Sample records for quarg

  1. Sensory characteristics and related volatile flavor compound profiles of different types of whey. (United States)

    Gallardo-Escamilla, F J; Kelly, A L; Delahunty, C M


    To characterize the flavor of liquid whey, 11 samples of whey representing a wide range of types were sourced from cheese and casein-making procedures, either industrial or from pilot-plant facilities. Whey samples were assessed for flavor by descriptive sensory evaluation and analyzed for headspace volatile composition by proton transfer reaction-mass spectrometry (PTR-MS). The sensory data clearly distinguished between the samples in relation to the processes of manufacture; that is, significant differences were apparent between cheese, rennet, and acid wheys. For Mozzarella and Quarg wheys, in which fermentation progressed to low pH values, the starter cultures used for cheese making had a significant influence on flavor. In comparison, Cheddar and Gouda wheys were described by milk-like flavors, and rennet casein wheys were described by "sweet" (oat-like and "sweet") and thermally induced flavors. The volatile compound data obtained by PTR-MS differentiated the samples as distinctive and reproducible "chemical fingerprints". On applying partial least squares regression to determine relationships between sensory and volatile composition data, sensory characteristics such as "rancid" and cheese-like odors and "caramelized milk," yogurt-like, "sweet," and oat-like flavors were found to be related to the presence and absence of specific volatile compounds.

  2. Investigations into formation of atmospheric sulfate under high PM 10 concentration (United States)

    Sharma, Mukesh; Kiran, Y. N. V. M.; Shandilya, Kaushik K.

    This study was primarily initiated to understand the consistently low levels of SO 2 in cities in India in spite of rising SO 2 emissions. A literature review suggested the possibility of chemical transformation of SO 2 to SO 4. Thus, the objective of research was to understand the formation of SO 4 as a function of SO 2, and other constituents of atmosphere such as PM 10, water content, Ca (in aerosol) and pH (of aerosol). For this purpose, air quality monitoring was conducted at five locations in the city of Kanpur, India (during October 1999-April 2000) representing various land-use patterns. It was found that the SO 4 levels were considerably high (2.8-43.6 μg m -3) compared to levels in cities in the US (1.9-3.6 μg m -3, Sandberg et al. (J. Air Pollut. Control Assoc. 26 (1976) 559; 15.7-18.4 μg m -3, Altshuller (J. Air Pollut. Control Assoc. 26 (1976) 318; 4.0-14.0 μg m -3 Dockery et al. (J. Med. 329 (1993) 1753), UK (3.2-9.0 μg m -3, QUARG, 1996, and 25 locations in Europe (0.34-1.68 μg m -3 (1991-1999), EMEP website), but were comparable to the levels observed at Agra (14.67 μg m -3, Kulshrestha et al. Indian J. Radio Space Phys. 24 (1995) 178) and at New Delhi (12.9-27.5 μg m -3, Shandilya, M.E. Thesis, Malaviya National Institute of Technology, Jaipur, India, 2000). The high SO 4 levels could provide a plausible explanation for low SO 2 concentration levels in the city of Kanpur. It was concluded that high levels of PM 10, Ca and high pH of aerosols in atmosphere provide a conducive environment for conversion of SO 2 to SO 4. It was also concluded that the important migration pathway in study area for the transformation of SO 2 to SO 4 appears to be oxidation of SO 2 on the surfaces (of particulate) available in the ambient atmosphere.