WorldWideScience

Sample records for quasi static strength

  1. Quasi-static puncture resistance behaviors of high-strength polyester fabric for soft body armor

    Directory of Open Access Journals (Sweden)

    Qiu-Shi Wang

    Full Text Available A series of economical and flexible fabrics were prepared using high-strength polyester yarns with different fabric structures, weft density and number of layers. The effect of these factors on quasi-static puncture resistance was comparatively studied. The failure mode of the fabrics was analyzed with SEM photographs. Findings indicate that the structure and the weft density affected the quasi-static puncture resistance property of the fabrics, the plain fabrics had better puncture resistance property than twill and satin fabrics. The max puncture force and puncture energy of the plain fabrics with 160 yarn/10 cm reached the max values which were 107.43 N and 0.44 J, respectively. The number of layers had a linear relationship to quasi-static puncture resistance. The contact pressure and friction of the probe against the fibers were the main hindrance during the quasi-static puncture process and the breakage of the fibers during the penetration was caused by the bend and tensile deformation. Keywords: High-strength polyester fabrics, Fabric structure, Multiple-layer fabrics, Quasi-static puncture resistance

  2. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs.

    Science.gov (United States)

    Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua

    2017-11-10

    As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.

  3. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    Science.gov (United States)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  4. Experimental Strength of Single-Lap Hybrid Joints on Woven Fabric Kenaf Fiber Composites Under Quasi Static Condition

    Directory of Open Access Journals (Sweden)

    Yee Lee Sim

    2016-01-01

    Full Text Available For the past decades, usage of natural fiber reinforced composites in low bearing load applications are increasing tremendously due to drawbacks concerning the use of synthetic fibers. Kenaf fibers have a good potential to be used as composite reinforcements as they possesses excellent fiber strength compared to own self-weight. Current work concentrates on mechanical properties of woven fabric kenaf composites with single-lap hybrid joints configurations. Four width to diameter ratio, (W/d of cross-ply lay-up joints as designed in testing series were tested by using quasi static mechanical testing. Experimental results showed that the failure load increased with the increasing of W/d ratios. Thinner lay-up had better bearing strength compared to thicker lay-up as found in current study.

  5. Quasi-static strength and fractography analysis of two dental implants manufactured by direct metal laser sintering.

    Science.gov (United States)

    Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina

    2018-01-30

    New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.

  6. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.

    Science.gov (United States)

    Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus

    2016-04-01

    Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The quasi-equilibrium response of MOS structures: Quasi-static factor

    Science.gov (United States)

    Okeke, M.; Balland, B.

    1984-07-01

    The dynamic response of a MOS structure driven into a non-equilibrium behaviour by a voltage ramp is presented. In contrast to Khun's quasi-static technique it is shown that any ramp-driven MOS structure has some degree of non-equilibrium. A quasi staticity factor μAK which serves as a measure of the degree of quasi-equilibrium, has been introduced for the first time. The mathematical model presented in the paper allows a better explanation of the experimental recordings. It is shown that this model could be used to analyse the various features of the response of the structure and that such physical parameters as the generation-rate, trap activation energy, and the effective capture constants could be obtained.

  8. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  9. Quasi-static Design of Electrically Small Ultra-Wideband Antennas

    Science.gov (United States)

    2017-02-01

    Equations. The ACD uses a constant line charge distribution and image line charge distribution (both on the -axis) to generate equipotential surfaces ...Each equipotential surface represents an ACD antenna design with a different height. In the Quasi-static Antenna Design Algorithm [2, 3, 4, 5, 6...quasi- static approximation used in the algorithm. A static charge distribution is used to generate equipotential surfaces . The equipotential surfaces

  10. A Minimum Leakage Quasi-Static RAM Bitcell

    Directory of Open Access Journals (Sweden)

    Adam Teman

    2011-05-01

    Full Text Available As SRAMs continue to grow and comprise larger percentages of the area and power consumption in advanced systems, the need to minimize static currents becomes essential. This brief presents a novel 9T Quasi-Static RAM Bitcell that provides aggressive leakage reduction and high write margins. The quasi-static operation method of this cell, based on internal feedback and leakage ratios, minimizes static power while maintaining sufficient, albeit depleted, noise margins. This paper presents the concept of the novel cell, and discusses the stability of the cell under hold, read and write operations. The cell was implemented in a low-power 40 nm TSMC process, showing as much as a 12× reduction in leakage current at typical conditions, as compared to a standard 6T or 8T bitcell at the same supply voltage. The implemented cell showed full functionality under global and local process variations at nominal and low voltages, as low as 300 mV.

  11. Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape and bidirectional woven textile (fabric carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.

  12. Quasi-static acoustic tweezing thromboelastometry.

    Science.gov (United States)

    Holt, R G; Luo, D; Gruver, N; Khismatullin, D B

    2017-07-01

    Essentials Blood coagulation measurement during contact with an artificial surface leads to unreliable data. Acoustic tweezing thromboelastometry is a novel non-contact method for coagulation monitoring. This method detects differences in the blood coagulation state within 10 min. Coagulation data were obtained using a much smaller sample volume (4 μL) than currently used. Background Thromboelastography is widely used as a tool to assess the coagulation status of critical care patients. It allows observation of changes in material properties of whole blood, beginning with early stages of clot formation and ending with clot lysis. However, the contact activation of the coagulation cascade at surfaces of thromboelastographic systems leads to inherent variability and unreliability in predicting bleeding or thrombosis risks. Objectives To develop acoustic tweezing thromboelastometry as a non-contact method for perioperative assessment of blood coagulation. Methods Acoustic tweezing is used to levitate microliter drops of biopolymer and human blood samples. By quasi-statically changing the acoustic pressure we control the sample drop location and deformation. Sample size, deformation and location are determined by digital imaging at each pressure. Results Simple Newtonian liquid solutions maintain a constant, reversible location vs. deformation curve. In contrast, the location/deformation curves for gelatin, alginate, whole blood and blood plasma uniquely change as the samples solidify. Increasing elasticity causes the sample to deform less, leading to steeper stress/strain curves. By extracting a linear regime slope, we show that whole blood or blood plasma exhibits a unique slope profile as it begins to clot. By exposing blood samples to pro- or antithrombotic agents, the slope profile changes, allowing detection of hyper- or hypocoagulable states. Conclusions We demonstrate that quasi-static acoustic tweezing can yield information about clotting onset, maturation

  13. Improved quasi-static nodal green's function method

    International Nuclear Information System (INIS)

    Li Junli; Jing Xingqing; Hu Dapu

    1997-01-01

    Improved Quasi-Static Green's Function Method (IQS/NGFM) is presented, as an new kinetic method. To solve the three-dimensional transient problem, improved Quasi-Static Method is adopted to deal with the temporal problem, which will increase the time step as long as possible so as to decrease the number of times of space calculation. The time step of IQS/NGFM can be increased to 5∼10 times longer than that of Full Implicit Differential Method. In spatial calculation, the NGFM is used to get the distribution of shape function, and it's spatial mesh can be nearly 20 times larger than that of Definite Differential Method. So the IQS/NGFM is considered as an efficient kinetic method

  14. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140

    Energy Technology Data Exchange (ETDEWEB)

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde 1, Univ. Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and very small carbides. It will be shown that by well directed annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effects of static strain aging, without causing extended thermal residual stress relaxation. The amount of yield stress increases caused by static strain aging is quantified using tensile tests. Static strain aging is also found to be responsible for an increase of the quasi static and cyclic surface yield strength present after shot peening. (orig.)

  15. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  16. Implementation of the quasi-static method for neutron transport

    International Nuclear Information System (INIS)

    Alcaro, Fabio; Dulla, Sandra; Ravetto, Piero; Le Tellier, Romain; Suteau, Christophe

    2011-01-01

    The study of the dynamic behavior of next generation nuclear reactors is a fundamental aspect for safety and reliability assessments. Despite the growing performances of modern computers, the full solution of the neutron Boltzmann equation in the time domain is still an impracticable task, thus several approximate dynamic models have been proposed for the simulation of nuclear reactor transients; the quasi-static method represents the standard tool currently adopted for the space-time solution of neutron transport problems. All the practical applications of this method that have been proposed contain a major limit, consisting in the use of isotropic quantities, such as scalar fluxes and isotropic external neutron sources, being the only data structures available in most deterministic transport codes. The loss of the angular information produces both inaccuracies in the solution of the kinetic model and the inconsistency of the quasi-static method itself. The present paper is devoted to the implementation of a consistent quasi-static method. The computational platform developed by CEA in Cadarache has been used for the creation of a kinetic package to be coupled with the existing SNATCH solver, a discrete-ordinate multi-dimensional neutron transport solver, employed for the solution of the steady-state Boltzmann equation. The work aims at highlighting the effects of the angular treatment of the neutron flux on the transient analysis, comparing the results with those produced by the previous implementations of the quasi-static method. (author)

  17. Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Minju; Park, Jaeyeong; Sohn, Seok Su; Kim, Hyoung Seop [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Nack J. [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2017-05-02

    In this study, dynamic tensile tests were conducted on TWinning Induced Plasticity (TWIP) and low-carbon (LC) steel sheets at a strain rate of 1500–2000/s by using a split Hopkinson tensile bar, and deformation mechanisms related with improvement of dynamic tensile properties were investigated by a digital image correlation (DIC) technique. The dynamic tensile strength was higher than the quasi-static tensile strength in both TWIP and LC sheets, while the dynamic elongation was same to the quasi-static elongation in the TWIP sheet and was much lower than the quasi-static elongation in the LC sheet. According to the DIC results of the dynamically tensioned TWIP sheet, the homogeneous deformation occurred before the necking at the strain of 47.4%. This indicated that the dynamic deformation processes were almost similar to the quasi-static ones as the TWIP sheet was homogeneously deformed in the initial and intermediate deformation stages. This could be explained by deformation mechanisms including twinning, in consideration of favorable effect of increased twinning on tensile properties under the dynamic loading. On the other hand, the dynamically tensioned LC sheet was rapidly deformed and fractured as the necking was intensified in a narrow strain-concentrated region. The present DIC technique is an outstanding method for detailed dynamic deformation analyses, and provides an important idea for practical safety analyses of automotive steel sheets.

  18. Micromechanical definition of an entropy for quasi-static deformation of granular materials

    NARCIS (Netherlands)

    Rothenburg, L.; Kruyt, Nicolaas P.

    2009-01-01

    A micromechanical theory is formulated for quasi-static deformation of granular materials, which is based on information theory. A reasoning is presented that leads to the definition of an information entropy that is appropriate for quasi-static deformation of granular materials. This definition is

  19. A quasi-static polynomial nodal method for nuclear reactor analysis

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation

  20. A quasi-static polynomial nodal method for nuclear reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.

  1. Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions

    Science.gov (United States)

    Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.

    2015-02-01

    The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.

  2. A PSP-based small-signal MOSFET model for both quasi-static and nonquasi-static operations

    NARCIS (Netherlands)

    Aarts, A.C.T.; Smit, G.D.J.; Scholten, A.J.; Klaassen, D.B.M.

    2008-01-01

    In this paper, a small-signal MOSFET model is described, which takes the local effects of both velocity saturation and transverse mobility reduction into account. The model is based on the PSP model and is valid for both quasi-static and nonquasi-static (NQS) operations. Recently, it has been found

  3. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    International Nuclear Information System (INIS)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd; Tamin, M. N.

    2016-01-01

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step

  4. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2016-11-15

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.

  5. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  6. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Balch, Dorian K. [Northwestern University, Evanston, IL (United States); O' Dwyer, John G. [Waterford Institute of Technology (Ireland); Davis, Graham R. [Queen Mary, University of London (United Kingdom); Cady, Carl M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gray, George T. [Los Alamos National Laboratory, Los Alamos, NM (United States); Dunand, David C. [Northwestern University, Evanston, IL (United States)]. E-mail: dunand@northwestern.edu

    2005-01-25

    Syntactic foams were fabricated by liquid metal infiltration of commercially pure and 7075 aluminum into preforms of hollow ceramic microspheres. The foams exhibited peak strengths during quasi-static compression ranging from -100 to -230 MPa, while dynamic compression loading showed a 10-30% increase in peak strength magnitude, with strain rate sensitivities similar to those of aluminum-matrix composite materials. X-ray tomographic investigation of the post-compression loaded foam microstructures revealed sharp differences in deformation modes, with the unalloyed-Al foam failing initially by matrix deformation, while the alloy-matrix foams failed more abruptly through the formation of sharp crush bands oriented at about 45 deg. to the compression axis. These foams displayed pronounced energy-absorbing capabilities, suggesting their potential use in packaging applications or for impact protection; proper tailoring of matrix and microsphere strengths would result in optimized syntactic foam properties.

  7. An improved technique for quasi-static C-V measurements

    International Nuclear Information System (INIS)

    Turan, R.; Finstad, T.G.

    1990-10-01

    A new automated quasi-static C-V measurement technique for MOS capacitors has been developed. This techniques uses an integrating electrometer to measure the charge accumulated on a MOS capacitor in response of a small voltage step. Making use of the internal data storage system of a commercial electrometer and a personal computer, the charge Q on the MOS capacitor is measured as a function of time t and stored. The capacitance is then obtained by analyzing this Q-t data set. A Si MOS sample is measured and analyzed in terms of interface charges as an example. Advantages over a commercial quasi-static meter which uses similar measurement technique are presented. It is also shown that this technique is potentially capable of measuring both high and low frequency C-V curves simultaneously. 9 refs. 5 figs

  8. Universal formula for quasi-static density perturbation by a magnetoplasma wave

    International Nuclear Information System (INIS)

    Kaufman, A.N.; Cary, J.R.; Pereira, N.R.

    1979-01-01

    The general expression for the ponderomotive Hamiltonian is used to obtain the quasi-static quasi-neutral density change caused by the ponderomotive force of a cold magnetoplasma wave of arbitrary frequency and polarization: deltan (x) =-[vertical-barE(x) vertical-bar 2 -vertical-barB(x) vertical-bar 2 ] /4π

  9. Static and Dynamic Handgrip Strength Endurance: Test-Retest Reproducibility.

    Science.gov (United States)

    Gerodimos, Vassilis; Karatrantou, Konstantina; Psychou, Dimitra; Vasilopoulou, Theodora; Zafeiridis, Andreas

    2017-03-01

    This study investigated the reliability of static and dynamic handgrip strength endurance using different protocols and indicators for the assessment of strength endurance. Forty young, healthy men and women (age, 18-22 years) performed 2 handgrip strength endurance protocols: a static protocol (sustained submaximal contraction at 50% of maximal voluntary contraction) and a dynamic one (8, 10, and 12 maximal repetitions). The participants executed each protocol twice to assess the test-retest reproducibility. Total work and total time were used as indicators of strength endurance in the static protocol; the strength recorded at each maximal repetition, the percentage change, and fatigue index were used as indicators of strength endurance in the dynamic protocol. The static protocol showed high reliability irrespective of sex and hand for total time and work. The 12-repetition dynamic protocol exhibited moderate-high reliability for repeated maximal repetitions and percentage change; the 8- and 10-repetition protocols demonstrated lower reliability irrespective of sex and hand. The fatigue index was not a reliable indicator for the assessment of dynamic handgrip endurance. Static handgrip endurance can be measured reliably using the total time and total work as indicators of strength endurance. For the evaluation of dynamic handgrip endurance, the 12-repetition protocol is recommended, using the repeated maximal repetitions and percentage change as indicators of strength endurance. Practitioners should consider the static (50% maximal voluntary contraction) and dynamic (12 repeated maximal repetitions) protocols as reliable for the assessment of handgrip strength endurance. The evaluation of static endurance in conjunction with dynamic endurance would provide more complete information about hand function. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. On the relation between quasi-static and dynamic stress induced reversible structural relaxation of amorphous alloys

    International Nuclear Information System (INIS)

    Krueger, P.; Stucky, T.; Boewe, M.; Neuhaeuser, H.

    1993-01-01

    Quasi-static stress relaxation and dynamic internal friction measurements of stress induced reversible structural relaxation were performed on the amorphous alloy Fe 40 Ni 40 B 20 . The kinetics can be well described by a stretched exponential Kohlrausch-Williams-Watts quasi-static relaxation. The thermally activated part of the internal friction shows an Arrhenius temperature behaviour for a fixed vibration frequency and an inverse power frequency behaviour for a fixed temperature. The activation energies calculated from the Arrhenius equation and from the frequency shift method are significantly different. In order to explain this discrepancy the relation between the quasi-static and the dynamic descriptions of the reversible relaxation is reexamined. In particular it is shown that these two activation energies are connected by the Kohlrausch exponent of the quasi-static relaxation. (orig.)

  11. Effect of hot-humid exposure on static strength of adhesive-bonded aluminum alloys

    Directory of Open Access Journals (Sweden)

    Rui Zheng

    2015-09-01

    Full Text Available The effect of hot-humid exposure (i.e., 40 °C and 98% R.H. on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.

  12. Quasi-Static Indentation Analysis of Carbon-Fiber Laminates.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nelson, Stacy Michelle [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-12-01

    A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.

  13. A Monte Carlo implementation of the predictor-corrector Quasi-Static method

    International Nuclear Information System (INIS)

    Hackemack, M. W.; Ragusa, J. C.; Griesheimer, D. P.; Pounders, J. M.

    2013-01-01

    The Quasi-Static method (QS) is a useful tool for solving reactor transients since it allows for larger time steps when updating neutron distributions. Because of the beneficial attributes of Monte Carlo (MC) methods (exact geometries and continuous energy treatment), it is desirable to develop a MC implementation for the QS method. In this work, the latest version of the QS method known as the Predictor-Corrector Quasi-Static method is implemented. Experiments utilizing two energy-groups provide results that show good agreement with analytical and reference solutions. The method as presented can easily be implemented in any continuous energy, arbitrary geometry, MC code. (authors)

  14. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1978-10-01

    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  15. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Juergen; Schulze, Volker [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials; Hessert, Roland; Koenig, Gerhard [MTU Aero Engines, Munich (Germany)

    2012-01-15

    The residual stress state induced by shot peening should be taken into account in the dimensioning of turbine components. Understanding the changes in the residual stress state caused by the application of quasi-static and cyclic loads is a prerequisite. In order to describe the residual stress state after quasi-static loading, several different shot peened Inconel 718 specimens were loaded isothermally up to specific tensile loadings. To analyze the residual stress state after cyclic loading, isothermal low cycle fatigue tests were performed. These tests were stopped after a defined number of cycles. Finally, after the specimens had been subjected to different loads, the surface residual stresses and - for special loadings - the residual stress depth distributions were determined experimentally by using X-ray diffraction. The surface - core model was adapted so that the complete residual stress depth distribution after quasi-static and cyclic loading can now be described. (orig.)

  16. ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Willems, B.; Deloye, C. J.; Kalogera, V.

    2010-01-01

    We present a formalism to study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides, in which the tidal forcing frequencies are small, compared to the inverse of the white dwarf's dynamical timescale. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 M sun helium white dwarf in binaries with orbital frequencies in the Laser Interferometer Space Antenna (LISA) gravitational wave frequency band and companion masses ranging from 0.3 M sun to 10 5 M sun . The resulting tidal evolution timescales for the orbital semimajor axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on timescales of less than 10 Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on timescales of less than 1 Myr. Nevertheless, the timescales remain longer than the orbital inspiral timescales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.

  17. Four-level time decomposition quasi-static power flow and successive disturbances analysis. [Power system disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S M [Nikola Tesla Inst., Belgrade (YU)

    1990-01-01

    This paper presents a model and an appropriate numerical procedure for a four-level time decomposition quasi-static power flow and successive disturbances analysis of power systems. The analysis consists of the sequential computation of the zero, primary, secondary and tertiary quasi-static states and of the estimation of successive structural disturbances during the 1200 s dynamics after a structural disturbance. The model is developed by detailed inspection of the time decomposition characteristics of automatic protection and control devices. Adequate speed of the numerical procedure is attained by a specific application of the inversion matrix lemma and the decoupled model constant coefficient matrices. The four-level time decomposition quasi-static method is intended for security and emergency analysis. (author).

  18. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system.

    Science.gov (United States)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-09-07

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance.

  19. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Ito, Fumihiro; Laakso, Ilkka

    2013-01-01

    The present study discusses the applicability of the magneto-quasi-static approximation to the calculation of the specific absorption rate (SAR) in a cylindrical model for a wireless power transfer system. Resonant coils with different parameters were considered in the 10 MHz band. A two-step quasi-static method that is comprised of the method of moments and the scalar-potential finite-difference methods is applied, which can consider the effects of electric and magnetic fields on the induced SAR separately. From our computational results, the SARs obtained from our quasi-static method are found to be in good agreement with full-wave analysis for different positions of the cylindrical model relative to the wireless power transfer system, confirming the applicability of the quasi-static approximation in the 10 MHz band. The SAR induced by the external electric field is found to be marginal as compared to that induced by the magnetic field. Thus, the dosimetry for the external magnetic field, which may be marginally perturbed by the presence of biological tissue, is confirmed to be essential for SAR compliance in the 10 MHz band or lower. This confirmation also suggests that the current in the coil rather than the transferred power is essential for SAR compliance. (note)

  20. Study of damage of graphite/epoxy composites submitted to repeated quasi-static shear loadings

    International Nuclear Information System (INIS)

    Khadhraoui-Lattreche, Malika

    1984-01-01

    Quasi static loading tests on composite materials with organic matrix allow the behaviour of the materials under repeated loadings to be studied while avoiding viscoelastic effects. In this research thesis, the author reports the study of one-directional composite samples submitted to static pure shear loadings which represent the most severe stress state for this type of material. The material behaviour has been determined by application of loads greater than the yield strength, and of zero torque unloads. This allowed cumulative residual deformations to be monitored, and the increasing evolution of this parameter to be studied with respect to the number of applied cycles. The author deduces from these results a characteristic law for the material which introduces a decoupling between the stress and the cumulative residual deformation. Thus, a method of prediction of cumulative residual deformations is developed. Besides, a brief application to another material seems to confirm this type of law, and suggests that its generalisation should be studied [fr

  1. A Planar Quasi-Static Constraint Mode Tire Model

    Science.gov (United States)

    2015-07-10

    strikes a balance between simple tire models that lack the fidelity to make accurate chassis load predictions and computationally intensive models that...strikes a balance between heuristic tire models (such as a linear point-follower) that lack the fidelity to make accurate chassis load predictions...UNCLASSIFIED: Distribution Statement A. Cleared for public release A PLANAR QUASI-STATIC CONSTRAINT MODE TIRE MODEL Rui Maa John B. Ferris

  2. Predicting vertebral bone strength by vertebral static histomorphometry

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis

    2002-01-01

    of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly....... No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.......The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...

  3. Neutron kinetics of fluid-fuel systems by the quasi-static method

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Rostagno, M.M.

    2004-01-01

    The quasi-static method for the neutron kinetics of nuclear reactors is generalized for application to neutron multiplying systems fueled by a fluid multiplying material, typically a mixture of fissile molten salts. The method is derived by the application of factorization formulae for both the neutron density and the delayed precursor concentrations and the projection of the balance equations upon a weighting function. A physically meaningful weight can be assumed as the solution of the adjoint model, which is constructed for the situation considered, including delayed neutrons. The quasi-static scheme is then applied to calculations of some transients for a typical configuration of a molten-salt reactor, in a multigroup diffusion model with a one-dimensional slug-flow velocity field. The physical features associated to the motion of the fissile material are highlighted

  4. Application of genetic algorithm in quasi-static fiber grating wavelength demodulation technology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A modified genetic algorithm (GA) has been proposed, which was used to wavelength demodulation in quasi-static fiber grating sensing system. The modification method of GA has been introduced and the relevant mathematical model has been established. The objective function and individual fitness evaluation strategy interrelated with GA are also established. The influence of population size, chromosome size, generations, crossover probability and mutation probability on the GA has been analyzed, and the optimal parameters of modified GA have been obtained. The simulations and experiments, show that the modified GA can be applied to quasi-static fiber grating sensing system, and the wavelength demodulation precision is equal to or less than 3 pm.

  5. Quasi-static structural optimization under the seismic loads

    International Nuclear Information System (INIS)

    Choi, W. S.; Lee, K. M.; Kim, T. W.

    2001-01-01

    For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method

  6. Convergence of the Quasi-static Antenna Design Algorithm

    Science.gov (United States)

    2013-04-01

    was the first antenna design with quasi-static methods. In electrostatics, a perfect conductor is the same as an equipotential surface . A line of...which can cause the equipotential surface to terminate on the disk or feed wire. This requires an additional step in the solution process; the... equipotential surface is sampled to verify that the charge is enclosed by the equipotential surface . The final solution must be verified with a detailed

  7. Analysis of the elastic behaviour of nonclassical nonlinear mesoscopic materials in quasi-static experiments

    International Nuclear Information System (INIS)

    Ruffino, E.; Scalerandi, M.

    2000-01-01

    As discovered by recent quasi-static and dynamic resonance experiments, the classical nonlinear theory fails in describing the hysteretic behaviour of nonlinear mesoscopic materials like rocks, concrete, etc. The paper applies the local interaction simulation approach (LISA) for studying such kind of nonclassical nonlinearity. To this purpose, in the LISA treatment of ultrasonic wave propagation has been included a phenomenological model, based on the PM space approach, of the local mesoscopic features of rocks and other materials with localized damages. A quantitative comparison of simulation and experimental results in quasi-static experiments is also presented

  8. Quasi-static responses and variational principles in gradient plasticity

    Science.gov (United States)

    Nguyen, Quoc-Son

    2016-12-01

    Gradient models have been much discussed in the literature for the study of time-dependent or time-independent processes such as visco-plasticity, plasticity and damage. This paper is devoted to the theory of Standard Gradient Plasticity at small strain. A general and consistent mathematical description available for common time-independent behaviours is presented. Our attention is focussed on the derivation of general results such as the description of the governing equations for the global response and the derivation of related variational principles in terms of the energy and the dissipation potentials. It is shown that the quasi-static response under a loading path is a solution of an evolution variational inequality as in classical plasticity. The rate problem and the rate minimum principle are revisited. A time-discretization by the implicit scheme of the evolution equation leads to the increment problem. An increment of the response associated with a load increment is a solution of a variational inequality and satisfies also a minimum principle if the energy potential is convex. The increment minimum principle deals with stables solutions of the variational inequality. Some numerical methods are discussed in view of the numerical simulation of the quasi-static response.

  9. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  10. Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981

    Directory of Open Access Journals (Sweden)

    M. Gousheva

    2009-01-01

    Full Text Available The paper proposes new results, analyses and information for the plate tectonic situation in the processing of INTERCOSMOS-BULGARIA-1300 satellite data about anomalies of the quasi-static electric field in the upper ionosphere over activated earthquake source regions at different latitudes. The earthquake catalogue is made on the basis of information from the United State Geological Survey (USGS website. The disturbances in ionospheric quasi-static electric fields are recorded by IESP-1 instrument aboard the INTERCOSMOS-BULGARIA-1300 satellite and they are compared with significant seismic events from the period 14 August–20 September 1981 in magnetically very quiet, quiet and medium quiet days. The main tectonic characteristics of the seismically activated territories are also taken in account. The main goal of the above research work is to enlarge the research of possible connections between anomalous vertical electric field penetrations into the ionosphere and the earthquake manifestations, also to propose tectonic arguments for the observed phenomena. The studies are represented in four main blocks: (i previous studies of similar problems, (ii selection of satellite, seismic and plate tectonic data, (iii data processing with new specialized software and observations of the quasi-static electric field and (iiii summary, comparison of new with previous results in our studies and conclusion. We establish the high informativity of the vertical component Ez of the quasi-static electric field in the upper ionosphere according observations by INTERCOSMOS-BULGARIA-1300 that are placed above considerably activated earthquake sources. This component shows an increase of about 2–10 mV/m above sources, situated on mobile structures of the plates. The paper discusses the observed effects. It is represented also a statistical study of ionospheric effects 5–15 days before and 5–15 days after the earthquakes with magnitude M 4.8–7.9.

  11. Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone

    Science.gov (United States)

    Mottez, Fabrice

    2016-02-01

    There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.

  12. Comparison of the quasi-static method and the dynamic method for simulating fracture processes in concrete

    Science.gov (United States)

    Liu, J. X.; Deng, S. C.; Liang, N. G.

    2008-02-01

    Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.

  13. Modeling Quasi-Static and Fatigue-Driven Delamination Migration

    Science.gov (United States)

    De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.

    2014-01-01

    An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.

  14. Development of temperature stable charge based piezoelectric composite quasi-static pressure sensors

    NARCIS (Netherlands)

    Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der

    2010-01-01

    In this work piezoelectric composite charge based sensors are developed, aimed at quasi-static pressure sensor or switch type applications. The use of piezoelectric composite materials allows for manufacturing robust devices which can easily be integrated with conventional polymer processing.

  15. The Mechanical and Reaction Behavior of PTFE/Al/Fe2O3 under Impact and Quasi-Static Compression

    Directory of Open Access Journals (Sweden)

    Jun-yi Huang

    2017-01-01

    Full Text Available Quasi-static compression and drop-weight test were used to characterize the mechanical and reaction behavior of PTFE/Al/Fe2O3 composites. Two kinds of PTFE/Al/Fe2O3 composites were prepared with different mass of PTFE, and the reaction phenomenon and stress-strain curves were recorded; the residuals after reaction were analyzed by X-ray diffraction (XRD. The results showed that, under quasi-static compression condition, the strength of the materials is increased (from 37.1 Mpa to 77.2 Mpa with the increase of PTFE, and the reaction phenomenon occurred only in materials with high PTFE content. XRD analysis showed that the reaction between Al and Fe2O3 was not triggered with identical experimental conditions. In drop-weight tests, PTFE/Al/Fe2O3 specimens with low PTFE content were found to be more insensitive by high-speed photography, and a High Temperature Metal Slag Spray (HTMSS phenomenon was observed in both kinds of PTFE/Al/Fe2O3 composites, indicating the existence of thermite reaction, which was confirmed by XRD. In PTFE/Al/Fe2O3 system, the reaction between PTFE and Al precedes the reaction between Al and Fe2O3.

  16. Two Types of Long-duration Quasi-static Evolution of Solar Filaments

    Science.gov (United States)

    Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.

    2018-04-01

    In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.

  17. The improved quasi-static method vs the direct method: a case study for CANDU reactor transients

    International Nuclear Information System (INIS)

    Kaveh, S.; Koclas, J.; Roy, R.

    1999-01-01

    Among the large number of methods for the transient analysis of nuclear reactors, the improved quasi-static procedure is one of the most widely used. In recent years, substantial increase in both computer speed and memory has motivated a rethinking of the limitations of this method. The overall goal of the present work is a systematic comparison between the improved quasi-static and the direct method (mesh-centered finite difference) for realistic CANDU transient simulations. The emphasis is on the accuracy of the solutions as opposed to the computational speed. Using the computer code NDF, a typical realistic transient of CANDU reactor has been analyzed. In this transient the response of the reactor regulating system to a substantial local perturbation (sudden extraction of the five adjuster rods) has been simulated. It is shown that when updating the detector responses is of major importance, it is better to use a well-optimized direct method rather than the improved quasi-static method. (author)

  18. Quasi-static crack tip fields in rate-sensitive FCC single crystals

    Indian Academy of Sciences (India)

    In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. ... Global General Motors R&D, India Science Lab, GM Technical Centre (India), Bangalore 560 066, India; Department of Mechanical Engineering, Indian Institute of Science, ...

  19. Hot accreting white dwarfs in the quasi-static approximation

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1982-01-01

    Properties of white dwarfs which are accreting hydrogen-rich matter at rates in the range 1.5 x 10 -9 to 2.5 x 10 -7 M/sub sun/ yr -1 are investigated in several approximations. Steady-burning models, in which matter is processed through nuclear-burning shells as rapidly as it is accreted, provide a framework for understanding the properties of models in which thermal pulses induced by hydrogen burning and helium burning are allowed to occur. In these latter models, the underlying carbon-oxygen core is chosen to be in a cycle-averaged steady state with regard to compressional heating and neutrino losses. Several of these models are evolved in the quasi-static approximation. Combining results obtained in the steady-burning approximation with those obtained in the quasi-static approximation, expressions are obtained for estimating, as functions of accretion rate and white dwarf mass, the thermal pulse recurrence period and the duration of hydrogen-burning phases. The time spent by an accreting model burning hydrogen as a large star of giant dimensions versus time spent burning hydrogen as a hot dwarf is also estimated as a function of model mass and accretion rate. Finally, suggestions for detecting observational counterparts of the theoretical models and suggestions for further theoretical investigations are offered. Subject headings: stars: accretion: stars: interiors: stars: novae: stars: symbiotic: stars: white dwarfs

  20. Localization from near-source quasi-static electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, John Compton [Univ. of Southern California, Los Angeles, CA (United States)

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  1. Quasi-static Multilayer Electrical Modeling of Human Limb for IBC

    Directory of Open Access Journals (Sweden)

    S. H. Pun

    2011-06-01

    Full Text Available Home health care system and long term physiologic parameters monitoring system are important for elevating the living quality of chronic disease patients and elderly. Elaborating towards a sophisticated and comprehensive home health care system, Intra-Body Communication (IBC is believed to have advantages in power consumption, electromagnetic radiation, interference from external electromagnetic noise, security, and restriction in spectrum resource. In this article, we start from quasi-static Maxwell

  2. Comparison of quasi-static and dynamic squats: a three-dimensional kinematic, kinetic and electromyographic study of the lower limbs.

    Science.gov (United States)

    Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A

    2014-01-01

    Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (psquats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Dynamic and quasi-static simulation and analysis of the plutonium oxide/metal containers subject to 30-foot dropping

    International Nuclear Information System (INIS)

    Gong, C.; Miller, R.F.

    1995-01-01

    This analysis of the plutonium oxide/metal storage containers is in support of the design and testing project The results from the dynamic analysis show some important facts that have not been considered before. The internal bagless transfer can will have higher stress than the primary container. The quasi-static analysis provides a conservative solution. In both vertical upright drop (dynamic) and inclined upside down drop (quasi-static) the containers are structurally sound

  4. Comparison of Static and Dynamic Elastic Modules of Different Strength Concretes

    Science.gov (United States)

    Uyanık, Osman; Sabbaǧ, Nevbahar

    2016-04-01

    In this study, the static and dynamic elastic (Young) modules of concrete with different strength was intended to compare. For this purpose 150mm dimensions 9 for each design cubic samples prepared and they were subjected to water cure during 28 days. After Seismic Ultrasonic P and S wave travel time measurements of samples, P and S wave velocities and taking advantage of elasticity theory the dynamic elastic modules were calculated. Concrete strength was obtained from the uniaxial compression tests in order to calculate the static elastic modules of the samples. The static elastic modulus is calculated by using the empirical relationships used in international standards. The obtained static and dynamic elastic modules have been associated. A curve was obtained from this association result that approximately similar to the stress-strain curve of obtaining at failure criterion of the sample. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete Strength, P and S wave Velocities, Static, Dynamic, Young Modules

  5. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    Science.gov (United States)

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

  6. Generalization of the memory integer model for the analysis of the quasi-static behaviour of polyurethane foams

    International Nuclear Information System (INIS)

    Jmal, Hamdi; Ju, Ming Lei; Dupuis, Raphael; Aubry, Evelyne

    2014-01-01

    Polyurethane foam is a cellular material characterized by an interesting mechanical spectrum of properties: low density, capacity to absorb the deformation energy and low stiffness. This spectrum of properties makes polyurethane foam commonly used in many thermal, acoustic and comfort applications. Several models, such as memory, hyper-elastic and pseudo-elastic models have been developed in the literature to describe the mechanical response of polyurethane foam under quasi-static and dynamic test conditions. The main disadvantage of these models is the dependence of their parameters against the test conditions (strain rate, maximum compression level, etc). This affects the general character of their representativeness to the quasi-static and dynamic behaviours of polyurethane foam. The main goal of this article is to implement reliable mechanical model which is able to provide the quasi-static response of the polyurethane foam under different strain rates and large compressive deformation. The dimensional parameters of our model can be expressed by the product of two independent parts; the first contain only the test conditions and the second define the dimensionless and invariant parameters that characterize the foam material. The developed model has been proposed after several experimental studies allowing the apprehension of the quasi-static behaviour (through unidirectional compression tests). The polyurethane foam, under large deformations, exhibits a nonlinear elastic behaviour and viscoelastic behaviour. To assess the ability of our model to be a general representation, three industrial polyurethane foams have been considered.

  7. New aspects in the implementation of the quasi-static method for the solution of neutron diffusion problems in the framework of a nodal method

    International Nuclear Information System (INIS)

    Caron, D.; Dulla, S.; Ravetto, P.

    2016-01-01

    Highlights: • The implementation of the quasi-static method in 3D nodal diffusion theory model in hexagonal-z geometry is described. • Different formulations of the quasi-static technique are discussed. • The results presented illustrate the features of the various formulations, highlighting advantages and drawbacks. • A novel adaptive procedure for the selection of the time interval between shape recalculations is presented. - Abstract: The ability to accurately model the dynamic behaviour of the neutron distribution in a nuclear system is a fundamental aspect of reactor design and safety assessment. Due to the heavy computational burden associated to the direct time inversion of the full model, the quasi-static method has become a standard approach to the numerical solution of the nuclear reactor dynamic equations on the full phase space. The present paper is opened by an introductory critical review of the basics of the quasi-static scheme for the general neutron kinetic problem. Afterwards, the implementation of the quasi-static method in the context of a three-dimensional nodal diffusion theory model in hexagonal-z geometry is described, including some peculiar aspects of the adjoint nodal equations and the explicit formulation of the quasi-static nodal equations. The presentation includes the discussion of different formulations of the quasi-static technique. The results presented illustrate the features of the various formulations, highlighting the corresponding advantages and drawbacks. An adaptive procedure for the selection of the time interval between shape recalculations is also presented, showing its usefulness in practical applications.

  8. A New Energy Efficiency Measure for Quasi-Static MIMO Channels

    OpenAIRE

    Belmega , Elena Veronica; Lasaulce , Samson; Debbah , Merouane; Hjorungnes , Are

    2009-01-01

    International audience; In this paper, we consider the multiple input multiple out- put (MIMO) quasi static channel. Our objective is to study the power allocation (over the transmit antennas) problem where not only the performance with respect to (w.r.t.) the transmission reliability but also the cost in terms of the consumed power is accounted for. We first review the existing results w.r.t energy effciency functions (benefit per cost) which focus mainly on the single input single output (S...

  9. Triaxial quasi-static compression and creep behavior of bedded salt from southeastern New Mexico

    International Nuclear Information System (INIS)

    Hansen, F.D.

    1979-11-01

    This report summarizes the results obtained from a series of triaxial quasi-static compression and creep tests on specimens of bedded salt recovered at depth intervals of 1953 to 1954 and 2711 to 2722 feet in AEC Hole No. 7 in southeastern New Mexico. The primary objective was the determination of the deformational characteristics of the salt for prescribed stress and temperature states under quasi-static and time-dependent conditions. The test conditions encompassed confining pressures of 500 and 2000 psi, differential axial stresses of 1500, 3000 and 4500 psi, temperatures of 23 and 100 0 C, and time durations of several hours to ten days. The data analysis was confined primarily to power law fits to the creep strain-time measurements and to an evaluation of the principal strain ratio behavior for the various test conditions and axial strain magnitudes

  10. Quasi-Static Evolution, Catastrophe, and Failed Eruption of Solar Flux Ropes

    Science.gov (United States)

    2016-12-30

    Ropes James Chen Beam Physics Branch Plasma Physics Division December 30, 2016 Approved for public release; distribution is unlimited. i REPORT...pressure gradient force combine to balance the major radial hoop force. The macroscopic forces on the flux ropes and onset conditions are quantified...Solar physics theory 67-4989-07 Quasi-Static Evolution, Catastrophe, and “Failed” Eruption of Solar Flux Ropes James Chen1 Plasma Physics Division

  11. Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment

    Science.gov (United States)

    Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.

    2018-04-01

    The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.

  12. Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load

    Science.gov (United States)

    Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu

    2018-04-01

    Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.

  13. Biomagnetic localization from transient quasi-static events

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Leahy, R.M.; Lewis, P.S. [Los Alamos National Lab., NM (United States)]|[University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.

    1993-02-01

    Sensory stimuli, such as auditory, visual, or somatosensory, evoke neural responses in very localized regions of the brain. A SQUID biomagnetometer can measure the very weak fields that are generated outside of the head by this response. A simple source and head model of current dipoles inside a conducting sphere is typically used to interpret these magnetic field measurements or magnetoencephalogram (MEG). Locating dipole sources using data recorded from an array of biomagnetic sensors is distinguished from conventional array source localization techniques by the quasi-static transient nature of the data. Here, the basic MEG model is reviewed, then a localization example is given to motivate the need for partitioning the data to improve estimator performance. Tune-eigenspectrum analysis is introduced as a means of partitioning and interpreting spatio-temporal biomagnetic data. Examples using both simulated and somatosensory data are presented.

  14. Biomagnetic localization from transient quasi-static events

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Leahy, R.M.; Lewis, P.S. (Los Alamos National Lab., NM (United States) University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.)

    1993-01-01

    Sensory stimuli, such as auditory, visual, or somatosensory, evoke neural responses in very localized regions of the brain. A SQUID biomagnetometer can measure the very weak fields that are generated outside of the head by this response. A simple source and head model of current dipoles inside a conducting sphere is typically used to interpret these magnetic field measurements or magnetoencephalogram (MEG). Locating dipole sources using data recorded from an array of biomagnetic sensors is distinguished from conventional array source localization techniques by the quasi-static transient nature of the data. Here, the basic MEG model is reviewed, then a localization example is given to motivate the need for partitioning the data to improve estimator performance. Tune-eigenspectrum analysis is introduced as a means of partitioning and interpreting spatio-temporal biomagnetic data. Examples using both simulated and somatosensory data are presented.

  15. Quasi-Static Single-Component Hybrid Simulation of a Composite Structure with Multi-Axis Control

    DEFF Research Database (Denmark)

    Høgh, J.; Waldbjørn, J.; Wittrup-Schmidt, J.

    2015-01-01

    This paper presents a quasi-static hybrid simulation performed on a single component structure. Hybrid simulation is a substructural technique, where a structure is divided into two sections: a numerical section of the main structure and a physical experiment of the remainder. In previous cases...

  16. On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding

  17. Static muscle strength trained and untrained of female students

    Directory of Open Access Journals (Sweden)

    Kopanski R.

    2012-12-01

    Full Text Available Static muscle strength is one of the defining characteristics of human motor potential. Standard terms and exclude the impact of short-term measurement techniques for motion and strain measurements, hence the widespread use of Mm measurements in the assessment of fitness of both trained and untrained, healthy subjects and patients undergoing a variety of reasons the process of rehabilitation. The paper deals with static muscle strength (dynamometry back of the hand of female students trained (n = 38 and untrained (n = 213. Examined relationships between individual measurements and body weight in both groups, the degree of asymmetry of the palmar and the differences in the level of power (at the level of the absolute and relative terms between the groups. Disclosed according to form the basis of their conclusions.

  18. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  19. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  20. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    Science.gov (United States)

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the

  1. THE EFFECT OF THE STATIC RELATIVE STRENGTH ON THE MAXIMUM RELATIVE RECEIVING OF OXYGEN

    Directory of Open Access Journals (Sweden)

    Abdulla Elezi

    2011-09-01

    Full Text Available Based on research on the sample of 263 students of age- 18 years, and used batteries of 9 tests for evaluation of the static relative strength and the criterion variable- maximum relative receiving of oxygen (VO2 ml / kg / min based on the Astrand test ,and on regression analysis to determine the influence of the static relative strength on the criterion variable maximum relative oxygen receiving, can be generally concluded that from 9 predictor variables statistically significant partial effect have 2variables. In hierarchical order, they are: the variable of static relative leg strength - endurance of the fingers (the angle of the lower leg and thigh 900 (SRL2 which arithmetic mean is 25.04 seconds and variable ctatic relative strength of arms and shoulders – push-up endurance in the balance beam (angle of the forearm and upper arm 900 ( SRA2 with arithmetic mean of 17.75 seconds. From the statistically influential significant predictor variables on the criterion variable one is from the static relative leg strength (SRL2 and the other is from the static relative strength of arm and shoulder area (SRA2. With the analysis of these relations we can conclude that the isometric contractions of the four headed thigh muscle and the isometric contractions of the three headed upper arm muscle are predominantly responsible for the successful execution of doing actions on a bicycle ergometer and not on the maximum relative receiving of oxygen.

  2. Quasi-Static Condensation of Aeroelastic Suspension Bridge Model

    DEFF Research Database (Denmark)

    Møller, Randi N.; Krenk, Steen; N. Svendsen, Martin

    2017-01-01

    For long span bridges the wind-induced dynamic response is a design driving factor and therefore continuously a subject for detailed analysis. Traditionally both buffeting and stability calculations have been considered in the frequency domain. However, this yields alimitation in accounting...... for turbulence when considering the stability limit and further it is not possible to account for non-linear effects. These limitations suggest to do simulations of the aeroelastic response of long span bridges in the time domain. For this it is of interest to have an efficient model while still maintaining...... sufficient accuracy. This contribution is on quasi-static reduction of an aeroelastic finite element model of a 3000m suspension bridge proposed for crossing Sulafjorden in Norway. The model is intended for stability limit calculation where the representation of higher modes is of less importance...

  3. Investigation of Quasi-Static Indentation Response of Inkjet Printed Sandwich Structures under Various Indenter Geometries

    Science.gov (United States)

    Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun

    2017-01-01

    The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet. PMID:28772649

  4. Scissors strength in the quasi-continuum of actinides

    Directory of Open Access Journals (Sweden)

    Guttormsen M.

    2014-03-01

    Full Text Available The M1-scissors resonance has been measured for the first time in the quasi-continuum of actinides. The strength and position of the resonances in 231,232,233Th were determined by particle-γ coincidences using deuteron induced reactions on a 232Th target. The residual nuclei show a strong integrated strength of BM1 = 9 − 11 µn2 in the Eγ = 1.0 − 3.5 MeV region. The presence of the scissors resonance modifies significantly the (n,γ cross section, which has impact on fuel-cycle simulations of fast nuclear reactors and nucleosynthesis in explosive stellar environments.

  5. A quasi-static algorithm that includes effects of characteristic time scales for simulating failures in brittle materials

    KAUST Repository

    Liu, Jinxing; El Sayed, Tamer S.

    2013-01-01

    When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice

  6. Dynamical and quasi-static multi-physical models of a diesel internal combustion engine using Energetic Macroscopic Representation

    International Nuclear Information System (INIS)

    Horrein, L.; Bouscayrol, A.; Cheng, Y.; El Fassi, M.

    2015-01-01

    Highlights: • Internal Combustion Engine (ICE) dynamical and static models. • Organization of ICE model using Energetic Macroscopic Representation. • Description of the distribution of the chemical, thermal and mechanical power. • Implementation of the ICE model in a global vehicle model. - Abstract: In the simulation of new vehicles, the Internal Combustion Engine (ICE) is generally modeled by a static map. This model yields the mechanical power and the fuel consumption. But some studies require the heat energy from the ICE to be considered (i.e. waste heat recovery, thermal regulation of the cabin). A dynamical multi-physical model of a diesel engine is developed to consider its heat energy. This model is organized using Energetic Macroscopic Representation (EMR) in order to be interconnected to other various models of vehicle subsystems. An experimental validation is provided. Moreover a multi-physical quasi-static model is also derived. According to different modeling aims, a comparison of the dynamical and the quasi-static model is discussed in the case of the simulation of a thermal vehicle. These multi-physical models with different simulation time consumption provide good basis for studying the effects of the thermal energy on the vehicle behaviors, including the possibilities of waste heat recovery

  7. Experimental analysis of quasi-static and dynamic fracture initiation toughness of gy4 armor steel material

    Science.gov (United States)

    Ren, Peng; Guo, Zitao

    Quasi-static and dynamic fracture initiation toughness of gy4 armour steel material are investigated using three point bend specimen. The modified split Hopkinson pressure bar (SHPB) apparatus with digital image correlation (DIC) system is applied to dynamic loading experiments. Full-field deformation measurements are obtained by using DIC to elucidate on the strain fields associated with the mechanical response. A series of experiments are conducted at different strain rate ranging from 10-3 s-1 to 103 s-1, and the loading rate on the fracture initiation toughness is investigated. Specially, the scanning electron microscope imaging technique is used to investigate the fracture failure micromechanism of fracture surfaces. The gy4 armour steel material fracture toughness is found to be sensitive to strain rate and higher for dynamic loading as compared to quasi-static loading. This work is supported by National Nature Science Foundation under Grant 51509115.

  8. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1994-01-01

    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  9. Effects of Geometry Design Parameters on the Static Strength and Dynamics for Spiral Bevel Gear

    Directory of Open Access Journals (Sweden)

    Zhiheng Feng

    2017-01-01

    Full Text Available Considering the geometry design parameters, a quasi-static mesh model of spiral bevel gears was established and the mesh characteristics were computed. Considering the time-varying effects of mesh points, mesh force, line-of-action vector, mesh stiffness, transmission error, friction force direction, and friction coefficient, a nonlinear lumped parameter dynamic model was developed for the spiral bevel gear pair. Based on the mesh model and the nonlinear dynamic model, the effects of main geometry parameters on the contact and bending strength were analyzed. Also, the effects on the dynamic mesh force and dynamic transmission error were investigated. Results show that higher value for the pressure angle, root fillet radius, and the ratio of tooth thickness tend to improve the contact and bending strength and to reduce the risk of tooth fracture. Improved gears have a better vibration performance in the targeted frequency range. Finally, bench tests for both types of spiral bevel gears were performed. Results show that the main failure mode is the tooth fracture and the life was increased a lot for the spiral bevel gears with improved geometry parameters compared to the original design.

  10. A quasi-static treatment of multiple phase jumps

    International Nuclear Information System (INIS)

    Englman, R; Vertesi, T

    2005-01-01

    A quasi-static, WKB-type treatment accounts well for the surprising phase jumps that are odd multiples of π (1 + 2n)π, found as a molecular system journeys adiabatically in a configuration coordinate plane that contains several points of degeneracies. We show that the number n in the phase jump is an integer close to |n'| that appears in the expression for the complex wavefunction amplitude valid (approximately) for times close to when the phase jump occurs: -δT + 2πθ+πn'sinδT -i[1-πn'cosδT](δT is a shifted and rescaled trajectory-time parameter and θ is a numerical fraction (<1) which depends on the adiabaticity of the motion.) The central quantity n' is local, i.e., depends on the values of the parameters in the Hamiltonian only at the beginning of the trajectory and at the instant of the phase jump

  11. Influence of acute static stretching on the behavior of maximum muscle strength

    Directory of Open Access Journals (Sweden)

    Carmen Lúcia Borges Bastos

    2014-06-01

    Full Text Available The aim of this study was to compare the influence of acute static stretching on maximal muscle strength (1RM. The non-probabilistic sample consisted of 30 subjects split into two groups: static stretching (SS= 15 and without stretching group (WS= 15. Muscle strength evaluation (1RM was conducted with a Dynamometer model 32527pp400 Pound push / pull devices coupled in knee extension (KE and bench press (BP. The Wilcoxon test for intragroup comparisons and the Kruskal-Wallis test for comparisons between groups (p< 0.05 were selected. There were no significant differences (p> 0.05 between the SS and WS in exercise KE and BP. Therefore, it can be concluded that there was no reduction in the performance of 1RM performing the exercises KE and BP when preceded by static stretching.

  12. Quasi-static and dynamic compressive deformation of a bulk nanolayered Ag–Cu eutectic alloy: Macroscopic response and dominant deformation mechanisms

    International Nuclear Information System (INIS)

    Kingstedt, O.T.; Eftink, B.; Lambros, J.; Robertson, I.M.

    2014-01-01

    Nanostructured multilayered material systems offer an attractive method of increasing material strength. This work examines the response of a bulk eutectic silver–copper material (Ag 60 Cu 40 , subscripts indicating atomic percent) which has a hierarchical structure of alternating Ag and Cu layers with thicknesses down to 50 nm. The hierarchical structure consists of two primary arrangements of layers, eutectic colonies of parallel layers, most commonly found at the material interior, and “grains” consisting of alternating Ag and Cu layers which emanate from a central region in a radial pattern, most commonly found at the material exterior surface. We show that the hierarchical structure causes a significant increase in the measured strength response when comparing the Ag 60 Cu 40 response to that of the constituent materials in their bulk nanograined or micrograined form. The deformation mechanisms of this material are studied under compressive loading over the quasi-static and dynamic regime (10 −3 –10 3 s −1 ) with strain between 5% and 50%

  13. Pressure prediction model based on artificial neural network optimized by genetic algorithm and its application in quasi-static calibration of piezoelectric high-pressure sensor.

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Jiang, Jian; Shang, Fei; Chen, Jing

    2016-12-01

    This paper applies back propagation neural network (BPNN) optimized by genetic algorithm (GA) for the prediction of pressure generated by a drop-weight device and the quasi-static calibration of piezoelectric high-pressure sensors for the measurement of propellant powder gas pressure. The method can effectively overcome the slow convergence and local minimum problems of BPNN. Based on test data of quasi-static comparison calibration method, a mathematical model between each parameter of drop-weight device and peak pressure and pulse width was established, through which the practical quasi-static calibration without continuously using expensive reference sensors could be realized. Compared with multiple linear regression method, the GA-BPNN model has higher prediction accuracy and stability. The percentages of prediction error of peak pressure and pulse width are less than 0.7% and 0.3%, respectively.

  14. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load.

    Science.gov (United States)

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman

    2018-05-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.

  15. Quasi-static analysis of flexible pavements based on predicted frequencies using Fast Fourier Transform and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ali Reza Ghanizadeh

    2018-01-01

    Full Text Available New trend in design of flexible pavements is mechanistic-empirical approach. The first step for applying this method is analyzing the pavement structure for several times and computation of critical stresses and strains, which needs a fast analysis method with good accuracy. This paper aims to introduce a new rapid pavement analysis approach, which can consider the history of loading and rate effect. To this end, 1200 flexible pavement sections were analyzed, and equivalent frequencies (EF were calculated using Fast Fourier Transform (FFT method at various depths of asphalt layer. A nonlinear regression equation has been presented for determining EF at different depths of asphalt layer. For more accurate predicting of EF at low frequencies, a feed-forward Artificial Neural Network (ANN was employed, which allows accurate prediction of EF. The frequencies obtained by the proposed regression equation and ANN were compared with frequencies observed in Virginia Smart Road project, and it was found that there is a good agreement between observed and predicted frequencies. Comparison of quasi-static analysis of flexible pavements by frequencies obtained using FFT method and full dynamic analysis by 3D-Move program approves that the critical responses of pavement computed by proposed quasi-static analysis approach are comparable to critical responses computed using full dynamic analysis. Keywords: Equivalent frequency, Fast Fourier Transform (FFT, Pavement quasi-static analysis, Dynamic modulus, Artificial Neural Network (ANN

  16. Modeling of Hydraulic Fracture Propagation at the kISMET Site Using a Fully Coupled 3D Network-Flow and Quasi- Static Discrete Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Herb F. [Univ. of Wisconsin, Madison, WI (United States); Haimson, Bezalel C. [Univ. of Wisconsin, Madison, WI (United States); Doe, Thomas W. [Golder Associates Inc., Redmond, VA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Patrick F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-01

    Aimed at supporting the design of hydraulic fracturing experiments at the kISMET site, ~1500 m below ground in a deep mine, we performed pre-experimental hydraulic fracturing simulations in order to estimate the breakdown pressure, propagation pressure, fracture geometry, and the magnitude of induced seismicity using a newly developed fully coupled three-dimensional (3D) network flow and quasi-static discrete element model (DEM). The quasi-static DEM model, which is constructed by Delaunay tessellation of the rock volume, considers rock fabric heterogeneities by using the “disordered” DEM mesh and adding random perturbations to the stiffness and tensile/shear strengths of individual DEM elements and the elastic beams between them. A conjugate 3D flow network based on the DEM lattice is constructed to calculate the fluid flow in both the fracture and porous matrix. One distinctive advantage of the model is that fracturing is naturally described by the breakage of elastic beams between DEM elements. It is also extremely convenient to introduce mechanical anisotropy into the model by simply assigning orientation-dependent tensile/shear strengths to the elastic beams. In this paper, the 3D hydraulic fracturing model was verified against the analytic solution for a penny-shaped crack model. We applied the model to simulate fracture propagation from a vertical open borehole based on initial estimates of rock mechanical properties and in-situ stress conditions. The breakdown pressure and propagation pressure are directly obtained from the simulation. In addition, the released elastic strain energies of individual fracturing events were calculated and used as a conservative estimate for the magnitudes of the potential induced seismic activities associated with fracturing. The comparisons between model predictions and experimental results are still ongoing.

  17. The Quasi-Static Electromagnetic Approximation for Weakly Conducting Media

    CERN Document Server

    Heubrandtner, T

    2002-01-01

    In a conducting dielectric charge and electric field decay with a time constant tau_R = \\varepsilon/\\sigma. In a weakly conducting medium, as e.g. glass or melamine-phenolic laminate in use in RPC's, this time is about 10^{-3} s; so it is long as compared to the time the charge cloud needs to move through the gap and to the time the signal needs to propagate through a dielectric to the electrode. A quasi-static theory to deal with transient phenomena in weakly conducting media has been developed in Haus and Melcher (1989), Fano, Chu and Adler (1963); it simplifies the analysis considerably since it requires only the solution of a scalar diffusion-type equations in place of the time-dependent Maxwell equations. This little known theory is applied to treat the generation of signals in simple models for chambers with such materials.

  18. Small-Scale Quasi-Static Tests on Non-Slender Piles Situated in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo

    In the period from February 2009 till March 2011 a series of small-scale tests on pile foundations has been conducted at Aalborg University. In all the tests the piles have been exposed to quasi-static loading and all the tests have been conducted in a pressure tank. The objective of the tests has...... been to investigate the effect of pile diameter and length to diameter ratio on the soil response in sand for non-slender piles. Further, the tests have been conducted to calibrate a three-dimensional numerical model in the commercial program FLAC3D....

  19. Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths.

    Science.gov (United States)

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Nees, Frauke; Rauschenberg, Jaane; Gröbner, Jens; Gilles, Maria; Paslakis, Georgios; Deuschle, Michael; Semmler, Wolfhard; Flor, Herta

    2013-01-01

    To establish the extent to which representative cognitive functions in subjects undergoing magnetic resonance (MR) imaging are acutely impaired by static magnetic fields of varying field strengths. This study was approved by the local ethics committee, and informed consent was obtained from all subjects. In this single-blind case-crossover study, 41 healthy subjects underwent an extensive neuropsychologic examination while in MR units of differing field strengths (1.5, 3.0, and 7.0 T), including a mock imager with no magnetic field as a control condition. Subjects were blinded to field strength. Tests were performed while subjects were lying still in the MR unit and while the examination table was moved. The tests covered a representative set of cognitive functions, such as memory, eye-hand coordination, attention, reaction time, and visual discrimination. Subjective sensory perceptions were also assessed. Effects were analyzed with a repeated-measures analysis of variance; the within-subject factors were field strength (0, 1.5, 3.0, and 7.0 T) and state (static, dynamic). Static magnetic fields were not found to have a significant effect on cognitive function at any field strength. However, sensory perceptions did vary according to field strength. Dizziness, nystagmus, phosphenes, and head ringing were related to the strength of the static magnetic field. Static magnetic fields as high as 7.0 T did not have a significant effect on cognition. RSNA, 2012

  20. Quasi-static Cycle Performance Analysis of Micro Modular Reactor for Heat Sink Temperature Variation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Kuk; Lee, Jekyoung; Ahn, Yoonhan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    A Supercritical CO{sub 2} (S-CO{sub 2}) cycle has potential for high thermal efficiency in the moderate turbine inlet temperature (450 - 750 .deg. C) and achieving compact system size because of small specific volume and simple cycle layouts. Owing to small specific volume of S-CO{sub 2} and the development of heat exchanger technology, it can accomplish complete modularization of the system. The previous works focused on the cycle performance analysis for the design point only. However, the heat sink temperature can be changed depending on the ambient atmosphere condition, i.e. weather, seasonal change. This can influence the compressor inlet temperature, which alters the cycle operating condition overall. To reflect the heat sink temperature variation, a quasi-static analysis code for a simple recuperated S-CO{sub 2} Brayton cycle has been developed by the KAIST research team. Thus, cycle performance analysis is carried out with a compressor inlet temperature variation in this research. In the case of dry air-cooling system, the ambient temperature of the local surrounding can affect the compressor inlet temperature. As the compressor inlet temperature increases, thermal efficiency and generated electricity decrease. As further works, the experiment of S-CO{sub 2} integral test loop will be performed to validate in-house codes, such as KAIST{sub T}MD and the quasi-static code.

  1. Static and quasi-static analysis of lobed-pumpkin balloon

    Science.gov (United States)

    Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki

    The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.

  2. Failure Behaviour of Aluminium/CFRP Laminates with Varying Fibre Orientation in Quasi-static Indentation Test

    Science.gov (United States)

    Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Salleh, Salwani Mohd; Merzuki, M. N. M.

    2018-03-01

    The response of the aluminium/carbon laminate was examined by an experimental work. The investigation on fibre metal laminate behaviour was done through an indentation test in a quasi-static loading. The hybrid laminate was fabricated by a compression moulding technique and used two types of carbon fibre orientations; plain weave and unidirectional. The plain weave orientation is dry fibre, and unidirectional orientation is prepreg type fibre. The plain weave carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy while the unidirectional carbon fibre was pressed by using a hot press machine and cured under a specific temperature and pressure. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variation of the crosshead speeds in the quasi-static loading. Based on the experimental data of the test, the result of 1 mm/min in the plain weave CFRP has lower loading than unidirectional fibre which the value of both was 4.11 kN and 4.69 kN, respectively.

  3. EXPERIMENTAL STUDIES ON THE QUASI-STATIC AXIAL CRUSHING BEHAVIOR OF FOAM-FILLED STEEL EXTRUSION TUBES

    OpenAIRE

    AL EMRAN ISMAIL

    2010-01-01

    The concerns of automotive safety have been given special attention in order to reduce human fatalities or injuries. One of the techniques to reduce collision impact or compression energy is by filling polymeric foam into metallic tubes. In this work, polyurethane foam was introduced into the steel extrusion tubes and quasi-statically compressed at constant cross-head displacement. Different tube thicknesses and foam densities were used and these parameters were related to the crashwor...

  4. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    Science.gov (United States)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  5. Quasi-static electric field in a cylindrical volume conductor induced by external coils.

    Science.gov (United States)

    Esselle, K P; Stuchly, M A

    1994-02-01

    An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.

  6. Residual stress stability and alternating bending strength of AISI 4140 after shot peening and successive annealing

    Energy Technology Data Exchange (ETDEWEB)

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde I, Univ. of Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and finest carbides. It will be shown that by short-time annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effect of static strain aging, while minimizing the detrimental effect of thermal residual stress relaxation, which was measured by X-ray diffraction method. Static strain aging effects were also found to be responsible for an increase of the quasi static and cyclic surface yield strengths. (orig.)

  7. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  8. A calculation and uncertainty evaluation method for the effective area of a piston rod used in quasi-static pressure calibration

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2018-04-01

    This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.

  9. Poromechanical approach describing the moisture influence on the non-linear quasi-static and dynamic behaviour of porous building materials

    NARCIS (Netherlands)

    Carmeliet, J.; Abeele, van den K.E.A.

    2004-01-01

    The non-linear quasi-static and dynamic elastic behaviour of Berea sandstone has been experimentally analysed showing hysteresis and a strong influence of moisture especially in the lower saturation range. It is shown that non-linear hysteretic response originates within the "bond system" of the

  10. Modeling of magnetorheological fluid in quasi-static squeeze flow mode

    Science.gov (United States)

    Horak, Wojciech

    2018-06-01

    This work presents a new nonlinear model to describe MR fluid behavior in the squeeze flow mode. The basis for deriving the model were the principles of continuum mechanics and the theory of tensor transformation. The analyzed case concerned quasi-static squeeze with a constant area, between two parallel plates with non-slip boundary conditions. The developed model takes into account the rheological properties or MR fluids as a viscoplastic material for which yield stress increases due to compression. The model also takes into account the formation of normal force in the MR fluid as a result of the magnetic field impact. Moreover, a new parameter has been introduced which characterizes the behavior of MR fluid subjected to compression. The proposed model has been experimentally validated and the obtained results suggest that the assumptions made in the model development are reasonable, as good model compatibility with the experiments was obtained.

  11. RELATION BETWEEN THE PHYSICAL WORKING CAPACITY (PWC170 AND STATIC RELATIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    Abdulla Elezi

    2012-09-01

    Full Text Available Determining the relationship within the segments, and establish the correlation between the functional and motor areas may be important for programming load both in education and in sports and recreation. For this reason we set goals and work this year. The main objective of this research is to determine association and motor characteristics impact on functional ability (physical work capacity. The sample is defined as a sample of 263 respondents drawn from the population of secondary schools: Gymnasium Zenel Hajdini; Marin Barleti and Mehmet Isai in city of Gjilan. Nine tests were used to estimate motoric capabilities and a test of functional capacity of aerobic-type (physical work capacity. To determine the relation between the predictor (motor variables and criterion variables (physical working capacity - PWC170 it is prepared the regression analysis of the manifest space. Analyses were made to the program SPSS 12.0 for Windows. The connection of the entire system of variables static relative strength with a score of Physics working capacity (PWC170 on a bicycle ergo meter as aerobic type variable explains the coefficient of multiple correlations, which is RO 0.394. Regression analysis indicates that the better results on a bicycle ergo meter will have respondents who score better in tests of static relative strength of the leg (at the test isometric muscle contraction quadriceps thighs and static tests of the relative strength of arm and shoulder area (at the test of isometric contraction triceps muscle circumference.

  12. Fracture strength of aluminium alloys under rapid loading conditions

    International Nuclear Information System (INIS)

    Joshi, K.D.; Rav, Amit S.; Sur, Amit; Kaushik, T.C.; Gupta, Satish C.

    2016-04-01

    Spall fracture strength and dynamic yield strength of aluminium alloys have been measured at high strain rates generated in plate impact experiments carried out at different impact velocities ranging from 174 m/s to 560 m/s using single stage gas gun facility. In each experiment, the free surface velocity history of the sample plate of aluminium alloy has been derived from time resolved Doppler shift measured employing indigenously developed velocity interferometer system for any reflector (VISAR). The free surface velocity history so determined has been used to evaluate the spall fracture strength and dynamic yield strength of the target material. The two kinds of alloys of aluminium namely Al2014-T4 and Al2024-T4 have been investigated in these experiments. In Al2014-T4 target plates, the spall strength determined from free surface velocity history recorded for impact velocities of 179 m/s, 307 m/s, 398 m/s and 495m/s is 0.90 GPa, 0.96 GPa, 1.0 GPa and 1.1 GPa, respectively. The average strain rates just ahead of spall pulse have been found to vary from ∼ 1.1×10 4 /s to 2.4×10 4 /s. The dynamic yield strength derived from the measured Hugoniot elastic limit ranges from 0.36 GPa to 0.40 GPa. The spall strength for Al2024-T4 samples has been determined to be 1.11 GPa, 1.18 GPa and 1.42 GPa, at impact velocities of 174 m/s, 377 m/s and 560 m/s, respectively. The corresponding average strain rates range from 1.9×104/s to 2.5×104/s. The dynamic yield strength of Al2024-T4 at these impact velocities has been found to vary from 0.37 GPa to 0.43 GPa. The measured spall strengths in all these experiments are higher than the quasi-static value of 0.511 GPa for Al2014-T4 and 0.470 GPa for Al2024. Similarly, the dynamic yield strengths are also larger than the quasi-static value of 0.355 GPa for Al2014-T4 and 0.360 GPa for Al2024-T4. These experimental studies suggest that at high strain rates, both the alloys of aluminium offer higher resistance against the tensile

  13. Research on Monte Carlo improved quasi-static method for reactor space-time dynamics

    International Nuclear Information System (INIS)

    Xu Qi; Wang Kan; Li Shirui; Yu Ganglin

    2013-01-01

    With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)

  14. Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire

    Science.gov (United States)

    Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.

    1999-01-01

    An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.

  15. Self-consistent quasi-static radial transport during the substorm growth phase

    Science.gov (United States)

    Le Contel, O.; Pellat, R.; Roux, A.

    2000-06-01

    We develop a self-consistent description of the slowly changing magnetic configuration of the near-Earth plasma sheet (NEPS) during substorm growth phase. This new approach is valid for quasi-static fluctuations ωcurrent. The quasi-neutrality condition (QNC) is solved via an expansion in the small parameter Te/Ti (Te/Ti is the ratio between the electronic and ionic temperatures). To the lowest order in Te/Ti, we find that the enforcement of QNC implies the presence of a global electrostatic potential which is constant for a given magnetic field line but varies across the magnetic field. The corresponding electric field shields the effect of the inductive component of the electric field, thereby producing a partial reduction of the motion that would correspond to the inductive electric field. Furthermore, we show that enforcing the QNC implies a field-aligned potential drop which is computed to the next order in Te/Ti in a companion paper [Le Contel et al., this issue]. In the present paper, we show that the direction of the azimuthal electric field varies along the field line, thus the equatorial electric field cannot be mapped onto the ionosphere. Furthermore during the growth phase, the (total) azimuthal electric field is directed eastward, close to the equator, and westward, off-equator. Thus large equatorial pitch angle particles drift tailward, whereas small pitch angle particles drift earthward.

  16. Quasi-static elastography comparison of hyaline cartilage structures

    Science.gov (United States)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  17. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.

    Science.gov (United States)

    Dobrev, Ivo; Sim, Jae Hoon; Aqtashi, Baktash; Huber, Alexander M; Linder, Thomas; Röösli, Christof

    2018-01-01

    Intra-operative quantification of the ossicle mobility could provide valuable feedback for the current status of the patient's conductive hearing. However, current methods for evaluation of middle ear mobility are mostly limited to the surgeon's subjective impression through manual palpation of the ossicles. This study investigates how middle ear transfer function is affected by stapes quasi-static stiffness of the ossicular chain. The stiffness of the middle ear is induced by a) using a novel fiber-optic 3-axis force sensor to quantify the quasi-static stiffness of the middle ear, and b) by artificial reduction of stapes mobility due to drying of the middle ear. Middle ear transfer function, defined as the ratio of the stapes footplate velocity versus the ear canal sound pressure, was measured with a single point LDV in two conditions. First, a controlled palpation force was applied at the stapes head in two in-plane (superior-inferior or posterior-anterior) directions, and at the incus lenticular process near the incudostapedial joint in the piston (lateral-medial) direction with a novel 3-axis PalpEar force sensor (Sensoptic, Losone, Switzerland), while the corresponding quasi-static displacement of the contact point was measured via a 3-axis micrometer stage. The palpation force was applied sequentially, step-wise in the range of 0.1-20 gF (1-200 mN). Second, measurements were repeated with various stages of stapes fixation, simulated by pre-load on the stapes head or drying of the temporal bone, and with severe ossicle immobilization, simulated by gluing of the stapes footplate. Simulated stapes fixation (forced drying of 5-15 min) severely decreases (20-30 dB) the low frequency (4 kHz) response. Stapes immobilization (gluing of the footplate) severely reduces (20-40 dB) the low and mid frequency response (force (Force-displacement measurements around the incudostapedial joint showed quasi-static stiffness in the range of 200-500 N/m for normal middle

  18. Challenging the in-vivo assessment of biomechanical properties of the uterine cervix: A critical analysis of ultrasound based quasi-static procedures.

    Science.gov (United States)

    Maurer, M M; Badir, S; Pensalfini, M; Bajka, M; Abitabile, P; Zimmermann, R; Mazza, E

    2015-06-25

    Measuring the stiffness of the uterine cervix might be useful in the prediction of preterm delivery, a still unsolved health issue of global dimensions. Recently, a number of clinical studies have addressed this topic, proposing quantitative methods for the assessment of the mechanical properties of the cervix. Quasi-static elastography, maximum compressibility using ultrasound and aspiration tests have been applied for this purpose. The results obtained with the different methods seem to provide contradictory information about the physiologic development of cervical stiffness during pregnancy. Simulations and experiments were performed in order to rationalize the findings obtained with ultrasound based, quasi-static procedures. The experimental and computational results clearly illustrate that standardization of quasi-static elastography leads to repeatable strain values, but for different loading forces. Since force cannot be controlled, this current approach does not allow the distinction between a globally soft and stiff cervix. It is further shown that introducing a reference elastomer into the elastography measurement might overcome the problem of force standardization, but a careful mechanical analysis is required to obtain reliable stiffness values for cervical tissue. In contrast, the maximum compressibility procedure leads to a repeatable, semi-quantitative assessment of cervical consistency, due to the nonlinear nature of the mechanical behavior of cervical tissue. The evolution of cervical stiffness in pregnancy obtained with this procedure is in line with data from aspiration tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Viscoelastic modeling of apples under quasi-static loading using finite element method to investigate the causes of bruising

    Directory of Open Access Journals (Sweden)

    B Ghasemi

    2015-09-01

    Full Text Available Introduction: Apple is one of the most important horticultural crops of Iran. Its production in the country stands in the second place after citrus. Iran holds the fourth place in the world production of apples and gains a major share in the export of this product. Therefore, it is necessary to enhance the quantity and quality of the fruit in order to maintain and promote its position among the countries importing this product from Iran. Most of the mechanical damages to fruits and vegetables occur due to contact stresses under static, quasi-static and impact loading. To obtain stress distribution inside the fruit we can use finite element analysis. The aim of this study was to simulate the behavior of the apple as a viscoelastic body subjected to quasi-static loading and also to determine the failure criteria (maximum normal stress or shear stress of apple flesh to estimate its susceptibility to mechanical bruising. Materials and methods: In this study, Golab kohanz apple was used. Two samples were removed from each apple using a core sampler, one was used for uniaxial compression and the other was used for confined compression test using Instron universal tension and compression machine. Spherical indenter and parallel plate tests were performed in order to study apple susceptibility to bruising at four deformation levels (1, 2, 3 and 4 mm and the bruise volume was then measured after 24 hours. Stress-strain curves were plotted and then, the elastic and viscoelastic properties were obtained. Then, by using the data obtained from apple properties, the apple was modeled in Abaqus software as spherical and cylindrical shapes with viscoelastic behavior subjected to quasi-static loadings. Results and Discussion: The normal stress distribution of the modeled apple in the shape of a cylindrical sample is shown in Fig. 4. The value of maximum normal stress was obtained (0.51 MPa at the contact point of the loading plate with the sample. Experimental

  20. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    Science.gov (United States)

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those

  1. The Effects of Triggering Mechanisms on the Energy Absorption Capability of Circular Jute/Epoxy Composite Tubes under Quasi-Static Axial Loading

    Science.gov (United States)

    Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri

    2018-01-01

    The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.

  2. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  3. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  4. The Assessing of the Failure Behavior of Glass/Polyester Composites Subject to Quasi Static Stresses

    Science.gov (United States)

    Stanciu, M. D.; Savin, A.; Teodorescu-Drăghicescu, H.

    2017-06-01

    Using glass fabric reinforced composites for structure of wind turbine blades requires high mechanical strengths especially to cyclic stresses. Studies have shown that approximately 50% of composite material failure occurs because of fatigue. Composites behavior to cyclic stresses involves three stages regarding to stiffness variation: the first stage is characterized by the accelerated decline of stiffness with micro-cracks, the second stage - a slight decrease of stiffness characterized by the occurrence of delamination and third stage characterized by higher decreases of resistance and occurrence of fracture thereof. The aim of the paper is to analyzed the behavior of composites reinforced with glass fibers fabric type RT500 and polyester resin subjected to tensile cyclic loading with pulsating quasi-static regime with asymmetry coefficient R = 0. The samples were tested with the universal tensile machine LS100 Lloyd Instruments Plus, with a load capacity of 100 kN. The load was applied with different speeds of 1 mm/min, 10 mm/min and 20 mm/min. After tests, it was observed that the greatest permanent strains were recorded in the first load cycles when the total energy storage by material was lost due to internal friction. With increasing number of cycles, the glass/polyester composites ability to store energy of deformation decreases, the flow phenomenon characterized by large displacements to smaller loading forces appearing.

  5. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy.

    Science.gov (United States)

    Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y

    2011-06-15

    The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  7. Measures of static postural control moderate the association of strength and power with functional dynamic balance.

    Science.gov (United States)

    Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina

    2014-12-01

    Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p balance tasks. Practical implications for assessment and training are discussed.

  8. Multi objective optimization of foam-filled circular tubes for quasi-static and dynamic responses

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available AbstractFuel consumption and safety are currently key aspects in automobile design. The foam-filled thin-walled aluminium tube represents a potentially effective material for use in the automotive industry, due to its energy absorption capability and light weight. Multi-objective crashworthiness design optimization for foam-filled double cylindrical tubes is presented in this paper. The double structures are impacted by a rigid wall simulating quasi-static and dynamic loadings. The optimal parameters under consideration are the minimum peak crushing force and maximum specific energy absorption, using the non-dominated sorting genetic algorithm-II (NSGA-II technique. Radial basis functions (RBF and D-Optimal are adopted to determine the more complex crashworthiness functional objectives. The comparison is performed by finite element analysis of the impact crashworthiness characteristics in tubes under static and dynamic loads. Finally, the optimum crashworthiness performance of empty and foam-filled double tubes is investigated and compared to the traditional single foam-filled tube. The results indicate that the foam-filled double aluminium circular tube can be recommended for crashworthy structures.

  9. The dynamic and quasi-static mechanical response of three aluminum armor alloys: 5059, 5083 and 7039

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bergquist, Sara J., E-mail: sara.perezbergquist@gmail.com [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States); Gray, G.T.; Cerreta, Ellen K.; Trujillo, Carl P.; Perez-Bergquist, Alex [Materials Science and Technology Division, Los Alamos National Laboratory, NM 87545 (United States)

    2011-11-15

    Highlights: {yields} Aluminum alloys for use in armor applications. {yields} Mechanical response in dynamic and quasi-static regimes with temperature dependence. {yields} Shear localization with evidence of early stages of dynamic recrystallization. - Abstract: The mechanical response and microstructural evolution of aluminum alloys 5083, 5059 and 7039 was examined in compression and shear in both the quasi-static (0.001 s{sup -1}) and dynamic ({approx}2000 s{sup -1}) strain rate regimes. Electron Back Scattered Diffraction was utilized for detailed post-mortem analysis of the specimens following loading. The mechanical responses in shear were found to be strain-rate sensitive. At the slowest strain rates, all of the alloys had relatively large volumes of highly deformed material with 5083 and 5059 having the largest shear affected volumes. The dynamic strain rate test samples all formed highly compact shear localized volumes across the sheared zone with 7039 consistently displaying the narrowest shear regions. The morphology of these shear bands, along with the limited hardening during deformation, indicate a mechanism change at the higher strain rates. Higher resolution orientation image mapping has shown that between the three alloys there are varying degrees of crystallographic order within the shear bands. Transmission electron microscopy revealed various stages of dynamic recrystallization were present suggesting that while low strain rate deformation is controlled by dislocation multiplication and glide, high strain and strain-rate deformation is influenced in part due to mechanical recrystallization.

  10. Effects of contract-relax vs static stretching on stretch-induced strength loss and length-tension relationship

    DEFF Research Database (Denmark)

    Balle, S S; Magnusson, S P; McHugh, M P

    2015-01-01

    The purpose of this study was to determine the acute effects of contract-relax stretching (CRS) vs static stretching (SS) on strength loss and the length-tension relationship. We hypothesized that there would be a greater muscle length-specific effect of CRS vs SS. Isometric hamstring strength wa...

  11. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    Science.gov (United States)

    2016-08-01

    Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast

  12. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

    Science.gov (United States)

    Yu, Ying-Song; Xia, Xue-Lian; Zheng, Xu; Huang, Xianfu; Zhou, Jin-Zhi

    2017-09-01

    In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1 μm/s and 20-200 nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.

  13. Microstructural Changes of the Nanostructured Bainitic Steel Induced by Quasi-Static and Dynamic Deformation

    Directory of Open Access Journals (Sweden)

    Marcisz J.

    2017-12-01

    Full Text Available Changes in the microstructure of nanostructured bainitic steel induced by quasi-static and dynamic deformation have been shown in the article. The method of deformation and strain rate have important impact on the microstructure changes especially due to strain localization. Microstructure of nanostructured steel Fe-0.6%C-1.9Mn-1.8Si-1.3Cr-0.7Mo consists of nanometer size carbide-free bainite laths and 20-30% volume fraction of retained austenite. Quasi-static and dynamic (strain rate up to 2×102 s−1 compression tests were realized using Gleeble simulator. Dynamic deformation at the strain rate up to 9×103 s−1 was realized by the Split Hopkinson Pressure Bar method (SHPB. Moreover high energy firing tests of plates made of the nanostructured bainitic steel were carried out to produce dynamically deformed material for investigation. Adiabatic shear bands were found as a result of localization of deformation in dynamic compression tests and in firing tests. Microstructure of the bands was examined and hardness changes in the vicinity of the bands were determined. The TEM examination of the ASBs showed the change from the internal shear band structure to the matrix structure to be gradual. This study clearly resolved that the interior (core of the band has an extremely fine grained structure with grain diameter ranging from 100 nm to 200 nm. Martensitic twins were found within the grains. No austenite and carbide reflections were detected in the diffraction patterns taken from the core of the band. Hardness of the core of the ASBs for examined variants of isothermal heat treatment was higher about 300 HV referring to steel matrix hardness.

  14. Antihysteresis of perceived longitudinal body axis during continuous quasi-static whole-body rotation in the earth-vertical roll plane.

    Science.gov (United States)

    Tatalias, M; Bockisch, C J; Bertolini, G; Straumann, D; Palla, A

    2011-03-01

    Estimation of subjective whole-body tilt in stationary roll positions after rapid rotations shows hysteresis. We asked whether this phenomenon is also present during continuous quasi-static whole-body rotation and whether gravitational cues are a major contributing factor. Using a motorized turntable, 8 healthy subjects were rotated continuously about the earth-horizontal naso-occipital axis (earth-vertical roll plane) and the earth-vertical naso-occipital axis (earth-horizontal roll plane). In both planes, three full constant velocity rotations (2°/s) were completed in clockwise and counterclockwise directions (acceleration = 0.05°/s(2), velocity plateau reached after 40 s). Subjects adjusted a visual line along the perceived longitudinal body axis (pLBA) every 2 s. pLBA deviation from the longitudinal body axis was plotted as a function of whole-body roll position, and a sine function was fitted. At identical whole-body earth-vertical roll plane positions, pLBA differed depending on whether the position was reached by a rotation from upright or by passing through upside down. After the first 360° rotation, pLBA at upright whole-body position deviated significantly in the direction of rotation relative to pLBA prior to rotation initiation. This deviation remained unchanged after subsequent full rotations. In contrast, earth-horizontal roll plane rotations resulted in similar pLBA before and after each rotation cycle. We conclude that the deviation of pLBA in the direction of rotation during quasi-static earth-vertical roll plane rotations reflects static antihysteresis and might be a consequence of the known static hysteresis of ocular counterroll: a visual line that is perceived that earth-vertical is expected to be antihysteretic, if ocular torsion is hysteretic.

  15. Normative static grip strength of population of Turkey, effects of various factors and a comparison with international norms.

    Science.gov (United States)

    Ekşioğlu, Mahmut

    2016-01-01

    Normative data are of importance in ergonomics and clinical settings. Applying normative data internationally is questionable. To this end, this study aimed to establish gender- and age-specific reference values for static (isometric) hand grip strength of normal population of Turkey with special regard to occupational demand, and compare them with the international norms. The secondary aims were to investigate the effects of gender, age-group, weight-group, job-group, hand and several anthropometric variables on static grip strength. A sample of 211 (128 male and 83 female) volunteers aged between 18 and 69 with various occupations participated in the study. Grip strength data were collected using a Jamar dynamometer with standard testing position, protocol and instructions. The mean and std deviation of maximum voluntary static grip strength values (in N) for dominant and non-dominant hands respectively were 455.2 ± 73.6 and 441.5 ± 72.6 for males, and 258 ± 46.1 and 246.2 ± 49.1 for females. The mean female strength was about 57% of the mean male strength value for both dominant and non-dominant hands. There was a curvilinear relationship of grip strength to age, significant differences between genders, hands, and some age-groups, and a correlation to height, body-mass, BMI and hand dimensions depending on the gender. The comparisons with the norms of other world populations indicate that there are cross-national grip strength variations among some nations but not all. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Levitation force of melt-textured YBCO superconductors under non-quasi-static situation

    Science.gov (United States)

    Zhao, Z. M.; Xu, J. M.; Yuan, X. Y.; Zhang, C. P.

    2018-06-01

    The superconducting levitation force of a simple superconductor-magnet system under non-quasi-static situation is investigated experimentally. Two yttrium barium copper oxide (YBCO) samples with different performances are chosen from two small batches of samples prepared by the top-seeded melt-textured growth process. The residual carbon content of the precursor powders of the two batches is different due to different heat treatment processes. During the experimental process for measuring the levitation force, the value of the relative speed between the YBCO sample and the permanent magnet is higher than that in conventional studies. The variation characteristics of the superconducting levitation force are analyzed and a crossing phenomenon in the force-displacement hysteresis curves is observed. The results indicate that the superconducting levitation force is different due to the different residual carbon contents. As residual carbon contents reduce, the crossing phenomenon is more obvious accordingly.

  17. Shock characterization of an ultra-high strength concrete

    International Nuclear Information System (INIS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-01-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete. (authors)

  18. Calculation of reinforced-concrete frame strength under a simultaneous static cross section load and a column lateral impact

    International Nuclear Information System (INIS)

    Belov, Nikolay; Kopanitsa, Dmitry; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom; Yugov, Nikolay; Kopanitsa, Georgy

    2016-01-01

    When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11

  19. Calculation of reinforced-concrete frame strength under a simultaneous static cross section load and a column lateral impact

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Nikolay, E-mail: n.n.belov@mail.ru; Kopanitsa, Dmitry, E-mail: kopanitsa@mail.ru; Yugov, Alexey, E-mail: yugalex@mail.ru; Kaparulin, Sergey, E-mail: kaparulin@mail.ru; Plyaskin, Andrey, E-mail: plyaskinandrei@mail.ru; Kalichkina, Anna, E-mail: aniotka@mail.ru; Ustinov, Artyom, E-mail: artemustinov@bk.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq. Tomsk, 634003 (Russian Federation); Yugov, Nikolay, E-mail: n.t.yugov@mail.ru [Tomsk State University for Radio Electronics and Control Systems, 40, Lenin Av. Tomsk, 634050 (Russian Federation); Kopanitsa, Georgy, E-mail: kopanitsa@mail.ru [National Research Tomsk Polytechnic University, 30, Lenin Av. Tomsk, 634050 (Russian Federation)

    2016-01-15

    When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.

  20. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  1. An Experimental Study of Circular Cutout Hole Effect of Kevlar/epoxy-Al2O3 Composite under Subjected to Quasi-Static Compressive and Tensile Loading

    Directory of Open Access Journals (Sweden)

    Ayad Abed Ramadhan

    2017-12-01

    Full Text Available This paper has presented an experimental study of quasi-static compressive and tensile loading of cutout hole specimens of Kevlar-29/epoxy-Al2O3 laminated composite. The experimental procedure hasbeen developed to study the performance of (50%, 55% and 60% volume fraction (vf and (0o/90o and +45o/-45o fiber orientation angle effects of these composites under quasi-static tensile and compressiveload using a servo-hydraulic testing machine. The study was concluded that the ultimate load capacity increases as volume fraction increases in tensile test. While, the maximum load bearing capacity increaseswith the decrease of volume fraction in compression test. Hence, from the results obtained it can have considered the 55% volume fraction of composite panels is a good value for tensile and compressionapplications.

  2. Composite slab behavior and strength analysis under static and dynamic loads

    Directory of Open Access Journals (Sweden)

    Florin Radu HARIGA

    2012-07-01

    Full Text Available Steel-framed buildings are typically constructed using steel-deck-reinforced concrete floor slabs. The in-plane (or diaphragm strength and stiffness of the floor system are frequently utilized in the lateral load-resisting system design. This paper presents the results of an experimental research program in which four full size composite diaphragms were vertically loaded to the limit state, under static or dynamic loads. Two test specimens were provided with longitudinal steel-deck ribs, and the other two specimens with cross steel-deck ribs. Typical composite diaphragm limit states are described, and the controlling limit state for each of the full size tests is indicated. The interaction effects between the reinforced concrete slab and the steel girder on the composite slab strength and stiffness were mainly studied.

  3. Cooling and quasi-static contraction of the primitive solar nebula after gas accretion

    International Nuclear Information System (INIS)

    Watanabe, Seichiro; Nakagawa, Yoshitsugu; Nakazawa, Kiyoshi

    1990-01-01

    The evolution of the primitive solar nebula in the quasi-static contraction phase where the nebula cools down toward the thermal steady state is studied. The solar irradiation onto the nebula keeps the surface temperature constant, so that the convective ozone retreats from the surface as the nebula cools. Thus if thermal convection is the only source of turbulence, convection will quiet down in an early time of the cooling. Afterward, the nebula evolves toward an isothermal structure in a time scale of 1000 yr. The cooling rates in the vicinity of the midplate at 1 AU are 0.003 K/hr at T(c) = 1000 K and 3 x 10 to the -5th K/hr at T(c) = 300 K for the standard model. If some turbulence exists irrespective of convection, convection may continue for sufficiently strong turbulent heating. 39 refs

  4. Measurement of quasi-static and low frequency electric fields on the Viking satellite

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.

    1987-03-01

    The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)

  5. Quasi-topological Ricci polynomial gravities

    Science.gov (United States)

    Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.

    2018-02-01

    Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.

  6. Strength training in elderly people improves static balance: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Sarabon Nejc

    2013-07-01

    Full Text Available Aim of this study was to investigate the effects of two different types of strength training programs on static balance in elderly subjects. Subjects older than 65 years of age were enrolled and assigned to control group (CG, n =19, electrical stimulation group (ES, n = 27 or leg press group (LP, n = 28. Subjects in both the training groups were exposed to training (2-3x/week for a period of 9 weeks. In the ES group the subjects received neuromuscular electrical stimulation of the anterior thigh muscles. In the LP group the subjects performed strength training on a computer-controlled leg press machine. Before and after the training period, static balance of the subject was tested using a quiet stance task. Average velocity, amplitude and frequency of the center-of-pressure (CoP were calculated from the acquired force plate signal. The data was statistically tested with analysis of (covariance and t-tests. The three groups of subjects showed statistically significant differences (p < 0.05 regarding the pre-training vs. post-training changes in CoP velocity, amplitude and frequency. The differences were more pronounced for CoP velocity and amplitude, while they were less evident in case of mean frequency. The mean improvements were higher in the LP group than in the ES group. Our results provide supportive evidence to the existence of the strength-balance relationship. Additionally, results indicate the role of recruiting central processes and activation of functional kinetic chains for the better end effect.

  7. The effect of edge interlaminar stresses on the strength of carbon/epoxy laminates of different stacking geometry

    OpenAIRE

    MOMCILO STEVANOVIC; MILAN GORDIC; DANIELA SEKULIC; ISIDOR DJORDJEVIC

    2006-01-01

    The effect of edge interlaminar stresses on strength of carbon/epoxy laminates of different stacking geometry: cross-ply, quasi-isotropic and angle-ply laminates with additional 0º and 90º ply was studied. Coupons with two widths of laminates with an inverse stacking sequence were tested in static tensile tests. The effect of edge interlaminar stresses on strength was studied, by comparing the values of the tensile strength of laminate coupons of the same width with an inverse stacking sequen...

  8. The effect of 8 weeks of whole body vibration training on static balance and explosive strength of lower limbs in physical education students

    Directory of Open Access Journals (Sweden)

    George Dallas

    2017-12-01

    Full Text Available Background: It has been shown that whole body vibration training has an effect on strength and balance in athletes of various sports.Objective: The purpose of the study was to examine the effect of 8 weeks of Whole Body Vibration (WBV training on static balance and explosive strength of the lower limbs, using two different training intensities vibration protocols.Methods: Eighty-three physical education students (age 19.39 ± 2.35 years volunteered to participate in an 8-week WBV training. They were randomly divided into two groups with 30 sec and 60 sec duration of vibration exposure per exercise, total volume of exercise was the same for both groups. The explosive strength of the lower limbs was assessed by a squat jump and static balance by Balance Error Scoring System at the baseline (pre-test and after 8 weeks of WBV training at 15 sec, 5, 10, and 15 min after the end of WBV exposure. A two-way ANOVA 2 × 5 (protocol × time with repeated measures on both factors was used. Univariate analyses with simple contrasts across time were selected as post hoc tests.Results: Results showed a time × protocol interaction effect for static balance (p < .001 but not for the squat jump (p > .05. Furthermore, a time effect was found for the static balance and squat jump test. The 60 sec protocol had a greater percentage improvement compared to the 30 sec protocol in static balance (p = .003, whereas the 30 sec protocol was superior to the 60 sec protocol in explosive strength. However, the differences between the two protocols were not significant.Conclusion: WBV training had positive effects on static balance and explosive strength in physical education students. Balance and jump performance may benefit from WBV training. Therefore, WBV may be an effective training method for the improvement of static balance and lower limb strength.

  9. Quasi-static method and finite element method for obtaining the modifications of the spontaneous emission rate and energy level shift near a plasmonic nanostructure.

    Science.gov (United States)

    Zhao, Yun-Jin; Tian, Meng; Wang, Xiao-Yun; Yang, Hong; Zhao, Heping; Huang, Yong-Gang

    2018-01-22

    We provide numerical demonstrations of the applicability and accuracy of the quasi-static method and the finite-element method in the investigation of the modifications of the spontaneous emission rate and the energy level shift of an emitter placed near a silver-air interface or a silver nano-sphere. The analytical results are presented as a reference. Our calculations show that the finite element method is an accurate and general method. For frequency away from the radiative mode, the quasi-static method can be applied more effectively for calculating the energy level shift than the spontaneous emission rate. But for frequency around, there is a blue shift for both and this shift increases with the increasing of emitter-silver distance. Applying the theory to the nanosphere dimmer, we see similar phenomenon and find extremely large modifications of the spontaneous emission rate and energy level shift. These findings are instructive in the fields of quantum light-matter interactions.

  10. Criteria for initiation of delamination in quasi-static punch-shear tests of a carbon-fiber composite material.

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Eric Brian [Sandia National Lab. (SNL-CA), Livermore, CA (United States); English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Briggs, Timothy [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-01

    V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.

  11. The Rate Sensitivity of High Strength Syntactic Foam

    National Research Council Canada - National Science Library

    Doleski, Robert; Plunkett, Stephen; Tucker, Wayne

    2003-01-01

    .... Quasi-static experiments were also conducted in compression, tension, and shear. A comparison of the quasi-static and dynamic properties showed that syntactic foam is mildly dependent on rate in compression...

  12. Documentation of programs that compute 1) static tilts for a spatially variable slip distribution, and 2) quasi-static tilts produced by an expanding dislocation loop with a spatially variable slip distribution

    Science.gov (United States)

    McHugh, Stuart

    1976-01-01

    The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.

  13. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis

    Science.gov (United States)

    Kim, Seong-Gil

    2018-01-01

    Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (pregression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375

  14. Prediction of the fatigue curve parameters of high strength steels in terms of the static and microplastic deformations of samples

    International Nuclear Information System (INIS)

    Shetulov, D.I.; Kryukov, L.T.; Myasnikov, A.M.

    2015-01-01

    The cycling and static strengths of a wide range of high-strength steels have been experimentally tested. Correlation between the three parameters-microplastic deformation, strain hardening coefficient, and the slope of the curve to the axis of load cycles-has been established [ru

  15. EXAMINATION OF EFFECTS OF DEVELOPMENT GYMNASTICS TEACHING OF PHYSICAL EDUCATION ON STATIC STRENGTH OF 3TH & 4TH GRADE PUPILS OF ELEMENTARY SCHOOLS

    Directory of Open Access Journals (Sweden)

    Dragana Aleksić

    2011-09-01

    Full Text Available In this work, the subject of the research is only one segment of the anthropological area, which refers to the appearance of appropriate motor abilities-coordination. Static strength Static strength is ability to retain in nonmetrics contraction of muscle that body is preserved in certain position. Static work as physical work doesn’t exist in static strength, because development doesn’t exist, but quality of static work the muscle should start with physiology’s opinion of work. Static work is used for demonstration the power during that last.The battery for the evaluation of static strength consists of the following tests: MVIS, MIPR, MINS. During the 2005/06 academic year, a research was conducted so as to determine the effects of current program of physical education teaching on motor abilities coordination of female pupils. The research involved a total sample of 102 girls from the 3th and 4th grade of elementary school. The subjects were classified in one experimental and one control group. The experimental group was made of 54 studentsand they were practicing according to planning instruction where the artistic gymnastics had the primary part. The control group of 48 students was practicing according to official instructional plan and program for P.E. of the Republic of Serbia. At the beginning of the academic year, initial (first measurement was performed, followed by experimental final (second measurement at the end of experiment. The multi-variant procedures were used in this research ant those were: the multi-variant analysis of the variable (MANCOVA, MANOVA. Also, the mono-variant procedures were used and those were: the variable analysis (ANCOVA, ANOVA and the interval of entrust. After the experimental treatment, i.e. at the final testing, significant differences were found with female pupils in the experimental and control groups concerning the one of three tests for the evaluation of static strength. The basic conclusion is

  16. No hair theorem in quasi-dilaton massive gravity

    International Nuclear Information System (INIS)

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-01-01

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  17. No hair theorem in quasi-dilaton massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, De-Jun, E-mail: wudejun10@mails.ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Shuang-Yong, E-mail: sxz353@case.edu [Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2016-06-10

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  18. Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets

    International Nuclear Information System (INIS)

    Bilici, Mustafa Kemal; Yuekler, Ahmet Irfan

    2012-01-01

    Highlights: → All velding parameters and different tool geometries have demonstrated a different effects on weld strength. → Friction stir spot welding of polyethylene mechanical scission is very important. → Metric screw the tool has a great influence on the weld strength of FSSW. -- Abstract: The effect of important welding parameters and tool properties that are effective on static strength in friction stir spot welds of polyethylene sheets were studied. Six different tool pin profiles (straight cylindrical, tapered cylindrical, threaded cylindrical, triangular, square and hexagonal) with different shoulder geometries, different pin length, pin angle and concavity angle were used to fabricate the joints. The tool rotational speed, tool plunge depth and dwell time were determined welding parameters. All the welding operations were done at the room temperature. Welding force and welding zone material temperature measurements were also done. Lap-shear tests were carried out to find the weld static strength. Weld cross section appearance observations were also done. From the experiments, the effect of pin profile, pin length, pin angle, dwell time and tool rotational speed on friction stir spot welding formation and weld strength was determined.

  19. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    Science.gov (United States)

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (psimple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (plinear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  20. Effect of material strength on the relationship between the principal Hugoniot and quasi-isentrope of beryllium and 6061-T6 aluminum below 35 GPa

    International Nuclear Information System (INIS)

    Moss, W.C.

    1985-01-01

    Quasi-isentropic (QI) compression can be achieved by loading a specimen with a low strain rate, long rise time uniaxial strain wave. Recent experimental data show that the quasi-isentrope of 6061-T6 aluminum lies a few percent above the principal Hugoniot, that is, at a given specific volume, the QI stress exceeds the principal Hugoniot stress. It has been suggested that this effect is due to material strength. Using Hugoniot data, shock-reshock, and shock-unload data for beryllium and 6061-T6 aluminum, we have constructed the quasi-isentropes as functions of specific volume. Our results show that the QI stress exceeds the principal Hugoniot stress above a Hugoniot stress of 8.4 GPa in beryllium, and between Hugoniot stresses of 3.8 and 21.4 GPa in aluminum. The effect is due to strength and implies that the QI yield strength can be large. Our calculations show that the QI yield strength is 0.9 GPa in aluminum at a QI stress of 9 GPa, and 5.2 GPa in beryllium at a QI stress of 35 GPa

  1. Quasi-static characterisation and impact testing of auxetic foam for sports safety applications

    International Nuclear Information System (INIS)

    Duncan, Olly; Alderson, Andrew; Foster, Leon; Senior, Terry; Allen, Tom

    2016-01-01

    This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo–mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress–strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ∼10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required. (paper)

  2. The Cross-Flow Mixing Analysis of Quasi-Static Pebble Flow in Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Fang Xiang; Liu Zhiyong; Sun Yanfei; Yang Xingtuan; Jiang Shengyao

    2014-01-01

    In the pebble bed reactor, large number of fuel pebbles’ movement law and moving state can affect the reactor’s design, operation and safety directly. Therefore the pebble flow, which is based on the theory of particle streaming, is one of the most important research subjects of the pebble bed reactor engineering. The in-core pebble flow is a very slow particle flow (or called quasi-static particle flow), which is very different from the usual particle motion. How to accurately describe the characteristics of in-core pebble flow is a central issue for this subject. Due to the presence of random flow, the cross-mixing phenomenon will occur inevitably. In the present paper, the mixing phenomenon of pebble flow is generalized on the basis of experiment results. The pebble flow cross-mixing probability serves as the parameter which describes both the regularity and the randomness of pebble flow. The results are provided in the form of diagrammatic presentation. (author)

  3. Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches

    KAUST Repository

    Verma, Rahul

    2018-01-06

    Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry

  4. Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches

    KAUST Repository

    Verma, Rahul; Icardi, Matteo; Prodanović, Maša

    2018-01-01

    Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry

  5. Contact forces between a particle and a wet wall at both quasi-static and dynamic state

    Directory of Open Access Journals (Sweden)

    Zhang Huang

    2017-01-01

    Full Text Available The contact regime of particle-wall is investigated by the atomic force microscope (AFM and theoretical models. First, AFM is used to measure the cohesive force between a micron-sized grain and a glass plate at quasi-static state under various humidity. It is found out that the cohesive force starts to grow slowly and suddenly increase rapidly beyond a critical Relative Humidity (RH. Second, mathematical models of contacting forces are presented to depict the dynamic process that a particle impacts on a wet wall. Then the energy loss of a falling grain is calculated in comparison with the models and the experimental data from the previous references. The simulation results show that the force models presented here are adaptive for both low and high viscosity fluid films with different thickness.

  6. Solving the quasi-static field model of the pulse-line accelerator; relationship to a circuit model

    International Nuclear Information System (INIS)

    Friedman, Alex

    2005-01-01

    The Pulse-Line Ion Accelerator (PLIA) is a promising approach to high-gradient acceleration of an ion beam at high line charge density. A recent note by R. J. Briggs suggests that a 'sheath helix' model of such a system can be solved numerically in the quasi-static limit. Such a model captures the correct macroscopic behavior from first principles without the need to time-advance the full Maxwell equations on a grid. This note describes numerical methods that may be used to effect such a solution, and their connection to the circuit model that was described in an earlier note by the author. Fine detail of the fields in the vicinity of the helix wires is not obtained by this approach, but for purposes of beam dynamics simulation such detail is not generally needed

  7. Effect of a Hippotherapy Intervention Program on Static Balance and Strength in Adolescents with Intellectual Disabilities

    Science.gov (United States)

    Giagazoglou, Paraskevi; Arabatzi, Fotini; Dipla, Konstantina; Liga, Maria; Kellis, Eleftherios

    2012-01-01

    The aim of this study was to assess the effects of a hippotherapy program on static balance and strength in adolescents with intellectual disability (ID). Nineteen adolescents with moderate ID were assigned either an experimental group (n = 10) or a control group (n = 9). The experimental group attended a 10-week hippotherapy program. To assess…

  8. Quasi-particle properties in a quasi-two-dimensional electron liquid

    Indian Academy of Sciences (India)

    effects are incorporated into the local-field factors that describe the charge and spin correla- ... dient of which is the quasi-particle concept and its interactions. .... factors. Note that we have approximated the local-field factors by their static, frequency-independent limits. Quite generally, once the QP self-energy is known, the ...

  9. On the performance of diagonal lattice space-time codes for the quasi-static MIMO channel

    KAUST Repository

    Abediseid, Walid

    2013-06-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple-output (MIMO) channel. All the coding design to date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria. In this paper, we analyze in detail the performance of diagonal lattice space-time codes under lattice decoding. We present both upper and lower bounds on the average error probability. We derive a new closed form expression of the lower bound using the so-called sphere-packing bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is simply derived using the union-bound and demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. © 2013 IEEE.

  10. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads

    Science.gov (United States)

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich

    2018-01-01

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107

  11. Relativistic corrections to the static energy in terms of Wilson loops at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara [Technische Universitaet Muenchen, Physik Department T31, Garching (Germany); Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica y IFAE-BIST, Barcelona (Spain); Stahlhofen, Maximilian [Johannes Gutenberg University, PRISMA Cluster of Excellence, Institute of Physics, Mainz (Germany)

    2017-10-15

    We consider the O(1/m) and the spin-independent momentum-dependent O(1/m{sup 2}) quasi-static energies of heavy quarkonium (with unequal masses). They are defined nonperturbatively in terms of Wilson loops. We determine their short-distance behavior through O(α{sup 3}) and O(α{sup 2}), respectively. In particular, we calculate the ultrasoft contributions to the quasi-static energies, which requires the resummation of potential interactions. Our results can be directly compared to lattice simulations. In addition, we also compare the available lattice data with the expectations from effective string models for the long-distance behavior of the quasi-static energies. (orig.)

  12. Nonlinear evolutions of an ultra-intense ultra-short laser pulse in a rarefied plasma through a new quasi-static theory

    Science.gov (United States)

    Yazdanpanah, J.

    2018-02-01

    In this paper, we present a new description of self-consistent wake excitation by an intense short laser pulse, based on applying the quasi-static approximation (slow variations of the pulse-envelope) in the instantaneous Lorentz-boosted pulse co-moving frame (PCMF), and best verify our results through comparison with particle-in-cell simulations. According to this theory, the plasma motion can be treated perturbatively in the PCMF due to its high initial-velocity and produces a quasi-static wakefield in this frame. The pulse envelope, on the other hand, is governed by a form of the Schrödinger equation in the PCMF, in which the wakefield acts as an effective potential. In this context, pulse evolutions are characterized by local conservation laws resulted from this equation and subjected to Lorentz transformation into the laboratory frame. Using these conservation laws, precise formulas are obtained for spatiotemporal pulse evolutions and related wakefield variations at initial stages, and new equations are derived for instantaneous group velocity and carrier frequency. In addition, based on properties of the Schrödinger equation, spectral-evolutions of the pulse are described and the emergence of an anomalous dispersion branch with linear relation ω ≈ ck (c is the light speed) is predicted. Our results are carefully discussed versus previous publications and the significance of our approach is described by showing almost all suggestive definitions of group-velocity based on energy arguments fail to reproduce our formula and correctly describe the instantaneous pulse-velocity.

  13. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi

    2009-01-01

    The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  14. Tensile characterisation of the aorta across quasi-static to blast loading strain rates

    Science.gov (United States)

    Magnus, Danyal; Proud, William; Haller, Antoine; Jouffroy, Apolline

    2017-06-01

    The dynamic tensile failure mechanisms of the aorta during Traumatic Aortic Injury (TAI) are poorly understood. In automotive incidents, where the aorta may be under strains of the order of 100/s, TAI is the second largest cause of mortality. In these studies, the proximal descending aorta is the most common site where rupture is observed. In particular, the transverse direction is most commonly affected due to the circumferential orientation of elastin, and hence the literature generally concentrates upon axial samples. This project extends these dynamic studies to the blast loading regime where strain-rates are of the order of 1000/s. A campaign of uniaxial tensile experiments are conducted at quasi-static, intermediate (drop-weight) and high (tensile Split-Hopkinson Pressure Bar) strain rates. In each case, murine and porcine aorta models are considered and the extent of damage assessed post-loading using histology. Experimental data will be compared against current viscoelastic models of the aorta under axial stress. Their applicability across strain rates will be discussed. Using a multi-disciplinary approach, the conditions applied to the samples replicate in vivo conditions, employing a blood simulant-filled tubular specimen surrounded by a physiological solution.

  15. Can Plant-Based Natural Flax Replace Basalt and E-Glass for Fiber-Reinforced Polymer Tubular Energy Absorbers? A Comparative Study on Quasi-Static Axial Crushing

    Directory of Open Access Journals (Sweden)

    Libo Yan

    2017-12-01

    Full Text Available Using plant-based natural fibers to substitute glass fibers as reinforcement of composite materials is of particular interest due to their economic, technical, and environmental significance. One potential application of plant-based natural fiber reinforced polymer (FRP composites is in automotive engineering as crushable energy absorbers. Current study experimentally investigated and compared the energy absorption efficiency of plant-based natural flax, mineral-based basalt, and glass FRP (GFRP composite tubular energy absorbers subjected to quasi-static axial crushing. The effects of number of flax fabric layer, the use of foam filler and the type of fiber materials on the crashworthiness characteristics, and energy absorption capacities were discussed. In addition, the failure mechanisms of the hollow and foam-filled flax, basalt, and GFRP tubes in quasi-static axial crushing were analyzed and compared. The test results showed that the energy absorption capabilities of both hollow and foam-filled energy absorbers made of flax were superior to the corresponding energy absorbers made of basalt and were close to energy absorbers made of glass. This study, therefore, indicated that flax fiber has the great potential to be suitable replacement of basalt and glass fibers for crushable energy absorber application.

  16. Pore network modeling of drainage process in patterned porous media: a quasi-static study

    KAUST Repository

    Zhang, Tao

    2015-04-17

    This work represents a preliminary investigation on the role of wettability conditions on the flow of a two-phase system in porous media. Since such effects have been lumped implicitly in relative permeability-saturation and capillary pressure-saturation relationships, it is quite challenging to isolate its effects explicitly in real porous media applications. However, within the framework of pore network models, it is easy to highlight the effects of wettability conditions on the transport of two-phase systems. We employ quasi-static investigation in which the system undergo slow movement based on slight increment of the imposed pressure. Several numerical experiments of the drainage process are conducted to displace a wetting fluid with a non-wetting one. In all these experiments the network is assigned different scenarios of various wettability patterns. The aim is to show that the drainage process is very much affected by the imposed pattern of wettability. The wettability conditions are imposed by assigning the value of contact angle to each pore throat according to predefined patterns.

  17. The Laboratory Study of Shear Strength of the Overconsolidated and Quasi - Overconsolidated Fine - Grained Soil

    Science.gov (United States)

    Strozyk, Joanna

    2017-12-01

    The paper presents results of laboratory shear strength test conducted on fine-grained soil samples with different grain size distribution and with different geological age and stress history. The Triaxial Isotopic Consolidation Undrained Tests (TXCIU) were performed under different consolidation stress in normal and overconsolidadion stress state on the samples with natural structure. Soil samples were selected from soil series of different age and geological origins: overconsolidated sensu stricto Miopliocene silty clay (siCl) and quasi overconsolidated Pleistocene clayey silt (clSi). Paper pointed out that overconsolidated sensu stricto and quasi overconsolidated fine-grained soil in same stress and environmental condition could show almost similar behaviour, and in other condition could behave significantly different. The correct evaluation of geotechnical parameters, the possibility of predicting their time-correct ability is only possible with appropriately recognized geological past and past processes that accompanied the soil formation.

  18. Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling.

    Science.gov (United States)

    Huang, Wen; Koric, Seid; Yu, Xin; Hsia, K Jimmy; Li, Xiuling

    2014-11-12

    Micro- and nanoscale tubular structures can be formed by strain-induced self-rolled-up nanomembranes. Precision engineering of the shape and dimension determines the performance of devices based on this platform for electronic, optical, and biological applications. A transient quasi-static finite element method (FEM) with moving boundary conditions is proposed as a general approach to design diverse types of three-dimensional (3D) rolled-up geometries. This method captures the dynamic release process of membranes through etching driven by mismatch strain and accurately predicts the final dimensions of rolled-up structures. Guided by the FEM modeling, experimental demonstration using silicon nitride membranes was achieved with unprecedented precision including controlling fractional turns of a rolled-up membrane, anisotropic rolling to form helical structures, and local stress control for 3D hierarchical architectures.

  19. Quasi-perpendicular/quasi-parallel divisions of Earth's bow shock

    International Nuclear Information System (INIS)

    Greenstadt, E.W.

    1991-01-01

    Computer-drawn diagrams of the boundaries between quasi-perpendicular and quasi-parallel areas of Earth's bow shock are displayed for a few selected cone angles of static interplanetary magnetic field (IMF). The effect on the boundary of variable IMF in the foreshock is also discussed and shown for one nominal case. The boundaries demand caution in applying them to the realistic, dynamic conditions of the solar wind and in interpreting the effects of small cone angles on the distributions of structures at the shock. However, the calculated, first-order boundaries are helpful in defining areas of the shock where contributions from active structures inherent in quasi-parallel geometry may be distinguishable from those derived secondarily from upstream reflected ion dynamics. The boundaries are also compatible with known behavior of daytime ULF geomagnetic waves and pulsations according to models postulating that cone angle-controlled, time-dependent ULF activity around the subsolar point of the bow shock provides the source of geomagnetic excitation

  20. Johnson-Cook Strength Model Constants for VascoMax 300 and 1080 Steels

    International Nuclear Information System (INIS)

    Cinnamon, J. D.; Palazotto, A. N.; Kennan, Z.; Brar, N. S.; Bajaj, D.

    2006-01-01

    High strength steels, VascoMax 300 and 1080, are characterized under tension at strain rates of ∼1/s, ∼500/s, ∼1000/s, and ∼1500/s and at high temperatures using the quasi-static and split Hopkinson bar techniques. The data on 1080 steel exhibited a typical strain hardening response, whereas Vasco-Max 300 steel showed diminishing flow stress beyond yielding because of localized necking in gauge section of the tested specimens. The tension data are analyzed to determine the Johnson-Cook (J-C) strength model constants for the two steels. The flow stress values for VascoMax are adjusted to account for necking, and the corrected J-C model is developed

  1. Quasi-static three-dimensional magnetic field evolution in solar active region NOAA 11166 associated with an X1.5 flare

    International Nuclear Information System (INIS)

    Vemareddy, P.; Wiegelmann, T.

    2014-01-01

    We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology and is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.

  2. Literature review Quasi-static and Dynamic pile load tests : Primarily report on non-static pile load tests

    NARCIS (Netherlands)

    Huy, N.Q.

    2010-01-01

    Pile testing, which plays an importance role in the field of deep foundation design, is performed by static and non-static methods to provide information about the following issues: (Poulos, 1998) - The ultimate capacity of a single pile. - The load-displacement behavior of a pile. - The performance

  3. Experimental study of strain prediction on wave induced structures using modal decomposition and quasi static Ritz vectors

    DEFF Research Database (Denmark)

    Skafte, Anders; Kristoffersen, Julie; Vestermark, Jonas

    2017-01-01

    into two parts using complementary filters: Low frequency response caused by the quasi-static effect of the waves acting on the structure, and the high frequency response given by the modal properties of the structure. The high frequency response is then decomposed into modal coordinates using...... the experimental mode shapes. Strain histories are predicted by multiplying the modal coordinates with the expanded strain mode shapes. The low frequency response is decomposed using Ritz-vectors corresponding to the shapes that the structure vibrates with due to the wave loading. Strain Ritz......-vectors are then extracted from the finite element model by applying a load corresponding to a representative wave and the strain history for the low frequency response is found by multiplying the decomposed signal with the strain Ritz-vectors. Finally the combined strain history is found by adding the strain histories from...

  4. IMPLEMENTATION OF THE IMPROVED QUASI-STATIC METHOD IN RATTLESNAKE/MOOSE FOR TIME-DEPENDENT RADIATION TRANSPORT MODELLING

    Energy Technology Data Exchange (ETDEWEB)

    Zachary M. Prince; Jean C. Ragusa; Yaqi Wang

    2016-02-01

    Because of the recent interest in reactor transient modeling and the restart of the Transient Reactor (TREAT) Facility, there has been a need for more efficient, robust methods in computation frameworks. This is the impetus of implementing the Improved Quasi-Static method (IQS) in the RATTLESNAKE/MOOSE framework. IQS has implemented with CFEM diffusion by factorizing flux into time-dependent amplitude and spacial- and weakly time-dependent shape. The shape evaluation is very similar to a flux diffusion solve and is computed at large (macro) time steps. While the amplitude evaluation is a PRKE solve where the parameters are dependent on the shape and is computed at small (micro) time steps. IQS has been tested with a custom one-dimensional example and the TWIGL ramp benchmark. These examples prove it to be a viable and effective method for highly transient cases. More complex cases are intended to be applied to further test the method and its implementation.

  5. Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions

    CERN Document Server

    Gazeau, F; Dubois, E; Perzynski, R

    2003-01-01

    We investigate the structure and dynamics of ionic magnetic fluids (MFs), based on ferrite nanoparticles, dispersed at pH approx 7 either in H sub 2 O or in D sub 2 O. Polarized and non-polarized static small angle neutron scattering (SANS) experiments in zero magnetic field allow us to study both the magnetic and the nuclear contributions to the neutron scattering. The magnetic interparticle attraction is probed separately from the global thermodynamic repulsion and compares well to direct magnetic susceptibility measurements. The magnetic interparticle correlation is in these fluid samples independent of the probed spatial scale. In contrast, a spatial dependence of the interparticle correlation is evidenced at large PHI by the nuclear structure factor. A model of magnetic interaction quantitatively explains the under-field anisotropy of the SANS nuclear contribution. In a quasi-elastic neutron spin-echo experiment, we probe the Brownian dynamics of translation of the nanoparticles in the range 1.3 sup<=...

  6. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    International Nuclear Information System (INIS)

    Ishii, Masashi

    2010-01-01

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch 2 . Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  7. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Masashi, E-mail: ISHII.Masashi@nims.go.j [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-05-05

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch{sup 2}. Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  8. Study of an athermal quasi static plastic deformation in a 2D granular material

    Science.gov (United States)

    Zhang, Jie

    2017-11-01

    In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.

  9. Johnson - Cook Strength Models for Mild and DP 590 Steels

    International Nuclear Information System (INIS)

    Vedantam, K.; Brar, N. S.; Bajaj, D.; Hill, S.

    2006-01-01

    Automotive steels, Mild and Dual Phase590 (DP590) are characterized in tension at room temperature, using the quasi-static and split Hopkinson bar techniques at various strain rates ranging from ∼10-3/s to ∼1800/s. Tension stress-strain data for both the steels are analyzed to determine the Johnson-Cook Strength model constants, J-C strength model constants for mild steel are A=217 MPa, B = 234 MPa, n = 0.643 and C = 0.076 and for DP590 steel are A = 430 MPa, B = 824 MPa, n = 0.510 and C = 0.017. Higher value of strain rate sensitivity constant C for mild steel (0.076) compared to DP 590 (0.017) is also reflected in the stress- strain data at various strain rates

  10. Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42)

    Science.gov (United States)

    Lu, Yan; Shi, Xiao-Feng; Salsbury, Freddie R.; Derreumaux, Philippe

    2017-04-01

    The formation of senile plaques in central neural system resulting from the aggregation of the amyloid β (Aβ) of 40 and 42 residues is one of the two hallmarks of Alzheimer's disease. Numerous experiments and computational studies have shown that the aggregation of Aβ peptides in vitro is very complex and depends on many factors such as pH, agitation, temperature, and peptide concentration. The impact of a static electric field (EF) on amyloid peptide aggregation has been much less studied, although EFs may have some applications to treat Parkinson's disease symptoms. Here, we study the influence of an EF strength of 20 mV/nm, present in the human brains, on the conformation of the Aβ29-42 dimer. Our 7 μs non-equilibrium atomistic simulations in aqueous solution show that this field-strength promotes substantially the formation of β-hairpins, believed to be a very important intermediate state during aggregation. This work also suggests that structural biology experiments conducted under appropriate EF strengths may help reduce the conformational heterogeneity of Aβ1-40/Aβ1-42 dimers and provide significant insights into their structures that may be disease-causing.

  11. Quasi-static and dynamic motions of the columellar footplate in ostrich (Struthio camelus) measured ex vivo.

    Science.gov (United States)

    Muyshondt, Pieter G G; Claes, Raf; Aerts, Peter; Dirckx, Joris J J

    2018-01-01

    The nature of the movement of the columellar footplate (CFP) in birds is still a matter of ongoing debate. Some sources claim that rocking motion is dominant, while others propose a largely piston-like motion. In this study, motions of the CFP are experimentally investigated in the ostrich using a post-mortem approach. For quasi-static loads, micro-CT scans of ostrich heads were made under positive and negative middle-ear pressures of 1 kPa. For dynamic loads, laser Doppler vibrometry was used to measure the velocity on multiple locations of the CFP as a function of excitation frequency from 0.125 to 4 kHz, and digital stroboscopic holography was used to assess the 1D full-field out-of-plane displacement of the CFP at different excitation frequencies. To expose the CFP in the experiments, measurements were made from the medial side of the CFP after opening and draining the inner ear. To determine the influence of the inner-ear load on CFP motions, a finite element model was created of the intact ostrich middle ear with inner-ear load included. For quasi-static loads, the CFP performed largely piston-like motions under positive ME pressure, while under negative ME pressure the difference between piston and rocking motion was smaller. For dynamic loads, the CFP motion was almost completely piston-like for frequencies below 1 kHz. For higher frequencies, the motions became more complicated with an increase of the rocking components, although they never exceeded the piston component. When including the inner-ear load to the model, the rocking components started to increase relative to the piston component when compared to the result of the model with unloaded CFP, but only at high frequencies above 1 kHz. In this frequency range, the motion could no longer be identified as purely piston-like or rocking. As a conclusion, the current results suggest that CFP motion is predominantly piston-like below 1 kHz, while at higher frequencies the motion becomes too

  12. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    Energy Technology Data Exchange (ETDEWEB)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi, E-mail: lifei1216@gmail.co [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-07

    The piezoelectric coefficients (d{sub 33}, -d{sub 31}, d{sub 15}, g{sub 33}, -g{sub 31}, g{sub 15}) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 {sup 0}C. The results showed that the piezoelectric coefficients d{sub 33}, -d{sub 31} and d{sub 15} obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g{sub 33}, -g{sub 31} and g{sub 15} decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  13. Quasi-static modeling of human limb for intra-body communications with experiments.

    Science.gov (United States)

    Pun, Sio Hang; Gao, Yue Ming; Mak, PengUn; Vai, Mang I; Du, Min

    2011-11-01

    In recent years, the increasing number of wearable devices on human has been witnessed as a trend. These devices can serve for many purposes: personal entertainment, communication, emergency mission, health care supervision, delivery, etc. Sharing information among the devices scattered across the human body requires a body area network (BAN) and body sensor network (BSN). However, implementation of the BAN/BSN with the conventional wireless technologies cannot give optimal result. It is mainly because the high requirements of light weight, miniature, energy efficiency, security, and less electromagnetic interference greatly limit the resources available for the communication modules. The newly developed intra-body communication (IBC) can alleviate most of the mentioned problems. This technique, which employs the human body as a communication channel, could be an innovative networking method for sensors and devices on the human body. In order to encourage the research and development of the IBC, the authors are favorable to lay a better and more formal theoretical foundation on IBC. They propose a multilayer mathematical model using volume conductor theory for galvanic coupling IBC on a human limb with consideration on the inhomogeneous properties of human tissue. By introducing and checking with quasi-static approximation criteria, Maxwell's equations are decoupled and capacitance effect is included to the governing equation for further improvement. Finally, the accuracy and potential of the model are examined from both in vitro and in vivo experimental results.

  14. Effect of static and dynamic muscle stretching as part of warm up procedures on knee joint proprioception and strength.

    Science.gov (United States)

    Walsh, Gregory S

    2017-10-01

    The importance of warm up procedures prior to athletic performance is well established. A common component of such procedures is muscle stretching. There is conflicting evidence regarding the effect of static stretching (SS) as part of warm up procedures on knee joint position sense (KJPS) and the effect of dynamic stretching (DS) on KJPS is currently unknown. The aim of this study was to determine the effect of dynamic and static stretching as part warm up procedures on KJPS and knee extension and flexion strength. This study had a randomised cross-over design and ten healthy adults (20±1years) attended 3 visits during which baseline KJPS, at target angles of 20° and 45°, and knee extension and flexion strength tests were followed by 15min of cycling and either a rest period (CON), SS, or DS and repeat KJPS and strength tests. All participants performed all conditions, one condition per visit. There were warm up×stretching type interactions for KJPS at 20° (p=0.024) and 45° (p=0.018), and knee flexion (p=0.002) and extension (pwarm up procedures. However, the negative impact of SS on muscle strength limits the utility of SS before athletic performance. If stretching is to be performed as part of a warm up, DS should be favoured over SS. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-01-01

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation

  16. Acute Changes in Creatine Kinase Serum Levels in Adults Submitted a Static Stretching and Maximal Strength Test

    Directory of Open Access Journals (Sweden)

    M.G. Bara Filho

    2008-01-01

    Full Text Available Strength and flexibility are common components of a training program and their maximal values are obtained through specific tests. However, little information about the damage effect of these training procedures in a skeletal muscle is known. Objective: To verify a serum CK changes 24 h after a sub maximal stretching routine and after the static flexibility and maximal strength tests. Methods: the sample was composed by 14 subjects (man and women, 28 ± 6 yr. physical education students. The volunteers were divided in a control group (CG and experimental group (EG that was submitted in a stretching routine (EG-ST, in a maximal flexibility static test (EG-FLEX and in 1-RM test (EG-1-RM, with one week interval among tests. The anthropometrics characteristics were obtained by digital scale with stadiometer (Filizola, São Paulo, Brasil, 2002. The blood samples were obtained using the IFCC method with reference values 26-155 U/L. The De Lorme and Watkins technique was used to access maximal maximal strength through bench press and leg press. The maximal flexibility test consisted in three 20 seconds sets until the point of maximal discomfort. The stretching was done in normal movement amplitude during 6 secons. Results: The basal and post 24 h CK values in CG and EG (ST; Flex and 1 RM were respectively 195,0 ± 129,5 vs. 202,1 ± 124,2; 213,3 ± 133,2 vs. 174,7 ± 115,8; 213,3 ± 133,2 vs. 226,6 ± 126,7 e 213,3 ± 133,2 vs. 275,9 ± 157,2. It was only observed a significant difference (p = 0,02 in the pre and post values inGE-1RM. Conclusion: only maximal strength dynamic exercise was capable to cause skeletal muscle damage.

  17. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    Science.gov (United States)

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Validation of the dynamic structural integrity of a nuclear piping component using static inelastic modelling technique

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    This work is concerned with the evaluation of a quasi-static method as applied to a swing check valve designed to provide emergency shut-off capability subsequent to a postulated break in a steam line. The impact analysis of swinging disk upon the valve seat is an asymmetric problem in dynamic elastoplasticity with potentially large displacements and strains resulting from the impact. To perform a quasi-static analysis for this component the disk and seat region of the valve was isolated from the piping system by special boundary elements and an elastic-plastic finite element model was generated assuming axisymmetric solid ring elements. An equivalent static axisymmetric incremental load system was used to approximate the nonsymmetric initial velocity of impact. Subsequent to the nonlinear incremental finite element analysis by a standard computer software package (MARC-CDC program), a special post-processing program was employed to calculate the incremental sum of external work due to the defined load system. Equating this external work to the initial kinetic energy of impact, parametric curves for displacements, stresses, and strains were obtained as functions of various levels of kinetic energy imparted to the valve at closure. To verify the conservative nature of the assumptions made in the quasi-static model, a comparison was made with a time-dependent, nonlinear, axisymmetric, elastic-plastic finite difference simulation. Another standard computer software package (PISCES-2DL) was used for this dynamic simulation. For a check-point value of initial impact kinetic energy, correlation between the quasi-static finite element and dynamic finite difference analyses is presented. Validations of the assumptions made in the quasi-static analysis and of the results obtained are discussed in detail

  19. Mass formula for quasi-black holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-01-01

    A quasi-black hole, either nonextremal or extremal, can be broadly defined as the limiting configuration of a body when its boundary approaches the body's quasihorizon. We consider the mass contributions and the mass formula for a static quasi-black hole. The analysis involves careful scrutiny of the surface stresses when the limiting configuration is reached. It is shown that there exists a strict correspondence between the mass formulas for quasi-black holes and pure black holes. This perfect parallelism exists in spite of the difference in derivation and meaning of the formulas in both cases. For extremal quasi-black holes the finite surface stresses give zero contribution to the total mass. This leads to a very special version of Abraham-Lorentz electron in general relativity in which the total mass has pure electromagnetic origin in spite of the presence of bare stresses.

  20. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    Directory of Open Access Journals (Sweden)

    Verleysen P.

    2012-08-01

    Full Text Available It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  1. Plastic collapse and energy absorption of circular filled tubes under quasi-static loads by computational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beng, Yeo Kiam; Tzeng, Woo Wen [Universiti Malaysia Sabah, Sabah (Malaysia)

    2017-02-15

    This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber.

  2. Seismic performance evaluation of an infilled rocking wall frame structure through quasi-static cyclic testing

    Science.gov (United States)

    Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin

    2018-04-01

    Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.

  3. Statistical modeling of static strengths of nuclear graphites with relevance to structural design

    International Nuclear Information System (INIS)

    Arai, Taketoshi

    1992-02-01

    Use of graphite materials for structural members poses a problem as to how to take into account of statistical properties of static strength, especially tensile fracture stresses, in component structural design. The present study concerns comprehensive examinations on statistical data base and modelings on nuclear graphites. First, the report provides individual samples and their analyses on strengths of IG-110 and PGX graphites for HTTR components. Those statistical characteristics on other HTGR graphites are also exemplified from the literature. Most of statistical distributions of individual samples are found to be approximately normal. The goodness of fit to normal distributions is more satisfactory with larger sample sizes. Molded and extruded graphites, however, possess a variety of statistical properties depending of samples from different with-in-log locations and/or different orientations. Second, the previous statistical models including the Weibull theory are assessed from the viewpoint of applicability to design procedures. This leads to a conclusion that the Weibull theory and its modified ones are satisfactory only for limited parts of tensile fracture behavior. They are not consistent for whole observations. Only normal statistics are justifiable as practical approaches to discuss specified minimum ultimate strengths as statistical confidence limits for individual samples. Third, the assessment of various statistical models emphasizes the need to develop advanced analytical ones which should involve modeling of microstructural features of actual graphite materials. Improvements of other structural design methodologies are also presented. (author)

  4. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  5. Quasi-effective medium theory for multi-layered magneto-dielectric structures

    International Nuclear Information System (INIS)

    Genov, Dentcho A; Mundru, Pattabhiraju C

    2014-01-01

    We present a quasi-effective medium theory that determines the optical properties of multi-layered composites beyond the quasi-static limit. The proposed theory exactly reproduces the far field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit our theory is consistent with the Maxwell–Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. (paper)

  6. Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-12-01

    Full Text Available The strain rate effect on the tensile behaviors of a high specific strength steel (HSSS with dual-phase microstructure has been investigated. The yield strength, the ultimate strength and the tensile toughness were all observed to increase with increasing strain rates at the range of 0.0006 to 56/s, rendering this HSSS as an excellent candidate for an energy absorber in the automobile industry, since vehicle crushing often happens at intermediate strain rates. Back stress hardening has been found to play an important role for this HSSS due to load transfer and strain partitioning between two phases, and a higher strain rate could cause even higher strain partitioning in the softer austenite grains, delaying the deformation instability. Deformation twins are observed in the austenite grains at all strain rates to facilitate the uniform tensile deformation. The B2 phase (FeAl intermetallic compound is less deformable at higher strain rates, resulting in easier brittle fracture in B2 particles, smaller dimple size and a higher density of phase interfaces in final fracture surfaces. Thus, more energy need be consumed during the final fracture for the experiments conducted at higher strain rates, resulting in better tensile toughness.

  7. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    Science.gov (United States)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on

  8. Predictor-Corrector Quasi-Static Method Applied to Nonoverlapping Local/Global Iterations with 2-D/1-D Fusion Transport Kernel and p-CMFD Wrapper for Transient Reactor Analysis

    International Nuclear Information System (INIS)

    Cho, Bumhee; Cho, Nam Zin

    2015-01-01

    In this study, the steady-state p-CMFD adjoint flux is used as the weighting function to obtain PK parameters instead of the computationally expensive transport adjoint angular flux. Several numerical problems are investigated to see the capability of the PCQS method applied to the NLG iteration. CRX-2K adopts the nonoverlapping local/global (NLG) iterative method with the 2-D/1-D fusion transport kernel and the global p-CMFD wrapper. The parallelization of the NLG iteration has been recently implemented in CRX-2K and several numerical results are reported in a companion paper. However, the direct time discretization leads to a fine time step size to acquire an accurate transient solution, and the step size involved in the transport transient calculations is millisecond-order. Therefore, the transient calculations need much longer computing time than the steady-state calculation. To increase the time step size, Predictor-Corrector Quasi-Static (PCQS) method can be one option to apply to the NLG iteration. The PCQS method is a linear algorithm, so the shape function does not need to be updated more than once at a specific time step like a conventional quasi-static (QS) family such as Improved Quasi-Static (IQS) method. Moreover, the shape function in the PCQS method directly comes from the direct transport calculation (with a large time step), so one can easily implement the PCQS method in an existing transient transport code. Any QS method needs to solve the amplitude function in the form of the point kinetics (PK) equations, and accurate PK parameters can be obtained by the transport steady-state adjoint angular flux as a weighting function. The PCQS method is applied to the transient NLG iteration with the 2-D/1-D fusion transport kernel and the global p-CMFD wrapper, and has been implemented in CRX-2K. In the numerical problems, the PCQS method with the NLG iteration shows more accurate solutions compared to the direct transient calculations with large time step

  9. The effect of 8 weeks deep-aquatic exercises on static balance and lower body strength among elderly men

    Directory of Open Access Journals (Sweden)

    Ehsan Seyed jafari

    2017-04-01

    Full Text Available Back ground: The purpose of this study was to investigate the effect of deep aquatic exercises on lower body strength and balance among elderly men. Methods: Thirty elderly men over 65 years old were randomly divided into two equal groups including experimental and control groups. Experimental group participated in a deep aquatic exercise program that consisted of 60-minute sessions three times a week for 8 weeks while control group had no plan of exercise.  Muscle strength and balance was assessed before and after the program as pre and post-test by HHD (Hand-Held Dynamometer and BBS (Biodex Balance System respectively. Repeated measures two-way analysis of variance (ANOVA was performed on outcome variables.(p≥0.05.  Results: deep aquatic exercises promoted significant increases in the elderly men's muscle strength and balance, as assessed using HHD (p< 0.001 and the BBS (p< 0.001. Conclusion: The present deep-aquatic exercise training for the elderly are able to improve the muscle strength and static balance.

  10. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates

    Science.gov (United States)

    Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.

    1991-01-01

    Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.

  11. Scaling strength distributions in quasi-brittle materials from micro-to macro-scales: A computational approach to modeling Nature-inspired structural ceramics

    International Nuclear Information System (INIS)

    Genet, Martin; Couegnat, Guillaume; Tomsia, Antoni P.; Ritchie, Robert O.

    2014-01-01

    This paper presents an approach to predict the strength distribution of quasi-brittle materials across multiple length-scales, with emphasis on Nature-inspired ceramic structures. It permits the computation of the failure probability of any structure under any mechanical load, solely based on considerations of the microstructure and its failure properties by naturally incorporating the statistical and size-dependent aspects of failure. We overcome the intrinsic limitations of single periodic unit-based approaches by computing the successive failures of the material components and associated stress redistributions on arbitrary numbers of periodic units. For large size samples, the microscopic cells are replaced by a homogenized continuum with equivalent stochastic and damaged constitutive behavior. After establishing the predictive capabilities of the method, and illustrating its potential relevance to several engineering problems, we employ it in the study of the shape and scaling of strength distributions across differing length-scales for a particular quasi-brittle system. We find that the strength distributions display a Weibull form for samples of size approaching the periodic unit; however, these distributions become closer to normal with further increase in sample size before finally reverting to a Weibull form for macroscopic sized samples. In terms of scaling, we find that the weakest link scaling applies only to microscopic, and not macroscopic scale, samples. These findings are discussed in relation to failure patterns computed at different size-scales. (authors)

  12. Effect of Elastin Digestion on the Quasi-static Tensile Response of Medial Collateral Ligament

    Science.gov (United States)

    Henninger, Heath B.; Underwood, Clayton J.; Romney, Steven J.; Davis, Grant L.; Weiss, Jeffrey A.

    2014-01-01

    Elastin is a structural protein that provides resilience to biological tissues. We examined the contributions of elastin to the quasi-static tensile response of porcine medial collateral ligament through targeted disruption of the elastin network with pancreatic elastase. Elastase concentration and treatment time were varied to determine a dose response. Whereas elastin content decreased with increasing elastase concentration and treatment time, the change in peak stress after cyclic loading reached a plateau above 1 U/ml elastase and 6 hr treatment. For specimens treated with 2 U/ml elastase for 6 hr, elastin content decreased approximately 35%. Mean peak tissue strain after cyclic loading (4.8%, p≥0.300), modulus (275 MPa, p≥0.114) and hysteresis (20%, p≥0.553) were unaffected by elastase digestion, but stress decreased significantly after treatment (up to 2 MPa, p≤0.049). Elastin degradation had no effect on failure properties, but tissue lengthened under the same pre-stress. Stiffness in the linear region was unaffected by elastase digestion, suggesting that enzyme treatment did not disrupt collagen. These results demonstrate that elastin primarily functions in the toe region of the stress-strain curve, yet contributes load support in the linear region. The increase in length after elastase digestion suggests that elastin may pre-stress and stabilize collagen crimp in ligaments. PMID:23553827

  13. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations

    Science.gov (United States)

    Zeng, Ke; Singisetti, Uttam

    2017-09-01

    The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.

  14. Static, Fire and Fatigue Tests of Ultra High-Strength Fibre Reinforced Concrete and Ribbed Bars

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard; Heshe, Gert

    2001-01-01

    A new building system has been developed during the last 10 years. This new system consists of a column / slab system with 6 x 6 m distance between the columns. The slabs are precast concrete elements of size 2.9 x 5.9 m connected through joints of ultra high strength fibre reinforced concrete...... - Densit Joint Cast ®. Also the connections between the columns and the slabs are made of this very strong concrete material. The paper describes some of the static tests carried out as well as some fire tests. Further, 2 chapters deal with some fatigue tests of the reinforcing bars as well as some fatigue...

  15. Static friction between silicon nanowires and elastomeric substrates.

    Science.gov (United States)

    Qin, Qingquan; Zhu, Yong

    2011-09-27

    This paper reports the first direct measurements of static friction force and interfacial shear strength between silicon (Si) nanowires (NWs) and poly(dimethylsiloxane) (PDMS). A micromanipulator is used to manipulate and deform the NWs under a high-magnification optical microscope in real time. The static friction force is measured based on "the most-bent state" of the NWs. The static friction and interface shear strength are found to depend on the ultraviolet/ozone (UVO) treatment of PDMS. The shear strength starts at 0.30 MPa without UVO treatment, increases rapidly up to 10.57 MPa at 60 min of treatment and decreases for longer treatment. Water contact angle measurements suggest that the UVO-induced hydrophobic-to-hydrophilic conversion of PDMS surface is responsible for the increase in the static friction, while the hydrophobic recovery effect contributes to the decrease. The static friction between NWs and PDMS is of critical relevance to many device applications of NWs including NW-based flexible/stretchable electronics, NW assembly and nanocomposites (e.g., supercapacitors). Our results will enable quantitative interface design and control for such applications. © 2011 American Chemical Society

  16. Production of plastified wood with stronger static bending strength means of polymerization induced by gamma radiation

    International Nuclear Information System (INIS)

    Silva Filho, Elias

    1999-01-01

    The use of gamma radiation to obtain wood-polymer composites is one of the applications of radiation that presents the most commercial interest. The process, denominated radiopolymerization, comprises the impregnation of monomers into the completely dried wood followed by exposure to gamma radiation to induce polymerization of the impregnated monomers. I this context, the present work aimed the application of this process to seven kinds of wood existing in the brazilian forests. The considered monomer is styrene and the gamma source is Cobalt-60. The obtained wood-polystyrene composites were found to have stronger static bending strength. (author)

  17. Faults self-organized by repeated earthquakes in a quasi-static antiplane crack model

    Directory of Open Access Journals (Sweden)

    D. Sornette

    1996-01-01

    Full Text Available We study a 2D quasi-static discrete crack anti-plane model of a tectonic plate with long range elastic forces and quenched disorder. The plate is driven at its border and the load is transferred to all elements through elastic forces. This model can be considered as belonging to the class of self-organized models which may exhibit spontaneous criticality, with four additional ingredients compared to sandpile models, namely quenched disorder, boundary driving, long range forces and fast time crack rules. In this 'crack' model, as in the 'dislocation' version previously studied, we find that the occurrence of repeated earthquakes organizes the activity on well-defined fault-like structures. In contrast with the 'dislocation' model, after a transient, the time evolution becomes periodic with run-aways ending each cycle. This stems from the 'crack' stress transfer rule preventing criticality to organize in favour of cyclic behaviour. For sufficiently large disorder and weak stress drop, these large events are preceded by a complex spacetime history of foreshock activity, characterized by a Gutenberg-Richter power law distribution with universal exponent B = 1±0.05. This is similar to a power law distribution of small nucleating droplets before the nucleation of the macroscopic phase in a first-order phase transition. For large disorder and large stress drop, and for certain specific initial disorder configurations, the stress field becomes frustrated in fast time: out-of-plane deformations (thrust and normal faulting and/or a genuine dynamics must be introduced to resolve this frustration.

  18. Surface asperity evolution and microstructure analysis of Al 6061T5 alloy in a quasi-static cold uniaxial planar compression (CUPC)

    International Nuclear Information System (INIS)

    Li, Hejie; Jiang, Zhengyi; Wei, Dongbin; Gao, Xingjian; Xu, Jianzhong; Zhang, Xiaoming

    2015-01-01

    Highlights: • We used AFM and EBSD to analyses the surface asperity flattening process. • Analysis of the influence of deformation rate on the surface asperity flattening. • Investigation of the effect of lubrication on microstructure development. • Deformation rate influence the generation of orientation components obviously. - Abstract: In a quasi-static cold uniaxial planar compression, surface asperity evolution and microstructure analysis of Al 6061T5 alloy are carried out by employing Atomic Force Microscope (AFM) and Electron Backscattered Diffraction (EBSD) methods. Strain rate affects the surface asperity evolution obviously. While lubrication can hinder the surface asperity flattening by constraining the surface localized deformation. Lubrication can accelerate the crystallization in CUPC process. It also impedes the activation of some orientation components by hindering the activation of related slip systems in light metal Al alloy

  19. Measuring Static and Dynamic Properties of Frozen Silty Soils

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, M.D.

    1998-09-30

    A mechanical characterization of frozen silty soils has been conducted to support computer modeling of penetrators. The soils were obtained from the Eilson AFB (Alaska) vicinity. Quasi-static testing with a multiaxial system in a cold room and intermediate strain rate testing with a split Hopkinson pressure bar were conducted. Maximum stresses achieved were slightly above 1 GPa, apparently limiting the observed behavior primarily to elastic compression and pore crushing phenomena. Lower temperatures seem to increase the strength of the material markedly, although not by a simple factor. Lower temperatures and higher strain rates increase the apparent Young's and bulk moduli as well (an increase of {approximately} a factor of two is observed for strain rate increasing from 0.001 s{sup {minus}1} to 800 s{sup {minus}1}). The strength also depends strongly on strain rate. Increasing the strain rate from 0.001 {sup {minus}1} to 0.07 {sup {minus}1} increases the strength by a factor of five to ten (to values of order 1 GPa). However,only a small increase in strength is seen as strain rate is increased to {approximately} 10{sup 2}--10{sup 3} s{sup {minus}1}. The reliability of the strength measurements at strain rates< 1 s{sup {minus}1} is decreased due to details of the experimental geometry, although general trends are observable. A recipe is provided for a simulant soil based on bentonite, sand, clay-rich soil and water to fit the {approximately} 6% air-filled porosity, density and water content of the Alaska soils, based on benchtop mixing and jacketed compression testing of candidate mixes.

  20. On the propagation of a quasi-static disturbance in a heterogeneous, deformable, and porous medium with pressure-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.

    2011-10-01

    Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.

  1. Estimation of static parameters based on dynamical and physical properties in limestone rocks

    Science.gov (United States)

    Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza

    2018-01-01

    Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.

  2. Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    Thanks to their efficiency enhancement systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting. The post-buckling snap-through behavior of bilaterally constrained beams has been exploited to create sensing or energy harvesting mechanisms for quasi-static applications. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy has been generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism’s efficiency. This study aims to maximize the levels of harvestable power by controlling the location of snap-throughs along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometric properties of a uniform beam, non-uniform cross-sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-prismatic beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. The experimentally validated results show that changing the shape and geometric dimensions of non-uniform beams allows for the accurate controlling of the snap-through location at different buckling transitions. A 78.59% improvement in harvested energy levels has been achieved by optimization of beam shape.

  3. Viscoelastic behaviour and static fatigue strength of glass/epoxy composites. Influence of hydrothermal ageing

    International Nuclear Information System (INIS)

    Chateauminois, Antoine

    1991-01-01

    As ageing strength of composites appears to be one of the main criteria of their durability, this research thesis addresses the hydrothermal ageing of unidirectional glass/epoxy composites used for load-bearing structures. After having presented the used materials (epoxy matrix, reinforcement, composite elaboration), the author present the experimental techniques: viscoelastic analysis, three-point bend static fatigue test, coupled gravimetry and calorimetry, and thermogravimetry. In the next parts, the author reports the study of water sorption processes (bibliographical study, experimental study of water sorption kinetics, experimental study of interfacial diffusion within the composite), the study of plasticizing phenomena (methodology of study of plasticizing phenomena, study of the modifications of the linear viscoelastic behaviour in the glass transition region and at room temperature, relationship between plasticizing and fatigue mechanical properties by fracture studies), and the study of irreversible degradation and damage mechanisms

  4. Association of balance, strength, and power measures in young adults.

    Science.gov (United States)

    Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs

    2013-03-01

    The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 ± 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to +0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to +0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily.

  5. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force

    Directory of Open Access Journals (Sweden)

    Leyla Alizadeh Ebadi

    2018-03-01

    Full Text Available The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A 5 min jogging; (B 5 min jogging followed by 15 s static stretching; (C 5 min jogging followed by 30 s static stretching; (D 5 min jogging, followed by static stretching for 45 s. Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  6. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  7. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    Science.gov (United States)

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    Science.gov (United States)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal

  9. The association of trunk muscle cross-sectional area and magnetic resonance image parameters with isokinetic and psychophysical lifting strength and static back muscle endurance in men.

    Science.gov (United States)

    Gibbons, L E; Latikka, P; Videman, T; Manninen, H; Battié, M C

    1997-10-01

    The relationship between trunk muscle morphology as measured on transverse magnetic resonance images and isokinetic lifting, psychophysical lifting, and static back muscle endurance testing was examined in 110 men, ages 35-67 years (mean, 48 years), who had been chosen based on their exposure to a wide variety of occupational and leisure-time physical activities. The computed T2-relaxation times and the T2-weighted and proton density-weighted signal intensities of the erector spinae, quadratus lumborum, and psoas major muscles had almost no association with any of the strength tests. The cross-sectional areas of the muscles had good correlations with isokinetic lifting strength (r = 0.46-0.53). They did not correlate well with psychophysical lifting and static back muscle endurance. Other characteristics or neurological or psychological factors may have more influence on those tests.

  10. Particle roughness in magnetorheology: effect on the strength of the field-induced structures

    International Nuclear Information System (INIS)

    Vereda, F; Segovia-Gutiérrez, J P; De Vicente, J; Hidalgo-Alvarez, R

    2015-01-01

    We report a study on the effect of particle roughness on the strength of the field-induced structures of magnetorheological (MR) fluids in the quasi-static regime. We prepared one set of MR fluids with carbonyl iron particles and another set with magnetite particles, and in both sets we had particles with different degrees of surface roughness. Small amplitude oscillatory shear (SAOS) magnetosweeps and steady shear (SS) tests were carried out on the suspensions to measure their elastic modulus (G′) and static yield stress (τ static ). Results for both the iron and the magnetite sets of suspensions were consistent: for the MR fluids prepared with rougher particles, G′ increased at smaller fields and τ static was ca. 20% larger than for the suspensions prepared with relatively smooth particles. In addition to the experimental study, we carried out finite element method calculations to assess the effect of particle roughness on the magnetic interaction between particles. These calculations showed that roughness can facilitate the magnetization of the particles, thus increasing the magnetic energy of the system for a given field, but that this effect depends on the concrete morphology of the surface. For our real systems, no major differences were observed between the magnetization cycles of the MR fluids prepared with particles with different degree of roughness, which implied that the effect of roughness on the measured G′ and τ static was due mainly to friction between the solid surfaces of adjacent particles. (paper)

  11. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mather, Barry

    2017-08-24

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce the required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.

  12. Quasi-phase-matching of only even-order high harmonics.

    Science.gov (United States)

    Diskin, Tzvi; Cohen, Oren

    2014-03-24

    High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

  13. Quasi-Static Transient Thermal Stresses in an Elliptical Plate due to Sectional Heat Supply on the Curved Surfaces over the Upper Face

    Directory of Open Access Journals (Sweden)

    Lalsingh Khalsa

    2018-01-01

    Full Text Available This paper is an attempt to determine quasi-static thermal stresses in a thin elliptical plate which is subjected to transient temperature on the top face with zero temperature on the lower face and the homogeneous boundary condition of the third kind on the fixed elliptical curved surface. The solution to conductivity equation is elucidated by employing a classical method. The solution of stress components is achieved by using Goodier’s and Airy’s potential function involving the Mathieu and modified functions and their derivatives. The obtained numerical results are accurate enough for practical purposes, better understanding of the underlying elliptic object, and better estimates of the thermal effect on the thermoelastic problem. The conclusions emphasize the importance of better understanding of the underlying elliptic structure, improved understanding of its relationship to circular object profile, and better estimates of the thermal effect on the thermoelastic problem.

  14. HyPEP FY-07 Report: Initial Calculations of Component Sizes, Quasi-Static, and Dynamics Analyses

    International Nuclear Information System (INIS)

    Chang Oh

    2007-01-01

    The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept a VHTR outlet temperature of 900 C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. This report describes component sizing studies and control system strategies for achieving plant production and operability goals for these two reference systems. The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated using an analytic model. A partial load schedule and control system was designed for the integrated plant using a quasi-static simulation. Reactor stability for temperature perturbations in the hydrogen plant was investigated using both a simple analytic method and a dynamic simulation. Potential efficiency improvements over the VHTR/HTSE plant were investigated for an alternative design that directly couples a High Temperature Steam Rankin Cycle (HTRC) to the HTSE process. This work was done using the HYSYS code and results for the HTRC/HTSE system were compared to the VHTR/HTSE system. Integration of the VHTR with SI process plants was begun. Using the ASPEN plus code the efficiency was estimated. Finally, this report describes planning for the validation and verification of the HYPEP code

  15. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  16. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  17. The plane strain shear fracture of the advanced high strength steels

    International Nuclear Information System (INIS)

    Sun, Li

    2013-01-01

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component

  18. Femur-bending properties as influenced by gravity. V - Strength vs. calcium and gravity in rats exposed for 2 weeks

    Science.gov (United States)

    Wunder, Charles C.; Cook, Kenneth M.; Watkins, Stanley R.; Moressi, William J.

    1987-01-01

    The dependence of gravitationally related changes in femur bone strength on the comparable changes in calcium content was investigated in rats exposed to chronic simulations of altered gravity from the 28th to 42nd day of age. Zero G was simulated by harness suspension and 3 G by centrifugation. Bone strength (S) was determined by bending (using modified quasi-static cantilever bending methods and equipment described by Wunder et al., 1977 and 1979) and Ca content (C, by mass pct) determined by atomic absorption spectrometry; results were compared with data obtained on both normal and harnessed control animals at 1 G. Multiple regression showed significant dependence of S upon earth's gravity, independent from C, for which there was no significant coefficient of partial regression. It is suggested that the lack of S/C correlation might have been due to the fact that considerable fraction of the calcium in these young, developing bones has not yet crystallized into the hydroxyapatite which provides strength.

  19. The “ductility exhaustion” method for static strength assessment of fusion structures

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Vaughan, E-mail: vaughan.thompson@ccfe.ac.uk; Vizvary, Zsolt

    2015-10-15

    Graphical abstract: - Highlights: • Reduced conservatism and more complex geometry. • Assessment process simplified. • Gives insight into real material behaviour – virtual proof test. • Leads onto structural failure modelling. • Ductility exhaustion and global plastic collapse structural assessment. - Abstract: The traditional method for static strength assessment of structures uses elastic stresses computed along critical ligaments and then divided into categories depending on their nature e.g. bending/membrane and primary/secondary. More recently, highly realistic plastic simulations are possible using FE (finite elements) which offer useful advantages over the traditional approach including (a) more accurate modelling of complex geometries, (b) a more straightforward assessment process and (c) a less conservative approach. The plastic analysis must consider both global and local effects, and the paper looks in detail at the “ductility exhaustion” method for the latter. Simple test cases show how the method can be applied in both the Abaqus and ANSYS FE Codes and for the case of a JET beryllium tile, the method has improved reserve factors for disruption loads considerably to the point where the lower operating temperature can be safely lowered from 200 °C to 100 °C where the low ductility of beryllium is an issue.

  20. A Low Cost C8051F006 SoC-Based Quasi-Static C-V Meter for Characterizing Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Khairurrijal Khairurrijal

    2012-12-01

    Full Text Available Based on a C8051F006 SoC (system on-a-chip, a simple and low cost quasi-static capacitance-voltage (C-V meter was designed and developed to obtain C-V characteristics of semiconductor devices. The developed C-V meter consists of a capacitance meter, a programmable voltage source, a C8051F006 SoC-based slave controller, and a personal computer (PC as a master controller. The communication between the master and slave controllers is facilitated by the RS 232 serial communication. The accuracy of the C-V meter was guaranteed by the calibration functions, which are employed by the program in the PC and obtained through the calibration processes of analog to digital converter (ADC, digital to analog converters (DACs of the C8051F006 SoC, and the programmable voltage source. Examining 33-pF and 1000-pF capacitors as well three different p-n junction diodes, it was found that the capacitances of common capacitors are in the range of specified values and typical C-V curves of p-n junction diodes are achieved.

  1. From pair correlations to the quasi-particle-phonon nuclear model

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1986-01-01

    Modern state of the nucleus theory is discussed. The main attention is paid to pair correlation theory of superconducting type and quasiparticle - phonon nucleus model. Pair correlation account allowed one to describe in detail a series of nucleus properties which did not fall within the framework of earlier known models as, for example, double-quasi-particle states in even-even deformed nuclei. To describe the wave function low-quasi-particle components at low, mean and high excitation energies, the nucleus quasi-particle-phonon model is formulated. The strength function method is used in the model and fragmentation of mono-quasi-particle, mono-phonon states and quasi-particle phonon state by many nuclear levels is calculated

  2. Acute effect of passive static stretching on lower-body strength in moderately trained men.

    Science.gov (United States)

    Gergley, Jeffrey C

    2013-04-01

    The purpose of this investigation was conducted to determine the acute effect of passive static stretching (PSS) of the lower-body musculature on lower-body strength in a 1 repetition maximum (1RM) squat exercise in young (18-24 years.) moderately trained men (n = 17). Two supervised warm-up treatments were applied before each performance testing session using a counterbalanced design on nonconsecutive days. The first treatment consisted of an active dynamic warm-up (AD) with resistance machines (i.e., leg extension/leg flexion) and free weights (i.e., barbell squat), whereas the second treatment added PSS of the lower body plus the AD treatment. One repetition maximum was determined using the maximum barbell squat following a progressive loading protocol. Subjects were also asked to subjectively evaluate their lower-body stability during 1RM testing sessions for both the AD and PSS treatments. A significant decrease in 1RM (8.36%) and lower-body stability (22.68%) was observed after the PSS treatment. Plausible explanations for this observation may be related to a more compliant muscle tendon unit and/or altered or impaired neurologic function in the active musculature. It is also possible that strength was impaired by the PSS because of joint instability. The findings of this study suggest that intensive stretching such as lower-body PSS should be avoided before training the lower body or performing the 1RM in the squat exercise in favor of an AD dynamic warm-up using resistance training equipment in the lower-body musculature.

  3. Quasi-monoenergetic proton acceleration from cryogenic hydrogen microjet by ultrashort ultraintense laser pulses

    Science.gov (United States)

    Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.

    2018-03-01

    Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.

  4. The universality of the confining potential and the running of the quasi-Coulombic potential constant in the independent-quark model

    International Nuclear Information System (INIS)

    Khruschev, V.V.; Savrin, V.I.; Semenov, S.V.

    1999-01-01

    Parameters of the QCD-motivated static potential and the quark masses are calculated on the basis of the 1 -- meson mass spectra in the framework of the relativistic independent-quark model based on the Dirac equation. The value of the confining potential parameter is found to be (0.20 ± 0.01) GeV 2 for interactions between quarks and antiquarks independently on their flavors. The flavor independence of the confining potential is justified on the 5 x 10 -2 accuracy level both for the heavy quarks and for the light ones. The values of parameter α s , which is a strength of the quasi-Coulombic potential are consistent with the QCD-motivated decrease of α s at small interaction range [ru

  5. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    Science.gov (United States)

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  6. Three-way flexible cantilever probes for static contact

    International Nuclear Information System (INIS)

    Wang, Fei; Petersen, Dirch H; Hansen, Christian; Mortensen, Dennis; Friis, Lars; Hansen, Ole; Jensen, Helle V

    2011-01-01

    In micro four-point probe measurements, three-way flexible L-shaped cantilever probes show significant advantages over conventional straight cantilever probes. The L-shaped cantilever allows static contact to the sample surface which reduces the frictional wear of the cantilever tips. We analyze the geometrical design space that must be fulfilled for the cantilevers to obtain static contact with the test sample. The design space relates the spring constant tensor of the cantilevers to the minimal value of the static tip-to-sample friction coefficient. Using an approximate model, we provide the analytical calculation of the compliance matrix of the L-shaped cantilever. Compared to results derived from finite element model simulations, the theoretical model provides a good qualitative analysis while deviations for the absolute values are seen. From a statistical analysis, the deviation is small for cantilevers with low effective spring constants, while the deviation is significant for large spring constants where the quasi one-dimensional approximation is no longer valid

  7. Strategy for Alternative Occupant Volume Testing

    Science.gov (United States)

    2009-10-20

    This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...

  8. Quasi-Static Behavior of Palm-Based Elastomeric Polyurethane: For Strengthening Application of Structures under Impulsive Loadings

    Directory of Open Access Journals (Sweden)

    H. M. Chandima Chathuranga Somarathna

    2016-05-01

    Full Text Available In recent years, attention has been focused on elastomeric polymers as a potential retrofitting material considering their capability in contributing towards the impact resistance of various structural elements. A comprehensive understanding of the behavior and the morphology of this material are essential to propose an effective and feasible alternative to existing structural strengthening and retrofitting materials. This article presents the findings obtained from a series of experimental investigations to characterize the physical, mechanical, chemical and thermal behavior of eight types of palm-based polyurethane (PU elastomers, which were synthesized from the reaction between palm kernel oil-based monoester polyol (PKO-p and 4,4-diphenylmethane diisocyanate (MDI with polyethylene glycol (PEG as the plasticizer via pre-polymerization. Fourier transform infrared (FT-IR spectroscopy analysis was conducted to examine the functional groups in PU systems. Mechanical and physical behavior was studied with focus on elongation, stresses, modulus, energy absorption and dissipation, and load dispersion capacities by conducting hardness, tensile, flexural, Izod impact, and differential scanning calorimetry tests. Experimental results suggest that the palm-based PU has positive effects as a strengthening and retrofitting material against dynamic impulsive loadings both in terms of energy absorption and dissipation, and load dispersion. In addition, among all PUs with different plasticizer contents, PU2 to PU8 (which contain 2% to 8% (w/w PEG with respect to PKO-p content show the best correlation with mechanical response under quasi-static conditions focusing on energy absorption and dissipation and load dispersion characteristics.

  9. Controlled elastic postbuckling of bilaterally constrained non-prismatic columns: application to enhanced quasi-static energy harvesters

    Science.gov (United States)

    Liu, Suihan; Burgueño, Rigoberto

    2016-12-01

    Axially compressed bilaterally constrained columns, which can attain multiple snap-through buckling events in their elastic postbuckling response, can be used as energy concentrators and mechanical triggers to transform external quasi-static displacement input to local high-rate motions and excite vibration-based piezoelectric transducers for energy harvesting devices. However, the buckling location with highest kinetic energy release along the element, and where piezoelectric oscillators should be optimally placed, cannot be controlled or isolated due to the changing buckling configurations. This paper proposes the concept of stiffness variations along the column to gain control of the buckling location for optimal placement of piezoelectric transducers. Prototyped non-prismatic columns with piece-wise varying thickness were fabricated through 3D printing for experimental characterization and numerical simulations were conducted using the finite element method. A simple theoretical model was also developed based on the stationary potential energy principle for predicting the critical line contact segment that triggers snap-through events and the buckling morphologies as compression proceeds. Results confirm that non-prismatic column designs allow control of the buckling location in the elastic postbuckling regime. Compared to prismatic columns, non-prismatic designs can attain a concentrated kinetic energy release spot and a higher number of snap-buckling mode transitions under the same global strain. The direct relation between the column’s dynamic response and the output voltage from piezoelectric oscillator transducers allows the tailorable postbuckling response of non-prismatic columns to be used as multi-stable energy concentrators with enhanced performance in micro-energy harvesters.

  10. Quasi-elastic scattering of electrons from 40Ca at high momentum transfer

    International Nuclear Information System (INIS)

    Yates, T.C.

    1992-01-01

    Previous quasi-elastic electron scattering experiments have yielded seemingly inconsistent results when the integrated longitudinal strength is compared to calculations using the relativistic fermi gas model. Measurements made at Saclay on 12 C, 40 Ca, 48 Ca, 56 Fe, and 208 Pb indicated a smaller integrated longitudinal strength than expected on the basis of the relativistic fermi gas model. However, 238 U data taken at Bates showed nearly the full expected longitudinal strength at a momentum transfer of 550 MeV/c. This is one of the outstanding discrepancies in nuclear physics. Earlier experiments were hampered in that high momentum transfer could not be obtained at forward angles where the longtudinal strength is a large fraction of the total strength. The present experiment was designed to take advantage of the higher energy capability (greater than 800 MeV) at Bates recirculated linac in order to obtain momentum transfers greater than 600 MeV/c at a scattering angle of 45.5 degrees. Under these conditions the longitudinal strength is 40-75% of the total quasi-elastic strength

  11. Influence of structure on static cracking resistance and fracture of welded joints of pipe steels of strength class K60

    Science.gov (United States)

    Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2017-07-01

    The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.

  12. Strength and Power Training Effects on Lower Limb Force, Functional Capacity, and Static and Dynamic Balance in Older Female Adults.

    Science.gov (United States)

    Lopes, Paula Born; Pereira, Gleber; Lodovico, Angélica; Bento, Paulo C B; Rodacki, André L F

    2016-03-03

    It has been proposed that muscle power is more effective to prevent falls than muscle force production capacity, as rapid reactions are required to allow the postural control. This study aimed to compare the effects of strength and power training on lower limb force, functional capacity, and static and dynamic balance in older female adults. Thirty-seven volunteered healthy women had been allocated into the strength-training group (n = 14; 69 ± 7.3 years, 155 ± 5.6 cm, 72 ± 9.7 kg), the power-training group (n = 12; 67 ± 7.4 years, 153 ± 5.5 cm, 67.2 ± 7 kg), and control group (n = 11; 65 ± 3.1 years, 154 ± 5.6 cm, 70.9 ± 3 kg). After 12 weeks of training, the strength-training and power-training groups increased significantly maximum dynamic strength (29% and 27%), isometric strength (26% and 37%), and step total time (13% and 14%, dynamic balance), respectively. However, only the power-training group increased the rate of torque development (55%) and the functional capacity in 30-second chair stand (22%) and in time up and go tests (-10%). Empirically, power training may reduce the risk of injuries due to lower loads compared to strength training, and consequently, the physical effort demand during the training session is lower. Therefore, power training should be recommended as attractive training stimuli to improve lower limb force, functional capacity, and postural control of older female adults.

  13. A quasi-static algorithm that includes effects of characteristic time scales for simulating failures in brittle materials

    KAUST Repository

    Liu, Jinxing

    2013-04-24

    When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice, the characteristic relaxation time of the lattice, both of which are infinitesimal compared with Tload, the characteristic loading period. The load-unload (L-U) method is used for one extreme, Telem << Tlattice, whereas the force-release (F-R) method is used for the other, Telem T lattice. For cases between the above two extremes, we develop a new algorithm by combining the L-U and the F-R trial displacement fields to construct the new trial field. As a result, our algorithm includes both L-U and F-R failure characteristics, which allows us to observe the influence of the ratio of Telem to Tlattice by adjusting their contributions in the trial displacement field. Therefore, the material dependence of the snap-back instabilities is implemented by introducing one snap-back parameter γ. Although in principle catastrophic failures can hardly be predicted accurately without knowing all microstructural information, effects of γ can be captured by numerical simulations conducted on samples with exactly the same microstructure but different γs. Such a same-specimen-based study shows how the lattice behaves along with the changing ratio of the L-U and F-R components. © 2013 The Author(s).

  14. Transport efficiency in open quantum systems with static and dynamical disorder

    Science.gov (United States)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev

    2017-12-01

    We study, under very general conditions and in a variety of geometries, quantum enhancement of transport in open systems. Both static disorder and dephasing associated with dynamical disorder (or finite temperature) are fully included in the analysis. We show that quantum coherence effects may significantly enhance transport in open quantum systems even in the semiclassical regime (where the decoherence rate is greater than the inter-site hopping amplitude), as long as the static disorder is sufficiently strong. When the strengths of static and dynamical disorder are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected, for example, in the FMO photosynthetic complex, which may be viewed as being intermediate between these paradigmatic models. We furthermore show that a nonzero dephasing rate assists transport in an open linear chain when the disorder strength exceeds a critical value, and obtain this critical disorder strength as a function of the degree of opening.

  15. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  16. JAC, 2-D Finite Element Method Program for Quasi Static Mechanics Problems by Nonlinear Conjugate Gradient (CG) Method

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1991-01-01

    1 - Description of program or function: JAC is a two-dimensional finite element program for solving large deformation, temperature dependent, quasi-static mechanics problems with the nonlinear conjugate gradient (CG) technique. Either plane strain or axisymmetric geometry may be used with material descriptions which include temperature dependent elastic-plastic, temperature dependent secondary creep, and isothermal soil models. The nonlinear effects examined include material and geometric nonlinearities due to large rotations, large strains, and surface which slide relative to one another. JAC is vectorized to perform efficiently on the Cray1 computer. A restart capability is included. 2 - Method of solution: The nonlinear conjugate gradient method is employed in a two-dimensional plane strain or axisymmetric setting with various techniques for accelerating convergence. Sliding interface conditions are also implemented. A four-node Lagrangian uniform strain element is used with orthogonal hourglass viscosity to control the zero energy modes. Three sets of continuum equations are needed - kinematic statements, constitutive equations, and equations of equilibrium - to describe the deformed configuration of the body. 3 - Restrictions on the complexity of the problem - Maxima of: 10 load and solution control functions, 4 materials. The strain rate is assumed constant over a time interval. Current large rotation theory is applicable to a maximum shear strain of 1.0. JAC should be used with caution for large shear strains. Problem size is limited only by available memory

  17. Modeling a nucleon system: static and dynamical properties - density fluctuations

    International Nuclear Information System (INIS)

    Idier, D.

    1997-01-01

    This thesis sets forth a quasi-particle model for the static and dynamical properties of nuclear matter. This model is based on a scale ratio of quasi-particle to nucleons and the projection of the semi-classical distribution on a coherent Gaussian state basis. The first chapter is dealing with the transport equations, particularly with the Vlasov equation for Wigner distribution function. The second one is devoted to the statics of nuclear matter. Here, the sampling effect upon the nuclear density is treated and the state equation of the Gaussian fluid is compared with that given by Hartree-Fock approximation. We define state equation as the relationship between the nucleon binding energy and density, for a given temperature. The curvature around the state equation minimum of the quasi-particle system is shown to be related to the speed of propagation of density perturbation. The volume energy and the surface properties of a (semi-)infinite nucleon system are derived. For the resultant saturated auto-coherent semi-infinite system of quasi-particles the surface coefficient appearing in the mass formula is extracted as well as the system density profile. The third chapter treats the dynamics of the two-particle residual interactions. The effect of different parameters on relaxation of a nucleon system without a mean field is studied by means of a Eulerian and Lagrangian modeling. The fourth chapter treats the volume instabilities (spinodal decomposition) in nuclear matter. The quasi-particle systems, initially prepared in the spinodal region of the utilized interaction, are set to evolve. It is shown then that the scale ratio acts upon the amount of fluctuations injected in the system. The inhomogeneity degree and a proper time are defined and the role of collisions in the spinodal decomposition as well as that of the initial temperature and density, are investigated. Assuming different effective macroscopic interactions, the influence of quantities as

  18. Quasi-static axial crushes on woven jute/polyester AA6063T52 composite tubes

    Science.gov (United States)

    Othman, A.; Ismail, AE

    2018-04-01

    Quasi-static axial loading have been studied in this paper to determine the behaviour of jute/polyester wrapped on aluminium alloy 6063T52. The filler material also was include into crush box specimen, which is polyurethane (PU) and polystyrene (PE) rigid foam at ranging 40 and 45 kg/m3 densities. All specimen profile was fabricated using hand layup techniques and the length of each specimen were fixed at 100 mm as well as diameter and width of the tube at 50.8 mm. The two types of tubular cross-section were studied of round and square thin-walled profiles and the angle of fibre at 450 were analysed for four layers. Thin walled of aluminium was 1.9 mm and end frontal of each specimen of composite were chamfered at 450 to prevent catastrophic failure mode. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyses for each specimen to see the behaviour on jute/polyester wrapped on metallic structure can give influence the energy management for automotive application. Result show that the four layers’ jute/polyester with filler material show significant value in term of specific absorbed energy compared empty and polyurethane profiles higher 26.66% for empty and 15.19% compared to polyurethane profiles. It has been found that the thin walled square profile of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 27.42% to 13.13% than empty and polyurethane (PU) foam tubes. An introduce filler material onto thin walled composite profiles gave major advantage increases the mean axial load of 31.87% from 32.94 kN to 48.35 kN from empty to polystyrene thin walled round jute/polyester profiles and 31.7% from 23.11 KN to 33.84 kN from empty to polystyrene thin walled square jute/polyester profiles. Failure mechanisms of the axially loaded composite tubes were also observed and discussed.

  19. High static gel strength cement slurries for gas flow-laboratory surveys and case history

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P.; Ribeiro, Danilo [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pessoa, Laudemar [University of Adelaide (Australia). Math. Bachelor Master Petroleum Engineer

    2008-07-01

    Gas migration is a phenomenon involving fluid density control, well conditioning, good adherence of the cement slurry to the contacting surfaces, chemical-physical properties, cement hydration mechanisms, and the well's geometry. This problem is evident in several producing wells with a pressurized annulus. Recently, a trend of combining operational techniques with cement slurries capable of developing very high static gel strength (SGS) has developed. Slurry designs intended to confer high SGS almost always have greater rheologies. This can make it difficult to mix the slurry on surfaces or even move the slurry placement through the well, more so because gas-producing wells are typically deep and have complex geometry. This paper evaluates the industry's understanding of this problem. It compares the major solutions with current cement slurry designs and, in addition to the conventional specific gas well parameters, it emphasizes the high SGS and low rheologies on surface conditions. This study also documents the success and efficiency of cementing at a Brazilian sedimentary basin which was completed using designs recommended in this work. This paper does not consider the gas migration occurrence through the cementing matrix. (author)

  20. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    Science.gov (United States)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source

  1. An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos T.; Larsen, A.

    2012-01-01

    roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3- DOF quasi-steady galloping instability model, which accounts for sectional axial...... rotation. A comparison between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic tests is presented. It is shown that, although there is good agreement between the instabilities found through use of the quasi-steady theory and the dynamic tests, discrepancies exist......-indicating the possible inability of quasi-steady theory to fully predict these vibrational instabilities....

  2. Study of Channel Characteristics for Galvanic-Type Intra-Body Communication Based on a Transfer Function from a Quasi-Static Field Model

    Directory of Open Access Journals (Sweden)

    Min Du

    2012-11-01

    Full Text Available Intra-Body Communication (IBC, which modulates ionic currents over the human body as the communication medium, offers a low power and reliable signal transmission method for information exchange across the body. This paper first briefly reviews the quasi-static electromagnetic (EM field modeling for a galvanic-type IBC human limb operating below 1 MHz and obtains the corresponding transfer function with correction factor using minimum mean square error (MMSE technique. Then, the IBC channel characteristics are studied through the comparison between theoretical calculations via this transfer function and experimental measurements in both frequency domain and time domain. High pass characteristics are obtained in the channel gain analysis versus different transmission distances. In addition, harmonic distortions are analyzed in both baseband and passband transmissions for square input waves. The experimental results are consistent with the calculation results from the transfer function with correction factor. Furthermore, we also explore both theoretical and simulation results for the bit-error-rate (BER performance of several common modulation schemes in the IBC system with a carrier frequency of 500 kHz. It is found that the theoretical results are in good agreement with the simulation results.

  3. Quasi-static displacement calibration system for a "Violin-Mode" shadow-sensor intended for Gravitational Wave detector suspensions

    Science.gov (United States)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-10-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect "Violin-Mode" (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a "synthesized split photodiode" detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC "shadow notch" outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing "jitter" at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  4. Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother

    Science.gov (United States)

    Fillion, Anthony; Bocquet, Marc; Gratton, Serge

    2018-04-01

    The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS) minimization may overcome these local extrema. It accomplishes this by gradually injecting the observations in the cost function. This method was introduced by Pires et al. (1996) in a 4D-Var context. We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces one to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.

  5. Estimation of quasi-static J–R curves from Charpy energy and adaptation to ASTM E 1921 reference temperature estimation of ferritic steels

    International Nuclear Information System (INIS)

    Sreenivasan, P.R.

    2014-01-01

    Many researchers had suggested a sort of scaling procedure for predicting the quasi-static J–R curves from dynamic J–R curves obtained from instrumented Charpy V-notch (CVN) impact tests using key-curve, compliance or other procedures. Chaouadi, based on extensive tests and literature data, had quantitatively formalized the method and suggested general applicability of his method for a class of steels. In this paper, first, the Chauoadi-procedure is tried on some selected data from the literature (including the data used by Chaouadi and other workers) and an adaptation of the method is suggested using Wallin's as well as Landes's lower bound methods for upper-shelf J–R curve estimation from CVN energy. Using Chaouadi and other data as the benchmark, suitable scaling factors have been determined that enable estimation of quasi-static J–R curves from CVN energy alone, without the need for dynamic CVN J–R curves. The final formulae are given. This new method can be called modified Wallin–Landes procedure. Then this method is applied to fracture toughness and reference temperature (T 0 – ASTM E-1921) estimation from the full Charpy-transition data. The results are compared with those from the author's IGC-procedure, and modifications, if any, are suggested. Based on the new results, it is suggested that the IGC-procedure may be modified as: final T Q-est = T Q-IGC for T Q-Sch dy ≤ 20 °C (in the IGC-procedure the dividing temperature was 60 °C); and for T Q-Sch dy > 20 °C, T Q-IGC = T Q-WLm (different from the IGC-procedre and subscript WLm indicating modified Wallin–Landes procedure). For the 59 or more steels examined (including highly irradiated steels), the T Q-WL estimates at higher temperatures are consistent and conservative; a few non-conservative values are acceptably less than 20 °C, whereas other predictions show non-conservatism of up to 40–50 °C. At lower temperatures, T Q-IGC is consistently conservative and not over

  6. Estimation of quasi-static J–R curves from Charpy energy and adaptation to ASTM E 1921 reference temperature estimation of ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R., E-mail: sreeprs@yahoo.co.in

    2014-04-01

    Many researchers had suggested a sort of scaling procedure for predicting the quasi-static J–R curves from dynamic J–R curves obtained from instrumented Charpy V-notch (CVN) impact tests using key-curve, compliance or other procedures. Chaouadi, based on extensive tests and literature data, had quantitatively formalized the method and suggested general applicability of his method for a class of steels. In this paper, first, the Chauoadi-procedure is tried on some selected data from the literature (including the data used by Chaouadi and other workers) and an adaptation of the method is suggested using Wallin's as well as Landes's lower bound methods for upper-shelf J–R curve estimation from CVN energy. Using Chaouadi and other data as the benchmark, suitable scaling factors have been determined that enable estimation of quasi-static J–R curves from CVN energy alone, without the need for dynamic CVN J–R curves. The final formulae are given. This new method can be called modified Wallin–Landes procedure. Then this method is applied to fracture toughness and reference temperature (T{sub 0} – ASTM E-1921) estimation from the full Charpy-transition data. The results are compared with those from the author's IGC-procedure, and modifications, if any, are suggested. Based on the new results, it is suggested that the IGC-procedure may be modified as: final T{sub Q-est} = T{sub Q-IGC} for T{sub Q-Sch}{sup dy} ≤ 20 °C (in the IGC-procedure the dividing temperature was 60 °C); and for T{sub Q-Sch}{sup dy} > 20 °C, T{sub Q-IGC} = T{sub Q-WLm} (different from the IGC-procedre and subscript WLm indicating modified Wallin–Landes procedure). For the 59 or more steels examined (including highly irradiated steels), the T{sub Q-WL} estimates at higher temperatures are consistent and conservative; a few non-conservative values are acceptably less than 20 °C, whereas other predictions show non-conservatism of up to 40–50 °C. At lower temperatures

  7. Fracture toughness of Ti-Al3Ti-Al-Al3Ti laminate composites under static and cyclic loading conditions

    Science.gov (United States)

    Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.

    2015-10-01

    The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.

  8. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  9. Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant. Quasi-Static and Dynamic Penetration Testing

    Science.gov (United States)

    Marshall, Jason P.; Hudson, Troy L.; Andrade, José E.

    2017-10-01

    The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole's penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material's thermal conductivity due to the Mole's penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole's impact on Martian regolith thermal properties.

  10. Static field influences on transcranial magnetic stimulation: considerations for TMS in the scanner environment.

    Science.gov (United States)

    Yau, Jeffrey M; Jalinous, Reza; Cantarero, Gabriela L; Desmond, John E

    2014-01-01

    Transcranial magnetic stimulation (TMS) can be combined with functional magnetic resonance imaging (fMRI) to simultaneously manipulate and monitor human cortical responses. Although tremendous efforts have been directed at characterizing the impact of TMS on image acquisition, the influence of the scanner's static field on the TMS coil has received limited attention. The aim of this study was to characterize the influence of the scanner's static field on TMS. We hypothesized that spatial variations in the static field could account for TMS field variations in the scanner environment. Using an MRI-compatible TMS coil, we estimated TMS field strengths based on TMS-induced voltage changes measured in a search coil. We compared peak field strengths obtained with the TMS coil positioned at different locations (B0 field vs fringe field) and orientations in the static field. We also measured the scanner's static field to derive a field map to account for TMS field variations. TMS field strength scaled depending on coil location and orientation with respect to the static field. Larger TMS field variations were observed in fringe field regions near the gantry as compared to regions inside the bore or further removed from the bore. The scanner's static field also exhibited the greatest spatial variations in fringe field regions near the gantry. The scanner's static field influences TMS fields and spatial variations in the static field correlate with TMS field variations. Coil orientation changes in the B0 field did not result in substantial TMS field variations. TMS field variations can be minimized by delivering TMS in the bore or outside of the 0-70 cm region from the bore entrance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  12. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    Science.gov (United States)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  13. A curved beam test specimen for determining the interlaminar tensile strength of a laminated composite

    Science.gov (United States)

    Hiel, Clement C.; Sumich, Mark; Chappell, David P.

    1991-01-01

    A curved beam type of test specimen is evaluated for use in determining the through-the-thickness strength of laminated composites. Two variations of a curved beam specimen configuration (semicircular and elliptical) were tested to failure using static and fatigue loads. The static failure load for the semicircular specimens was found to be highly sensitive to flaw content, with the specimens falling into two distinct groups. This result supports the use of proof testing for structural validation. Static design allowables are derived based on the Weibull distribution. Fatigue data indicates no measured increase in specimen compliance prior to final fracture. All static and fatigue failures at room temperature dry conditions occurred catastrophically. The elliptical specimens demonstrated unusually high failure strengths indicating the presence of phenomena requiring further study. Results are also included for specimens exposed to a wet environment showing a matrix strength degradation due to moisture content. Further testing is underway to evaluate a fatigue methodology for matrix dominated failures based on residual static strength (wearout).

  14. Experimental study on vertical static stiffnesses of polycal wire rope isolators

    Science.gov (United States)

    Balaji, P. S.; Moussa, Leblouba; Khandoker, Noman; Yuk Shyh, Ting; Rahman, M. E.; Hieng Ho, Lau

    2017-07-01

    Wire rope isolator is one of the most effective isolation system that can be used to attenuate the vibration disturbances and shocks during the operation of machineries. This paper presents the results of investigation on static elastic stiffnesses (both in tension and in compression) of Polycal Wire Rope Isolator (PWRI) under quasi-static monotonic loading conditions. It also studied effect of variations in height and width of PWRI on its static stiffnesses. Suitable experimental setup was designed and manufactured to meet the test conditions. The results show that their elastic stiffnesses for both tension and compression loading conditions are highly influenced by their geometric dimensions. It is found that their compressive stiffness reduced by 55% for an increment of 20% in their height to width ratio. Therefore, the stiffness of PWRI can be fine-tuned by controlling their dimensions according to the requirements of the application.

  15. The Quasi-Toroidal Stellarator: An Innovative Confinement Experiment

    International Nuclear Information System (INIS)

    Knowlton, S. F.

    2001-01-01

    To develop a new class of stellarators that exhibit improved confinement compared to conventional stellarators. This approach generally makes use of a designed symmetry of the magnetic field strength along a particular coordinate axis in the toroidal geometry of the stellarator, and is referred to as quasi-symmetry

  16. Enhanced quasi-static particle-in-cell simulation of electron cloud instabilities in circular accelerators

    Science.gov (United States)

    Feng, Bing

    Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac

  17. Quasi-estatic and dynamic elasto/viscoplastic analysis of plates and shells

    International Nuclear Information System (INIS)

    Dinis, L.M.S.

    1981-01-01

    The non-linear quasi-static and dynamic analysis of plates and shells is presented using the finite - element method for spatial discretization and the Central Finite Differences for the integration of the transient dynamic equation. The behaviour of the material is represented by the elasto/viscoplastic model of Perzyna together with approximations of the Von Mises yield surfaces for plates and shells. (Author) [pt

  18. Quasi experimental designs in pharmacist intervention research.

    Science.gov (United States)

    Krass, Ines

    2016-06-01

    Background In the field of pharmacist intervention research it is often difficult to conform to the rigorous requirements of the "true experimental" models, especially the requirement of randomization. When randomization is not feasible, a practice based researcher can choose from a range of "quasi-experimental designs" i.e., non-randomised and at time non controlled. Objective The aim of this article was to provide an overview of quasi-experimental designs, discuss their strengths and weaknesses and to investigate their application in pharmacist intervention research over the previous decade. Results In the literature quasi experimental studies may be classified into five broad categories: quasi-experimental design without control groups; quasi-experimental design that use control groups with no pre-test; quasi-experimental design that use control groups and pre-tests; interrupted time series and stepped wedge designs. Quasi-experimental study design has consistently featured in the evolution of pharmacist intervention research. The most commonly applied of all quasi experimental designs in the practice based research literature are the one group pre-post-test design and the non-equivalent control group design i.e., (untreated control group with dependent pre-tests and post-tests) and have been used to test the impact of pharmacist interventions in general medications management as well as in specific disease states. Conclusion Quasi experimental studies have a role to play as proof of concept, in the pilot phases of interventions when testing different intervention components, especially in complex interventions. They serve to develop an understanding of possible intervention effects: while in isolation they yield weak evidence of clinical efficacy, taken collectively, they help build a body of evidence in support of the value of pharmacist interventions across different practice settings and countries. However, when a traditional RCT is not feasible for

  19. FINITE MARKOV CHAINS IN THE MODEL REPRESENTATION OF THE HUMAN OPERATOR ACTIVITY IN QUASI-FUNCTIONAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    M. V. Serzhantova

    2016-05-01

    Full Text Available Subject of Research. We analyze the problems of finite Markov chains apparatus application for simulating a human operator activity in the quasi-static functional environment. It is shown that the functional environment stochastic nature is generated by a factor of interval character of human operator properties. Method. The problem is solved in the class of regular (recurrent finite Markov chains with three states of the human operator: with a favorable, median and unfavorable combination of the values of mathematical model parameters of the human operator in a quasi-static functional environment. The finite Markov chain is designed taking into account the factors of human operator tiredness and interval character of parameters of the model representation of his properties. The device is based on the usage of mathematical approximation of the standard curve of the human operator activity performance during work shift. The standard curve of the human operator activity performance is based on the extensive research experience of functional activity of the human operator with the help of photos of the day, his action timing and ergonomic generalizations. Main Results. The apparatus of regular finite Markov chains gave the possibility to evaluate correctly the human operator activity performance in a quasi-static functional environment with the use of the main information component of these chains as a vector of final probabilities. In addition, we managed to build an algorithmic basis for estimating the stationary time (time study for transit of human operator from arbitrary initial functional state into a state corresponding to a vector of final probabilities for a used chain after it reaches the final state based on the analysis of the eigenvalues spectrum of the matrix of transition probabilities for a regular (recurrent finite Markov chain. Practical Relevance. Obtained theoretical results are confirmed by illustrative examples, which

  20. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    International Nuclear Information System (INIS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-01-01

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm

  1. Numerical Modeling Describing the Effects of Heterogeneous Distributions of Asperities on the Quasi-static Evolution of Frictional Slip

    Science.gov (United States)

    Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.

    2017-12-01

    A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.

  2. Quasi-static displacement calibration system for a “Violin-Mode” shadow-sensor intended for Gravitational Wave detector suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance), Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

    2014-10-15

    This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect “Violin-Mode” (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a “synthesized split photodiode” detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC “shadow notch” outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing “jitter” at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 ± 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 ± 13) pm (rms)/√Hz, at 500 Hz, over the required measuring span of ±0.1 mm.

  3. The strength of polyaxial locking interfaces of distal radius plates.

    Science.gov (United States)

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  4. Quasi-particle excitations and dynamical structure function of trapped Bose-condensates in the WKB approximation

    OpenAIRE

    Csordás, András; Graham, Robert; Szépfalusy, Péter

    1997-01-01

    The Bogoliubov equations of the quasi-particle excitations in a weakly interacting trapped Bose-condensate are solved in the WKB approximation in an isotropic harmonic trap, determining the discrete quasi-particle energies and wave functions by torus (Bohr-Sommerfeld) quantization of the integrable classical quasi-particle dynamics. The results are used to calculate the position and strengths of the peaks in the dynamic structure function which can be observed by off-resonance inelastic light...

  5. Hybrid static-runtime information flow and declassification enforcement

    NARCIS (Netherlands)

    Pontes Soares Rocha, B.; Conti, M.; Etalle, S.; Crispo, B.

    2013-01-01

    There are different paradigms for enforcing information flow and declassification policies. These approaches can be divided into static analyzers and runtime enforcers. Each class has its own strengths and weaknesses, each being able to enforce a different set of policies. In this paper we introduce

  6. Hybrid static-runtime information flow and declassification enforcement

    NARCIS (Netherlands)

    Rocha, Bruno P.S.; Conti, Mauro; Etalle, Sandro; Crispo, Bruno

    There are different paradigms for enforcing information flow and declassification policies. These approaches can be divided into static analyzers and runtime enforcers. Each class has its own strengths and weaknesses, each being able to enforce a different set of policies. In this paper, we

  7. Fatigue Strength of Reinforced Concrete Flexural Members | Kuryllo ...

    African Journals Online (AJOL)

    It is well known that reinforced concrete flexural members subjected to cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of concrete and steel are well below the corresponding static strengths. But up till now ...

  8. Fast particles confinement in stellarators with both poloidal-pseudo-symmetry and quasi-isodynamicity

    International Nuclear Information System (INIS)

    Mikhailov, M.I.; Yamazaki, K.

    2004-04-01

    By analytical and computational consideration it is shown that the condition of quasi-isodynamicity for the configurations with poloidal direction of the contours of the magnetic field strength on the magnetic surfaces can be fulfilled with high enough accuracy for compact configuration. It is shown that for the configurations with toroidal direction of these contours the condition of quasi-isodynamicity is equivalent to the condition of quasi-symmetry, so that there is no the gap between these two conditions. The further optimization is required to stabilize the ballooning modes in the considered configuration. (author)

  9. Characterization of Depleted-Uranium Strength and Damage Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gray, III, George T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Shuh-Rong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dennis-Koller, Darcie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cerreta, Ellen K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCabe, Rodney J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schraad, Mark W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thoma, Dan J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lopez, Mike F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mason, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Carl P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korzekwa, Deniece R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luscher, Darby J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hixson, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maudlin, Paul J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, A. M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2012-12-17

    The intent of this report is to document the status of our knowledge of the mechanical and damage behavior of Depleted Uranium(DU hereafter). This report briefly summaries the motivation of the experimental and modeling research conducted at Los Alamos National Laboratory(LANL) on DU since the early 1980’s and thereafter the current experimental data quantifying the strength and damage behavior of DU as a function of a number of experimental variables including processing, strain rate, temperature, stress state, and shock prestraining. The effect of shock prestraining on the structure-property response of DU is described and the effect on post-shock mechanical behavior of DU is discussed. The constitutive experimental data utilized to support the derivation of two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, for both annealed and shock prestrained DU are detailed and the Taylor cylinder validation tests and finite-element modeling (FEM) utilized to validate these strength models is discussed. The similarities and differences in the PTW and MTS model descriptions for DU are discussed for both the annealed and shock prestrained conditions. Quasi-static tensile data as a function of triaxial constraint and spallation test data are described. An appendix additionally briefly describes low-pressure equation-of-state data for DU utilized to support the spallation experiments. The constitutive behavior of DU screw/bolt material is presented. The response of DU subjected to dynamic tensile extrusion testing as a function of temperature is also described. This integrated experimental technique is planned to provide an additional validation test in the future. The damage data as a function of triaxiality, tensile and spallation data, is thereafter utilized to support derivation of the Tensile Plasticity (TEPLA) damage model and simulations for comparison to the DU spallation data are presented

  10. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  11. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  12. A Class of Quasi-exact Solutions of Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.

    2007-01-01

    A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.

  13. Quasi-exact solvability of the one-dimensional Holstein model

    International Nuclear Information System (INIS)

    Pan Feng; Dai Lianrong; Draayer, J P

    2006-01-01

    The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is solved by using a Bethe ansatz in analogue to that for the one-dimensional spinless Fermi-Hubbard model. Excitation energies and the corresponding wavefunctions of the model are determined by a set of partial differential equations. It is shown that the model is, at least, quasi-exactly solvable for the two-site case, when the phonon frequency, the electron-phonon coupling strength and the hopping integral satisfy certain relations. As examples, some quasi-exact solutions of the model for the two-site case are derived. (letter to the editor)

  14. Influence of Temperature on Mechanical Behavior During Static Restore Processes of Al-Zn-Mg-Cu High Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Kun

    2017-06-01

    Full Text Available Flow stress behaviors of as-cast Al-Zn-Mg-Cu high strength aluminum alloy during static restore processes were investigated by: Isothermal double-pass compression tests at temperatures of 300-400℃, strain rates of 0.01-1 s-1, strains of 33% +20% with the holding times of 0~900 s after the first pass compression. The results indicate that the deformation temperature has a dramatical effect on mechanical behaviors during static restore processes of the alloy. (1 At 300 ℃ and 330 ℃ lower temperatures, the recovery during the deformation is slow, and deformation energy stored in matrix is higher, flow stresses at the second pass deformation decreased during the recovery and recrystallization, and the stress softening phenomena is observed. Stress softening is increased with the increasing holding time; Precipitation during the holding time inhibites the stress softening. (2 At 360 ℃ and 400 ℃ higher temperatures, the recovery during deformation is rapid, and deformation energy stored in matrix is lower. Solid solubility is higher after holding, so that flow stress at the second pass deformation is increased, stress hardening phenomena is observed. Stress hardening decreased with the increasing holding time duo to the recovery and recrystallization during holding period at 360 ℃; Precipitation during holding also inhibited the stress softening. However, Stress hardening remains constant with the increasing holding time duo to the reasanenal there are no recovery and recrystallization during holding period at 400 ℃.

  15. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    Science.gov (United States)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  16. Static friction in elastic adhesion contacts in MEMS

    NARCIS (Netherlands)

    Tas, Niels Roelof; Gui, C.; Elwenspoek, Michael Curt

    2003-01-01

    Static friction in a shearing mode can be expressed as the product of the shear strength of the interface and the real contact area. The influence of roughness on friction in elastic adhesion contact is analyzed. The effect of adhesion is included using Maugis' expansion of the Greenwood and

  17. Fluorescent lamp with static magnetic field generating means

    Science.gov (United States)

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  18. Development of high strength steel sheets for crashworthiness; Shototsu anzen`yo kokyodo usu koban no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, K; Yamamoto, M; Mizui, N; Hirose, Y; Kojima, K [Sumitomo Metal Industries, Ltd. Osaka (Japan)

    1997-10-01

    For frontal or rear members of automotive body, the most suitable high strength steel was investigated. Dynamic tensile test at strain-rate of 2000/s and crash test of hat-shape column at 4m/s were conducted for steel sheets with tensile strength ranging from 290 to 980 MPa. Dynamic tensile strength increases with increasing static one but the ratio of dynamic tensile strength to static one decreases. Tensile strength remarkably affects crash energy absorption of column and TRIP steel is superior to other steels with same tensile strength. 7 refs., 16 figs., 1 tab.

  19. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    Science.gov (United States)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  20. Research on the compressive strength of a passenger vehicle roof

    Science.gov (United States)

    Zhao, Guanglei; Cao, Jianxiao; Liu, Tao; Yang, Na; Zhao, Hongguang

    2017-05-01

    To study the compressive strength of a passenger vehicle roof, this paper makes the simulation test on the static collapse of the passenger vehicle roof and analyzes the stress and deformation of the vehicle roof under pressure in accordance with the Roof Crush Resistance of Passenger Cars (GB26134-2010). It studies the optimization on the major stressed parts, pillar A, pillar B and the rail of roof, during the static collapse process of passenger vehicle roof. The result shows that the thickness of pillar A and the roof rail has significant influence on the compressive strength of the roof while that of pillar B has minor influence on the compressive strength of the roof.

  1. A note on the post-Newtonian limit of quasi-local energy expressions

    International Nuclear Information System (INIS)

    Frauendiener, Jörg; Szabados, László B

    2011-01-01

    An 'effective' quasi-local energy expression, motivated by the (relativistically corrected) Newtonian theory, is introduced in exact general relativity as the volume integral of all the source terms in the field equation for the Newtonian potential in static spacetimes. In particular, we exhibit a new post-Newtonian correction in the source term in the field equation for the Newtonian gravitational potential. In asymptotically flat spacetimes, this expression tends to the Arnowitt-Deser-Misner energy at spatial infinity as a monotonically decreasing set function. We prove its positivity in spherically symmetric spacetimes under certain energy conditions, and that its vanishing characterizes flatness. We argue that any physically acceptable quasi-local energy expression should behave qualitatively like this 'effective' energy expression in this limit. (paper)

  2. Quasi real-time estimation of the moment magnitude of large earthquake from static strain changes

    Science.gov (United States)

    Itaba, S.

    2016-12-01

    The 2011 Tohoku-Oki (off the Pacific coast of Tohoku) earthquake, of moment magnitude 9.0, was accompanied by large static strain changes (10-7), as measured by borehole strainmeters operated by the Geological Survey of Japan in the Tokai, Kii Peninsula, and Shikoku regions. A fault model for the earthquake on the boundary between the Pacific and North American plates, based on these borehole strainmeter data, yielded a moment magnitude of 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency (JMA) announced just after earthquake occurrence was 7.9. Such geodetic moment magnitudes, derived from static strain changes, can be estimated almost as rapidly as determinations using seismic waves. I have to verify the validity of this method in some cases. In the case of this earthquake's largest aftershock, which occurred 29 minutes after the mainshock. The prompt report issued by JMA assigned this aftershock a magnitude of 7.3, whereas the moment magnitude derived from borehole strain data is 7.6, which is much closer to the actual moment magnitude of 7.7. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using static strain changes is one of the strong methods for rapid estimation of the magnitude of large earthquakes, and useful to improve the accuracy of Earthquake Early Warning.

  3. The role of visual representation in physics learning: dynamic versus static visualization

    Science.gov (United States)

    Suyatna, Agus; Anggraini, Dian; Agustina, Dina; Widyastuti, Dini

    2017-11-01

    This study aims to examine the role of visual representation in physics learning and to compare the learning outcomes of using dynamic and static visualization media. The study was conducted using quasi-experiment with Pretest-Posttest Control Group Design. The samples of this research are students of six classes at State Senior High School in Lampung Province. The experimental class received a learning using dynamic visualization and control class using static visualization media. Both classes are given pre-test and post-test with the same instruments. Data were tested with N-gain analysis, normality test, homogeneity test and mean difference test. The results showed that there was a significant increase of mean (N-Gain) learning outcomes (p physical phenomena and requires long-term observation.

  4. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression

    International Nuclear Information System (INIS)

    Wei, Q.; Jiao, T.; Ramesh, K.T.; Ma, E.; Kecskes, L.J.; Magness, L.; Dowding, R.; Kazykhanov, V.U.; Valiev, R.Z.

    2006-01-01

    We have systematically investigated the quasi-static and dynamic mechanical behavior (especially dynamic failure) of ultra-fine grained (UFG) tungsten (W) under uniaxial compression. The starting material is of commercial purity and large grain size. We utilized severe plastic deformation to achieve the ultrafine microstructure characterized by grains and subgrains with sizes of ∼500 nm, as identified by transmission electron microscopy. Results of quasi-static compression show that the UFG W behaves in an elastic-nearly perfect plastic manner (i.e., vanishing strain hardening), with its flow stress approaching 2 GPa, close to twice that of conventional coarse grain W. Post-mortem examinations of the quasi-statically loaded samples show no evidence of cracking, in sharp contrast to the behavior of conventional W (where axial cracking is usually observed). Under uniaxial dynamic compression (strain rate ∼10 3 s -1 ), the true stress-true strain curves of the UFG W exhibit significant flow softening, and the peak stress is ∼3 GPa. Furthermore, the strain rate sensitivity of the UFG W is reduced to half the value of the conventional W. Both in situ high-speed photography and post-mortem examinations reveal shear localization and as a consequence, cracking of the UFG W under dynamic uniaxial compression. These observations are consistent with recent observations on other body-centered cubic metals with nanocrystalline or ultrafine microstructures. The experimental results are discussed using existing models for adiabatic shear localization in metals

  5. The relationship between gait parameters and static and dynamic balance in the elderly

    Directory of Open Access Journals (Sweden)

    Razieh Tabe

    2015-02-01

    Full Text Available Background: The physiological changes and muscle problems can lead to balance disorder and increased risk of falling among the elderly. Therefore, it is necessary to evaluate the factors associated with balance in the elderly, to increase their awareness of the falling risks and to provide them with appropriate assistive devices.. Hence, this study was carried out to investigate the relationship between some gait parameters and static and dynamic balance in the elderly. Methods: In this quasi-experimental study, 44 men and women in two groups (22 per group participated as the study sample. The measured values included step length, stride length, step width, rotating angle of toes, and static and dynamic balance. The static balance was measured with Romberg test and dynamic balance with TUGTU test. Data were analysed by SPSS-15 software using t-test and Pearson correlation coefficient. Results: There was a significant relationship between step length and stride length with static and dynamic balance and between step width and dynamic balance (p0/05. But no significant relationship was reported between step width and static balance and between rotating angle of toes with static and dynamic balance among the elderly. Conclusions: the elderly balance can be improved by decreasing the step length and increasing the stride length, thereby reducing the possibility of their falling.

  6. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.

    Science.gov (United States)

    Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian

    2015-01-01

    Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.

  7. Quasi-free one nucleon knockout reactions on neutron-rich oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla; Aumann, Thomas [TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerse (United States); Paschalis, Stefanos [TU Darmstadt, Darmstadt (Germany); Nociforo, Chiara [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    Recent experiments have shown a reduction of spectroscopic strengths to about 60-70% for stable nuclei. When going to drip lines this tendency is changing, loosely bound nucleons have spectroscopic strengths close unity while deeply bound nucleons have a large reduction of the strength. We aim to make a systematic study of spectroscopic factors (SF) of the Oxygen isotopes using quasi-free (p,2p) and (p,pn) knockout reactions in inverse kinematics. Quasi-free knockout reactions are a direct tool to study the occupancy and the location of valance and deeply bound single particle states. The Oxygen isotopes offer a large variation of separation energies which will allow us to obtain a qualitative and quantitative understanding of SF in a large variation of isospin asymmetry. For this we performed an experiment at the R3B-LAND setup at the GSI with secondary beams containing {sup 14-24}O. The {sup 16-18}O and {sup 21-23}O isotopes have been analyzed and the preliminary results will be presented. The results include the partial cross sections, gamma ray spectra of the residual fragments in coincidence, and the SF obtained via comparison with theory.

  8. A comparison of the lattice discrete particle method to the finite-element method and the K&C material model for simulating the static and dynamic response of concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jovanca J.; Bishop, Joseph E.

    2013-11-01

    This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed at Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.

  9. Sharp metric obstructions for quasi-Einstein metrics

    Science.gov (United States)

    Case, Jeffrey S.

    2013-02-01

    Using the tractor calculus to study smooth metric measure spaces, we adapt results of Gover and Nurowski to give sharp metric obstructions to the existence of quasi-Einstein metrics on suitably generic manifolds. We do this by introducing an analogue of the Weyl tractor W to the setting of smooth metric measure spaces. The obstructions we obtain can be realized as tensorial invariants which are polynomial in the Riemann curvature tensor and its divergence. By taking suitable limits of their tensorial forms, we then find obstructions to the existence of static potentials, generalizing to higher dimensions a result of Bartnik and Tod, and to the existence of potentials for gradient Ricci solitons.

  10. Effects of Static Magnetic Fields on the Physical, Mechanical, and Microstructural Properties of Cement Pastes

    Directory of Open Access Journals (Sweden)

    Juan J. Soto-Bernal

    2015-01-01

    Full Text Available This paper presents the results of an experimental study carried out to comprehend the physical, mechanical, and microstructural behavior of cement pastes subjected to static magnetic fields while hydrating and setting. The experimental methodology consisted in exposing fresh cement pastes to static magnetic fields at three different magnetic induction strengths: 19.07, 22.22, and 25.37 Gauss. The microstructural characterization makes evident that there are differences in relation to amount and morphology of CSH gel; the amount of CSH is larger and its morphology becomes denser and less porous with higher magnetostatic induction strengths; it also shows the evidence of changes in the mineralogical composition of the hydrated cement pastes. The temperature increasing has no negative effects over the cement paste compressive strength since the magnetostatic field affects the process of hydration through a molecular restructuring process, which makes cement pastes improve microstructurally, with a reduced porosity and a higher mechanical strength.

  11. Quantitative analysis and prediction of experimental observations on quasi-static hysteretic metal–ferroelectric–metal–insulator–semiconductor FET and its dynamic behaviour based on Landau theory

    International Nuclear Information System (INIS)

    Li, Yang; Lian, Yong; Samudra, Ganesh S

    2015-01-01

    Due to internal voltage amplification induced by the negative capacitance of ferroelectrics, the metal–ferroelectric–metal–insulator–semiconductor (MFMIS) FET has been widely investigated to explore its potential application in low power devices. Based on Landau theory and stability criterion, a simulation program is implemented and MFMIS structure is quantitatively analyzed. The results show that it can be appropriately designed for both integrated circuits and memory devices by tuning capacitances contributed by MOSFET dielectric stack and ferroelectrics. Our simulation results on electrical characteristics of ferroelectric devices agree well with both quasi-static and dynamic experimental observations. The influence of the ferroelectric/dielectric layer thickness and area as well as temperature on hysteretic polarization-electric field characteristic of a ferroelectric are successfully explained. For a C–V loop sweeping over the gate voltage in MFMIS, possible asymmetry in the accessible negative capacitance region is also interpreted. Moreover, experimentally observed reduction in the equivalent capacitance of the ferroelectric–dielectric bilayer at high frequency is confirmed by Landau–Khalatnikov theory based simulation. Our work provides a more complete and explicit analytical treatment to understand the effect of negative capacitance of a ferroelectric on device performance. (paper)

  12. Statistical analysis and application of quasi experiments to antimicrobial resistance intervention studies.

    Science.gov (United States)

    Shardell, Michelle; Harris, Anthony D; El-Kamary, Samer S; Furuno, Jon P; Miller, Ram R; Perencevich, Eli N

    2007-10-01

    Quasi-experimental study designs are frequently used to assess interventions that aim to limit the emergence of antimicrobial-resistant pathogens. However, previous studies using these designs have often used suboptimal statistical methods, which may result in researchers making spurious conclusions. Methods used to analyze quasi-experimental data include 2-group tests, regression analysis, and time-series analysis, and they all have specific assumptions, data requirements, strengths, and limitations. An example of a hospital-based intervention to reduce methicillin-resistant Staphylococcus aureus infection rates and reduce overall length of stay is used to explore these methods.

  13. Technical study on semi-object emulation of structural statics problem

    CERN Document Server

    MoJun; LiuXingFu; LiuZhiYong; Shi Pin Gan

    2002-01-01

    Structural strength analysis depends mainly on finite element method and experiments. For complex structural system, a rather large error can be caused by some uncertain factors, such as load distributions, boundary conditions and constitutive relations in numerical analysis. At the same time, owing to the limitation of measuring and testing techniques, the strength and stiffness of key components can not be estimated by using the limited test data. To simulate stresses accurately under complex static environment, improve man-machine interactive system, and make the best use of fore- and post-processing function in graphic data processing, the combine numerical analysis with experimental technique and have developed the semi-object emulation technique to analyze the nonlinear problem of structure statics. The modern optical measuring techniques and image processing techniques are firstly used for the method to acquire displacement data of the vessel surface, and the data are used for the boundary condition to...

  14. Static magnetotherapy for the treatment of insomnia.

    Science.gov (United States)

    Shieh, Yao Y; Tsai, Fong Y

    2008-01-01

    Magnets have been used for centuries to treat a number of physical disorders. The vast majority of research, however, on static magnet therapy for insomnia has been confined to the auricular type of therapy, with publications limited to Chinese journals. Most of these studies have depended on the subjective self-assessment of participants rather than objective scientific measurements. In this study, the authors report the positive preliminary results of insomnia treatment using pillows with embedded magnets, magnetic insoles and TriPhase bracelets. The analysis is based on objective actigraphic and polysomnographic data. A theory of accelerated transition from wakefulness to sleep is proposed to explain the process of insomnia relief through low-strength static magnetic fields. Analysis by functional Magnetic Resonance Imaging (fMRI) is used to further investigate the theory.

  15. Relations between Biomechanical Parameters and Static Power of Arms in Children with Disturbed Posture

    Directory of Open Access Journals (Sweden)

    Slobodan Andrašić

    2017-02-01

    Full Text Available This study is aimed at determining the parameters and biomechanical analysis of their impact on the static arm strength in children with impaired posture as poor kyphotic posture, lordotic poor posture and children with flat feet. A transversal study included a sample of 67 children on the territory of the municipality of Subotica. The structure of the sample is as follows: 22 subjects with impaired kyphotic posture, 18 patients with impaired lordotic posture, and 27 subjects with flat feet. Measuring the level of static arm strength was done by the standardized "folding endurance" test. Observing the morphological development of children with kyphotic, lordotic poor posture and flat feet determined statistically significant differences in biomechanical variables.

  16. Structural testing for static failure, flutter and other scary things

    Science.gov (United States)

    Ricketts, R. H.

    1983-01-01

    Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.

  17. Static friction in elastic adhesive MEMS contacts, models and experiment

    NARCIS (Netherlands)

    Tas, Niels Roelof; Gui, C.; Elwenspoek, Michael Curt

    2000-01-01

    Static friction in shearing mode can be expressed as the product of the shear strength of the interface and the real contact area. The influence of roughness on friction in elastic adhesive contact is analyzed. Special attention is paid to low loading conditions, in which the number of contact

  18. Roof strength and injury risk in rollover crashes of passenger cars.

    Science.gov (United States)

    Brumbelow, Matthew L; Teoh, Eric R

    2009-12-01

    A 2009 study by the Insurance Institute for Highway Safety found that midsize SUVs with stronger roofs, as measured in quasi-static tests, had lower risk of ejection and lower risk of injury for nonejected drivers. The objective of the present study was to determine whether a similar association exists for other vehicle groups. Twelve small passenger cars were evaluated according to Federal Motor Vehicle Safety Standard 216 test conditions. Crash databases in 14 states provided more than 20,000 single-vehicle rollover crashes involving these vehicles. Logistic regression analyses were used to evaluate the effect of roof strength on the rate of driver injury while assessing and controlling for the effects of driver age, vehicle stability, state, and other factors where necessary. Small cars with stronger roofs had lower overall rates of serious injury, lower rates of ejection, and lower rates of injury for nonejected drivers. Although the effect on ejection was somewhat smaller for cars than for SUVs, the overall pattern of injury results was consistent. For roof strength-to-weight ratio measured within 5 in. (SWR(5)), a one-unit increase (e.g., from 2.0 to 3.0) was associated with a 22 percent reduction in risk of incapacitating or fatal driver injury in single-vehicle rollovers. This compares with a 24 percent reduction estimated for a similar change in roof strength among midsize SUVs. The association between vehicle roof strength and occupant injury risk in rollover crashes appears robust across different vehicle groups and across roof SWR(5) values, varying from just more than 1.5 to just less than 4.0. If roofs were to increase in strength by one SWR(5), a 20-25 percent reduction in risk of serious injury in rollovers would be expected. Still, even if all vehicle roofs were as strong as the strongest roof measured, many rollover injuries still would occur, indicating the need for additional research and countermeasures.

  19. The quasi-steady state of the valley wind system

    Directory of Open Access Journals (Sweden)

    Juerg eSchmidli

    2015-12-01

    Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.

  20. Damage formation, fatigue behavior and strength properties of ZrO_2-based ceramics

    International Nuclear Information System (INIS)

    Kozulin, A. A.; Kulkov, S. S.; Narikovich, A. S.; Leitsin, V. N.; Kulkov, S. N.

    2016-01-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO_2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10"5 stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  1. Axial vector diquark correlations in the nucleon: structure functions and static properties

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, H. E-mail: mineo@nt.phys.s.u-tokyo.ac.jp; Bentz, W.; Ishii, N.; Yazaki, K

    2002-06-03

    In order to extract information on the strength of quark-quark correlations in the axial vector (a.v.) diquark channel (J{sup P}=1{sup +},T=1), we analyze the quark light cone momentum distributions in the nucleon, in particular their flavor dependencies, and the static properties of the nucleon. To construct the nucleon as a relativistic 3-quark bound state, we use a simple 'static' approximation to the full Faddeev equation in the Nambu-Jona-Lasinio model, including correlations in the scalar (J{sup P}=0{sup +},T=0) and a.v. diquark channels. It is shown that the a.v. diquark correlations should be rather weak compared to the scalar ones. From our analysis we extract information on the strength of the correlations as well as on the probability of the a.v. diquark channel.

  2. A FAST study of quasi-static structure ("Inverted-V") potential drops and their latitudinal dependence in the premidnight sector and ramifications for the current-voltage relationship

    Science.gov (United States)

    Dombeck, J.; Cattell, C.; McFadden, J.

    2013-09-01

    Utilizing FAST satellite electron measurements, we present the first reported investigation of the dependency on latitude of quasi-static structure ("inverted-V") potential drop magnitude (Φ). A trend of lower Φ at lower latitudes in the premidnight sector on field lines with dark foot points was observed. This trend is supported both statistically and in individual satellite crossings. The existence of two distinct peaks in occurrence probability for Φ was also observed: one between ~2 kV and 10 kV and the other at somewhat less than 1 kV. The relative occurrence of structures with Φ in the higher (>2 kV) peak is significantly reduced with decreasing latitude. This partially accounts for the statistical trend of lower potential drop magnitudes at lower latitudes. The two Φ occurrence frequency peaks correspond to two different regimes (one with eΦ/kTe ~ or > 1 and one with eΦ/kTe current-voltage relation where source electron density rather than Φ is most directly controlled by the field-aligned current density. These observations and their ramifications represent a significant step forward in the understanding of field-aligned currents, auroral acceleration, and magnetospheric-ionospheric coupling.

  3. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Tümer, N; Li, Y; Amin Yavari, S; Zadpoor, A A

    2018-07-01

    Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load-bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress-strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6-12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite-like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798-1811, 2018. © 2018

  4. Tensile and fatigue strength properties of Kevlar 29 aramid/epoxy unidirectional composites

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, C.

    1981-07-22

    Static and fatigue tensile strength properties of filament wound undirectional Kevlar 29/epoxy, typical of filament wound material used in flywheel rotors, were studied. Machining techniques were developed to minimize fiber fuzzing on edges. The static modulus, normalized to 70% fiber volume fraction is 8.87 x 10/sup 6/ psi. The major Poisson's ratio is 0.37. The static composite tensile strength, normalized to 70% fiber volume fraction is 200 x 10/sup 3/ psi, corresponding to a fiber stress at failure of 286 x 10/sup 3/ psi, which is good for materials having a very high fiber volume fraction. The S-N curve for R = 0.7 was found to be quite flat. Although the techniques used in this program had previously been employed successfully to study the fatigue behavior of Kevlar 29/epoxy and Kevlar 49/epoxy unidirectional materials, we were unable to overcome the persistent problem of cohesive material failure in the tab regions. The apparent reason for this is the very low interlaminar shear strength of the filament wound material. 16 figures.

  5. Static stretching does not alter pre and post-landing muscle activation

    Directory of Open Access Journals (Sweden)

    Moss Wesley R

    2011-05-01

    Full Text Available Abstract Background Static stretching may result in various strength and power deficiencies. Prior research has not determined, however, if static stretching causes a change in muscle activation during a functional task requiring dynamic stability. The purpose of this study was to determine if static stretching has an effect on mean pre and postlanding muscle (vastus medialis VM, vastus lateralis VL, medial hamstring MH, and biceps femoris BF activity. Methods 26 healthy, physically active subjects were recruited, from which 13 completed a 14-day static stretching regimen for the quadriceps and hamstrings. Using the data from the force plate and EMG readings, a mean of EMG amplitude was calculated for 150 msec before and after landing. Each trial was normalized to an isometric reference position. Means were calculated for the VM, VL, MH, and BF from 5 trials in each session. Measures were collected pre, immediately following the 1st stretching session, and following 2 weeks of stretching. Results A 14-day static stretching regimen resulted in no significant differences in pre or postlanding mean EMG amplitude during a drop landing either acutely or over a 14-day period. Conclusions Static stretching, done acutely or over a 14-day period does not result in measurable differences of mean EMG amplitude during a drop landing. Static stretching may not impede dynamic stability of joints about which stretched muscles cross.

  6. Update on alternative occupant volume testing

    Science.gov (United States)

    2010-04-27

    This paper describes the conduct of the first of a series of quasi-static compression tests of rail passenger equipment being done to examine occupant volume strength. Budd Pioneer car 244 has been chosen as the test article for examination of altern...

  7. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S. [Tomsk State University, Tomsk, 634050 (Russian Federation); Narikovich, A. S.; Leitsin, V. N. [Immanuel Kant Baltic Federal University, Kaliningrad, 236041 (Russian Federation); Kulkov, S. N., E-mail: kulkov@ispms.ru [Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2016-08-02

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  8. Study of a new mechanism of reaction between heavy ions: the quasi-fission

    International Nuclear Information System (INIS)

    Ngo, Christian.

    1975-01-01

    A new type of deep inelastic reaction between two heavy ions (quasi-fission) has been discovered and studied when the product Z 1 Z 2 between the two ion atomic numbers is greater than or approximately equal to 1500. This mechanism is mainly binary, the total kinetic energy of the products is the one expected for a binary fission giving the same products, most of the products have masses very close to the initial masses, the angular distribution of the light products is peaked slightly forwards the projectile grazing angle (when the bombarding energy is not too much above the interaction barrier), at last, the total cross section for this process is a large part of the total reaction cross section. These results have been interpreted on the one hand using a static model and on the other hand using a dynamic model. An interaction potential between the two heavy ions has been derived using the energy density formalism within the framework of the sudden approximation. It has been shown that the nuclear part satisfies a scaling law which allows to factorize it in one term which depends on the two ion masses and another term which is independent of the system (universal function). Using the critical distance notion, the static calculations reproduce the quasi-fission cross sections. With regards to the dynamical calculations, the previously described potential has been introduced within the framework of Deubler and Dietrich's model. It is a classical dynamical calculation including dissipative terms. The vibration degrees of freedom of each ion have been explicitely taken into account. This calculation nicely reproduces both the energy loss in the relative motion, the focusing effect of the angular distribution, and the quasi-fission cross sections [fr

  9. The Effect of Small Additions of Carbon Nanotubes on the Mechanical Properties of Epoxy Polymers under Static and Dynamic Loads

    Science.gov (United States)

    Tarasov, A. E.; Badamshina, E. R.; Anokhin, D. V.; Razorenov, S. V.; Vakorina, G. S.

    2018-01-01

    The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8-1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.

  10. UAV : Warnings From Multiple Automated Static Analysis Tools At A Glance

    NARCIS (Netherlands)

    Buckers, T.B.; Cao, C.S.; Doesburg, M.S.; Gong, Boning; Wang, Sunwei; Beller, M.M.; Zaidman, A.E.; Pinzger, Martin; Bavota, Gabriele; Marcus, Andrian

    2017-01-01

    Automated Static Analysis Tools (ASATs) are an integral part of today’s software quality assurance practices. At present, a plethora of ASATs exist, each with different strengths. However, there is little guidance for developers on which of these ASATs to choose and combine for a project. As a

  11. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  12. Effects of foreign object damage from small hard particles on the high-cycle fatigue life of titanium-(6)aluminum-(4)vanadium

    Science.gov (United States)

    Hamrick, Joseph L., II

    Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.

  13. Imaging Shear Strength Along Subduction Faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-11-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  14. Imaging shear strength along subduction faults

    Science.gov (United States)

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  15. Influence of primary α-phase volume fraction on the mechanical properties of Ti-6Al-4V alloy at different strain rates and temperatures

    Science.gov (United States)

    Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing

    2018-03-01

    Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.

  16. Effects of Static Magnetic Fields on the Physical, Mechanical, and Microstructural Properties of Cement Pastes

    OpenAIRE

    Soto-Bernal, Juan J.; Gonzalez-Mota, Rosario; Rosales-Candelas, Iliana; Ortiz-Lozano, Jose A.

    2015-01-01

    This paper presents the results of an experimental study carried out to comprehend the physical, mechanical, and microstructural behavior of cement pastes subjected to static magnetic fields while hydrating and setting. The experimental methodology consisted in exposing fresh cement pastes to static magnetic fields at three different magnetic induction strengths: 19.07, 22.22, and 25.37 Gauss. The microstructural characterization makes evident that there are differences in relation to amount ...

  17. Mechanical property evaluation of apricot fruits under quasi-static and dynamic loading

    Directory of Open Access Journals (Sweden)

    E Ahmadi

    2016-04-01

    of fruit per level × 3 (impact energy level × 2 (both red and yellow × 2 (at 25oC and 3oC} was selected. In this study, using a factorial experiment in a completely randomized design, the effect of different factors (impact energy in 3 levels, temperature in 2 levels 3oC and 25°C and color in 2 levels red and yellow on acoustic stiffness, radius of curvature, color characteristic a* and b*, precent Brix, penetration force, penetration work and penetration deformation in apricot under the quasi-static forces were studied. In order to conduct this experiment, the universal testing machine of biological materials was used. After the determination of mechanical properties of the products, the SAS statistical program (1.9 was applied to analyze and normalize the resulted data. Factorial test also was used to determine the effects of independent variables on the dependent variables. Data analyses were performed using Statistical Package for the Social Sciences (SAS version 19.0.The variance analysis of the data was conducted in the form of multivariate factorial (2×2×3 design. The data were collected by three controlling factors: two temperature levels (3 and 20°C, two types of colour (Yellow and Red fruits and three levels of impact energy. The Duncan’s multiple range tests was used to compare the means. The values of reducible sugars were measured by the fruit juice standard - test methods No. 2685 (Institute of Standards and Industrial Research of Iran. The apricots TSS (total soluble solids for each temperature level by Refractomete (Model: 3820 (PAL-2, Resolution: ± 0.1% Brix were obtained. Results and Discussion: Respectively, the main and interaction effects of these variables were examined. The results of analysis of variance showed that,, the radius of curvature, color characteristic, acoustics stiffness, elastic modulus, percent Brix, penetration force and penetration deformation on main and interaction effects were significant at 5% and 1% probability

  18. QUIPS: Time-dependent properties of quasi-invariant self-gravitating polytropes

    International Nuclear Information System (INIS)

    Munier, A.; Feix, M.R.

    1983-01-01

    Quasi-invariance, a method based on group tranformations, is used to obtain time-dependent solutions for the expansion and/or contraction of a self-gravitating sphere of perfect gas with polytopic index n. Quasi-invariance transforms the equations of hydrodynamics into ''dual equations'' exhibiting extra terms such as a friction, a mass source or sink term, and a centripetal/centrifugal force. The search for stationary solutions in this ''dual space'' leads to a new class of time-dependent solutions, the QUIP (for Quasi-invariant polytrope), which generalizes Emden's static model and introduces a characteristic frequency a related to Jean's frequency. The second order differential equation describing the solution is integrated numerically. A critical point is seen always to exist for nnot =3. Solutions corresponding in the ''dual space'' to a time-dependent generalization of Eddington's standard model (n = 3) are discussed. These solutions conserve both the total mass and the energy. A transition between closed and open structures is seen to take place at a particular frequency a/sub c/. For n = 3, no critical point arises in the ''dual space'' due to the self-similar motion of the fluid. A new time-dependent mass-radius relation and a generalized Betti-Ritter relation are obtained. Conclusions about the existence of a minimum Q-factor are presented

  19. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    Science.gov (United States)

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  20. Determination of physicomechanical properties of velvet bean ...

    African Journals Online (AJOL)

    Selected physical and mechanical properties of velvet bean (Mucuna pruriens) were studied at two moisture content levels of 13% and 20% (db). Compression strength characteristics were conducted under quasi-static compressive force at longitudinal and latitudinal (lateral) loading positions and the rupture forces, ...

  1. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  2. Shear strength of a thermal barrier coating parallel to the bond coat

    International Nuclear Information System (INIS)

    Cruse, T.A.; Dommarco, R.C.; Bastias, P.C.

    1998-01-01

    The static and low cycle fatigue strength of an air plasma sprayed (APS) partially stabilized zirconia thermal barrier coating (TBC) is experimentally evaluated. The shear testing utilized the Iosipescu shear test arrangement. Testing was performed parallel to the TBC-substrate interface. The TBC testing required an innovative use of steel extensions with the TBC bonded between the steel extensions to form the standard Iosipescu specimen shape. The test method appears to have been successful. Fracture of the TBC was initiated in shear, although unconstrained specimen fractures propagated at the TBC-bond coat interface. The use of side grooves on the TBC was successful in keeping the failure in the gage section and did not appear to affect the shear strength values that were measured. Low cycle fatigue failures were obtained at high stress levels approaching the ultimate strength of the TBC. The static and fatigue strengths do not appear to be markedly different from tensile properties for comparable TBC material

  3. Strength measurement of optical fibers by bending

    Science.gov (United States)

    Srubshchik, Leonid S.

    1999-01-01

    A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.

  4. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  5. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  6. Dynamic tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix composites

    International Nuclear Information System (INIS)

    Chen Xuan; Li Yulong

    2011-01-01

    Graphical abstract: The dynamic tensile behavior of 2D C/SiC composites was experimentally investigated by means of SHTB. Both the fracture surface and bundle fracture surfaces of composites were observed. The strain rate sensitivity of in-bundle interface was concluded as the dominant contributor to the strain rate sensitivity of the tensile strength. Highlights: → The tensile strength increases with strain rate. → The tensile failure strain remains independent of strain rate. → Macro-structural morphology reveals rough fracture surface under dynamic loading. → SEM morphology reveals integrated bundle pull-out under dynamic loading. → Strain rate sensitivity of in-bundle interface leads to that of the tensile strength. - Abstract: An investigation has been undertaken to determine the dynamic and quasi-static tensile behavior of two-dimensional carbon fiber reinforced silicon carbide matrix (2D-C/SiC) composites by means of the split Hopkinson tension bar and an electronic universal test machine respectively. The results indicate that the tensile strength of 2D C/SiC composites is increased at high strain rate. Furthermore, coated specimens show not only a 15% improvement in tensile strength but heightened strain rate sensitivity compared with uncoated ones. It is also shown that the tensile failure strain is strain rate insensitive and remains around 0.4%. Optical macrograph of failed specimens under dynamic loading revealed jagged fracture surfaces characterized by delamination and crack deviation, together with obvious fiber pull-out/splitting, in contrast with the smooth fracture surfaces under quasi-static loading. Scanning electron microscopy micrograph of fracture surface under dynamic loading clearly displayed integrated bundle pull-out which implies suppressed in-bundle debonding and enhanced in-bundle interfacial strengthening, in contrast with extensive in-bundle debonding under quasi-static loading. Thus we conclude that, with 2D C

  7. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  8. Lifetime and residual strength of wood subjected to static and variable load

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    of load amplitude, load average, fractional time under maximum load, and load frequency. The analysis includes prediction of residual strength (re-cycle strength) during the process of load cycling. It is concluded that number of cycles to failure is a very poor design criterion. The theory......).It is demonstrated how the theory developed can be generalised also to consider non-harmonic load variations. An algorithm is presented for this purpose which might be suggested as a qualified alternative to the Palmgren-Miner’s method normally used in fatigue analysis of materials under arbitrary load variations...

  9. Loading rate effects on strength and fracture toughness of pipe steels used in Task 1 of the IPIRG program

    International Nuclear Information System (INIS)

    Marschall, C.W.; Landow, M.P.; Wilkowski, G.M.

    1993-10-01

    Material characterization tests were conducted on laboratory specimens machined from pipes to determine the effect of dynamic loading (i.e., rates comparable to those for high amplitude seismic events) on tensile properties and fracture resistance at 288 C (550 F). Specimens were fabricated from seven different pipes, including carbon steels and stainless steels (both base metal and weld metal), which were to be subjected to full-scale pipe tests in IPIRG Task 1.0. For the stainless steels tested at 288 C (550 F), tensile strength was unchanged, while yield strength and fracture resistance were increased. The increase in fracture resistance was modest for the wrought base metals and substantial for the weld metal and the cast base metal. The carbon steels tested were sensitive to dynamic strain aging, and hence the strength and toughness was affected by both temperature and strain rate effects. The carbon steel base metal and welds exhibited ultimate tensile strength values at 288 C (550 F) that were greater than at room temperature. Furthermore, the ultimate tensile strength at 288 C (550 F) was lowered significantly by increased strain rate and, in the carbon steel base metals, increased strain rate also lowered the fracture resistance, substantially in the base metal of one pipe. In comparing these results to the IPIRG pipe test results to date, it was found that the trends of these tests agree well with the Subtask 1.2 quasi-static and dynamic pipe fracture experiments. Loads measured in the Subtask 1.1 pipe experiments were, however, somewhat higher than would have been expected by the trends observed in the laboratory tests

  10. Deterministic and stochastic analysis of size effects and damage evolution in quasi-brittle materials

    NARCIS (Netherlands)

    Gutiérrez, M.A.; Borst, R. de

    1999-01-01

    This study presents some recent results on damage evolution in quasi-brittle materials including stochastic imperfections. The material strength is described as a random field and coupled to the response. The most probable configurations of imperfections leading to failure are sought by means of an

  11. Observing the Forces Involved in Static Friction under Static Situations

    Science.gov (United States)

    Kaplan, Daniel

    2013-01-01

    Static friction is an important concept in introductory physics. Later in the year students apply their understanding of static friction under more complex conditions of static equilibrium. Traditional lab demonstrations in this case involve exceeding of the maximum level of static friction, resulting in the "onset of motion." (Contains…

  12. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications

    International Nuclear Information System (INIS)

    Luterbacher, R; Trask, R S; Bond, I P

    2016-01-01

    The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown. (paper)

  13. Mechanical behavior of ultrafine-grained materials under combined static and dynamic loadings

    Directory of Open Access Journals (Sweden)

    Guo Y.Z.

    2015-01-01

    Full Text Available Ultrafine-grained (UFG materials have extensive prospects for engineering application due to their excellent mechanical properties. However, the grain size decrease reduces their strain hardening ability and makes UFG materials more susceptible to deformation instability such as shear localization. In most cases, critical shear strain is taken as the criterion for formation of shear localization under impact loading or adiabatic shear band (ASB. Recently, some researchers found that the formation of ASB was determined only by the dynamic loading process and had nothing to do with its static loading history. They proposed for coarse-grained metals a dynamic stored energy-based criterion for ASB and verified it by some experiments. In this study, we will focus on the shear localization behavior of UFG metals such as UFG titanium and magnesium alloy AZ31. Quasi-static loading and dynamic loading will be applied on the same specimen alternately. The shear localization behavior will be analyzed and the criterion of its formation will be evaluated.

  14. Dynamic tensile resistance of concrete-split Hopkinson bar test

    NARCIS (Netherlands)

    Weerheijm, J.; Sharma, A.; Ozbolt, J.

    2013-01-01

    The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading, on meso and macro-scale concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, ductility, and, second, there are

  15. Dynamic tensile resistance of concrete - Split hopkinson bar test

    NARCIS (Netherlands)

    Ožbolt, J.; Weerheijm, J.; Sharma, A.

    2013-01-01

    The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading, on meso and macro-scale concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, ductility, and, second, there are

  16. A synchronous surround increases the motion strength gain of motion.

    Science.gov (United States)

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  17. Structural design and analysis of test mass module for DECIGO Pathfinder

    International Nuclear Information System (INIS)

    Wakabayashi, Y; Ejiri, Y; Suzuki, R; Sugamoto, A; Obuchi, Y; Okada, N; Torii, Y; Ueda, A; Kawamura, S; Araya, A; Ando, M; Sato, S

    2010-01-01

    Deci-hertz Interferometer Gravitational-Wave Observatory: DECIGO is a project aimed at future detection of deci-hertz gravitational waves in space. DECIGO Pathfinder: DPF is a precursor mission to test the key technologies with one spacecraft. Our work in this article was to examine the strength of the DPF test mass module to ensure that it is sufficiently robust for launch with a launch vehicle. We designed the test mass module, and examined the structural strength of this model by structural analysis, Quasi-static acceleration analysis and Modal analysis using FEA (Finite Element Analysis). We found that the results of each analysis fulfilled all requirements. We are confident that the DPF test mass module will withstand Quasi-static acceleration or coupling with vibration of launch vehicle during launch, if the design matches the current design. For more detail, further analysis including Response analysis and Thermal analysis are recommended. In addition, it will be necessary to lighten the model in the next step.

  18. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  19. Technical study on semi-object emulation of structural statics problem

    International Nuclear Information System (INIS)

    Mo Jun; Shi Pingan; Liu Xingfu; Liu Zhiyong; Fu Chunyu

    2002-01-01

    Structural strength analysis depends mainly on finite element method and experiments. For complex structural system, a rather large error can be caused by some uncertain factors, such as load distributions, boundary conditions and constitutive relations in numerical analysis. At the same time, owing to the limitation of measuring and testing techniques, the strength and stiffness of key components can not be estimated by using the limited test data. To simulate stresses accurately under complex static environment, improve man-machine interactive system, and make the best use of fore- and post-processing function in graphic data processing, the authors combine numerical analysis with experimental technique and have developed the semi-object emulation technique to analyze the nonlinear problem of structure statics. The modern optical measuring techniques and image processing techniques are firstly used for the method to acquire displacement data of the vessel surface, and the data are used for the boundary condition to determine the geometrical size of disfigurement in the wall of vessel and the stress level. The experimental verification of a given test model show that these adverse problem can be solved by using semi-object emulation technology

  20. Sustainable RC Beam-Column Connections with Headed Bars: A Formula for Shear Strength Evaluation

    Directory of Open Access Journals (Sweden)

    Minh-Tung Tran

    2018-02-01

    Full Text Available Beam-column joints are critical regions for reinforced concrete (RC frames subjected to earthquakes. The steel reinforcement is, in general, highly concentrated in these zones. This is why in many cases, headed bars are used. A headed bar is a longitudinal steel reinforcement whose end has a special button added to reduce the bonding length of the steel rebar. This paper establishes a formula predicting the shear strength of exterior RC beam-column connections where the beam longitudinal reinforcements use headed bars. A database was collected, which contained 30 experimental data about the exterior beam-column joints using headed bars and subjected to quasi-static cyclic loading. First, from the collected database, a statistical study was carried out to identify the most influencing parameters on the shear strength of the beam-column joints tested. The three most important parameters were identified and an empirical modified formula was developed based on the formula existing in the standards. The study showed that the results obtained from the modified formula proposed in the present study were closer to the experimental results than that obtained from the formula existing in the standards. Finally, a numerical study was performed on two T-form RC structures and the numerical results were compared with the prediction calculated from the modified formula proposed. For two investigated cases, the proposed formula provided the results in the safety side and the differences with the numerical results were less than 20%. Thus, the proposed formula can be used for a rapid assessment of the shear strength of RC joints using headed bars.

  1. Static Dissipative Cable Ties, Such as for Radiation Belt Storm Probes

    Science.gov (United States)

    Langley, Patrick T. (Inventor); Siddique, Fazle E. (Inventor)

    2015-01-01

    An article, such as, but not limited to, a cable strap to wrap, support, or secure one or more wires or cables, is formed by cyclically heating and cooling and/or irradiating an article formed of a static dissipative ethylene tetrafluoroethylen (ETFE) resin, to reduce an electrical resistivity and/or to increase a tensile strength of the article.

  2. Optimization of a quasi-zero-stiffness isolator

    International Nuclear Information System (INIS)

    Carrella, A.; Brennan, M. J.; Waters, T. P.

    2007-01-01

    The frequency range over which a mount can isolate a mass from a vibrating base (or vice versa) is often limited by the mount stiffness required to support the weight of the mass. This compromise can be made more favourable by employing non-linear mounts with a softening spring characteristic such that small excursions about the static equilibrium position result in small dynamic spring forces and a correspondingly low natural frequency. This paper concerns the force-displacement characteristic of a so-called quasi-zero-stiffness (QZS) mechanism which is characterised by an appreciable static stiffness but very small (theoretically zero) dynamic stiffness. The mechanism studied comprises a vertical spring acting in parallel with two further springs which, when inclined at an appropriate angle to the vertical, produce a cancelling negative stiffness effect. Analysis of the system shows that a QZS characteristic can be obtained if the systems parameters (angle of inclination and ratio of spring stiffness) are opportunely chosen. By introducing the additional criterion that the displacement of the system be largest without exceeding a desired (low) value of stiffness an optimal set of parameter values is derived. Under sufficiently large displacements the stiffness of the QZS mechanism can eventually exceed that of the simple mass-spring system and criteria for this detrimental scenario to arise are presented

  3. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  4. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  5. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  6. Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens

    Science.gov (United States)

    Startsev, V. O.; Lebedev, M. P.; Molokov, M. V.

    2018-03-01

    A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°C. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.

  7. Static balance control and lower limb strength in blind and sighted women.

    Science.gov (United States)

    Giagazoglou, Paraskevi; Amiridis, Ioannis G; Zafeiridis, Andreas; Thimara, Maria; Kouvelioti, Vassiliki; Kellis, Elefthrerios

    2009-11-01

    The aim of the present study was to examine isokinetic and isometric strength of the knee and ankle muscles and to compare center of pressure (CoP) sway between blind and sighted women. A total of 20 women volunteered to participate in this study. Ten severe blind women (age 33.5 +/- 7.9 years; height 163 +/- 5 cm; mass 64.5 +/- 12.2 kg) and 10 women with normal vision (age 33.5 +/- 8.3 years; height 164 +/- 6 cm; mass 61.9 +/- 14.5 kg) performed 3 different tasks of increasing difficulty: Normal Quiet Stance (1 min), Tandem Stance (20 s), and One-Leg Stance (10 s). Participants stood barefoot on two adjacent force platforms and the CoP variations [peak-to-peak amplitude (CoPmax) and SD of the CoP displacement (CoPsd)] were analyzed. Sighted participants performed the tests in eyes open and eyes closed conditions. Torque/angular velocity and torque/angular position relationships were also established using a Cybex dynamometer for knee extensors and flexors as well as for ankle plantar and dorsiflexors. The main finding of this study was that the ability to control balance in both anterior/posterior and medio/lateral directions was inferior in blind than in sighted women. However, when sighted participants performed the tests blindfolded, their CoP sway increased significantly in both directions. There were no differences in most isometric and concentric strength measurements of the lower limb muscles between the blind and sighted individuals. Our results demonstrate that vision is a more prominent indicator of performance during the postural tasks compared to strength of the lower limbs. Despite similar level of strength, blind individuals performed significantly worse in all balance tests compared to sighted individuals.

  8. Fatigue damage mechanism and strength of woven laminates

    International Nuclear Information System (INIS)

    Xiao, J.; Bathias, C.

    1993-01-01

    The apparent secant stiffness changes with the cyclic number for both unnotched and notched woven laminated specimens (two orthotropic and one quasi-isotropic) during tensile fatigue test at a fixed ratio of maximum fatigue load to UTS were observed. The observable damage initiation and evolution as a function of the cyclic number were directly measured at the notched specimen surface with a video-camera system. The fatigue strengths of the unnotched and notched specimens were determined. The results show that the normalized apparent secant stiffness change curves as a function of cyclic numbers can be divided into three stages. For the first and the second stages in notched specimens and for total life of unnotched specimens, the damage has not been evidently observed and certainly verified with the traditional experimental methods such as radiography and microscopy although many acoustic emission signals can be obtained. The last stage for the notched specimens (N/Nf>0.4, the secant stiffness decreases fast) corresponds to the initiation and evolution of the observable damages. The fatigue strength of these woven composite laminates is dominated by the third stage during which the observable damage develops along the specimen ligament until fracture. During the third stage, a critical dimension at the specimen ligament and a life threshold can be found beyond which a final catastrophic fracture will immediately occur. The quasi-isotropic laminate is of a fatigue strength lower than the two orthotropic laminates of which the fatigue strengths are approaching to each other. The fatigue life is also influenced by the stacking sequences. (orig.)

  9. Performance prediction of centrifugal compressor impellers using quasi-three-dimensional analysis

    International Nuclear Information System (INIS)

    Ahn, S. J.; Kim, K. Y.; Oh, H. W.

    2001-01-01

    This-paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant

  10. Spin-Dephasing Anisotropy for Electrons in a Diffusive Quasi-1D GaAs Wire

    NARCIS (Netherlands)

    Liu, J.; Last, T.; Koop, E. J.; Denega, S.; van Wees, B. J.; van der Wal, C. H.

    We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields

  11. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  12. The perception of static colored noise: detection and masking described by CIE94

    NARCIS (Netherlands)

    Lucassen, M.P.; Bijl, P.; Roelofsen, J.

    2008-01-01

    We present psychophysical data on the perception of static colored noise. In our experiments, we use the CIE94 color difference formula to quantify the noise strength and for describing our threshold data. In Experiment 1 we measure the visual detection thresholds for fixed pattern noise on a

  13. Generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators with applications in non-compact settings and minimization problems

    Directory of Open Access Journals (Sweden)

    Chowdhury Molhammad SR

    2000-01-01

    Full Text Available Results are obtained on existence theorems of generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators in both compact and non-compact settings. We shall use the concept of escaping sequences introduced by Border (Fixed Point Theorem with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985 to obtain results in non-compact settings. Existence theorems on non-compact generalized bi-complementarity problems for quasi-semi-monotone and bi-quasi-semi-monotone operators are also obtained. Moreover, as applications of some results of this paper on generalized bi-quasi-variational inequalities, we shall obtain existence of solutions for some kind of minimization problems with quasi- semi-monotone and bi-quasi-semi-monotone operators.

  14. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    Different types of bone strength are required for various ... To statically analyse various methods to find BMD and related material ... bone study for research purpose. ..... and Dagoberto Vela Arvizo 2007 A qualitative stress analysis of a cross ...

  15. On A Quasi-local Mass

    OpenAIRE

    Zhang, Xiao

    2009-01-01

    We modify previous quasi-local mass definition. The new definition provides expressions of the quasi-local energy, the quasi-local linear momentum and the quasi-local mass. And they are equal to the ADM expressions at spatial infinity. Moreover, the new quasi-local energy has the positivity property.

  16. Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon.

    Science.gov (United States)

    Nagasawa, Koji; Noguchi, Masahiko; Ikoma, Kazuya; Kubo, Toshikazu

    2008-07-01

    Since tendons show viscoelastic behavior, dynamic viscoelastic properties should be assessed in addition to static biomechanical properties. We evaluated differences between static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon following tenotomy. At 3, 6, or 12 weeks after right Achilles tenotomy, the right (regenerating) and left (control) tendons were collected with the calcaneus from 49 rabbits. A unidirectional failure test and a dynamic viscoelastic test were conducted. Tensile strength and Young's modulus (static biomechanical properties) in the regenerating group at Week 6 were significantly greater than at Week 3, while at Week 12, these were significantly greater than at Week 6. However, even at Week 12, both parameters were less than in the control group. The value of tan delta represents dynamic viscoelasticity, a smaller tan delta indicates greater elasticity. tan delta for the regenerating group was significantly greater than for the control group at Week 3, but regenerating and control groups did not significantly differ at Week 6. No marked change was seen from Weeks 6 to 12 in the regenerating group, and no significant difference in tan delta was evident between the regenerating and control groups at Week 12. Dynamic biomechanical properties of regenerating rabbit Achilles tendons may improve more rapidly than static biomechanical properties. Ability to tolerate dynamic movement in the healing Achilles tendon may improve more rapidly than ability to withstand static stresses.

  17. Static and dynamic properties of frictional phenomena in a one-dimensional system with randomness

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Matsukawa, H.

    1997-01-01

    Static and dynamic frictional phenomena at the interface with random impurities are investigated in a two-chain model with incommensurate structure. Static frictional force is caused by the impurity pinning and/or by the pinning due to the regular potential, which is responsible for the breaking of analyticity transition for impurity-free cases. It is confirmed that the static frictional force is always finite in the presence of impurities, in contrast to the impurity-free system. The nature of impurity pinning is discussed in connection with that in density waves. The kinetic frictional force of a steady sliding state is also investigated numerically. The relationship between the sliding velocity dependence of the kinetic frictional force and the strength of impurity potential is discussed. copyright 1997 The American Physical Society

  18. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction.

    Science.gov (United States)

    Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G

    2016-10-01

    We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.

  19. Finite element analysis of GFRP reinforced concrete pavement under static load

    Science.gov (United States)

    Li, Shiping; Hu, Chunhua

    2018-02-01

    GFRP was more corrosion resistant than traditional reinforced, it is lightweight, high strength thermal expansion coefficient is more close to the concrete and a poor conductor of electromagnetic. Therefore, the use of GFRP to replace the traditional reinforcement in concrete pavement application has excellent practical value. This paper uses ANSYS to establish delamination and reinforcement of Pavement model and analyzed response of GFRP concrete and ordinary concrete pavement structural mechanics on effects of different factors under the action of static. The results showed that under static load, pavement surface layer presented similar changes on stress of surface layer, vertical and horizontal deformation in two kinds of pavement structure, but indicators of GFRP reinforced concrete pavement were obviously better than that of ordinary concrete pavement.

  20. Convergence acceleration of quasi-periodic and quasi-periodic-rational interpolations by polynomial corrections

    OpenAIRE

    Lusine Poghosyan

    2014-01-01

    The paper considers convergence acceleration of the quasi-periodic and the quasi-periodic-rational interpolations by application of polynomial corrections. We investigate convergence of the resultant quasi-periodic-polynomial and quasi-periodic-rational-polynomial interpolations and derive exact constants of the main terms of asymptotic errors in the regions away from the endpoints. Results of numerical experiments clarify behavior of the corresponding interpolations for moderate number of in...

  1. Tensile strength of concrete under static and intermediate strain rates: Correlated results from different testing methods

    International Nuclear Information System (INIS)

    Wu Shengxing; Chen Xudong; Zhou Jikai

    2012-01-01

    Highlights: ► Tensile strength of concrete increases with increase in strain rate. ► Strain rate sensitivity of tensile strength of concrete depends on test method. ► High stressed volume method can correlate results from various test methods. - Abstract: This paper presents a comparative experiment and analysis of three different methods (direct tension, splitting tension and four-point loading flexural tests) for determination of the tensile strength of concrete under low and intermediate strain rates. In addition, the objective of this investigation is to analyze the suitability of the high stressed volume approach and Weibull effective volume method to the correlation of the results of different tensile tests of concrete. The test results show that the strain rate sensitivity of tensile strength depends on the type of test, splitting tensile strength of concrete is more sensitive to an increase in the strain rate than flexural and direct tensile strength. The high stressed volume method could be used to obtain a tensile strength value of concrete, free from the influence of the characteristics of tests and specimens. However, the Weibull effective volume method is an inadequate method for describing failure of concrete specimens determined by different testing methods.

  2. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  3. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-01-01

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830

  4. Fracture and fatigue of high strength filaments. Final report, September 25, 1974--August 30, 1975

    International Nuclear Information System (INIS)

    Holt, N.L.; Finnie, I.

    1975-01-01

    The history of high strength filamentary materials is traced and it is seen that their use has been widespread. It is shown that today's demands upon these materials require a better understanding of their behavior than is presently available. Current theories for both the static and fatigue strength of filamentary materials are reviewed. An analysis of static strength tests on short filaments is presented that explains seemingly anomalous test behavior which has been reported in the literature. The proposed approach is supported by experiments and computer analysis. A new machine for the fatigue testing of filaments or wires was designed and is described in detail. Results are presented for fatigue tests on tungsten wire, graphite filaments and glass filaments. Graphite filaments showed an unexpected deterioration in strength after very many cycles (10 8 ). An explanation of this effect is offered and supported by scanning electron microscope observations. The work concludes with some suggestions for further research

  5. Static electric fields modify the locomotory behaviour of cockroaches.

    Science.gov (United States)

    Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L

    2011-06-15

    Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

  6. $^{11}$Be($\\beta$p), a quasi-free neutron decay?

    CERN Document Server

    Riisager, K.; Borge, M.J.G.; Briz, J.A.; Carmona-Gallardo, M.; Fraile, L.M.; Fynbo, H.O.U.; Giles, T.; Gottberg, A.; Heinz, A.; Johansen, J.G.; Jonson, B.; Kurcewicz, J.; Lund, M.V.; Nilsson, T.; Nyman, G.; Rapisarda, E.; Steier, P.; Tengblad, O.; Thies, R.; Winkler, S.R.

    2014-01-01

    We have observed $\\beta$-delayed proton emission from the neutron-rich nucleus $^{11}$Be by analysing a sample collected at the ISOLDE facility at CERN with accelerator mass spectrometry (AMS). With a branching ratio of (8.4 $\\pm$ 0.6)$\\times$ 10$^{-6}$ the strength of this decay mode, as measured by the B$_\\mathrm{GT}$-value, is unexpectedly high. The result is discussed within a simple single-particle model and could be interpreted as a quasi-free decay of the $^{11}$Be halo neutron into a single-proton state.

  7. A Study on Structural Strength of Irradiated Spacer Grid for PWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Baek, S. J.; Kim, D. S.; Yoo, B. O.; Ahn, S. B.; Chun, Y. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. I.; Kim, Y. H.; Lee, J. J. [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    A fuel assembly consists of an array of fuel rods, spacer grids, guide thimbles, instrumentation tubes, and top and bottom nozzles. In PWR (Pressurized light Water Reactor) fuel assemblies, the spacer grids support the fuel rods by the friction forces between the fuel rods and springs/dimples. Under irradiation, the spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow, and also bear static and dynamic loads during operation inside the nuclear reactor and transportation for spent fuel storage. Thus, it is important to understand the characteristics of deformation behavior and the change in structural strength of an irradiated spacer grid.. In the present study, the static compression test of a spacer grid was conducted to investigate the structural strength of the irradiated spacer grid in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. To evaluate the structural strength of an irradiated spacer grid, hot cell tests were carried out at IMEF of KAERI. The fuel assembly was dismantled and the irradiated spacer grid was obtained for the compression test. The apparatus for measuring the compression strength of the irradiated spacer grid was developed and installed successfully in the hot cell.

  8. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    Science.gov (United States)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  9. Accuracy of Replicating Static Torque and its Effect on Shooting Accuracy in Young Basketball Players

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-12-01

    Full Text Available Purpose. Accurate shooting in basketball is a prerequisite for success. Coordination ability, one of the abilities that determine the repeatability of accurate shooting, is based on kinesthetic differentiation. The aim of the study was to evaluate the strength component of kinesthetic differentiation ability and determine its relationship with shooting accuracy. Methods. Peak muscle torque of the elbow extensors under static conditions was measured in 12 young basketball players. Participants then reproduced the same movement at a perceived magnitude of 25%, 50%, and 75% of static peak torque, with error scores calculated as a measure of kinesthetic differentiation. The results were compared with players’ field goal percentages calculated during game play in a regional championship. Results. No statistically significant relationships were found between the level of kinesthetic differentiation ability and field goal percentage. Additionally, no upper limb asymmetry was found in the sample. Conclusions. The relatively high levels of elbow static peak torque suggest the importance of upper limb strength in contemporary basketball. The lack of a statistically significant difference between the right and left limbs decreases the risk of suffering injury. It is likely that choosing other suitable tests would demonstrate the relationships between field goal percentage and kinesthetic differentiation ability.

  10. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  11. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    International Nuclear Information System (INIS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H.W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-01-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2x10 22 m -2 (E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite

  12. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    Science.gov (United States)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-12-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.

  13. Static and dynamic friction in sliding colloidal monolayers.

    Science.gov (United States)

    Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    2012-10-09

    In a pioneer experiment, Bohlein et al. realized the controlled sliding of two-dimensional colloidal crystals over laser-generated periodic or quasi-periodic potentials. Here we present realistic simulations and arguments that besides reproducing the main experimentally observed features give a first theoretical demonstration of the potential impact of colloid sliding in nanotribology. The free motion of solitons and antisolitons in the sliding of hard incommensurate crystals is contrasted with the soliton-antisoliton pair nucleation at the large static friction threshold F(s) when the two lattices are commensurate and pinned. The frictional work directly extracted from particles' velocities can be analyzed as a function of classic tribological parameters, including speed, spacing, and amplitude of the periodic potential (representing, respectively, the mismatch of the sliding interface and the corrugation, or "load"). These and other features suggestive of further experiments and insights promote colloid sliding to a unique friction study instrument.

  14. New Polylactic Acid Composites Reinforced with Artichoke Fibers

    Directory of Open Access Journals (Sweden)

    Luigi Botta

    2015-11-01

    Full Text Available In this work, artichoke fibers were used for the first time to prepare poly(lactic acid (PLA-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w were prepared by the film-stacking method: the first one (UNID reinforced with unidirectional long artichoke fibers, the second one (RANDOM reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM. Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%. Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.

  15. Effect of Cardiac Rehabilitation on Strength and Balance in Patients after Coronary Artery Bypass Graft

    Directory of Open Access Journals (Sweden)

    Nahid Nazari

    2014-01-01

    Full Text Available Background: The most common method for improving the quality of life especially in chronic heart disease is rehabilitation. For increasing the level of knowledge about effect of rehabilitation and its' impression on improving the quality of life in patients. This study evaluates effect of one month cardiac rehabilitation on lower limb strength and the static and dynamic balance of CABG patients. Materials and Methods: This study is based on clinical trial before and after rehabilitation. the exercise protocol lasted for one month, three times per week, each session lasting 1 hour, on 30 male patients in two groups in control (N=15 and experimental group (N=15 after CABG in the centre of rehabilitation in Javad-Alaeme Heart Hospital, Mashhad. The strength of lower limb by chair standing test, the static balance by standing on one leg and dynamic balance by time up and go (TUG test, was evaluated before and after 1 month rehabilitation in training group and detraining in control group. Data were analyzed with SPSS-16 and used t-test analysis (p≤0.054T. Results: The strength of lower limb (p=0.001, static balance (p=0.023 and dynamic balance (p=0.037 increased significantly after one month of cardiac rehabilitation4T. Conclusion: The result of this study indicates that cardiac rehabilitation after coronary artery bypass surgery causes significant increase in strength of lower limb and balance in patients, the more muscle strength is associated with an increase in ability of performing daily activities and so it causes improved quality of life4T.

  16. Effect of Cardiac Rehabilitation on Strength and Balance in Patients after Coronary Artery Bypass Graft

    Directory of Open Access Journals (Sweden)

    Nahid Nazari

    Full Text Available Background: The most common method for improving the quality of life especially in chronic heart disease is rehabilitation. For increasing the level of knowledge about effect of rehabilitation and its' impression on improving the quality of life in patients. This study evaluates effect of one month cardiac rehabilitation on lower limb strength and the static and dynamic balance of CABG patients. Materials and Methods: This study is based on clinical trial before and after rehabilitation. the exercise protocol lasted for one month, three times per week, each session lasting 1 hour, on 30 male patients in two groups in control (N=15 and experimental group (N=15 after CABG in the centre of rehabilitation in Javad-Alaeme Heart Hospital, Mashhad. The strength of lower limb by chair standing test, the static balance by standing on one leg and dynamic balance by time up and go (TUG test, was evaluated before and after 1 month rehabilitation in training group and detraining in control group. Data were analyzed with SPSS-16 and used t-test analysis (p≤0.05.Results: The strength of lower limb (p=0.001, static balance (p=0.023 and dynamic balance (p=0.037 increased significantly after one month of cardiac rehabilitation.Conclusion: The result of this study indicates that cardiac rehabilitation after coronary artery bypass surgery causes significant increase in strength of lower limb and balance in patients, the more muscle strength is associated with an increase in ability of performing daily activities and so it causes improved quality of life.

  17. Investigation of the Photon Strength Function in 130 Te

    Science.gov (United States)

    Isaak, J.; Beller, J.; Fiori, E.; Glorius, J.; Krtička, M.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2016-01-01

    The dipole strength distribution of 130Te was investigated with the method of Nuclear Resonance Fluorescence using continuous-energy bremsstrahlung at the Darmstadt High Intensity Photon Setup and quasi-monoenergetic photons at the High Intensity γ-Ray Source. The average decay properties were determined between 5.50 and 8.15 MeV and compared to simulations within the statistical model.

  18. Static analysis of the hull plate using the finite element method

    Science.gov (United States)

    Ion, A.

    2015-11-01

    This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.

  19. Theory of multisource crosstalk reduction by phase-encoded statics

    KAUST Repository

    Schuster, Gerard T.

    2011-03-01

    Formulas are derived that relate the strength of the crosstalk noise in supergather migration images to the variance of time, amplitude and polarity shifts in encoding functions. A supergather migration image is computed by migrating an encoded supergather, where the supergather is formed by stacking a large number of encoded shot gathers. Analysis reveals that for temporal source static shifts in each shot gather, the crosstalk noise is exponentially reduced with increasing variance of the static shift and the square of source frequency. This is not too surprising because larger time shifts lead to less correlation between traces in different shot gathers, and so should tend to reduce the crosstalk noise. Analysis also reveals that combining both polarity and time statics is a superior encoding strategy compared to using either polarity statics or time statics alone. Signal-to-noise (SNR) estimates show that for a standard migration image and for an image computed by migrating a phase-encoded supergather; here, G is the number of traces in a shot gather, I is the number of stacking iterations in the supergather and S is the number of encoded/blended shot gathers that comprise the supergather. If the supergather can be uniformly divided up into Q unique sub-supergathers, then the resulting SNR of the final image is, which means that we can enhance image quality but at the expense of Q times more cost. The importance of these formulas is that they provide a precise understanding between different phase encoding strategies and image quality. Finally, we show that iterative migration of phase-encoded supergathers is a special case of passive seismic interferometry. We suggest that the crosstalk noise formulas can be helpful in designing optimal strategies for passive seismic interferometry and efficient extraction of Green\\'s functions from simulated supergathers. © 2011 The Authors Geophysical Journal International © 2011 RAS.

  20. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  1. Effect of low-cost resistance training on lower-limb strength and balance in institutionalized seniors.

    Science.gov (United States)

    Motalebi, Seyedeh Ameneh; Cheong, Loke Seng; Iranagh, Jamileh Amirzadeh; Mohammadi, Fatemeh

    2018-01-01

    Background/Study Context: Given the rapid increase in the aging population worldwide, fall prevention is of utmost importance. It is essential to establish an efficient, simple, safe, and low-cost intervention method for reducing the risk of falls. This study examined the effect of 12 weeks of progressive elastic resistance training on lower-limb muscle strength and balance in seniors living in the Rumah Seri Kenangan, social welfare home in Cheras, Malaysia. A total of 51 subjects qualified to take part in this quasi-experimental study. They were assigned to either the resistance exercise group (n = 26) or control group (n = 25). The mean age of the 45 participants who completed the program was 70.7 (SD = 6.6). The exercise group met twice per week and performing one to three sets of 8 to 10 repetitions for each of nine lower-limb elastic resistance exercises. All exercises were conducted at low to moderate intensities in sitting or standing positions. The subjects were tested at baseline and 6 and 12 weeks into the program. The results showed statistically significant improvements in lower-limb muscle strength as measured by five times sit-to-stand test (%Δ = 22.6) and dynamic balance quantified by the timed up-and-go test (%Δ = 18.7), four-square step test (%Δ = 14.67), and step test for the right (%Δ = 18.36) and left (%Δ = 18.80) legs. No significant changes were observed in static balance as measured using the tandem stand test (%Δ = 3.25), and one-leg stand test with eyes opened (%Δ = 9.58) and eyes closed (%Δ = -0.61) after completion of the program. The findings support the feasibility and efficacy of a simple and inexpensive resistance training program to improve lower-limb muscle strength and dynamic balance among the institutionalized older adults.

  2. Modifications of nucleons in nuclei in quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1988-01-01

    In inelastic electron scattering two scaling regions are observed in which the scattering is dominated by quasi-elastic scattering. For large momentum transfers, √Q 2 > 2 GeV/c, the scattering process is dominated by quasi-elastic scattering off quarks, whereas for √Q 2 ≅ 0.5 GeV/c the dominant contribution is quasi-elastic scattering off nucleons. This corresponds nicely to our first order picture of the nucleus consisting of nucleons, which in turn are composed of quarks. In the nucleon-scaling region, possible modifications of nucleon properties show up through a study of the Q 2 dependence and the relative strength of the transverse and longitudinal cross sections. Results of both inclusive (e,e') and exclusive (e,e'p) experiments in the quasi-elastic scattering region indeed show a behavior that could indicate modifications of intrinsic properties of individual nucleons in the nucleus, although the question remains if one has correctly disentangled the effects of the (long range) interactions between nucleons and those connected to the internal structure of nucleons. Even so, a simple (one-parameter) size rescaling for nucleons appears to be inconsistent with the data and also with some known conventional nuclear physics observables. Therefore the inclusion of two-nucleon correlations appears necessary in order to be able to understand the data. Such correlations can for instance be due to the effect of the Pauli principle on the quark level. (orig.)

  3. Quasi-particles at finite temperatures

    International Nuclear Information System (INIS)

    Narnhofer, H.; Thirring, W.; Requardt, M.

    1983-01-01

    We study the consequences of the KMS-condition on the properties of quasi-particles, assuming their existence. We establish: (i) If the correlation functions decay sufficiently, we can create them by quasi-free field operators. (ii) There are many age-operators T conjugate to H. For special forms of the dispersion law epsilon(k) of the quasi-particles there is a T commuting with the; (iii) There are many age-operators T conjugate to H. For special forms of the dispersion law epsilon(k) of the quasi-particles there is a T commuting with the number of quasi-particles and its time-monotonicity describes how the quasi-particles travel to infinity. (orig.)

  4. Many-particle correlations in quasi-two-dimensional electron-hole systems

    International Nuclear Information System (INIS)

    Nikolaev, Valentin

    2002-01-01

    This thesis reports a theoretical investigation of many-particle correlation effects in semiconductor heterostructures containing quantum wells. Particular attention is paid towards quasi-particle pair correlations. Using the Green's function technique and the ladder approximation as a basis, the generalized mass action law, which describes the redistribution of particles between correlated and uncorrelated states in quasi-two-dimensional systems for different temperatures and total densities, is derived. The expression is valid beyond the low-density limit, which allows us to investigate the transition of the system from a dilute exciton gas to a dense electron-hole plasma. A generalized Levinson theorem, which takes k-space filling into account, is formulated. Screening in quasi-two-dimensional systems is analyzed rigorously. Firstly, the qualitatively new mechanism of static local screening by indirect excitons is studied using the simple Thomas-Fermi approximation. Then, a detailed many-body description suitable for a proper account of dynamic screening by a quasi-2D electron-hole plasma, and consistent with the previously derived mass action law, is provided. The generalized Lindhard approximation and excitonic plasmon-pole approximations are also derived. The theory is applied to single and double quantum wells. A self-consistent procedure is developed for numerical investigation of the ionization degree of an electron-hole plasma at different values of temperature/exciton Rydberg ratios. This procedure accounts for screening, k-space filling (exciton bleaching), and the formation of excitons. An abrupt jump in the value of the ionization degree that happens with an increase of the carrier density or temperature (Mott transition) is found in a certain density-temperature region. It has been found that the critical density of the Mott transition for indirect excitons may be much smaller than that for direct excitons. A suggestion has been made that some of the

  5. Dynamic brain connectivity is a better predictor of PTSD than static connectivity.

    Science.gov (United States)

    Jin, Changfeng; Jia, Hao; Lanka, Pradyumna; Rangaprakash, D; Li, Lingjiang; Liu, Tianming; Hu, Xiaoping; Deshpande, Gopikrishna

    2017-09-01

    Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased temporal variability of those connections, with the latter providing greater sensitivity toward the pathology than the former. Static functional connectivity (FC; nondirectional zero-lag correlation) and static effective connectivity (EC; directional time-lagged relationships) were obtained over the entire brain using conventional models. Dynamic FC and dynamic EC were estimated by letting the conventional models to vary as a function of time. Statistical separation and discriminability of these metrics between the groups and their ability to accurately predict the diagnostic label of a novel subject were ascertained using separate support vector machine classifiers. Our findings support our hypothesis that PTSD subjects have stronger static connectivity, but reduced temporal variability of connectivity. Further, machine learning classification accuracy obtained with dynamic FC and dynamic EC was significantly higher than that obtained with static FC and static EC, respectively. Furthermore, results also indicate that the ease with which brain regions engage or disengage with other regions may be more sensitive to underlying pathology than the strength with which they are engaged. Future studies must examine whether this is true only in the case of PTSD or is a general organizing principle in the human brain. Hum Brain Mapp 38:4479-4496, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Low-lying dipole strength of the open-shell nucleus 94Mo

    Science.gov (United States)

    Romig, C.; Beller, J.; Glorius, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Ponomarev, V. Yu.; Sauerwein, A.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    The low-lying dipole strength of the open-shell nucleus 94Mo was studied via the nuclear resonance fluorescence technique up to 8.7 MeV excitation energy at the bremsstrahlung facility at the Superconducting Darmstadt Electron Linear Accelerator (S-DALINAC), and with Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility. In total, 83 excited states were identified. Exploiting polarized quasi-monoenergetic photons at HIγS, parity quantum numbers were assigned to 41 states excited by dipole transitions. The electric dipole-strength distribution was determined up to 8.7 MeV and compared to microscopic calculations within the quasiparticle phonon model. Calculations and experimental data are in good agreement for the fragmentation, as well as for the integrated strength. The average decay pattern of the excited states was investigated exploiting the HIγS measurements at five energy settings. Mean branching ratios to the ground state and first excited 21+ state were extracted from the measurements with quasi-monoenergetic photons and compared to γ-cascade simulations within the statistical model. The experimentally deduced mean branching ratios exhibit a resonance-like maximum at 6.4 MeV which cannot be reproduced within the statistical model. This indicates a nonstatistical structure in the energy range between 5.5 and 7.5 MeV.

  7. A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath

    Science.gov (United States)

    Fuselier, Stephen A.

    1994-01-01

    Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.

  8. Reflector dowel strength test, Fort St. Vrain

    International Nuclear Information System (INIS)

    Doll, D.W.

    1975-01-01

    The strength of the 44.45 mm (1.75 in.) diameter Fort St. Vrain (FSV) reflector dowel for loads directed radially inward toward the center of the element was measured. For a statically applied load, the strength exceeded 5783 N (1300 lb) in direct shear. This strength remained after load cycling 100 times to 4448 N (1000 lb), 10 times to 4893 N (1100 lb), 10 times to 5338 N (1200 lb), and two times to 5783 N (1300 lb). Typically, the deflection to ultimate failure was approximately 1.0 mm (0.04 in.). At about 3316 N (750 lb) and 0.20 mm (0.008 in.) deflection, one of the webs between the dowel and a coolant hole cracked, apparently redistributing the load. No further failure occurred up to the ultimate load of 5783+ N (1300+ lb)

  9. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  10. Chen-Nester-Tung quasi-local energy and Wang-Yau quasi-local mass

    Science.gov (United States)

    Liu, Jian-Liang; Yu, Chengjie

    2017-10-01

    In this paper, we show that the Chen-Nester-Tung (CNT) quasi-local energy with 4D isometric matching references is closely related to the Wang-Yau (WY) quasi-local energy. As a particular example, we compute the second variation of the CNT quasi-local energy for axially symmetric Kerr-like spacetimes with axially symmetric embeddings at the obvious critical point (0 , 0) and find that it is a saddle critical point in most of the cases. Also, as a byproduct, we generalize a previous result about the coincidence of the CNT quasi-local energy and Brown-York mass for axially symmetric Kerr-like spacetimes by Tam and the first author Liu and Tam (2016) to general spacetimes.

  11. A comparative study of the effect of soft and hard cervical collars on static postural

    Directory of Open Access Journals (Sweden)

    Minoo Khalkhali Zavieh

    2013-01-01

    Full Text Available AbstractBackground and Aim: Using cervical collars is one of the treatment methods for releaving cervical pain. The effect of limb orthotics on proprioception and postural stability has been suggested. There is not sufficient studies about the effect of cervical collars on static and dynamic stability, and the effect of soft and hard collars have not been compared with one another. The objective of this study is investigating and comparing the immediate effect of soft and hard cervical collars on static postural stability in healthy young subjects. Methods & Materials: In standing position on firm surface with closed eyes, both soft and hard collars decreased the stability and there was not any significant difference among collars. In standing positions on soft surface with closed and opened eyes, using none of the soft and hard collars did not change the stability. This quasi experimental study through repeated measure method has been conducted on 65 healthy young male and female college students. Static stability was evaluated by modified Clinical Test for Sensory Interaction and Balance (CTSIB in conditions without collar and by soft and hard cervical collars and were compared between the conditions. Results: Conclusion: Our results suggest that in static conditions, without vision, both collars decrease the stability in healthy young subjects. So considering the evaluation of stability and prevention of balance disturbance during the collar prescription seems to be necessary.

  12. Quasi-free one nucleon knockout reactions on neutron-rich oxygen isotopes at the R3B-LAND setup

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla; Aumann, Thomas [TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Paschalis, Stefanos [TU Darmstadt, Darmstadt (Germany); Nociforo, Chiara [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2016-07-01

    Recent experiments have showed a reduction of spectroscopic strengths of about 60-70% for stable nuclei. When going to driplines this tendency is changing, loosely bound nucleons have spectroscopic strengths close unity while deeply bound nucleons have a large reduction of the strength. We aim to make a systematic study of spectroscopic factors (SF) of the Oxygen isotopes using quasi-free (p,2p) and (p,pn) knockout reactions in inverse kinematics. Quasi-free knockout reactions are a direct tool to study the occupancy and the location of valance and deeply bound single particle states. The Oxygen isotopes offer a large variation of separation energies which will allow us to obtain a qualitative and quantitative understanding of SF in a large variation of isospin asymmetry. For this we performed an experiment at the R3B-LAND setup at the GSI with a secondary beam {sup 14-24}O. The {sup 16-18}O and {sup 21-23}O isotopes have been analyzed and the preliminary results will be presented. The results include the partial cross sections, gamma ray spectra of the residual fragments in coincidence, and the SF obtained via comparison with theory.

  13. Distinguishing Alfven waves from quasi-static field structures associated with the discrete aurora: Sounding rocket and HILAT satellite measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Earle, G.D.; Vickrey, J.F.; Boehm, M.

    1990-01-01

    The authors present and analyze sounding rocket and HILAT satellite measurements of the low frequency ( 0 in the auroral oval. By examining the time-domain field data it is often difficult to distinguish temporal fluctuations from static structures which are Doppler shifted to a non-zero frequency in the spacecraft frame. However, they show that such a distinction can be made by constructing the impedance function Z(f). Using Z(f) they find agreement with the static field interpretation below about 0.1 Hz in the spacecraft frame, i.e. Z(f) = Σ p -1 where Σ p is the height-integrated Pedersen conductivity of the ionosphere. About 0.1 Hz the authors find Z(f) > Σ p -1 , which they argue to be due to the presence of Alfven waves incident from the magnetosphere and reflecting from the lower ionosphere, forming a standing wave pattern. These waves may represent an electromagnetic coupling mechanism between the auroral acceleration region and the ionosphere

  14. Unified strength theory and its applications

    CERN Document Server

    Yu, Mao-Hong

    2004-01-01

    This is a completely new theory dealing with the yield and failure of materials under multi-axial stresses. It provides a system of yield and failure criteria adopted for most materials, from metallic materials to rocks, concretes, soils, polymers etc. The Unified Strength Theory has been applied successfully to analyse the elastic limit, plastic limit capacities, the dynamic response behavior for some structures under static and moderate impulsive load, and may be implemented in some elasto-plastic finite element computer codes. The Unified Strength Theory is described in detail and by using this theory a series of results can be obtained. The Unified Strength Theory can improve the conservative Mohr-Coulomb Theory, and since intermediate principal stress is not taken into account in the Mohr-Coulomb theory and most experimental data is not pertainable to the Mohr-Coulomb Theory, a considerable economic benefit may be obtained. The book can also increase the effect of most commercial finite element computer ...

  15. Occupational exposure of NRM spectrometrists to static and radiofrequency fields

    International Nuclear Information System (INIS)

    Berlana, Tania; Ubeda, Alejandro

    2017-01-01

    Occupational exposure to static and radiofrequency fields emitted by nuclear magnetic resonance spectrometers was assessed through systematic field metering during operation of 19 devices in nine research centers. Whereas no measurable levels of radiofrequency radiation were registered outside the spectrometers, significant exposure to static field was detected, with maximum values recorded at the user s hand (B = 683.00 mT) and head thorax (B = 135.70 mT) during spectrometer manipulation. All values were well below the exposure limits set by the European standard for workers protection against the effects of acute field exposure only. As for potential effects of chronic exposure, waiting for more complete knowledge, adoption of technical and operational strategies for exposure minimizing is advisable. In this respect, the data revealed that compared with standard magnetic shielding, ultra-shield technology allows a 20-65-fold reduction of the field strength received by the operator. (authors)

  16. Influence of various bonding techniques on the fracture strength of thin CAD/CAM-fabricated occlusal glass-ceramic veneers.

    Science.gov (United States)

    Yazigi, Christine; Kern, Matthias; Chaar, Mohamed Sad

    2017-11-01

    To evaluate the efficiency of immediate dentin sealing and the effects of different bonding protocols on the fracture strength of CAD/CAM occlusal veneers bonded to exposed dentin. Ninety-six extracted maxillary premolars were initially divided into three main groups with 32 specimens each: without immediate dentin sealing, immediate dentin sealing/total etching and immediate dentin sealing/selective etching. Teeth were identically prepared in the dentin to receive occlusal veneers of 0.8mm thickness, milled from lithium disilicate ceramic blocks (IPS e.max CAD). Each main group was later subdivided, according to the pre-cementation surface etching protocol (total/selective), into two subgroups with 16 specimens each. All restorations were adhesively bonded using a resin cement (Variolink Esthetic). Half of the specimens of each subgroup were subjected to thermo-dynamic loading in a chewing simulator with 1,200,000 cycles at 10kg load. The other half and the surviving specimens were subjected to quasi-static loading until failure. Statistical analysis was performed using three-way ANOVA and Tukey's post-hoc tests. All specimens except one survived the artificial aging. A significantly higher fracture strength of restorations (p ≤ 0.001) was obtained when immediate dentin sealing was followed regardless of the etching method with values ranging from a minimum of 1122 ± 336N to a maximum of 1853 ± 333N. Neither the pre-cementation treatment nor the artificial aging had a statistical significant effect on the fracture strength. Immediate dentin sealing protocol is recommended whenever dentin is exposed during the preparation for thin glass-ceramic occlusal veneers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Translation of an FRC plasma into a quasi-spherical confinement region

    International Nuclear Information System (INIS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Takahashi, Toshiki

    2014-01-01

    Translation of a Field-Reversed Configuration (FRC) into a quasi-spherical confinement region with super-alfvenic translation speed has been successfully conducted. Translation speed can be controlled in the range from 80 to 150 km/s by changing statically filled gas pressure. The translated FRC experiences radial decompression process rapidly when it enters into the confinement chamber. The separatrix shape of translated FRC is controlled through the translation process. Especially, in the case of FRC translation into deuterium gas atmosphere, elongation of the FRC is roughly unity. It indicates possible application of center solenoid onto the high-beta compact torus of FRC. Also, as a new finding, a rotational instability with an n=2 deformation has been observed in the translated FRC. (author)

  18. E-coil: an inverse boundary element method for a quasi-static problem

    International Nuclear Information System (INIS)

    Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez; Power, Henry

    2010-01-01

    Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.

  19. E-coil: an inverse boundary element method for a quasi-static problem

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)

    2010-06-07

    Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.

  20. A Strengths-Based Group Intervention for Women Who Experienced Child Sexual Abuse

    Science.gov (United States)

    Walker-Williams, Hayley J.; Fouché, Ansie

    2017-01-01

    Purpose: This study evaluated the benefits of a ''survivor to thriver'' strengths-based group intervention program to facilitate posttraumatic growth in women survivors of child sexual abuse. Method: A quasi-experimental, one group, pretest, posttest, time-delay design was employed using qualitative methods to evaluate the benefits of the…

  1. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  2. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2001-01-01

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20,22 Ne, 24 Mg and 28 Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed

  3. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  4. Classical study of the rovibrational dynamics of a polar diatomic molecule in static electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel, E-mail: manuel.inarrea@unirioja.e [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Salas, J. Pablo [Area de Fisica, Universidad de la Rioja, E-26006 Logrono (Spain); Gonzalez-Ferez, Rosario [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Schmelcher, Peter [Theoretische Chemie, Physikalisch-Chemisches Institut, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, D-69120 Heidelberg (Germany)

    2010-01-04

    We study the classical dynamics of a polar diatomic molecule in the presence of a strong static homogeneous electric field. Our full rovibrational investigation includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. Using the LiCs molecule as a prototype, we explore the stability of the equilibrium points and their bifurcations as the field strength is increased. The phase space structure and its dependence on the energy and field strength are analyzed in detail. We demonstrate that depending on the field strength and on the energy, the phase space is characterized either by regular features or by small stochastic layers of chaotic motion.

  5. Quasi-Lie algebras and Lie groups

    International Nuclear Information System (INIS)

    Momo Bangoura

    2006-07-01

    In this work, we define the quasi-Poisson Lie quasigroups, dual objects to the quasi-Poisson Lie groups and we establish the correspondence between the local quasi-Poisson Lie quasigoups and quasi-Lie bialgebras (up to isomorphism). (author) [fr

  6. Resistência à remoção de braquetes ortodônticos sob ação de diferentes cargas contínuas Shear bond strength of orthodontic brackets using different static loading application

    Directory of Open Access Journals (Sweden)

    Carla Giannini

    2008-06-01

    Full Text Available OBJETIVO: testar se existe alteração na resistência adesiva de dois cimentos utilizados na colagem de acessórios ortodônticos ao esmalte dentário bovino, sendo um de polimerização química (Concise ortodôntico e outro fotopolimerizável (Transbond XT, após a aplicação de cargas contínuas. METODOLOGIA: foram utilizados para este estudo 80 dentes bovinos e 80 braquetes metálicos. O esmalte bovino foi condicionado com ácido fosfórico a 37% por 1 minuto e depois lavado e seco. A aplicação dos adesivos, manipulação e aplicação dos dois cimentos foram feitas de acordo com as instruções dos fabricantes. Após 24 horas, todos os braquetes foram submetidos a cargas contínuas de 30g, 70g e 120g, menos o grupo controle, que não recebeu carga alguma. Os espécimes ficaram imersos em água filtrada por 28 dias dentro de uma estufa a 37°C. Depois deste período, as amostras foram submetidas a testes de cisalhamento em uma Máquina de Ensaios Universal Kratos. Os resultados foram registrados e enviados para análise estatística. CONCLUSÕES: (1 o cimento Concise apresentou maior resistência à remoção que o cimento Transbond XT para todas as cargas utilizadas, (2 não houve diferença estatisticamente significante na resistência adesiva frente às três cargas utilizadas para os dois cimentos testados; (3 no momento da fratura, conforme ocorreu o aumento da carga, a porcentagem de fratura do esmalte diminuiu para o Concise, ao contrário do cimento Transbond XT, onde a porcentagem de fratura de esmalte se manteve constante com o aumento das cargas.AIM: The purpose of this study was to test differences on bond strength between auto-cured (Concise and light-cured (Transbond XT cements after static loading and shear test. METHODS: Eighty bovine teeth and metallic orthodontic brackets (Morelli Ortodontia Braquete Edgewise/Rickets were tested after static loads of 30, 70 and 120grs. Bovine enamel was conditioned with 37% phosphoric

  7. Static Q anti Q force from instanton gas and numerical lattice calculations

    International Nuclear Information System (INIS)

    Ilgenfrits, E.M.; Mueller-Preussker, M.

    1982-01-01

    Lattice Monte Carlo calculation predictions for the static strength between quarks are compared with the results obtained in the framework of instanton gas model and a typical instanton size is determined. Yang-Mills theory data for different ratios of Wilson loops in case of SU(3) for the string tension are presented. The instanton corrections to perturbation strength turn to be essential to reach an agreement with obtained by lattice calculations data inside the small-distance region up to approximately 0.3 fm. Arguments in favour of the statement that data difference in this region from the phenomenologically known value is connected with the notion of infinitely heavy quarks but not with neglect of virtual quark loops are presented

  8. Hermitian self-dual quasi-abelian codes

    Directory of Open Access Journals (Sweden)

    Herbert S. Palines

    2017-12-01

    Full Text Available Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.

  9. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...

  10. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  11. Order parameters in the Landau–de Gennes theory – the static and dynamic scenarios

    KAUST Repository

    Majumdar, Apala

    2011-02-17

    We obtain quantitative estimates for the scalar order parameters of liquid crystal configurations in three-dimensional geometries, within the Landau-de Gennes framework. We consider both static equilibria and non-equilibrium dynamics and we include external fields and surface anchoring energies in our formulation. Using maximum principle-type arguments, we obtain explicit bounds for the corresponding scalar order parameters in both static and dynamic situations; these bounds are given in terms of the material-dependent thermotropic coefficients, electric field strength and surface anchoring coefficients. These bounds provide estimates for the degree of orientational ordering, quantify the competing effects of the different energetic contributions and can be used to test the accuracy of numerical simulations. © 2011 Taylor & Francis.

  12. Order parameters in the Landau–de Gennes theory – the static and dynamic scenarios

    KAUST Repository

    Majumdar, Apala

    2011-01-01

    We obtain quantitative estimates for the scalar order parameters of liquid crystal configurations in three-dimensional geometries, within the Landau-de Gennes framework. We consider both static equilibria and non-equilibrium dynamics and we include external fields and surface anchoring energies in our formulation. Using maximum principle-type arguments, we obtain explicit bounds for the corresponding scalar order parameters in both static and dynamic situations; these bounds are given in terms of the material-dependent thermotropic coefficients, electric field strength and surface anchoring coefficients. These bounds provide estimates for the degree of orientational ordering, quantify the competing effects of the different energetic contributions and can be used to test the accuracy of numerical simulations. © 2011 Taylor & Francis.

  13. Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Behm, David G; Muehlbauer, Thomas; Kibele, Armin; Granacher, Urs

    2015-12-01

    The effectiveness of strength training on unstable surfaces (STU) versus stable surfaces (STS) or a control condition (CON; i.e., no training or regular training only) for strength, power and balance performance across the lifespan has not yet been investigated in a systematic review and meta-analysis. The aims of this systematic review and meta-analysis were to determine the general effects of STU versus STS or CON on muscle strength, power and balance in healthy individuals across the lifespan and to investigate whether performance changes following STU are age specific. A computerized systematic literature search was performed in the electronic databases PubMed and Web of Science from January 1984 up to February 2015. Initially, 209 articles were identified for review. Only controlled trials were included if they investigated STU in healthy individuals and tested at least one measure of maximal strength, strength endurance, muscle power, or static/dynamic balance. In total, 22 studies met the inclusion criteria. The included studies were coded for the following criteria: age, sex, training status, training modality, exercise and test modality. Effect size measures included within-subject standardized mean differences (SMDw) and weighted between-subject standardized mean differences (SMDb). Heterogeneity between studies was assessed using I2 and χ2 statistics. The methodological quality of each study was assessed using the Physiotherapy Evidence Database (PEDro) Scale. Our search failed to identify studies that examined the effects of STU versus STS or CON in children and middle-aged adults. However, four studies were identified that investigated the effects of STU versus CON or STS in adolescents, 15 studies were identified in young adults and three studies were identified in old adults. Compared with CON, STU produced medium effects on maximal strength in young adults and no effects to medium effects in old adults. In addition, large effects were detected on

  14. Effects of Thermally Induced Microcracking on the Quasi Static and Dynamic Response of Salem Limestone

    Science.gov (United States)

    2017-06-30

    elastic material, e.g., a high strength steel. A third bar, the striker bar, is propelled (typically by a gas gun) into the end of the incident bar...Sciences 36:433-448. Ferrero, A. M., and P. Marini. 2001. Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock

  15. Mechanical response of marine sediments resulting from isolation of radioactive wastes

    International Nuclear Information System (INIS)

    Dawson, P.R.

    1979-01-01

    Preliminary analyses of canister movement rsulting from thermally induced density gradients have been performed using a creeping viscoplastic flow model in conjunction with a creep equation evaluated from literature data for fine-grained clay. The stress levels predicted are quite low relative to the sediment quasi-static strength indicating that creep testing of marine sediments at very low stress is necessary. 4 figures

  16. The Influence of Wagon Structure Part Shape Optimization on Ultimate Fatigue Strength

    OpenAIRE

    Milovanović, Vladimir; Živković, Miroslav; Jovičić, Gordana; Živković, Jelena; Kozak, Dražan

    2016-01-01

    This study investigates how shape optimisation affects the ultimate fatigue strength of a mechanical part. The mechanical part chosen for this investigation is an axle guard of running gear elements of the Hccrrs 2x2 axle car-carrying wagon. The static and fatigue strength analysis procedure according to the UIC 517 standard and numerical methods have been applied. Material properties were determined experimentally and the necessary numerical calculations were performed by using the finite el...

  17. The proton transfer reaction in malonaldehyde derivatives: Substituent effects and quasi-aromaticity of the proton bridge

    International Nuclear Information System (INIS)

    Palusiak, Marcin; Simon, Silvia; Sola, Miquel

    2007-01-01

    The proton transfer in malonaldehyde and in some of its derivatives have been considered in order to study the interrelation between the reaction barrier and the π-delocalization in the quasi-ring. A set of simple and mostly common substituents having different properties in resonance effect according to values of substituents constants were chosen in order to simulate the influence of substitution in position 2 or in position 1 (or 3) of malonaldehyde on the quasi-aromaticity and H-bonding. The following substituents have been taken into consideration: NO, NO 2 , CN, CHO, F, H, CH 3 , OCH 3 , OH, and NH 2 . Our results show that when the substituent is attached at position 2 of the quasi-ring, the resonance effect predominates over the field/inductive effect which leads to changes in H-bonding and quasi-aromaticity of the ring motif, while in the case of 1(3) substitution the field/inductive effect is significantly more effective influencing the HB strength, and thus, the proton transfer barrier. Somehow counterintuitively, for the 1(3) substituted systems, the most stable isomer is the one having the weakest HB and lower aromaticity. The reason for this surprising behaviour is discussed

  18. Fatigue and fracture of fibre metal laminates

    CERN Document Server

    Alderliesten, René

    2017-01-01

    This book contributes to the field of hybrid technology, describing the current state of knowledge concerning the hybrid material concept of laminated metallic and composite sheets for primary aeronautical structural applications. It is the only book to date on fatigue and fracture of fibre metal laminates (FMLs). The first section of the book provides a general background of the FML technology, highlighting the major FML types developed and studied over the past decades in conjunction with an overview of industrial developments based on filed patents. In turn, the second section discusses the mechanical response to quasi-static loading, together with the fracture phenomena during quasi-static and cyclic loading. To consider the durability aspects related to strength justification and certification of primary aircraft structures, the third section discusses thermal aspects related to FMLs and their mechanical response to various environmental and acoustic conditions.

  19. Influences of posterior-located center of gravity on lumbar extension strength, balance, and lumbar lordosis in chronic low back pain.

    Science.gov (United States)

    Kim, Dae-Hun; Park, Jin-Kyu; Jeong, Myeong-Kyun

    2014-01-01

    In patients with chronic low back pain, the center of gravity (COG) is abnormally located posterior to the center in most cases. The purpose of this study was to examine the effects of posterior-located COG on the functions (lumbar extension strength, and static and dynamic balance) and structure (lumbar lordosis angle and lumbosacral angle) of the lumbar spine. In this study, the COG of chronic low back pain patients who complained of only low back pain were examined using dynamic body balance equipment. A total of 164 subjects participated in the study (74 males and 90 females), and they were divided into two groups of 82 patients each. One group (n=82) consisted of patients whose COG was located at the center (C-COG); the other group (n=82) consisted of patients whose COG was located posterior to the center (P-COG). The following measures assessed the lumber functions and structures of the two groups: lumbar extension strength, moving speed of static and dynamic COGs, movement distance of the static and dynamic COGs, lumbar lordosis angle, and lumbosacral angle. The measured values were analyzed using independent t-tests. The group of patients with P-COG showed more decreases in lumbar extension strength, lumbar lordosis angle, and lumbosacral angle compared to the group of patients with C-COG. Also this group showed increases in moving speed and movement distance of the static COG. However, there were no differences in moving speed and movement distance of the dynamic COG between the two groups. These findings suggest that chronic LBP patients with P-COG have some disadvantages to establish lumbar extension strength and static and dynamic balance, which require specific efforts to maintain a neutral position and to control posture.

  20. Measured static hyperfine magnetic fields following implantation of Pt into Fe interpreted as evidence for pre-equilibrium effects

    International Nuclear Information System (INIS)

    Anderssen, S.S.; Stuchberry, A.E.

    1994-06-01

    The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is ∼ 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction (∼ 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs

  1. Measured static hyperfine magnetic fields following implantation of Pt into Fe interpreted as evidence for pre-equilibrium effects

    Energy Technology Data Exchange (ETDEWEB)

    Anderssen, S S; Stuchberry, A E

    1994-06-01

    The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is {approx} 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction ({approx} 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs.

  2. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites

    International Nuclear Information System (INIS)

    Evora, Victor M.F.; Shukla, Arun

    2003-01-01

    Unsaturated polyester resin specimens embedded with small loadings of 36 nm average diameter TiO 2 particles were fabricated using a direct ultrasonification method to study the effects of nanosized particles on nanocomposite bulk mechanical properties. The ultrasonification method employed produced nanocomposites with excellent particle dispersion as verified by transmission electron microscopy (TEM). Quasi-static fracture toughness, tension, and compression testing was carried out. The presence of the particles had the greatest effect on fracture toughness; negligible influence was observed in the remaining quasi-static properties. Scanning electron microscopy (SEM) of fracture surfaces was carried out to identify toughening mechanisms. The inadequacy of the bond between the filler and the matrix and the presence of minor particle agglomerations in specimens containing higher volume fractions of particles were believed to be responsible for a consistent decrease in property values beyond a volume fraction of 1 vol.%. Dynamic fracture toughness testing was carried out, and an increase in dynamic fracture toughness relative to quasi-static fracture toughness was observed. High strain rate testing conducted using a split Hopkinson pressure bar (SHPB) apparatus revealed a moderate stiffening effect with increasing particle volume fraction, although no marked effect was observed on the ultimate strength

  3. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  4. The effects of high temperature and fiber diameter on the quasi static compressive behavior of metal fiber sintered sheets

    Energy Technology Data Exchange (ETDEWEB)

    Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Ge [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Jianzhong; Tang, Huiping [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2017-04-06

    The compressive mechanical properties of the sintered sheets of continuous stainless steel fibers with different fiber diameters (8 µm, 12 µm, 28 µm) are investigated at temperatures from 298 K to 1073 K. The stress-strain curves of metal fiber sintered sheet (MFSS) are obtained by testing under uniaxial compression and 0.2% offset yield stress are determined. Inner micro-structures of the material are revealed by using scanning electron microscope (SEM) and microscopic computer tomography. The results indicates that fabrication technique and porosity are two principle factors affecting the yield strength of MFSS and the strength of MFSS is insensitive to the temperature below 873 K while softening occurs at temperature 1073 K. At relative high porosity (e.g. 77%), the material with small diameter fibers tends to have higher yield strength while at low porosity, MFSS's yield strength becomes high with the increase of the fiber diameter, which is probably attributed to the joint size, the surface appearance of fibers and prehardening generated during the manufacturing of MFSS. A simplified structure model taking joint size into consideration is established to explain the influence of the joint size on the yield strength of MFSS.

  5. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    Science.gov (United States)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Approach to Operational Experimental Estimation of Static Stresses of Elements of Mechanical Structures

    Science.gov (United States)

    Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.

    2018-01-01

    The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.

  7. Quasi-elastic high-pressure waves in 2024 Al and Cu

    International Nuclear Information System (INIS)

    Morris, C.E.; Fritz, J.N.; Holian, B.L.

    1981-01-01

    Release waves from the back of a plate slap experiment are used to estimate the longitudinal modulus, bulk modulus and shear strength of the metal in the state produced by a symmetric collision. The velocity of the interface between the metal target and a window material is measured by the axially symmetric magnetic (ASM) probe. Wave profiles for initial states up to 90 GPa for 2024 Al and up to 150 GPa for Cu have been obtained. Elastic perfectly-plastic (EPP) theory cannot account for the results. A relatively simple quasi-elastic plastic (QEP) model can

  8. From Static Output Feedback to Structured Robust Static Output Feedback: A Survey

    OpenAIRE

    Sadabadi , Mahdieh ,; Peaucelle , Dimitri

    2016-01-01

    This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...

  9. The tensile strength of mechanical joint prototype of lontar fiber composite

    Science.gov (United States)

    Bale, Jefri; Adoe, Dominggus G. H.; Boimau, Kristomus; Sakera, Thomas

    2018-03-01

    In the present study, an experimental activity has been programmed to investigate the effect of joint prototype configuration on tensile strength of lontar (Borassus Flabellifer) fiber composite. To do so, a series of tests were conducted to establish the tensile strength of different joint prototype configuration specimen of lontar fiber composite. In addition, post observation of macroscope was used to map damage behavior. The analysis of lontar fiber composite is a challenge since the material has limited information than others natural fiber composites materials. The results shown that, under static tensile loading, the tensile strength of 13 MPa produced by single lap joint of lontar fiber composite is highest compare to 11 MPa of tensile strength generated by step lap joint and double lap joint where produced the lowest tensile strength of 6 MPa. It is concluded that the differences of tensile strength depend on the geometric dimensions of the cross-sectional area and stress distribution of each joint prototype configuration.

  10. Strength and lifetime of polymer glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bartenev, G.M.; Kartasov, E.M.

    1981-03-01

    A kinetic equation of the time-dependence of strength (complete isotherm of lifetime) of polymer glasses at stress values ranging from the limiting stress of the occurence of separation breaks to the critical stress is derived. The curvature of lifetime plots occuring at low and high periods of time in the experiments are considered. The ranges of noncritical state, breaks caused by a thermofluctuation mechanism, a transition range and athermal breaks are discerned. The limitations of applicability of the basic empirical equation of the kinetic theory of the time-dependence of strength are explained. Theoretical equations are suggested for calculating various characteristics of the brittle break, as limiting stress and critical stress, relative critical craze length and coefficient of stress concentration at the craze tip with respect to various geometrical configurations of the craze and its position in the sample. With polymethylmethacrylate as an example in the brittle and quasi-brittle state, as characterized by the transition from the rupture of sets of chemical bonds to individual chemical bonds, the thermofluctuation processes of break in polymer glasses are discussed. The application of the thermofluctuation theory of solids to the quasi-brittle fracture is considered. The growth kinetics of crazes and the corresponding equation of lifetime were found to be described by identical (corresponding) analytical expressions by which the changes of the coefficients of stress concentration in the range of microplastic deformation in front of the growing is covered within a wide region of temperature including the brittle temperature.

  11. Thermodynamics of quasi-topological cosmology

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Sheykhi, A.; Dehghani, R.

    2013-01-01

    In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r + , with the apparent horizon radius, r -tilde A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which shows the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology

  12. Alloy with metallic glass and quasi-crystalline properties

    Science.gov (United States)

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  13. Tests for determining impact resistance and strength of glass used for nuclear waste disposal

    International Nuclear Information System (INIS)

    Bunnell, L.R.

    1979-05-01

    Tests are described for determining the impact resistance (Section A) and static tensile strength (Section B) of glasses containing simulated or actual nuclear wastes. This report describes the development and use of these tests to rank different glasses, to assess effects of devitrification, and to examine the effect of impact energy on resulting surface area. For clarity this report is divided into two sections, Impact Resistance and Tensile Strength

  14. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals

    International Nuclear Information System (INIS)

    Murakami, Y.

    1991-01-01

    The equation for predicting the effects of artificial small defects on the fatigue strength of metals is introduced, and it is applied to the quantitative evaluation of the effects of nonmetallic inclusions on the fatigue strength of high-strength steels. The importance of the concept that nonmetallic inclusions are virtually equivalent to defects, from the viewpoint of fatigue strength and, more practically, are equivalent to small cracks is emphasized. It is shown that nonmetallic inclusions cause relatively low-fatigue strength and large scatter of the fatigue strength of steels with high static strength or high hardness. The statistics of extreme values is used to estimate the expected maximum size of nonmetallic inclusions contained in a definite number of specimens. The lower limit of scatter in the fatigue strength of a high-strength steel is obtained by using the prediction equation for small defects together with the expected maximum size of nonmetallic inclusions

  15. Quasi-experimental study designs series-paper 13: realizing the full potential of quasi-experiments for health research.

    Science.gov (United States)

    Rockers, Peter C; Tugwell, Peter; Røttingen, John-Arne; Bärnighausen, Till

    2017-09-01

    Although the number of quasi-experiments conducted by health researchers has increased in recent years, there clearly remains unrealized potential for using these methods for causal evaluation of health policies and programs globally. This article proposes five prescriptions for capturing the full value of quasi-experiments for health research. First, new funding opportunities targeting proposals that use quasi-experimental methods should be made available to a broad pool of health researchers. Second, administrative data from health programs, often amenable to quasi-experimental analysis, should be made more accessible to researchers. Third, training in quasi-experimental methods should be integrated into existing health science graduate programs to increase global capacity to use these methods. Fourth, clear guidelines for primary research and synthesis of evidence from quasi-experiments should be developed. Fifth, strategic investments should be made to continue to develop new innovations in quasi-experimental methodologies. Tremendous opportunities exist to expand the use of quasi-experimental methods to increase our understanding of which health programs and policies work and which do not. Health researchers should continue to expand their commitment to rigorous causal evaluation with quasi-experimental methods, and international institutions should increase their support for these efforts. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Table of members of quasi-bands

    International Nuclear Information System (INIS)

    Sakai, Mitsuo.

    1984-04-01

    The probable members of the quasi-bands in even-even nuclei for Z between 6 and 100 are listed in this table. The terms quasi-bands have been introduced in the so-called spherical regions as the counter parts of the collective bands in the deformed regions. In the present compilation, the data for deformed nuclei are classified for convenience under the same titles, Quasi-Ground Band, Quasi-Beta Band and Quasi-Gamma Band, as are used for other nuclear regions. The present edition covers the literature through September, 1983. Fifteen newly discovered nuclides are included. The classification of energy level into quasi-bands is made on the basis of the systematic trend in the data over large groups of nuclei. (Kato, T.)

  17. The Strength Analysis of CFM56 Engine Blade

    Directory of Open Access Journals (Sweden)

    Liu Zhenzhen

    2018-01-01

    Full Text Available Aero engine is a kind of thermodynamic machinery, which require have strict aerodynamic load, mechanical load and strong durability, its longevity depends largely on the life of its main components. In this paper, a series of studies are carried out on the strength of fan blades of CFM56 engine, which provide a reference value for improving the reliability of the engine. The finite element model of the engine fan is established by using CATIA’s finite element software.The centrifugal stress distribution of the fan at different speeds and the influence of torque on fans under different speeds are calculated respectively, and the static strength of the fan is checked.

  18. The Effect of Face Sheet Wrinkle Defects on the Strength of FRP Sandwich Structures

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Pettersson, Robert

    2007-01-01

    . In the studies reported here, the influence of wrinkle defects on the in-plane compressive strength of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates used in PVC foam-cored sandwich panels has been investigated by three approaches: testing of sandwich beam specimens in four-point bending...

  19. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.E. E-mail: cvargas@fis.cinvestav.mx; Hirsch, J.G. E-mail: hirsch@nuclecu.unam.mx; Draayer, J.P. E-mail: draayer@lsu.edu

    2001-07-30

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of {sup 20,22}Ne, {sup 24}Mg and {sup 28}Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed.

  20. Quasi-gas dynamic equations

    CERN Document Server

    Elizarova, Tatiana G

    2009-01-01

    This book presents two interconnected mathematical models generalizing the Navier-Stokes system. The models, called the quasi-gas-dynamic and quasi-hydrodynamic equations, are then used as the basis of numerical methods solving gas- and fluid-dynamic problems.

  1. Investigation of Bond Strength in Centrifugal Lining of Babbitt on Cast Iron

    Science.gov (United States)

    Diouf, Papa; Jones, Alan

    2010-03-01

    The quality of the bond between Babbitt metal and a cast iron substrate was evaluated for centrifugal casting and static casting using the Chalmers bond strength method and scanning electron microscopy (SEM). The effect of three different centrifugal casting parameters, the speed of revolution, the pouring rate, and the cooling rate, was investigated. The bond strength and the microstructure at the bond interface were predominantly affected by the cooling rate, with a fast cooling rate resulting in better properties. The speed of revolution and the pouring rate only had a small effect on the bond strength, with faster revolution and faster pouring rate resulting in slightly better bonds.

  2. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery

    Science.gov (United States)

    Rohatgi, Aashish; Vecchio, Kenneth S.; Gray, George T.

    2001-01-01

    The role of stacking fault energy (SFE) in deformation twinning and work hardening was systematically studied in Cu (SFE ˜78 ergs/cm2) and a series of Cu-Al solid-solution alloys (0.2, 2, 4, and 6 wt pct Al with SFE ˜75, 25, 13, and 6 ergs/cm2, respectively). The materials were deformed under quasi-static compression and at strain rates of ˜1000/s in a Split-Hopkinson pressure bar (SHPB). The quasi-static flow curves of annealed 0.2 and 2 wt pct Al alloys were found to be representative of solid-solution strengthening and well described by the Hall-Petch relation. The quasi-static flow curves of annealed 4 and 6 wt pct Al alloys showed additional strengthening at strains greater than 0.10. This additional strengthening was attributed to deformation twins and the presence of twins was confirmed by optical microscopy. The strengthening contribution of deformation twins was incorporated in a modified Hall-Petch equation (using intertwin spacing as the “effective” grain size), and the calculated strength was in agreement with the observed quasi-static flow stresses. While the work-hardening rate of the low SFE Cu-Al alloys was found to be independent of the strain rate, the work-hardening rate of Cu and the high SFE Cu-Al alloys (low Al content) increased with increasing strain rate. The different trends in the dependence of work-hardening rate on strain rate was attributed to the difference in the ease of cross-slip (and, hence, the ease of dynamic recovery) in Cu and Cu-Al alloys.

  3. Effects of age and loading rate on equine cortical bone failure.

    Science.gov (United States)

    Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S

    2011-01-01

    Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. C-130: Results of center wing residual strength and crack propagation test program

    Science.gov (United States)

    Reeder, F. L.; Dirkin, W. J.; Snider, H. L.

    1971-01-01

    Fourteen C-130 airplane center wings which had experienced from approximately 4,000 to 13,000 hours of flight service and its associated fatigue damage were tested to destruction, seven in upbending and seven in downbending. Six wings were tested directly for static residual strength in the fatigue-damaged condition as received from field service. The other eight wings were tested in crack propagation cyclic testing at a prescribed stress level for a maximum of 10,000 cycles. Then the stress level was reduced and testing was continued up to a maximum of 20,000 total cycles. Cyclic testing was performed with constant-amplitude stresses at a stress ratio of +0.1. Maximum cyclic skin stresses were approximately 18,000 psi. At the conclusion of cyclic testing, a static test to destruction was conducted to determine the residual strength of each fatigue-damaged specimen.

  5. Static electricity: A literature review

    Science.gov (United States)

    Crow, Rita M.

    1991-11-01

    The major concern with static electricity is its discharging in a flammable atmosphere which can explode and cause a fire. Textile materials can have their electrical resistivity decreased by the addition of antistatic finishes, imbedding conductive particles into the fibres or by adding metal fibers to the yarns. The test methods used in the studies of static electricity include measuring the static properties of materials, of clothed persons, and of the ignition energy of flammable gases. Surveys have shown that there is sparse evidence for fires definitively being caused by static electricity. However, the 'worst-case' philosophy has been adopted and a static electricity safety code is described, including correct grounding procedures and the wearing of anti-static clothing and footwear.

  6. Excitation of macromagnetohydrodynamic mode due to multiscale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    This is the first numerical simulation demonstrating that a macromagnetohydrodynamic (macro-MHD) mode is excited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow based on a reduced two-fluid model. This simulation of a macro-MHD mode, a double tearing mode, is accomplished in a reversed shear equilibrium that includes zonal flow and turbulence due to kinetic ballooning modes. In the quasi-steady equilibrium, a macroscale fluctuation that has the same helicity as the double tearing mode is a part of the turbulence. After a certain period of time, the macro-MHD mode begins to grow. It effectively utilizes free energy of the equilibrium current density gradient and is destabilized by a positive feedback loop between zonal flow suppression and magnetic island growth. Thus, once the macro-MHD appears from the quasi-equilibrium, it continues to grow steadily. This simulation is more comparable with experimental observations of growing macro-MHD activity than earlier MHD simulations starting from linear macroinstabilities in a static equilibrium

  7. Effect of Positive Psychotherapy in Depression Symptoms and Character Strengths in Cancer Affected Patients

    Directory of Open Access Journals (Sweden)

    R Khodabakhash

    2015-05-01

    Full Text Available The purpose of this research was to study the effect of positive psychotherapy on depression symptoms and character strengths in cancer affected patients. Based on a quasi-experimental design by available sampling, 58 cancer patients were investigated. 30 patients were assigned in two groups: 15 patients in positive psychotherapy group (treatment and 15 patients as control group. In the present research, Oxford Happiness-Depression Questionnaire (OHDQ and Values In Action Inventory of Strengths (VIA-IS were used. The results showed that the positive psychotherapy was effective in reducing depression, increasing the character strengths and virtues, improving meaningful, pleasant and engaged life of cancer patients.

  8. Quasi interpolation with Voronoi splines.

    Science.gov (United States)

    Mirzargar, Mahsa; Entezari, Alireza

    2011-12-01

    We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE

  9. Design and Optimization of a Composite Canard Control Surface of an Advanced Fighter Aircraft under Static Loading

    Directory of Open Access Journals (Sweden)

    Shrivastava Sachin

    2015-01-01

    Full Text Available The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI in unidirectional fibrous laminates using Genetic-Algorithms (GA under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT. The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.

  10. M-quasi-hyponormal composition operators

    Directory of Open Access Journals (Sweden)

    Pushpa R. Suri

    1987-01-01

    Full Text Available A necessary and sufficient condition is obtained for M-quasi-hyponormal composition operators. It has also been proved that the class of M-quasi-hyponormal composition operators coincides with the class of M-paranormal composition operators. Existence of M-hyponormal composition operators which are not hyponormal; and M-quasihyponormal composition operators which are not M-hyponormal and quasi-hyponormal are also shown.

  11. Development of high-mechanical strength electrical insulations for tokamak toroidal field coils

    International Nuclear Information System (INIS)

    Burke, C.

    1977-01-01

    The electrical insulation for the TF (Toroidal Field) coils is subjected to a high interlaminar shear, tensile and compressive stresses. Two candidate epoxy/glass fiber systems using prepreg and vacuum impregnation techniques were evaluated. Specimens were prepared and processed under controlled conditions to simulate specification manufacturing procedures. The strengths of the insulation were measured in interlaminar shear, tension, compression, and combined shear and compression statically. Shear modulus determinations were also made. Various techniques of surface treatments to increase bond strengths with three resin primers were tested

  12. Design Formula for Breakage of Tetrapods

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.

    1995-01-01

    The paper presents a design formula for Tetrapod armour on a 1:1.5 slope exposed to head-on random wave attack. The formula predicts the relative number of broken Tetrapods as function of: the mass of the Tetrapods, the concrete tensile strength and the wave height in front of the structure. Thus......, the formula addresses the observed problem of ensuring structural integrity of the slender types of non-reinforced armour units. The formula is based on results from small scale model tests with load-cell instrumented Tetrapods in which both the static, the quasi-static and the impact proportions of the loads...

  13. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-01-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy's (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 F to 600 F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young's modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper

  14. Static and radiating solutions of Lovelock gravity in the presence of a perfect fluid

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Farhangkhah, N.

    2009-01-01

    We present a general solution of third order Lovelock gravity in the presence of a specific type II perfect fluid. This solution for linear equation of state, p=w(ρ-4B) contains all the known solutions of third order Lovelock gravity in the literature and some new static and radiating solutions for different values of w and B. Specially, we consider the properties of static and radiating solutions for w=0 and w=(n-2) -1 with B=0 and B≠0. These solutions are asymptotically flat for B=0, while they are asymptotically (anti-)de Sitter for B≠0. The new static solutions for these choices of B and w present black holes with one or two horizons, extreme black holes or naked singularities provided the parameters of the solutions are chosen suitable. The static solution with w=0 and vanishing geometrical mass (m=0) may present a black hole with two inner and outer horizons. This is a peculiar feature of the third order Lovelock gravity, which does not occur in lower order Lovelock gravity. We also, investigate the properties of radiating solutions for these values of B and w, and compare the singularity strengths of them with the known radiating solutions of third order Lovelock gravity.

  15. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, A. J.; Ruth, A. A., E-mail: a.ruth@ucc.ie [Physics Department and Environmental Research Institute, University College Cork, Cork (Ireland); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333-CA Leiden (Netherlands)

    2016-07-14

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles’ spectroscopic and optical properties with those of carbonaceous materials indicate a sp{sup 3}/sp{sup 2} hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  16. Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field

    International Nuclear Information System (INIS)

    Wang, De-hua

    2017-01-01

    Highlights: • The photodetachment of H − in an oscillating electric field has been studied using the time-dependent closed orbit theory. • An analytical formula for calculating the photodetachement cross section has been put forward. • Our study provides a clear physical picture for the photodetachment of negative ion in an oscillating electric filed. • Our work is useful in guiding the experimental research for the photodetachment dynamics in the time-dependent field. - Abstract: Using the time-dependent closed orbit theory, we study the photodetachment of H − ion in a time-dependent electric field. The photodetachment cross section is specifically studied in the presence of a static electric field plus an oscillating electric field. We find that the photodetachment of negative ion in the time-dependent electric field becomes much more complicated than the case in a static electric field. The oscillating electric field can weaken the photodetachment cross section greatly when the strength of the oscillating electric field is less than the static electric field. However, as the strength of the oscillating electric field is larger than the static electric field, four types of closed orbits are identified for the detached electron, which makes the oscillating amplitude in the photodetachment cross section gets increased again. The connection between the detached electron’s closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the understanding of the connections between quantum and classical description for the time-dependent Hamiltonian systems and may guide the future experimental research for the photodetachment dynamics in the time-dependent electric field.

  17. Excellent plasticity of a new Ti-based metallic glass matrix composite upon dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Jiao, Z.M. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Y.S.; Wang, Z. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Z.H.; Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-11-20

    Quasi-static and dynamic compressive properties of in-situ Ti{sub 60}Zr{sub 14}V{sub 12}Cu{sub 4}Be{sub 10} bulk metallic glass matrix composites containing ductile dendrites were investigated. Upon quasi-static compressive loading, the composite exhibits a high fracture strength of ~2,600 MPa, combined with a considerable plasticity of ~40% at room temperature. However, upon dynamic loading, an excellent plasticity of ~16% can be obtained due to the abundant dislocations and severe lattice distortions within dendrites and multiplication of shear bands within the glass matrix analyzed by transmission-electron microscopy. A constitutive relationship is obtained by Johnson-Cook plasticity model, which is employed to model the dynamic flow stress behavior. In addition, under dynamic compression, the adiabatic temperature rise increases with increasing strain rates, resulting in that the softening effect within the glass matrix is obviously enhanced during deformation.

  18. Experimental investigations and evaluation of strength and deflections of reinforced concrete beam-column joints using nonlinear static analysis

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.

    2009-07-01

    It is now a well-known fact that beam-column connections are one of the most vulnerable zones of a reinforced concrete framed structure subjected to seismic loads. Under dynamic reversing loading, as in case of earthquakes, the inelastic hysteretic behavior of the members joining at these joints provides major contribution towards absorbing the external energy. The energy absorption capacity of a joint mainly depends on the ductility, i.e. capacity to undergo large displacements beyond yield, without significant strength degradation, of the members and the joint itself. Even if the members possess sufficient ductile behavior, the overall ductility of the joint is not warranted, until and unless the joint core itself has capacity to withstand large joint shear forces. Else, the joint core itself fails prematurely and leads to poor performance of the sub-assemblage. Another major objective of this program was to develop a simple yet effective analysis procedure that can closely predict the load-displacement behavior of the joints. Nonlinear dynamic analysis, although effective, is highly time consuming and complex. Resorting to such complex analysis is not encouraging to the practicing civil engineers or even researchers. However, as more and more emphasis is laid on nonlinear analysis and performance based design, nonlinear static pushover analysis is one such tool that is simple and effective and many researchers and engineers are getting encouraged to follow this analytical method. This report includes complete details of all the joints tested and their analysis. It gives complete theoretical formulations and assumptions used in the analysis. In the end, all the results are summarized and observations, conclusions and recommendations are made regarding the effect of various parameters on ductility of a joint. (author)

  19. Estimated strength of shear keys in concrete dams

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.D. [Hatch Energy, Niagara Falls, ON (Canada); Lum, K.K.Y. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    BC Hydro requested that Hatch Energy review the seismic stability of Ruskin Dam which was constructed in 1930 at Hayward Lake in British Columbia. The concrete gravity dam is founded nearly entirely on rock in a narrow valley. The vertical joints between blocks are keyed and grouted. The strength of the shear keys was assessed when a non-linear finite element model found that significant forces were being transferred laterally to the abutments during an earthquake. The lateral transfer of loads to the abutment relies on the strength of the shear keys. The dynamic finite element analysis was used to determine the stability of the dam. A review of the shear strength measurements reported in literature showed that the measurements compared well to those obtained by BC Hydro from cores taken from Ruskin Dam. The cohesive strength obtained using the Griffith failure criteria was also in good agreement with both sets of measurements. A simple ultimate shear strength equation was developed using the Mohr-Coulomb failure criteria to determine combined cohesive and frictional strength of shear keys. Safety factors of 2.0 for static loads and 1.5 for seismic loads were proposed to reduce the ultimate strength to allowable values. It was concluded that given the relatively high shear strength established for the shear keys, the abutment rock or dam/abutment contact will control the amount of load which can arch to the abutments. 8 refs., 4 tabs., 5 figs.

  20. On some classes of super quasi-Einstein manifolds

    International Nuclear Information System (INIS)

    Ozguer, Cihan

    2009-01-01

    Quasi-Einstein and generalized quasi-Einstein manifolds are the generalizations of Einstein manifolds. In this study, we consider a super quasi-Einstein manifold, which is another generalization of an Einstein manifold. We find the curvature characterizations of a Ricci-pseudosymmetric and a quasi-conformally flat super quasi-Einstein manifolds. We also consider the condition C ∼ .S=0 on a super quasi-Einstein manifold, where C ∼ and S denote the quasi-conformal curvature tensor and Ricci tensor of the manifold, respectively.

  1. Utility of the Static-99 and Static-99R With Latino Sex Offenders.

    Science.gov (United States)

    Leguízamo, Alejandro; Lee, Seung C; Jeglic, Elizabeth L; Calkins, Cynthia

    2017-12-01

    The predictive validity of the Static-99 measures with ethnic minorities in the United States has only recently been assessed with mixed results. We assessed the predictive validity of the Static-99 and Static-99R with a sample of Latino sex offenders ( N = 483) as well as with two subsamples (U.S.-born, including Puerto Rico, and non-U.S.-born). The overall sexual recidivism rate was very low (1.9%). Both the Static-99 measures were able to predict sexual recidivism for offenders born in the United States and Puerto Rico, but neither was effective in doing so for other Latino immigrants. Calibration analyses ( N = 303) of the Static-99R were consistent with the literature and provided support for the potential use of the measure with Latinos born in the United States and Puerto Rico. These findings and their implications are discussed as they pertain to the assessment of Latino sex offenders.

  2. Shallow lake economics run deep: Nonlinear aspects of an economic-ecological interest conflict

    NARCIS (Netherlands)

    Wagener, F.

    2013-01-01

    Outcomes of the shallow lake long-term interest conflict in a number of different settings are presented, in particular in the contexts of quasi-static and dynamic social planning and of quasi-static non-cooperative play. Also the effect of trigger strategies in repeated quasi-static play is

  3. Damage law identification of a quasi brittle ceramic from a b ending test using digital image correlation

    Directory of Open Access Journals (Sweden)

    Meille S.

    2010-06-01

    Full Text Available The quasi brittle ceramics show a non linear mechanical behaviour resulting most of the time in a dissymetry between their tensile and compressive stress-strain laws. The characterization of their fracture strengths might be biased if elastic linear formulae are used to analyze classical tests like bending tests. Based on Digital Image Correlation (DIC, a methodology is proposed to characterize materials with dissymmetric behaviours. Applying specific DIC decomposition functions for bending, compressive and tensile tests, a stress-strain model and its damage law are identified for aluminium titanate, a damageable micro cracked ceramic. This identification method using DIC can obviously be applied to other quasi brittle materials.

  4. Strength and stability of microbial plugs in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sharma, M.M.; Georgiou, G. [Univ. of Texas, Austin, TX (United States)

    1995-12-31

    Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reduction was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.

  5. Measurement and quasi-states in quantum mechanics

    International Nuclear Information System (INIS)

    Harper, C.D.

    1987-01-01

    Part of the task of quantum logic is to account for the collapse of the state vector during measurement. A difficulty in this is that it is not obvious how to describe measurement quantum mechanically as the interaction of two or more systems; interacting quantum-mechanical systems do not possess states, so their states cannot collapse. This dissertation shows that component systems of a composite system possess families of state-like vectors. These are the quasi-projections of the state vector of the composite system, each associated with a family of commutable observables. Often these quasi-projections cluster so closely around a quasi-state that they are practically indistinguishable from it. A description of measurement based on quasi-projections reveals the apparent collapse of the state vector during measurement to be illusory. The continuous evolution of the state of the composite system give rise to abrupt changes in the quasi-projections which make it appear that the state has changed. The quasi-projections cease to cluster near one quasi-state, are momentarily scattered, and then cluster again near another quasi-state. The concept of quasi-projection is also used to generalize the quantum logic of Birkhoff and von Neumann in such a fashion that a proposition can always be assigned a truth value

  6. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  7. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  8. Effect of the Power Balance® band on static balance, hamstring flexibility, and arm strength in adults.

    Science.gov (United States)

    Verdan, Princess J R; Marzilli, Thomas S; Barna, Geanina I; Roquemore, Anntionette N; Fenter, Brad A; Blujus, Brittany; Gosselin, Kevin P

    2012-08-01

    The purpose of this study was to determine the effect of Power Balance® bands on strength, flexibility, and balance. Strength and flexibility were measured using the MicroFit system. Strength was measured via a bicep curl and flexibility via the sit-and-reach method. Balance was measured by the BIODEX System SD. There were 4 different conditions for the balance test: eyes open on a firm surface (EOFS), eyes closed on a firm surface (ECFS), eyes open on a foam surface (EOFoS), and eyes closed on a foam surface (ECFoS). There were 24 subjects in the study (10 men and 14 women). A counterbalance, double-blind, placebo, controlled within-subject design was used. Each of the subjects participated in 3 treatment sessions, consisting of Power Balance®, placebo band, and no band. An alpha level of p ≤ 0.05 was set a priori. There were no significant differences in strength, flexibility, or balance with regard to the treatments used. There was a significant difference between the conditions in the balance test (p = 0.000): EOFS (0.51), ECFS (0.68), EOFoS (0.99), and ECFoS (2.18); however, these were independent of the treatment conditions. The results indicate that the Power Balance® bands did not have an effect on strength, flexibility, or balance.

  9. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.; Schreyer, H.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  10. Weak completeness of the Bourbaki quasi-uniformity

    Directory of Open Access Journals (Sweden)

    M.A. Sánchez Granero

    2001-04-01

    Full Text Available The concept of semicompleteness (weaker than half-completeness is defined for the Bourbaki quasi-uniformity of the hyperspace of a quasi-uniform space. It is proved that the Bourbaki quasi-uniformity is semicomplete in the space of nonempty sets of a quasi-uniform space (X,U if and only if each stable filter on (X,U* has a cluster point in (X,U. As a consequence the space of nonempty sets of a quasi-pseudometric space is semicomplete if and only if the space itself is half-complete. It is also given a characterization of semicompleteness of the space of nonempty U*-compact sets of a quasi-uniform space (X,U which extends the well known Zenor-Morita theorem.

  11. Opinion formation models in static and dynamic social networks

    Science.gov (United States)

    Singh, Pramesh

    the interaction rules considered. Finally, a three-state (leftist, rightist, centrist) model that couples the dynamics of social balance with an external deradicalizing field is studied. The mean-field analysis shows that for a weak external field, the system exhibits a metastable fixed point and a saddle point in addition to a stable fixed point. However, if the strength of the external field is sufficiently large (larger than a critical value), there is only one (stable) fixed point which corresponds to an all-centrist consensus state (absorbing state). In the weak-field regime, the convergence time to the absorbing state is evaluated using the quasi-stationary(QS) distribution and is found to be in good agreement with the results obtained by numerical simulations.

  12. MECHANICAL BEHAVIOR OF COLD BITUMINOUS MIXTURE UNDER EFFECTS OF STATIC AND REPEATED LOADS1

    OpenAIRE

    Tamyres Karla da Silva; Carlos Alexandre Braz de Carvalho; Geraldo Luciano de Oliveira Marques; Dario Cardoso de Lima; Taciano Oliveira da Silva; Carlos Cardoso Machado

    2017-01-01

    Abstract This paper presents the results of an experimental research aimed at analyzing the mechanical behavior of a cold bituminous mixture under effects of static and repeated loads. Initially, a Marshall mixture design was performed to determine the mixture design contents according to standard DNER (1994a). After obtaining the mixture design contents, nine bituminous specimens were molded and subjected to the following tests: resilient modulus, tensile strength by diametral compression, a...

  13. Detection of rock strength at Branisko massif

    Directory of Open Access Journals (Sweden)

    Lazarová Edita

    2000-09-01

    Full Text Available When monitoring and optimizing the driving proces of the exploratory gallery by a computer system, conditions for verification of the interaction between desintegrating head of driving machine and rock massif were created. One of the output values of this mathematical model is the model strength at a simple pressure ótlH, which is defined as a pressure at the discus and the massif contact during the desintigration (a near limit of massif strength. By geological and geological engineering exploration, the section of length 2340 m was divided into fourty-two geological sections and five quasi-homogeneous massif enviroments. In the article, results of scleroscopic strength óCI , the strength in a simple pressure determined from the point load test and the strength at simple pressure ótlH are confronted . The main advance of the electronic geomechanical monitoring is the density of gained information. The two-seconds sample period of input and output data during the driving process makes it possible to describe driving circumstances in an almost continual way for each millimeter of the built tunnel. Then the information about changes of disintegrated rock properties, have the same density (frequency. By comparing a quantity of data gained by examining the index of point strength, scleroscopic strength and the model strength in a simple pressure from the monitoring process of driving process it is obvious that during the driving of exploratory gallery of motorway tunnel Branisko, a proportion of data number from the three “type examinations” of strength was reached and it was approximately 1:7:5000. Approximately in the same proportion, there were determined values for the 42 geologic sections (I. – XLII., which were defined in detail by the geologic, engineering geologic, hydrogeologic and geotechnic research.. The presented quantity values of presented rock mass strength for each geologic section are presented by their arithmetic average

  14. Forming limit curves of DP600 determined in high-speed Nakajima tests and predicted by two different strain-rate-sensitive models

    Science.gov (United States)

    Weiß-Borkowski, Nathalie; Lian, Junhe; Camberg, Alan; Tröster, Thomas; Münstermann, Sebastian; Bleck, Wolfgang; Gese, Helmut; Richter, Helmut

    2018-05-01

    Determination of forming limit curves (FLC) to describe the multi-axial forming behaviour is possible via either experimental measurements or theoretical calculations. In case of theoretical determination, different models are available and some of them consider the influence of strain rate in the quasi-static and dynamic strain rate regime. Consideration of the strain rate effect is necessary as many material characteristics such as yield strength and failure strain are affected by loading speed. In addition, the start of instability and necking depends not only on the strain hardening coefficient but also on the strain rate sensitivity parameter. Therefore, the strain rate dependency of materials for both plasticity and the failure behaviour is taken into account in crash simulations for strain rates up to 1000 s-1 and FLC can be used for the description of the material's instability behaviour at multi-axial loading. In this context, due to the strain rate dependency of the material behaviour, an extrapolation of the quasi-static FLC to dynamic loading condition is not reliable. Therefore, experimental high-speed Nakajima tests or theoretical models shall be used to determine the FLC at high strain rates. In this study, two theoretical models for determination of FLC at high strain rates and results of experimental high-speed Nakajima tests for a DP600 are presented. One of the theoretical models is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2, which is based on an initial imperfection. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the FLC. These two models are calibrated by the quasi-static and dynamic uniaxial tensile tests and bulge tests. The predictions for the quasi-static and dynamic FLC by both models are presented and compared with the experimental results.

  15. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  16. Degradation in the fatigue strength of dentin by diamond bur preparations: Importance of cutting direction.

    Science.gov (United States)

    Majd, B; Majd, H; Porter, J A; Romberg, E; Arola, D

    2016-01-01

    The objectives of this investigation were to evaluate the degradation in fatigue strength of dentin by diamond bur preparations and to identify the importance of cutting direction. Three groups of coronal dentin specimens were prepared from unrestored third molars, including a flaw free "control," and two groups that received a diamond bur cutting treatment performed parallel or perpendicular to the specimen length. The specimens were subjected to static or cyclic flexural loading to failure and the results were compared with data for carbide bur cutting. Under static loading diamond bur cutting resulted in significantly lower flexure strength (p ≤ 0.05) than the control for both cutting directions (from 154 to ∼124 MPa). However, there was no significant difference in the strength between the control and carbide bur treated specimens. Similarly, the fatigue strength of the diamond bur treated specimens was significantly lower (p ≤ 0.0001) than that of the control for both cutting directions. Cutting in the perpendicular direction resulted in nearly 60% reduction to the endurance limit (from 44 to 19 MPa). Based on the results, diamond bur cutting of cavity preparations causes a reduction in the fatigue strength of dentin, regardless of the cutting direction. To maintain the durability of dentin, cavity preparations introduced using diamond burs must be performed with appropriate cutting direction and followed by a finishing pass. © 2014 Wiley Periodicals, Inc.

  17. THE RELATIONSHIP BETWEEN MAXIMUM UNILATERAL SQUAT STRENGTH AND BALANCE IN YOUNG ADULT MEN AND WOMEN

    Directory of Open Access Journals (Sweden)

    Kevin McCurdy

    2006-06-01

    Full Text Available The purpose of this study was to determine the relationship between unilateral squat strength and measures of static balance to compare balance performance between the dominant and non-dominant leg. Seventeen apparently healthy men (mean mass 90.5 ± 20.9 kg and age 21.7 ± 1.8 yrs and 25 women (mean mass 62.2 ± 14.5 kg and age 21.9 ± 1.3 yrs completed the study. Weight bearing unilateral strength was measured with a 1RM modified unilateral squat on the dominant and non-dominant leg. The students completed the stork stand and wobble board tests to determine static balance on the dominant and non-dominant leg. Maximum time maintained in the stork stand position, on the ball of the foot with the uninvolved foot against the involved knee with hands on the hips, was recorded. Balance was measured with a 15 second wobble board test. No significant correlations were found between the measurements of unilateral balance and strength (r values ranged between -0.05 to 0.2 for the men and women. Time off balance was not significantly different between the subjects' dominant (men 1.1 ± 0.4 s; women 0.3 ± 0.1 s and non-dominant (men 0.9 ± 0.3 s; women 0.3 ± 0.1 s leg for the wobble board. Similar results were found for the time balanced during the stork stand test on the dominant (men 26.4 ± 6.3 s; women 24.1 ± 5.6 s and non-dominant (men 26.0 ± 5.7 s; women 21.3 ± 4.1 s leg. The data indicate that static balance and strength is unrelated in young adult men and women and gains made in one variable after training may not be associated with a change in performance of the other variable. These results also suggest that differences in static balance performance between legs can not be determined by leg dominance. Similar research is needed to compare contralateral leg balance in populations who participate in work or sport activities requiring repetitive asymmetrical use. A better understanding of contralateral balance performance will help

  18. DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy

    Directory of Open Access Journals (Sweden)

    Manping Liu

    2015-04-01

    Full Text Available In the present investigation, both static and dynamic precipitations of an Al–Mg–Si–Cu aluminum alloy after solid-solution treatment (SST were comparatively analyzed using differential scanning calorimetry (DSC. Dynamic aging was performed in the SST alloy through equal channel angular pressing (ECAP at different temperatures of room temperature, 110, 170, 191 and 300 °C. For comparison, static artificial aging was conducted in the SST alloy at 191 °C with two aging times of 4 and 10 h. The DSC analyses reveal that the dynamic precipitation has occurred in the ECAPed samples, while the activation energies associated with the strengthening precipitates in the dynamic samples are considerably higher than the energies in the SST and static aged samples. The higher activation energies are probably attributed to the smaller grains and higher dislocation density developed after ECAP. The results in the present investigation allow the prediction of the type of the dynamic precipitates to influence the strength of the ultrafine grained alloy during ECAP at various temperatures.

  19. Application of quasi-random numbers for simulation

    International Nuclear Information System (INIS)

    Kazachenko, O.N.; Takhtamyshev, G.G.

    1985-01-01

    Application of the Monte-Carlo method for multidimensional integration is discussed. The main goal is to check the statement that the application of quasi-random numbers instead of regular pseudo-random numbers provides more rapid convergency. The Sobol, Richtmayer and Halton algorithms of quasi-random sequences are described. Over 50 tests to compare these quasi-random numbers as well as pseudo-random numbers were fulfilled. In all cases quasi-random numbers have clearly demonstrated a more rapid convergency as compared with pseudo-random ones. Positive test results on quasi-random trend in Monte-Carlo method seem very promising

  20. Experimental data of the static behavior of reinforced concrete beams at room and low temperature.

    Science.gov (United States)

    Mirzazadeh, M Mehdi; Noël, Martin; Green, Mark F

    2016-06-01

    This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well.