data Exchange (ETDEWEB)
Qi, Jian-Wen [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Yang, Wen-Li [Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China)
2017-06-15
Highlights: • Three different types of soliton excitations under the spin-wave background are demonstrated in spin chain system. • The magnetic moment distributions corresponding to these solitons are characterized in detail. • The formation mechanisms of those excitations are explained by the magnon density distribution. - Abstract: We study the nonlinear spin dynamics of an anisotropic Heisenberg helimagnet in a fourth-order integrable nonlinear Schrödinger equation. We demonstrate that there are three types of nonlinear spin excitations on a spin-wave background in the Heisenberg helimagnet, notably including anti-dark soliton, W-shaped soliton, and multi-peak soliton. The magnetic moment distribution that corresponds to each of these are characterized in detail. Additionally, the formation mechanism is clarified by the magnon density distribution.
Bae, Jinho; Kim, Hyoung Woo; Kang, In Ho; Yang, Gwangseok; Kim, Jihyun
2018-03-01
We have demonstrated a β-Ga2O3 metal-semiconductor field-effect transistor (MESFET) with a high off-state breakdown voltage (344 V), based on a quasi-two-dimensional β-Ga2O3 field-plated with hexagonal boron nitride (h-BN). Both the β-Ga2O3 and h-BN were mechanically exfoliated from their respective crystal substrates, followed by dry-transfer onto a SiO2/Si substrate for integration into a high breakdown voltage quasi-two-dimensional β-Ga2O3 MESFETs. N-type conducting behavior was observed in the fabricated β-Ga2O3 MESFETs, along with a high on/off current ratio (>106) and excellent current saturation. A three-terminal off-state breakdown voltage of 344 V was obtained, with a threshold voltage of -7.3 V and a subthreshold swing of 84.6 mV/dec. The distribution of electric fields in the quasi-two-dimensional β-Ga2O3 MESFETs was simulated to analyze the role of the dielectric h-BN field plate in improving the off-state breakdown voltage. The stability of the field-plated β-Ga2O3 MESFET in air was confirmed after storing the MESFET in ambient air for one month. Our results pave the way for unlocking the full potential of β-Ga2O3 for use in a high-power nano-device with an ultrahigh breakdown voltage.
Motion of a magnetic soliton about a lattice soliton in a Heisenberg chain
International Nuclear Information System (INIS)
Nayyar, A.H.; Murtaza, G.
1981-08-01
As an example of interaction between two solitons belonging to different species, a semiclassical study of the nonlinear dynamics of a coupled magnon-phonon system in a one-dimensional Heisenberg ferromagnet is made, where both the lattice and the spin systems are taken with their respective nonlinear interactions. The lattice soliton is shown to introduce spatial inhomogeneities into the propagation of the magnetic soliton resulting in (a) the trapping of the magnetic soliton in the harmonic field of the lattice soliton and (b) the amplitude and the width of the magnetic soliton becoming time-dependent. (author)
Magnetic Properties of the S=2 Heisenberg Antiferromagnetic Chain Compound MnCl3(bpy)
International Nuclear Information System (INIS)
Hagiwara, M; Idutsu, Y; Honda, Z; Yamamoto, S
2012-01-01
We report the results of magnetic susceptibilities at temperatures between 2 and 300 K, and magnetization in magnetic fields of up to 52 T on polycrystalline samples of MnCl 3 (bpy) (bpy=2, 2'-bipyridine) and the comparison with numerical calculations. This compound is one of the rare examples of the spin 2 quasi-one-dimensional Heisenberg antiferromagnet, and the magnetic properties of tiny single crystal samples were reported previously. The temperature dependence of magnetic susceptibility and the magnetization curve after subtracting the contribution of magnetic impurity are well fitted to those calculated by a quantum Monte Carlo method with the intrachain exchange constant J/k B =31.2 K and the g-value g=2.02 which are comparable to reported values (J/k B =34.8±1.6 K and g=2.04±0.04).
Kim, Janghyuk; Mastro, Michael A; Tadjer, Marko J; Kim, Jihyun
2017-06-28
β-gallium oxide (β-Ga 2 O 3 ) and hexagonal boron nitride (h-BN) heterostructure-based quasi-two-dimensional metal-insulator-semiconductor field-effect transistors (MISFETs) were demonstrated by integrating mechanical exfoliation of (quasi)-two-dimensional materials with a dry transfer process, wherein nanothin flakes of β-Ga 2 O 3 and h-BN were utilized as the channel and gate dielectric, respectively, of the MISFET. The h-BN dielectric, which has an extraordinarily flat and clean surface, provides a minimal density of charged impurities on the interface between β-Ga 2 O 3 and h-BN, resulting in superior device performances (maximum transconductance, on/off ratio, subthreshold swing, and threshold voltage) compared to those of the conventional back-gated configurations. Also, double-gating of the fabricated device was demonstrated by biasing both top and bottom gates, achieving the modulation of the threshold voltage. This heterostructured wide-band-gap nanodevice shows a new route toward stable and high-power nanoelectronic devices.
Critical behaviour of magnetic thin film with Heisenberg spin-S model
International Nuclear Information System (INIS)
Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Hourmatallah, A.; Benzakour, N.; Benyoussef, A.
2009-01-01
The magnetic properties of a ferromagnetic thin film of face centered cubic (FCC) lattice with Heisenberg spin-S are examined using the high-temperature series expansions technique extrapolated with Pade approximations method. The critical reduced temperature of the system τ c is studied as function of thickness of the film and the exchange interactions in the bulk, and within the surfaces J b , J s and J perpendicular respectively. A critical value of surface exchange interaction above which surface magnetism appears is obtained. The dependence of the reduced critical temperature on the film thickness L has been investigated.
Werner Heisenberg; Werner Heisenberg
Energy Technology Data Exchange (ETDEWEB)
Schiemann, G.
2008-07-01
This book contains a biography of Heisenberg, a description of the development of quantum mechanics, a consideration of connections of philosophy and physics, and a description of the scientific picture of the world. Finally a list of books written by Heisenberg respectively connected with his work is presented. (HSI)
Quantum Teleportation via Completely Anisotropic Heisenberg Chain in Inhomogeneous Magnetic Field
Institute of Scientific and Technical Information of China (English)
FU Cheng-Hua; HU Zhan-Ning
2013-01-01
The quantum teleportation with the entangled thermal state is investigated based on the completely anisotropic Heisenberg chain in the presence of the externally inhomogeneous magnetic field.The effects of the anisotropy and magnetic field for the quantum fidefity are studied in detail.The zero temperature limit and the features of the nonzero temperature for this nonclassical fidelity are obtained.We find that the quantum teleportation demands more stringent conditions than the thermal entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the critical temperature of the maximal teleportation fidelity.The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.
Magnetization process and low-temperature thermodynamics of a spin-1/2 Heisenberg octahedral chain
Strečka, Jozef; Richter, Johannes; Derzhko, Oleg; Verkholyak, Taras; Karľová, Katarína
2018-05-01
Low-temperature magnetization curves and thermodynamics of a spin-1/2 Heisenberg octahedral chain with the intra-plaquette and monomer-plaquette interactions are examined within a two-component lattice-gas model of hard-core monomers, which takes into account all low-lying energy modes in a highly frustrated parameter space involving the monomer-tetramer, localized many-magnon and fully polarized ground states. It is shown that the developed lattice-gas model satisfactorily describes all pronounced features of the low-temperature magnetization process and the magneto-thermodynamics such as abrupt changes of the isothermal magnetization curves, a double-peak structure of the specific heat or a giant magnetocaloric effect.
Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field
Huang, Ai-Jun; Wang, Dong; Wang, Jia-Ming; Shi, Jia-Dong; Sun, Wen-Yang; Ye, Liu
2017-08-01
In this work, we investigate the quantum-memory-assisted entropic uncertainty relation in a two-qubit Heisenberg XX model with inhomogeneous magnetic field. It has been found that larger coupling strength J between the two spin-chain qubits can effectively reduce the entropic uncertainty. Besides, we observe the mechanics of how the inhomogeneous field influences the uncertainty, and find out that when the inhomogeneous field parameter b1. Intriguingly, the entropic uncertainty can shrink to zero when the coupling coefficients are relatively large, while the entropic uncertainty only reduces to 1 with the increase of the homogeneous magnetic field. Additionally, we observe the purity of the state and Bell non-locality and obtain that the entropic uncertainty is anticorrelated with both the purity and Bell non-locality of the evolution state.
Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields
Thakur, Pradeep; Durganandini, P.
2018-02-01
We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.
Magnetic ordering of quasi-1 D S=1/2 Heisenberg antiferromagnet Cu benzoate at sub-mK temperatures
International Nuclear Information System (INIS)
Karaki, Y.; Masutomi, R.; Kubota, M.; Ishimoto, H.; Asano, T.; Ajiro, Y.
2003-01-01
We have measured the AC susceptibility of quasi-1D S=1/2 Heisenberg antiferromagnet Cu benzoate at temperatures down to 0.2 mK. A sharp susceptibility peak is observed at 0.8 mK under an earth field. This fact indicates a 3D ordering of linear chains coupled by a weak magnetic interaction between chains
International Nuclear Information System (INIS)
Fridman, Yu.A.; Klevets, Ph.N.; Kozhemyako, O.V.
2003-01-01
Influence of magnetoelastic (ME) interaction on the phase transitions in two-dimensional non-Heisenberg ferromagnets is investigated. It is shown that if the constant of Heisenberg exchange interaction is large, the ferromagnetic phase is implemented in a system. When the value of biquadratic exchange interaction increases there is a phase transition to the quadrupolar phase characterized by the tensor order parameters. Thus, ME interaction plays an essential role, not only stabilizing the long-range magnetic order in the system, but also determining the order of the phase transition
Arian Zad, Hamid; Ananikian, Nerses
2018-04-01
The mixed spin-(1,1/2) Ising–Heisenberg double sawtooth ladder containing a mixture of both spin-1 and spin-1/2 nodal atoms, and the spin-1/2 interstitial dimers are approximately solved by the transfer-matrix method. Here, we study in detail the ground-state phase diagrams, also influences of the bilinear exchange coupling on the rungs and cyclic four-spin exchange interaction in square plaquette of each block on the magnetization and magnetic susceptibility of the suggested ladder at low temperature. Such a double sawtooth ladder may be found in a Shastry-Sutherland lattice-type. In spite of the spin ordering of odd and even blocks being different from each other, due to the commutation relation between all different block Hamiltonians, phase diagrams, magnetization behavior and thermodynamic properties of the model are the same for odd and even blocks. We show that at low temperature, both exchange couplings can change the quality and quantity of the magnetization plateaus versus the magnetic field changes. Specially, we find a new magnetization plateau M/Ms= 5/6 for this model. Besides, we examine the magnetic susceptibility and specific heat of the model in detail. It is proven that behaviors of the magnetization and the magnetic susceptibility coincide at low temperature. The specific heat displays diverse temperature dependencies, which include a Schottky-type peak at a special temperature interval. We observe that with increase of the bilinear exchange coupling on the rungs, second peak temperature dependence grows.
Magnetization plateaus in the spin-1/2 antiferromagnetic Heisenberg model on a kagome-strip chain
Morita, Katsuhiro; Sugimoto, Takanori; Sota, Shigetoshi; Tohyama, Takami
2018-01-01
The spin-1/2 Heisenberg model on a kagome lattice is a typical frustrated quantum spin system. The basic structure of a kagome lattice is also present in the kagome-strip lattice in one dimension, where a similar type of frustration is expected. We thus study the magnetization plateaus of the spin-1/2 Heisenberg model on a kagome-strip chain with three-independent antiferromagnetic exchange interactions using the density-matrix renormalization-group method. In a certain range of exchange parameters, we find twelve kinds of magnetization plateaus, nine of which have magnetic structures breaking translational and/or reflection symmetry spontaneously. The structures are classified by an array of five-site unit cells with specific bond-spin correlations. In a case with a nontrivial plateau, namely a 3/10 plateau, we find long-period magnetic structure with a period of four unit cells.
Properties of magnetic impurities embedded into an anisotropic Heisenberg chain with spin gap
International Nuclear Information System (INIS)
Schlottmann, P.
2000-01-01
We consider a U(1)-invariant model consisting of the integrable anisotropic easy-axis Heisenberg chain of arbitrary spin S embedding an impurity of spin S'. The host chain has a spin gap for all values of S. The ground state properties and the elementary excitations of the host are studied as a function of the anisotropy and the magnetic field. The impurity is located on a link of the chain and interacts only with both neighboring sites. The coupling of the impurity to the lattice can be tuned by the impurity rapidity p 0 (usually playing the role of the Kondo coupling). The impurity model is then integrable as a function of two continuous parameters (the anisotropy and the impurity rapidity) and two discrete variables (the spins S and S'). The Bethe ansatz equations are derived and used to obtain the magnetization of the impurity. The impurity magnetization is non-universal as a function of p 0 . For small fields the impurity magnetization is determined by the spin gap and the van Hove singularity of the rapidity band. For an overcompensated impurity (S'< S) at intermediate fields there is a crossover to non-Fermi-liquid behavior remnant from the suppressed quantum critical point
Square-lattice magnetism of diaboleite Pb2Cu(OH)4Cl2
Tsirlin, Alexander A.; Janson, Oleg; Lebernegg, Stefan; Rosner, Helge
2013-02-01
We report on the quasi-two-dimensional magnetism of the natural mineral diaboleite Pb2Cu(OH)4Cl2 with a tetragonal crystal structure, which is closely related to that of the frustrated spin-(1)/(2) magnet PbVO3. Magnetic susceptibility of diaboleite is well described by a Heisenberg spin model on a diluted square lattice with the nearest-neighbor exchange of J≃35 K and about 5% of nonmagnetic impurities. The dilution of the spin lattice reflects the formation of Cu vacancies that are tolerated by the crystal structure of diaboleite. The weak coupling between the magnetic planes triggers the long-range antiferromagnetic order below TN≃11 K. No evidence of magnetic frustration is found. We also analyze the signatures of the long-range order in heat-capacity data, and discuss the capability of identifying magnetic transitions with heat-capacity measurements.
Effect of Dzyaloshinskii-Moriya on Magnetic orders of J_1-J_2 Antiferromagnetic Heisenberg model
Directory of Open Access Journals (Sweden)
Fariba Masoudi
2017-11-01
Full Text Available Motivated by recent experiments that detects Dzyaloshinskii-Moriya (DM interaction in , we study the effects of DM interaction on magnetic orders of J1-J2 antiferromagnetic Heisenberg model. First, we find the classical phase diagram of the model using Luttinger-Tisza approximation. In this approximation, the classical phase diagram has two phases. For , the model has canted Neel and DM interaction cants the spins of one on the subluttices. The ground state of model is classically degenerate for , including infinit numbers of vorticity vectors that are able to minimize the model. This phase is important because of the probability of the existence of quantum spin liquid in this region. To investigate the effect of quantum fluctuation on the stability of the classical phase diagram, linear spin wave theory of Holstein-Primakoff is used. The results show that in the classical degeneracy regime, the quantum fluctuations for cause spiral order in this region. The ground state of model remains disorder for, and this region is a good place for finding quantum spin liquid
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
International Nuclear Information System (INIS)
Kosevich, Yuriy A; Gann, Vladimir V
2013-01-01
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier–Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier–Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier–Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier–Zeeman states. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kosmachev, O. A.; Krivtsova, A. V.; Fridman, Yu. A., E-mail: yuriifridman@gmail.com [Vernadskii Crimea Federal University (Russian Federation)
2016-02-15
We study the effect of interionic anisotropy on the phase states of a non-Heisenberg ferromagnet with magnetic ion spin S = 1. It is shown that depending on the relation between the interionic anisotropy constants, uniaxial and angular ferromagnetic and nonmagnetic phases exist in the system. We analyze the dynamic properties of the system in the vicinity of orientational phase transitions, as well as a phase transition in the magnetic moment magnitude. It is shown that orientational phase transitions in ferromagnetic and nematic phases can be first- as well as second-order.
International Nuclear Information System (INIS)
Bobak, Andrej; Dely, Jan; Pokorny, Vladislav
2010-01-01
The effects of both an exchange anisotropy and a single-ion anisotropy on the magnetic susceptibility of the mixed spin-1 and spin- 1/2 Heisenberg model are investigated by the use of an Oguchi approximation. Particular emphasis is given to the simple cubic lattice with coordination number z = 6 for which the magnetic susceptibility is determined numerically. Anomalous behaviour in the thermal variation of the magnetic susceptibility in the low-temperature region is found due to the applied negative single-ion anisotropy field strength. Also, the difference between the behaviours of the magnetic susceptibility of the Heisenberg and Ising models is discussed.
Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.
2016-11-01
We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.
Indian Academy of Sciences (India)
how Heisenberg identified the quantum mechan- ical exchange ... condensed matter physics from the Indian ... electrons per atom and 'm,' is the electronic mass. Dia- magnetism is .... what is the origin of this ordering field Hint = aM, that gives rise to a ... the case with magnetism, where the fundamental Inech- anism for the ...
Wang, Dong; Huang, Aijun; Ming, Fei; Sun, Wenyang; Lu, Heping; Liu, Chengcheng; Ye, Liu
2017-06-01
The uncertainty principle provides a nontrivial bound to expose the precision for the outcome of the measurement on a pair of incompatible observables in a quantum system. Therefore, it is of essential importance for quantum precision measurement in the area of quantum information processing. Herein, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a two-qubit Heisenberg \\boldsymbol{X}\\boldsymbol{Y}\\boldsymbol{Z} spin chain. Specifically, we observe the dynamics of QMA-EUR in a realistic model there are two correlated sites linked by a thermal entanglement in the spin chain with an inhomogeneous magnetic field. It turns out that the temperature, the external inhomogeneous magnetic field and the field inhomogeneity can lift the uncertainty of the measurement due to the reduction of the thermal entanglement, and explicitly higher temperature, stronger magnetic field or larger inhomogeneity of the field can result in inflation of the uncertainty. Besides, it is found that there exists distinct dynamical behaviors of the uncertainty for ferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}\\boldsymbol{0}\\right) chains. Moreover, we also verify that the measuring uncertainty is dramatically anti-correlated with the purity of the bipartite spin system, the greater purity can result in the reduction of the measuring uncertainty, vice versa. Therefore, our observations might provide a better understanding of the dynamics of the entropic uncertainty in the Heisenberg spin chain, and thus shed light on quantum precision measurement in the framework of versatile systems, particularly solid states.
Magnetic Field Enhancement of Heat Transport in the 2D Heisenberg Antiferromagnet K_2V_3O_8
Sales, B. C.; Lumsden, M. D.; Nagler, S. E.; Mandrus, D.; Jin, R.
2002-03-01
The thermal conductivity and heat capacity of single crystals of the spin 1/2 quasi-2D Heisenberg antiferromagnet K_2V_3O8 have been measured from 1.9 to 300 K in magnetic fields from 0 to 8T. The data are consistent with resonant scattering of phonons by magnons near the zone boundary and heat transport by long wavelength magnons. The magnon heat transport only occurs after the small anisotropic gap at k=0 is closed by the application of a magnetic field. The low temperature thermal conductivity increases linearly with magnetic field after the gap has been closed. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under Contract No. DE-AC05-00R22725.
Magnetic properties of a ferromagnet spin-S, Ising, XY and Heisenberg models semi-infinites systems
International Nuclear Information System (INIS)
Masrour, R.; Hamedoun, M.; Hourmatallah, A.; Bouslykhane, K.; Benzakour, N.
2008-01-01
The magnetic properties of a ferromagnet spin-S a disordered semi-infinite system with a face-centered cubic lattice are investigated using the high-temperature series expansions technique extrapolated with Pade approximants method for Heisenberg, XY and Ising models. The reduced critical temperature of the system τ c =(k B T c )/(2S(S+1)J b ) is studied as function of the thickness of the film and the exchange interactions in the bulk, and within the surfaces J b ,J s and J perpendicular , respectively. It is found that τ c increases with the exchange interactions of surface. The magnetic phase diagrams (τ c versus the dilution x) and the percolation threshold are obtained
International Nuclear Information System (INIS)
Fridman, Yu.A.; Matunin, D.A.; Klevets, Ph.N.; Kosmachev, O.A.
2009-01-01
The phase states of the 2D non-Heisenberg ferromagnetic with anisotropic bilinear and biquadratic exchange interactions are investigated. The limiting cases of the system under consideration are the two-dimensional XY-model with biquadratic exchange interaction and the isotropic Heisenberg ferromagnetic. The account of the magnetic dipole interaction leads to the realization of spatially inhomogeneous quadrupolar phase. The stability regions of various phase transitions for different values of the material parameters are studied. The phase diagram is built. Besides, the temperature phase transitions are investigated. The influence of the magnetoelastic interaction on the formation of the long-range quadrupolar order is determined.
Sakhratov, Yu. A.; Kweon, J. J.; Choi, E. S.; Zhou, H. D.; Svistov, L. E.; Reyes, A. P.
2018-03-01
The magnetic phase diagram of CuCrO2 was studied with an alternative method of simultaneous Cu NMR and electric polarization techniques with the primary goal of demonstrating that, regardless of cooling history of the sample, the magnetic phase with specific helmet-shaped NMR spectra associated with interplanar disorder possesses electric polarization. Our result unequivocally confirms the assumption of Sakhratov et al. [Phys. Rev. B 94, 094410 (2016), 10.1103/PhysRevB.94.094410] that the high-field low-temperature phase is in fact a three-dimensional (3D) polar phase characterized by a 3D magnetic order with tensor order parameter. In comparison with the results obtained in pulsed fields, a modified phase diagram is introduced defining the upper boundary of the first-order transition from the 3D spiral to the 3D polar phase.
Ishikawa, Kyohei; Hirata, Michihiro; Liu, Dong; Miyagawa, Kazuya; Tamura, Masafumi; Kanoda, Kazushi
2016-08-01
The spin excitations from the nonmagnetic charge-ordered insulating state of α -(BEDT-TTF ) 2I3 at ambient pressure have been investigated by probing the static and low-frequency dynamic spin susceptibilities via site-selective nuclear magnetic resonance at 13C sites. The site-dependent values of the shift and the spin-lattice relaxation rate 1 /T1 below the charge-ordering transition temperature (TCO≈135 K ) demonstrate a spin density imbalance in the unit cell, in accord with the charge-density ratio reported earlier. The shift and 1 /T1 show activated temperature dependence with a static (shift) gap ΔS≈47 -52 meV and a dynamic (1 /T1 ) gap ΔR≈40 meV . The sizes of the gaps are well described in terms of a localized spin model, where spin-1/2 antiferromagnetic dimer chains are weakly coupled with each other.
Energy Technology Data Exchange (ETDEWEB)
Tutsch, Ulrich; Postulka, Lars; Wolf, Bernd; Lang, Michael; Well, Natalija van; Ritter, Franz; Krellner, Cornelius; Assmus, Wolf [Physikalisches Institut, Goethe-University Frankfurt (Germany)
2015-07-01
The system Cs{sub 2}CuCl{sub 4-x}Br{sub x} (0 ≤ x ≤ 4) is a quasi-two-dimensional Heisenberg antiferromagnet with a triangular in-plane arrangement of the spin-spin couplings. The ratio J{sup '}/J of the corresponding coupling constants determines the degree of frustration in the system and has been found to be 0.34 (x = 0) and 0.74 (x = 4) for the border compounds. One may ask whether for some intermediate Br concentration an even higher degree of frustration can be reached. Indeed, some indications have been reported by Ono et al. Here, we present specific heat C and susceptibility χ measurements below 1 K in magnetic fields B up to 13.5 T for the intermediate compound Cs{sub 2}CuCl{sub 2}Br{sub 2}, which, due to site-selective substitution, shows a well-ordered halide sublattice. Indications for an antiferromagnetic transition are observed around 90 mK for B = 0. A small field of B = 0.14 T is sufficient to fully suppress this anomaly. Taking into account the high saturation field of about 20 T, extrapolated from χ(T = const, B) scans at low temperatures, this small ordered region in the B-T plane clearly indicates a high degree of frustration in Cs{sub 2}CuCl{sub 2}Br{sub 2}.
Vlasova, R M; Petrov, B V; Semkin, N D; Zhilyaeva, E I; Bogdanova, O A; Lyubovskaya, R N; Graja, A
2002-01-01
One studied the polarized spectra of reflection and spectra of optical transmission of theta-(BETS) sub 4 HgBr sub 4 (C sub 6 H sub 5 Cl) quasi-two-dimensional molecular conductor within 700-6500 cm sup - sup 1 range under 300-15 K temperatures and within 9000-40000 cm sup - sup 1 under 300 K for two principal directions within crystal plane parallel to conducting layers of BETS molecules. Under 300 K within IR region the spectra are characterized by the intensive essential peculiarities (1200-1400 cm sup - sup 1) caused by electron-oscillation coupling (EOC). At temperature drop within 180-80 K range one observes in the spectra a Lorentz term with omega sub t = 2900 cm sup - sup 1 and three extra bands within 800-1180 cm sup - sup 1 region caused by EOC. The derived results are indicative of unstable structural distortions along two principal directions in a crystal followed by formation of a charge density comparable wave
Magnetic field effects of tow-leg Heisenberg antiferromagnetic ladders: Thermodynamic properties
International Nuclear Information System (INIS)
Wang Xiaoqun; Yu Lu
2000-05-01
Using the recently developed transfer-matrix renormalization group method, we have studied the thermodynamic properties of two-leg antiferromagnetic ladders in the magnetic field. Based on different behavior of magnetization, we found disordered spin liquid, Luttinger liquid, spin-polarized phases and a classical regime depending on magnetic field and temperature. Our calculations in Luttinger liquid regime suggest that both the divergence of the NMR relaxation rate and the anomalous specific heat behavior observed on Cu 2 (C 5 H 12 N 2 ) 2 Cl 4 are due to quasi-one-dimensional effect rather than three-dimensional ordering. (author)
International Nuclear Information System (INIS)
Carvalho-Santos, Vagson L.; Dandoloff, Rossen
2012-01-01
We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.
Heisenberg spin-one chain in staggered magnetic field: A density matrix renormalization group study
International Nuclear Information System (INIS)
Jizhong Lou; Xi Dai; Shaojin Qin; Zhaobin Su; Lu Yu
1999-04-01
Using the density matrix renormalization group technique, we calculate numerically the low energy excitation spectrum and magnetization curve of the spin-1 antiferromagnetic chain in a staggered magnetic field, which is expected to describe the physics of R 2 BaNiO 5 (R ≠ Y) family below the Neel temperature of the magnetic rare-earth (R) sublattice. These results are valid in the entire range of the staggered field, and agree with those given by the non-linear σ model study for small fields, but differ from the latter for large fields. They are consistent with the available experimental data. The correlation functions for this model are also calculated. The transverse correlations display the anticipated exponential decay with shorter correlation length, while the longitudinal correlations show explicitly the induced staggered magnetization. (author)
Thermodynamic properties of a layered S = 7/2 Heisenberg magnet Gd(OH)CO3
Orendac, Martin; Ulicny, Martin; Cizmar, Erik; Orendacova, Alzbeta; Chen, Yan-Cong; Meng, Zhao-Sha; Tong, Ming-Liang
2015-03-01
Thermodynamic quantities and ESR spectra of Gd(OH)CO3 (I) are reported. The material may be considered to consist of weakly coupled layers with potentially triangular arrangement of exchange paths within each layer. Different bridging groups and distances among Gd3+ ions may be responsible for spatial anisotropy of magnetic coupling. Preliminary analysis of magnetic susceptibility using Curie-Weiss law yielded θ = -1.05 K indicating weak antiferromagnetic coupling and consequently, spin frustration in (I). More detailed simultaneous analysis of specific heat, susceptibility and magnetization studied down to nominally 0.45 K revealed non-negligible role of single-ion anisotropy. Using the model of weakly interacting S =7/2 trimers, the gross features of measured data may be explained while assuming single-ion anisotropy D /kB ~ 0.6 K and effective intratrimer magnetic coupling | J /kB | ~0.3 K. The obtained D value reasonably reproduces the position and shape of ESR line. The performed analysis suggests that magnetism in (I) is governed predominantly by crystal field effects and frustration plays a minor role. Supported by ITMS26220120005 and VEGA 1/0143/13.
Energy Technology Data Exchange (ETDEWEB)
Masunov, Artëm E., E-mail: amasunov@ucf.edu [NanoScience Technology Center, Department of Chemistry, and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Gangopadhyay, Shruba [Department of Physics, University of California, Davis, CA 95616 (United States); IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (United States)
2015-12-15
New method to eliminate the spin-contamination in broken symmetry density functional theory (BS DFT) calculations is introduced. Unlike conventional spin-purification correction, this method is based on canonical Natural Orbitals (NO) for each high/low spin coupled electron pair. We derive an expression to extract the energy of the pure singlet state given in terms of energy of BS DFT solution, the occupation number of the bonding NO, and the energy of the higher spin state built on these bonding and antibonding NOs (not self-consistent Kohn–Sham orbitals of the high spin state). Compared to the other spin-contamination correction schemes, spin-correction is applied to each correlated electron pair individually. We investigate two binuclear Mn(IV) molecular magnets using this pairwise correction. While one of the molecules is described by magnetic orbitals strongly localized on the metal centers, and spin gap is accurately predicted by Noodleman and Yamaguchi schemes, for the other one the gap is predicted poorly by these schemes due to strong delocalization of the magnetic orbitals onto the ligands. We show our new correction to yield more accurate results in both cases. - Highlights: • Magnetic orbitails obtained for high and low spin states are not related. • Spin-purification correction becomes inaccurate for delocalized magnetic orbitals. • We use the natural orbitals of the broken symmetry state to build high spin state. • This new correction is made separately for each electron pair. • Our spin-purification correction is more accurate for delocalised magnetic orbitals.
Electronic and magnetic properties of double perovskite Sr2CoUO6: Heisenberg model
Nid-bahami, A.; Ahmed, S. Sidi; Ait-Tamerd, M.; Zaari, H.; El Kenz, A.; Benyoussef, A.
2018-01-01
This work will be focused on the electronic and magnetic properties of Sr2CoUO6 (SCUO) using ab-initio calculations and Monte Carlo Simulation (MCS). Firstly, we calculate the exchange coupling and the crystal field, then, the electronic and magnetic properties will be studied, using the full-potential linearized augmented plane wave (FP-LAPW) method, as implemented in the Wien2k code. This method employing the generalized gradient approximation (GGA) for exchange-correlation term. The half-metallic ferromagnetic nature implies a potential application of this new compound in spintronics devices. Also, we have presented the results of the band structures and densities of states for the two up and down spin polarizations. The exchange coupling and the crystal field calculated are J = 0 . 567 meV and δ = 0 . 559meV, and total spin magnetic moments is 2.96 μB closed to experimental values 3 μB. Secondly, we have presented the results for the magnetization and the susceptibility as a function of temperature. Finally, we obtain the critical temperature T = 9 . 20 K by MCS in good agreement with the experimental value.
Diamond lattice Heisenberg antiferromagnet
Oitmaa, J.
2018-04-01
We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S = 1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.
Energy Technology Data Exchange (ETDEWEB)
Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G., E-mail: ekerdt@che.utexas.edu [Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Goble, Nicholas J.; Gao, Xuan P. A. [Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Posadas, Agham; Kormondy, Kristy J.; Demkov, Alexander A. [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Lu, Sirong [School of Engineering for Matter, Transport and Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Jordan-Sweet, Jean [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)
2015-09-21
We report the formation of a quasi-two-dimensional electron gas (2-DEG) at the interface of γ-Al{sub 2}O{sub 3}/TiO{sub 2}-terminated SrTiO{sub 3} (STO) grown by atomic layer deposition (ALD). The ALD growth of Al{sub 2}O{sub 3} on STO(001) single crystal substrates was performed at temperatures in the range of 200–345 °C. Trimethylaluminum and water were used as co-reactants. In situ reflection high energy electron diffraction, ex situ x-ray diffraction, and ex situ cross-sectional transmission electron microscopy were used to determine the crystallinity of the Al{sub 2}O{sub 3} films. As-deposited Al{sub 2}O{sub 3} films grown above 300 °C were crystalline with the γ-Al{sub 2}O{sub 3} phase. In situ x-ray photoelectron spectroscopy was used to characterize the Al{sub 2}O{sub 3}/STO interface, indicating that a Ti{sup 3+} feature in the Ti 2p spectrum of STO was formed after 2–3 ALD cycles of Al{sub 2}O{sub 3} at 345 °C and even after the exposure to trimethylaluminum alone at 300 and 345 °C. The interface quasi-2-DEG is metallic and exhibits mobility values of ∼4 and 3000 cm{sup 2} V{sup −1} s{sup −1} at room temperature and 15 K, respectively. The interfacial conductivity depended on the thickness of the Al{sub 2}O{sub 3} layer. The Ti{sup 3+} signal originated from the near-interfacial region and vanished after annealing in an oxygen environment.
Werner Karl Heisenberg (1901-1976)
International Nuclear Information System (INIS)
Kvasnica, J.
1992-01-01
The life's career of Werner Karl Heisenberg is described with emphasis on his creative development and cooperation with many other prominent physicists in the field of the quantum theory of atoms. In 1925, Heisenberg modified Bohr's quantum rule; in 1927 he formulated the uncertainty principle which puts some restrictions on the simultaneous determination of the position and momentum. In 1928, Heisenberg set up the quantum theory of ferromagnetism, which still underlies all theories of magnetic properties of substances. Soon after Chadwick's discovery of the neutron (1932), Heisenberg introduced the concept of the isospin - he interpreted the proton and the neutron as one particle (nucleon) in two charge states. Heisenberg's professional and pedagogical activities during and after the 2nd world war are also described. (Z.S.). 5 refs
International Nuclear Information System (INIS)
Guo Ketao; Liang Mingchao; Xu Hongyu; Zhu Chengbo
2010-01-01
Using the concept of negativity, we investigate the thermal entanglement of a two-spin (1/2, 3/2) mixed-spin Heisenberg XXZ chain with an inhomogeneous external magnetic field. We obtain the analytical results of entanglement of this model. For the case of uniform magnetic field, we find that the critical temperature increases with the increase of the anisotropy parameter k, and for the same couplings, the critical temperature is higher than the results of the spin-1/2 XXZ chain and (1/2, 1) mixed-spin XXZ chain. Evidence of the quantum phase transition is found, and by adjusting the inhomogeneous magnetic parameter b, one is able to obtain more entanglement at higher temperature.
Directory of Open Access Journals (Sweden)
Y. V. Tymoshenko
2017-11-01
Full Text Available Low-energy spin excitations in any long-range ordered magnetic system in the absence of magnetocrystalline anisotropy are gapless Goldstone modes emanating from the ordering wave vectors. In helimagnets, these modes hybridize into the so-called helimagnon excitations. Here we employ neutron spectroscopy supported by theoretical calculations to investigate the magnetic excitation spectrum of the isotropic Heisenberg helimagnet ZnCr_{2}Se_{4} with a cubic spinel structure, in which spin-3/2 magnetic Cr^{3+} ions are arranged in a geometrically frustrated pyrochlore sublattice. Apart from the conventional Goldstone mode emanating from the (0 0 q_{h} ordering vector, low-energy magnetic excitations in the single-domain proper-screw spiral phase show soft helimagnon modes with a small energy gap of ∼0.17 meV, emerging from two orthogonal wave vectors (q_{h} 0 0 and (0 q_{h} 0 where no magnetic Bragg peaks are present. We term them pseudo-Goldstone magnons, as they appear gapless within linear spin-wave theory and only acquire a finite gap due to higher-order quantum-fluctuation corrections. Our results are likely universal for a broad class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon interactions with accessible spectroscopic methods.
Energy Technology Data Exchange (ETDEWEB)
Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Zhang, A.-Jie [Military Operational Research Teaching Division of the 4th Department, PLA Academy of National Defense Information, Wuhan 430000 (China)
2016-02-01
The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-dimensional square lattice are investigated by means of the double-time Green's function technique within the random phase decoupling approximation. The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. And their effects on the critical and compensation temperature are discussed in detail. Our investigation indicates that both the next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram. - Highlights: • Spin-1/2 and spin-1 ferrimagnetic model is examined. • Green's function technique is used. • The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. • The next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram.
International Nuclear Information System (INIS)
Zhou, Chao-Biao; Xiao, Shu-Yuan; Zhang, Cong; Wu, Gang; Ran, Yang-Qiang
2015-01-01
In this paper, by comparing with the thermal entanglement measured by negativity (N), we investigate the measurement-induced disturbance (MID) in a mixed-spin (1/2, 3/2) Heisenberg XXZ model with Dzyaloshinskii–Moriya (DM) interaction and an inhomogeneous external magnetic field. We make a comparison between MID and N, and find that their behaviors present obvious differences following the changes of the exchange constant J, DM interaction D, the uniform magnetic field B and the inhomogeneity of magnetic field b. It is found that J and D broaden the region of MID. At the same time, we notice that, for the case of small D, MID can detect the quantum phase transition near J=0, but not for N. It is also observed that DM interaction and the inhomogeneous external magnetic field play competing roles in enhancing the N and MID in our system. Moreover, we also note D is a more efficient parameter than B and b when adjusting MID under the higher temperature. In addition, we discover that, for the same parameters, the region of MID in our system is larger than the result in mixed-spin (1/2, 1) system.
Nori, F.; Merlin, R.; Haas, S.; Sandvick, A.; Dagotto, E.
1996-03-01
We calculate(F. Nori, R.Merlin, S. Haas, A.W. Sandvik, and E. Dagotto, Physical Review Letters) 75, 553 (1995). the Raman spectrum of the two-dimensional (2D) spin-1/2 Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo techniques on clusters of up to 144 sites. On a 16-site cluster, we consider the phonon-magnon interaction which leads to random fluctuations of the exchange integral. Results are in good agreement with experiments on various high-Tc precursors, such as La_2CuO4 and YBa_2Cu_3O_6.2. In particular, our calculations reproduce the broad lineshape of the two-magnon peak, the asymmetry about its maximum, the existence of spectral weight at high energies, and the observation of nominally forbidden A_1g scattering.
International Nuclear Information System (INIS)
Law, J M; Benner, H; Kremer, R K
2013-01-01
The temperature dependence of the spin susceptibilities of S = 1, 3/2 , 2, 5/2 and 7/2 Heisenberg antiferromagnetic 1D spins chains with nearest-neighbor coupling was simulated via quantum Monte Carlo calculations, within the reduced temperature range of 0.005 ≤ T* ≤ 100, and fitted to a Padé approximation with deviations between the simulated and fitted data of the same order of magnitude as or smaller than the quantum Monte Carlo simulation error. To demonstrate the practicality of our theoretical findings, we compare these results with the susceptibility of the well known 1D chain compound TMMC ([(CH 3 ) 4 N[MnCl 3
Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming
2018-06-01
The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.
Remark on Heisenberg's principle
International Nuclear Information System (INIS)
Noguez, G.
1988-01-01
Application of Heisenberg's principle to inertial frame transformations allows a distinction between three commutative groups of reciprocal transformations along one direction: Galilean transformations, dual transformations, and Lorentz transformations. These are three conjugate groups and for a given direction, the related commutators are all proportional to one single conjugation transformation which compensates for uniform and rectilinear motions. The three transformation groups correspond to three complementary ways of measuring space-time as a whole. Heisenberg's Principle then gets another explanation [fr
Impurity modes in the one-dimensional XXZ Heisenberg model
International Nuclear Information System (INIS)
Sousa, J.M.; Leite, R.V.; Landim, R.R.; Costa Filho, R.N.
2014-01-01
A Green's function formalism is used to calculate the energy of impurity modes associated with one and/or two magnetic impurities in the one-dimensional Heisenberg XXZ magnetic chain. The system can be tuned from the Heisenberg to the Ising model varying a parameter λ. A numerical study is performed showing two types of localized modes (s and p). The modes depend on λ and the degeneracy of the acoustic modes is broken.
Torrico, Jordana; Ohanyan, Vadim; Rojas, Onofre
2018-05-01
We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped plaquette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain. We analyze the effects of non-conserving magnetization as well as the effects of the appearance of negative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromagnetic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize the "half-fire-half-ice" state introduced in reference Yin et al. (2015). The corresponding zero-temperature ground state phase diagrams are presented.
International Nuclear Information System (INIS)
Li Yanchao
2010-01-01
Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J 3 anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.
Correlated particle dynamics in concentrated quasi-two-dimensional suspensions
International Nuclear Information System (INIS)
Diamant, H; Cui, B; Lin, B; Rice, S A
2005-01-01
We investigate theoretically and experimentally how the hydrodynamically correlated lateral motion of particles in a suspension confined between two surfaces is affected by the suspension concentration. Despite the long range of the correlations (decaying as 1/r 2 with the inter-particle distance r), the concentration effect is present only at short inter-particle distances for which the static pair correlation is nonuniform. This is in sharp contrast with the effect of hydrodynamic screening in unconfined suspensions, where increasing the concentration changes the prefactor of the large-distance correlation
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Directory of Open Access Journals (Sweden)
Ynduráin, Francisco J.
2002-01-01
Full Text Available Not available
Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.
Energy Technology Data Exchange (ETDEWEB)
Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.c [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Salazar-Enriquez, C.D.; Londono-Navarro, J.; Jurado, J.F. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion, Instituto de Fisica. Universidad de Antioquia, A.A. 1226, Medellin (Colombia)
2011-06-15
This work presents a critical temperature study of La{sub 1-x}Ca{sub x}MnO{sub 3} manganites in bulk by means of Monte Carlo method thermal activated magnetic properties. The analysis was carried out for stoichiometries in the range of 0{<=}x{<=}1. The model is based on a three-dimensional classical Heisenberg-Hamiltonian involving the presence of Mn{sup 3+eg}, Mn{sup 3+eg'} and Mn{sup 4+} ions, and their nearest neighbor interaction. For this modeling, simple cubic lattice samples of size L{sup 3}, with L=6, 15 and 30 were used. The values of exchange parameters were determined by using LaMnO{sub 3} (x=0), La{sub 0.5}Ca{sub 0.5}MnO{sub 3} and CaMnO{sub 3} (x=1) phases. Relationships between exchange parameters and anisotropy constants for different hole densities were found. Results of transition temperatures for each phase showed good agreement with experimental reports, especially for L=30 and L{yields}{infinity}. - Research highlights: Stoichiometry influences the exchange interaction between magnetic ions. Charge and orbital ordering depend on the stoichiometry. LCMO magnetic phase diagram has a great variety of magnetic states.
On the continuum limit of a classical compressible Heisenberg chain
International Nuclear Information System (INIS)
Fivez, J.
1982-01-01
The equations of motion are derived for the classical compressible Heisenberg chain in the continuum limit to lowest non-trivial order in the derivatives. It is possible to eliminate the translations from the equation for the spins. The resulting equation does not admit of simple magnetic solitary wave solutions, in contradiction to the results of other authors. (author)
Resolvent kernel for the Kohn Laplacian on Heisenberg groups
Directory of Open Access Journals (Sweden)
Neur Eddine Askour
2002-07-01
Full Text Available We present a formula that relates the Kohn Laplacian on Heisenberg groups and the magnetic Laplacian. Then we obtain the resolvent kernel for the Kohn Laplacian and find its spectral density. We conclude by obtaining the Green kernel for fractional powers of the Kohn Laplacian.
Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster
International Nuclear Information System (INIS)
Deb, Moumita; Ghosh, Asim Kumar
2016-01-01
Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu_3WO_6.
Cosmological implications of Heisenberg's principle
Gonzalo, Julio A
2015-01-01
The aim of this book is to analyze the all important implications of Heisenberg's Uncertainty Principle for a finite universe with very large mass-energy content such as ours. The earlier and main contributors to the formulation of Quantum Mechanics are briefly reviewed regarding the formulation of Heisenberg's Principle. After discussing “indeterminacy” versus ”uncertainty”, the universal constants of physics are reviewed and Planck's units are given. Next, a novel set of units, Heisenberg–Lemaitre units, are defined in terms of the large finite mass of the universe. With the help of Heisenberg's principle, the time evolution of the finite zero-point energy for the universe is investigated quantitatively. Next, taking advantage of the rigorous solutions of Einstein's cosmological equation for a flat, open and mixed universe of finite mass, the most recent and accurate data on the “age” (to) and the expansion rate (Ho) of the universe and their implications are reconsidered.
Berry phase in Heisenberg representation
Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.
1994-01-01
We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.
Heisenberg, his wife s account
International Nuclear Information System (INIS)
Heisenberg, E.
1990-01-01
A wife tells about her husband life, Werner Heisenberg, Physics Nobel Price in 1932. After a happy childhood, this brilliant student was Albert Einstein, Niels Bohr, Arnold Sommerfeld s student. But at the nazism time, the great physician refused to leave his country, guaranteeing the Hitler regime and taking part in effort of war, that is to say the run to the bomb. The account of Elisabeth Heisenberg, although subjective, allows to understand the scientist s behaviour face terrifying realities of his time. (N.C.)
Non-Hermitian Heisenberg representation
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2015-01-01
Roč. 379, č. 36 (2015), s. 2013-2017 ISSN 0375-9601 Institutional support: RVO:61389005 Keywords : quantum mechanics * Non-Hermitian representation of observables * Generalized Heisenberg equations Subject RIV: BE - Theoretical Physics Impact factor: 1.677, year: 2015
Werner Heisenberg - Life and Work
2002-01-01
Werner Heisenberg (centre) with Wolfgang Pauli and Enrico Fermi, 1927. An exhibition on the life and work of Werner Heisenberg will be on display in the Main Building (Mezzanine) at CERN from 1 - 30 July*. German theoretical physicist Werner Karl Heisenberg (1901 - 1976) was one of the leading scientists of the 20th century. Nobel Prize in Physics in 1932, his most significant contribution was to the development of quantum mechanics. He is best known for his uncertainty principle, which restricts the accuracy with which some properties of atoms and particles can be determined simultaneously. Heisenberg was a keen supporter of CERN, and was as the first chairman of CERN's Scientific Policy Committee in October 1954. A related celebration will take place in the TH Amphitheatre (4/3-006), on Thursday 18 July at 16:00. After an introduction from the Director-General Luciano Maiani, his daughter, Barbara Blum, his last postgraduate, Helmut Rechenberg and Valentin Telegdi will evoke memories of the life and work ...
Werner Heisenberg - Life and Work
2002-01-01
Werner Heisenberg (centre) with Wolfgang Pauli (left) and Enrico Fermi on Lake Como, September 1927. An exhibition on the life and work of Werner Heisenberg will be on display in the Main Building (Mezzanine) at CERN from 1 - 23 July. The exhibition was produced by the University Archive of Leipzig University (Gerald Wiemers) and the Max-Planck-Institut für Physik in Munich (Helmut Rechenberg) to mark the centenary of Heisenberg's birth in 1901. German theoretical physicist Werner Karl Heisenberg (5 December 1901 - 1 February 1976) was one of the leading scientists of the 20th century. He carried out important work in nuclear and particle physics, but his most significant contribution was to the development of quantum mechanics. He is best known for his uncertainty principle, which restricts the accuracy with which some properties of atoms and particles - such as position and linear momentum - can be determined simultaneously. In 1932 he was awarded the Noble Prize in Physics 'for the creation of q...
International Nuclear Information System (INIS)
Belik, A.A.; Azuma, M.; Takano, M.
2004-01-01
Properties of Sr 2 Cu(PO 4 ) 2 and Ba 2 Cu(PO 4 ) 2 having [Cu(PO 4 ) 2 ] ∞ linear chains in their structures with Cu-O-P-O-Cu linkages were studied by magnetic susceptibility (T=2-400 K, H=100 Oe) and specific heat measurements (T=0.45-21 K). Magnetic susceptibility versus temperature curves, χ(T), showed broad maxima at T M =92 K for Sr 2 Cu(PO 4 ) 2 and T M =82 K for Ba 2 Cu(PO 4 ) 2 characteristic of quasi-one-dimensional systems. The χ(T) data were excellently fitted by the spin susceptibility curve for the uniform S=1/2 chain (plus temperature-independent and Curie-Weiss terms) with g=2.153(4) and J/k B =143.6(2) K for Sr 2 Cu(PO 4 ) 2 and g=2.073(4) and J/k B =132.16(9) K for Ba 2 Cu(PO 4 ) 2 (Hamiltonian H=JΣS i S i+1 ). The similar J/k B values were obtained from the specific heat data. No anomaly was observed on the specific heat from 0.45 to 21 K for both compounds indicating that the temperatures of long-range magnetic ordering, T N , were below 0.45 K. Sr 2 Cu(PO 4 ) 2 and Ba 2 Cu(PO 4 ) 2 are an excellent physical realization of the S=1/2 linear chain Heisenberg antiferromagnet with k B T N /J 2 CuO 3 (k B T N /J∼0.25%) and γ-LiV 2 O 5 (k B T N /J 2 Cu(PO 4 ) 2 and Ba 2 Cu(PO 4 ) 2 were stable in air up to 1280 and 1150 K, respectively
Dynamical properties of dissipative XYZ Heisenberg lattices
Rota, R.; Minganti, F.; Biella, A.; Ciuti, C.
2018-04-01
We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin coupling competes with local incoherent spin flip processes. In particular, we explore a region of the parameter space where dissipative magnetic phase transitions for the steady state have been recently predicted by mean-field theories and exact numerical methods. We investigate the asymptotic decay rate towards the steady state both in 1D (up to the thermodynamical limit) and in finite-size 2D lattices, showing that critical dynamics does not occur in 1D, but it can emerge in 2D. We also analyze the behavior of individual homodyne quantum trajectories, which reveal the nature of the transition.
Heisenberg picture and measurement operation
International Nuclear Information System (INIS)
D'Espagnat, B.
1992-01-01
The idea is discussed according to which, in the Heisenberg picture, differently from the Schroedinger picture, the operators correspond exactly to the dynamic properties and the role of the density matrix is merely to describe our passive knowledge thereof. It is shown that the idea in question cannot be consistently kept as it is, and hints are given as to how it could be refined. (from author). 2 refs
At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited
Rams, Marek M.; Sierant, Piotr; Dutta, Omyoti; Horodecki, Paweł; Zakrzewski, Jakub
2018-04-01
We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N-1 (Heisenberg scaling) in terms of the number of elementary subsystems used N . The second approach compares the overlap between the ground states of the parameter-dependent Hamiltonian in critical systems, often leading to an apparent super-Heisenberg scaling. However, we point out that if one takes into account the scaling of time needed to perform the necessary operations, i.e., ensuring adiabaticity of the evolution, the Heisenberg limit given by the rotation scenario is recovered. We illustrate the general theory on a ferromagnetic Heisenberg spin chain example and show that it exhibits such super-Heisenberg scaling of ground-state fidelity around the critical value of the parameter (magnetic field) governing the one-body part of the Hamiltonian. Even an elementary estimator represented by a single-site magnetization already outperforms the Heisenberg behavior providing the N-1.5 scaling. In this case, Fisher information sets the ultimate scaling as N-1.75, which can be saturated by measuring magnetization on all sites simultaneously. We discuss universal scaling predictions of the estimation precision offered by such observables, both at zero and finite temperatures, and support them with numerical simulations in the model. We provide an experimental proposal of realization of the considered model via mapping the system to ultracold bosons in a periodically shaken optical lattice. We explicitly derive that the Heisenberg limit is recovered when the time needed for preparation of quantum states involved is taken into account.
Collective impurity effects in the Heisenberg triangular antiferromagnet
International Nuclear Information System (INIS)
Maryasin, V S; Zhitomirsky, M E
2015-01-01
We theoretically investigate the Heisenberg antiferromagnet on a triangular lattice doped with nonmagnetic impurities. Two nontrivial effects resulting from collective impurity behavior are predicted. The first one is related to presence of uncompensated magnetic moments localized near vacancies as revealed by the low-temperature Curie tail in the magnetic susceptibility. These moments exhibit an anomalous growth with the impurity concentration, which we attribute to the clustering mechanism. In an external magnetic field, impurities lead to an even more peculiar phenomenon lifting the classical ground-state degeneracy in favor of the conical state. We analytically demonstrate that vacancies spontaneously generate a positive biquadratic exchange, which is responsible for the above degeneracy lifting
International Nuclear Information System (INIS)
Jiang Jianjun; Liu Yongjun; Tang Fei; Yang Cuihong
2011-01-01
We investigated the properties of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain using the spin-wave theory. The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the model are calculated to be compared with the corresponding properties of the mixed spin (1, 1/2) chain for a range of α. The results demonstrate that all the properties show similar behaviours in the small α limit, so the properties of the mixed spin (1, 1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain. -- Research Highlights: →The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain are calculated. →In the small α limit, the properties of the mixed spin (1,1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain. →The spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain may be of interest for some real quasi-one-dimensional molecular magnetic materials.
Correlation functions of heisenberg-mattis model in one dimension
International Nuclear Information System (INIS)
Azeeem, W.
1991-01-01
The technique of real-space renormalization to the dynamics of Heisenberg-Mattis model, which represents a random magnetic system with competing ferromagnetic and antiferromagnetic interactions has been applied. The renormalization technique, which has been in use for calculating density of states, is extended to calculate dynamical response function from momentum energy dependent Green's functions. Our numerical results on density of states and structure function of one-dimensional Heisenberg-Mattis model come out to be in good agreement with computer simulation results. The numerical scheme worked out in this thesis has the advantage that it can also provide a complete map of momentum and energy dependence of the structure function. (author)
Deformation quantization of the Heisenberg group
International Nuclear Information System (INIS)
Bonechi, F.
1994-01-01
After reviewing the way the quantization of Poisson Lie Groups naturally leads to Quantum Groups, the existing quantum version H(1) q of the Heisenberg algebra is used to give an explicit example of this quantization on the Heisenberg group. (author) 6 refs
Formation of quadrupolar phase in non-Heisenberg ferromagnets with half-integer spin
International Nuclear Information System (INIS)
Fridman, Yu.A.; Kosmachev, O.A.; Spirin, D.V.
2005-01-01
Possibility of realization of quadrupolar phase in non-Heisenberg ferromagnet with magnetic ion spin 32 is studied. It is shown that such phase state exists only in ferromagnets with high value of biquadratic exchange when external magnetic field is not applied. Phase diagram of the system is built
Quantum oscillations of thermomagnetic coefficients of layered conductors in a strong magnetic field
International Nuclear Information System (INIS)
Kirichenko, O.V.; Kozlov, I.V.; Peschansky, V.G.; Krstovska, D.
2008-01-01
The linear response of the electronic system of a conductor to a perturbation in the form of an electric field and a temperature gradient in a quantizing magnetic field B is investigated theoretically. The thermoelectric effect in a layered conductor is analyzed and it is shown that the quasi-two-dimensional character of the dispersion law of the charge carriers results in gigantic oscillations of the thermo-emf
Partition functions of classical Heisenberg spin chains with arbitrary and different exchange
International Nuclear Information System (INIS)
Cregg, P J; GarcIa-Palacios, J L; Svedlindh, P
2008-01-01
The classical Heisenberg model has been effective in modelling exchange interactions in molecular magnets. In this model, the partition function is important as it allows the calculation of the magnetization and susceptibility. For an ensemble of N-spin sites, this typically involves integrals in 2N dimensions. Here, for two-, three- and four-spin nearest neighbour open linear Heisenberg chains these integrals are reduced to sums of known functions, using a result due to Gegenbauer. For the case of the three- and four-spin chains, the sums are equivalent in form to the results of Joyce. The general result for an N-spin chain is also obtained
The Heisenberg antiferromagnet on the square-kagomé lattice
Directory of Open Access Journals (Sweden)
J. Richter
2009-01-01
Full Text Available We discuss the ground state, the low-lying excitations as well as high-field thermodynamics of the Heisenberg antiferromagnet on the two-dimensional square-kagomé lattice. This magnetic system belongs to the class of highly frustrated spin systems with an infinite non-trivial degeneracy of the classical ground state as it is also known for the Heisenberg antiferromagnet on the kagomé and on the star lattice. The quantum ground state of the spin-half system is a quantum paramagnet with a finite spin gap and with a large number of non-magnetic excitations within this gap. We also discuss the magnetization versus field curve that shows a plateaux as well as a macroscopic magnetization jump to saturation due to independent localized magnon states. These localized states are highly degenerate and lead to interesting features in the low-temperature thermodynamics at high magnetic fields such as an additional low-temperature peak in the specific heat and an enhanced magnetocaloric effect.
Zakeri, Khalil
2017-01-11
This Topical Review presents an overview of the recent experimental results on the quantitative determination of the magnetic exchange parameters in ultrathin magnetic films and multilayers grown on different substrates. The experimental approaches for probing both the symmetric Heisenberg and the antisymmetric Dzyaloshinskii-Moriya exchange interaction in ultrathin magnetic films and at interfaces are discussed in detail. It is explained how the experimental spectrum of magnetic excitations can be used to quantify the strength of these interactions.
Unconventional field induced phases in a quantum magnet formed by free radical tetramers
Saúl, Andrés; Gauthier, Nicolas; Askari, Reza Moosavi; Côté, Michel; Maris, Thierry; Reber, Christian; Lannes, Anthony; Luneau, Dominique; Nicklas, Michael; Law, Joseph M.; Green, Elizabeth Lauren; Wosnitza, Jochen; Bianchi, Andrea Daniele; Feiguin, Adrian
2018-02-01
We report experimental and theoretical studies on the magnetic and thermodynamic properties of NIT-2Py, a free radical based organic magnet. From magnetization and specific-heat measurements we establish the temperature versus magnetic field phase diagram which includes two Bose-Einstein condensates (BEC) and an infrequent half-magnetization plateau. Calculations based on density functional theory demonstrate that magnetically this system can be mapped to a quasi-two-dimensional structure of weakly coupled tetramers. Density matrix renormalization group calculations show the unusual characteristics of the BECs where the spins forming the low-field condensate are different than those participating in the high-field one.
Theory for disordered phase in Heisenberg and non-Heisenberg two-dimensional S=1 ferromagnets
International Nuclear Information System (INIS)
Spirin, D.V.; Fridman, Yu.A.
2003-01-01
We apply a modification of self-consistent spin-wave theory to investigation of two-dimensional S=1 isotropic Heisenberg and non-Heisenberg ferromagnets at nonzero temperatures. We use Hubbard operators method and bosonization technique. We calculated chemical potential and found dependence of correlation length on temperature. Specific heat has Schottky-type peak and decreases at high temperatures. Disordered phase in non-Heisenberg ferromagnet is also studied. The results for such a model differ from those of Heisenberg one
Excitation spectrum of Heisenberg spin ladders
International Nuclear Information System (INIS)
Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E.S.
1993-01-01
Heisenberg antiferromagnetic spin ''ladders'' (two coupled spin chains) are low-dimensional magnetic systems which for S=1/2 interpolate between half-integer-spin chains, when the chains are decoupled, and effective integer-spin one-dimensional chains in the strong-coupling limit. The spin-1/2 ladder may be realized in nature by vanadyl pyrophosphate, (VO) 2 P 2 O 7 . In this paper we apply strong-coupling perturbation theory, spin-wave theory, Lanczos techniques, and a Monte Carlo method to determine the ground-state energy and the low-lying excitation spectrum of the ladder. We find evidence of a nonzero spin gap for all interchain couplings J perpendicular >0. A band of spin-triplet excitations above the gap is also analyzed. These excitations are unusual for an antiferromagnet, since their long-wavelength dispersion relation behaves as (k-k 0 ) 2 (in the strong-coupling limit J perpendicular much-gt J, where J is the in-chain antiferromagnetic coupling). Their band is folded, with a minimum energy at k 0 =π, and a maximum between k 1 =π/2 (for J perpendicular =0) and 0 (for J perpendicular =∞). We also give numerical results for the dynamical structure factor S(q,ω), which can be determined in neutron scattering experiments. Finally, possible experimental techniques for studying the excitation spectrum are discussed
Quantum Heisenberg groups and Sklyanin algebras
International Nuclear Information System (INIS)
Andruskiewitsch, N.; Devoto, J.; Tiraboschi, A.
1993-05-01
We define new quantizations of the Heisenberg group by introducing new quantizations in the universal enveloping algebra of its Lie algebra. Matrix coefficients of the Stone-von Neumann representation are preserved by these new multiplications on the algebra of functions on the Heisenberg group. Some of the new quantizations provide also a new multiplication in the algebra of theta functions; we obtain in this way Sklyanin algebras. (author). 23 refs
Field dependent spin transport of anisotropic Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Rezania, H., E-mail: rezania.hamed@gmail.com
2016-04-01
We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters. - Highlights: • Theoretical calculation of spin conductivity of spin chain Heisenberg model. • The investigation of the effects of anisotropy and magnetic field on the temperature dependence of spin conductivity. • The study of the effect of temperature on the spin Drude weight.
The existence of a stable noncollinear phase in a Heisenberg model with complex structure
Energy Technology Data Exchange (ETDEWEB)
Shopova, Diana V.; Boyadjiev, Todor L
2003-05-19
We have analyzed the properties of a noncollinear magnetic phase obtained in the mean-field analysis of the model of two coupled Heisenberg subsystems. The domain of its existence and stability is narrow and depends on the ratio between the averaged over nearest neighbours microscopic exchange parameters.
Spinon decay in the spin-1/2 Heisenberg chain with weak next nearest neighbour exchange
International Nuclear Information System (INIS)
Groha, Stefan; Essler, Fabian H L
2017-01-01
Integrable models support elementary excitations with infinite lifetimes. In the spin-1/2 Heisenberg chain these are known as spinons. We consider the stability of spinons when a weak integrability breaking perturbation is added to the Heisenberg chain in a magnetic field. We focus on the case where the perturbation is a next nearest neighbour exchange interaction. We calculate the spinon decay rate in leading order in perturbation theory using methods of integrability and identify the dominant decay channels. The decay rate is found to be small, which indicates that spinons remain well-defined excitations even though integrability is broken. (paper)
Anisotropic Heisenberg model for a semi-infinite crystal
International Nuclear Information System (INIS)
Queiroz, C.A.
1985-11-01
A semi-infinite Heisenberg model with exchange interactions between nearest and next-nearest neighbors in a simple cubic lattice. The free surface from the other layers of magnetic ions, by choosing a single ion uniaxial anisotropy in the surface (Ds) different from the anisotropy in the other layers (D). Using the Green function formalism, the behavior of magnetization as a function of the temperature for each layer, as well as the spectrum localized magnons for several values of ratio Ds/D for surface magnetization. Above this critical ratio, a ferromagnetic surface layer is obtained white the other layers are already in the paramagnetic phase. In this situation the critical temperature of surface becomes larger than the critical temperature of the bulk. (Author) [pt
Electrical resistance of flaky crystals in the longitudinal quantizing magnetic field
International Nuclear Information System (INIS)
Askerov, B.M.; Figarova, S.R.; Makhmudov, M.M.
2005-01-01
Specific resistance of the quasi-two-dimensional electrical gas in the longitudinal quantizing magnetic field is investigated in this work. Common expression for resistivity in the flaky crystals was received. In quantum limit was analyzed dependence of the resistivity from the size of magnetic field and parameters energetic spectra in case of strong degenerate gas. It was tagged that, the conduct of specific resistance is formed by the dependence of chemical potential from the size of magnetic field. At the defined value of the chemical potential and size of magnetic field obtains inflation of the specific resistance. (author)
The Heisenberg picture for single photon states
International Nuclear Information System (INIS)
Pienaar, Jacques; Myers, Casey; Ralph, Timothy C.
2011-01-01
In the context of quantum field theory, the Heisenberg picture has a distinct advantage over the Schrodinger picture because the Schrodinger picture requires us to transform the vacuum state itself, which can be intractable in the case of non-inertial reference frames, whereas the Heisenberg picture allows us to keep the same vacuum state and only transform the operators. However, the Heisenberg calculation requires the operators to already be expressed as a function of creation and annihilation operators acting on the original vacuum, whereas calculations in quantum information and quantum computation use operators that act on qubit states, necessarily containing particles. The relationship between the operators acting on these states and the operators acting on the vacuum state has remained elusive. We derive such an expression using an explicit model for single-particle production from the vacuum.
Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets
International Nuclear Information System (INIS)
Wal, A.J. van der.
1979-01-01
Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)
Phase transition induced for external field in tree-dimensional isotropic Heisenberg antiferromagnet
Neto, Minos A.; Viana, J. Roberto; Salmon, Octavio D. R.; Filho, E. Bublitz; de Sousa, J. Ricardo
2017-01-01
In this paper, we report mean-field and effective-field renormalization group calculations on the isotropic Heisenberg antiferromagnetic model under a longitudinal magnetic field. As is already known, these methods, denoted by MFRG and EFRG, are based on the comparison of two clusters of different sizes, each of them trying to mimic certain Bravais lattice. Our attention has been on the obtantion of the critical frontier in the plane of temperature versus magnetic field, for the simple cubic ...
I grandi della fisica da Platone a Heisenberg
Von Weizsäcker, Carl Friedrich
2002-01-01
Parmenide ; Platone ; Aristotele ; Copernico, Keplero, Galilei ; Galileo Galilei ; Cartesio ; Gottfried Wilhelm Leibniz ; Cartesio, Newton, Leibniz, Kant ; Immanuel Kant ; Johann Wolfgang Goethe ; Robert Meyer ; Albert Einstein ; Niels Bohr ; Paul Adrien Maurice Dirac ; Niels Bohr e Werner Heisenberg, un ricordo del 1932 ; Werner Heisenberg ; Heisenberg, fisico e filosofo ; l'interpretazione filosofica della fisica moderna.
Remarks on Heisenberg-Euler-type electrodynamics
Kruglov, S. I.
2017-05-01
We consider Heisenberg-Euler-type model of nonlinear electrodynamics with two parameters. Heisenberg-Euler electrodynamics is a particular case of this model. Corrections to Coulomb’s law at r →∞ are obtained and energy conditions are studied. The total electrostatic energy of charged particles is finite. The charged black hole solution in the framework of nonlinear electrodynamics is investigated. We find the asymptotic of the metric and mass functions at r →∞. Corrections to the Reissner-Nordström solution are obtained.
Hilbert schemes of points and Heisenberg algebras
International Nuclear Information System (INIS)
Ellingsrud, G.; Goettsche, L.
2000-01-01
Let X [n] be the Hilbert scheme of n points on a smooth projective surface X over the complex numbers. In these lectures we describe the action of the Heisenberg algebra on the direct sum of the cohomologies of all the X [n] , which has been constructed by Nakajima. In the second half of the lectures we study the relation of the Heisenberg algebra action and the ring structures of the cohomologies of the X [n] , following recent work of Lehn. In particular we study the Chern and Segre classes of tautological vector bundles on the Hilbert schemes X [n] . (author)
Exactly solved mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy
International Nuclear Information System (INIS)
Lisnyi, Bohdan; Strečka, Jozef
2015-01-01
The mixed spin-(1,1/2) Ising–Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration–iteration transformation and the transfer-matrix method. The decoration–iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume–Emery–Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively. - Highlights: • Mixed spin-(1,1/2) Ising–Heisenberg diamond chain is exactly solved. • Quantum ground states with a singlet-dimer state of the Heisenberg spins are found. • Magnetization curve displays intermediate plateaus at zero and half of full magnetization. • Thermal dependences of specific heat may display up to four distinct peaks
Polarizability tensor and Kramers-Heisenberg induction
Wijers, Christianus M.J.
2004-01-01
A general expression for the semiclassical, nonrelativistic linear polarizability of an arbitrary volume element V has been derived in the long wavelength approximation. The derivation starts from the expectation value of the dipole strength, as in the original Kramers-Heisenberg paper about optical
Uncertainty inequalities for the Heisenberg group
Indian Academy of Sciences (India)
where φ is an admissible wavelet and kφ is an appropriate positive constant. For more on the history and the relevance of the uncertainty inequality, we refer the readers to the survey [5], the books [6,8], and the papers [2,10,11]. For the Heisenberg group Hn, Thangavelu [16] proved the following theorem. Theorem 1.1.
International Nuclear Information System (INIS)
Murtazaev, A.K.; Ramazanov, M.K.; Badiev, M.K.
2009-01-01
The critical properties of the 3D frustrated antiferromagnetic Heisenberg model on a triangular lattice are investigated by the replica Monte Carlo method. The static magnetic and chiral critical exponents of heat capacity a = 0.05(2), magnetization Β 0.30(1), Β k = 0.52(2), susceptibility Γ = 1.36(2), Γ k = 0.93(3), and correlation radius Ν 0.64(1), Ν k = 0.64(2) are calculated by using the finitesize scaling theory. The critical Fisher exponents η = - 0.06(3), η k = 0.63(4) for this model are estimated for the first time. A new universality class of the critical behavior is shown to be formed by the 3D frustrated Heisenberg model on the triangular lattice. A type of the interlayer exchange interaction is found to influence the universality class of antiferromagnetic Heisenberg model on the a triangular lattice.
International Nuclear Information System (INIS)
Peng Xinhua; Du Jiangfeng; Suter, D.
2005-01-01
Full text: Quantum information processing requires the effective measurement of quantum states. An important method, called quantum state tomography, needs measuring a complete set of observables on the measured system to determine its unknown quantum state ρ. The measurement involves certain noncommuting observables as a result of Bohr's complementarity. Very recently, Allahverdyan et al. proposed a new method in which the unknown quantum state r is determined by measuring a set of commuting observables in the price of a controlled interaction with an auxiliary system. If both systems S and A are spins, their z components (σ z ) can be chosen to measure after some specific Heisenberg exchange interaction. We study in detail a general Heisenberg XYZ model for a two-qubit system and present two classes of special Heisenberg interactions which can serve as the controlled interaction in Allahverdyan's scheme when the state of the auxiliary system A is initially completely disordered. Using the nuclear magnetic resonance techniques, the measurement scheme in a single apparatus has been experimentally demonstrated by designing the quantum circuit to simulate the Heisenberg exchange interaction. (author)
Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional Mo S 2
Hong, Jinhua; Li, Kun; Jin, Chuanhong; Zhang, Xixiang; Zhang, Ze; Yuan, Jun
2016-01-01
The anisotropy of the electronic transition is a well-known characteristic of low-dimensional transition-metal dichalcogenides, but their layer-thickness dependence has not been properly investigated experimentally until now. Yet, it not only determines the optical properties of these low-dimensional materials, but also holds the key in revealing the underlying character of the electronic states involved. Here we used both angle-resolved electron energy-loss spectroscopy and spectral analysis of angle-integrated spectra to study the evolution of the anisotropic electronic transition involving the low-energy valence electrons in the freestanding MoS2 layers with different thicknesses. We are able to demonstrate that the well-known direct gap at 1.8 eV is only excited by the in-plane polarized field while the out-of-plane polarized optical gap is 2.4 ± 0.2 eV in monolayer MoS2. This contrasts with the much smaller anisotropic response found for the indirect gap in the few-layer MoS2 systems. In addition, we determined that the joint density of states associated with the indirect gap transition in the multilayer systems and the corresponding indirect transition in the monolayer case has a characteristic three-dimensional-like character. We attribute this to the soft-edge behavior of the confining potential and it is an important factor when considering the dynamical screening of the electric field at the relevant excitation energies. Our result provides a logical explanation for the large sensitivity of the indirect transition to thickness variation compared with that for the direct transition, in terms of quantum confinement effect.
Mechanism of Superconductivity in Quasi-Two-Dimensional Organic Conductor β-(BDA-TTP) Salts
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Ito, Hiroshi
2008-09-01
We investigate theoretically the superconductivity of two-dimensional organic conductors, β-(BDA-TTP)2SbF6 and β-(BDA-TTP)2AsF6, to understand the role of the spin and charge fluctuations. The transition temperature is estimated by applying random phase approximation to an extended Hubbard model wherein realistic transfer energies are estimated by extended Hückel calculation. We find a gapless superconducting state with a dxy-like symmetry, which is consistent with the experimental results obtained by specific heat and scanning tunneling microscope. In the present model with an effectively half-filled triangular lattice, spin fluctuation competes with charge fluctuation as a mechanism of pairing interaction since both fluctuations have the same characteristic momentum q=(π,0) for V being smaller than U. This is in contrast to a model with a quarter-filled square lattice, wherein both fluctuations contribute cooperatively to pairing interaction due to fluctuations having different characteristic momenta. The resultant difference in the superconductivity of these two materials is also discussed.
Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers
Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.
2018-05-01
We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.
Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional Mo S 2
Hong, Jinhua
2016-02-29
The anisotropy of the electronic transition is a well-known characteristic of low-dimensional transition-metal dichalcogenides, but their layer-thickness dependence has not been properly investigated experimentally until now. Yet, it not only determines the optical properties of these low-dimensional materials, but also holds the key in revealing the underlying character of the electronic states involved. Here we used both angle-resolved electron energy-loss spectroscopy and spectral analysis of angle-integrated spectra to study the evolution of the anisotropic electronic transition involving the low-energy valence electrons in the freestanding MoS2 layers with different thicknesses. We are able to demonstrate that the well-known direct gap at 1.8 eV is only excited by the in-plane polarized field while the out-of-plane polarized optical gap is 2.4 ± 0.2 eV in monolayer MoS2. This contrasts with the much smaller anisotropic response found for the indirect gap in the few-layer MoS2 systems. In addition, we determined that the joint density of states associated with the indirect gap transition in the multilayer systems and the corresponding indirect transition in the monolayer case has a characteristic three-dimensional-like character. We attribute this to the soft-edge behavior of the confining potential and it is an important factor when considering the dynamical screening of the electric field at the relevant excitation energies. Our result provides a logical explanation for the large sensitivity of the indirect transition to thickness variation compared with that for the direct transition, in terms of quantum confinement effect.
Nanofluidic electrokinetics in quasi-two-dimensional branched U-turn channels
Parikesit, G.O.F.
2008-01-01
Lab-on-a-Chip (LOC) is a new technology focused on analyzing and controlling flows of fluids, ions, and (bio) particles on the nanometer and micrometer scales, allowing us to shrink a complete fluid-based laboratory into a coin-sized instrumentation. In this thesis, we study a novel fluidic
Quasi-two-dimensional metallic hydrogen inside di-phosphide at high pressure
International Nuclear Information System (INIS)
Degtyarenko, N N; Mazur, E A
2016-01-01
The method of mathematical modelling was used for the calculation of the structural, electronic, phononic, and other characteristics of various normal phases of phosphorus hydrides with stoichiometry PH k . It was shown that the di-phosphine may form 2D lattice of the metallic hydrogen in it, stabilized by phosphorus atoms under high hydrostatic pressure. The resulting structure with the elements of H-P-H has a locally stable (or metastable) phonon spectrum. The properties of di-phosphine were compared with the properties of similar structures such as the sulphur hydrides. (paper)
Block copolymer micelle coronas as quasi-two-dimensional dilute or semidilute polymer solutions
DEFF Research Database (Denmark)
Svaneborg, C.; Pedersen, J.S.
2001-01-01
Chain-chain interactions in a corona of polymers tethered to a spherical core under good solvent conditions are studied using Monte Carlo simulations. The total scattering function of the corona as well as different partial contributions are sampled. By combining the different contributions...
International Nuclear Information System (INIS)
Lutgen, S.; Kaindl, R.A.; Woerner, M.; Elsaesser, T.; Hase, A.; Kuenzel, H.; Gulia, M.; Meglio, D.; Lugli, P.
1996-01-01
The dynamics of electrons in GaInAs/AlInAs quantum wells is studied after excitation from the n=1 to the n=2 conduction subband. Femtosecond pump-probe experiments demonstrate for the first time athermal distributions of n=1 electrons on a surprisingly long time scale of 2ps. Thermalization involves intersubband scattering of excited electrons via optical phonon emission with a time constant of 1ps and intrasubband Coulomb and phonon scattering. Ensemble Monte Carlo simulations show that the slow electron equilibration results from Pauli blocking and screening of carrier-carrier scattering. copyright 1996 The American Physical Society
Direct observation of strong localization of quasi-two-dimensional light waves
DEFF Research Database (Denmark)
Bozhevolnyi, Sergey I.
1999-01-01
Scattering of surface plasmon polaritons on rough metal surfaces is investigated by using scanning near-field optical microscopy. Different scattering regimes, i.e. single, double and multiple scattering, are observed and related to the spatial Fourier spectra of the corresponding near-field opti...... caused by surface roughness. Similar bright light spots are observed with light scattering by silver colloid clusters deposited on glass substrates. Differences and similarities in these scattering phenomena are discussed....
Quasi-two-dimensional superconductivity in wurtzite-structured InN films
International Nuclear Information System (INIS)
Ling, D.C.; Cheng, J.H.; Lo, Y.Y.; Du, C.H.; Chiu, A.P.; Chang, P.H.; Chang, C.A.
2007-01-01
C-axis oriented InN films with wurtzite structure were grown on sapphire(0001) substrate by MOCVD method. Superconductivity with transition onset temperature T c,onset around 3.5 K has been characterized by magnetotransport measurements in fields up to 9 Tesla for films with carrier concentration in the range of 1 x 10 19 cm -3 to 7 x 10 20 cm -3 . Among them, the film with a nitridation buffer layer has the highest zero-resistance temperature T c0 of 2 K. The normal-state magnetoresistance follows Kohler's rule ΔR/R∝(H/R) 2 , indicating that there is a single species of charge carrier with single scattering time at all points on the Fermi surface. The extrapolated value of zero-temperature upper critical field H c2 ab (0) and H c2 c (0) is estimated to be 5900 G and 2800 G, respectively, giving rise to the anisotropy parameter γ about 2.1. The angular dependence of the upper critical field is in good agreement with the behavior predicted by Lawrence-Doniach model in the two-dimensional (2D) limit strongly suggesting that the InN film is a quasi-2D superconductor. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Decaying quasi-two-dimensional viscous flow on a square domain
DEFF Research Database (Denmark)
Konijnenberg, J.A. van de; Flor, J.B.; Heijst, G.J.F. van
1998-01-01
A comparison is made between experimental, numerical and analytical results for the two-dimensional flow on a square domain. The experiments concern the flow at the interface of a two-layer stratified fluid, evoked by either stirring the fluid with a rake, or by injecting additional fluid...... at the interface. Two numerical simulations were performed with initial conditions and boundary conditions that correspond approximately with those met in the experiments. The analytical results concern the calculation of the lowest modes of a decaying Stokes flow on a square domain. At late times...... relationship between vorticity and stream function in the experiments and the simulations. (C) 1998 American Institute of Physics....
Quasi-particle properties in a quasi-two-dimensional electron liquid
Indian Academy of Sciences (India)
effects are incorporated into the local-field factors that describe the charge and spin correla- ... dient of which is the quasi-particle concept and its interactions. .... factors. Note that we have approximated the local-field factors by their static, frequency-independent limits. Quite generally, once the QP self-energy is known, the ...
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2015-10-15
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.
Evolution of topological features in finite antiferromagnetic Heisenberg chains
International Nuclear Information System (INIS)
Chen Changfeng
2003-01-01
We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed
Raman Scattering as a Probe of the Magnetic State of BEDT-TTF Based Mott Insulators
Directory of Open Access Journals (Sweden)
Nora Hassan
2018-05-01
Full Text Available Quasi-two-dimensional Mott insulators based on BEDT-TTF molecules have recently demonstrated a variety of exotic states, which originate from electron–electron correlations and geometrical frustration of the lattice. Among those states are a triangular S = 1/2 spin liquid and quantum dipole liquid. In this article, we show the power of Raman scattering technique to characterize magnetic and electronic excitations of these states. Our results demonstrate a distinction between a spectrum of magnetic excitations in a simple Mott insulator with antiferromagnetic interactions, and a spectrum of an insulator with an additional on-site charge degree of freedom.
The spin-s quantum Heisenberg ferromagnetic models in the physical magnon theory
International Nuclear Information System (INIS)
Liu, B.-G.; Pu, F.-C.
2001-01-01
The spin-s quantum Heisenberg ferromagnetic model is investigated in the physical magnon theory. The effect of the extra unphysical magnon states on every site is completely removed in the magnon Hamiltonian and during approximation procedure so that the condition †n i a n i >=0(n≥2s+1) is rigorously satisfied. The physical multi-magnon occupancy †n i a n i >(1≤n≤2s) is proportional to T 3n/2 at low temperature and is equivalent to 1/(2s+1) at the Curie temperature. The magnetization not only unified but also well-behaved from zero temperature to Curie temperature is obtained in the framework of the magnon theory for the spin-s quantum Heisenberg ferromagnetic model. The ill-behaved magnetizations at high temperature in earlier magnon theories are completely corrected. The relation of magnon (spin wave) theory with spin-operator decoupling theory is clearly understood
Considerations on Bohr's, Heisenberg's and Schroedinger's philosophy
International Nuclear Information System (INIS)
Shimony, A.
1981-01-01
In denying that the words 'physical reality' are meaningful without reference to an experimental arrangement, Bohr renounces any knowledge of the 'thing-in-itself'. However, the relation of his epistemology to both idealism and positivism remains obscure. Heisenberg departs from Bohr in enunciating a metaphysical implication of quantum mechanics. Heisenberg asserts that there is an intermediate modality -potentiality- between logical possibility and existence. His attempts to explain the transition from potentiality to existence are not convincing. Schroedinger rejects Bohr's interpretation of quantum mechanics as a positivist exercise and seeks instead a realist interpretation. Nevertheless, the metaphysics of Schroedinger is fundamentally idealistic, maintaining that the material aspect of the world is composed of the same elements as mind, but in a different order [fr
Heisenberg rise of total cross sections
International Nuclear Information System (INIS)
Ezhela, V.V.; Yushchenko, O.P.
1988-01-01
It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
Controllable entanglement sudden birth of Heisenberg spins
International Nuclear Information System (INIS)
Zheng Qiang; Zhi Qijun; Zhang Xiaoping; Ren Zhongzhou
2011-01-01
We investigate the Entanglement Sudden Birth (ESB) of two Heisenberg spins A and B. The third controller, qutrit C is introduced, which only has the Dzyaloshinskii-Moriya (DM) spin-orbit interaction with qubit B. We find that the DM interaction is necessary to induce the Entanglement Sudden Birth of the system qubits A and B, and the initial states of the system qubits and the qutrit C are also important to control its Entanglement Sudden Birth. (authors)
Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain
Hao, Xiang; Zhu, Shiqun
2008-01-01
The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...
Heisenberg spin glass experiments and the chiral ordering scenario
International Nuclear Information System (INIS)
Campbell, Ian A.; Petit, Dorothee C.M.C.
2010-01-01
An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)
Effects of surface exchange anisotropy in Heisenberg ferromagnetic insulators
International Nuclear Information System (INIS)
Selzer, S.; Majlis, N.
1982-03-01
We consider an fcc semi-infinite ferromagnetic insulator displaying an anisotropic exchange interaction between spins on the (111) surface plane of the form Jsub(parallel)[Ssub(i)sup(x)Ssub(j)sup(x)+Ssub(i)sup(y)Ssub(j)sup(y )+etaSsub(i)sup(z)Ssub(j)sup(z)], assuming all other interactions isotropic. A self-consistent RPA calculation is performed, with a Green function method valid for any spin S, up to the bulk transition temperature Tsub(c)sup(b), by imposing that the magnetization of the third layer equals the bulk value. For eta sufficiently large, the surface magnetization is non-zero for T>Tsub(c)sup(b), up to a transition temperature Tsub(c)sup(s)(eta) whenever eta>=etasub(c)>1, where Tsub(c)sup(s)(etasub(c))=Tsub(c)sup(b). For T>Tsub(c)sup(b) the system is equivalent to a film of three layers, where the magnetization of the third one is identically zero as a boundary condition. A discontinuity of the derivative in the curve of the magnetization of the first two layers vs. temperature is found at Tsub(c)sup(b). The results show clearly a cross-over from Heisenberg to Ising behaviour at the surface. (author)
Criticality of the D=2 anisotropic quantum Heisenberg model
International Nuclear Information System (INIS)
Caride, A.O.; Tsallis, C.; Zanette, S.I.
1983-01-01
Within a real space renormalization group framework, the square-lattice spin-1/2 Heisenberg ferromagnet in the presence of an Ising-like anisotropy is discussed. The controversial point on how T sub(c) vanishes in the isotropic Heisenberg limit is analyzed: quite strong evidence is presented favoring a continuous function of anisotropy. The crossover from the isotropic Heisenberg model to the pure Ising one is exhibited. (Author) [pt
Barrier functions for Pucci-Heisenberg operators and applications
Cutri , Alessandra; Tchou , Nicoletta
2007-01-01
International audience; The aim of this article is the explicit construction of some barrier functions ("fundamental solutions") for the Pucci-Heisenberg operators. Using these functions we obtain the continuity property, up to the boundary, for the viscosity solution of fully non-linear Dirichlet problems on the Heisenberg group, if the boundary of the domain satisfies some regularity geometrical assumptions (e.g. an exterior Heisenberg-ball condition at the characteristic points). We point ...
Heisenberg groups and noncommutative fluxes
International Nuclear Information System (INIS)
Freed, Daniel S.; Moore, Gregory W.; Segal, Graeme
2007-01-01
We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z 2 -graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured
Exact solution of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chain
Directory of Open Access Journals (Sweden)
L. Čanová
2009-01-01
Full Text Available The geometric frustration in a class of the mixed spin-1/2 and spin-S Ising-Heisenberg diamond chains is investigated by combining three exact analytical techniques: Kambe projection method, decoration-iteration transformation and transfer-matrix method. The ground state, the magnetization process and the specific heat as a function of the external magnetic field are particularly examined for different strengths of the geometric frustration. It is shown that the increase of the Heisenberg spin value S raises the number of intermediate magnetization plateaux, which emerge in magnetization curves provided that the ground state is highly degenerate on behalf of a sufficiently strong geometric frustration. On the other hand, all intermediate magnetization plateaux merge into a linear magnetization versus magnetic field dependence in the limit of classical Heisenberg spin S → ∞. The enhanced magnetocaloric effect with cooling rate exceeding the one of paramagnetic salts is also detected when the disordered frustrated phase constitutes the ground state and the external magnetic field is small enough.
Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.
2018-04-01
The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.
Green function study of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic model
International Nuclear Information System (INIS)
Li Jun; Wei Guozhu; Du An
2004-01-01
The magnetic properties of a mixed spin-((3)/(2)) and spin-((1)/(2)) Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by a multisublattice Green-function technique which takes into account the quantum nature of Heisenberg spins. This model can be relevant for understanding the magnetic behavior of the new class of organometallic materials that exhibit spontaneous magnetic moments at room temperature. We discuss the spontaneous magnetic moments and the finite-temperature phase diagram. We find that there is no compensation point at finite temperature when only the nearest-neighbor interaction and the single-ion anisotropy are included. When the next-nearest-neighbor interaction between spin-((1)/(2)) is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other values in Hamiltonian fixed. The next-nearest-neighbor interaction between spin-((3)/(2)) has the effect of changing the compensation temperature
Heisenberg's heirs exploit loopholes in his law
International Nuclear Information System (INIS)
Taubes, G.
1994-01-01
This article describes research into Heisenberg's Uncertainty Principle. Loopholes in the principle have led to a series of experiments using sophisticated optical techniques to extract information from a quantum system without disturbing the variable being measured. The experiments are based on a technique called back-action evasion, which exploits the possibility of channeling all the uncertainty generated by measuring one quantum variable (e.g. laser beam intensity) onto a related variable known as the conjugate observable (beam phase). These experiments and others are described
Heisenberg and the German atomic project
International Nuclear Information System (INIS)
Hermann, A.
1988-01-01
The discovery of nuclear fusion 50 years ago, man's entry into the new atomic age, occurred in a fateful era, marked by the Munich Agreement shortly before and the outbreak of World War II shortly afterwards. Werner Heisenberg, Germany's Number One Physicist, was, on the one hand, respected as a competent and 'useful' theoretician, but on the other, was reviled as a 'white Jew, the spirit of Einstein's spirit'. He plays a key role in answering the question of whether research at that time could have resulted in a German atomic bomb. (orig.) [de
International Nuclear Information System (INIS)
Askerov, B. M.; Figarova, R.; Guseynov, G.I.
2012-01-01
Full Text : The transverse magnetoresistance in superlattices with the cosine dispersion law of conduction electrons in a case, when a weak magnetic field in plane of layer at scattering of the charge carriers of impurity ions has been studied. It has been shown that in a quasi-two-dimensional case the magnetoresistance was positive, while in a quasi-three-dimensional case can become negative depending of a degree of mini-band filling. Such behavior of magnetoresistance, apparently, has been related to presence in a mini-band of region with the negative effective mass
Comments on 'On a proposed new test of Heisenberg's principle'
International Nuclear Information System (INIS)
Home, D.; Sengupta, S.
1981-01-01
A logical fallacy is pointed out in Robinson's analysis (J. Phys. A.; 13:877 (1980)) of a thought experiment purporting to show violation of Heisenberg's uncertainty principle. The real problem concerning the interpretation of Heisenberg's principle is precisely stated. (author)
Extended Heisenberg principle: Tentative analysis of its applications
International Nuclear Information System (INIS)
Golbbiewski, A.; Witko, M.
1988-01-01
The paper examines the extension of the Heisenberg principle for a larger number of simultaneously discussed observables. The possibilities of the extended Heisenberg principle are discussed for evaluation of the average value of the square of the selected operator and for evaluation of the standard deviation of the selected operator
Werner Heisenberg, 5 December 1901 - 1 February 1976
International Nuclear Information System (INIS)
Mott, N.; Peierls, R.
1977-01-01
An account is given of the life and work of Werner Heisenberg, with particular reference to his contribution to quantum mechanics and the formulation of the uncertainty principle. The development of atomic energy in Germany during the war is described, and the part played by Heisenberg in German post-war science. (U.K.)
Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?
Robertson, Bill
2016-01-01
Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…
Effect of atomic disorder on the magnetic phase separation
Groshev, A. G.; Arzhnikov, A. K.
2018-05-01
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Large field-induced gap of Kitaev-Heisenberg paramagnons in $\\alpha$-RuCl$_{3}$
Hentrich, Richard; Wolter, Anja U. B.; Zotos, Xenophon; Brenig, Wolfram; Nowak, Domenic; Isaeva, Anna; Doert, Thomas; Banerjee, Arnab; Lampen-Kelley, Paula; Mandrus, David G.; Nagler, Stephen E.; Sears, Jennifer; Kim, Young-June; Büchner, Bernd; Hess, Christian
2017-01-01
The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $\\alpha$-RuCl$_{3}$ recently emerged as a prime candidate. Here we unveil highly unusual low-temperature heat conductivity $\\kappa$ of $\\alpha$-RuCl$_{3}$: beyond a magnetic field of $B_c\\approx$ 7.5 T, $\\kappa$ increases by about one order of magnitude, resulting in a large magnetic field depen...
Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling.
Nishikawa, Yoshihiko; Michel, Manon; Krauth, Werner; Hukushima, Koji
2015-12-01
We apply the event-chain Monte Carlo algorithm to the three-dimensional ferromagnetic Heisenberg model. The algorithm is rejection-free and also realizes an irreversible Markov chain that satisfies global balance. The autocorrelation functions of the magnetic susceptibility and the energy indicate a dynamical critical exponent z≈1 at the critical temperature, while that of the magnetization does not measure the performance of the algorithm. We show that the event-chain Monte Carlo algorithm substantially reduces the dynamical critical exponent from the conventional value of z≃2.
Unceratainty of Heisenberg in Universe Destruction
Directory of Open Access Journals (Sweden)
Sri Jumini
2017-12-01
Full Text Available The Qur'an is a guidence which explaines all about the universe to human being. The discovery of science has been able to explain the truth of the Qur'an scientifically. One of which is the principle of Heisenberg's uncertainty in the event of the universe destruction. The purpose of this research is to know: 1 Science's view of the event of the universe destruction (Big Crunch in Qur’an [Al Infithaar]: 1-3, and How the relation of Heisenberg’s uncertainty principles and the law of thermodynamics II toward the collapse of the universe (Big Crunch based on Scientific views and the Quran. This research is a qualitative research using library research method which analyzes the related books directly or indirectly. The results of the analysis stated that: 1 The concentration of mass, which is big enough, relates to some of the laws of physics, those are: Relativity, Heisenberg's uncertainty principles, and the law of Thermodynamic II; 2 The universe will return at its sole point, i.e; the absence of the universe; 3 The destruction of the universe is the destruction of the order of the universe which then the stars fall scatteredly because of the gravitational force that prevents them disappears, the balance of the universe diminishes, decreases and becomes uncertain, and eventually disappears.
Heisenberg and the framework of science policy
International Nuclear Information System (INIS)
Carson, C.
2002-01-01
In the decades after 1945, new structures were created for science policy in the Federal Republic. To the establishment of the postwar framework Heisenberg contributed as much as any other figure. This was true even though, on the whole, he took no great pleasure in the venture, nor was he always particularly adept at it. His conceptions revolved around certain key notions: autonomy and centralization, elite advisory bodies and relationships of trust, modernization and international standards. These show up at many levels of his activity, from the Max Planck Society to national and international advisory committees to the Humboldt Foundation itself. His opinions were shaped by encounters in the Federal Republic, but they also grew out of his experience of the Third Reich. At a moment like the present, when the postwar settlement is under review, it is interesting to reflect on the inherited system: on the extent to which it reflects the situation of the postwar decades and the intuitions of those who, like Heisenberg, created it. (orig.)
International Nuclear Information System (INIS)
Li Jun; Wei Guozhu; Du An
2005-01-01
The compensation and critical behaviors of a mixed spin-2 and spin-12 Heisenberg ferrimagnetic system on a square lattice are investigated theoretically by the two-time Green's function technique, which takes into account the quantum nature of Heisenberg spins. The model can be relevant for understanding the magnetic behavior of the new class of organometallic ferromagnetic materials that exhibit spontaneous magnetic properties at room temperature. We carry out the calculation of the sublattice magnetizations and the spin-wave spectra of the ground state. In particular, we have studied the effects of the nearest, next-nearest-neighbor interactions, the crystal field and the external magnetic field on the compensation temperature and the critical temperature. When only the nearest-neighbor interactions and the crystal field are included, no compensation temperature exists; when the next-nearest-neighbor interaction between spin-12 is taken into account and exceeds a minimum value, a compensation point appears and it is basically unchanged for other parameters in Hamiltonian fixed. The next-nearest-neighbor interactions between spin-2 and the external magnetic field have the effects of changing the compensation temperature and there is a narrow range of parameters of the Hamiltonian for which the model has the compensation temperatures and compensation temperature exists only for a small value of them
3-D quantum Heisenberg ferromagnet with random anisotropy
International Nuclear Information System (INIS)
Santos, R.M.Z. dos; Santos, Raimundo R. dos; Mariz, A.M.; Rio Grande do Norte Univ., Natal; Tsallis, C.
1985-01-01
Critical properties of the 3-D quantum Heisenberg ferromagnet with random anisotropies; that is, the coupling between any pair of nearest-neighbouring spins can be either isotropic (Heisenberg) or anisotropic (Ising-or XY-like) at random are studied. Within a Migdal-Kadanoff approximation the full critical frontier and correlation length critical exponents are obtained. It is found that the isotropic Heisenberg model is unstable (in the context of universality classes) in the presence of a small concentration of couplings with lower symmetry. (Author) [pt
Structure factors for the alternating Heisenberg chain
International Nuclear Information System (INIS)
Hamer, C.J.; Zheng, W.
2004-01-01
Full text: We develop a linked cluster method to calculate the spectral weights of many-particle excitations at zero temperature. The dynamical structure factor, which is measured in neutron scattering experiments, is expressed as a sum of 'exclusive' structure factors, each representing the contribution of a specific excited state. We apply these methods to the alternating Heisenberg chain, where complete wave-vector and frequency dependent spectral weights for one- and two-particle excitations (continuum and bound states) are calculated near the dimerized limit (λ = O). We also examine the variation of the spectral weights as the uniform chain (λ = 1) is approached. In agreement with Schmidt and Uhrig, we find that the spectral weight is dominated by 2-triplet states, even at λ 1, which implies that a description in terms of triplet-pair excitations remains a good quantitative description even for the uniform, undimerized chain
Local quantum control of Heisenberg spin chains
International Nuclear Information System (INIS)
Heule, Rahel; Bruder, C.; Stojanovic, Vladimir M.; Burgarth, Daniel
2010-01-01
Motivated by some recent results of quantum control theory, we discuss the feasibility of local operator control in arrays of interacting qubits modeled as isotropic Heisenberg spin chains. Acting on one of the end spins, we aim at finding piecewise-constant control pulses that lead to optimal fidelities for a chosen set of quantum gates. We analyze the robustness of the obtained results for the gate fidelities to random errors in the control fields, finding that with faster switching between piecewise-constant controls the system is less susceptible to these errors. The observed behavior falls into a generic class of physical phenomena that are related to a competition between resonance- and relaxation-type behavior, exemplified by motional narrowing in NMR experiments. Finally, we discuss how the obtained optimal gate fidelities are altered when the corresponding rapidly varying piecewise-constant control fields are smoothened through spectral filtering.
Quantum stability for the Heisenberg ferromagnet
International Nuclear Information System (INIS)
Bargheer, Till; Beisert, Niklas; Gromov, Nikolay
2008-01-01
Highly spinning classical strings on RxS 3 are described by the Landau-Lifshitz model or equivalently by the Heisenberg ferromagnet in the thermodynamic limit. The spectrum of this model can be given in terms of spectral curves. However, it is a priori not clear whether any given admissible spectral curve can actually be realized as a solution to the discrete Bethe equations, a property which can be referred to as stability. In order to study the issue of stability, we find and explore the general two-cut solution or elliptic curve. It turns out that the moduli space of this elliptic curve shows a surprisingly rich structure. We present the various cases with illustrations and thus gain some insight into the features of multi-cut solutions. It appears that all admissible spectral curves are indeed stable if the branch cuts are positioned in a suitable, non-trivial fashion.
International Nuclear Information System (INIS)
Strečka, Jozef; Alécio, Raphael Cavalcante; Lyra, Marcelo L.; Rojas, Onofre
2016-01-01
The spin-1/2 Ising–Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rigorously mapped onto a classical composite spin-chain model, which is subsequently exactly treated through the transfer-matrix method. The ground-state phase diagram, correlation functions, concurrence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin frustration represents an indispensable ground for a thermal entanglement, which is quantified by the quantum concurrence. The specific heat displays diverse temperature dependences, which may include a sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convincingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral degrees of freedom of the Heisenberg spin triangles. - Highlights: • Spin-1/2 Ising–Heisenberg three-leg tube is exactly solved in a zero magnetic field. • Thermal entanglement is only present in a frustrated part of the parameter space. • Spin frustration and thermal entanglement show antagonistic reentrance. • Specific heat may display a sharp narrow peak due to massive thermal excitations.
Heisenberg vortex for light-weight refrigeration of liquid hydrogen
National Aeronautics and Space Administration — Only 83 years ago Werner Karl Heisenberg was awarded the Nobel Prize in physics. His work led to the creation of quantum mechanics, the application of which has,...
Energy Technology Data Exchange (ETDEWEB)
Brymora, Katarzyna; Calvayrac, Florent, E-mail: Florent.Calvayrac@univ-lemans.fr
2017-07-15
Highlights: • A new method is given to extract surface anisotropies from ab initio calculations. • Heisenberg model for magnetic clusters and surfaces is validated in simple cases. • Ligands, metallic clusters, or coatings degrade the validity of the Heisenberg model. • Values for surface anisotropies, volume anisotropies, exchange constants are computed. • Results are in agreement with experimental data, previous theoretical findings. - Abstract: We performed ab initio computations of the magnetic properties of simple iron oxide clusters and slabs. We considered an iron oxide cluster functionalized by a molecule or glued to a gold cluster of the same size. We also considered a magnetite slab coated by cobalt oxide or a mixture of iron oxide and cobalt oxide. The changes in magnetic behavior were explored using constrained magnetic calculations. A possible value for the surface anisotropy was estimated from the fit of a classical Heisenberg model on ab initio results. The value was found to be compatible with estimations obtained by other means, or inferred from experimental results. The addition of a ligand, coating, or of a metallic nanoparticle to the systems degraded the quality of the description by the Heisenberg Hamiltonian. Proposing a change in the anisotropies allowing for the proportion of each transition atom we could get a much better description of the magnetism of series of hybrid cobalt and iron oxide systems.
Ming, Fei; Wang, Dong; Shi, Wei-Nan; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu
2018-04-01
The uncertainty principle is recognized as an elementary ingredient of quantum theory and sets up a significant bound to predict outcome of measurement for a couple of incompatible observables. In this work, we develop dynamical features of quantum memory-assisted entropic uncertainty relations (QMA-EUR) in a two-qubit Heisenberg XXZ spin chain with an inhomogeneous magnetic field. We specifically derive the dynamical evolutions of the entropic uncertainty with respect to the measurement in the Heisenberg XXZ model when spin A is initially correlated with quantum memory B. It has been found that the larger coupling strength J of the ferromagnetism ( J 0 ) chains can effectively degrade the measuring uncertainty. Besides, it turns out that the higher temperature can induce the inflation of the uncertainty because the thermal entanglement becomes relatively weak in this scenario, and there exists a distinct dynamical behavior of the uncertainty when an inhomogeneous magnetic field emerges. With the growing magnetic field | B | , the variation of the entropic uncertainty will be non-monotonic. Meanwhile, we compare several different optimized bounds existing with the initial bound proposed by Berta et al. and consequently conclude Adabi et al.'s result is optimal. Moreover, we also investigate the mixedness of the system of interest, dramatically associated with the uncertainty. Remarkably, we put forward a possible physical interpretation to explain the evolutionary phenomenon of the uncertainty. Finally, we take advantage of a local filtering operation to steer the magnitude of the uncertainty. Therefore, our explorations may shed light on the entropic uncertainty under the Heisenberg XXZ model and hence be of importance to quantum precision measurement over solid state-based quantum information processing.
133Cs NMR investigation of 2D frustrated Heisenberg antiferromagnet, Cs2CuCl4
Vachon, M.-A.; Kundhikanjana, W.; Straub, A.; Mitrovic, V. F.; Reyes, A. P.; Kuhns, P.; Coldea, R.; Tylczynski, Z.
2006-10-01
We report 133Cs nuclear magnetic resonance (NMR) measurements on the 2D frustrated Heisenberg antiferromagnet Cs2CuCl4 down to 2 K and up to 15 T. We show that 133Cs NMR is a good probe of the magnetic degrees of freedom in this material. Cu spin degrees of freedom are sensed through a strong anisotropic hyperfine coupling. The spin excitation gap opens above the critical saturation field. The gap value was determined from the activation energy of the nuclear spin-lattice relaxation rate in a magnetic field applied parallel to the Cu chains (\\skew3\\hat{b} axis). The values of the g-factor and the saturation field are consistent with the neutron-scattering and magnetization results. The measurements of the spin spin relaxation time are exploited to show that no structural changes occur down to the lowest temperatures investigated.
Heisenberg's principle of uncertainty and the uncertainty relations
International Nuclear Information System (INIS)
Redei, Miklos
1987-01-01
The usual verbal form of the Heisenberg uncertainty principle and the usual mathematical formulation (the so-called uncertainty theorem) are not equivalent. The meaning of the concept 'uncertainty' is not unambiguous and different interpretations are used in the literature. Recently a renewed interest has appeared to reinterpret and reformulate the precise meaning of Heisenberg's principle and to find adequate mathematical form. The suggested new theorems are surveyed and critically analyzed. (D.Gy.) 20 refs
First-Order Polynomial Heisenberg Algebras and Coherent States
International Nuclear Information System (INIS)
Castillo-Celeita, M; Fernández C, D J
2016-01-01
The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg- Weyl algebra characterizing the underlying symmetry of the supersymmetric partners of the Harmonic oscillator. When looking for the simplest system ruled by PHA, however, we end up with the harmonic oscillator. In this paper we are going to realize the first-order PHA through the harmonic oscillator. The associated coherent states will be also constructed, which turn out to be the well known even and odd coherent states. (paper)
Cruz, C.
The characterization of quantum information quantifiers has attracted a considerable attention of the scientific community, since they are a useful tool to verify the presence of quantum correlations in a quantum system. In this context, in the present work we show a theoretical study of some quantifiers, such as entanglement witness, entanglement of formation, Bell’s inequality violation and geometric quantum discord as a function of the diffractive properties of neutron scattering. We provide one path toward identifying the presence of quantum correlations and quantum nonlocality in a molecular magnet as a Heisenberg spin-1/2 dimer, by diffractive properties typically obtained via neutron scattering experiments.
A quaternionic map for the steady states of the Heisenberg spin-chain
Energy Technology Data Exchange (ETDEWEB)
Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)
2014-01-17
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
A quaternionic map for the steady states of the Heisenberg spin-chain
International Nuclear Information System (INIS)
Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu
2014-01-01
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs
Critical behavior of the three-dimensional Heisenberg antiferromagnet RbMnF_{3}
DEFF Research Database (Denmark)
Coldea, R.; Cowley, R.A.; Perring, T.G.
1998-01-01
component evolves below T-N into the longitudinal susceptibility identified in an earlier polarized neutron experiment. The intensity and energy width of the longitudinal scattering decrease on cooling below T-N. Down to the lowest temperatures where the longitudinal susceptibility could be measured......The magnetic critical scattering of the near-ideal three-dimensional Heisenberg antiferromagnet (AF) RbMnF3 has been remeasured using neutron scattering. The critical dynamics has been studied in detail in the temperature range 0.77T(N)
Applications of the representation of the Heisenberg-Euler Lagrangian by means of special functions
International Nuclear Information System (INIS)
Valluri, S.R.; Lamm, D.R.; Mielniczuk, W.J.
1993-01-01
A convenient series representation for the real part of the Heisenberg-Euler Lagrangian density of quantum electrodynamics for arbitrary nonvanishing electric fields, E, and magnetic fields, B, has been previously provided by Mielniczuk. Using this representation, numerical information for the Lagrangian is presented for the range 0 cr ≤ 5 and 0 cr ≤ 10 (subscript cr stands for critical) with the electric and magnetic fields parallel and E cr ∼ 1.7 X 10 16 V cm -1 and B cr ∼ 4.4 X 10 13 G. It was found that for a fixed electric field, the Lagrangian is monotonically increasing with increasing magnetic field strength. However, for a fixed magnetic field, the Lagrangian exhibits a positively valued maximum before turning monotonically decreasing with increasing electric field strength. Further, the series representation is extended to the case of vanishing electric or magnetic field. Numerical results for these special cases are in very close agreement with previous results, which indicated a maximum value for the Lagrangian density for B = 0 at E/E cr ∼ 3. Also, the techniques developed for deriving the real part of the Heisenberg-Euler Lagrangian are applied to the imaginary part to deduce a similar, convenient series representation that agrees with the previous results derived by others for the special case of a vanishing magnetic field. Possible applications of this Lagrangian to quantum chromodynamics are discussed. This series representation will be of use in calculations of a quantum-electrodynamical field energy density in the absence of real charges, and for calculations of polarization and magnetization of the vacuum. More accurate calculations of the cross-section scattering of light by light in the presence of a constant, homogeneous magnetic and (or) electric field are possible with the aid of this series representation. (author)
Characterization of Phase Transition in Heisenberg Fluids from Density Functional Theory
International Nuclear Information System (INIS)
Li Liangsheng; Li Li; Chen Xiaosong
2009-01-01
The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density ρ* = ρσ 3 = 0.224 and the reduced temperature T* = kT/ element of = 1.87 (σ is the diameter of Heisenberg hard sphere and element of is the coupling constant).
DEFF Research Database (Denmark)
Clarke, S.J.; Harrison, A.; Mason, T.E.
1999-01-01
Copper(II) formate tetrahydrate (CFTH) is a model square S = 1/2 Heisenberg antiferromagnet with T-N = 16.54 +/- 0.05 K. The dispersion of spin-waves in the magnetic layers of a fully deuterated sample of this material has been mapped at 4.3 K by inelastic neutron scattering from the zone centre ...
Variational principles and Heisenberg matrix mechanics
International Nuclear Information System (INIS)
Klein, A.; Li, C.-T.
1979-01-01
If in Heisenberg's equations of motion for a problem in quantum mechanics (or quantum field theory) one studies matrix elements in the energy representation and by use of completeness conditions expresses the equations solely in terms of matrix elements of the canonical variables, and if one does likewise with the associated kinematical constraints (commutation relations), one arrives at a formulation - largely unexplored hitherto - which can be exploited for both practical and theoretical development. In this contribution, the above theme is developed within the framework of one-dimensional problems. It is shown how this formulation, both dynamics and kinematics, can be derived from a new variational principle, indeed from an entire class of such principles. A powerful method of diagonalizing the Hamiltonians by means of computations utilizing these equations is described. The variational method is shown to be particularly useful for the study of the regime of large quantum numbers. The usual WKB approximation is seen to be contained as well as a basis for the study of systematic corrections to it. Further applications in progress are mentioned. (Auth.)
Heisenberg lecture: Supersymmetry in the spectra of atomic nuclei
International Nuclear Information System (INIS)
Graw, Gerhard
2003-01-01
Talk given at the Symposium: 'Werner Heisenberg und die Wissenschaft, das Denken und die Kunst', Alexander von Humboldt Club, Bucharest, October 16 - 17, 2001, Goethe-Institut, Bucharest, Romania. This Symposium of the Humboldt Club in Bucharest was dedicated to the work of Werner Heisenberg. With the occasion of the hundredth anniversary of his birthday the aim was to recall the impact of Heisenberg's work not only on physics and related fields but also on philosophy and on our present understanding of science. Werner Heisenberg discovered and formulated the laws of quantum physics, the concepts and the tools one uses at present. These discoveries resulted from his ambitious goal to reveal the fundamental laws of physics and to understand these laws within the logical and structural aspects they imply for the understanding of nature and of thinking. In this way he was aware of the potential of this fundamental new approach and applied the concept of quantum phenomena to physics, chemistry, biology, and to logical-philosophical questions. Being invited here as first speaker of this Symposium the author considered as appropriate, first to recall a few dates out of his vita and essentials of his work, and then to address to a timely subject, which is, hopefully, related to the work of Werner Heisenberg. (author)
RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet
Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.
2016-03-01
We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.
Energy Technology Data Exchange (ETDEWEB)
Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhai, Liang-Jun [The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001 (China); Hua, Ling-Ling [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China)
2016-01-15
The effect of magnetic spin correlation on the thermodynamic properties of Heisenberg ferromagnetic single-walled nanotubes are comprehensively investigated by use of the double-time Green's function method. The influence of temperature, spin quantum number, diameter of the tube, anisotropy strength and external magnetic field to internal energy, free energy, and magnon specific heat are carefully calculated. Compared to the mean field approximation, the consideration of the magnetic correlation effect significantly improves the internal energy values at finite temperature, while it does not so near zero temperature, and this effect is related to the diameter of the tube, anisotropy strength, and spin quantum number. The magnetic correlation effect lowers the internal energy at finite temperature. As a natural consequence of the reduction of the internal energy, the specific heat is reduced, and the free energy is elevated. - Highlights: • Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes (HFM-SWNTs) are investigated. • The magnetic correlations effect has a considerable contribution to the thermodynamics properties of HFM-SWNTs. • Magnetic correlation effects are always to lower the internal energy at finite temperature. • At Curie point, magnetic correlation energy is much less than zero. • The peak values of magnon specific heat curves rise and shift right towards higher temperatures with the diameter of tubes, the anisotropy strength, and the spin quantum number rising.
Infinite-range Heisenberg model and high-temperature superconductivity
Tahir-Kheli, Jamil; Goddard, William A., III
1993-11-01
A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.
Flow produced by a free-moving floating magnet driven electromagnetically
Piedra, Saúl; Román, Joel; Figueroa, Aldo; Cuevas, Sergio
2018-04-01
The flow generated by a free-moving magnet floating in a thin electrolyte layer is studied experimentally and numerically. The magnet is dragged by a traveling vortex dipole produced by a Lorentz force created when a uniform dc current injected in the electrolyte interacts with the magnetic field of the same magnet. The problem represents a typical case of fluid-solid interaction but with a localized electromagnetic force promoting the motion. Classical wake flow structures are observed when the applied current varies in the range of 0.2 to 10 A. Velocity fields at the surface of the electrolyte are obtained for different flow conditions through particle image velocimetry. Quasi-two-dimensional numerical simulations, based on the immersed boundary technique that incorporates the fluid-solid interaction, reproduce satisfactorily the dynamics observed in the experiments.
Momentum conservation decides Heisenberg's interpretation of the uncertainty formulas
International Nuclear Information System (INIS)
Angelidis, T.D.
1977-01-01
In the light of Heisenberg's interpretation of the uncertainty formulas, the conditions necessary for the derivation of the quantitative statement or law of momentum conservation are considered. The result of such considerations is a contradiction between the formalism of quantum physics and the asserted consequences of Heisenberg's interpretation. This contradiction decides against Heisenberg's interpretation of the uncertainty formulas on upholding that the formalism of quantum physics is both consistent and complete, at least insofar as the statement of momentum conservation can be proved within this formalism. A few comments are also included on Bohr's complementarity interpretation of the formalism of quantum physics. A suggestion, based on a statistical mode of empirical testing of the uncertainty formulas, does not give rise to any such contradiction
Heisenberg's uncertainty relation: Violation and reformulation
International Nuclear Information System (INIS)
Ozawa, Masanao
2014-01-01
The uncertainty relation formulated by Heisenberg in 1927 describes a trade-off between the error of a measurement of one observable and the disturbance caused on another complementary observable so that their product should be no less than a limit set by Planck's constant. In 1980, Braginsky, Vorontsov, and Thorne claimed that this relation leads to a sensitivity limit for gravitational wave detectors. However, in 1988 a model of position measurement was constructed that breaks both this limit and Heisenberg's relation. Here, we discuss the problems as to how we reformulate Heisenberg's relation to be universally valid and how we experimentally quantify the error and the disturbance to refute the old relation and to confirm the new relation.
Quantum Fourier transform, Heisenberg groups and quasi-probability distributions
International Nuclear Information System (INIS)
Patra, Manas K; Braunstein, Samuel L
2011-01-01
This paper aims to explore the inherent connection between Heisenberg groups, quantum Fourier transform (QFT) and (quasi-probability) distribution functions. Distribution functions for continuous and finite quantum systems are examined from three perspectives and all of them lead to Weyl-Gabor-Heisenberg groups. The QFT appears as the intertwining operator of two equivalent representations arising out of an automorphism of the group. Distribution functions correspond to certain distinguished sets in the group algebra. The marginal properties of a particular class of distribution functions (Wigner distributions) arise from a class of automorphisms of the group algebra of the Heisenberg group. We then study the reconstruction of the Wigner function from the marginal distributions via inverse Radon transform giving explicit formulae. We consider some applications of our approach to quantum information processing and quantum process tomography.
Multi parametric deformed Heisenberg algebras: a route to complexity
International Nuclear Information System (INIS)
Curado, E.M.F.; Rego-Monteiro, M.A.
2000-09-01
We introduce a generalized of the Heisenberg which is written in terms of a functional of one generator of the algebra, f(J 0 ), that can be any analytical function. When f is linear with slope θ, we show that the algebra in this case corresponds to q-oscillators for q 2 = tan θ. The case where f is polynomial of order n in J 0 corresponds to a n-parameter Heisenberg algebra. The representations of the algebra, when f is any analytical function, are shown to be obtained through the study of the stability of the fixed points of f and their composed functions. The case when f is a quadratic polynomial in J 0 , the simplest non-linear scheme which is able to create chaotic behavior, is analyzed in detail and special regions in the parameter space give representations that ca not be continuously deformed to representations of Heisenberg algebra. (author)
Heisenberg in the atomic age science and the public sphere
Carson, Cathryn
2010-01-01
The end of the Second World War opened a new era for science in public life. Heisenberg in the Atomic Age explores the transformations of science's public presence in the postwar Federal Republic of Germany. It shows how Heisenberg's philosophical commentaries, circulating in the mass media, secured his role as science's public philosopher, and it reflects on his policy engagements and public political stands, which helped redefine the relationship between science and the state. With deep archival grounding, the book tracks Heisenberg's interactions with intellectuals from Heidegger to Habermas and political leaders from Adenauer to Brandt. It also traces his evolving statements about his wartime research on nuclear fission for the National Socialist regime. Working between the history of science and German history, the book's central theme is the place of scientific rationality in public life - after the atomic bomb, in the wake of the Third Reich.
Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain
Institute of Scientific and Technical Information of China (English)
QIN Meng; TAO Ying-Juan; TIAN Dong-Ping
2008-01-01
We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.
Integrable higher order deformations of Heisenberg supermagnetic model
International Nuclear Information System (INIS)
Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong
2009-01-01
The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S 2 =3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S 2 =S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.
On the fermionic Heisenberg group and its Q-representation
International Nuclear Information System (INIS)
Frydryszak, A.
1992-01-01
A nonstandard way of representing the canonical anticommutation relations is presented. It is connected with a generalization of the Heisenberg group to a graded phase space. It is shown how Grassmann harmonic analysis can be performed and what are the Q-representations of such a generalized Heisenberg group. As in the conventional case, the Schroedinger and Bargmann-Fock realizations were shown to exist. Grassmann-Hermite polynomials are obtained via the generalized Bargmann transform and new Grassmann-Laguerre polynomials are introduced. (author). 10 refs
Quasi-Linear Algebras and Integrability (the Heisenberg Picture
Directory of Open Access Journals (Sweden)
Alexei Zhedanov
2008-02-01
Full Text Available We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution interpretation of the corresponding integrable systems.
The Finite Heisenberg-Weyl Groups in Radar and Communications
Directory of Open Access Journals (Sweden)
Calderbank AR
2006-01-01
Full Text Available We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.
Quantum state transfer via a two-qubit Heisenberg XXZ spin model
Energy Technology Data Exchange (ETDEWEB)
Liu Jia; Zhang Guofeng [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn
2008-04-14
Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J{sub z} and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.
Quantum state transfer via a two-qubit Heisenberg XXZ spin model
International Nuclear Information System (INIS)
Liu Jia; Zhang Guofeng; Chen Ziyu
2008-01-01
Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J z and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing
Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry
Jipdi, M. N.; Tchoffo, M.; Fai, L. C.
2018-02-01
We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.
Gupta, L C
1993-01-01
Part of the ""Frontiers in Solid State Sciences"" series, this volume presents essays on such topics as spin fluctuations in Heisenberg magnets, quenching of spin fluctuations by high magnetic fields, and kondo effect and heavy fermions in rare earths amongst others.
NMR of the Shastry-Sutherland lattice SrCu{sub 2}(BO{sub 3}){sub 2} in pulsed magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Stern, R. [National Institute of Chemical Physics and Biophysics, 12618 Tallinn (Estonia); Kohlrautz, J.; Haase, J. [Universitaet Leipzig, Faculty of Physics and Earth Sciences, 04103 Leipzig (Germany); Kuehne, H.; Green, E.L.; Wosnitza, J. [Hochfeld-Magnetlabor Dresden (HLD), Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)
2015-07-01
SrCu{sub 2}(BO{sub 3}){sub 2} is a quasi-two-dimensional spin system consisting of Cu{sup 2+} ions which form orthogonal spin-singlet dimers, also known as the Shastry-Sutherland lattice. This system has been studied extensively using a variety of techniques to probe the spin-triplet excitations, including recent magnetization measurements over 100 T. Spectroscopic techniques, such as nuclear magnetic resonance (NMR), can provide further insight into the spin-coupling mechanisms and excitations. We present {sup 11}B NMR spectra measured in pulsed magnetic fields up to 54 T, and compare those with prior results obtained in static magnetic fields at 41 T. Herewith, we prove the feasibility and efficacy of this technique, yielding the capability for extended studies at highest magnetic fields up to the 100 T regime that determine the spin structure in the 1/3 magnetization plateau and beyond.
The Design of Control Pulses for Heisenberg Always-On Qubit Models
Magyar, Rudolph
2015-03-01
One model for a universal quantum computer is a spin array with constant nearest neighbor interactions and a controlled unidirectional site-specific magnetic field to generate unitary transformations. This system can be described by a Heisenberg spin Hamiltonian and can be simulated for on the order of 50 spins. It has recently been shown that time-dependent density functional inspired methods may be used to relate various spin models of qubits to ones that may be easier to compute numerically allowing potentially the efficient simulation of greater numbers of spins. One of the challenges of such an agenda is the identification of control pulses that produce desired gate operations (CNOT and single qubit phase gates). We apply control theory to design a universal set of pulses for a Heisenberg always-on model Hamiltonian for a few qubits and compare to known pulses when available. We suggest how this approach may be useful to design control pulses in other realistic designs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.
Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction
Energy Technology Data Exchange (ETDEWEB)
Surungan, Tasrief, E-mail: tasrief@unhas.ac.id; Bansawang, B.J.; Tahir, Dahlang [Department of Physics, Hasanuddin University, Makassar, South Sulawesi 90245 (Indonesia)
2016-03-11
Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.
Search for the Heisenberg spin glass on rewired square lattices with antiferromagnetic interaction
International Nuclear Information System (INIS)
Surungan, Tasrief; Bansawang, B.J.; Tahir, Dahlang
2016-01-01
Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect, and aging phenomena. There are two main ingredients considered to be pivotal for the existence of SG behavior, namely, frustration and randomness. For the canonical SG system, frustration is led by the presence of competing interaction between ferromagnetic (FM) and antiferromagnetic (AF) couplings. Previously, Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)], reported the SG properties of the AF Ising spins on scale free network (SFN). It is a new type of SG, different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely caused by the topological factor and its randomness is related to the irregular connectvity. Recently, Surungan et. al. [Journal of Physics: Conference Series, 640, 012001 (2015)] reported SG bahavior of AF Heisenberg model on SFN. We further investigate this type of system by studying an AF Heisenberg model on rewired square lattices. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase.
Search for the Heisenberg spin glass on rewired cubic lattices with antiferromagnetic interaction
International Nuclear Information System (INIS)
Surungan, Tasrief
2016-01-01
Spin glass (SG) is a typical magnetic system which is mainly characterized by a frozen random spin orientation at low temperatures. Frustration and randomness are considered to be the key ingredients for the existence of SGs. Previously, Bartolozzi et al . [Phys. Rev. B73, 224419 (2006)] found that the antiferromagnetic (AF) Ising spins on scale free network (SFN) exhibited SG behavior. This is purely AF system, a new type of SG different from the canonical one which requires the presence of both FM and AF couplings. In this new system, frustration is purely due to a topological factor and its randomness is brought by irregular connectivity. Recently, it was reported that the AF Heisenberg model on SFN exhibited SG behavior [Surungan et al ., JPCS, 640, 012005 (2015)/doi:10.1088/1742-6596/640/1/012005]. In order to accommodate the notion of spatial dimension, we further investigated this type of system by studying an AF Heisenberg model on rewired cubic lattices, constructed by adding one extra bond randomly connecting each spin to one of its next-nearest neighbors. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter to search for the existence of SG phase. (paper)
The Bohr-Heisenberg correspondence principle viewed from phase space
DEFF Research Database (Denmark)
Dahl, Jens Peder
2002-01-01
Phase-space representations play an increasingly important role in several branches of physics. Here, we review the author's studies of the Bohr-Heisenberg correspondence principle within the Weyl-Wigner phase-space representation. The analysis leads to refined correspondence rules that can...
On the Clebsch-Gordan series for some Heisenberg groups
International Nuclear Information System (INIS)
Raszillier, H.
1984-11-01
We suggest the use of the Stone-von Neumann theorem for a simple insight into the Clebsch-Gordan series of the Heisenberg groups of quantum mechanics, constructed over the abelian groups Rsup(n) and Fsub(p)sup(n). (orig.)
Finite Heisenberg groups and Seiberg dualities in quiver gauge theories
International Nuclear Information System (INIS)
Burrington, Benjamin A.; Liu, James T.; Mahato, Manavendra; Pando Zayas, Leopoldo A.
2006-01-01
A large class of quiver gauge theories admits the action of finite Heisenberg groups of the form Heis(Z q xZ q ). This Heisenberg group is generated by a manifest Z q shift symmetry acting on the quiver along with a second Z q rephasing (clock) generator acting on the links of the quiver. Under Seiberg duality, however, the action of the shift generator is no longer manifest, as the dualized node has a different structure from before. Nevertheless, we demonstrate that the Z q shift generator acts naturally on the space of all Seiberg dual phases of a given quiver. We then prove that the space of Seiberg dual theories inherits the action of the original finite Heisenberg group, where now the shift generator Z q is a map among fields belonging to different Seiberg phases. As examples, we explicitly consider the action of the Heisenberg group on Seiberg phases for C 3 /Z 3 , Y 4,2 and Y 6,3 quivers
A Poisson type formula for Hardy classes on Heisenberg's group
Directory of Open Access Journals (Sweden)
Lopushansky O.V.
2010-06-01
Full Text Available The Hardy type class of complex functions with infinite many variables defined on the Schrodinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss density, is investigated. A Poisson integral type formula for their analytic extensions on an open ball is established. Taylor coefficients for analytic extensions are described by the associatedsymmetric Fock space.
Spin Waves in a Classical Compressible Heisenberg Chain
Fivez, J.; Raedt, H. De
1980-01-01
The effect of the spin—lattice interaction on the spin dynamics of a classical Heisenberg chain is studied by means of a truncated continued fraction. At low temperature, the spin correlation length and the spin wave frequency show the same simple dependence on the coupling.
Generalized Heisenberg algebra and (non linear) pseudo-bosons
Bagarello, F.; Curado, E. M. F.; Gazeau, J. P.
2018-04-01
We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.
Low temperature spin wave dynamics in classical Heisenberg chains
International Nuclear Information System (INIS)
Heller, P.; Blume, M.
1977-11-01
A detailed and quantitative study of the low-temperature spin-wave dynamics was made for the classical Heisenberg-coupled chain using computer simulation. Results for the spin-wave damping rates and the renormalization of the spin-wave frequencies are presented and compared with existing predictions
Chen, K.; Manning, M.L.; Yunker, P.J.; Ellenbroek, W.G.; Zhang, Zexin; Liu, Andrea J.; Yodh, A.G.
2011-01-01
We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance
Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G
2011-09-02
We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.
Pressure dependence of the Peierls transition in the quasi two-dimensional purple bronze KMo 6O 17
Rötger, A.; Beille, J.; Laurant, J. M.; Schlenker, C.
1993-09-01
The electrical resistivity and the lattice parameters have been studied as a function of pressure on the quasi-twodimensional purple bronze KMo 6O 17 which shows a Peierls transition towards a commensurate charge density wave state. The Peierls temperature is found to be first slightly decreased for pressures smaller than 6 kbar, then strongly increased above. This increase is associated to an anomalous contraction of the lattice parameters in the plane of the layers. The corresponding large increase of the compressibility above 16 kbar at 300 K is associated to the pretransitional regime of the Peierls transition as a function of pressure. These results are attributed mainly to an improved nesting of the Fermi surface under pressure.
Mottram, Alexander D.; Lin, Yen-Hung; Pattanasattayavong, Pichaya; Zhao, Kui; Amassian, Aram; Anthopoulos, Thomas D.
2016-01-01
of the light absorbing organic dye D102. The resulting transistors exhibit a preferential color photoresponse centered in the wavelength region of ∼500 nm with a maximum photosensitivity of ∼106 and a responsivity value of up to 2 × 103 A/W. The high
Mottram, Alexander D.
2016-02-10
© 2016 American Chemical Society. We report the development of dye-sensitized thin-film phototransistors consisting of an ultrathin layer (<10 nm) of indium oxide (In2O3) the surface of which is functionalized with a self-assembled monolayer of the light absorbing organic dye D102. The resulting transistors exhibit a preferential color photoresponse centered in the wavelength region of ∼500 nm with a maximum photosensitivity of ∼106 and a responsivity value of up to 2 × 103 A/W. The high photoresponse is attributed to internal signal gain and more precisely to charge carriers generated upon photoexcitation of the D102 dye which lead to the generation of free electrons in the semiconducting layer and to the high photoresponse measured. Due to the small amount of absorption of visible photons, the hybrid In2O3/D102 bilayer channel appears transparent with an average optical transmission of >92% in the wavelength range 400-700 nm. Importantly, the phototransistors are processed from solution-phase at temperatures below 200 °C hence making the technology compatible with inexpensive and temperature sensitive flexible substrate materials such as plastic.
Lagomarsino, M.C.; Dogterom, M.; Dijkstra, Marjolein
2003-01-01
We present computer simulations of long, thin, hard spherocylinders in a narrow planar slit. We observe a transition from the isotropic to a nematic phase with quasi-long-range orientational order upon increasing the density. This phase transition is intrinsically two-dimensional and of
Energy Technology Data Exchange (ETDEWEB)
Trevisanutto, Paolo E. [Graphene Research Centre and CA2DM, National University of Singapore, Singapore 117542, Singapore and Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore); Vignale, Giovanni, E-mail: vignaleg@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States)
2016-05-28
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is “native” to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.
Approximate eigenvalue determination of geometrically frustrated magnetic molecules
Directory of Open Access Journals (Sweden)
A.M. Läuchli
2009-01-01
Full Text Available Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.
Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field
International Nuclear Information System (INIS)
Liu Guanghua; Li Ruoyan; Tian Guangshan
2012-01-01
By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h c = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1. (paper)
Scalar potential for the gauged Heisenberg algebra and a non-polynomial antisymmetric tensor theory
International Nuclear Information System (INIS)
D'Auria, R.; Ferrara, S.; Trigiante, M.; Vaula, S.
2005-01-01
We study some issues related to the effective theory of Calabi-Yau compactifications with fluxes in type II theories. At first the scalar potential for a generic electric Abelian gauging of the Heisenberg algebra, underlying all possible gaugings of R-R isometries, is presented and shown to exhibit, in some circumstances, a 'dual' no-scale structure under the interchange of hypermultiplets and vector multiplets. Subsequently a new setting of such theories, when all R-R scalars are dualized into antisymmetric tensors, is discussed. This formulation falls in the class of non-polynomial tensor theories considered long ago by Freedman and Townsend and it may be relevant for the introduction of both electric and magnetic charges
Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet
Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg
2014-03-01
We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.
International Nuclear Information System (INIS)
Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R; Sen, Aditi; Sen, Ujjwal
2016-01-01
Disordered systems form one of the centrestages of research in many body sciences and lead to a plethora of interesting phenomena and applications. A paradigmatic disordered system consists of a one-dimensional array of quantum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with natural or engineered quenched disordered couplings in an external magnetic field. These systems allow disorder-induced enhancement for bipartite and multipartite observables. Here we show that simultaneous application of independent quenched disorders results in disorder-induced enhancement, while the same is absent with individual application of the same disorders. We term the phenomenon as constructive interference and the corresponding parameter stretches as the Venus regions. Interestingly, it has only been observed for multiparty entanglement and is absent for the single- and two-party physical quantities. (paper)
de Sousa, J. Ricardo; de Albuquerque, Douglas F.
1997-02-01
By using two approaches of renormalization group (RG), mean field RG (MFRG) and effective field RG (EFRG), we study the critical properties of the simple cubic lattice classical XY and classical Heisenberg models. The methods are illustrated by employing its simplest approximation version in which small clusters with one ( N‧ = 1) and two ( N = 2) spins are used. The thermal and magnetic critical exponents, Yt and Yh, and the critical parameter Kc are numerically obtained and are compared with more accurate methods (Monte Carlo, series expansion and ε-expansion). The results presented in this work are in excellent agreement with these sophisticated methods. We have also shown that the exponent Yh does not depend on the symmetry n of the Hamiltonian, hence the criteria of universality for this exponent is only a function of the dimension d.
Degenerate and chiral states in the extended Heisenberg model on the kagome lattice
Gómez Albarracín, F. A.; Pujol, P.
2018-03-01
We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.
Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia
2017-10-01
LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.
International Nuclear Information System (INIS)
Boos, H.E.; Shiroishi, M.; Takahashi, M.
2005-01-01
We show how correlation functions of the spin-1/2 Heisenberg chain without magnetic field in the anti-ferromagnetic ground state can be explicitly calculated using information contained in the quantum Knizhnik-Zamolodchikov equation [qKZ]. We find several fundamental relations which the inhomogeneous correlations should fulfill. On the other hand, it turns out that these relations can fix the form of the correlations uniquely. Actually, applying this idea, we have obtained all the correlation functions on five sites. Particularly by taking the homogeneous limit, we have got the analytic form of the fourth-neighbor pair correlator j z S j+4 z >
Critical properties of the Kitaev-Heisenberg Model
Sizyuk, Yuriy; Price, Craig; Perkins, Natalia
2013-03-01
Collective behavior of local moments in Mott insulators in the presence of strong spin-orbit coupling is one of the most interesting questions in modern condensed matter physics. Here we study the finite temperature properties of the Kitaev-Heisenberg model which describe the interactions between the pseudospin J = 1 / 2 iridium moments on the honeycomb lattice. This model was suggested as a possible model to explain low-energy physics of AIr2O3 compounds. In our study we show that the Kitaev-Heisenberg model may be mapped into the six state clock model with an intermediate power-law phase at finite temperatures. In the framework of the Ginsburg-Landau theory, we provide an analysis of the critical properties of the finite-temperature ordering transitions. NSF grant DMR-1005932
Radiation emission as a virtually exact realization of Heisenbergs microscope
Energy Technology Data Exchange (ETDEWEB)
Andersen, K.K., E-mail: kka@phys.au.dk [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark); Brock, S. [Department of Culture and Society, Aarhus University, Jens Chr. Skous Vej 5, 8000 Aarhus C (Denmark); Esberg, J.; Thomsen, H.D.; Uggerhøj, U.I. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C (Denmark)
2013-11-15
Through the concept of ‘formation length’, recently observed directly in the radiation emission from ultrarelativistic electrons and an essential component in the interpretation of strong field radiation from electrons penetrating single crystals, we discuss the indeterminacy in the location of radiation emission. The analogy with the indeterminacy in the Heisenberg microscope Gedanken experiment is demonstrated from a number of viewpoints to be almost exact. The positive attitude regarding photon emission as a process that is somehow located in space and time is emphasized. We therefore interpret the measurements of formation lengths in radiation emission as a practically realizable version – using virtual incident photons instead of real – of the Heisenberg microscope Gedanken experiment.
Type-I integrable quantum impurities in the Heisenberg model
Energy Technology Data Exchange (ETDEWEB)
Doikou, Anastasia, E-mail: adoikou@upatras.gr
2013-12-21
Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.
Type-I integrable quantum impurities in the Heisenberg model
International Nuclear Information System (INIS)
Doikou, Anastasia
2013-01-01
Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified
New relativistic generalization of the Heisenberg commutation relations
International Nuclear Information System (INIS)
Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.
1984-01-01
A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator
Merino, Jaime; Ralko, Arnaud
2018-05-01
Motivated by the rich physics of honeycomb magnetic materials, we obtain the phase diagram and analyze magnetic properties of the spin-1 /2 and spin-1 J1-J2-J3 Heisenberg model on the honeycomb lattice. Based on the SU(2) and SU(3) symmetry representations of the Schwinger boson approach, which treats disordered spin liquids and magnetically ordered phases on an equal footing, we obtain the complete phase diagrams in the (J2,J3) plane. This is achieved using a fully unrestricted approach which does not assume any pre-defined Ansätze. For S =1 /2 , we find a quantum spin liquid (QSL) stabilized between the Néel, spiral, and collinear antiferromagnetic phases in agreement with previous theoretical work. However, by increasing S from 1 /2 to 1, the QSL is quickly destroyed due to the weakening of quantum fluctuations indicating that the model already behaves as a quasiclassical system. The dynamical structure factors and temperature dependence of the magnetic susceptibility are obtained in order to characterize all phases in the phase diagrams. Moreover, motivated by the relevance of the single-ion anisotropy, D , to various S =1 honeycomb compounds, we have analyzed the destruction of magnetic order based on an SU(3) representation of the Schwinger bosons. Our analysis provides a unified understanding of the magnetic properties of honeycomb materials realizing the J1-J2-J3 Heisenberg model from the strong quantum spin regime at S =1 /2 to the S =1 case. Neutron scattering and magnetic susceptibility experiments can be used to test the destruction of the QSL phase when replacing S =1 /2 by S =1 localized moments in certain honeycomb compounds.
Heisenberg (and Schrödinger, and Pauli) on hidden variables
Bacciagaluppi, Guido; Crull, Elise
In this paper, we discuss various aspects of Heisenberg's thought on hidden variables in the period 1927-1935. We also compare Heisenberg's approach to others current at the time, specifically that embodied by von Neumann's impossibility proof, but also views expressed mainly in correspondence by Pauli and by Schrödinger. We shall base ourselves mostly on published and unpublished materials that are known but little-studied, among others Heisenberg's own draft response to the EPR paper. Our aim will be not only to clarify Heisenberg's thought on the hidden-variables question, but in part also to clarify how this question was understood more generally at the time.
Interface magnons. Magnetic superstructure
International Nuclear Information System (INIS)
Djafari-Rouhani, B.; Dobrzynski, L.
1975-01-01
The localized magnons at an interface between two Heisenberg ferromagnets are studied with a simple model. The effect of the coupling at the interface on the existence condition for the localized modes, the dispersion laws and the possible occurrence of magnetic superstructures due to soft modes are investigated. Finally a comparison is made with the similar results obtained for interface phonons [fr
Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.
2012-01-01
When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient
The phase transition in the anisotropic Heisenberg model with long range dipolar interactions
International Nuclear Information System (INIS)
Mól, L.A.S.; Costa, B.V.
2014-01-01
In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order–disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results. - Highlights: • The anisotropic Heisenberg model with dipolar interactions is studied. • True long-range interactions were considered by means of Ewald summation. • We found an order–disorder phase transition with unusual critical exponents. • Previous results show a different behavior when a cut-off radius is introduced. • The use of a cut-off radius must be avoided when dealing with dipolar systems
Kim, Sanghoon
2018-04-19
Chiral spin textures of a ferromagnetic layer in contact to a heavy non-magnetic metal, such as Néel-type domain walls and skyrmions, have been studied intensively because of their potential for future nanomagnetic devices. The Dyzaloshinskii–Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal in addition to Heisenberg exchange. The density functional theory and the tight-binding model calculations reveal that inversion symmetry breaking with spin–orbit coupling gives rise to the orbital-related correlation. Our study provides the experimental connection between the orbital physics and the spin–orbit-related phenomena, such as DMI.
Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration
Li, Huan; Song, Hai-Feng; Liu, Yu
2016-11-01
We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.
S =1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain in a zinc-verdazyl complex
Yamaguchi, Hironori; Shinpuku, Yasuhiro; Shimokawa, Tokuro; Iwase, Kenji; Ono, Toshio; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Hosokoshi, Yuko
2015-02-01
We successfully synthesized the zinc-verdazyl complex [Zn(hfac)2].(o -Py -V ) [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate; o -Py-V = 3-(2-pyridyl)-1,5-diphenylverdazyl], which is an ideal model compound with an S = 1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain (F-AF AHC). Ab initio molecular-orbital (MO) calculations indicate that two dominant interactions JF and JAF form the S = 1/2 F-AF AHC in this compound. The magnetic susceptibility and magnetic specific heat of the compound exhibit thermally activated behavior below approximately 1 K. Furthermore, its magnetization curve is observed up to the saturation field and directly indicates a zero-field excitation gap of 0.5 T. These experimental results provide evidence for the existence of a Haldane gap. We successfully explain the results in terms of the S = 1/2 F-AF AHC through quantum Monte Carlo calculations with | JAF/JF|=0.22 . The ab initio MO calculations also indicate a weak AF interchain interaction J' and that the coupled F-AF AHCs form a honeycomb lattice. The J' dependence of the Haldane gap is calculated, and the actual value of J' is determined to be less than 0.01 | JF| .
One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice
Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.
2017-11-01
We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.
Iqbal, Yasir; Müller, Tobias; Riedl, Kira; Reuther, Johannes; Rachel, Stephan; Valentí, Roser; Gingras, Michel J. P.; Thomale, Ronny; Jeschke, Harald O.
2017-12-01
We theoretically investigate the low-temperature phase of the recently synthesized Lu2Mo2O5N2 material, an extraordinarily rare realization of a S =1 /2 three-dimensional pyrochlore Heisenberg antiferromagnet in which Mo5 + are the S =1 /2 magnetic species. Despite a Curie-Weiss temperature (ΘCW) of -121 (1 ) K, experiments have found no signature of magnetic ordering or spin freezing down to T*≈0.5 K. Using density functional theory, we find that the compound is well described by a Heisenberg model with exchange parameters up to third nearest neighbors. The analysis of this model via the pseudofermion functional renormalization group method reveals paramagnetic behavior down to a temperature of at least T =| ΘCW|/100 , in agreement with the experimental findings hinting at a possible three-dimensional quantum spin liquid. The spin susceptibility profile in reciprocal space shows momentum-dependent features forming a "gearwheel" pattern, characterizing what may be viewed as a molten version of a chiral noncoplanar incommensurate spiral order under the action of quantum fluctuations. Our calculated reciprocal space susceptibility maps provide benchmarks for future neutron scattering experiments on single crystals of Lu2Mo2O5N2 .
Simulation of time-dependent Heisenberg models in one dimension
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2016-01-01
In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...... constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle....
Q-operators for the open Heisenberg spin chain
Directory of Open Access Journals (Sweden)
Rouven Frassek
2015-12-01
Full Text Available We construct Q-operators for the open spin-12 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang–Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.
Quantum spin circulator in Y junctions of Heisenberg chains
Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.
2018-06-01
We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.
From linear optical quantum computing to Heisenberg-limited interferometry
International Nuclear Information System (INIS)
Lee, Hwang; Kok, Pieter; Williams, Colin P; Dowling, Jonathan P
2004-01-01
The working principles of linear optical quantum computing are based on photodetection, namely, projective measurements. The use of photodetection can provide efficient nonlinear interactions between photons at the single-photon level, which is technically problematic otherwise. We report an application of such a technique to prepare quantum correlations as an important resource for Heisenberg-limited optical interferometry, where the sensitivity of phase measurements can be improved beyond the usual shot-noise limit. Furthermore, using such nonlinearities, optical quantum non-demolition measurements can now be carried out easily at the single-photon level
Spin-density functional for exchange anisotropic Heisenberg model
International Nuclear Information System (INIS)
Prata, G.N.; Penteado, P.H.; Souza, F.C.; Libero, Valter L.
2009-01-01
Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.
Heisenberg Groups as Platform for the AAG key-exchange protocol
Kahrobaei, Delaram; Lam, Ha T.
2014-01-01
Garber, Kahrobaei, and Lam studied polycyclic groups generated by number field as platform for the AAG key-exchange protocol. In this paper, we discuss the use of a different kind of polycyclic groups, Heisenberg groups, as a platform group for AAG by submitting Heisenberg groups to one of AAG's major attacks, the length-based attack.
Spin-chirality decoupling in Heisenberg spin glasses and related systems
Kawamura, Hikaru
2006-01-01
Recent studies on the spin and the chirality orderings of the three-dimensional Heisenberg spin glass and related systems are reviewed with particular emphasis on the possible spin-chirality decoupling phenomena. Chirality scenario of real spin-glass transition and its experimental consequence on the ordering of Heisenberg-like spin glasses are discussed.
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-03-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-06-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
International Nuclear Information System (INIS)
Hovhannisyan, V V; Ananikian, N S; Strečka, J
2016-01-01
The spin-1 Ising–Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. (paper)
Realistic Approach of the Relations of Uncertainty of Heisenberg
Directory of Open Access Journals (Sweden)
Paul E. Sterian
2013-01-01
Full Text Available Due to the requirements of the principle of causality in the theory of relativity, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in the conjugate Fourier spaces. Instead of admitting that a particle’s position and its conjugate momentum cannot be accurately measured at the same time, we consider the only probabilities which can be determined when working at subatomic level to be valid. On the other hand, based on Schwinger's action principle and using the quadridimensional form of the unitary transformation generator function of the quantum operators in the paper, the general form of the evolution equation for these operators is established. In the nonrelativistic case one obtains the Heisenberg's type evolution equations which can be particularized to derive Heisenberg's uncertainty relations. The analysis of the uncertainty relations as implicit evolution equations allows us to put into evidence the intrinsic nature of the correlation expressed by these equations in straight relations with the measuring process. The independence of the quantisation postulate from the causal evolution postulate of quantum mechanics is also put into discussion.
Heisenberg's war. The secret history of the German bomb
International Nuclear Information System (INIS)
Powers, T.
1993-01-01
The history of Second World War Germany's 'Uranium Project', which often is referred to as the 'myth of the German atomic bomb', has been attracting the mind's of secret service men, futurologists, historians and journalists since after the end of the war it has become possible to lift the veil of secrecy. Powers book adds another one to the many investigations published since them. His approach to the piece of history starts with Heisenberg's visit to the U.S.A. in summer 1939, describes the plans of the German Heereswaffenamt pursued with the Uranium Project, and their counterpart on the side of the Allied Forces where German scientists, as immigrants in England and in the U.S.A., were doing their best to launch research for the development of an atomic bomb. The end of this 'competition' is marked by the internment of the ten German scientists and bomb specialists in Fall Hall. The leading story of the book centers on the small group of scientists around Heisenberg, who cleverly 'torpedoed' the development of the German atomic bomb in the years from 1939 until 1944. (HP) [de
Linearized pseudo-Einstein equations on the Heisenberg group
Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard
2017-02-01
We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.
Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model
Xu, Hui-Yun; Yang, Guo-Hui
2017-09-01
By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.
International Nuclear Information System (INIS)
Cregg, P J; Murphy, K; Garcia-Palacios, J L; Svedlindh, P
2008-01-01
Interest in molecular magnets continues to grow, offering a link between the atomic and nanoscale properties. The classical Heisenberg model has been effective in modelling exchange interactions in such systems. In this, the magnetization and susceptibility are calculated through the partition function, where the Hamiltonian contains both Zeeman and exchange energy. For an ensemble of N spins, this requires integrals in 2N dimensions. For two, three and four spin nearest-neighbour chains these integrals reduce to sums of known functions. For the case of the three and four spin chains, the sums are equivalent to results of Joyce. Expanding these sums, the effect of the exchange on the linear susceptibility appears as Langevin functions with exchange term arguments. These expressions are generalized here to describe an N spin nearest-neighbour chain, where the exchange between each pair of nearest neighbours is different and arbitrary. For a common exchange constant, this reduces to the result of Fisher. The high-temperature expansion of the Langevin functions for the different exchange constants leads to agreement with the appropriate high-temperature quantum formula of Schmidt et al, when the spin number is large. Simulations are presented for open linear chains of three, four and five spins with up to four different exchange constants, illustrating how the exchange constants can be retrieved successfully
Instabilities in the flow past localized magnetic fields
International Nuclear Information System (INIS)
Beltran, Alberto; Cuevas, Sergio; Smolentsev, Sergey
2007-01-01
The flow in a shallow layer of an electrically conducting fluid past a localized magnetic field is analyzed numerically. The field occupies only a small fraction of the total flow domain and resemblances the magnetic field created by a permanent magnet located close to the fluid layer. Two different physical cases are considered. In the first one, the fluid layer is free from externally injected electric currents, therefore, only induced currents are present. In the second case, an external electric current is injected to the fluid layer, transversally to the main flow direction. It is shown that the Lorentz force created by the interaction of the electric currents with the non-uniform magnetic field acts as an obstacle for the flow and creates different flow patterns similar to those observed in the flow past bluff bodies. A quasi-two-dimensional model that takes into account the existence of the bottom wall through a linear Hartmann-Rayleigh friction term is considered. When inertial and magnetic forces are strong enough, the wake formed behind the zone of high magnetic field is destabilized and a periodic vortex shedding similar to the classical von Karman street is found. The effect of Hartmann-Rayleigh friction in the emergence of the instability is analyzed
International Nuclear Information System (INIS)
Yavary, H.
2006-01-01
The magnetic penetration depth of a quasi-two dimensional d-wave superconductor in the presence of nonlineary, nonlocality, and impurity effects is investigated by using Green's function method. It is shown that a d-wave superconductor would inevitably avoid the violation of the Nernst theorem by creating a T 2 term in its penetration depth through a competition of nonlinear, nonlocal, and impurity effects and this system may be stable at low temperatures. I also show that in the impure sample at low temperatures, T < T * ∝ γ the impurity effect determines the temperature dependence of the penetration depth, i.e., nonlocal and nonlinear effects are completely masked by impurities
International Nuclear Information System (INIS)
Miljak, M.; Zlatic, V.; Kos, I.; Aviani, I.; Hamzic, A.; Collin, G.
1990-01-01
The magnetic anisotropy measurements of metallic Y-Ba-Cu-O compounds in the normal phase reveal a temperature-dependent diamagnetic component of the susceptibility that increases with decreasing temperature. The temperature variation of the susceptibility anisotropy and its total change do not seem to be much affected by the presence of the superconductivity at some lower temperature and could not be accounted for by superconducting fluctuations. Rather, the data remind one of the behavior of some quasi-two-dimensional metals with anisotropic Fermi surfaces, reflecting the properties of the low-energy excitations in the normal phase. The anisotropy measurements above the bulk superconducting transition temperature T c reveal the nonlinear effects, which are due to the onset of superconductivity in disconnected grains. The existence of a two-step transition, typical for granular superconductors, should be taken into consideration if the normal-phase susceptibility data are compared with the theoretical predictions in the vicinity of T c
Probing Active Nematic Films with Magnetically Manipulated Colloids
Rivas, David; Chen, Kui; Henry, Robert; Reich, Daniel; Leheny, Robert
We study microtubule-based extensile active nematic films using rod-like and disk-shaped magnetic colloids to probe the mechanical and hydrodynamic properties of this quasi-two dimensional out-of-equilibrium system. The active nematics are driven by molecular motors that hydrolyze ATP and cause sliding motion between microtubular bundles. This motion produces a dynamic nematic director field, which continuously creates pairs of +1/2 and -1/2 defects. In the absence of externally applied forces or torques, we observe that the magnetic rods in contact with the films align with the local director, indicating the existence of mechanical coupling between the film and probe. By applying known magnetic torques to the rods and observing their rotation with respect to the director, we gain insight into this coupling. We also find that by rotating magnetic microdisks using magnetic fields, hydrodynamic flows are produced that compete with the films' intrinsic flow, leading to significant effects on the director field and the defect landscape. At certain rotation rates, the disks produce a vortex-like structure in the director field and cause the creation and shedding of defects from the disk boundary.
International Nuclear Information System (INIS)
Lobashev, A.A.; Mostepanenko, V.M.
1993-01-01
Heisenberg formalism is developed for creation-annihilation operators of quantum fields propagating in nonstationary external fields. Quantum fields with spin 0,1/2, 1 are considered in the presence of such external fields as electromagnetic, scalar and the field of nonstationary dielectric properties of nonlinear medium. Elliptic operator parametrically depending on time is constructed. In Heisenberg representation field variables are decomposed over eigenfunction of this operator. The relation between Heisenberg creation-annihilation operators and the operators obtained in the frame of diagonalization of Hamiltonian with Bogoliubov transformations is set up
International Nuclear Information System (INIS)
Bhan, Jaemi; Kwon, Younghun
2007-01-01
Recently Yeo showed that thermal states in Heisenberg XX model with periodic boundary condition could be used for three-party quantum teleportation. However it is hard to implement the periodic boundary condition in spin chain. So instead of imposing the periodic boundary condition, we consider open boundary condition in Heisenberg XX model and investigate the possibility of using thermal states in Heisenberg XX model with open boundary condition. Using this way, we find the best fidelity conditions to three known protocols in three-party quantum teleportation. It turns out that the best fidelity in every protocol would be 23
Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube
Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake
2017-11-01
A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.
About the unitary discretizations of Heisenberg equations of motion
International Nuclear Information System (INIS)
Vazquez, L.
1986-01-01
In a recent paper Bender et al. (1985) have used a unitary discretization of Heisenberg equations for a one-dimensional quantum system in order to obtain information about the spectrum of the underlying continuum theory. The method consists in comparing the matrix elements between adjacent Fock states of the operators and at two steps. At the same time a very simple variational approach must be made. The purpose of this paper is to show that with unitary schemes, accurate either to order τ or τ 2 , we obtain the same spectrum results in the framework of the above method. On the other hand the same eigenvalues are obtained with a non-unitary scheme (Section II). In Section III we discuss the construction of the Hamiltonian associated to the unitary discretizations. (orig.)
Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry
Energy Technology Data Exchange (ETDEWEB)
Geremia, J M; Stockton, John K; Doherty, Andrew C; Mabuchi, Hideo [Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, California, 91125 (United States)
2003-12-19
The shot-noise detection limit in current high-precision magnetometry [I. Kominis, T. Kornack, J. Allred, and M. Romalis, Nature (London) 422, 596 (2003)]10.1038/nature01484 is a manifestation of quantum fluctuations that scale as 1/{radical}(N) in an ensemble of N atoms. Here, we develop a procedure that combines continuous measurement and quantum Kalman filtering [V. Belavkin, Rep. Math. Phys. 43, 405 (1999)] to surpass this conventional limit by exploiting conditional spin squeezing to achieve 1/N field sensitivity. Our analysis demonstrates the importance of optimal estimation for high bandwidth precision magnetometry at the Heisenberg limit and also identifies an approximate estimator based on linear regression.
Variational principles for particles and fields in Heisenberg matrix mechanics
International Nuclear Information System (INIS)
Klein, A.; Li, C.T.; Vassanji, M.
1980-01-01
For many years we have advocated a form of quantum mechanics based on the application of sum rule methods (completeness) to the equations of motion and to the commutation relations, i.e., to Heisenberg matrix mechanics. Sporadically we have discussed or alluded to a variational foundation for this method. In this paper we present a series of variational principles applicable to a range of systems from one-dimensional quantum mechanics to quantum fields. The common thread is that the stationary quantity is the trace of the Hamiltonian over Hilbert space (or over a subspace of interest in an approximation) expressed as a functional of matrix elements of the elementary operators of the theory. These parameters are constrained by the kinematical relations of the theory introduced by the method of Lagrange multipliers. For the field theories, variational principles in which matrix elements of the density operators are chosen as fundamental are also developed. A qualitative discussion of applications is presented
Anti-ferromagnetic Heisenberg model on bilayer honeycomb
International Nuclear Information System (INIS)
Shoja, M.; Shahbazi, F.
2012-01-01
Recent experiment on spin-3/2 bilayer honeycomb lattice antiferromagnet Bi 3 Mn 4 O 12 (NO 3 ) shows a spin liquid behavior down to very low temperatures. This behavior can be ascribed to the frustration effect due to competitions between first and second nearest neighbour's antiferromagnet interaction. Motivated by the experiment, we study J 1 -J 2 Antiferromagnet Heisenberg model, using Mean field Theory. This calculation shows highly degenerate ground state. We also calculate the effect of second nearest neighbor through z direction and show these neighbors also increase frustration in these systems. Because of these degenerate ground state in these systems, spins can't find any ground state to be freeze in low temperatures. This behavior shows a novel spin liquid state down to very low temperatures.
Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements
International Nuclear Information System (INIS)
Higgins, B L; Wiseman, H M; Pryde, G J; Berry, D W; Bartlett, S D; Mitchell, M W
2009-01-01
We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can obtain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our scheme resolves the phase ambiguity that exists when multiple passes through a phase shift, or NOON states, are used to obtain improved phase resolution. Like a recently introduced adaptive technique (Higgins et al 2007 Nature 450 393), our experiment uses multiple applications of the phase shift on single photons. By not requiring adaptive measurements, but rather using a predetermined measurement sequence, the present scheme is both conceptually simpler and significantly easier to implement. Additionally, we demonstrate a simplified adaptive scheme that also surpasses the standard quantum limit for single passes.
Optimal matrix product states for the Heisenberg spin chain
International Nuclear Information System (INIS)
Latorre, Jose I; Pico, Vicent
2009-01-01
We present some exact results for the optimal matrix product state (MPS) approximation to the ground state of the infinite isotropic Heisenberg spin-1/2 chain. Our approach is based on the systematic use of Schmidt decompositions to reduce the problem of approximating for the ground state of a spin chain to an analytical minimization. This allows one to show that results of standard simulations, e.g. density matrix renormalization group and infinite time evolving block decimation, do correspond to the result obtained by this minimization strategy and, thus, both methods deliver optimal MPS with the same energy but, otherwise, different properties. We also find that translational and rotational symmetries cannot be maintained simultaneously by the MPS ansatz of minimum energy and present explicit constructions for each case. Furthermore, we analyze symmetry restoration and quantify it to uncover new scaling relations. The method we propose can be extended to any translational invariant Hamiltonian
Emergent Criticality and Ricci Flow in a 2D Frustrated Heisenberg Model
Orth, Peter P.
2014-03-01
In most systems that exhibit order at low temperatures, the order occurs in the elementary degrees of freedom such as spin or charge. Prominent examples are magnetic or superconducting states of matter. In contrast, emergent order describes the phenomenon where composite objects exhibit longer range correlations. Such emergent order has been suspected to occur in a range of correlated materials. One specific example are spin systems with competing interactions, where long-range discrete order in the relative orientation of spins may occur. Interestingly, this order parameter may induce other phase transitions as is the case for the nematic transition in the iron pnictides. In this talk, we introduce and discuss a system with emergent Z6 symmetry, a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of interpenetrating honeycomb and triangular lattices. The multiple spin stiffnesses can be captured in terms of a four-dimensional metric tensor, and the renormalization group flow of the stiffnesses is described by the Ricci flow of the metric tensor. The key result is a decoupling of an emergent collective degree of freedom given by the relative phase of spins on different sublattices. In particular, our results reveal a sequence of two Berezinskii-Kosterlitz-Thouless phase transitions that bracket a critical phase.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
Energy Technology Data Exchange (ETDEWEB)
Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)
2016-09-15
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
The q-deformed SU(2) Heisenberg model in 3-dimensions
International Nuclear Information System (INIS)
Lu Zhongyi; Yan Hong.
1991-07-01
A q-deformed SU(2) Heisenberg (3-dimensional) spin model is set up, and the q-deformed spin-wave solution is obtained through the q-analogous Holstein-Primakoff transformation. The result is given for small γ = ln q, which is the quantity characterizing the nonlinearity of the Hamiltonian. A mean-field treatment is arranged to preserved (at least some of) the nonlinearity, and the ordinary ferromagnet ground state is shown as the exact ground state of the new system. Interesting results are obtained for this nonlinear model: (i) There is an energy gap between the ground state and the first excited one, thus the ground state is stable under small perturbation of the background; (ii) the specific heat per volume is modified by a small term proportional to the 1/2-th power of temperature and the square of γ, which is qualitatively different from the conventional model, and (iii) the magnetization M(T) is modified by a factor that depends on γ. (author). 16 refs
International Nuclear Information System (INIS)
Mayhall, Nicholas J.; Head-Gordon, Martin
2014-01-01
We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S ^ z , M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed
Raman scattering in a Heisenberg S = 1/2 antiferromagnet on the anisotropic triangular lattice
International Nuclear Information System (INIS)
Perkins, Natalia; Brenig, Wolfram
2009-01-01
We investigate two-magnon Raman scattering from the S = 1/2 Heisenberg antiferromagnet on the triangular lattice (THAF), considering both isotropic and anisotropic exchange interactions. We find that the Raman intensity for the isotropic THAF is insensitive to the scattering geometry, while both the line profile and the intensity of the Raman response for the anisotropic THAF shows a strong dependence on the scattering geometry. For the isotropic case we present an analytical and numerical study of the Raman intensity including both the effect of renormalization of the one-magnon spectrum by 1 = S corrections and final-state magnonmagnon interactions. The bare Raman intensity displays two peaks related to one-magnon van-Hove singularities. We find that 1 = S self-energy corrections to the one-magnon spectrum strongly modify this intensity profile. The central Raman-peak is significantly enhanced due to plateaus in the magnon dispersion, the high frequency peak is suppressed due to magnon damping, and the overall spectral support narrows considerably. Additionally we investigate final-state interactions by solving the Bethe-Salpeter equation to O(1 = S). In contrast to collinear antiferromagnets, the non-collinear nature of the magnetic ground state leads to an irreducible magnon scattering which is retarded and non-separable already to lowest order. We show that final-state interactions lead to a rather broad Raman-continuum centered around approximately twice the 'roton'-energy.
Magnetic properties of a doped graphene-like bilayer
Energy Technology Data Exchange (ETDEWEB)
Guo, An-Bang [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Jiang, Wei, E-mail: weijiang.sut.edu@gmail.com [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Zhang, Na [Shenyang Normal University, Shenyang 110034 (China)
2017-05-15
A doped graphene-like bilayer is described using a four-sublattice Heisenberg model both ferromagnetic and antiferrimagnetic couplings. The magnetic properties of the bilayer system are studied using the Heisenberg model, retarded Green's function and the linear spin-wave approximation. The spin-wave spectra, energy gap, and the magnetization and quantum fluctuation of the system at the ground state are calculated with various intra- and interlayer couplings. The results indicate that the effect of antiferromagnetic exchange coupling on the magnetic properties of the system is significant. Magnetizations at low temperature show intersection points due to the quantum effects.
Uncertainty Einstein, Heisenberg, Bohr, and the struggle for the soul of science
Lindley, David
2007-01-01
The uncertainty in this delightful book refers to Heisenberg's Uncertainty Principle, an idea first postulated in 1927 by physicist Werner Heisenberg in his attempt to make sense out of the developing field of quantum mechanics. As Lindley so well explains it, the concept of uncertainty shook the philosophical underpinnings of science. It was Heisenberg's work that, to a great extent, kept Einstein from accepting quantum mechanics as a full explanation for physical reality. Similarly, it was the Uncertainty Principle that demonstrated the limits of scientific investigation: if Heisenberg is correct there are some aspects of the physical universe that are to remain beyond the reach of scientists. As he has done expertly in books like Boltzmann's Atom, Lindley brings to life a critical period in the history of science, explaining complex issues to the general reader, presenting the major players in an engaging fashion, delving into the process of scientific discovery and discussing the interaction between scien...
Topological term of the antiferromagnetic Heisenberg model in 2+1 dimension
International Nuclear Information System (INIS)
Wu Ke; Yu Lu; Zhu Chuanjie
1988-05-01
It is shown in this note that the two different ways of introducing the topological term in the discussion of the spin 1/2 antiferromagnetic Heisenberg model are identical to each other. (author). 12 refs
You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics
International Nuclear Information System (INIS)
Fritzsch, Harald
2008-01-01
Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put
J{sub 1x}-J{sub 1y}-J{sub 2} square-lattice anisotropic Heisenberg model
Energy Technology Data Exchange (ETDEWEB)
Pires, A.S.T., E-mail: antpires@frisica.ufmg.br
2017-08-01
Highlights: • We use the SU(3) Schwinger boson formalism. • We present the phase diagram at zero temperature. • We calculate the quadrupole structure factor. - Abstract: The spin one Heisenberg model with an easy-plane single-ion anisotropy and spatially anisotropic nearest-neighbor coupling, frustrated by a next-nearest neighbor interaction, is studied at zero temperature using a SU(3) Schwinger boson formalism (sometimes also referred to as flavor wave theory) in a mean field approximation. The local constraint is enforced by introducing a Lagrange multiplier. The enlarged Hilbert space of S = 1 spins lead to a nematic phase that is ubiquitous to S = 1 spins with single ion anisotropy. The phase diagram shows two magnetically ordered phase, separated by a quantum paramagnetic (nematic) phase.
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2011-01-01
We investigate the thermodynamics of a combined Dicke and Ising model that exhibits a rich phenomenology arising from the second-order and quantum phase transitions from the respective models. The partition function is calculated using mean-field theory, and the free energy is analyzed in detail...... to determine the complete phase diagram of the system. The analysis reveals both first- and second-order Dicke phase transitions into a super-radiant state, and the cavity mean field in this regime acts as an effective magnetic field, which restricts the Ising chain dynamics to parameter ranges away from...... the Ising phase transition. Physical systems with first-order phase transitions are natural candidates for metrology and calibration purposes, and we apply filter theory to show that the sensitivity of the physical system to temperature and external fields reaches the 1/N Heisenberg limit....
Critical properties of the D=3 bond-mixed quantum Heisenberg ferromagnet
International Nuclear Information System (INIS)
Tsallis, C.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro); Stinchcombe, R.B.; Buck, B.
1983-01-01
Within a Migdal-Kadanoff-like real-space renormalisation group procedure critical properties of the quenched bond-mixed spin 1/2 Heisenberg ferromagnet in simple cubic lattice are treated. It is verified that it is possible, within a very simple framework, to obtain quite reliable results for the critical temperatures. In addition to that, a general method for renormalising arbitrary clusters of Heisenberg-coupled spins 1/2 is outlined. (Author) [pt
Criticality of the D=2 quantum Heisenberg ferromagnet with quenched random anisotropic
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.
1985-01-01
The square-lattice spin 1/2 anisotropic Heisenberg ferromagnet is considered, with interactions whose symmetry can independently (quenched model) and randomly be of two competing types, namely the isotropic Heisenberg type and the Ising one. Within a real space renormalization group framework, a quite precise numerical calculation of the critical frontier is performed, and its main asymptotic behaviour are established. The relevant universality classes are also characterized, through the analysis of the correlation length critical exponent. (Author) [pt
International Nuclear Information System (INIS)
Jezewski, W.
1979-01-01
Properties of the Bloch self-consistently renormalized spin wave approximation are analyzed near the zero-field transition temperature Tsub(m). The analysis is carried out on the basis of the application of this approximation to the Heisenberg ferromagnet involving nearest neighbour interaction. Series expansions for the resulting Helmholtz free energy, magnetization, and specific heat in the reduced temperature t=(Tsub(m)-T)/Tsub(m) are derived and the critical exponents β and α' are obtained. The limiting case of infinite spin (the classical limit) is also investigated. (author)
Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice
Li, P. H. Y.; Bishop, R. F.
2016-06-01
We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.
Stapp's quantum dualism: The James/Heisenberg model of consciousness
International Nuclear Information System (INIS)
Noyes, H.P.
1994-01-01
Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James' description of conscious events and for matter from Werner Heisenberg's ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author's opinion fails to establish a monistic, scientific theory. The author traces Stapp's failure to his adamant rejection of arbitrariness, or 'randomness'. This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin's explanation of biology, let along the triumphs of modern 'neo-Darwinism'. The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp's views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy
Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions
International Nuclear Information System (INIS)
Plyushchay, M.S.
1996-01-01
Within a group-theoretical approach to the description of (2+1)-dimensional anyons, the minimal covariant set of linear differential equations is constructed for the fractional spin fields with the help of the deformed Heisenberg algebra (DHA), [a - ,a + ]=1+νK, involving the Klein operator K, {K,a ± }=0, K 2 =1. The connection of the minimal set of equations with the earlier proposed open-quote open-quote universal close-quote close-quote vector set of anyon equations is established. On the basis of this algebra, a bosonization of supersymmetric quantum mechanics is carried out. The construction comprises the cases of exact and spontaneously broken N=2 supersymmetry allowing us to realize a Bose endash Fermi transformation and spin-1/2 representation of SU(2) group in terms of one bosonic oscillator. The construction admits an extension to the case of OSp(2 parallel 2) supersymmetry, and, as a consequence, both applications of the DHA turn out to be related. The possibility of open-quote open-quote superimposing close-quote close-quote the two applications of the DHA for constructing a supersymmetric (2+1)-dimensional anyon system is discussed. As a consequential result we point out that the osp(2 parallel 2) superalgebra is realizable as an operator algebra for a quantum mechanical 2-body (nonsupersymmetric) Calogero model. Copyright copyright 1996 Academic Press, Inc
Topological superconductivity in the extended Kitaev-Heisenberg model
Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.
2018-01-01
We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.
Reducing Uncertainty: Implementation of Heisenberg Principle to Measure Company Performance
Directory of Open Access Journals (Sweden)
Anna Svirina
2015-08-01
Full Text Available The paper addresses the problem of uncertainty reduction in estimation of future company performance, which is a result of wide range of enterprise's intangible assets probable efficiency. To reduce this problem, the paper suggests to use quantum economy principles, i.e. implementation of Heisenberg principle to measure efficiency and potential of intangible assets of the company. It is proposed that for intangibles it is not possible to estimate both potential and efficiency at a certain time point. To provide a proof for these thesis, the data on resources potential and efficiency from mid-Russian companies was evaluated within deterministic approach, which did not allow to evaluate probability of achieving certain resource efficiency, and quantum approach, which allowed to estimate the central point around which the probable efficiency of resources in concentrated. Visualization of these approaches was performed by means of LabView software. It was proven that for tangible assets performance estimation a deterministic approach should be used; while for intangible assets the quantum approach allows better quality of future performance prediction. On the basis of these findings we proposed the holistic approach towards estimation of company resource efficiency in order to reduce uncertainty in modeling company performance.
International Nuclear Information System (INIS)
Young, I.R.
1984-01-01
A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)
Theory of the orthogonal dimer Heisenberg spin model for SrCu sub 2 (BO sub 3) sub 2
Miyahara, S
2003-01-01
The magnetic properties of SrCu sub 2 (BO sub 3) sub 2 are reviewed from a theoretical point of view. SrCu sub 2 (BO sub 3) sub 2 is a new two-dimensional spin gap system and its magnetic properties are well described by a spin-1/2 antiferromagnetic Heisenberg model of the orthogonal dimer lattice. The model has a dimer singlet ground state whose exactness was proven by Shastry and Sutherland for a topologically equivalent model more than 20 years ago. The exactness of the ground state is maintained even if interlayer couplings are introduced for SrCu sub 2 (BO sub 3) sub 2. In the two-dimensional model, quantum phase transitions take place between different ground states for which three phases are expected: a gapped dimer singlet state, a plaquette resonating valence bond state and a gapless magnetic ordered state. Analysis of the experimental data shows that the dimer singlet ground state is realized in SrCu sub 2 (BO sub 3) sub 2. The orthogonality of the dimer bonds, which is the underlying symmetry of th...
Arian Zad, Hamid; Ananikian, Nerses
2017-11-01
We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.
Method for solving quantum field theory in the Heisenberg picture
International Nuclear Information System (INIS)
Nakanishi, Noboru
2004-01-01
This paper is a review of the method for solving quantum field theory in the Heisenberg picture, developed by Abe and Nakanishi since 1991. Starting from field equations and canonical (anti) commutation relations, one sets up a (q-number) Cauchy problem for the totality of d-dimensional (anti) commutators between the fundamental fields, where d is the number of spacetime dimensions. Solving this Cauchy problem, one obtains the operator solution of the theory. Then one calculates all multiple commutators. A representation of the operator solution is obtained by constructing the set of all Wightman functions for the fundamental fields; the truncated Wightman functions are constructed so as to be consistent with all vacuum expectation values of the multiple commutators mentioned above and with the energy-positivity condition. By applying the method described above, exact solutions to various 2-dimensional gauge-theory and quantum-gravity models are found explicitly. The validity of these solutions is confirmed by comparing them with the conventional perturbation-theoretical results. However, a new anomalous feature, called the ''field-equation anomaly'', is often found to appear, and its perturbation-theoretical counterpart, unnoticed previously, is discussed. The conventional notion of an anomaly with respect to symmetry is reconsidered on the basis of the field-equation anomaly, and the derivation of the critical dimension in the BRS-formulated bosonic string theory is criticized. The method outlined above is applied to more realistic theories by expanding everything in powers of the relevant parameter, but this expansion is not equivalent to the conventional perturbative expansion. The new expansion is BRS-invariant at each order, in contrast to that in the conventional perturbation theory. Higher-order calculations are generally extremely laborious to perform explicitly. (author)
The infinite range Heisenberg model and high temperature superconductivity
Tahir-Kheli, Jamil
1992-01-01
The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.
Dynamics of Coulomb correlations in semiconductors in high magnetic fields
International Nuclear Information System (INIS)
Fromer, Neil Alan
2002-01-01
Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons
Quantum influence in the criticality of the spin- {1}/{2} anisotropic Heisenberg model
Ricardo de Sousa, J.; Araújo, Ijanílio G.
1999-07-01
We study the spin- {1}/{2} anisotropic Heisenberg antiferromagnetic model using the effective field renormalization group (EFRG) approach. The EFRG method is illustrated by employing approximations in which clusters with one ( N'=1) and two ( N=2) spins are used. The dependence of the critical temperature Tc (ferromagnetic-F case) and TN (antiferromagnetic-AF case) and thermal critical exponent, Yt, are obtained as a function of anisotropy parameter ( Δ) on a simple cubic lattice. We find that, in our results, TN is higher than Tc for the quantum anisotropic Heisenberg limit and TN= Tc for the Ising and quantum XY limits. We have also shown that the thermal critical exponent Yt for the isotropic Heisenberg model shows a small dependence on the type of interaction (F or AF) due to finite size effects.
Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet
Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.
Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.
Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment
Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.
2015-10-01
In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.
Chiral-glass transition in a diluted dipolar-interaction Heisenberg system
International Nuclear Information System (INIS)
Zhang Kaicheng; Liu Guibin; Zhu Yan
2011-01-01
Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.
New Topological Configurations in the Continuous Heisenberg Spin Chain: Lower Bound for the Energy
Directory of Open Access Journals (Sweden)
Rossen Dandoloff
2015-01-01
Full Text Available In order to study the spin configurations of the classical one-dimensional Heisenberg model, we map the normalized unit vector, representing the spin, on a space curve. We show that the total chirality of the configuration is a conserved quantity. If, for example, one end of the space curve is rotated by an angle of 2π relative to the other, the Frenet frame traces out a noncontractible loop in SO(3 and this defines a new class of topological spin configurations for the Heisenberg model.
Heisenberg-limited interferometry with pair coherent states and parity measurements
International Nuclear Information System (INIS)
Gerry, Christopher C.; Mimih, Jihane
2010-01-01
After reviewing parity-measurement-based interferometry with twin Fock states, which allows for supersensitivity (Heisenberg limited) and super-resolution, we consider interferometry with two different superpositions of twin Fock states, namely, two-mode squeezed vacuum states and pair coherent states. This study is motivated by the experimental challenge of producing twin Fock states on opposite sides of a beam splitter. We find that input two-mode squeezed states, while allowing for Heisenberg-limited sensitivity, do not yield super-resolutions, whereas both are possible with input pair coherent states.
Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model
Sousa, J. Ricardo de
A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.
International Nuclear Information System (INIS)
Ding Qing
2007-01-01
We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model
Criticality of the D=2 bond-dilute anisotropic Heisenberg ferromagnet
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.; Caride, A.O.
1984-01-01
The critical frontier and critical exponents associated with the quenched bond-dilute quantum anisotropic spin 1/2 Heisenberg ferromagnet in square lattice are described. To perform the calculations, an approximate real-space renormalization-group framework recently developed by some of us for the pure model (and analysed with some detail) is extended. Whenever comparison with available exact results is possible, the agreement is either perfect or quite satisfactory. Some effort has been dedicated to extract the main asymptotic behaviours of the critical frontier. Also several interesting quantum effects appearing in the composition laws of (Heisenberg) bond arrays are exhibited. (Author) [pt
Zad, Hamid Arian; Movahhedian, Hossein
2016-08-01
Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.
Magnetic-breakdown oscillations of the thermoelectric field in layered conductors
Energy Technology Data Exchange (ETDEWEB)
Peschanskii, V. G., E-mail: vpeschansky@ilt.kharkov.ua [Karazin Kharkov National University (Ukraine); Galbova, O. [St. Cyril and Methodium University (Macedonia, The Former Yugoslav Republic of); Hasan, R. [Karazin Kharkov National University (Ukraine)
2016-12-15
The response of an electron system to nonuniform heating of layered conductors with an arbitrary quasi-two-dimensional electron energy spectrum in a strong magnetic field B is investigated theoretically in the case when cyclotron frequency ω{sub c} is much higher than the frequency 1/τ of collisions between charge carriers. In the case of a multisheet Fermi surface (FS), we calculate the dependence of the thermoelectric coefficients on the magnitude and orientation of the magnetic field in the vicinity of the Lifshitz topological transition when the FS connectivity changes under the action of an external force (e.g., pressure) on the conductor. Upon a decrease in the spacing between individual pockets (sheets) of the FS, conduction electrons can tunnel as a result of the magnetic breakdown from one FS sheet to another; their motion over magneticbreakdown trajectories becomes complicated and entangled. The thermoelectric field exhibits a peculiar dependence on the magnetic field: for a noticeable deviation of vector B from the normal through angle ϑ to the layers, the thermoelectric field oscillates as a function of tanϑ. The period of these oscillations contains important information on the distance between individual FS sheets and their corrugation.
Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films
Energy Technology Data Exchange (ETDEWEB)
Zhang, Junran [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Liu, Wenqing [York-Nanjing Joint Centre (YNJC) for Spintronics and Nanoengineering, Department of Electronics, The University of York, YO10 3DD (United Kingdom); Zhang, Minhao; Zhang, Xiaoqian; Niu, Wei; Gao, Ming [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wang, Xuefeng, E-mail: xfwang@nju.edu.cn [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Du, Jun [School of Physics, Nanjing University, Nanjing 210093 (China); Zhang, Rong [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Yongbing, E-mail: ybxu@nju.edu.cn [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); York-Nanjing Joint Centre (YNJC) for Spintronics and Nanoengineering, Department of Electronics, The University of York, YO10 3DD (United Kingdom)
2017-06-15
Highlights: • Quasi-2D Fe{sub 3}O{sub 4} films were obtained by PLD. • RHEED under different oxygen pressure were observed. • Influence of oxygen pressure on Fe{sub 3}O{sub 4} films were investigated. • Epitaxy and magnetic properties were tuned by oxygen pressure. • The ratio of Fe{sup 2+}/Fe{sup 3+} fitted by XPS is the tuned factor of M{sub s}. - Abstract: Quasi-two-dimensional magnetite epitaxial thin films have been synthesized by pulsed laser deposition technique at various oxygen pressures. The saturation magnetizations of the magnetite films were found to decrease from 425 emu/cm{sup 3}, which is close to the bulk value, to 175 emu/cm{sup 3} as the growth atmospheres varying from high vacuum (∼1 × 10{sup −8} mbar) to oxygen pressure of 1 × 10{sup −3} mbar. The ratio of the Fe{sup 3+} to Fe{sup 2+} increases from 2 to 2.7 as oxygen pressure increasing shown by XPS fitting, which weakens the net magnetic moment generated by Fe{sup 2+} at octahedral sites as the spins of the Fe{sup 3+} ions at octahedral and tetrahedral sites are aligned in antiparallel. The results offer direct experimental evidence of the influence to the Fe{sup 3+}/Fe{sup 2+} ratio and the magnetic moment in magnetite epitaxy films by oxygen pressure, which is significant for spintronic applications.
Krompiewski, Stefan; Cuniberti, Gianaurelio
2017-10-01
Edge states in narrow quasi-two-dimensional nanostructures determine, to a large extent, their electric, thermoelectric, and magnetic properties. Nonmagnetic edge states may quite often lead to topological-insulator-type behavior. However, another scenario develops when the zigzag edges are magnetic and the time reversal symmetry is broken. In this work we report on the electronic band structure modifications, electrical conductance, and thermoelectric properties of narrow zigzag nanoribbons with spontaneously magnetized edges. Theoretical studies based on the Kane-Mele-Hubbard tight-binding model show that for silicene, germanene, and stanene both the Seebeck coefficient and the thermoelectric power factor are strongly enhanced for energies close to the charge neutrality point. A perpendicular gate voltage lifts the spin degeneracy of energy bands in the ground state with antiparallel magnetized zigzag edges and makes the electrical conductance significantly spin polarized. Simultaneously the gate voltage worsens the thermoelectric performance. Estimated room-temperature figures of merit for the aforementioned nanoribbons can exceed a value of 3 if phonon thermal conductances are adequately reduced.
Energy Technology Data Exchange (ETDEWEB)
Kormondy, Kristy J.; Posadas, Agham B.; Demkov, Alexander A., E-mail: demkov@physics.utexas.edu [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Ngo, Thong Q.; Ekerdt, John G. [Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Lu, Sirong; Smith, David J.; McCartney, Martha R. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Goble, Nicholas; Gao, Xuan P. A. [Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Jordan-Sweet, Jean [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States)
2015-03-07
In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO{sub 3} interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO{sub 3} (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy electron diffraction, x-ray diffraction, and high-resolution electron microscopy. In situ x-ray photoelectron spectroscopy was used to confirm the presence of the oxygen-deficient layer. Electrical characterization indicates sheet carrier densities of ∼10{sup 13 }cm{sup −2} at room temperature for the sample deposited at 700 °C, with a maximum electron Hall mobility of 3100 cm{sup 2}V{sup −1}s{sup −1} at 3.2 K and room temperature mobility of 22 cm{sup 2}V{sup −1}s{sup −1}. Annealing in oxygen is found to reduce the carrier density and turn a conductive sample into an insulator.
1988-12-01
report are not to be used for advertising , publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or...from van Beek et al. (1979). This comparison shows very good agreement between MCM and prototype flow distribution. 71 100% SIMM ESPORT FLOW MILE 55
DEFF Research Database (Denmark)
Wagner, Hans Peter; Schätz, A.; Maier, R.
1997-01-01
We investigate the dephasing of heavy-hole excitons in different free-standing ZnSxSe1-x/ZnSe layer structures by spectrally resolved transient four-wave mixing. ZnSe layers of 80, 8, and 4 nm thickness with ternary barriers are studied, representing the crossover from quasi-three-dimensional to ...
Li, P. H. Y.; Bishop, R. F.
2018-03-01
We implement the coupled cluster method to very high orders of approximation to study the spin-1/2 J1 -J2 Heisenberg model on a cross-striped square lattice. Every nearest-neighbour pair of sites on the square lattice has an isotropic antiferromagnetic exchange bond of strength J1 > 0 , while the basic square plaquettes in alternate columns have either both or neither next-nearest-neighbour (diagonal) pairs of sites connected by an equivalent frustrating bond of strength J2 ≡ αJ1 > 0 . By studying the magnetic order parameter (i.e., the average local on-site magnetization) in the range 0 ≤ α ≤ 1 of the frustration parameter we find that the quasiclassical antiferromagnetic Néel and (so-called) double Néel states form the stable ground-state phases in the respective regions α α1bc = 0.615(5) . The double Néel state has Néel (⋯ ↑↓↑↓ ⋯) ordering along the (column) direction parallel to the stripes of squares with both or no J2 bonds, and spins alternating in a pairwise (⋯ ↑↑↓↓↑↑↓↓ ⋯) fashion along the perpendicular (row) direction, so that the parallel pairs occur on squares with both J2 bonds present. Further explicit calculations of both the triplet spin gap and the zero-field uniform transverse magnetic susceptibility provide compelling evidence that the ground-state phase over all or most of the intermediate regime α1ac < α < α1bc is a gapped state with no discernible long-range magnetic order.
On the Quantum Inverse problem for the continuous Heisenberg spin chain with axial anisotropy
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Chanda, P.K.
1986-06-01
We have considered the Quantum Inverse problem for the continuous form of Heisenberg spin chain with anisotropy. The form of quantum R-matrix, the commutation rules for the scattering data, and the explicit structure of the excitation spectrum are obtained. (author)
Deformed Heisenberg algebra and fractional spin field in 2+1 dimensions
International Nuclear Information System (INIS)
Plyushchay, M.S.
1993-09-01
With the help of the deformed Heisenberg algebra involving the Klein operator, we construct the minimal set of linear differential equations for the (2+1)-dimensional relativistic field with arbitrary fractional spin, whose value is defined by the deformation parameters. (author). 23 refs
A thermodynamic approximation of the groundstate of antiferromagnetic Heisenberg spin-1/2 lattices
Tielen, G.I.; Iske, P.L.; Caspers, W.J.; Caspers, W.J.
1991-01-01
The exact ground state of finite Heisenberg spin−1/2 lattices isstudied. The coefficients of the so-called Ising configurations contributing to the ground state are approximated by Boltzmann-like expressions. These expressions contain a parameter that may be related to an inverse temperature.
Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models
Energy Technology Data Exchange (ETDEWEB)
Chudnovsky, V
2000-03-01
I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system.
Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models
International Nuclear Information System (INIS)
Chudnovsky, V.
2000-01-01
I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system
Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs
Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions
Blessy, B. S. Gnana; Latha, M. M.
2017-10-01
We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.
The 2-dimensional O(4) symmetric Heisenberg ferromagnet in terms of rotation invariant variables
International Nuclear Information System (INIS)
Holtkamp, A.
1981-09-01
After introduction of rotation invariant auxiliary variables, the integration over all rotation variant variables (spins) in the 0(4) symmetric two-dimensional Heisenberg ferromagnet can be performed. The resulting new Hamiltonian involves a sum over closed loops. It is complex and invariant under U(1) gauge transformations. Ruehl's boson representation is used to derive the result. (orig.)
Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice
International Nuclear Information System (INIS)
Mariz, A.M.; Santos, R.M.Z. dos; Tsallis, C.; Santos, R.R. dos.
1984-01-01
Within a Real Space Renormalization group framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in satisfactory agreement with known results whenever available. (Author) [pt
Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.; Santos, R.M.Z. dos; Santos, Raimundo R. dos.
1984-11-01
Within a Real Space Renormalization Group Framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in antisfactory agreement with known results whenever available. (Author) [pt
by B. Curé
2011-01-01
The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...
Thermal Entanglement and Critical Behavior of Magnetic Properties on a Triangulated Kagomé Lattice
Directory of Open Access Journals (Sweden)
N. Ananikian
2011-01-01
Full Text Available The equilibrium magnetic and entanglement properties in a spin-1/2 Ising-Heisenberg model on a triangulated Kagomé lattice are analyzed by means of the effective field for the Gibbs-Bogoliubov inequality. The calculation is reduced to decoupled individual (clusters trimers due to the separable character of the Ising-type exchange interactions between the Heisenberg trimers. The concurrence in terms of the three qubit isotropic Heisenberg model in the effective Ising field in the absence of a magnetic field is non-zero. The magnetic and entanglement properties exhibit common (plateau, peak features driven by a magnetic field and (antiferromagnetic exchange interaction. The (quantum entangled and non-entangled phases can be exploited as a useful tool for signalling the quantum phase transitions and crossovers at finite temperatures. The critical temperature of order-disorder coincides with the threshold temperature of thermal entanglement.
Influence of Ce in magnetic behaviour of CeCrSb3
International Nuclear Information System (INIS)
Inamdar, Manjusha; Thamizhavel, A.; Ramakrishnan, S.; Das, Amitabh; Prokes, Karel
2009-01-01
RCrSb 3 (R = rare earth ion) presents us a system to study magnetic interplay of d moments of Cr and f moments of rare earth ions. These compounds crystallize in orthorhombic structure, space group Pbcm. The crystal structure is highly anisotropic, with a axes being twice as long as band c. It has quasi two dimensional structure with layers of RSb and CrSb 2 stacked along a axis. Cr is surrounded by Sb ions forming face(edge) sharing octahedra along c(b) axes. The dual magnetic transitions exhibited by Cr in LaCrSb 3 , arouses interest in RCrSb 3 series. LaCrSb 3 undergoes FM transition below 123 K and on further lowering of temperature exhibits an AFM transition below 100 K with moments oriented along c axes. The AFM phase vanishes with application of small field of 1kOe. The coexistence of FM exchange along b and a axes with AFM exchange along c axis below 100 K is interesting. However, the magnetization along a axis is very small
Magnetic properties of singlet ground state systems
International Nuclear Information System (INIS)
Diederix, K.M.
1979-01-01
Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)
Dynamical properties of the S =1/2 random Heisenberg chain
Shu, Yu-Rong; Dupont, Maxime; Yao, Dao-Xin; Capponi, Sylvain; Sandvik, Anders W.
2018-03-01
We study dynamical properties at finite temperature (T ) of Heisenberg spin chains with random antiferromagnetic exchange couplings, which realize the random singlet phase in the low-energy limit, using three complementary numerical methods: exact diagonalization, matrix-product-state algorithms, and stochastic analytic continuation of quantum Monte Carlo results in imaginary time. Specifically, we investigate the dynamic spin structure factor S (q ,ω ) and its ω →0 limit, which are closely related to inelastic neutron scattering and nuclear magnetic resonance (NMR) experiments (through the spin-lattice relaxation rate 1 /T1 ). Our study reveals a continuous narrow band of low-energy excitations in S (q ,ω ) , extending throughout the q space, instead of being restricted to q ≈0 and q ≈π as found in the uniform system. Close to q =π , the scaling properties of these excitations are well captured by the random-singlet theory, but disagreements also exist with some aspects of the predicted q dependence further away from q =π . Furthermore we also find spin diffusion effects close to q =0 that are not contained within the random-singlet theory but give non-negligible contributions to the mean 1 /T1 . To compare with NMR experiments, we consider the distribution of the local relaxation rates 1 /T1 . We show that the local 1 /T1 values are broadly distributed, approximately according to a stretched exponential. The mean 1 /T1 first decreases with T , but below a crossover temperature it starts to increase and likely diverges in the limit of a small nuclear resonance frequency ω0. Although a similar divergent behavior has been predicted and experimentally observed for the static uniform susceptibility, this divergent behavior of the mean 1 /T1 has never been experimentally observed. Indeed, we show that the divergence of the mean 1 /T1 is due to rare events in the disordered chains and is concealed in experiments, where the typical 1 /T1 value is accessed.
Benoit Curé
2010-01-01
Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...
B. Curé
2012-01-01
The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...
B. Curé
2012-01-01
Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...
International Nuclear Information System (INIS)
Tao, Ruibao.
1991-09-01
A method is developed to make a Bose transformation which is restricted in proper space. A self-consistent independent spin wave representation (SCISWR) is found for two dimensional isotropic antiferromagnet of Heisenberg square lattices. In the SCISWR, we have successfully done the renormalization from both the dynamic and kinematic interaction and calculated the corrections from the correlations of the nearest neighbour and next nearest neighbour sites. An anisotropic excitation energy of spin wave in improper space is found self-consistently and has a gap. The difficulty of divergence appearing from higher order perturbation terms in the conventional spin wave theory has been overcome and the convergence in our approach seems quite good. We find the energy of ground state E approx. -0.659 in low order approximation and the magnetization of sublattice M z = 0.430 x (N/2) for system with spin 1/2. It is also proved that a physical spin excitation restricted in proper space is still isotropic and has no gap. (author). 17 refs
Spiral correlations in frustrated one-dimensional spin-1/2 Heisenberg J1-J2-J3 ferromagnets
International Nuclear Information System (INIS)
Zinke, R; Richter, J; Drechsler, S-L
2010-01-01
We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J 3 on the ground state of the spin- 1/2 Heisenberg chain with ferromagnetic nearest-neighbor interaction J 1 and frustrating antiferromagnetic next-nearest-neighbor interaction J 2 . A third-neighbor exchange J 3 might be relevant to describe the magnetic properties of the quasi-one-dimensional edge-shared cuprates, such as LiVCuO 4 or LiCu 2 O 2 . In particular, we calculate the critical point J 2 c as a function of J 3 , where the ferromagnetic ground state gives way for a ground state with incommensurate spiral correlations. For antiferromagnetic J 3 the ferro-spiral transition is always continuous and the critical values J 2 c of the classical and the quantum model coincide. On the other hand, for ferromagnetic J 3 ∼ 1 | the critical value J 2 c of the quantum model is smaller than that of the classical model. Moreover, the transition becomes discontinuous, i.e. the model exhibits a quantum tricritical point. We also calculate the height of the jump of the spiral pitch angle at the discontinuous ferro-spiral transition.
Regnault, L-P; Boullier, C; Lorenzo, J E
2018-01-01
The magnetic properties of the cobaltite BaCo 2 (AsO 4 ) 2 , a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q , we have been able to determine the low-temperature magnetic structure of BaCo 2 (AsO 4 ) 2 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector [Formula: see text], with [Formula: see text] and [Formula: see text]) appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component [Formula: see text]/Co 2+ , representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements [Formula: see text] and [Formula: see text] of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors [Formula: see text] and [Formula: see text] (energy transfer [Formula: see text] meV), no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic [Formula: see text] and [Formula: see text] matrix elements can be understood by assuming that the magnetic excitations in BaCo 2 (AsO 4 ) 2 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.
Directory of Open Access Journals (Sweden)
L.-P. Regnault
2018-01-01
Full Text Available The magnetic properties of the cobaltite BaCo2(AsO42, a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q, we have been able to determine the low-temperature magnetic structure of BaCo2(AsO42 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector k1=(kx,0,kz, with kx=0.270±0.005 and kz≈−1.31 appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component ≈0.25μB/Co2+, representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements Pyz and Pzy of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors Q=(0.27,0,3.1 and Q=(0.73,0,0.8 (energy transfer ΔE≈2.3 meV, no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic Pyz and Pzy matrix elements can be understood by assuming that the magnetic excitations in BaCo2(AsO42 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.
Energy Technology Data Exchange (ETDEWEB)
Schirach, Richard von
2014-07-01
Finally the German atomic physicists around Heisenberg, von Weizsaecker, and Hahn worked on their ''uranium machine'' in a Swabian beer-cellar - and took themselves for the world elite of nuclear research. In imprisonment they heared from the dropping of the Hiroshima bomb - a shock. Richard von Schirach shows the hindered ''fathers of the German atomic bomb'' in close-up, their eagerness, their hybris, their true importance, and their attempts to give after the war a new interpretation of their own role. A book, which raises in the sense of Duerrenmatt the question for the responsibility of science.
B. Curé
2012-01-01
The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...
B. Curé
2013-01-01
The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...
Benoit Curé
2010-01-01
The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...
B. Curé
2011-01-01
The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...
International Nuclear Information System (INIS)
Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F
2009-01-01
A natural extension of the Wigner function to the space of irreducible unitary representations of the Weyl-Heisenberg group is discussed. The action of the automorphisms group of the Weyl-Heisenberg group onto Wigner functions and their generalizations and onto symplectic tomograms is elucidated. Some examples of physical systems are considered to illustrate some aspects of the characterization of the Wigner functions as solutions of differential equations
International Nuclear Information System (INIS)
Nagpal, A.K.
1978-01-01
Contrary to the prevalent belief, it is shown here that for the spin-3/2 Rarita-Schwinger field in the presence of a fully quantized interaction, the (anti) commutation relations are compatible with the Heisenberg equations of motion. The latter are indeed the same as the Lagrangian equations of motion. Further, it is shown that the validity of the Heisenberg equations of motion does not depend upon the choice of the canonical variables
Un'estrema solitudine la vita e l'opera di Werner Heisenberg
Cassidy, David C
1996-01-01
Il genio di Werner Heisenberg attraversa l'orizzonte della fisica del nostro secolo come una meteora. Testimoniano della fecondità e dell'originalità del suo pensiero non solo il Nobel che gli fu assegnato a soli 32 anni, ma soprattutto i decisivi impulsi da lui dati alla fisica quantistica, alla teoria delle particelle elementari, alla teoria del nucleo. Si deve a Heisenberg quel "principio di indeterminazione" che ha rivoluzionato non solo il corso della fisica ma il modo di concepire la posizione dell'uomo nell'universo. L'interesse del libro, però, vuole andare oltre la fisica, giacché il curriculum del "ragazzo di campagna dei biondi capelli" rispecchia in forma emblematica l'ambiguo rapporto della scienza col potere.
Heisenberg 1901-1976 : le témoignage de sa femme
Heisenberg, Elisabeth
1990-01-01
Une femme raconte la vie de son mari, Werner Heisenberg, Prix Nobel de Physique 1932. Après une enfance heureuse, ce brillant étudiant fut l'élève d'Albert Einstein, Niels Bohr, Arnold Sommerfeld. Mais à l'époque de la montée du nazisme, le grand physicien refusa de quitter son pays, cautionnant ainsi le régime d'Hitler et participant à "l'effort de guerre", c'est-à-dire à la course à la bombe. Le témoignage d'Elisabeth Heisenberg bien que naturellement subjectif, permet de saisir les ressorts psychologiques du comportement d'un savant face aux terrifiantes réalités de son époque.
Un-equivalency theorem between deformed and undeformed Heisenberg-Weyl's algebras
International Nuclear Information System (INIS)
Zhang Jianzu
2006-01-01
Two fundamental issues about the relation between the deformed Heisenberg-Weyl algebra in noncommutative space and the undeformed one in commutative space are elucidated. First the un-equivalency theorem between two algebras is proved: the deformed algebra related to the undeformed one by a non-orthogonal similarity transformation is explored; furthermore, non-existence of a unitary similarity transformation which transforms the deformed algebra to the undeformed one is demonstrated. Secondly the uniqueness of realizing the deformed phase space variables via the undeformed ones is elucidated: both the deformed Heisenberg-Weyl algebra and the deformed bosonic algebra should be maintained under a linear transformation between two sets of phase space variables which fixes that such a linear transformation is unique. Elucidation of this un-equivalency theorem has basic meaning both in theory and experiment
Achieving the Heisenberg limit in quantum metrology using quantum error correction.
Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang
2018-01-08
Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.
Energy Technology Data Exchange (ETDEWEB)
Masood, Syed [Department of Physics, International Islamic University, H-10 Sector, Islamabad (Pakistan); Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, BC V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada); Zaz, Zaid [Department of Electronics and Communication Engineering, University of Kashmir, Srinagar, Kashmir, 190006 (India); Ali, Ahmed Farag [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Raza, Jamil [Department of Physics, International Islamic University, H-10 Sector, Islamabad (Pakistan); Shah, Mushtaq B. [Department of Physics, National Institute of Technology, Srinagar, Kashmir, 190006 (India)
2016-12-10
In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.
Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons
International Nuclear Information System (INIS)
Gauyacq, J-P; Lorente, N
2014-01-01
Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition. (paper)
An addendum to the Heisenberg-Euler effective action beyond one loop
Energy Technology Data Exchange (ETDEWEB)
Gies, Holger; Karbstein, Felix [Helmholtz-Institut Jena,Fröbelstieg 3, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Abbe Center of Photonics,Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)
2017-03-21
We study the effective interactions of external electromagnetic fields induced by fluctuations of virtual particles in the vacuum of quantum electrodynamics. Our main focus is on these interactions at two-loop order. We discuss in detail the emergence of the renowned Heisenberg-Euler effective action from the underlying microscopic theory of quantum electrodynamics, emphasizing its distinction from a standard one-particle irreducible effective action. In our explicit calculations we limit ourselves to constant and slowly varying external fields, allowing us to adopt a locally constant field approximation. One of our main findings is that at two-loop order there is a finite one-particle reducible contribution to the Heisenberg-Euler effective action in constant fields, which was previously assumed to vanish. In addition to their conceptual significance, our results are relevant for high-precision probes of quantum vacuum nonlinearity in strong electromagnetic fields.
Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space
International Nuclear Information System (INIS)
Rodriguez D, R.
2007-01-01
In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)
International Nuclear Information System (INIS)
Masood, Syed; Faizal, Mir; Zaz, Zaid; Ali, Ahmed Farag; Raza, Jamil; Shah, Mushtaq B.
2016-01-01
In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.
Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit
International Nuclear Information System (INIS)
Jeske, Jan; Cole, Jared H; Huelga, Susana F
2014-01-01
Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)
B. Curé
2011-01-01
The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....
Transport Studies of Quantum Magnetism: Physics and Methods
Energy Technology Data Exchange (ETDEWEB)
Lee, Minhyea [Univ. of Colorado, Boulder, CO (United States)
2017-03-30
The main goal of this project was to understand novel ground states of spin systems probed by thermal and electrical transport measurements. They are well-suited to characterize the nature of low-energy excitations as unique property of the ground state. More specifically, it was aimed to study the transverse electrical conductivity in the presence of non-collinear and non-coplanar spin ordering and the effects of gauge field as well as novel spin excitations as a coherent heat transport channel in insulating quantum magnets. Most of works done during the grant period focused on these topics. As a natural extension of the project's initial goals, the scope was broadened to include transport studies on the spin systems with strong spin-orbit coupling. One particular focus was an exploration of systems with strong magnetic anisotropy combined with non-trivial spin configuration. Magnetic anisotropy is directly related to implement the non-collinear spin ordering to the existing common geometry of planar devices and thus poses a significant potential. Work in this direction includes the comparison of the topological Hall signal under hydrostatic pressure and chemical doping, as well as the angular dependence dependence of the non-collinear spin ordered phase and their evolution up on temperature and field strength. Another focus was centered around the experimental identification of spin-originated heat carrying excitation in quasi two dimensional honeycomb lattice, where Kitaev type of quantum spin liquid phase is expected to emerge. In fact, when its long range magnetic order is destroyed by the applied field, we discovered anomalously large enhancement of thermal conductivity, for which proximate Kitaev excitations in field-induced spin liquid state are responsible for. This work, combined with further investigations in materials in the similar class may help establish the experimental characterization of new quantum spin liquid and their unique low energy
Dispersion Relations for Magnetic Excitons in NdAl2
DEFF Research Database (Denmark)
Houmann, Jens Christian Gylden; Bak, P.; Purwins, H. -G.
1974-01-01
The magnetic excitation spectrum in NdAl2 has been measured by means of inelastic neutron scattering at 5.3K for momentum transfer in the (110) direction. Several excitation branches are observed and discussed in terms of a hamiltonian including an isotropic Heisenberg exchange interaction...
Computationally inexpensive interpretation of magnetic data for finite spin clusters
DEFF Research Database (Denmark)
Thuesen, Christian Aagaard; Weihe, Høgni; Bendix, Jesper
2010-01-01
We show that high-temperature expansion of the partition function is a computationally convenient tool to interpretation of magnetic properties of spin clusters wherein the spin centers are interacting via an isotropic Heisenberg exchange operator. High-temperature expansions up to order 12 are u...
Chiral-glass transition and replica symmetry breaking of a three-dimensional Heisenberg spin glass
Hukushima, K.; Kawamura, H.
2000-01-01
Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance ...
Renormalization group treatment for spin waves in the randomly disordered Heisenberg chain
International Nuclear Information System (INIS)
Chaves, C.M.; Koiller, B.
1983-03-01
Local densities of states in the randomly disordered binary quantum Heisenberg chain using a generalization of a recently developed approach based on renormalization group ideas are calculated. It envolves decimating alternate apins along the chain in such a way as to obtain recursion relations to describe the renormalized set of Green's function equations of motion. The densities of states are richly structured, indicating that the method takes into account compositional fluctuations of arbitrary range. (Author) [pt
Extended Weyl-Heisenberg algebra and Rubakov-Spiridonov superalgebra: Anyonic realizations
International Nuclear Information System (INIS)
Daoud, M.; Douari, J.
2001-09-01
We give the realizations of the extended Weyl-Heisenberg (WH) algebra and the Rubakov-Spiridonov (RS) superalgebra in terms of anyons, characterized by the statistical parameter ν is an element of [0,1], on two-dimensional lattice. The construction uses anyons defined from usual fermionic oscillators (Lerda-Sciuto construction). The anyonic realization of the superalgebra sl(1/1) is also presented. (author)
Critical behavior in a random field classical Heisenberg model for amorphous systems
International Nuclear Information System (INIS)
Albuquerque, Douglas F. de; Alves, Sandro Roberto L.; Arruda, Alberto S. de
2005-01-01
By using the differential operator technique and the effective field theory scheme, the critical behavior of amorphous classical Heisenberg ferromagnet of spin-1/2 in a random field is studied. The phase diagram in the T-H and T-α planes on a simple cubic lattice for a cluster with two spins is obtained. Tricritical points, reentrant phenomena and influence of the random field and amorphization on the transition temperature are discussed
Susceptibility and specific heat of the Heisenberg antiferromagnet on the Kagome lattice
International Nuclear Information System (INIS)
Bernhard, B.H.; Canals, B.; Lacroix, C.
2001-01-01
The dynamic susceptibility of the S=((1)/(2)) Heisenberg antiferromagnet is calculated on the Kagome lattice by means of a Green's function decoupling scheme. The spin-spin correlation functions decrease exponentially with distance. The specific heat exhibits a single-peak structure with a T 2 dependence at low temperature and the correct high-temperature behaviour. The calculated total change in entropy indicates a ground-state entropy of 0.46 ln 2
Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. Pt. 2
International Nuclear Information System (INIS)
Babbitt, D.; Thomas, L.
1977-01-01
In its ground state representation, the infinite, spin 1/2 Heisenberg chain provides a model for spin wave scattering, which entails many features of the quantum mechanical N-body problem. Here, we give a complete eigenfunction expansion for the Hamiltonian of the chain in this representation, for all numbers of spin waves. Our results resolve the questions of completeness and orthogonality of the eigenfunctions given by Bethe for finite chains, in the infinite volume limit. (orig.) [de
The indeterminability of the world. Heisenberg and the struggle about the soul of the world
International Nuclear Information System (INIS)
Lindley, D.
2008-01-01
With his detection of the so-called uncertainty or undeterminacy relation the young physicist Werner Heisenberg upsetted 1972 over centuries valid physical certainties. The American physicist and journalist David Lindley depicts in his fascinating story the birth and development of one of the most important knowledges of history of sciences, which faned a vehement controversy under the greatests minds of his time and changed deeply our view of the world
Large-n limit of the Heisenberg model: The decorated lattice and the disordered chain
International Nuclear Information System (INIS)
Khoruzhenko, B.A.; Pastur, L.A.; Shcherbina, M.V.
1989-01-01
The critical temperature of the generalized spherical model (large-component limit of the classical Heisenberg model) on a cubic lattice, whose every bond is decorated by L spins, is found. When L → ∞, the asymptotics of the temperature is T c ∼ aL -1 . The reduction of the number of spherical constraints for the model is found to be fairly large. The free energy of the one-dimensional generalized spherical model with random nearest neighbor interaction is calculated
Analytical results for entanglement in the five-qubit anisotropic Heisenberg model
International Nuclear Information System (INIS)
Wang Xiaoguang
2004-01-01
We solve the eigenvalue problem of the five-qubit anisotropic Heisenberg model, without use of Bethe's ansatz, and give analytical results for entanglement and mixedness of two nearest-neighbor qubits. The entanglement takes its maximum at Δ=1 (Δ>1) for the case of zero (finite) temperature with Δ being the anisotropic parameter. In contrast, the mixedness takes its minimum at Δ=1 (Δ>1) for the case of zero (finite) temperature
Moessner, Roderich
Condensed matter systems provide emergent mini-universes in which quasiparticles may exist which do not correspond to any experimentally detected elementary particle. Topological quantum materials have been particularly productive in this regard, with the present search focussing on Majorana fermions, known theoretically already for decades. Here, we discuss manifestations of magnetic Majorana fermions in the Kitaev model. We place particular emphasis on their fate when perturbations, such as Heisenberg terms, are added to the ideal model system, and address experimental signatures of their vestiges in phases adjacent to the spin liquid.
International Nuclear Information System (INIS)
Rabani, H.; Shahzamanian, M.A.; Yavary, H.
2007-01-01
Full text: Fulde, Ferrell, Larkin and Ovchnnikov (FFLO), first proposed the possibility that a superconducting state with a periodic spatial variation of the gap parameter would become stable when a large Zeeman splinting is present [1,2]. The order parameter varies periodically in space when the Pauli paramagnetism or the Zeeman term dominates the orbital effect. The Zeeman splitting could be due to either a strong magnetic field or an internal exchange field. Under these fields there is a splitting of the Fermi surfaces of spin up and spin down electrons, and the condensed pair has a non-zero total momentum, 2q, which causes the phase of the superconducting order parameter to vary. This state is known as the FF state. We determine the penetration depth of the Fulde-Ferrell State (FF) for quasi-two dimensional (2D) d-wave superconductor by calculating the electromagnetic nonlocal kernel response function. The behavior of the penetration depth at low temperatures is an important probe to determine the stability of the FF state. We start from a mean field Hamiltonian for the FF state and we calculate the electromagnetic nonlocal response tensor relating the current density to an applied vector potential to determine the magnetic penetration depth. We show that a linear T dependence of the magnetic penetration depth in the FF state superconductor violates indeed the third law of thermodynamics and the FF state is unstable due to Nernst theorem. (authors)
Benoit Curé
2010-01-01
The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...
B. Curé
MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...
Benoit Curé.
The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...
B. Curé
2013-01-01
The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...
Bound states in strongly correlated magnetic and electronic systems
International Nuclear Information System (INIS)
Trebst, S.
2002-02-01
A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)
Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach
International Nuclear Information System (INIS)
Spirin, D.V.; Fridman, Y.A.
2003-01-01
We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories
Polarization of electron-positron vacuum by strong magnetic field in theory with fundamental mass
International Nuclear Information System (INIS)
Kadyshevskij, V.G.; ); Rodionov, V.N.
2003-01-01
The exact Lagrangian function of the intensive constant magnetic field, replacing the Heisenberg-Euler Lagrangian in the traditional quantum electrodynamics, is calculated within the frames of the theory with the fundamental mass in the single-loop approximation. It is established that the obtained generalization of the Lagrangian function is substantial by arbitrary values of the magnetic field. The calculated Lagrangian in the weak field coincides with the known Heisenberg-Euler formula. The Lagrangian dependence on the field in the extremely strong fields completely disappears and it tends in this area to the threshold value, which is determined by the fundamental and lepton mass ratio [ru
Benoit Curé
The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...
B. Curé
During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...
Magnetic Transport in Spin Antiferromagnets for Spintronics Applications
Directory of Open Access Journals (Sweden)
Mohamed Azzouz
2017-10-01
Full Text Available Had magnetic monopoles been ubiquitous as electrons are, we would probably have had a different form of matter, and power plants based on currents of these magnetic charges would have been a familiar scene of modern technology. Magnetic dipoles do exist, however, and in principle one could wonder if we can use them to generate magnetic currents. In the present work, we address the issue of generating magnetic currents and magnetic thermal currents in electrically-insulating low-dimensional Heisenberg antiferromagnets by invoking the (broken electricity-magnetism duality symmetry. The ground state of these materials is a spin-liquid state that can be described well via the Jordan–Wigner fermions, which permit an easy definition of the magnetic particle and thermal currents. The magnetic and magnetic thermal conductivities are calculated in the present work using the bond–mean field theory. The spin-liquid states in these antiferromagnets are either gapless or gapped liquids of spinless fermions whose flow defines a current just as the one defined for electrons in a Fermi liquid. The driving force for the magnetic current is a magnetic field with a gradient along the magnetic conductor. We predict the generation of a magneto-motive force and realization of magnetic circuits using low-dimensional Heisenberg antiferromagnets. The present work is also about claiming that what the experiments in spintronics attempt to do is trying to treat the magnetic degrees of freedoms on the same footing as the electronic ones.
Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}: A new telluro-phosphate with S=1/2 Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Xia, Mingjun [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Shipeng; Lu, Jun; Sun, Young [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, R.K., E-mail: rkli@mail.ipc.ac.cn [Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)
2015-10-15
A new telluro-phosphate compound Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} with S=1/2 Heisenberg chain has been successfully synthesized by solid state reaction and grown by flux method. Single crystal X-ray diffraction reveals that Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} crystallizes into a monoclinic space group C2/c and cell parameters of a=17.647(3) Å, b=7.255(2) Å, c=9.191(2) Å and β=100.16 (3)°. In the structure of Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, one dimensional [CuTePO{sub 7}]{sup 3−} chains are formed by tetrahedral PO{sub 4} and trigonal bi-pyramidal TeO{sub 4} joining square planar CuO{sub 4} groups. Those [CuTePO{sub 7}]{sup 3−} chains are inter-connected by sharing one oxygen atom from the TeO{sub 4} group to form two dimensional layers. Magnetic susceptibility and specific heat measurements confirm that the title compound is a model one dimensional Heisenberg antiferromagnetic chain system. - Graphical abstract: Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13}, containing (CuTePO{sub 7}){sup 3−} chains formed by PO{sub 4} and TeO{sub 4} joining CuO{sub 4} groups, shows typical 1D Heisenberg antiferromagnetic chain model behavior as confirmed by magnetic measurements. - Highlights: • New telluro-phosphate Ba{sub 2}Cu{sub 2}Te{sub 2}P{sub 2}O{sub 13} has been grown. • It features layered structure composed of [CuTePO{sub 7}]{sup 3−} chains and TeO{sub 4} groups. • It shows the Heisenberg antiferromagnetic chain behavior. • It is transparent in the range of 1000–2500 nm with a UV absorption edge of 393 nm.
Structure, magnetism, and transport properties for Ca doping in Sr2IrO4
Directory of Open Access Journals (Sweden)
Guotai Zhou
2017-05-01
Full Text Available An immediate quenching using liquid N2 is applied for synthesizing the 5d transition-metal oxides (Sr1-xCax2IrO4 (0 ≤ x ≤ 0.15 single phase. X-ray diffraction together with Rietveld refinement shows that the lattice parameters along a and c directions and the bond angle of Ir-O2-Ir decrease with the increase of Ca content. X-ray Absorption Fine Spectroscopy measurements prove that the valence of Ir and the average Ir-O bond-length substantially remain unchanged with Ca content increasing in the phase. The effective magnetic moment μeff and Néel temperature TN decrease simultaneously with increased Ca content. Electrical resistivity shows complex temperature dependence behavior, which follows the three-dimensional variable range hopping behavior at low temperature, Arrhenius-type behavior at middle-temperature, and a weak electronic localization in quasi-two-dimensional at high temperature.
Superconductivity drives magnetism in δ -doped La2CuO4
Suter, A.; Logvenov, G.; Boris, A. V.; Baiutti, F.; Wrobel, F.; Howald, L.; Stilp, E.; Salman, Z.; Prokscha, T.; Keimer, B.
2018-04-01
Understanding the interplay between different orders in a solid is a key challenge in highly correlated electronic systems. In real systems this is even more difficult since disorder can have strong influence on the subtle balance between these orders and thus can obscure the interpretation of the observed physical properties. Here we present a study on δ -doped La2CuO4 (δ -LCON ) superlattices. By means of molecular beam epitaxy whole LaO2 layers were periodically replaced by SrO2 layers, providing a charge reservoir yet reducing the level of disorder typically present in doped cuprates to an absolute minimum. The induced superconductivity and its interplay with the antiferromagnetic order is studied by means of low-energy muon spin rotation. We find a quasi-two-dimensional superconducting state which couples to the antiferromagnetic order in a nontrivial way. Below the superconducting transition temperature, the magnetic volume fraction increases strongly. The reason could be a charge redistribution of the free carriers due to the opening of the superconducting gap which is possible due to the close proximity and low disorder between the different ordered regions.
International Nuclear Information System (INIS)
Kimata, M; Ohta, H; Koyama, K; Motokawa, M; Kondo, R; Kagoshima, S; Tanaka, H; Tokumoto, M; Kobayashi, H; Kobayashi, A
2006-01-01
Magneto-optical measurements have been performed in organic conductors β''-(BEDT-TTF) 2 CsCd(SCN) 4 and λ-(BETS) 2 FeCl 4 . Although the zero magnetic field ground state of β''-(BEDT-TTF) 2 CsCd(SCN) 4 is considered as the density wave state, periodic orbit resonances (POR's) attributed to quasi-one-dimensional (Q1D) and quasi-two-dimensional (Q2D) Fermi surfaces (FS's) have been observed above 6 T. The existence of these FS's are predicted by the band calculation based on room temperature lattice parameters. This result may suggest the destruction of the density wave state at 6 T, and the primal metallic state revives in the high field phase above 6 T. In the case of λ-(BETS) 2 FeCl 4 , large changes of the transmission intensity of electromagnetic waves around 10 T, which correspond to the insulator-metal transition, have been observed. However, no POR-like resonance has been observed. This may be due to the restriction of the observed frequency-field region
Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1/2 Heisenberg Antiferromagnet
Directory of Open Access Journals (Sweden)
Hui Shao
2017-12-01
Full Text Available We study the spin-excitation spectrum (dynamic structure factor of the spin-1/2 square-lattice Heisenberg antiferromagnet and an extended model (the J-Q model including four-spin interactions Q in addition to the Heisenberg exchange J. Using an improved method for stochastic analytic continuation of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the sharp (δ-function contribution to the structure factor expected from spin-wave (magnon excitations, in addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in excellent agreement with recent neutron-scattering experiments on Cu(DCOO_{2}·4D_{2}O, where a broad spectral-weight continuum at wave vector q=(π,0 was interpreted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results at (π,0 show a similar reduction of the magnon weight and a large continuum, while the continuum is much smaller at q=(π/2,π/2 (as also seen experimentally. We further investigate the reasons for the small magnon weight at (π,0 and the nature of the corresponding excitation by studying the evolution of the spectral functions in the J-Q model. Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized state. Based on these results, we reinterpret the picture of deconfined spinons at (π,0 in the experiments as nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture of a fragile (π,0-magnon pole in the Heisenberg model and its depletion in the J-Q model, we introduce an effective model of the excitations in which a magnon can split into two spinons that do not separate but fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole pair in
Energy Technology Data Exchange (ETDEWEB)
Belgiorno, Francesco [Politecnico di Milano, Dipartimento di Matematica, Milano (Italy); INdAM-GNFM, Milano (Italy); Cacciatori, Sergio L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN sezione di Milano, Milano (Italy); Dalla Piazza, Francesco [Universita ' ' La Sapienza' ' , Dipartimento di Matematica, Roma (Italy); Doronzo, Michele [Universita dell' Insubria, Department of Science and High Technology, Como (Italy)
2016-06-15
We investigate the quantisation in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field φ and the role of the polarisation field is played by a further scalar field ψ. The model, which is quadratic in the fields, is still characterised by a non-trivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered. (orig.)
International Nuclear Information System (INIS)
Curado, E.M.F.; Hassouni, Y.; Rego-Monteiro, M.A.; Rodrigues, Ligia M.C.S.
2008-01-01
We discuss the role of generalized Heisenberg algebras (GHA) in obtaining an algebraic method to describe physical systems. The method consists in finding the GHA associated to a physical system and the relations between its generators and the physical observables. We choose as an example the infinite square-well potential for which we discuss the representations of the corresponding GHA. We suggest a way of constructing a physical realization of the generators of some GHA and apply it to the square-well potential. An expression for the position operator x in terms of the generators of the algebra is given and we compute its matrix elements
A TBA approach to thermal transport in the XXZ Heisenberg model
Zotos, X.
2017-10-01
We show that the thermal Drude weight and magnetothermal coefficient of the 1D easy-plane Heisenberg model can be evaluated by an extension of the Bethe ansatz thermodynamics formulation by Takahashi and Suzuki (1972 Prog. Theor. Phys. 48 2187). They have earlier been obtained by the quantum transfer matrix method (Klümper 1999 Z. Phys. B 91 507). Furthermore, this approach can be applied to the study of the far-out of equilibrium energy current generated at the interface between two semi-infinite chains held at different temperatures.
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Directory of Open Access Journals (Sweden)
Samuel Belliard
2013-11-01
Full Text Available We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations formally similar to the ones obtained in the periodic case or with diagonal boundaries.
De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas
2017-04-01
We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.
On the completeness of the set of Bethe-Hulthen solutions of the linear Heisenberg system
International Nuclear Information System (INIS)
Caspers, W J; Labuz, M; Wal, A
2006-01-01
In this work we formulate the standard form of the solutions of the Heisenberg chain with periodic boundary conditions and show that these solutions can be transformed into the well-known Bethe-Hulthen solutions. The standard form is found by solving the secular problem, separated according to the irreducible representations of the translation group. The relevant parameters exp(ik j ) of the Bethe-Hulthen solutions are found from a set of linear equations with coefficients derived from the standard solutions. This correspondence between standard and Bethe-Hulthen solutions realizes the completeness of the Bethe-Hulthen method
Cálculo de la concurrencia para el modelo de Heisenberg
Castellanos,R; Franco,R; Silva-Valencia,J
2010-01-01
La concurrencia es una cantidad que nos permite medir el grado de entreveramiento que presenta un sistema cuántico y se puede calcular a partir de la matriz densidad reducida. En este artículo mostramos explicitamente como calcular la concurrencia para una cadena finita de espines s =1/2 descrita por el modelo de Heisenberg anistrópico. Nosotros mostramos que para cadenas finitas la concurrencia tiene un máximo en el punto crítico Δ = 1, la cual es una de las principales características ...
Quantum Monte Carlo simulation for S=1 Heisenberg model with uniaxial anisotropy
International Nuclear Information System (INIS)
Tsukamoto, Mitsuaki; Batista, Cristian; Kawashima, Naoki
2007-01-01
We perform quantum Monte Carlo simulations for S=1 Heisenberg model with an uniaxial anisotropy. The system exhibits a phase transition as we vary the anisotropy and a long range order appears at a finite temperature when the exchange interaction J is comparable to the uniaxial anisotropy D. We investigate quantum critical phenomena of this model and obtain the line of the phase transition which approaches a power-law with logarithmic corrections at low temperature. We derive the form of logarithmic corrections analytically and compare it to our simulation results
Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model
International Nuclear Information System (INIS)
Si-Lakhal, B.; Abada, A.
2003-11-01
Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S 4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S 4 is identically zero. In each case, the behavior of S 4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S 2 . Overall shape similarity is noted. (author)
The night of the physicists. Heisenberg, Hahn, Weizsaecker, and the German bomb
International Nuclear Information System (INIS)
Schirach, Richard von
2014-01-01
Finally the German atomic physicists around Heisenberg, von Weizsaecker, and Hahn worked on their ''uranium machine'' in a Swabian beer-cellar - and took themselves for the world elite of nuclear research. In imprisonment they heared from the dropping of the Hiroshima bomb - a shock. Richard von Schirach shows the hindered ''fathers of the German atomic bomb'' in close-up, their eagerness, their hybris, their true importance, and their attempts to give after the war a new interpretation of their own role. A book, which raises in the sense of Duerrenmatt the question for the responsibility of science.
Quantum Heisenberg antiferromagnetic chains with exchange and single-ion anisotropies
International Nuclear Information System (INIS)
Peters, D; Selke, W; McCulloch, I P
2010-01-01
Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), IS2, and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.
The low-temperature phase of the Heisenberg antiferromagnet in a fermionic representation
International Nuclear Information System (INIS)
Azakov, S.; Dilaver, M.; Oztas, A.M.
1999-09-01
Thermal properties of the ordered phase of the spin 1/2 isotropic Heisenberg Antiferromagnet on a d-dimensional hypercubical lattice are studied within the fermionic representation when the constraint of a single occupancy condition is taken into account by the method suggested by Popov and Fedotov. Using a saddle point approximation in the path integral approach we discuss not only the leading order but also the fluctuations around the saddle point at one-loop level. The influence of taking into account the single occupancy condition is discussed at all steps. (author)
Entanglement dynamics of a Heisenberg chain with Dzyaloshinskii–Moriya interaction
International Nuclear Information System (INIS)
Qiang, Zheng; Xiao-Ping, Zhang; Zhong-Zhou, Ren; Qi-Jun, Zhi
2009-01-01
This paper investigates the entanglement dynamics of the system, composed of two qubits A and B with Heisenberg XX spin interactation. There is a third controller qubit C, which only has Dzyaloshinskii–Moriya (DM) spin-orbit interaction with the qubit B. It is found that depending on the initial state of the controller qubit C and DM interaction, the entanglement of the system displays amplification and sudden birth effects. These effects indicate that one can control the entanglement of the system, which may be helpful for quantum information processing. (general)
International Nuclear Information System (INIS)
Zhan-Hai, Dong
2009-01-01
In order to look for the 120° order phase of triangular lattice Heisenberg antiferromagnet with long range couplings, the Hamiltonian is diagonalized with the Bogoliubov transformation within linear spin-wave approximation. It is found that when the long range spin couplings are taken into account, the transformation is valid only for certain regions in the spin coupling parameter space. These regions just correspond to the 120° (or Néel) ordered phase, which is very different from square lattice in terms of shape, size and topological property
Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice
Owen, E. T.; Jin, J.; Rossini, D.; Fazio, R.; Hartmann, M. J.
2018-04-01
Driven-dissipative quantum many-body systems have attracted increasing interest in recent years as they lead to novel classes of quantum many-body phenomena. In particular, mean-field calculations predict limit cycle phases, slow oscillations instead of stationary states, in the long-time limit for a number of driven-dissipative quantum many-body systems. Using a cluster mean-field and a self-consistent Mori projector approach, we explore the persistence of such limit cycles as short range quantum correlations are taken into account in a driven-dissipative Heisenberg model.
Large-N behaviour of string solutions in the Heisenberg model
Fujita, T; Takahashi, H
2003-01-01
We investigate the large-N behaviour of the complex solutions for the two-magnon system in the S = 1/2 Heisenberg XXZ model. The Bethe ansatz equations are numerically solved for the string solutions with a new iteration method. Clear evidence of the violation of the string configurations is found at N = 22, 62, 121, 200, 299, 417, but the broken states are still Bethe states. The number of Bethe states is consistent with the exact diagonalization, except for one singular state.
The relation between mass-gap amplitudes and critical exponents in the Heisenberg model
International Nuclear Information System (INIS)
Alcaraz, F.C.; Felicio, J.R.D. de
1985-01-01
A recent result concerning the universality of the ratio of mass-gap amplitudes using the well known 1-D Heisenberg model which is the quantum version of the two-dimensional eight-vertex model is discussed. The believed extended scaling relation (x sub(p) = x sub(is an element of)/4) relating the polarization and energy anomalous dimensions is confirmed. The exponent, α, ν, γ sub(m) and γ sub(p) is also obtained by usual phenomenological renormalization group methods. (Author) [pt
Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.
2015-06-01
The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.
Benoit Curé
The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...
B. Curé
The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...
Benoit Curé
2013-01-01
Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...
Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet
DEFF Research Database (Denmark)
Lefmann, K.; Hedegård, P.
1994-01-01
In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...
Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids
van den Brink, Jeroen
The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.
Stapp`s quantum dualism: The James/Heisenberg model of consciousness
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1994-02-18
Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James` description of conscious events and for matter from Werner Heisenberg`s ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author`s opinion fails to establish a monistic, scientific theory. The author traces Stapp`s failure to his adamant rejection of arbitrariness, or `randomness`. This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin`s explanation of biology, let along the triumphs of modern `neo-Darwinism`. The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp`s views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy.
Study of interacting fields in a canonical formalism in Heisenberg picture of quantum field theory
International Nuclear Information System (INIS)
RANAIVOSON, R.T.R.
2011-01-01
In this work, we have made a study on the canonical formalism of the quantum field theory. Our contribution has been the development of a study using the Heisenberg picture. We showed that this approach may be useful for the description of quantum dynamics of interacting fields in bounded states. Our approach is to start from the lagrangian density of a classical theory from which one deduce the classical evolution equations of the fields via Euler-Lagrange equation for fields and establish the expression of conserved quantities characterizing the dynamics using the Noether theorem. Passing to the canonical quantization, fields and quantities characterizing the dynamics become quantum operators and evolution equations become operatorial evolution equations in Heisenberg picture. Expressions of quantum observable are also deduced from the expressions of classical conserved quantities. After, we showed that using the properties of fields operators and quantum states vectors, one can deduce from the operatorial evolution equations, the evolution equations for the wave functions of fermions and the evolution equations of expectation values of boson fields. For the illustration, various studies were conducted: the case of electrodynamics, the case of a general gauge theory and the case of the Standard Model. [fr
Critical behavior of the anisotropic Heisenberg model by effective-field renormalization group
de Sousa, J. Ricardo; Fittipaldi, I. P.
1994-05-01
A real-space effective-field renormalization-group method (ERFG) recently derived for computing critical properties of Ising spins is extended to treat the quantum spin-1/2 anisotropic Heisenberg model. The formalism is based on a generalized but approximate Callen-Suzuki spin relation and utilizes a convenient differential operator expansion technique. The method is illustrated in several lattice structures by employing its simplest approximation version in which clusters with one (N'=1) and two (N=2) spins are used. The results are compared with those obtained from the standard mean-field (MFRG) and Migdal-Kadanoff (MKRG) renormalization-group treatments and it is shown that this technique leads to rather accurate results. It is shown that, in contrast with the MFRG and MKRG predictions, the EFRG, besides correctly distinguishing the geometries of different lattice structures, also provides a vanishing critical temperature for all two-dimensional lattices in the isotropic Heisenberg limit. For the simple cubic lattice, the dependence of the transition temperature Tc with the exchange anisotropy parameter Δ [i.e., Tc(Δ)], and the resulting value for the critical thermal crossover exponent φ [i.e., Tc≂Tc(0)+AΔ1/φ ] are in quite good agreement with results available in the literature in which more sophisticated treatments are used.
Fischer, Andreas
2016-11-01
Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.
Spin glass behavior of the antiferromagnetic Heisenberg model on scale free network
International Nuclear Information System (INIS)
Surungan, Tasrief; Zen, Freddy P; Williams, Anthony G
2015-01-01
Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. The study by Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] who observed the presence of SG phase on the AF Ising model on scale free network (SFN) is stimulating. It is a new type of SG system where randomness and frustration are not caused by the presence of FM and AF couplings. To further elaborate this type of system, here we study Heisenberg model on AF SFN and search for the SG phase. The canonical SG Heisenberg model is not observed in d-dimensional regular lattices for (d ≤ 3). We can make an analogy for the connectivity density (m) of SFN with the dimensionality of the regular lattice. It should be plausible to find the critical value of m for the existence of SG behaviour, analogous to the lower critical dimension (d l ) for the canonical SG systems. Here we study system with m = 2, 3, 4 and 5. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter. We observed SG phase for each value of m and estimated its corersponding critical temperature. (paper)
International Nuclear Information System (INIS)
Paulinelli, H G; De Souza, S M; Rojas, Onofre
2013-01-01
In this paper we explore the entanglement in an orthogonal dimer-plaquette Ising–Heisenberg chain, assembled between plaquette edges, also known as orthogonal dimer plaquettes. The quantum entanglement properties involving an infinite chain structure are quite important, not only because the mathematical calculation is cumbersome but also because real materials are well represented by infinite chains. Using the local gauge symmetry of this model, we are able to map onto a simple spin-1 like Ising and spin-1/2 Heisenberg dimer model with single effective ion anisotropy. Thereafter this model can be solved using the decoration transformation and transfer matrix approach. First, we discuss the phase diagram at zero temperature of this model, where we find five ground states, one ferromagnetic, one antiferromagnetic, one triplet–triplet disordered and one triplet–singlet disordered phase, beside a dimer ferromagnetic–antiferromagnetic phase. In addition, we discuss the thermodynamic properties such as entropy, where we display the residual entropy. Furthermore, using the nearest site correlation function it is possible also to analyze the pairwise thermal entanglement for both orthogonal dimers. Additionally, we discuss the threshold temperature of the entangled region as a function of Hamiltonian parameters. We find a quite interesting thin reentrance threshold temperature for one of the dimers, and we also discuss the differences and similarities for both dimers. (paper)
Ground state properties of a spin chain within Heisenberg model with a single lacking spin site
International Nuclear Information System (INIS)
Mebrouki, M.
2011-01-01
The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.
International Nuclear Information System (INIS)
Pu Qiurong; Chen Yuan
2013-01-01
Green's function method is applied to investigate the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies. In the presence of the magnetic field, the effects of the anisotropies and field on the thermodynamic properties are obtained within the random phase approximation combining with Anderson-Callen approximation. The field-induced laws are found for the thermodynamic properties. Field dependences of heights of the susceptibility maximum and specific heat maximum fit well to power laws. The linear increase at high fields is shown for positions of the susceptibility maximum and specific heat maximum. A power law at low fields occurs for the position of the susceptibility maximum. At the positions of the maxima, the magnetization and internal energy display the power-law increase and linear decrease with the field, respectively. The exponents of the power laws are dependent of the anisotropies, as well as the slopes of the linear laws. Our results do not support the 2/3 power law which was obtained by the Landau theory.
Substrate effects on the magnetic ground state of 3d transition metal chains
International Nuclear Information System (INIS)
Urdaniz, M.C.; Barral, M.A.; Llois, A.M.
2009-01-01
We investigate the electronic and magnetic properties of linear chains of 3d atoms, namely Cr and Mn, supported on a monolayer of copper nitride on Cu(1 0 0) using first principles LSDA calculations. Based on these results, we also calculate the intrachain magnetic coupling by means of an effective Heisenberg model. We obtain that, the sp occupation of the chains, the chemical environment and the lattice relaxation determine the magnetic properties of the investigated nanochains.
Magnetic transitions and phases in random-anisotropy magnets
International Nuclear Information System (INIS)
Sellmyer, D.J.; Nafis, S.; O'Shea, M.J.
1988-01-01
The generality and universality of the Ising spin-glass-like phase transitions observed in several rare-earth, random-anisotropy magnets are discussed. Some uncertainties and practical problems in determining critical exponents are considered, and a comparison is made to insulating spin glasses and crystalline spin glasses where an apparent anisotropy-induced crossover from Heisenberg to Ising-like behavior is seen. The observation of a reentrant transition in a weak anisotropy system and its correlation with the theory of Chudnovsky, Saslow, and Serota [Phys. Rev. B 33, 251 (1986)] for the correlated spin glass is discussed
Magnetic transitions and phases in random-anisotropy magnets
Sellmyer, D. J.; Nafis, S.; O'Shea, M. J.
1988-04-01
The generality and universality of the Ising spin-glass-like phase transitions observed in several rare-earth, random-anisotropy magnets are discussed. Some uncertainties and practical problems in determining critical exponents are considered, and a comparison is made to insulating spin glasses and crystalline spin glasses where an apparent anisotropy-induced crossover from Heisenberg to Ising-like behavior is seen. The observation of a reentrant transition in a weak anisotropy system and its correlation with the theory of Chudnovsky, Saslow, and Serota [Phys. Rev. B 33, 251 (1986)] for the correlated spin glass is discussed.
The effect of spin dilution on magnetism of the linear chain system β ...
Indian Academy of Sciences (India)
one-dimensional alternating exchange Heisenberg antiferromagnetism (HAF) is observed ... is seen in the magnetic chains for all Zn concentrations (x ≤ 0.3). ... ion (3d8) while a lot of attention has been focussed on compounds of copper and ... but they attributed the gap to arise from the dimerization of the Cu ions. Pom-.
Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain
DEFF Research Database (Denmark)
Stone, M.B.; Reich, D.H.; Broholm, C.
2003-01-01
Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k(B)T/Jless than or equal to0.025 for H=0 and H=8.7 T, where...
1971-01-01
Remote from the noise and bustle of Europe's capital cities, in the charming German lake-side town of Lindau, close to the borders of Austria and Switzerland, Nobel Prize Winners in physics gathered together from June 28-July 2 to talk of their science and its interaction with society.
DEFF Research Database (Denmark)
Albrechtslund, Anne-Mette Bech; Albrechtslund, Anders
of the series’ appeal is due to its epic chronicling of the flow of transgressing and intersecting knowledge environments in the story of Walter White’s gradual transformation from disheartened teacher to methamphetamine producing criminal mastermind. Walter uses his scientific training and knowledge...
Elrington, Stefan; Bertrand, Thibault; Frey, Merideth; Shattuck, Mark; O'Hern, Corey; Barrett, Sean
2014-03-01
Granular materials are comprised of an ensemble of discrete macroscopic grains that interact with each other via highly dissipative forces. These materials are ubiquitous in our everyday life ranging in scale from the granular media that forms the Earth's crust to that used in agricultural and pharmaceutical industries. Granular materials exhibit complex behaviors that are poorly understood and cannot be easily described by statistical mechanics. Under external loads individual grains are jammed into place by a network of force chains. These networks have been imaged in quasi two-dimensional and on the outer surface of three-dimensional granular materials. Our goal is to use magnetic resonance imaging (MRI) to detect contact forces deep within three-dimensional granular materials, using hydrogen-1 relaxation times as a reporter for changes in local stress and strain. To this end, we use a novel pulse sequence to narrow the line width of hydrogen-1 in rubber. Here we present our progress to date, and prospects for future improvements.
High energy magnetic excitations
International Nuclear Information System (INIS)
Endoh, Yasuo
1988-01-01
The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)
International Nuclear Information System (INIS)
Myrheim, J.
1993-06-01
The thesis deals with the application of different methods to the quantization problem for system of identical particles in one and two dimensions. The standard method is the analytic quantization method due to Schroedinger, which leads to the concept of fractional statistics in one and two dimensions. Two-dimensional particles with fractional statistics are well known by the name of anyons. Two alternative quantization methods are shown by the author, the algebraic method of Heisenberg and the Feynman path integral method. The Feynman method is closely related to the Schroedinger method, whereas the Heisenberg and Schroedinger methods may give different results. The relation between the Heisenberg and Schroedinger methods is discussed. The Heisenberg method is applied to the equations of motion of vortices in superfluid helium, which have the form of Hamiltonian equations for a one-dimensional system. The same method is also discussed more generally for systems of identical particles in one and two dimensions. An application of the Feynman method to the problem of computing the equation of state for a gas of anyons is presented. 104 refs., 4 figs
Magnetization plateaux in an extended Shastry-Sutherland model
International Nuclear Information System (INIS)
Schmidt, Kai Phillip; Dorier, Julien; Mila, Frederic
2009-01-01
We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu 2 (BO 3 ) 2 .
Classical ground states of Heisenberg and X Y antiferromagnets on the windmill lattice
Jeevanesan, Bhilahari; Orth, Peter P.
2014-10-01
We investigate the classical Heisenberg and planar (X Y ) spin models on the windmill lattice. The windmill lattice is formed out of two widely occurring lattice geometries: a triangular lattice is coupled to its dual honeycomb lattice. Using a combination of iterative minimization, heat-bath Monte Carlo simulations, and analytical calculations, we determine the complete ground-state phase diagram of both models and find the exact energies of the phases. The phase diagram shows a rich phenomenology due to competing interactions and hosts, in addition to collinear and various coplanar phases, also intricate noncoplanar phases. We briefly outline different paths to an experimental realization of these spin models. Our extensive study provides a starting point for the investigation of quantum and thermal fluctuation effects.
Directory of Open Access Journals (Sweden)
Mihai V. Putz
2010-10-01
Full Text Available Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor √1-n2, in terms of magnitude n ε [0,1] of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function.
Towards exact solutions of the non-linear Heisenberg-Pauli-Weyl spinor equation
International Nuclear Information System (INIS)
Mielke, E.W.
1980-03-01
In ''color geometrodynamics'' fundamental spinor fields are assumed to obey a GL(2f,C) x GL(2c,C) gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl type. Quark confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor ''gluons'' of strong gravity. This hypothesis is incorporated into the model by considering the nonlinear Dirac equation in a curved space-time of hadronic dimensions. Disregarding internal degrees of freedom, it is then feasible, for a particular background space-time, to obtain exact solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are made. (author)
Abhinav, Kumar; Guha, Partha
2018-03-01
Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.
Block spins and chirality in Heisenberg model on Kagome and triangular lattices
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The spin-1/2 Heisenberg model (HM) is investigated using a block-spin renormalization approach on Kagome and triangular lattices. In both cases, after coarse graining the triangles on original lattice and truncation of the Hilbert space to the triangular ground state subspace, HM reduces to an effective model on a triangular lattice in terms of the triangular-block degrees of freedom viz. the spin and the chirality quantum numbers. The chirality part of the effective Hamiltonian captures the essential difference between the two lattices. It is seen that simple eigenstates can be constructed for the effective model whose energies serve as upper bounds on the exact ground state energy of HM, and chiral ordered variational states have high energies compared to the other variational states. (author). 12 refs, 2 figs
Evolution in totally constrained models: Schrödinger vs. Heisenberg pictures
Olmedo, Javier
2016-06-01
We study the relation between two evolution pictures that are currently considered for totally constrained theories. Both descriptions are based on Rovelli’s evolving constants approach, where one identifies a (possibly local) degree of freedom of the system as an internal time. This method is well understood classically in several situations. The purpose of this paper is to further analyze this approach at the quantum level. Concretely, we will compare the (Schrödinger-like) picture where the physical states evolve in time with the (Heisenberg-like) picture in which one defines parametrized observables (or evolving constants of the motion). We will show that in the particular situations considered in this paper (the parametrized relativistic particle and a spatially flat homogeneous and isotropic spacetime coupled to a massless scalar field) both descriptions are equivalent. We will finally comment on possible issues and on the genericness of the equivalence between both pictures.
arXiv Topology in the 2d Heisenberg Model under Gradient Flow
Sandoval, Ilya O.; de Forcrand, Philippe; Gerber, Urs; Mejía-Díaz, Héctor
2017-10-28
The 2d Heisenberg model — or 2d O(3) model — is popular in condensed matter physics, and in particle physics as a toy model for QCD. Along with other analogies, it shares with 4d Yang-Mills theories, and with QCD, the property that the configurations are divided in topological sectors. In the lattice regularisation the topological charge Q can still be defined such that $Q\\in \\mathbb{Z}$. It has generally been observed, however, that the topological susceptibility ${{\\chi }_{t}}=\\langle {{Q}^{2}}\\rangle /V$ does not scale properly in the continuum limit, i.e. that the quantity ${{\\chi }_{t}}{{\\xi }^{2}}$ diverges for ξ → ∞ (where ξ is the correlation length in lattice units). Here we address the question whether or not this divergence persists after the application of the Gradient Flow.
International Nuclear Information System (INIS)
Ledue, D.; Berche, P.E.; Patte, R.
2004-01-01
We investigate the thermal-activated magnetisation reversal in a single ferromagnetic nanoparticle with uniaxial anisotropy using Monte Carlo simulations. The aim of this work is to reproduce the reversal magnetisation by uniform rotation at very low temperature in the high-energy barrier hypothesis, that is to realize the Neel-Brown model. For this purpose we have considered a simple cubic nanoparticle where each site is occupied by a classical Heisenberg spin. The Hamiltonian is the sum of an exchange interaction term, a single-ion anisotropy term and a Zeeman interaction term. Our numerical data of the thermal variation of the switching field are compared to an approximated expression and previous experimental results on Co nanoparticles
Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model
Directory of Open Access Journals (Sweden)
Yin-Chen He
2017-07-01
Full Text Available The antiferromagnetic spin-1/2 Heisenberg model on a kagome lattice is one of the most paradigmatic models in the context of spin liquids, yet the precise nature of its ground state is not understood. We use large-scale density matrix renormalization group simulations (DMRG on infinitely long cylinders and find indications for the formation of a gapless Dirac spin liquid. First, we use adiabatic flux insertion to demonstrate that the spin gap is much smaller than estimated from previous DMRG simulation. Second, we find that the momentum-dependent excitation spectrum, as extracted from the DMRG transfer matrix, exhibits Dirac cones that match those of a π-flux free-fermion model [the parton mean-field ansatz of a U(1 Dirac spin liquid].
Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Paul, Susobhan, E-mail: suso.phy.paul@gmail.com [Department of Physics, Scottish Church College, 1 & 3 Urquhart Square, Kolkata-700006 (India); Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com [Department of Physics, Jadavpur University, 188 Raja S C Mallik Road, Kolkata-700032 (India)
2016-05-06
Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.
Heisenberg saturation of the Froissart bound from AdS-CFT
International Nuclear Information System (INIS)
Kang, Kyungsik; Nastase, Horatiu
2005-01-01
In a previous paper, we have analyzed high energy QCD from AdS-CFT and proved the saturation of the Froissart bound (a purely QCD proof of which is still lacking). In this Letter we describe the calculation in more physical terms and map it to QCD language. We find a remarkable agreement with the 1952 Heisenberg description of the saturation (pre-QCD!) in terms of shockwave collisions of pion field distributions. It provides a direct map between gauge theory physics and the gravitational physics on the IR brane of the Randall-Sundrum model. Saturation occurs through black hole production on the IR brane, which is in QCD production of a nonlinear pion field soliton of a Born-Infeld action in the hadron collision, that decays into free pions
International Nuclear Information System (INIS)
Starykh, O.; Singh, R.; Sandvik, A.
1997-01-01
Low temperature dynamics of the S=(1)/(2) Heisenberg chain is studied via a simple ansatz generalizing the conformal mapping and analytic continuation procedures to correlation functions with multiplicative logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation rates 1/T 1 and 1/T 2G are obtained, and are argued to improve the agreement with recent experiments. Scaling in q/T and ω/T are violated due to these logarithmic terms. Numerical results show that the logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they provide striking qualitative confirmation of the theoretical results. copyright 1997 The American Physical Society