WorldWideScience

Sample records for quasi-fission

  1. Dissipative dynamics in quasi-fission

    CERN Document Server

    Oberacker, V E; Simenel, C

    2014-01-01

    Quasi-fission is the primary reaction mechanism that prevents the formation of superheavy elements in heavy-ion fusion experiments. Employing the time-dependent density functional theory approach we study quasi-fission in the systems $^{40,48}$Ca+$^{238}$U. Results show that for $^{48}$Ca projectiles the quasi-fission is substantially reduced in comparison to the $^{40}$Ca case. This partly explains the success of superheavy element formation with $^{48}$Ca beams. For the first time, we also calculate the repartition of excitation energies of the two fragments in a dynamic microscopic theory. The system is found in quasi-thermal equilibrium only for reactions with $^{40}$Ca. The differences between both systems are interpreted in terms of initial neutron to proton asymmetry of the colliding partners.

  2. Multi-Nucleon Exchange in Quasi-Fission Reactions

    CERN Document Server

    Ayik, S; Yilmaz, O

    2015-01-01

    Nucleon exchange mechanism is investigated in the central collisions of ${}^{40}$Ca + ${}^{238}$U and ${}^{48}$Ca + ${}^{238}$U systems near the quasi-fission regime in the framework of the Stochastic Mean-Field (SMF) approach. Sufficiently below the fusion barrier, di-nuclear structure in the collisions is maintained to a large extend. Consequently, it is possible to describe nucleon exchange as a diffusion process familiar from deep-inelastic collisions. Diffusion coefficients for proton and neutron exchange are determined from the microscopic basis of the SMF approach in the semi-classical framework. Calculations show that after a fast charge equilibration the system drifts toward symmetry over a very long interaction time. Large dispersions of proton and neutron distributions of the produced fragments indicate that diffusion mechanism may help to populate heavy trans-uranium elements near the quasi-fission regime in these collisions.

  3. Theory of competition between fusion and quasi-fission in a heavy fusing system

    CERN Document Server

    Díaz-Torres, A

    2006-01-01

    A theory of the competition between fusion and quasi-fission in a heavy fusing system is proposed, which is based on a master equation and the two-center shell model. Fusion and quasi-fission arise from a diffusion process in an ensemble of nuclear shapes evolving towards the thermal equilibrium. The master equation describes the diffusion of the nuclear shapes due to quantum and thermal fluctuations. Other crucial physical effects like dissipation, ground-state shell effects, diabatic effects and rotational effects are also incorporated into the theory. The fusing system moves in a dynamical (time-dependent) collective potential energy surface which is initially diabatic and gradually becomes adiabatic. The microscopic ingredients of the theory are obtained with a realistic two-center shell model based on Woods-Saxon potentials. Numerical calculations for several reactions leading to $^{256}$No are discussed. Among other important conclusions, the results indicate that (i) the diabatic effects play a very im...

  4. Dynamical collective potential energy landscape: its impact on the competition between fusion and quasi-fission in a heavy fusing system

    CERN Document Server

    Díaz-Torres, A

    2006-01-01

    A realistic microscopically-based quantum approach to the competition between fusion and quasi-fission in a heavy fusing system is applied to several reactions leading to $^{256}$No. Fusion and quasi-fission are described in terms of a diffusion process of nuclear shapes through a dynamical collective potential energy landscape which is initially diabatic and gradually becomes adiabatic. The microscopic ingredients of the theory are obtained with a realistic two-center shell model based on Woods-Saxon potentials. The results indicate that (i) the diabatic effects play a very important role in the onset of fusion hindrance for heavy systems, and (ii) very asymmetric reactions induced by closed shell nuclei seem to be the best suited to synthesize the heaviest compound nuclei.

  5. Constraining the equation of state of nuclear matter from competition of fusion and quasi-fission in the reactions leading to production of the superheavy elements

    CERN Document Server

    Veselsky, Martin; Ma, Yu-Gang; Souliotis, Georgios A

    2016-01-01

    The mechanism of fusion hindrance, an effect preventing the synthesis of superheavy elements in the reactions of cold and hot fusion, is investigated using the Boltzmann-Uehling-Uhlenbeck equation, where Coulomb interaction is introduced. A strong sensitivity is observed both to the modulus of incompressibility of symmetric nuclear matter, controlling the competition of surface tension and Coulomb repulsion, and to the stiffness of the density-dependence of symmetry energy, influencing the formation of the neck prior to scission. The experimental fusion probabilities were for the first time used to derive constraints on the nuclear equation of state. A strict constraint on the modulus of incompressibility of nuclear matter $K_0 = 240 - 260$ MeV is obtained while the stiff density-dependences of the symmetry energy ($\\gamma>1.$) are rejected.

  6. Fission fragment mass distributions in reactions populating 200Pb

    CERN Document Server

    Chaudhuri, A; Ghosh, T K; Banerjee, K; Sadhukhan, Jhilam; Bhattacharya, S; Roy, P; Roy, T; Bhattacharya, C; Asgar, Md A; Dey, A; Kundu, S; Manna, S; Meena, J K; Mukherjee, G; Pandey, R; Rana, T K; Srivastava, V; Dubey, R; Kaur, Gurpreet; Saneesh, N; Sugathan, P; Bhattacharya, P

    2016-01-01

    The fission fragment mass distributions have been measured in the reactions 16O + 184W and 19F+ 181Ta populating the same compound nucleus 200Pb? at similar excitation energies. It is found that the widths of the mass distribution increases monotonically with excitation energy, indicating the absence of quasi-fission for both reactions. This is contrary to two recent claims of the presence of quasi-fission in the above mentioned reactions.

  7. Reaction 48Ca+208Pb: the capture-fission cross-sections and the mass-energy distributions of fragments above and deep below the Coulomb barrier

    CERN Document Server

    Prokhorova, E V; Itkis, M G; Kondratev, N A; Kozulin, E M; Krupa, L; Oganessian, Yu T; Pashkevich, V V; Pokrovsky, I V; Rusanov, A Ya; Oganessian, Yu.Ts.

    2003-01-01

    The capture-fission cross-sections in an energy range of 206-242 MeV of 48Ca-projectiles and mass-energy distributions (MEDs) of reaction products in an energy range of 211-242 MeV have been measured in the 48Ca+208Pb reaction using the double-arm time-of-flight spectrometer CORSET. The MEDs of fragments for heated fission were shown to consist of two components. One component, which is due to classical fusion-fission, is associated with the symmetric fission of the 256No compound nucleus. The other component, which appears as ''shoulders'', is associated with the quasi-fission process and can be named ''quasi-fission shoulders''. Those quasi-fission shoulders enclose light fragments whose masses are 60-90 a.m.u. The total kinetic energy (TKE) of the fragments that belong to the shoulders is higher than the value expected for a classical fusion-fission process. We have come to the conclusion that in quasi-fission, spherical shells with Z=28 and N=50 play a great role. It has also been demonstrated that the pr...

  8. An overview of near-barrier fusion studies with stable beams

    Energy Technology Data Exchange (ETDEWEB)

    Trotta, M. [INFN, Sezione di Napoli, I-80126, Napoli (Italy); Stefanini, A.M. [INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Padova (Italy); Beghini, S. [Dipartimento di Fisica and INFN Sezione di Padova, I-35100, Padova (Italy); Behera, B.R. [INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Padova (Italy); Corradi, L. [INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Padova (Italy); Fioretto, E. [INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Padova (Italy); Gadea, A. [INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Padova (Italy); Itkis, M.G. [JINR, FLNR, 141980, Dubna (Russian Federation); Knyazheva, G.N. [JINR, FLNR, 141980, Dubna (Russian Federation); Kondratiev, N.A. [JINR, FLNR, 141980, Dubna (Russian Federation); Kozulin, E.M. [JINR, FLNR, 141980, Dubna (Russian Federation); Marginean, N. [INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Padova (Italy); Mason, P. [Dipartimento di Fisica and INFN Sezione di Padova, I-35100, Padova (Italy); Montagnoli, G. [Dipartimento di Fisica and INFN Sezione di Padova, I-35100, Padova (Italy); Pokrovsky, I.V. [INFN, Laboratori Nazionali di Legnaro, I-35020, Legnaro, Padova (Italy); JINR, FLNR, 141980, Dubna (Russian Federation); Sagaidak, R.N. [JINR, FLNR, 141980, Dubna (Russian Federation); Scarlassara, F. [Dipartimento di Fisica and INFN Sezione di Padova, I-35100, Padova (Italy); Silvestri, R. [Dipartimento di Fisica and INFN Sezione di Padova, I-35100, Padova (Italy); Szilner, S. [Ruder Boskovic Institute, HR-10002 Zagreb (Croatia)

    2007-05-01

    An overview of results in fusion studies with stable beams spanning different mass regions and energy ranges is presented. The advantages offered by studying channel coupling effects, involving low-lying excited states of the colliding nuclei, as well as the difficulties in understanding the influence of transfer couplings on fusion, are firstly remarked. The competition of fusion with quasi-fission in heavy systems and the unexpected steep falloff of fusion cross sections at far sub-barrier energies are finally discussed.

  9. Experimental study of the formation of super-heavy compound nuclei in the reaction {sup 58}Fe + {sup 244}Pu {yields} {sup 302} 120; Etude experimentale de la formation de noyaux composes super-lourds dans la reaction {sup 58}Fe + {sup 244}Pu {yields} {sup 302} 120

    Energy Technology Data Exchange (ETDEWEB)

    Amar, N

    2003-11-01

    This work deals with the nuclear mechanisms that take place in the collision of an incident Fe{sup 58} nucleus with a Pu{sup 244} nucleus for an energy that nears that of the Coulomb barrier. The compound nucleus is Z = 120, A 302. We have studied the specificities of the main reaction products and we have taken into account the information conveyed away by the neutrons released in the collision. Measurements have been performed at the U-400 accelerator in Dubna (Russia). 2 detecting systems have been necessary to detect fission fragments and neutrons: the Corset system is made up of 2 telescopes measuring the time of flight of the nuclear fragments and the Demon multi-detector able to draw the energy spectrum of the neutrons detected in coincidence with the fragments. We know that mass asymmetry is no longer a point of difference between fusion-fission and quasi-fission. It seems that fusion-fission fragments have more kinetic energy than quasi-fission fragments. We have made various analysis concerning the neutron emission in order to find the values of temperatures and multiplicities at pre- and post-scission stages with a view to tell fusion-fission events from quasi-fission events. We have deduced that the contribution of fusion-fission events to symmetric partitioning is about 10%. (A.C.)

  10. Fusion-fission study at IUAC: Recent results

    Science.gov (United States)

    Pullanhiotan, Sugathan

    2016-10-01

    Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.

  11. Giant Nuclear Systems of Molecular Type

    Science.gov (United States)

    Zagrebaev, Valery; Greiner, Walter

    Low-energy dynamics of heavy nuclear systems is studied within the extended version of the two-center shell model and Langevin type equations of motion. The shell effects lead to the appearance of local minima and deep valleys on the multi-dimensional potential energy surface. It is shown that the local minima on the fission path of a heavy nucleus—so called isomeric states—are nothing else but the two-cluster configurations with magic or semi-magic cores surrounded with a certain number of shared nucleons. Clustering phenomena caused by the shell effects play an important role also in low-energy dynamics of heavy nuclear systems. Fission and quasi-fission are the well-known processes of such kind discussed in the paper. We found that in low-energy damped multi-nucleon transfer reactions the shell effects may significantly enhance the yield of new heavy neutron-rich nuclei located in the unexplored "north-east" area of the nuclear map which is important for astrophysical nucleosynthesis. A possibility for the production of long-living neutron-rich superheavy nuclei in collisions of actinide ions (such as 238U + 248Cm) is another important finding. In these reactions a large mass and charge transfer due to the inverse (anti-symmetrized) quasi-fission process is significantly enhanced by the clustering process with formation of closed shell nuclei around Z = 82 and N = 126. In many such collisions the lifetime of a composite system consisting of two touching actinide nuclei turns out to be rather long (> 10-20S). This time delay is sufficient for the observation of the line structure in spontaneous e + e - production from the supercritical electric field of a giant quasi-atom—a fundamental QED process not observed yet experimentally. In addition, this giant nuclear molecule might undergo to a three-body clusterization (ternary quasi-fission) with formation of two heavy lead-like fragments in the exit channel. The "true ternary fission" is also possible for

  12. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  13. Evidence for a Novel Reaction Mechanism of a Prompt Shock-Induced Fission Following the Fusion of 78Kr and 40Ca Nuclei at E/A =10 MeV

    CERN Document Server

    Henry, E; Nyibule, S; Quinlan, M; Schroder, W U; Ademard, G; Amorini, F; Auditore, L; Beck, C; Berceanu, I; Bonnet, E; Borderie, B; Cardella, G; Chbihi, A; Colonna, M; De Filippo, E; DOnofrio, A; Frankland, J D; Geraci, E; La Guidara, E; La Commara, M; Lanzalone, G; Lautesse, P; Lebhertz, D; Neindre, N Le; Lombardo, I; Loria, D; Mazurek, K; Pagano, A; Papa, M; Piasecki, E; Pirrone, S; Politi, G; Porto, F; Rizzo, F; Rosato, E; Rusotto, P; Spadaccini, G; Trifiro, A; Trimarchi, M; Verde, G; Vigilante, M; Wieleczko, J P

    2014-01-01

    An analysis of experimental data from the inverse-kinematics ISODEC experiment on 78Kr+40Ca reaction at a bombarding energy of 10 AMeV has revealed signatures of a hitherto unknown reaction mechanism, intermediate between the classical damped binary collisions and fusion-fission, but also substantially different from what is being termed in the literature as fast fission or quasi fission. These signatures point to a scenario where the system fuses transiently while virtually equilibrating mass asymmetry and energy and, yet, keeping part of the energy stored in a collective shock-imparted and, possibly, angular momentum bearing form of excitation. Subsequently the system fissions dynamically along the collision or shock axis with the emerging fragments featuring a broad mass spectrum centered around symmetric fission, relative velocities somewhat higher along the fission axis than in transverse direction, and virtually no intrinsic spin. The class of massasymmetric fission events shows a distinct preference fo...

  14. Systematic study on probable projectile-target combinations for the synthesis of the $^{302}$120 superheavy nucleus

    CERN Document Server

    Santhosh, K P

    2016-01-01

    Probable projectile-target combinations for the synthesis of superheavy element $^{302}$120 have been studied taking Coulomb and proximity potential as the interaction barrier. The probabilities of compound nucleus formation, PCN for the projectile-target combinations found in the cold reaction valley of $^{302}$120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion and evaporation residue cross sections for the reactions of all the probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of SHE $^{302}$120 in heavy ion fusion reactions. The calculated fusion and evaporation cross section for the more asymmetric (hotter) projectile-target combination is found to be higher than the less asymmetric (colder) combination. It can be seen from the nature of quasi-fission barrier height, mass asymmetry, probability of compound nucleus formation, survival probability and excitation energy, the system...

  15. Isotopic fission fragment distributions as a deep probe to fusion-fission dynamics

    CERN Document Server

    Farget, F; Delaune, O; Tarasov, O B; Derkx, X; Schmidt, K -H; Amthor, A M; Audouin, L; Bacri, C -O; Barreau, G; Bastin, B; Bazin, D; Blank, B; Benlliure, J; Caceres, L; Casarejos, E; Chibihi, A; Fernandez-Dominguez, B; Gaudefroy, L; Golabek, C; Grevy, S; Jurado, B; Kamalou, O; Lemasson, A; Lukyanov, S; Mittig, W; Morrissey, D J; Navin, A; Pereira, J; Perrot, L; Rejmund, M; Roger, T; Saint-Laurent, M -G; Savajols, H; Schmitt, C; Sherill, B M; Stodel, C; Taieb, J; Thomas, J -C; Villari, A C

    2012-01-01

    During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of the nucleus, and is also strongly influenced by the single-particle structure of the nucleus. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experimental observation of the potential energy landscape of the deforming nucleus. Very asymmetric fusion-fission reactions at energy close to the Coulomb barrier, produce well-defined conditions of the compound nucleus formation, where processes such as quasi-fission, pre-equilibrium emission and incomplete fusion are negligible. In the same time, the excitation energy is sufficient to reduce significantly structural effects, and mostly the macroscopic part of the potential is responsible for the formation of the fission fragmen...

  16. Challenging fission dynamics around the barrier: The case of 34S + 186W

    Science.gov (United States)

    Kozulin, E. M.; Vardaci, E.; Harca, I. M.; Schmitt, C.; Itkis, I.; Knyazheva, G.; Novikov, K.; Bogachev, A.; Dmitriev, S.; Loktev, T.; Azaiez, F.; Matea, I.; Verney, D.; Gottardo, A.; Dorvaux, O.; Piot, J.; Chubarian, G.; Trzaska, W. H.; Hanappe, F.; Borcea, C.; Calinescu, S.; Petrone, C.

    2016-09-01

    The current status of fission dynamics studies in heavy-ion collisions around the Coulomb barrier is illustrated with the 34S + 186W reaction. The fission-fragment mass and total kinetic energy were measured at the ALTO facility at IPN Orsay, France, with a dedicated set-up using the ( v, E) approach. The measurement reveals the presence of an asymmetric fission component on top of a predominantly symmetric distribution. The asymmetric structure, pointed out for the first time, is discussed along with results of previous experiments studying the same reaction. While these analyses suggested the contribution from either quasi-fission or pre-equilibrium fission, we offer an alternative interpretation, in terms of shell-driven compound-nucleus fission. The present measurement demonstrates the critical influence of resolution when addressing puzzling cases, situated at the crossroads of the various channels opened in a heavy-ion collision. Current status in the field clearly calls for innovative measurements involving manifold correlations and new observables. The outcome of the attempt done in this work in this direction, based on the coincident measurement of prompt γ-rays is reported, and encouraging perspectives are discussed.

  17. Challenging fission dynamics around the barrier: The case of {sup 34}S + {sup 186}W

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, E.M.; Itkis, I.; Knyazheva, G.; Novikov, K.; Bogachev, A.; Dmitriev, S.; Loktev, T. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Vardaci, E. [Dipartamento di Scienze Fisiche, Napoli (Italy); INFN, Napoli (Italy); Harca, I.M. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest - Magurele (Romania); Universitatea din Bucuresti, Facultatea de Fizica, Bucharest (Romania); Schmitt, C.; Piot, J. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, Caen (France); Azaiez, F.; Matea, I.; Verney, D.; Gottardo, A. [Universite Paris-Saclay, IPN, CNRS/IN2P3, Orsay (France); Dorvaux, O. [Universite de Strasbourg, IPHC, CNRS/IN2P3, Strasbourg (France); Chubarian, G. [Texas A and M University, Cyclotron Institute, College Station, TX (United States); Trzaska, W.H. [Accelerator Laboratory of University of Jyvaskyla (JYFL), Jyvaskyla (Finland); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Borcea, C.; Calinescu, S.; Petrone, C. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest - Magurele (Romania)

    2016-09-15

    The current status of fission dynamics studies in heavy-ion collisions around the Coulomb barrier is illustrated with the {sup 34}S + {sup 186}W reaction. The fission-fragment mass and total kinetic energy were measured at the ALTO facility at IPN Orsay, France, with a dedicated set-up using the (v, E) approach. The measurement reveals the presence of an asymmetric fission component on top of a predominantly symmetric distribution. The asymmetric structure, pointed out for the first time, is discussed along with results of previous experiments studying the same reaction. While these analyses suggested the contribution from either quasi-fission or pre-equilibrium fission, we offer an alternative interpretation, in terms of shell-driven compound-nucleus fission. The present measurement demonstrates the critical influence of resolution when addressing puzzling cases, situated at the crossroads of the various channels opened in a heavy-ion collision. Current status in the field clearly calls for innovative measurements involving manifold correlations and new observables. The outcome of the attempt done in this work in this direction, based on the coincident measurement of prompt γ-rays is reported, and encouraging perspectives are discussed. (orig.)

  18. Study of the di-nuclear system $^{A}$Rb + $^{209}$Bi (Z$_{1}$ + Z$_{2}$ = 120)

    CERN Multimedia

    The exact location of the next spherical shell closures beyond Z = 82, N = 126 is still an open question. According to model predictions shell closures are expected at Z = 114 or 120 or 126 and N = 184. Also experimental data cannot yet give a definite answer. Known nuclei with Z = 114 are too neutron‐deficient with respect to the N = 184 shell and nuclei with Z = 120 and beyond are still unknown. An option for studying reactions of super-heavy systems at Z = 120 and neutron numbers up to 184 becomes possible with the use of $^{209}$Bi targets and neutron‐rich beams. By studying quasi-fission and fusion‐fission reactions, which have significantly larger production cross‐sections than the evaporation residues, a possible influence of shell closures at Z = 120, N = 184 can be explored. Well suitable for such studies will be neutron‐rich rubidium beams at energies of about 5 MeV/u delivered by the HIE‐ISOLDE facility.

  19. Compound nucleus formation probability PCN defined within the dynamical cluster-decay model

    Science.gov (United States)

    Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2015-01-01

    With in the dynamical cluster-decay model (DCM), the compound nucleus fusion/ formation probability PCN is defined for the first time, and its variation with CN excitation energy E* and fissility parameter χ is studied. In DCM, the (total) fusion cross section σfusion is sum of the compound nucleus (CN) and noncompound nucleus (nCN) decay processes, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of the evaporation residues (ER) and fusion-fission (ff), including the intermediate mass fragments (IMFs), each calculated for all contributing decay fragments (A1, A2) in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf) process where P0=1 and P is calculated for the entrance channel nuclei. The calculations are presented for six different target-projectile combinations of CN mass A~100 to superheavy, at various different center-of-mass energies with effects of deformations and orientations of nuclei included in it. Interesting results are that the PCN=1 for complete fusion, but PCN <1 or ≪1 due to the nCN conribution, depending strongly on both E* and χ.

  20. Compound nucleus formation probability PCN defined within the dynamical cluster-decay model

    Directory of Open Access Journals (Sweden)

    Chopra Sahila

    2015-01-01

    Full Text Available With in the dynamical cluster-decay model (DCM, the compound nucleus fusion/ formation probability PCN is defined for the first time, and its variation with CN excitation energy E* and fissility parameter χ is studied. In DCM, the (total fusion cross section σfusion is sum of the compound nucleus (CN and noncompound nucleus (nCN decay processes, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of the evaporation residues (ER and fusion-fission (ff, including the intermediate mass fragments (IMFs, each calculated for all contributing decay fragments (A1, A2 in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf process where P0=1 and P is calculated for the entrance channel nuclei. The calculations are presented for six different target-projectile combinations of CN mass A~100 to superheavy, at various different center-of-mass energies with effects of deformations and orientations of nuclei included in it. Interesting results are that the PCN=1 for complete fusion, but PCN <1 or ≪1 due to the nCN conribution, depending strongly on both E* and χ.

  1. Charged particle decay of hot and rotating $^{88}$Mo nuclei in fusion-evaporation reactions

    CERN Document Server

    Valdré, S; Casini, G; Barlini, S; Carboni, S; Ciemała, M; Kmiecik, M; Maj, A; Mazurek, K; Cinausero, M; Gramegna, F; Kravchuk, V L; Morelli, L; Marchi, T; Baiocco, G; Bardelli, L; Bednarczyk, P; Benzoni, G; Bini, M; Blasi, N; Bracco, A; Brambilla, S; Bruno, M; Camera, F; Chbihi, A; Corsi, A; Crespi, F C L; D'Agostino, M; Degerlier, M; Fabris, D; Fornal, B; Giaz, A; Krzysiek, M; Leoni, S; Matejska-Minda, M; Mazumdar, I; Mȩczyński, W; Million, B; Montanari, D; Myalski, S; Nicolini, R; Olmi, A; Pasquali, G; Prete, G; Roberts, O J; Styczeń, J; Szpak, B; Wasilewska, B; Wieland, O; Wieleczko, J P; Ziȩbliński, M

    2015-01-01

    A study of fusion-evaporation and (partly) fusion-fission channels for the $^{88}$Mo compound nucleus, produced at different excitation energies in the reaction $^{48}$Ti + $^{40}$Ca at 300, 450 and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the Gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted $\\alpha$-particles; they may be due both to pre-equilibrium emission and to reaction channels (such as Deep Inelastic Collisions, QuasiFission/Q...

  2. Heavy ion collision dynamics of 10,11B+10,11B reactions

    Directory of Open Access Journals (Sweden)

    Singh BirBikram

    2015-01-01

    Full Text Available The dynamical cluster-decay model (DCM of Gupta and collaborators has been applied successfully to the decay of very-light (A ∼ 30, light (A ∼ 40−80, medium, heavy and super-heavy mass compound nuclei for their decay to light particles (evaporation residues, ER, fusion-fission (ff, and quasi-fission (qf depending on the reaction conditions. We intend to extend here the application of DCM to study the extreme case of decay of very-light nuclear systems 20,21,22Ne∗ formed in 10,11B+10,11B reactions, for which experimental data is available for their binary symmetric decay (BSD cross sections, i.e., σBSD. For the systems under study, the calculations are presented for the σBSD in terms of their preformation and barrier penetration probabilities P0 and P. Interesting results are that in the decay of such lighter systems there is a competing reaction mechanism (specifically, the deep inelastic orbiting of non-compound nucleus (nCN origin together with ff. We have emipirically estimated the contribution of σnCN. Moreover, the important role of nuclear structure characteristics via P0 as well as angular momentum ℓ in the reaction dynamics are explored in the study.

  3. Fission dynamics of 240Cf* formed in 34,36S induced reactions

    Directory of Open Access Journals (Sweden)

    Jain Deepika

    2015-01-01

    Full Text Available We have studied the entrance channel effects in the decay of Compound nucleus 240Cf* formed in 34S+206Pb and 36S+204Pb reactions by using energy density dependent nuclear proximity potential in the framework of dynamical cluster-decay model (DCM. At different excitation energies, the fragmentation potential and preformation probability of decaying fragments are almost identical for both the entrance channels, which seem to suggest that decay is independent of its formation and entrance channel excitation energy. It is also observed that, with inclusion of deformation effects upto quadrupole within the optimum orientation approach, the fragmentation path governing potential energy surfaces gets modified significantly. Beside this, the fission mass distribution of Cf* isotopes is also investigated. The calculated fission cross-sections using SIII force for both the channels find nice agreement with the available experimental data for deformed choice of fragments, except at higher energies. In addition to this, the comparative analysis with Blocki based nuclear attraction is also worked out. It is observed that Blocki proximity potential accounts well for the CN decay at all energies whereas the use of EDF based nuclear potential suggests the presence of some non-compound nucleus process (such as quasi-fission (qf at higher energies.

  4. Heavy ion reactions around the Coulomb barrier

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The angular distributions of fission fragments for the 32S+184W reaction near Coulomb barrier energies are measured. The ex perimental fission excitation function is obtained. The measured fission cross sections are decomposed into fusion-fission, quasi-fission and fast fission contributions by the dinuclear system (DNS) model. The hindrance to completing fusion both at small and large collision energies is explained. The fusion excitation functions of 32S+90,96Zr in an energy range from above to below the Coulomb barrier are measured and analyzed within a semi-classical model. The obvious effect of positive Q-value multi-neutron transfers on the sub-barrier fusion enhancement is observed in the 32S+96Zr system. In addition, the excitation functions of quasi-elastic scattering at a backward angle have been measured with high precision for the systems of 16O+208Pb, 196Pt, 184W, and 154,152Sm at energies well below the Coulomb barrier. Considering the deformed coupling effects, the extracted diffuseness parameters are close to the values extracted from the systematic analysis of elastic and inelastic scattering data. The elastic scattering angular distribution of 17F+12C at 60 MeV is measured and calculated by using the continuum-discretized coupled-channels (CDCC) approach. It is found that the diffuseness parameter of the real part of core-target potential has to be increased by 20% to reproduce the experimental result, which corresponds to an increment of potential depth at the surface re gion. The breakup cross section and the coupling between breakup and elastic scattering are small.

  5. Compound nucleus formation probability PCN determined within the dynamical cluster-decay model for various "hot" fusion reactions

    Science.gov (United States)

    Kaur, Arshdeep; Chopra, Sahila; Gupta, Raj K.

    2014-08-01

    The compound nucleus (CN) fusion/formation probability PCN is defined and its detailed variations with the CN excitation energy E*, center-of-mass energy Ec .m., fissility parameter χ, CN mass number ACN, and Coulomb interaction parameter Z1Z2 are studied for the first time within the dynamical cluster-decay model (DCM). The model is a nonstatistical description of the decay of a CN to all possible processes. The (total) fusion cross section σfusion is the sum of the CN and noncompound nucleus (nCN) decay cross sections, each calculated as the dynamical fragmentation process. The CN cross section σCN is constituted of evaporation residues and fusion-fission, including intermediate-mass fragments, each calculated for all contributing decay fragments (A1, A2) in terms of their formation and barrier penetration probabilities P0 and P. The nCN cross section σnCN is determined as the quasi-fission (qf) process, where P0=1 and P is calculated for the entrance-channel nuclei. The DCM, with effects of deformations and orientations of nuclei included in it, is used to study the PCN for about a dozen "hot" fusion reactions forming a CN of mass number A ˜100 to superheavy nuclei and for various different nuclear interaction potentials. Interesting results are that PCN=1 for complete fusion, but PCNPCN≪1 due to the nCN contribution, depending strongly on different parameters of the entrance-channel reaction but found to be independent of the nuclear interaction potentials used.

  6. Dynamical Cluster-decay Model (DCM) applied to 9Li+208Pb reaction

    Science.gov (United States)

    Kaur, Arshdeep; Hemdeep; Kaushal, Pooja; Behera, Bivash R.; Gupta, Raj K.

    2017-10-01

    The decay mechanism of 217At* formed in 9Li+208Pb reaction is studied within the dynamical cluster-decay model (DCM) at various center-of-mass energies. The aim is to see the behavior of a light neutron-rich radioactive beam on a doubly-magic target nucleus for the (total) fusion cross section σfus and the individual decay channel cross sections. Experimentally, only the isotopic yield of heavy mass residues 211-214At * [equivalently, the light-particles (LPs) evaporation residue cross sections σxn for x = 3- 6 neutrons emission] are measured, with the fusion-fission (ff) component σff taken zero. For a fixed neck-length parameter ΔR, the only parameter in the DCM, we are able to fit σfus =∑x=16σxn almost exactly for 9Li on 208Pb at all E c . m .'s. However, the observed individual decay channels (3n-6n) are very poorly fitted, with unobserved channels (1n, 2n) and σff strongly over-estimated. Different ΔR values, meaning thereby different reaction time scales, are required to fit individually both the observed and unobserved evaporation residue channels (1n-6n) and σff, but then the compound nucleus (CN) contribution σCN is very small (< 1%), and the non-compound nucleus (nCN) decay cross section σnCN contributes the most towards total σfus (=σCN +σnCN). Thus, the 9Li induced reaction on doubly-magic 208Pb is more of a quasi-fission-like nCN decay, which is further analyzed in terms of the statistical CN formation probability PCN and CN survival probability Psurv. For the reaction under study, PCN < < 1 and Psurv → 1, in particular at above barrier energies.

  7. Dynamical decay process of {sup 219,} {sup 220}Ra{sup *} formed in {sup 10,} {sup 11}B+{sup 209}Bi reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawhney, G.; Sharma, M.K. [Thapar University, School of Physics and Materials Science, Punjab (India)

    2012-05-15

    The excitation functions for both the evaporation residue and fission have been calculated for {sup 10}B +{sup 209}Bi and {sup 11}B+{sup 209}Bi reactions forming compound systems {sup 219,220}Ra{sup *}, using the dynamical cluster-decay model (DCM) with effects of deformations and orientations of the nuclei included in it. In addition to this, the excitation functions for complete fusion (CF) are obtained by summing the fission cross-sections, neutron evaporation and charged particle evaporation residue cross-sections produced through the {alpha}xn and pxn (x = 2, 3, 4) emission channels for the {sup 219}Ra system at various incident centre-of-mass energies. Experimentally the CF cross-sections are suppressed and the observed suppression is attributed to the low binding energy of {sup 10,11}B which breaks up into charged fragments. The reported complete fusion (CF) and incomplete fusion (ICF) excitation functions for the {sup 219}Ra system are found to be nicely fitted by the calculations performed in the framework of DCM, without invoking a significant contribution from quasi-fission. Although DCM has been applied for a number of compound nucleus decay studies in the recent past, the same is being used here in reference to ICF and subsequent decay processes along with the CF process. Interestingly the main contribution to complete fusion cross-section comes from the fission cross-section at higher incident energies, which in DCM is found to consist of an asymmetric fission window, shown to arise due to the deformation and orientation effects of formation and decay fragments. (orig.)

  8. Physics Division annual review, 1 April 1985-31 March 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The highlight of the Argonne Physics Division during the past year (1985/86) has been the completion and dedication of the final superconducting linac stages of the ATLAS system and the beginning of the research program that utilizes the full capabilities of that system. The transition to using the full ATLAS and the new experimental area has been a smooth one and the research program is beginning to bear fruit. The experimental facilities have also come into operation with three major components, consisting of the first stage of a gamma detection system incorporating an array of Compton-suppressed germanium detectors and BGO total energy detectors, a magnetic spectrograph of the Enge split-pole design, with a focal-plane detector system adapted to heavy ions, and a new scattering facility with a number of features. Interesting new data are emerging on quasi-elastic processes, on the transition between fission and quasi-fission and the study of nuclear structure at high spin. The past year has also seen the merging of the nuclear research in the Argonne Chemistry Division, mostly in heavy-ion and medium-energy nuclear physics, with the Physics Division. The merger is leading to full cooperation within the larger group and will help broaden and strengthen the total effort in nuclear physics. In medium-energy physics the year has seen the successful execution of an experiment at the SLAC NPAS station to study the delta resonance in nuclei. Progress is being made in the effort at Fermilab on deep inelastic muon scattering, on the development of a tensor polarized gas deuterium target for use with storage rings, and on the LAMPF neutrino oscillation experiment. In theoretical nuclear physics an effort is continuing on investigating the relevant degrees of freedom in the microscopic dynamics of nuclei and the importance of three-body forces. 51 figs., 2 tabs.

  9. Studies of Fluctuation Processes in Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    2016-04-14

    fluctuation mechanism do not play an important role at low energies and the mean-field fluctuations provide the dominant mechanism. The PI developed a stochastic mean-field (SMF) approach for nuclear dynamics by incorporating zero-point and thermal fluctuations of the initial state. This improvement provides an approximate description of quantal fluctuations of the collective motion, which was missing in the standard mean-field approach. We carried out a number of applications of the SMF approach for dynamics of spinodal instabilities in nuclear matter and the nucleon exchange mechanism in the quasi fission reactions. Further applications of the approach are currently in progress.

  10. Recent studies in heavy ion induced fission reactions

    Science.gov (United States)

    Choudhury, R. K.

    2001-08-01

    Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus--nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to