Quantum signatures of chaos or quantum chaos?
International Nuclear Information System (INIS)
Bunakov, V. E.
2016-01-01
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Quantum signatures of chaos or quantum chaos?
Energy Technology Data Exchange (ETDEWEB)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-11-15
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Strong chaos in one-dimensional quantum system
International Nuclear Information System (INIS)
Yang, C.-D.; Wei, C.-H.
2008-01-01
According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position
International Nuclear Information System (INIS)
Steiner, F.
1994-01-01
A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formular is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found. (orig.)
International Nuclear Information System (INIS)
Cejnar, P.
2007-01-01
Chaos is a name given in physics to a branch which, within classical mechanics, studies the consequences of sensitive dependences of the behavior of physical systems on the starting conditions, i.e., the 'butterfly wing effect'. However, how to describe chaotic behavior in the world of quantum particles? It appears that quantum mechanics does not admit the sensitive dependence on the starting conditions, and moreover, predicts a substantial suppression of chaos also at the macroscopic level. Still, the quantum properties of systems that are chaotic in terms of classical mechanics differ basically from the properties of classically arranged systems. This topic is studied by a field of physics referred to as quantum chaos. (author)
The transition to chaos conservative classical systems and quantum manifestations
Reichl, Linda E
2004-01-01
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...
On quantum chaos, stochastic webs and localization in a quantum mechanical kick system
International Nuclear Information System (INIS)
Engel, U.M.
2007-01-01
In this study quantum chaos is discussed using the kicked harmonic oscillator as a model system. The kicked harmonic oscillator is characterized by an exceptional scenario of weak chaos: In the case of resonance between the frequency of the harmonic oscillator and the frequency of the periodic forcing, stochastic webs in phase space are generated by the classical dynamics. For the quantum dynamics of this system it is shown that the resulting Husimi distributions in quantum phase space exhibit the same web-like structures as the classical webs. The quantum dynamics is characterized by diffusive energy growth - just as the classical dynamics in the channels of the webs. In the case of nonresonance, the classically diffusive dynamics is found to be quantum mechanically suppressed. This bounded energy growth, which corresponds to localization in quantum phase space, is explained analytically by mapping the system onto the Anderson model. In this way, within the context of quantum chaos, the kicked harmonic oscillator is characterized by exhibiting its noteworthy geometrical and dynamical properties both classically and quantum mechanically, while at the same time there are also very distinct quantum deviations from classical properties, the most prominent example being quantum localization. (orig.)
Quantum chaos in the Heisenberg picture
International Nuclear Information System (INIS)
McKellar, B.H.J.; Lancaster, M.; McCaw, J.
2000-01-01
Full text: We explore the possibility of defining quantum chaos in the algebra of quantum mechanical operators. The simple definition of the Lyapunov exponent in terms of a metric on that algebra has the expected properties for the quantum logistic map, as we confirm for the simple spin 1 system. We then show numerically and analytically that the Hamiltonian evolution of finite spin systems does not lead to chaos in this definition, and investigate alternative definitions of quantum chaos in the algebra of operators
Integrability and chaos in quantum systems (as viewed from geometry and dynamical symmetry)
International Nuclear Information System (INIS)
Zhang, Wei-Min.
1989-01-01
It is known that the development and deep understanding of modern interaction theory and classical mechanics are made through geometry and symmetry. Yet, quantum mechanics which was regarded to be the microscopic theory of classical mechanics and achieved the crowning success in interpreting the entire microscopic world was developed purely from algebraic methods. In this thesis, the author will study the geometry and dynamical symmetry in quantum systems, from which the question of integrability and chaos are explicitly addressed. First of all, the quantum dynamical degrees of freedom and quantum integrability are precisely defined and the inherent geometrical structure of quantum systems is explored from the fundamental structure of quantum theory. Such a geometrical structure can provide a framework to simultaneously build quantum and classical mechanics. The quantum-classical correspondence is then explicitly deduced. The dynamics of quantum system before it reaches the classical limit is formulated. Thus, the classical chaos is proven to be a special limiting phenomena of quantum systems and the dynamics before the system reaches its classical chaos is explored. The latter is the first step to seek the quantum manifestation of chaos. The relationship between integrability and dynamical symmetry are studied and some universal properties are discovered: a dynamical system (both quantum and classical) in integrable if it possesses a dynamical symmetry. Chaos will occur if the system undergoes a dynamical symmetry breaking and is accompanied by a structural phase transition. Thus, the concept of dynamical symmetry can be used to predict the general behaviors of a system. The theoretical underpinnings developed in this thesis are verified by many basic quantum mechanical examples
Quantum Chaos via the Quantum Action
Kröger, H.
2002-01-01
We discuss the concept of the quantum action with the purpose to characterize and quantitatively compute quantum chaos. As an example we consider in quantum mechanics a 2-D Hamiltonian system - harmonic oscillators with anharmonic coupling - which is classically a chaotic system. We compare Poincar\\'e sections obtained from the quantum action with those from the classical action.
Universal signatures of quantum chaos
International Nuclear Information System (INIS)
Aurich, R.; Bolte, J.; Steiner, F.
1994-02-01
We discuss fingerprints of classical chaos in spectra of the corresponding bound quantum systems. A novel quantity to measure quantum chaos in spectra is proposed and a conjecture about its universal statistical behaviour is put forward. Numerical as well as theoretical evidence is provided in favour of the conjecture. (orig.)
Relativistic quantum chaos-An emergent interdisciplinary field.
Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso
2018-05-01
Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.
Quantum mechanical suppression of chaos
International Nuclear Information System (INIS)
Bluemel, R.; Smilansky, U.
1990-01-01
The relation between determinism and predictability is the central issue in the study of 'deterministic chaos'. Much knowledge has been accumulated in the past 10 years about the chaotic dynamics of macroscopic (classical) systems. The implications of chaos in the microscopic quantum world is examined, in other words, how to reconcile the correspondence principle with the inherent uncertainties which reflect the wave nature of quantum dynamics. Recent atomic physics experiments demonstrate clearly that chaos is relevant to the microscopic world. In particular, such experiments emphasise the urgent need to clarify the genuine quantum mechanism which imposes severe limitations on quantum dynamics, and renders it so very different from its classical counterpart. (author)
Quantum chaos in a fermion system
International Nuclear Information System (INIS)
Pal, Santanu
1992-01-01
With the growing realisation that the dynamics of a system with a few degrees of freedom is chaotic more as a rule than an exception, the relevance of quantum chaos in nuclear single-particle motion is now receiving closer scrutinisation. This on one hand is helping to gain a deeper understanding of dissipative processes in nuclear dynamics as well as revealing certain interesting features of a fermion system on the other. In the present talk, we would discuss the chaotic features of the single-particle motion in a di nucleus with a view to study the signatures of an effective underlying classical dynamics in the system. As the present day understanding of quantum chaos relies quite heavily on the existence of classical trajectories, it is rather interesting to study how far such considerations can be pushed for systems which do not have a obvious classical analogue such as the spin-orbit interaction in our system. This question has been further investigated for a relativistic fermion system, similar to the Bogoliubov bag. This model is particularly suited as spin, without a classical analogue, has its natural place in the Dirac equation. The results of this study have been presented in the talk. (author). 25 refs., 14 figs
Nuclear physics and ideas of quantum chaos
International Nuclear Information System (INIS)
Zelevinsky, V.G.
2002-01-01
The field nowadays called 'many-body quantum chaos' was started in 1939 with the article by I.I. Gurevich studying the regularities of nuclear spectra. The field has been extensively developed recently, both mathematically and in application to mesoscopic systems and quantum fields. We argue that nuclear physics and the theory of quantum chaos are mutually beneficial. Many ideas of quantum chaos grew up from the factual material of nuclear physics; this enrichment still continues to take place. On the other hand, many phenomena in nuclear structure and reactions, as well as the general problem of statistical physics of finite strongly interacting systems, can be understood much deeper with the help of ideas and methods borrowed from the field of quantum chaos. A brief review of the selected topics related to the recent development is presented
A quantum harmonic oscillator and strong chaos
International Nuclear Information System (INIS)
Oprocha, Piotr
2006-01-01
It is known that many physical systems which do not exhibit deterministic chaos when treated classically may exhibit such behaviour if treated from the quantum mechanics point of view. In this paper, we will show that an annihilation operator of the unforced quantum harmonic oscillator exhibits distributional chaos as introduced in B Schweizer and J SmItal (1994 Trans. Am. Math. Soc. 344 737-54). Our approach strengthens previous results on chaos in this model and provides a very powerful tool to measure chaos in other (quantum or classical) models
True quantum chaos? An instructive example
International Nuclear Information System (INIS)
Berry, M.V.
1992-01-01
Any chaotic classical system can be transformed into a quantum system that preserves the chaos, because the classical Liouville equation involving 2Ν phase-space variables q ,p has the form of a 'Schroedinger equation' with 'coordinates' Q=[q,p]. The feature of this quantum system that allows chaos to persist is linarity of the Hamiltonian' in the 2Ν 'momentum' operators conjugate to Q. (orig.)
Quantum chaos: entropy signatures
International Nuclear Information System (INIS)
Miller, P.A.; Sarkar, S.; Zarum, R.
1998-01-01
A definition of quantum chaos is given in terms of entropy production rates for a quantum system coupled weakly to a reservoir. This allows the treatment of classical and quantum chaos on the same footing. In the quantum theory the entropy considered is the von Neumann entropy and in classical systems it is the Gibbs entropy. The rate of change of the coarse-grained Gibbs entropy of the classical system with time is given by the Kolmogorov-Sinai (KS) entropy. The relation between KS entropy and the rate of change of von Neumann entropy is investigated for the kicked rotator. For a system which is classically chaotic there is a linear relationship between these two entropies. Moreover it is possible to construct contour plots for the local KS entropy and compare it with the corresponding plots for the rate of change of von Neumann entropy. The quantitative and qualitative similarities of these plots are discussed for the standard map (kicked rotor) and the generalised cat maps. (author)
International Nuclear Information System (INIS)
Turiaci, Gustavo J.; Verlinde, Herman
2016-01-01
We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.
Energy Technology Data Exchange (ETDEWEB)
Turiaci, Gustavo J. [Physics Department, Princeton University,Princeton NJ 08544 (United States); Verlinde, Herman [Physics Department, Princeton University,Princeton NJ 08544 (United States); Princeton Center for Theoretical Science, Princeton University,Princeton NJ 08544 (United States)
2016-12-21
We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.
Chaos, decoherence and quantum cosmology
International Nuclear Information System (INIS)
Calzetta, Esteban
2012-01-01
In this topical review we discuss the connections between chaos, decoherence and quantum cosmology. We understand chaos as classical chaos in systems with a finite number of degrees of freedom, decoherence as environment induced decoherence and quantum cosmology as the theory of the Wheeler-DeWitt equation or else the consistent history formulation thereof, first in mini super spaces and later through its extension to midi super spaces. The overall conclusion is that consideration of decoherence is necessary (and probably sufficient) to sustain an interpretation of quantum cosmology based on the wavefunction of the Universe adopting a Wentzel-Kramers-Brillouin form for large Universes, but a definitive account of the semiclassical transition in classically chaotic cosmological models is not available in the literature yet. (topical review)
Puzzles in studies of quantum chaos
International Nuclear Information System (INIS)
Xu Gongou
1994-01-01
Puzzles in studies of quantum chaos are discussed. From the view of global properties of quantum states, it is clarified that quantum chaos originates from the break-down of invariant properties of quantum canonical transformations. There exist precise correspondences between quantum and classical chaos
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics.
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-10-17
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.
Chaos and the classical limit of quantum systems
Energy Technology Data Exchange (ETDEWEB)
Hogg, T; Huberman, B A [Xerox Palo Alto Research Center, CA (USA)
1984-10-01
The authors discuss the question of whether experiments can be designed to test the existence of quantum chaos. In particular, they show that high energies are not sufficient to guarantee that an initially localized wave packet will behave classically for long times. Computer simulations illustrating these ideas are presented and the question whether experiments can be designed to observe quantum chaos is commented on.
Wave chaos in quantum systems with point interaction
International Nuclear Information System (INIS)
Albeverio, S.; Seba, P.
1991-01-01
The authors study perturbations H of the quantized version H 0 of integrable Hamiltonian systems by point interactions. They relate the eigenvalues of H to the zeros of a certain meromorphic function ξ. Assuming the eigenvalues of H 0 are Poisson distributed, they get detailed information on the joint distribution of the zeros of ξ and give bounds on the probability density for the spacings of eigenvalues of H. Their results confirm the wave chaos phenomenon, as different from the quantum chaos phenomenon predicted by random matrix theory
Kullback–Leibler quantum divergence as an indicator of quantum chaos
International Nuclear Information System (INIS)
Kowalewska-Kudłaszyk, A.; Kalaga, J.K.; Leoński, W.; Cao Long, V.
2012-01-01
We discuss a system of a nonlinear Kerr-like oscillator externally pumped by ultra-short, coherent pulses. For such a system, we analyse the application of the Kullback–Leibler quantum divergence K[ρ||σ] to the detection of quantum chaotic behaviour. Defining linear and nonlinear quantum divergences, and calculating their power spectra, we show that these parameters are more suitable indicators of quantum chaos than the fidelity commonly discussed in the literature, and are useful for dealing with short time series. Moreover, the nonlinear divergence is more sensitive to chaotic bands and to boundaries of chaotic regions, compared to its linear counterpart. -- Highlights: ► A nonlinear Kerr-like oscillator pumped by ultra-short coherent pulses is discussed. ► The Kullback–Leibler quantum divergence is analysed as an detector of quantum chaos. ► Linear and nonlinear quantum divergences and their power spectra are applied. ► The divergences are more adequate chaos's indicators than those based on fidelity. ► Defined nonlinear parameters are useful for dealing with short time series.
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-01-01
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law. PMID:27748418
Philosophical perspectives on quantum chaos: Models and interpretations
Bokulich, Alisa Nicole
2001-09-01
The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
Tuning quantum measurements to control chaos.
Eastman, Jessica K; Hope, Joseph J; Carvalho, André R R
2017-03-20
Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.
Nuclear physics, symmetries, and quantum chaos
International Nuclear Information System (INIS)
Bunakov, V.E.
1999-01-01
The reasons why the problem of chaos is of great topical interest in modern physics are briefly summarized, and it is indicated that ambiguities in the concept of quantum chaos present the greatest difficulties in these realms. The theory of random matrices and strength functions are generalized to demonstrate that chaotization of a system is associated with the violation of its symmetries. A criterion of quantum chaoticity is formulated in terms of the spreading width Γ spr . In the classical limit, this criterion reduces to Lyapunov's stability criteria. It is shown that the proposed criterion is applicable to standard problems of the modern theory of dynamical chaos
Harnessing quantum transport by transient chaos.
Yang, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso; Pecora, Louis M
2013-03-01
Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.
Classical and quantum chaos in a circular billiard with a straight cut
International Nuclear Information System (INIS)
Ree, S.; Reichl, L.E.
1999-01-01
We study classical and quantum dynamics of a particle in a circular billiard with a straight cut. Classically, this system can be integrable, nonintegrable with soft chaos, or nonintegrable with hard chaos as we vary the size of the cut. We plot Poincaracute e surfaces of section to study chaos. Quantum mechanically, we look at Husimi plots, and also use the quantum web, the technique primarily used in spin systems so far, to try to see differences in quantum manifestations of soft and hard chaos. copyright 1999 The American Physical Society
The classical limit of non-integrable quantum systems, a route to quantum chaos
International Nuclear Information System (INIS)
Castagnino, Mario; Lombardi, Olimpia
2006-01-01
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state
The classical limit of non-integrable quantum systems, a route to quantum chaos
Energy Technology Data Exchange (ETDEWEB)
Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)
2006-05-15
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.
Quantum chaos: Statistical relaxation in discrete spectrum
International Nuclear Information System (INIS)
Chirikov, B.V.
1991-01-01
The controversial phenomenon of quantum chaos is discussed using the quantized standard map, or the kicked rotator, as a simple model. The relation to the classical dynamical chaos is tracked down on the basis of the correspondence principle. Various mechanisms of the quantum suppression of classical chaos are considered with an application to the excitation and ionization of Rydberg atoms in a microwave field. Several definitions of the quantum chaos are discussed. (author). 27 refs
Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet
Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando; Carr, Lincoln D.
2018-06-01
We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.
Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.
Vahedi, J; Ashouri, A; Mahdavifar, S
2016-10-01
Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.
Entanglement as a signature of quantum chaos.
Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi
2004-01-01
We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.
Nuclear spectroscopy and quantum chaos
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Yamamoto, Yoshifumi; Tsukuma, Hidehiko; Iwasawa, Kazuo.
1990-05-01
In this paper, a recent development of INS-TSUKUBA joint research project on large-amplitude collective motion is summerized. The classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock theory is recapitulated and decisive role of the level crossing in the single-particle dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the classical theory, we discuss a quantum theory of nuclear collective dynamics which allows us to properly define a concept of quantum chaos for each eigenfunction. By using numerical calculation, we illustrate what the quantum chaos for each eigenfunction means and its relation to usual definition based on the random matrix theory. (author)
Energy Technology Data Exchange (ETDEWEB)
Hosur, Pavan; Qi, Xiao-Liang [Department of Physics, Stanford University,476 Lomita Mall, Stanford, California 94305 (United States); Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena CA 91125 (United States)
2016-02-01
We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Quantum chaos: statistical relaxation in discrete spectrum
International Nuclear Information System (INIS)
Chirikov, B.V.
1990-01-01
The controversial phenomenon of quantum chaos is discussed using the quantized standard map, or the kicked rotator, as a simple model. The relation to the classical dynamical chaos is tracked down on the basis of the correspondence principle. Several definitions of the quantum chaos are discussed. 27 refs
Renormalisation in Quantum Mechanics, Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.
2001-01-01
We suggest how to construct non-perturbatively a renormalized action in quantum mechanics. We discuss similarties and differences with the standard effective action. We propose that the new quantum action is suitable to define and compute quantum instantons and quantum chaos.
International Nuclear Information System (INIS)
D'Arcy, Michael Brendan
2002-01-01
This thesis presents an account of experimental and numerical investigations of two quantum systems whose respective classical analogues are chaotic. These are the δ-kicked rotor, a paradigm in classical chaos theory, and the novel δ-kicked accelerator, created by application of a constant external acceleration or torque to the rotor. The experimental realisation of these systems has been achieved by the exposure of laser-cooled caesium atoms to approximate δ-kicks from a pulsed, high-intensity, vertical standing wave of laser light. Gravity's effect on the atoms can be controlled by appropriate shifting of the profile of the standing wave. Numerical simulations of the systems are based on a diffractive model of the potential's effect. Each system's dynamics are characterised by the final form of the momentum distribution and the dependence of the atoms' mean kinetic energy on the number and time period of the δ-kicks. The phenomena of dynamical localisation and quantum resonances in the δ-kicked rotor, which have no counterparts in the system's classical analogue, are observed and investigated. Similar experiments on the δ-kicked accelerator reveal the striking phenomenon of the quantum accelerator mode, in which a large momentum is transferred to a substantial fraction of the atomic ensemble. This feature, absent in the system's classical analogue, is characterised and an analytic explanation is presented. The effect on each quantum system of decoherence, introduced through spontaneous emission in the atoms, is examined and comparison is made with the results of classical simulations. While having little effect on the classical systems, the level of decoherence used is found to degrade quantum signatures of behaviour. Classical-like behaviour is, to some extent, restored, although significant quantum features remain. Possible applications of the quantum accelerator mode are discussed. These include use as a tool in atom optics and interferometry, a
Quantum manifestations of chaos
International Nuclear Information System (INIS)
Borondo, F.; Benito, R.M.
1998-01-01
The correspondence between classical and quantum mechanics is considered both in the regular and chaotic regimes, and the main results regarding the quantum manifestations of chaos are reviewed. (Author) 16 refs
Many-body quantum chaos: Recent developments and applications to nuclei
International Nuclear Information System (INIS)
Gomez, J.M.G.; Kar, K.; Kota, V.K.B.; Molina, R.A.; Relano, A.; Retamosa, J.
2011-01-01
In the last decade, there has been an increasing interest in the analysis of energy level spectra and wave functions of nuclei, particles, atoms and other quantum many-body systems by means of statistical methods and random matrix ensembles. The concept of quantum chaos plays a central role for understanding the universal properties of the energy spectrum of quantum systems. Since these properties concern the whole spectrum, statistical methods become an essential tool. Besides random matrix theory, new theoretical developments making use of information theory, time series analysis, and the merging of thermodynamics and the semiclassical approximation are emphasized. Applications of these methods to quantum systems, especially to atomic nuclei, are reviewed. We focus on recent developments like the study of 'imperfect spectra' to estimate the degree of symmetry breaking or the fraction of missing levels, the existence of chaos remnants in nuclear masses, the onset of chaos in nuclei, and advances in the comprehension of the Hamiltonian structure in many-body systems. Finally, some applications of statistical spectroscopy methods generated by many-body chaos and two-body random matrix ensembles are described, with emphasis on Gamow-Teller strength sums and beta decay rates for stellar evolution and supernovae.
On the suppression of chaos in quantum and classical physics
International Nuclear Information System (INIS)
Fried, H.M.; Gabellini, Y.
1997-01-01
A brief outline is presented of an example of potential-theory quantum chaos, which is suppressed by the full radiative corrections of quantum field theory. A similar mechanism may be devised and applied to classically chaotic systems, and provides an example in which an explicit diminution of the original chaos becomes apparent. (author)
Quantum chaos: diffusion photoeffect in hydrogen
Energy Technology Data Exchange (ETDEWEB)
Shepelyanskij, D L
1987-05-01
Ionization process in highly excited hydrogen atom in electromagnetic field is presented in the form of an extraordinary photoeffect, in which ionization at the frequency, being much lower than ionization energy, occurs much quicker than single-photon one. Such a quick ionization is explained by dynamic chaos occurence. Question, related to quantum effect influence on chaotic movement of the electron (quantum chaos) is considered. Electron excitation in the chaos area is described by a diffusional equation.
Approximate motion integrals and the quantum chaos problem
International Nuclear Information System (INIS)
Bunakov, V.E.; Ivanov, I.B.
2001-01-01
One discusses the problem of occurrence and seek for the motion integrals in the stationary quantum mechanics and its relation to the quantum chaos. One studies decomposition of quantum numbers and derives the criterion of chaos. To seek the motion integrals one applies the convergence method. One derived the approximate integrals in the Hennone-Hales problem. One discusses the problem of compatibility of chaos and integrability [ru
Chaos and the quantum: how nonlinear effects can explain certain quantum paradoxes
Energy Technology Data Exchange (ETDEWEB)
McHarris, Wm C, E-mail: mcharris@chemistry.msu.edu [Departments of Chemistry and Physics/Astronomy, Michigan State University, East Lansing, MI 48824 (United States)
2011-07-08
In recent years we have suggested that many of the so-called paradoxes resulting from the Copenhagen interpretation of quantum mechanics could well have more logical parallels based in nonlinear dynamics and chaos theory. Perhaps quantum mechanics might not be strictly linear as has been commonly postulated, and indeed, during the past year experimentalists have discovered signatures of chaos in a definitely quantum system. As an illustration of what can go wrong when quantum effects are forced into a linear interpretation, I examine Bell-type inequalities. In conventional derivations of such inequalities, classical systems are found to impose upper limits on the statistical correlations between, say, the properties of a pair of separated but entangled particles, whereas quantum systems allow greater correlations. Numerous experiments have upheld the quantum predictions (greater statistical correlations than allowed classically), which has led to inferences such as the instantaneous transmission of information between effectively infinitely separated particles - Einstein's 'spooky action-at-a-distance', incompatible with relativity. I argue that there is nothing wrong with the quantum mechanical side of such derivations (the usual point of attack by those attempting to debunk Bell-type arguments), but implicit in the derivations on the classical side is the assumption of independent, uncorrelated particles. As a result, one is comparing uncorrelated probabilities versus conditional probabilities rather than comparing classical versus quantum mechanics, making moot the experimental inferences. Further, nonlinear classical systems are known to exhibit correlations that can easily be as great as and overlap with quantum correlations - so-called nonextensive thermodynamics with its nonadditive entropy has verified this with numerous examples. Perhaps quantum mechanics does contain fundamental nonlinear elements. Nonlinear dynamics and chaos theory could
Chaos and the quantum: how nonlinear effects can explain certain quantum paradoxes
International Nuclear Information System (INIS)
McHarris, Wm C
2011-01-01
In recent years we have suggested that many of the so-called paradoxes resulting from the Copenhagen interpretation of quantum mechanics could well have more logical parallels based in nonlinear dynamics and chaos theory. Perhaps quantum mechanics might not be strictly linear as has been commonly postulated, and indeed, during the past year experimentalists have discovered signatures of chaos in a definitely quantum system. As an illustration of what can go wrong when quantum effects are forced into a linear interpretation, I examine Bell-type inequalities. In conventional derivations of such inequalities, classical systems are found to impose upper limits on the statistical correlations between, say, the properties of a pair of separated but entangled particles, whereas quantum systems allow greater correlations. Numerous experiments have upheld the quantum predictions (greater statistical correlations than allowed classically), which has led to inferences such as the instantaneous transmission of information between effectively infinitely separated particles - Einstein's 'spooky action-at-a-distance', incompatible with relativity. I argue that there is nothing wrong with the quantum mechanical side of such derivations (the usual point of attack by those attempting to debunk Bell-type arguments), but implicit in the derivations on the classical side is the assumption of independent, uncorrelated particles. As a result, one is comparing uncorrelated probabilities versus conditional probabilities rather than comparing classical versus quantum mechanics, making moot the experimental inferences. Further, nonlinear classical systems are known to exhibit correlations that can easily be as great as and overlap with quantum correlations - so-called nonextensive thermodynamics with its nonadditive entropy has verified this with numerous examples. Perhaps quantum mechanics does contain fundamental nonlinear elements. Nonlinear dynamics and chaos theory could well provide a
Classical and quantum chaos in atom optics
International Nuclear Information System (INIS)
Saif, Farhan
2005-01-01
The interaction of an atom with an electro-magnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electro-magnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits dynamical localization and quantum recurrences
Characterizing and quantifying quantum chaos with quantum ...
Indian Academy of Sciences (India)
We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under the application of the Floquet operator of a quantum map that possesses (or lacks) time-reversal ...
Classical and Quantum Chaos in Atom Optics
Saif, Farhan
2006-01-01
The interaction of an atom with an electromagnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electromagnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits ...
Hybrid Approach To Steganography System Based On Quantum Encryption And Chaos Algorithms
Directory of Open Access Journals (Sweden)
ZAID A. ABOD
2018-01-01
Full Text Available A hybrid scheme for secretly embedding image into a dithered multilevel image is presented. This work inputs both a cover image and secret image, which are scrambling and divided into groups to embedded together based on multiple chaos algorithms (Lorenz map, Henon map and Logistic map respectively. Finally, encrypt the embedded images by using one of the quantum cryptography mechanisms, which is quantum one time pad. The experimental results show that the proposed hybrid system successfully embedded images and combine with the quantum cryptography algorithms and gives high efficiency for secure communication.
Towards chaos criterion in quantum field theory
Kuvshinov, V. I.; Kuzmin, A. V.
2002-01-01
Chaos criterion for quantum field theory is proposed. Its correspondence with classical chaos criterion in semi-classical regime is shown. It is demonstrated for real scalar field that proposed chaos criterion can be used to investigate stability of classical solutions of field equations.
Nonlinear dynamics and quantum chaos an introduction
Wimberger, Sandro
2014-01-01
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Scaling properties of localized quantum chaos
International Nuclear Information System (INIS)
Izrailev, F.M.
1991-01-01
Statistical properties of spectra and eigenfunctions are studied for the model of quantum chaos in the presence of dynamical localization. The main attention is paid to the scaling properties of localization length and level spacing distribution in the intermediate region between Poissonian and Wigner-Dyson statistics. It is shown that main features of such localized quantum chaos are well described by the introduced ensemble of band random matrices. 28 refs.; 7 figs
Quantum chaos of the 2-level atom
Energy Technology Data Exchange (ETDEWEB)
Graham, R; Hoehnerbach, M [Essen Univ. (Germany, F.R.). Fachbereich Physik
1984-01-01
Recent work on the two-level atom coupled to a single mode of the electromagnetic field is reviewed from the point of view of 'quantum chaos', defined as the quantum behavior of a dynamical system which is non-integrable in the classical limit. Spectral properties and the dynamics of occupation probabilities including their revivals are obtained without making the rotating wave approximation.
International Nuclear Information System (INIS)
Bohigas, Oriol
2005-01-01
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's ζ-function, which has become a testing ground for RMT, QC, POT, and their relationship
Energy Technology Data Exchange (ETDEWEB)
Bohigas, Oriol [Laboratoire de Physique Theorique et Modeles Statistiques, Orsay (France)
2005-04-18
Are there quantum signatures, for instance in the spectral properties, of the underlying regular or chaotic nature of the corresponding classical motion? Are there universality classes? Within this framework the merging of two at first sight seemingly disconnected fields, namely random matrix theories (RMT) and quantum chaos (QC), is briefly described. Periodic orbit theory (POT) plays a prominent role. Emphasis is given to compound nucleus resonances and binding energies, whose shell effects are examined from this perspective. Several aspects are illustrated with Riemann's {zeta}-function, which has become a testing ground for RMT, QC, POT, and their relationship.
From classical to quantum chaos
International Nuclear Information System (INIS)
Zaslavsky, G.M.
1991-01-01
The analysis is done for the quantum properties of systems that possess dynamical chaos in classical limit. Two main topics are considered: (i) the problem of quantum macroscopical description of the system and the Ehrenfest-Einstein problem of the validity of the classical approximation; and (ii) the problem of levels spacing distribution for the nonintegrable case. For the first topic the method of projecting on the coherent states base is considered and the ln 1/(h/2π) time for the quasiclassical approximation breaking is described. For the second topic the discussion of GOE and non-GOE distributions is done and estimations and simulations for the non-GOE case are reviewed. (author). 44 refs, 2 figs
Rydberg Atoms in Strong Fields: a Testing Ground for Quantum Chaos.
Courtney, Michael
1995-01-01
Rydberg atoms in strong static electric and magnetic fields provide experimentally accessible systems for studying the connections between classical chaos and quantum mechanics in the semiclassical limit. This experimental accessibility has motivated the development of reliable quantum mechanical solutions. This thesis uses both experimental and computed quantum spectra to test the central approaches to quantum chaos. These central approaches consist mainly of developing methods to compute the spectra of quantum systems in non -perturbative regimes, correlating statistical descriptions of eigenvalues with the classical behavior of the same Hamiltonian, and the development of semiclassical methods such as periodic-orbit theory. Particular emphasis is given to identifying the spectral signature of recurrences --quantum wave packets which follow classical orbits. The new findings include: the breakdown of the connection between energy-level statistics and classical chaos in odd-parity diamagnetic lithium, the discovery of the signature of very long period orbits in atomic spectra, quantitative evidence for the scattering of recurrences by the alkali -metal core, quantitative description of the behavior of recurrences near bifurcations, and a semiclassical interpretation of the evolution of continuum Stark spectra. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Constrained Quantum Mechanics: Chaos in Non-Planar Billiards
Salazar, R.; Tellez, G.
2012-01-01
We illustrate some of the techniques to identify chaos signatures at the quantum level using as guiding examples some systems where a particle is constrained to move on a radial symmetric, but non-planar, surface. In particular, two systems are studied: the case of a cone with an arbitrary contour or "dunce hat billiard" and the rectangular…
Recent results in quantum chaos and its applications to nuclei and particles
International Nuclear Information System (INIS)
Gomez, J.M.G.; Retamosa, J.; Munoz, L.; Relano, A.; Molina, R.A.; Faleiro, E.
2013-01-01
In the last decade or so, the study of chaos in nuclei and other quantum systems has been a very active research field. Besides work based on random matrix theory, new theoretical developments making use of information theory, time series analysis, and the merging of thermodynamics and the semiclassical approximation have been published. In this talk, a survey of chaotic dynamics in atomic nuclei is presented, using on the one hand standard statistics of quantum chaos studies, as well as time series analysis methods. We emphasize the energy and isospin dependence of nuclear chaoticity, based on shell-model energy spectra fluctuations in Ca, Sc and Ti isotopes, which are analyzed using standard statistics such as the nearest level spacing distribution P(s) and the Dyson-Mehta Δ 3 statistic. We also discuss quantum chaos in general using a new approach based on the analogy between the sequence of energy levels and a discrete time series. Considering the energy spectrum fluctuations as a discrete time series, we have shown that chaotic quantum systems such as 24 Mg and 32 Na nuclei, quantum billiards, and random matrix theory (RMT) ensembles, exhibit 1/f noise in their power spectrum. Moreover, we show that the spectra of integrable quantum systems exhibit 1/f 2 noise. Therefore we suggest the following conjecture: The energy spectra of chaotic quantum systems are characterized by 1/f noise. We have also derived an analytic expression for the energy level fluctuations power spectrum of RMT ensembles, and the results confirm the above conjecture. The order to chaos transition has been studied in terms of this power spectrum for several intermediate systems, such as the Robnik billiard, the quartic oscillator or the kicked top. A power law 1/f is found at all the transition stages, and it is shown that the exponent β is related to the chaotic component of the classical phase space of the quantum system. This approach has also been applied to study the possible
Probing the quantum analog of chaos with atoms in external fields
Energy Technology Data Exchange (ETDEWEB)
Gay, J C; Delande, D
1987-01-01
For a few years, considerable interest arose in the problem of the quantum analog of classical chaos for hamiltonian system. Among several other simple atomic physics systems, the atom in a magnetic field turns out to be the most promising prototype for tackling such questions. The classical and quantum motions are now well understood. The experimental study is possible in high Rydberg states of atoms. Throughout the study of some aspects of this problem, the authors demonstrate that the quantum analog of chaos presents a two-fold aspect. While the spectral properties at short range are conveniently described by Random matrix theories, a long-range order still exist in the quantum dynamics which indicates the existence of scars of symmetries. This in turn is quite clearly exhibited in the experimental data on Rydberg atoms. Finally the authors indicate how to generalize the notions to any situation involving the Coulomb field and perturbing potentials. 21 refs.; 8 figs.
Quantum nodal points as fingerprints of classical chaos
International Nuclear Information System (INIS)
Leboeuf, P.; Voros, A.
1992-08-01
Semiclassical analysis of the individual eigenfunctions in a quantum system is presented, especially when the classical dynamics is chaotic and the quantum bound states are considered. Quantum maps have emerged as ideal dynamical models for basic studies, with their ability to exhibit classical chaos within a single degree of freedom. On the other hand, phase space techniques have become recognized as extremely powerful for describing quantum states. It is argued that representations of eigenfunctions are essential for semiclassical analysis. An explicit realization of that program in one degree is overviewed, in which the crucial ingredient is a phase-space parametrization of 1-d wave-functions. (K.A.) 44 refs.; 6 figs
Quantum chaos and thermalization in isolated systems of interacting particles
Energy Technology Data Exchange (ETDEWEB)
Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2016-04-15
This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.
2017-01-20
AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos : accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...of quantum chaos Igor Bray CURTIN UNIVERSITY OF TECHNOLOGY Final Report 01/20/2017 DISTRIBUTION A: Distribution approved for public release. AF...SUBTITLE The Strength of Chaos : accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos
Can chaos be observed in quantum gravity?
International Nuclear Information System (INIS)
Dittrich, Bianca; Höhn, Philipp A.; Koslowski, Tim A.; Nelson, Mike I.
2017-01-01
Full general relativity is almost certainly ‘chaotic’. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.
Can chaos be observed in quantum gravity?
Energy Technology Data Exchange (ETDEWEB)
Dittrich, Bianca, E-mail: bdittrich@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Höhn, Philipp A., E-mail: p.hoehn@univie.ac.at [Vienna Center for Quantum Science and Technology, and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Koslowski, Tim A., E-mail: koslowski@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México D.F. 04510 (Mexico); Nelson, Mike I., E-mail: mike@aims.edu.gh [African Institute for Mathematical Sciences, P.O Box LG 197, Legon, Accra (Ghana)
2017-06-10
Full general relativity is almost certainly ‘chaotic’. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.
Quantum chaos and holographic tensor models
Energy Technology Data Exchange (ETDEWEB)
Krishnan, Chethan [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India); Sanyal, Sambuddha [International Center for Theoretical Sciences, Tata Institute of Fundamental Research,Bangalore 560089 (India); Subramanian, P.N. Bala [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)
2017-03-10
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
Quantum chaos and holographic tensor models
International Nuclear Information System (INIS)
Krishnan, Chethan; Sanyal, Sambuddha; Subramanian, P.N. Bala
2017-01-01
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
International Nuclear Information System (INIS)
Lee, Sang-Bong.
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover's and Kubo-Fox-Keizer's approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty
Chaos induced by quantum effect due to breakdown of the Born-Oppenheimer adiabaticity
International Nuclear Information System (INIS)
Fujisaki, Hiroshi; Takatsuka, Kazuo
2001-01-01
Chaos in the multimode nonadiabatic system constructed by Heller [J. Chem. Phys. >92, 1718 (1990)], which consists of two diabatic two-dimensional harmonic potentials with the Condon coupling, is studied. A thorough investigation is carried out by scanning the magnitudes of the Condon coupling and the Duschinsky angle. To elucidate mechanisms that can cause chaos in this quantum system, the statistical properties of the energy levels and eigenfunctions of the system are investigated. We find an evidence in terms of the nearest-neighbor spacing distribution of energy levels and other measures that a certain class of chaos is purely induced by the nonadiabatic interaction due to breakdown of the Born-Oppenheimer approximation. Since the nonadiabatic transition can induce repeated bifurcation and merging of a wave packet around the region of quasicrossing between two potential surfaces, and since this interaction does not have a counterpart in the lower adiabatic system, the present chaos deserves being called 'nonadiabatic chaos.' Another type of chaos in a nonadiabatic system was previously identified [D. M. Leitner et al., J. Chem. Phys. >104, 434 (1996)] that reflects the inherent chaos of a corresponding adiabatic potential. We present a comparative study to establish the similarity and difference between these kinds of chaos
Universality in quantum chaos and the one-parameter scaling theory.
García-García, Antonio M; Wang, Jiao
2008-02-22
The one-parameter scaling theory is adapted to the context of quantum chaos. We define a generalized dimensionless conductance, g, semiclassically and then study Anderson localization corrections by renormalization group techniques. This analysis permits a characterization of the universality classes associated to a metal (g-->infinity), an insulator (g-->0), and the metal-insulator transition (g-->g(c)) in quantum chaos provided that the classical phase space is not mixed. According to our results the universality class related to the metallic limit includes all the systems in which the Bohigas-Giannoni-Schmit conjecture holds but automatically excludes those in which dynamical localization effects are important. The universality class related to the metal-insulator transition is characterized by classical superdiffusion or a fractal spectrum in low dimensions (d < or = 2). Several examples are discussed in detail.
Chaos in the Dicke model: quantum and semiclassical analysis
International Nuclear Information System (INIS)
Bastarrachea-Magnani, Miguel Angel; Hirsch, Jorge G; López-del-Carpio, Baldemar; Lerma-Hernández, Sergio
2015-01-01
The emergence of chaos in an atom-field system is studied employing both semiclassical and numerical quantum techniques, taking advantage of the algebraic character of the Hamiltonian. A semiclassical Hamiltonian is obtained by considering the expectation value of the quantum Hamiltonian in Glauber (for the field) and Bloch (for the atoms) coherent states. Regular and chaotic regions are identified by looking at the Poincaré sections for different energies and parameter values. An analytical expression for the semiclassical energy density of states is obtained by integrating the available phase space, which provides an exact unfolding to extract the fluctuations in the level statistics. Quantum chaos is recognized in these fluctuations, as a function of the coupling strength, for different regions in the energy spectrum, evaluating the Anderson–Darling (A–D) parameter, which distinguishes the Wigner- or Poisson-like distributions. Peres lattices play a role similar to the Poincaré section for quantum states. They are calculated employing efficient numerical solutions and are a powerful visual tool to identify individual states belonging to a regular or chaotic region, classified by utilizing the Poincaré sections and the A–D parameter. Finally, the quantum Husimi function for selected excited states is shown to have a noticeable similitude with the Poincaré sections at the same energy. (invited comment)
Quantum chaos induced by nonadiabatic coupling in wave-packet dynamics
International Nuclear Information System (INIS)
Higuchi, Hisashi; Takatsuka, Kazuo
2002-01-01
The effect of nonadiabatic coupling due to breakdown of the Born-Oppenheimer approximation on chaos is investigated. A couple of measures (indicators) that detect the extent of chaos in wave-packet dynamics on coupled potential functions are devised. Using them, we show that chaos is indeed induced by a nonadiabatic coupling in individual time-dependent wave-packet dynamics. This chaos is genuinely of quantum nature, since it arises from bifurcation and merging of a wave packet at the quasicrossing region of two coupled potential functions
Quantum chaos and nuclear mass systematics
International Nuclear Information System (INIS)
Hirsch, Jorge G.; Velazquez, Victor; Frank, Alejandro
2004-01-01
The presence of quantum chaos in nuclear mass systematics is analyzed by considering the differences between measured and calculated nuclear masses as a time series described by the power law 1fα. While for the liquid droplet model plus shell corrections a quantum chaotic behavior α∼1 is found, errors in the microscopic mass formula have α∼0.5, closer to white noise. The chaotic behavior seems to arise from many body effects not included in the mass formula
International Nuclear Information System (INIS)
Prati, Enrico
2015-01-01
Long living coherent quantum states have been observed in biological systems up to room temperature. Light harvesting in chromophoresis realized by excitonic systems living at the edge of quantum chaos, where energy level distribution becomes semi-Poissonian. On the other hand, artificial materials suffer the loss of coherence of quantum states in quantum information processing, but semiconductor materials are known to exhibit quantum chaotic conditions, so the exploitation of similar conditions are to be considered. The advancements of nanofabrication, together with the control of implantation of individual atoms at nanometric precision, may open the experimental study of such special regime at the edge of the phase transitions for the electronic systems obtained by implanting impurity atoms in a silicon transistor. Here I review the recent advancements made in the field of theoretical description of the light harvesting in biological system in its connection with phase transitions at the few atoms scale and how it would be possible to achieve transition point to quantum chaotic regime. Such mechanism may thus preserve quantum coherent states at room temperature in solid state devices, to be exploited for quantum information processing as well as dissipation-free quantum electronics. (paper)
On chaos in quantum mechanics: The two meanings of sensitive dependence
International Nuclear Information System (INIS)
Ingraham, R.L.; Luna Acosta, G.A.
1993-08-01
Sensitive dependence on initial conditions, the most important signature of chaos, can mean failure of Lyapunov stability, the primary meaning adopted in dynamical systems theory, or the presence of positive Lyapunov exponents, the meaning favored in physics. These are not equivalent in general. We show that there is sensitive dependence in quantum mechanics in the sense of violation of Lyapunov stability for maps of the state vector like involving unbounded operators A. This is true even for bounded quantum systems, where the corresponding Lyapunov exponents are all zero. Experiments to reveal this sensitive dependence, a definite though unfamiliar prediction of quantum mechanics, should be devised. It may also invalidate the usual assumption of linear response theory in quantum statistical mechanics in some cases. (author) 13 refs
Quantum interference vs. quantum chaos in the nuclear shell model
International Nuclear Information System (INIS)
Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E
2015-01-01
In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%
Quantum chaos and the black hole horizon
CERN. Geneva
2016-01-01
Thanks to AdS/CFT, the analogy between black holes and thermal systems has become a practical tool, shedding light on thermalization, transport, and entanglement dynamics. Continuing in this vein, recent work has shown how chaos in the boundary CFT can be analyzed in terms of high energy scattering right on the horizon of the dual black hole. The analysis revolves around certain out-of-time-order correlation functions, which are simple diagnostics of the butterfly effect. We will review this work, along with a general bound on these functions that implies black holes are the most chaotic systems in quantum mechanics. (NB Room Change to Main Auditorium)
NATO Advanced Study Institute on Instabilities and Chaos in Quantum Optics
Arecchi, F; Lugiato, L; Instabilities and Chaos in Quantum Optics II
1988-01-01
This volume contains tutorial papers from the lectures and seminars presented at the NATO Advanced Study Institute on "Instabilities and Chaos in Quantum Optics", held at the "Il Ciocco" Conference Center, Castelvecchio Pascoli, Lucca, Italy, June 28-July 7, 1987. The title of the volume is designated Instabilities and Chaos in Quantum Optics II, because of the nearly coincident publication of a collection of articles on research in this field edited by F.T. Arecchi and R.G. Harrison [Instabilities and Chaos in Quantum Optics, (Springer, Berlin, 1987) 1. That volume provides more detailed information about some of these topics. Together they will serve as a comprehensive and tutorial pair of companion volumes. This school was directed by Prof. Massimo Inguscio, of the Department of Physics, University of Naples, Naples, Italy to whom we express our gratitude on behalf of all lecturers and students. The Scientific Advisory Committee consisted of N.B. Abraham of Bryn Mawr College; F.T. Arecchi of the National I...
Chaos in the atomic and subatomic world
International Nuclear Information System (INIS)
Nussenzveig, H.M.
1992-01-01
This work discusses the possibility of the existence of chaos in the quantum level. In the macroscopic scale, chaos can be explained by the use of classical mechanics. The problem is to know whether there is any manifestation of chaos in the evolution of a system following the quantum mechanical laws. (A.C.A.S.)
Controlling chaos-assisted directed transport via quantum resonance.
Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua
2016-06-01
We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
Controlling chaos-assisted directed transport via quantum resonance
Energy Technology Data Exchange (ETDEWEB)
Tan, Jintao; Zou, Mingliang; Luo, Yunrong; Hai, Wenhua, E-mail: whhai2005@aliyun.com [Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 (China)
2016-06-15
We report on the first demonstration of chaos-assisted directed transport of a quantum particle held in an amplitude-modulated and tilted optical lattice, through a resonance-induced double-mean displacement relating to the true classically chaotic orbits. The transport velocity is controlled by the driving amplitude and the sign of tilt, and also depends on the phase of the initial state. The chaos-assisted transport feature can be verified experimentally by using a source of single atoms to detect the double-mean displacement one by one, and can be extended to different scientific fields.
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.; Fratalocchi, Andrea
2013-01-01
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.
2013-08-05
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.
International Nuclear Information System (INIS)
Chirikov, B.V.
1991-01-01
The overview of recent developments in the theory of quantum chaos is presented with the special emphasis on a number of unsolved problems and current apparent contradictions. The relation between dynamical quantum chaos and statistical random matrix theory is discussed. 97 refs
Quantum chaos on discrete graphs
International Nuclear Information System (INIS)
Smilansky, Uzy
2007-01-01
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
Quantum Tunneling and Chaos in Classical Scale Walkers
Su, Jenny; Dijksman, Joshua; Ward, Jeremy; Behringer, Robert
2014-03-01
We study the behavior of `walkers' small droplets bouncing on a fluid layer vibrated at amplitudes just below the onset of Faraday instability. It was shown recently that despite their macroscopic size, the droplet dynamics are stochastic in nature and reminiscent of the dual particle-wave dynamics in the realm of quantum mechanics (Couder PRL 2006). We use these walkers to study how chaos, which is macroscopically unpredictable, will manifest in a quantum setting. Pecora showed in 2011 that tunneling for particles that have a chaotic ground state is different from tunneling for particles with a regular ground state (PRE 2011). In the experiment we gather data that illustrates the particle trajectory and tunneling behavior as particles transition across the barrier in the double well system with both integrable and chaotic shapes.
Coherence and chaos in extended dynamical systems
International Nuclear Information System (INIS)
Bishop, A.R.
1994-01-01
Coherence, chaos, and pattern formation are characteristic elements of the nonequilibrium statistical mechanics controlling mesoscopic order and disorder in many-degree-of-freedom nonlinear dynamical systems. Competing length scales and/or time scales are the underlying microscopic driving forces for many of these aspects of ''complexity.'' We illustrate the basic concepts with some model examples of classical and quantum, ordered and disordered, nonlinear systems
Dynamical manifestations of quantum chaos: correlation hole and bulge
Torres-Herrera, E. J.; Santos, Lea F.
2017-10-01
A main feature of a chaotic quantum system is a rigid spectrum where the levels do not cross. We discuss how the presence of level repulsion in lattice many-body quantum systems can be detected from the analysis of their time evolution instead of their energy spectra. This approach is advantageous to experiments that deal with dynamics, but have limited or no direct access to spectroscopy. Dynamical manifestations of avoided crossings occur at long times. They correspond to a drop, referred to as correlation hole, below the asymptotic value of the survival probability and to a bulge above the saturation point of the von Neumann entanglement entropy and the Shannon information entropy. By contrast, the evolution of these quantities at shorter times reflects the level of delocalization of the initial state, but not necessarily a rigid spectrum. The correlation hole is a general indicator of the integrable-chaos transition in disordered and clean models and as such can be used to detect the transition to the many-body localized phase in disordered interacting systems. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.
Synchrotron light sources: The search for quantum chaos
International Nuclear Information System (INIS)
Schlachter, Fred
2001-01-01
A storage ring is a specialized synchrotron in which a stored beam of relativistic electrons produces radiation in the vuv and x-ray regions of the spectrum. High-brightness radiation is used at the ALS to study doubly excited autoionizing states of the helium atom in the search for quantum chaos
International Nuclear Information System (INIS)
Muñoz, L; Fernández-Ramírez, C; Relaño, A; Retamosa, J
2012-01-01
In the last decade quantum chaos has become a well established discipline with outreach to different fields, from condensed-matter to nuclear physics. The most important signature of quantum chaos is the statistical analysis of the energy spectrum, which distinguishes between systems with integrable and chaotic classical analogues. In recent years, spectral statistical techniques inherited from quantum chaos have been applied successfully to the baryon spectrum revealing its likely chaotic behaviour even at the lowest energies. However, the theoretical spectra present a behaviour closer to the statistics of integrable systems which makes theory and experiment statistically incompatible. The usual statement of missing resonances in the experimental spectrum when compared to the theoretical ones cannot account for the discrepancies. In this communication we report an improved analysis of the baryon spectrum, taking into account the low statistics and the error bars associated with each resonance. Our findings give a major support to the previous conclusions. Besides, analogue analyses are performed in the experimental meson spectrum, with comparison to theoretical models.
International Nuclear Information System (INIS)
Friedrich, H.
1992-01-01
Rapid growth in the study of nonlinear dynamics and chaos in classical mechanics, has led physicists to reappraise their abandonment of this definition of atomic theory in favour of quantum mechanics adopted earlier this century. The concept of chaos in classical mechanics is examined in this paper and manifestations of chaos in quantum mechanics are explored. While quantum mechanics teaches that atomic particles must not be pictured as moving sharply in defined orbits, these precise orbits can be used to describe essential features of the measurable quantum mechanical spectra. (UK)
Some open questions in 'wave chaos'
International Nuclear Information System (INIS)
Nonnenmacher, Stéphane
2008-01-01
The subject area referred to as 'wave chaos', 'quantum chaos' or 'quantum chaology' has been investigated mostly by the theoretical physics community in the last 30 years. The questions it raises have more recently also attracted the attention of mathematicians and mathematical physicists, due to connections with number theory, graph theory, Riemannian, hyperbolic or complex geometry, classical dynamical systems, probability, etc. After giving a rough account on 'what is quantum chaos?', I intend to list some pending questions, some of them having been raised a long time ago, some others more recent. The choice of problems (and of references) is of course partial and personal. (open problem)
Quantum chaos theory and the spectrum of ideal-MHD instabilities in toroidal plasmas
International Nuclear Information System (INIS)
Dewar, Robert L.; Carolin, Nuehrenberg; Tatsuno, Tomoya
2004-01-01
In a fully 3-D system such as a stellarator, the toroidal mode number n ceases to be a good quantum number - all ns within a given mode family being coupled. It is found that the discrete spectrum of unstable ideal MHD (magnetohydrodynamic) instabilities ceases to exist unless MHD is modified (regularized) by introducing a short-perpendicular-wavelength cutoff. Attempts to use ray tracing to estimate the regularized MHD spectrum fail due to the occurrence of chaotic ray trajectories. In quantum chaos theory, strong chaos in the semiclassical limit leads to eigenvalue statistics the same as those of a suitable ensemble of random matrices. For instance, the probability distribution function for the separation between neighboring eigenvalues is as derived from random matrix theory and goes to zero at zero separation. This contrasts with the Poissonian distribution found in separable systems, showing that a signature of quantum chaos is level repulsion. In order to determine whether eigenvalues of the regularized MHD problem obey the same statistics as those of the Schroedinger equation in both the separable 1-D case and the chaotic 3-D cases, we have assembled data sets of ideal MHD eigenvalues for a Suydam-unstable cylindrical (1-D) equilibrium using Mathematica and a Mercier-unstable (3-D) equilibrium using the CAS3D code. In the 1-D case, we find that the unregularized Suydam-approximation spectrum has an anomalous peak at zero eigenvalue separation. On the other hand, regularization by restricting the domain of κsub(perpendicular) recovers the expected Poissonian distribution. In the 3-D case we find strong evidence of level repulsion within mode families, but mixing mode families produces Poissonian statistics. (author)
Quantum chaos in the two-center shell model
Energy Technology Data Exchange (ETDEWEB)
Milek, B; Noerenberg, W; Rozmej, P [Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)
1989-11-01
Within an axially symmetric two-center shell model single-particle levels with {Omega}=1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos. (orig.).
Quantum chaos in the two-center shell model
Energy Technology Data Exchange (ETDEWEB)
Milek, B; Noerenberg, W; Rozmej, P
1989-03-01
Within an axially symmetric two-center shell model single-particle levels with ..cap omega.. = 1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos.
Quantum chaos for nonstandard symmetry classes in the Feingold-Peres model of coupled tops.
Fan, Yiyun; Gnutzmann, Sven; Liang, Yuqi
2017-12-01
We consider two coupled quantum tops with angular momentum vectors L and M. The coupling Hamiltonian defines the Feingold-Peres model, which is a known paradigm of quantum chaos. We show that this model has a nonstandard symmetry with respect to the Altland-Zirnbauer tenfold symmetry classification of quantum systems, which extends the well-known threefold way of Wigner and Dyson (referred to as "standard" symmetry classes here). We identify the nonstandard symmetry classes BDI_{0} (chiral orthogonal class with no zero modes), BDI_{1} (chiral orthogonal class with one zero mode), and CI (antichiral orthogonal class) as well as the standard symmetry class AI (orthogonal class). We numerically analyze the specific spectral quantum signatures of chaos related to the nonstandard symmetries. In the microscopic density of states and in the distribution of the lowest positive energy eigenvalue, we show that the Feingold-Peres model follows the predictions of the Gaussian ensembles of random-matrix theory in the appropriate symmetry class if the corresponding classical dynamics is chaotic. In a crossover to mixed and near-integrable classical dynamics, we show that these signatures disappear or strongly change.
Relativistic Quantum Transport in Graphene Systems
2015-07-09
dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied
Quantum chaos in the Henon-Heiles oscillator under intense laser fields. IT-1
International Nuclear Information System (INIS)
Gupta, Neetu; Deb, B.M.
2004-01-01
Full text: The quantum domain behaviour of the classically chaotic Henon-Heiles oscillator (HHO) has been studied earlier by several workers, without invoking either a weak or strong time- dependent external perturbation. This work looks at the motion of an electron moving in the HH potential under intense laser fields. The time-dependent Schroedinger equation is numerically solved in order to study the sensitivity of the system to initial conditions. The similarities in responses between the HHO and atoms/molecules to intense laser fields are examined; from this one might speculate that atoms/molecules in intense laser fields might exhibit quantum chaos
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
International Nuclear Information System (INIS)
Whelan, N.D.
1993-01-01
Random Matrix Theory successfully describes the statistics of the low-lying spectra of some nuclei but not of others. It is currently believed that this theory applies to systems in which the corresponding classical motion is chaotic. This conjecture is tested for collective nuclei by studying the Interacting Boson Model. Quantum and classical measures of chaos are proposed and found to be in agreement throughout the parameter space of the model. For some parameter values the measures indicate the presence of a previously unknown approximate symmetry. A phenomenon called partial dynamical symmetry is explored and shown to lead to a suppression of chaos. A time dependent function calculated from the quantum spectrum is discussed. This function is sensitive to the extent of chaos and provides a robust method of analyzing experimental spectra
Collective diffusion and quantum chaos in holography
Wu, Shao-Feng; Wang, Bin; Ge, Xian-Hui; Tian, Yu
2018-05-01
We define a particular combination of charge and heat currents that is decoupled with the heat current. This "heat-decoupled" (HD) current can be transported by diffusion at long distances, when some thermoelectric conductivities and susceptibilities satisfy a simple condition. Using the diffusion condition together with the Kelvin formula, we show that the HD diffusivity can be same as the charge diffusivity and also the heat diffusivity. We illustrate that such mechanism is implemented in a strongly coupled field theory, which is dual to a Lifshitz gravity with the dynamical critical index z =2 . In particular, it is exhibited that both charge and heat diffusivities build the relationship to the quantum chaos. Moreover, we study the HD diffusivity without imposing the diffusion condition. In some homogeneous holographic lattices, it is found that the diffusivity/chaos relation holds independently of any parameters, including the strength of momentum relaxation, chemical potential, or temperature. We also show a counter example of the relation and discuss its limited universality.
Energy Technology Data Exchange (ETDEWEB)
Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States); Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA (United States); Stanford, Douglas [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States)
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ{sub L}≤2πk{sub B}T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
Quantum Bound to Chaos and the Semiclassical Limit
Kurchan, Jorge
2018-06-01
We discuss the quantum bound on chaos in the context of the free propagation of a particle in an arbitrarily curved surface at low temperatures. The semiclassical calculation of the Lyapunov exponent can be performed in much the same way as the corresponding one for the `Loschmidt echo'. The bound appears here as the impossibility to scatter a wave, by effect of the curvature, over characteristic lengths smaller than the deBroglie wavelength.
Some studies on arithmetical chaos in classical and quantum mechanics
International Nuclear Information System (INIS)
Bolte, J.
1993-04-01
Several aspects of classical and quantum mechanics applied to a class of strongly chaotic systems are studied. The latter consists of single particles moving without external forces on surfaces of constant negative Gaussian curvature whose corresponding fundamental groups are supplied with an arithmetic structure. It is shown that the arithmetical features of the considered systems lead to exceptional properties of the corresponding spectra of lengths of closed geodesics (periodic orbits). The most significant one is an exponential growth of degeneracies in these geodesic length spectra. Furthermore, the arithmetical systems are distinguished by a structure that appears as a generalization of geometric symmetries. These pseudosymmetries occur in the quantization of the classical arithmetic systems as Hecke operators, which form an infinite algebra of self-adjoint operators commuting with the Hamiltonian. The statistical properties of quantum energies in the arithmetical systems have previously been identified as exceptional. They do not fit into the general scheme of random matrix theory. It is shown with the help of a simplified model for the spectral form factor how the spectral statistics in arithmetical quantum chaos can be understood by the properties of the corresponding classical geodesic length spectra. A decisive role is played by the exponentially increasing multiplicities of lengths. The model developed for the level spacings distribution and for the number variance is compared to the corresponding quantities obtained from quantum energies for a specific arithmetical system. Finally, the convergence properties of a representation for the Selberg zeta function as a Dirichlet series are studied. It turns out that the exceptional classical and quantum mechanical properties shared by the arithmetical systems prohibit a convergence of this important function in the physically interesting domain. (orig.)
Colloquium: Random matrices and chaos in nuclear spectra
International Nuclear Information System (INIS)
Papenbrock, T.; Weidenmueller, H. A.
2007-01-01
Chaos occurs in quantum systems if the statistical properties of the eigenvalue spectrum coincide with predictions of random-matrix theory. Chaos is a typical feature of atomic nuclei and other self-bound Fermi systems. How can the existence of chaos be reconciled with the known dynamical features of spherical nuclei? Such nuclei are described by the shell model (a mean-field theory) plus a residual interaction. The question is answered using a statistical approach (the two-body random ensemble): The matrix elements of the residual interaction are taken to be random variables. Chaos is shown to be a generic feature of the ensemble and some of its properties are displayed, emphasizing those which differ from standard random-matrix theory. In particular, the existence of correlations among spectra carrying different quantum numbers is demonstrated. These are subject to experimental verification
Cybernetical Physics From Control of Chaos to Quantum Control
Fradkov, Alexander L
2007-01-01
The control of complex systems is one of the most important aspects in dealing with systems exhibiting nonlinear behaviour or similar features that defy traditional control techniques. This specific subject is gradually becoming known as cybernetical physics, borrowing methods from both theoretical physics and control engineering. This book is, perhaps, the first attempt to present a unified exposition of the subject and methodology of cybernetical physics as well as solutions to some of its problems. Emphasis of the book is on the examination of fundamental limits on energy transformation by means of control procedures in both conservative and dissipative systems. A survey of application in physics includes the control of chaos, synchronisation of coupled oscillators, pendulum chains, reactions in physical chemistry and of quantum systems such as the dissociation of diatomic molecules. This book has been written having researchers from various backgrounds in physics, mathematics and engineering in mind and i...
Classical system underlying a diffracting quantum billiard
Indian Academy of Sciences (India)
Manan Jain
2018-01-05
Jan 5, 2018 ... Wave equation; rays; quantum chaos. PACS Nos 03.65.Ge; 05.45.Mt; 42.25.Fx. 1. Introduction. Diffraction [1] is a complex wave phenomenon which manifests classically and quantum mechanically. Among a wide range of systems where diffraction becomes important, there is an interesting situation of.
[Shedding light on chaos theory].
Chou, Shieu-Ming
2004-06-01
Gleick (1987) said that only three twentieth century scientific theories would be important enough to continue be of use in the twenty-first century: The Theory of Relativity, Quantum Theory, and Chaos Theory. Chaos Theory has become a craze which is being used to forge a new scientific system. It has also been extensively applied in a variety of professions. The purpose of this article is to introduce chaos theory and its nursing applications. Chaos is a sign of regular order. This is to say that chaos theory emphasizes the intrinsic potential for regular order within disordered phenomena. It is to be hoped that this article will inspire more nursing scientists to apply this concept to clinical, research, or administrative fields in our profession.
Application of Chaos Theory to Engine Systems
Matsumoto, Kazuhiro; Diebner, Hans H.; Tsuda, Ichiro; Hosoi, Yukiharu
2008-01-01
We focus on the control issue for engine systems from the perspective of chaos theory, which is based on the fact that engine systems have a low-dimensional chaotic dynamics. Two approaches are discussed: controlling chaos and harnessing chaos, respectively. We apply Pyragas' chaos control method to an actual engine system. The experimental results show that the chaotic motion of an engine system may be stabilized to a periodic motion. Alternatively, harnessing chaos for engine systems is add...
Sadhukhan, Mainak; Deb, B M
2018-06-21
By employing the Ehrenfest "phase space" trajectory method for studying quantum chaos, developed in our laboratory, the present study reveals that the H 2 molecule under intense laser fields of three different intensities, I = 1 × 10 14 W/cm 2 , 5 × 10 14 W/cm 2 , and 1 × 10 15 W/cm 2 , does not show quantum chaos. A similar conclusion is also reached through the Loschmidt echo (also called quantum fidelity) calculations reported here for the first time for a real molecule under intense laser fields. Thus, a long-standing conjecture about the possible existence of quantum chaos in atoms and molecules under intense laser fields has finally been tested and not found to be valid in the present case.
Quantum signature of chaos and thermalization in the kicked Dicke model
Ray, S.; Ghosh, A.; Sinha, S.
2016-09-01
We study the quantum dynamics of the kicked Dicke model (KDM) in terms of the Floquet operator, and we analyze the connection between chaos and thermalization in this context. The Hamiltonian map is constructed by suitably taking the classical limit of the Heisenberg equation of motion to study the corresponding phase-space dynamics, which shows a crossover from regular to chaotic motion by tuning the kicking strength. The fixed-point analysis and calculation of the Lyapunov exponent (LE) provide us with a complete picture of the onset of chaos in phase-space dynamics. We carry out a spectral analysis of the Floquet operator, which includes a calculation of the quasienergy spacing distribution and structural entropy to show the correspondence to the random matrix theory in the chaotic regime. Finally, we analyze the thermodynamics and statistical properties of the bosonic sector as well as the spin sector, and we discuss how such a periodically kicked system relaxes to a thermalized state in accordance with the laws of statistical mechanics.
Quantum physics. Vol. 2. From time-dependent dynamics to many-body physics and quantum chaos
International Nuclear Information System (INIS)
Zelevinsky, Vladimir
2011-01-01
This two-volume set can be naturally divided into two semester courses, and contains a full modern graduate course in quantum physics. The idea is to teach graduate students how to practically use quantum physics and theory, presenting the fundamental knowledge, and gradually moving on to applications, including atomic, nuclear and solid state physics, as well as modern subfields, such as quantum chaos and quantum entanglement. The book starts with basic quantum problems, which do not require full quantum formalism but allow the student to gain the necessary experience and elements of quantum thinking. Only then does the fundamental Schrodinger equation appear. The author has included topics that are not usually covered in standard textbooks and has written the book in such a way that every topic contains varying layers of difficulty, so that the instructor can decide where to stop. Although supplementary sources are not required, ''Further reading'' is given for each chapter, including references to scientific journals and publications, and a glossary is also provided. Problems and solutions are integrated throughout the text. (orig.)
Quantum physics. Vol. 2. From time-dependent dynamics to many-body physics and quantum chaos
Energy Technology Data Exchange (ETDEWEB)
Zelevinsky, Vladimir [NSCL Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy
2011-07-01
This two-volume set can be naturally divided into two semester courses, and contains a full modern graduate course in quantum physics. The idea is to teach graduate students how to practically use quantum physics and theory, presenting the fundamental knowledge, and gradually moving on to applications, including atomic, nuclear and solid state physics, as well as modern subfields, such as quantum chaos and quantum entanglement. The book starts with basic quantum problems, which do not require full quantum formalism but allow the student to gain the necessary experience and elements of quantum thinking. Only then does the fundamental Schrodinger equation appear. The author has included topics that are not usually covered in standard textbooks and has written the book in such a way that every topic contains varying layers of difficulty, so that the instructor can decide where to stop. Although supplementary sources are not required, ''Further reading'' is given for each chapter, including references to scientific journals and publications, and a glossary is also provided. Problems and solutions are integrated throughout the text. (orig.)
Quantum ratchets, the orbital Josephson effect, and chaos in Bose-Einstein condensates
Carr, Lincoln D.; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando
2014-03-01
In a system of ac-driven condensed bosons we study a new type of Josephson effect occurring between states sharing the same region of space and the same internal atom structure. We first develop a technique to calculate the long-time dynamics of a driven interacting many-body system. For resonant frequencies, this dynamics can be shown to derive from an effective time-independent Hamiltonian which is expressed in terms of standard creation and annihilation operators. Within the subspace of resonant states, and if the undriven states are plane waves, a locally repulsive interaction between bosons translates into an effective attraction. We apply the method to study the effect of interactions on the coherent ratchet current of an asymmetrically driven boson system. We find a wealth of dynamical regimes which includes Rabi oscillations, self-trapping and chaotic behavior. In the latter case, a full quantum many-body calculation deviates from the mean-field results by predicting large quantum fluctuations of the relative particle number. Moreover, we find that chaos and entanglement, as defined by a variety of widely used and accepted measures, are overlapping but distinct notions. Funded by Spanish MINECO, the Ramon y Cajal program (CEC), the Comunidad de Madrid through Grant Microseres, the Heidelberg Center for Quantum Dynamics, and the NSF.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory
Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Relativistic quantum chaos—An emergent interdisciplinary field
Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso
2018-05-01
Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.
International Nuclear Information System (INIS)
Ge Zhengming; Hsu Maoyuan
2008-01-01
In this paper, chaos excited chaos synchronizations of generalized van der Pol systems with integral and fractional order are studied. Synchronizations of two identified autonomous generalized van der Pol chaotic systems are obtained by replacing their corresponding exciting terms by the same function of chaotic states of a third nonautonomous or autonomous generalized van der Pol system. Numerical simulations, such as phase portraits, Poincare maps and state error plots are given. It is found that chaos excited chaos synchronizations exist for the fractional order systems with the total fractional order both less than and more than the number of the states of the integer order generalized van der Pol system
Chaos and complexity by design
Energy Technology Data Exchange (ETDEWEB)
Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics,Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada)
2017-04-20
We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame potential,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.
Chaos and complexity by design
International Nuclear Information System (INIS)
Roberts, Daniel A.; Yoshida, Beni
2017-01-01
We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame potential,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.
Cheng, Chih-Hao; Chen, Chih-Ying; Chen, Jun-Da; Pan, Da-Kung; Ting, Kai-Ting; Lin, Fan-Yi
2018-04-30
We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.
Is the K-quantum number conserved in the order-to-chaos transittion region?
DEFF Research Database (Denmark)
Benzoni...[], G.; Døssing, T.; Herskind, B.
2005-01-01
To study the order-to-chaos transition in nuclei we investigate the validity of the K-quantum number in the excited rapidly rotating 163Er nucleus, analyzing the variance and covariance of the spectrum fluctuations of ¿-cascades feeding into low-K and high-K bands. The data are compared...
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT
Directory of Open Access Journals (Sweden)
Xiaohua Nie
2017-01-01
Full Text Available Cat Swarm Optimization (CSO algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.
Nie, Xiaohua; Wang, Wei; Nie, Haoyao
2017-01-01
Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.
Identifying the closeness of eigenstates in quantum many-body systems
International Nuclear Information System (INIS)
Li Hai-bin; Yang Yang; Wang Pei; Wang Xiao-guang
2017-01-01
We propose a quantity called modulus fidelity to measure the closeness of two quantum pure states. We use it to investigate the closeness of eigenstates in one-dimensional hard-core bosons. When the system is integrable, eigenstates close to their neighbor or not, which leads to a large fluctuation in the distribution of modulus fidelity. When the system becomes chaos, the fluctuation is reduced dramatically, which indicates all eigenstates become close to each other. It is also found that two kind of closeness, i.e., closeness of eigenstates and closeness of eigenvalues, are not correlated at integrability but correlated at chaos. We also propose that the closeness of eigenstates is the underlying mechanism of eigenstate thermalization hypothesis (ETH) which explains the thermalization in quantum many-body systems. (paper)
Spin squeezing as an indicator of quantum chaos in the Dicke model.
Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang
2009-04-01
We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.
2001-01-01
The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!
International Nuclear Information System (INIS)
Casati, G.; Chirikov, B.V.
1996-01-01
Various fluctuations in quantum systems with discrete spectrum are discussed, including recent unpublished results. Open questions and unexplained peculiarities of quantum fluctuations are formulated [ru
Chaos in electric drive systems analysis control and application
Chau, K T
2011-01-01
In Chaos in Electric Drive Systems: Analysis, Control and Application authors Chau and Wang systematically introduce an emerging technology of electrical engineering that bridges abstract chaos theory and practical electric drives. The authors consolidate all important information in this interdisciplinary technology, including the fundamental concepts, mathematical modeling, theoretical analysis, computer simulation, and hardware implementation. The book provides comprehensive coverage of chaos in electric drive systems with three main parts: analysis, control and application. Corresponding drive systems range from the simplest to the latest types: DC, induction, synchronous reluctance, switched reluctance, and permanent magnet brushless drives.The first book to comprehensively treat chaos in electric drive systemsReviews chaos in various electrical engineering technologies and drive systemsPresents innovative approaches to stabilize and stimulate chaos in typical drivesDiscusses practical application of cha...
International Nuclear Information System (INIS)
Viennot, David; Aubourg, Lucile
2016-01-01
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems. - Highlights: • We propose a spin chain model with long range couplings having purely quantum states similar to the classical chimera states. • The quantum chimera states are characterized by the coexistence of strongly entangled and non-entangled spins in the same chain. • The quantum chimera states present some characteristics of quantum chaos.
Energy Technology Data Exchange (ETDEWEB)
Viennot, David, E-mail: david.viennot@utinam.cnrs.fr; Aubourg, Lucile
2016-02-15
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems. - Highlights: • We propose a spin chain model with long range couplings having purely quantum states similar to the classical chimera states. • The quantum chimera states are characterized by the coexistence of strongly entangled and non-entangled spins in the same chain. • The quantum chimera states present some characteristics of quantum chaos.
Chaotic dynamics and chaos control in nonlinear laser systems
International Nuclear Information System (INIS)
Fang Jinqing; Yao Weiguang
2001-01-01
Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally
Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control
International Nuclear Information System (INIS)
Ge Zhengming; Yang, C.-H.
2009-01-01
By the method of quadratic optimum control, a quadratic optimal regulator is used for synchronizing two complex chaotic systems in series form. By this method the least error with less control energy is achieved, and the optimization on both energy and error is realized synthetically. The simulation results of two Quantum-CNN chaos systems in series form prove the effectiveness of this method. Finally, chaotization of the system is given by optimal control.
Chaos desynchronization in strongly coupled systems
International Nuclear Information System (INIS)
Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng
2007-01-01
The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed
Chaos, Chaos Control and Synchronization of a Gyrostat System
GE, Z.-M.; LIN, T.-N.
2002-03-01
The dynamic behavior of a gyrostat system subjected to external disturbance is studied in this paper. By applying numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov exponents are presented to observe periodic and choatic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractor of the system are located by employing the modified interpolated cell mapping (MICM) method. Several methods, the delayed feedback control, the addition of constant torque, the addition of periodic force, the addition of periodic impulse torque, injection of dither signal control, adaptive control algorithm (ACA) control and bang-bang control are used to control chaos effectively. Finally, synchronization of chaos in the gyrostat system is studied.
Chaos of discrete dynamical systems in complete metric spaces
International Nuclear Information System (INIS)
Shi Yuming; Chen Guanrong
2004-01-01
This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces
Chaos and random matrices in supersymmetric SYK
Hunter-Jones, Nicholas; Liu, Junyu
2018-05-01
We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.
Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory
Kos, Pavel; Ljubotina, Marko; Prosen, Tomaž
2018-04-01
A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985), 10.1098/rspa.1985.0078] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K (t ) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004), 10.1103/PhysRevLett.93.014103]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed the "many-body localized phase" and "ergodic phase." In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K (t ) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1 /2 models in a periodically kicking transverse field. In particular, we relate K (t ) to partition functions of a class of twisted classical Ising models on a ring of size t ; hence, the leading-order RMT behavior
Quantum chaos and chiral symmetry at the QCD and QED phase transition
International Nuclear Information System (INIS)
Bittner, Elmar; Markum, Harald; Pullirsch, Rainer
2001-01-01
We investigate the eigenvalue spectrum of the staggered Dirac matrix in SU(3) gauge theory and in full QCD as well as in quenched U(1) theory. As a measure of the fluctuation properties of the eigenvalues, we consider the nearest-neighbor spacing distribution. We find that in all regions of their phase diagrams, compact lattice gauge theories have bulk spectral correlations given by random matrix theory, which is an indication for quantum chaos. In the confinement phase, the low-lying Dirac spectrum of these quantum field theories is well described by random matrix theory, exhibiting universal behavior. Related results for gauge theories with minimal coupling are now discussed also in the chirally symmetric phase
Semiconductor lasers stability, instability and chaos
Ohtsubo, Junji
2017-01-01
This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...
Quantum dynamics of classical stochastic systems
Energy Technology Data Exchange (ETDEWEB)
Casati, G
1983-01-01
It is shown that one hand Quantum Mechanics introduces limitations to the manifestations of chaotic motion resulting, for the case of the periodically kicked rotator, in the limitation of energy growth; also, as it is confirmed by numerical experiments, phenomena like the exponential instability of orbits, inherent to strongly chaotic systems, are absent here and therefore Quantum Mechanics appear to be more stable and predictable than Classical Mechanics. On the other hand, we have seen that nonrecurrent behavior may arise in Quantum Systems and it is connected to the presence of singular continuous spectrum. We conjecture that the classical chaotic behavior is reflected, at least partially, in the nature of the spectrum and the singular-continuity of the latter may possess a self-similar structure typical of classical chaos.
Does chaos assist localization or delocalization?
Tan, Jintao; Lu, Gengbiao; Luo, Yunrong; Hai, Wenhua
2014-12-01
We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.
Chaos based encryption system for encrypting electroencephalogram signals.
Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De
2014-05-01
In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.
Chaos from simple models to complex systems
Cencini, Massimo; Vulpiani, Angelo
2010-01-01
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor
Chaos synchronization of coupled hyperchaotic system
International Nuclear Information System (INIS)
Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng
2009-01-01
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces synchronization of coupled hyperchaotic system, based on the Lapunov stability theory, asymptotic stability of the system is guaranteed by means of Lapunov function. The numerical simulation was provided in order to show the effectiveness of this method for the synchronization of the chaotic hyperchaotic Chen system and Rossler system.
International Nuclear Information System (INIS)
Ge Zhengming; Chang Chingming; Chen Yensheng
2006-01-01
Anti-control of chaos of single time scale brushless dc motors (BLDCM) and chaos synchronization of different order systems are studied in this paper. By addition of an external nonlinear term, we can obtain anti-control of chaos. Then, by addition of the coupling terms, by the use of Lyapunov stability theorem and by the linearization of the error dynamics, chaos synchronization between a third-order BLDCM and a second-order Duffing system are presented
Controllable chaos in hybrid electro-optomechanical systems
Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying
2016-01-01
We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication. PMID:26948505
Controllable chaos in hybrid electro-optomechanical systems.
Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying
2016-03-07
We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication.
Chaos and quantum Fisher information in the quantum kicked top
International Nuclear Information System (INIS)
Wang Xiao-Qian; Zhang Xi-He; Ma Jian; Wang Xiao-Guang
2011-01-01
Quantum Fisher information is related to the problem of parameter estimation. Recently, a criterion has been proposed for entanglement in multipartite systems based on quantum Fisher information. This paper studies the behaviours of quantum Fisher information in the quantum kicked top model, whose classical correspondence can be chaotic. It finds that, first, detected by quantum Fisher information, the quantum kicked top is entangled whether the system is in chaotic or in regular case. Secondly, the quantum Fisher information is larger in chaotic case than that in regular case, which means, the system is more sensitive in the chaotic case. (general)
Chaos in the fractional order Chen system and its control
International Nuclear Information System (INIS)
Li Chunguang; Chen Guanrong
2004-01-01
In this letter, we study the chaotic behaviors in the fractional order Chen system. We found that chaos exists in the fractional order Chen system with order less than 3. The lowest order we found to have chaos in this system is 2.1. Linear feedback control of chaos in this system is also studied
Random matrices and chaos in nuclear physics: Nuclear structure
International Nuclear Information System (INIS)
Weidenmueller, H. A.; Mitchell, G. E.
2009-01-01
Evidence for the applicability of random-matrix theory to nuclear spectra is reviewed. In analogy to systems with few degrees of freedom, one speaks of chaos (more accurately, quantum chaos) in nuclei whenever random-matrix predictions are fulfilled. An introduction into the basic concepts of random-matrix theory is followed by a survey over the extant experimental information on spectral fluctuations, including a discussion of the violation of a symmetry or invariance property. Chaos in nuclear models is discussed for the spherical shell model, for the deformed shell model, and for the interacting boson model. Evidence for chaos also comes from random-matrix ensembles patterned after the shell model such as the embedded two-body ensemble, the two-body random ensemble, and the constrained ensembles. All this evidence points to the fact that chaos is a generic property of nuclear spectra, except for the ground-state regions of strongly deformed nuclei.
Chaos, complexity, and random matrices
Cotler, Jordan; Hunter-Jones, Nicholas; Liu, Junyu; Yoshida, Beni
2017-11-01
Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an O(1) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce k-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate k-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.
Nonlinear dynamics and chaos in a fractional-order financial system
International Nuclear Information System (INIS)
Chen Weiching
2008-01-01
This study examines the two most attractive characteristics, memory and chaos, in simulations of financial systems. A fractional-order financial system is proposed in this study. It is a generalization of a dynamic financial model recently reported in the literature. The fractional-order financial system displays many interesting dynamic behaviors, such as fixed points, periodic motions, and chaotic motions. It has been found that chaos exists in fractional-order financial systems with orders less than 3. In this study, the lowest order at which this system yielded chaos was 2.35. Period doubling and intermittency routes to chaos in the fractional-order financial system were found
International Nuclear Information System (INIS)
Fitzpatrick, A. Liam; Kaplan, Jared
2016-01-01
We use results on Virasoro conformal blocks to study chaotic dynamics in CFT_2 at large central charge c. The Lyapunov exponent λ_L, which is a diagnostic for the early onset of chaos, receives 1/c corrections that may be interpreted as λ_L=((2π)/β)(1+(12/c)). However, out of time order correlators receive other equally important 1/c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ_L that emerges at large c, focusing on CFT_2 and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.
Chaos Criminology: A critical analysis
McCarthy, Adrienne L.
There has been a push since the early 1980's for a paradigm shift in criminology from a Newtonian-based ontology to one of quantum physics. Primarily this effort has taken the form of integrating Chaos Theory into Criminology into what this thesis calls 'Chaos Criminology'. However, with the melding of any two fields, terms and concepts need to be translated properly, which has yet to be done. In addition to proving a translation between fields, this thesis also uses a set of criteria to evaluate the effectiveness of the current use of Chaos Theory in Criminology. While the results of the theory evaluation reveal that the current Chaos Criminology work is severely lacking and in need of development, there is some promise in the development of Marx's dialectical materialism with Chaos Theory.
Chaotic Dynamics and Transport in Classical and Quantum Systems
International Nuclear Information System (INIS)
2003-01-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations
Chaotic Dynamics and Transport in Classical and Quantum Systems
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations.
Directory of Open Access Journals (Sweden)
Kratochvíl C.
2007-10-01
Full Text Available The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions.
Extension of spatiotemporal chaos in glow discharge-semiconductor systems.
Akhmet, Marat; Rafatov, Ismail; Fen, Mehmet Onur
2014-12-01
Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528-4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].
Bifurcation and chaos in neural excitable system
International Nuclear Information System (INIS)
Jing Zhujun; Yang Jianping; Feng Wei
2006-01-01
In this paper, we investigate the dynamical behaviors of neural excitable system without periodic external current (proposed by Chialvo [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] and with periodic external current as system's parameters vary. The existence and stability of three fixed points, bifurcation of fixed points, the conditions of existences of fold bifurcation, flip bifurcation and Hopf bifurcation are derived by using bifurcation theory and center manifold theorem. The chaotic existence in the sense of Marotto's definition of chaos is proved. We then give the numerical simulated results (using bifurcation diagrams, computations of Maximum Lyapunov exponent and phase portraits), which not only show the consistence with the analytic results but also display new and interesting dynamical behaviors, including the complete period-doubling and inverse period-doubling bifurcation, symmetry period-doubling bifurcations of period-3 orbit, simultaneous occurrence of two different routes (invariant cycle and period-doubling bifurcations) to chaos for a given bifurcation parameter, sudden disappearance of chaos at one critical point, a great abundance of period windows (period 2 to 10, 12, 19, 20 orbits, and so on) in transient chaotic regions with interior crises, strange chaotic attractors and strange non-chaotic attractor. In particular, the parameter k plays a important role in the system, which can leave the chaotic behavior or the quasi-periodic behavior to period-1 orbit as k varies, and it can be considered as an control strategy of chaos by adjusting the parameter k. Combining the existing results in [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] with the new results reported in this paper, a more complete description of the system is now obtained
Casati, Giulio; Maspero, Giulio; Shepelyansky, Dima L.
1997-01-01
We study quantum chaos in open dynamical systems and show that it is characterized by quantum fractal eigenstates located on the underlying classical strange repeller. The states with longest life times typically reveal a scars structure on the classical fractal set.
On the motion of classical three-body system with consideration of quantum fluctuations
Energy Technology Data Exchange (ETDEWEB)
Gevorkyan, A. S., E-mail: g-ashot@sci.am [NAS of RA, Institute for Informatics and Automation Problems (Armenia)
2017-03-15
We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.
Extension of spatiotemporal chaos in glow discharge-semiconductor systems
International Nuclear Information System (INIS)
Akhmet, Marat; Fen, Mehmet Onur; Rafatov, Ismail
2014-01-01
Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Šijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A. Liam [Department of Physics, Boston University,590 Commonwealth Avenue, Boston, MA 02215 (United States); Kaplan, Jared [Department of Physics and Astronomy, Johns Hopkins University,3400 N. Charles St, Baltimore, MD 21218 (United States)
2016-05-12
We use results on Virasoro conformal blocks to study chaotic dynamics in CFT{sub 2} at large central charge c. The Lyapunov exponent λ{sub L}, which is a diagnostic for the early onset of chaos, receives 1/c corrections that may be interpreted as λ{sub L}=((2π)/β)(1+(12/c)). However, out of time order correlators receive other equally important 1/c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ{sub L} that emerges at large c, focusing on CFT{sub 2} and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.
Chaos synchronization of a new chaotic system via nonlinear control
International Nuclear Information System (INIS)
Zhang Qunjiao; Lu Junan
2008-01-01
This paper investigates chaos synchronization of a new chaotic system [Lue J, Chen G, Cheng D. A new chaotic system and beyond: the generalized Lorenz-like system. Int J Bifurcat Chaos 2004;14:1507-37]. Two kinds of novel nonlinear controllers are designed based on the Lyapunov stability theory. It can be viewed as an improvement to the existing results of reference [Park JH. Chaos synchronization of a chaotic system via nonlinear control. Chaos, Solitons and Fractals 2005;25:579-84] because we use less controllers but realize a global and exponential asymptotical synchronization. Numerical simulations are provided to show the effectiveness and advantage of this method
Meso-structures of dynamical chaos and E-infinity theory
International Nuclear Information System (INIS)
Mukhamedov, A.M.
2009-01-01
A novel proposal is made to develop a unified theory of dynamical chaos using an idea of extra-coordinates. It is supposed that chaos is capable to translate influences from quantum level of description to the classical macroscopic one and vise versa. The notion of macroscopically prepared microstates is proposed to determine a special case of extra-coordinates induced by cooperative effects at quantum resolution of dynamical events. Meso-structures mediating quantum and classical appearances of chaotic motion are studied in the light of E-infinity theory.
Origin of chaos in 3-d Bohmian trajectories
International Nuclear Information System (INIS)
Tzemos, Athanasios C.; Contopoulos, George; Efthymiopoulos, Christos
2016-01-01
We study the 3-d Bohmian trajectories of a quantum system of three harmonic oscillators. We focus on the mechanism responsible for the generation of chaotic trajectories. We demonstrate the existence of a 3-d analogue of the mechanism found in earlier studies of 2-d systems [1,2], based on moving 2-d ‘nodal point–X-point complexes’. In the 3-d case, we observe a foliation of nodal point–X-point complexes, forming a ‘3-d structure of nodal and X-points’. Chaos is generated when the Bohmian trajectories are scattered at one or more close encounters with such a structure. - Highlights: • A mechanism for the emergence of 3-d Bohmian chaos is proposed. • We demonstrate the existence of a 3-d structure of nodal and X-points. • Chaos is generated when the trajectories are scattered by the X-points.
Origin of chaos in 3-d Bohmian trajectories
Energy Technology Data Exchange (ETDEWEB)
Tzemos, Athanasios C., E-mail: thanasistzemos@gmail.com; Contopoulos, George, E-mail: gcontop@academyofathens.gr; Efthymiopoulos, Christos, E-mail: cefthim@academyofathens.gr
2016-11-25
We study the 3-d Bohmian trajectories of a quantum system of three harmonic oscillators. We focus on the mechanism responsible for the generation of chaotic trajectories. We demonstrate the existence of a 3-d analogue of the mechanism found in earlier studies of 2-d systems [1,2], based on moving 2-d ‘nodal point–X-point complexes’. In the 3-d case, we observe a foliation of nodal point–X-point complexes, forming a ‘3-d structure of nodal and X-points’. Chaos is generated when the Bohmian trajectories are scattered at one or more close encounters with such a structure. - Highlights: • A mechanism for the emergence of 3-d Bohmian chaos is proposed. • We demonstrate the existence of a 3-d structure of nodal and X-points. • Chaos is generated when the trajectories are scattered by the X-points.
CHAOS: An SDN-Based Moving Target Defense System
Directory of Open Access Journals (Sweden)
Yuan Shi
2017-01-01
Full Text Available Moving target defense (MTD has provided a dynamic and proactive network defense to reduce or move the attack surface that is available for exploitation. However, traditional network is difficult to realize dynamic and active security defense effectively and comprehensively. Software-defined networking (SDN points out a brand-new path for building dynamic and proactive defense system. In this paper, we propose CHAOS, an SDN-based MTD system. Utilizing the programmability and flexibility of SDN, CHAOS obfuscates the attack surface including host mutation obfuscation, ports obfuscation, and obfuscation based on decoy servers, thereby enhancing the unpredictability of the networking environment. We propose the Chaos Tower Obfuscation (CTO method, which uses the Chaos Tower Structure (CTS to depict the hierarchy of all the hosts in an intranet and define expected connection and unexpected connection. Moreover, we develop fast CTO algorithms to achieve a different degree of obfuscation for the hosts in each layer. We design and implement CHAOS as an application of SDN controller. Our approach makes it very easy to realize moving target defense in networks. Our experimental results show that a network protected by CHAOS is capable of decreasing the percentage of information disclosure effectively to guarantee the normal flow of traffic.
Chaos control of Chen chaotic dynamical system
International Nuclear Information System (INIS)
Yassen, M.T.
2003-01-01
This paper is devoted to study the problem of controlling chaos in Chen chaotic dynamical system. Two different methods of control, feedback and nonfeedback methods are used to suppress chaos to unstable equilibria or unstable periodic orbits (UPO). The Lyapunov direct method and Routh-Hurwitz criteria are used to study the conditions of the asymptotic stability of the steady states of the controlled system. Numerical simulations are presented to show these results
Switching control of linear systems for generating chaos
International Nuclear Information System (INIS)
Liu Xinzhi; Teo, Kok-Lay; Zhang Hongtao; Chen Guanrong
2006-01-01
In this paper, a new switching method is developed, which can be applied to generating different types of chaos or chaos-like dynamics from two or more linear systems. A numerical simulation is given to illustrate the generated chaotic dynamic behavior of the systems with some variable parameters. Finally, a circuit is built to realize various chaotic dynamical behaviors
Generic superweak chaos induced by Hall effect
Ben-Harush, Moti; Dana, Itzhack
2016-05-01
We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.
Control of chaos in a three-well duffing system
International Nuclear Information System (INIS)
Yang Jianping; Jing Zhujun
2009-01-01
Analytical and numerical results concerning control of chaos in a three-well duffing system with two external excitations are given by using the Melnikov methods proposed by Chacon et al. [Chacon R. General results on chaos suppression for biharmonically driven dissipative systems. Phys Lett A 1999;257:293-300, Chacon R, Palmero F, Balibrea F. Taming chaos in a driven Josephson Junction. Int J Bifurc Chaos 2001;11(7):1897-909, Chacon R. Role of ultrasubharmonic resonances in taming chaos by weak harmonic perturbations. Europhys Lett 2001;54(2):148C153]. We theoretically give the parameter-space region and intervals of initial phase difference for primary and subharmonic resonance and the necessary condition for the superharmonic and supersubharmonic resonance, where homoclinic chaos or heteroclinic chaos can be suppressed. Numerical simulations show the consistency and difference with theoretical analysis and the chaotic behavior can be converted to periodic orbits by adjusting amplitude and phase-difference of inhibiting excitation. Moreover, we consider the influence of parametric frequency on maximum Lyapunov exponent (LE) for different phase-differences, and give the distribution of maximum Lyapunov exponents in parameter-plane, which indicates the regions of non-chaotic states (non-positive LE) and chaotic states (positive LE).
Quantum physics on the edge of chaos
Energy Technology Data Exchange (ETDEWEB)
Berry, M
1987-11-19
The phenomena of quantum chaology lies in the largely unexplored border country between quantum and classical mechanics - they are part of semiclassical mechanics. Quantum chaology is an emerging science that is leading to the discovery of unfamiliar regimes of behavior in microscopic systems, and concerns whether quantum systems become chaotic as they approach the classical limit. The case of how electrons in highly excited states absorb energy from radiation shining on them is discussed. Quantum chaology of systems that are either isolated, or else are influenced by external forces that do not vary are also examined. Finally, the connection between the Rieman hypothesis of number theory and quantum chaology is described. (U.K.).
Wang, Rong; Gao, Jin-Yue
2005-09-01
In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.
Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips
Bruck, Roman; Liu, Changxu; Muskens, Otto L.; Fratalocchi, Andrea; Di Falco, Andrea
2016-01-01
The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems
Deterministic chaos in entangled eigenstates
Schlegel, K. G.; Förster, S.
2008-05-01
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.
Deterministic chaos in entangled eigenstates
Energy Technology Data Exchange (ETDEWEB)
Schlegel, K.G. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)], E-mail: guenter.schlegel@arcor.de; Foerster, S. [Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, D-33501 Bielefeld (Germany)
2008-05-12
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.
Deterministic chaos in entangled eigenstates
International Nuclear Information System (INIS)
Schlegel, K.G.; Foerster, S.
2008-01-01
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator
Chaos controlling problems for circuit systems with Josephson junction
International Nuclear Information System (INIS)
Gou, X-F; Wang, X; Xie, J-L
2008-01-01
The complex dynamical characters of the Josephson junction circuit system are studied and the tunnel effect is considered. The dynamical equation of the system is established. The route from periodic motion to chaos is illustrated using bifurcation diagram. An adscititious coupling controller is constructed to control the chaos
Sub-Poissonian statistics in order-to-chaos transition
International Nuclear Information System (INIS)
Kryuchkyan, Gagik Yu.; Manvelyan, Suren B.
2003-01-01
We study the phenomena at the overlap of quantum chaos and nonclassical statistics for the time-dependent model of nonlinear oscillator. It is shown in the framework of Mandel Q parameter and Wigner function that the statistics of oscillatory excitation numbers is drastically changed in the order-to-chaos transition. The essential improvement of sub-Poissonian statistics in comparison with an analogous one for the standard model of driven anharmonic oscillator is observed for the regular operational regime. It is shown that in the chaotic regime, the system exhibits the range of sub-Poissonian and super-Poissonian statistics which alternate one to other depending on time intervals. Unusual dependence of the variance of oscillatory number on the external noise level for the chaotic dynamics is observed. The scaling invariance of the quantum statistics is demonstrated and its relation to dissipation and decoherence is studied
Analysis of chaos in high-dimensional wind power system.
Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping
2018-01-01
A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.
Directory of Open Access Journals (Sweden)
Tamás Meszéna
2017-04-01
Full Text Available We are faced with chaotic processes in many segments of our life: meteorology, environmental pollution, financial and economic processes, sociology, mechanics, electronics, biology, chemistry. The spreading of high-performance computers and the development of simulation methods made the examination of these processes easily available. Regular, periodic motions (pendulum, harmonic oscillatory motion, bouncing ball, as taught at secondary level, become chaotic even due minor changes. If it is true that the most considerable achievements of twentieth century physics were the theory of relativity, quantum mechanics and chaos theory, then it is presumably time to think about, examine and test how and to what extent chaos can be presented to the students. Here I would like to introduce a 12 lesson long facultative curriculum framework on chaos designed for students aged seventeen. The investigation of chaos phenomenon in this work is based on a freeware, “Dynamics Solver”. This software, with some assistance from the teacher, is suitable for classroom use at secondary level.
Intermittency route to chaos in a biochemical system.
De la Fuente, I M; Martinez, L; Veguillas, J
1996-01-01
The numerical analysis of a glycolytic model performed through the construction of a system of three differential-delay equations reveals a phenomenon of intermittency route to chaos. In our biochemical system, the consideration of delay time variations under constant input flux as well as frequency variations of the periodic substrate input flux allows us, in both cases, to observe a type of transition to chaos different from the 'Feigenbaum route'.
Chaos synchronization of the fractional-order Chen's system
International Nuclear Information System (INIS)
Zhu Hao; Zhou Shangbo; He Zhongshi
2009-01-01
In this paper, based on the stability theorem of linear fractional systems, a necessary condition is given to check the chaos synchronization of fractional systems with incommensurate order. Chaos synchronization is studied by utilizing the Pecora-Carroll (PC) method and the coupling method. The necessary condition can also be used as a tool to confirm results of a numerical simulation. Numerical simulation results show the effectiveness of the necessary condition.
Entanglement production in quantized chaotic systems
Indian Academy of Sciences (India)
Abstract. Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical ...
Entanglement production in quantized chaotic systems
Indian Academy of Sciences (India)
Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies.
Controlling chaos and synchronization for new chaotic system using linear feedback control
International Nuclear Information System (INIS)
Yassen, M.T.
2005-01-01
This paper is devoted to study the problem of controlling chaos for new chaotic dynamical system (four-scroll dynamical system). Linear feedback control is used to suppress chaos to unstable equilibria and to achieve chaos synchronization of two identical four-scroll systems. Routh-Hurwitz criteria is used to study the conditions of the asymptotic stability of the equilibrium points of the controlled system. The sufficient conditions for achieving synchronization of two identical four-scroll systems are derived by using Lyapunov stability theorem. Numerical simulations are presented to demonstrate the effectiveness of the proposed chaos control and synchronization schemes
Quantum Statistical Operator and Classically Chaotic Hamiltonian ...
African Journals Online (AJOL)
Quantum Statistical Operator and Classically Chaotic Hamiltonian System. ... Journal of the Nigerian Association of Mathematical Physics ... In a Hamiltonian system von Neumann Statistical Operator is used to tease out the quantum consequence of (classical) chaos engendered by the nonlinear coupling of system to its ...
Dubbers, Dirk
2013-01-01
This concise tutorial provides the bachelor student and the practitioner with a short text on quantum physics that allows them to understand a wealth of quantum phenomena based on a compact, well readable, yet still concise and accurate description of nonrelativistic quantum theory. This “quadrature of the circle” is achieved by concentrating first on the simplest quantum system that still displays all basic features of quantum theory, namely, a system with only two quantized energy levels. For most readers it is very helpful to understand such simple systems before slowly proceeding to more demanding topics like particle entanglement, quantum chaos, or the use of irreducible tensors. This tutorial does not intend to replace the standard textbooks on quantum mechanics, but will help the average student to understand them, often for the first time.
Dynamical chaos: systems of classical mechanics
International Nuclear Information System (INIS)
Loskutov, A Yu
2007-01-01
This article is a methodological manual for those who are interested in chaotic dynamics. An exposition is given on the foundations of the theory of deterministic chaos that originates in classical mechanics systems. Fundamental results obtained in this area are presented, such as elements of the theory of nonlinear resonance and the Kolmogorov-Arnol'd-Moser theory, the Poincare-Birkhoff fixed-point theorem, and the Mel'nikov method. Particular attention is given to the analysis of the phenomena underlying the self-similarity and nature of chaos: splitting of separatrices and homoclinic and heteroclinic tangles. Important properties of chaotic systems - unpredictability, irreversibility, and decay of temporal correlations - are described. Models of classical statistical mechanics with chaotic properties, which have become popular in recent years - billiards with oscillating boundaries - are considered. It is shown that if a billiard has the property of well-developed chaos, then perturbations of its boundaries result in Fermi acceleration. But in nearly-integrable billiard systems, excitations of the boundaries lead to a new phenomenon in the ensemble of particles, separation of particles in accordance their velocities. If the initial velocity of the particles exceeds a certain critical value characteristic of the given billiard geometry, the particles accelerate; otherwise, they decelerate. (methodological notes)
Chaos synchronizations of chaotic systems via active nonlinear control
International Nuclear Information System (INIS)
Huang, J; Xiao, T J
2008-01-01
This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective
Parrondo’s paradox for chaos control and anticontrol of fractional-order systems
International Nuclear Information System (INIS)
Danca, Marius-F; Tang, Wallace K S
2016-01-01
We present the generalized forms of Parrondo’s paradox existing in fractional-order nonlinear systems. The generalization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N ≥ 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words “winning” and “loosing” in the classical Parrondo’s paradox with “order” and “chaos', respectively, the PS algorithm leads to the generalized Parrondo’s paradox: chaos 1 + chaos 2 + ··· + chaos N = order and order 1 + order 2 + ··· + order N = chaos. Finally, the concept is well demonstrated with the results based on the fractional-order Chen system. (paper)
The quantum spectral analysis of the two-dimensional annular billiard system
International Nuclear Information System (INIS)
Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin
2009-01-01
Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)
External field-induced chaos in classical and quantum Hamiltonian systems
International Nuclear Information System (INIS)
Lin, W.C.
1986-01-01
Classical nonlinear nonintegrable systems exhibit dense sets of resonance zones in phase space. Global chaotic motion appears when neighboring resonance zones overlap. The chaotic motion signifies the destruction of a quasi constant of motion. The motion of a particle, trapped in one of the wells of a sinusoidal, potential driven by a monochromatic external field was studied. Global chaotic behavior sets in when the amplitude of the external field reaches a critical value. The particle then escapes the well. The critical values are found to be in good agreement with a resonance overlap criterion rather than a renormalization-group scheme. A similar system was then studied, but with the particle being confined in an infinite square well potential instead. A stochastic layer is found in the low-energy part of the phase space. The resonance zone structure is found to be in excellent agreement with predictions. The critical values for the onset of global chaotic behavior are found to be in excellent agreement with the renormalization group scheme. The quantum version of the second model above was then considered. In a similar fashion, the external field induces quantum resonance zones. The spectral statistics were computed, and a transition of statistics from Poissonian to Wigner-like was found as overlap of quantum resonances occurs. This also signifies the destruction of a quasi-constant of motion
Semi-Poisson statistics in quantum chaos.
García-García, Antonio M; Wang, Jiao
2006-03-01
We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described exactly by semi-Poisson statistics (SP) typical of pseudointegrable systems. It is also shown that our results are universal, namely, they depend exclusively on the presence of the steplike singularity and are not modified by smooth perturbations of the potential or the addition of a magnetic flux. Although the quantum properties of our system are similar to those of a disordered conductor at the Anderson transition, we report important quantitative differences in both the level statistics and the multifractal dimensions controlling the transition. Finally, the study of quantum transport properties suggests that the classical singularity induces quantum anomalous diffusion. We discuss how these findings may be experimentally corroborated by using ultracold atoms techniques.
Experimental study of chaos synchronization in the Belousov-Zhabotinsky chemical system
International Nuclear Information System (INIS)
Li Yanni; Chen Lan; Cai Zunsheng; Zhao Xuezhuang
2004-01-01
Employing self-adaptive parameter regulation scheme, chaos synchronization in the Belousov-Zhabotinsky-CSTR chemical system has been studied experimentally. By optimizing the combination of regulation parameters, the trend of chaos synchronization is observed and the prediction of chaos synchronization from numerical simulation is thus verified by the experiment. In addition, the difference of sensitivity to noise with the mass coupling scheme and the self-adaptive parameter regulation scheme in chaos synchronization has also been discussed
Hyperchaos-chaos-hyperchaos transition in modified Roessler systems
International Nuclear Information System (INIS)
Nikolov, Svetoslav; Clodong, Sebastien
2006-01-01
We consider in this paper a family of modified hyperchaotic Roessler systems and investigate both problems of understanding hyperchaos-chaos-hyperchaos transition and computing the prediction time. These systems were obtained and numerically investigated by Nikolov and Clodong [Nikolov S, Clodong S. Occurrence of regular, chaotic and hyperchaotic behavior in a family of modified Rossler hyperchaotic systems. Chaos, Solitons and Fractals 2004;22:407-31]. Our studies confirm that transition hyperchaos-chaos-hyperchaos (i) depends on the change of the sign of the corresponding characteristic equation roots or (ii) can be obtained as a result of the absorption/repulsion of the repeller originally located out of the attractor by the growing attractor. It is also shown that the prediction time is a more reliable predictor of the evolution than the information dimension. We conclude that the prediction time in hyperchaotic regimes is at least one order of magnitude smaller than those in chaotic zones
Chaos synchronization of a chaotic system via nonlinear control
International Nuclear Information System (INIS)
Park, Ju H.
2005-01-01
In this letter, the problem of chaos synchronization of a chaotic system which is proposed by Lue et al. [Int J Bifurcat Chaos 2004;14:1507] is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived
Controlling chaos in discontinuous dynamical systems
International Nuclear Information System (INIS)
Danca, Marius-F.
2004-01-01
In this paper we consider the possibility to implement the technique of changes in the system variables to control the chaos introduced by Gueemez and Matias for continuous dynamical systems to a class of discontinuous dynamical systems. The approach is realized via differential inclusions following the Filippov theory. Three practical examples are considered
Parameter identification of chaos system based on unknown parameter observer
International Nuclear Information System (INIS)
Wang Shaoming; Luo Haigeng; Yue Chaoyuan; Liao Xiaoxin
2008-01-01
Parameter identification of chaos system based on unknown parameter observer is discussed generally. Based on the work of Guan et al. [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26], the design of unknown parameter observer is improved. The application of the improved approach is extended greatly. The works in some literatures [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26; J.H. Lue, S.C. Zhang, Phys. Lett. A 286 (2001) 148; X.Q. Wu, J.A. Lu, Chaos Solitons Fractals 18 (2003) 721; J. Liu, S.H. Chen, J. Xie, Chaos Solitons Fractals 19 (2004) 533] are only the special cases of our Corollaries 1 and 2. Some observers for Lue system and a new chaos system are designed to test our improved method, and simulations results demonstrate the effectiveness and feasibility of the improved approach
Chaos control of chaotic dynamical systems using backstepping design
International Nuclear Information System (INIS)
Yassen, M.T.
2006-01-01
This work presents chaos control of chaotic dynamical systems by using backstepping design method. This technique is applied to achieve chaos control for each of the dynamical systems Lorenz, Chen and Lue systems. Based on Lyapunov stability theory, control laws are derived. We used the same technique to enable stabilization of chaotic motion to a steady state as well as tracking of any desired trajectory to be achieved in a systematic way. Numerical simulations are shown to verify the results
Non-reversible evolution of quantum chaotic system. Kinetic description
International Nuclear Information System (INIS)
Chotorlishvili, L.; Skrinnikov, V.
2008-01-01
It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration
Ray and wave chaos in underwater acoustic waveguides
International Nuclear Information System (INIS)
Virovlyansky, Anatolii L; Makarov, Denis V; Prants, Sergei V
2012-01-01
In the 1990s, the study of the chaotic behavior of ray trajectories in inhomogeneous waveguides emerged as a new field in ocean acoustics. It turned out that at ranges on the order of or larger than 1000 km ray chaos is well developed and should be taken into account when describing long-range sound propagation in the ocean. The theoretical analysis of ray chaos and of its finite-wavelength manifestation, wave chaos, is to a large extent based on well-known methods and ideas from the theory of dynamical and quantum chaos. Concrete examples are used to review the results obtained in this field over the last two decades. (reviews of topical problems)
Hybrid electronic/optical synchronized chaos communication system.
Toomey, J P; Kane, D M; Davidović, A; Huntington, E H
2009-04-27
A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.
Order out of chaos in atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Rotter, I
1988-07-01
The transition from the resonance reaction mechanism at low level density to the direct reaction mechanism at high level density is investigated by means of numerical results obtained from microscopic calculations for nucleon-induced reactions. The transition takes place rather sharply at GAMMA approx. = D-bar. Here, two types of motion of the nucleons exist simultaneously: a motion in long-living states which are near equilibrium and a motion in short-living states which are far from equilibrium. A formation of order out of chaos takes place only in the open quantum mechanical nuclear system. It is caused by quantum fluctuations via the continuum.
Energy Technology Data Exchange (ETDEWEB)
Sakata, Fumihiko [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study; Yamamoto, Yoshifumi; Marumori, Toshio; Iida, Shinji; Tsukuma, Hidehiko
1989-11-01
It is the purpose of the present paper to study 'global structure' of the state space of an N-body interacting fermion system, which exhibits regular, transient and stochastic phases depending on strength of the interaction. An optimum representation called a dynamical representation plays an essential role in this investigation. The concept of the dynamical representation has been introduced in the quantum theory of dynamical subspace in our previous paper, in order to determine self-consistently an optimum collective subspace as well as an optimum collective Hamiltonian. In the theory, furthermore, dynamical conditions called separability and stability conditions have been provided in order to identify the optimum collective subspace as an approximate invariant subspace of the Hamiltonian. Physical meaning of these conditions are clarified from a viewpoint to relate breaking of them with bifurcation of the collectivity and an onset of quantum chaos from the regular collective motion, by illustrating the general idea with numerical results obtained for a simple soluble model. It turns out that the onset of the stochastic phase is associated with dissolution of the quantum numbers to specify the collective subspace and this dissolution is induced by the breaking of the separability condition in the dynamical representation. (author).
Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis
International Nuclear Information System (INIS)
Farshidianfar, A.; Saghafi, A.
2014-01-01
In this paper, the Melnikov analysis is extended to develop a practical model of gear system to control and eliminate the chaotic behavior. To this end, a nonlinear dynamic model of a spur gear pair with backlash, time-varying stiffness and static transmission error is established. Based on the Melnikov analysis the global homoclinic bifurcation and transition to chaos in this model are predicted. Then non-feedback control method is used to eliminate the chaos by applying an additional control excitation. The regions of the parameter space for the control excitation are obtained analytically. The accuracy of the theoretical predictions and also the performance of the proposed control system are verified by the comparison with the numerical simulations. The simulation results show effectiveness of the proposed control system and present some useful information to analyze and control the gear dynamical systems. - Highlights: • This study deals with the prediction and control of chaos in a nonlinear gear system. • Melnikov analysis is extended to present a practical gear system to control the chaos. • The proposed system is effective to eliminate the homoclinic bifurcation and chaos. • This controller is proposed as a way of implementing the chaos control in gear system
Transition to classical chaos in a coupled quantum system through continuous measurement
International Nuclear Information System (INIS)
Ghose, Shohini; Alsing, Paul; Deutsch, Ivan; Bhattacharya, Tanmoy; Habib, Salman
2004-01-01
Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under which classical dynamics emerges, via a continuous position measurement, for a particle moving in a harmonic well with its position coupled to internal spin. As a consequence of this coupling, we find that classical dynamics emerges only when the position and spin actions are both large compared to (ℎ/2π). These conditions are quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum coherence over extended regions of phase space. From this result, it follows that a mixed quantum-classical regime (where one subsystem can be treated classically and the other not) does not exist for a continuously observed spin-(1/2) particle. When the conditions for classicality are satisfied (in the large-spin limit), the quantum trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions. As a quantitative test of this convergence, we compute the largest Lyapunov exponent directly from the measured quantum trajectories and show that it agrees with the classical value
Individual chaos implies collective chaos for weakly mixing discrete dynamical systems
International Nuclear Information System (INIS)
Liao Gongfu; Ma Xianfeng; Wang Lidong
2007-01-01
Let X be a metric space (X,f) a discrete dynamical system, where f:X->X is a continuous function. Let f-bar denote the natural extension of f to the space of all non-empty compact subsets of X endowed with Hausdorff metric induced by d. In this paper we investigate some dynamical properties of f and f-bar . It is proved that f is weakly mixing (mixing) if and only if f-bar is weakly mixing (mixing, respectively). From this, we deduce that weak-mixing of f implies transitivity of f-bar , further, if f is mixing or weakly mixing, then chaoticity of f (individual chaos) implies chaoticity of f-bar (collective chaos) and if X is a closed interval then f-bar is chaotic (in the sense of Devaney) if and only if f is weakly mixing
Anticontrol of chaos in continuous-time systems via time-delay feedback.
Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo
2000-12-01
In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.
Chaos in a modified van der Pol system and in its fractional order systems
International Nuclear Information System (INIS)
Ge Zhengming; Zhang, A.-R.
2007-01-01
Chaos in a modified van der Pol system and in its fractional order systems is studied in this paper. It is found that chaos exists both in the system and in the fractional order systems with order from 1.8 down to 0.8 much less than the number of states of the system, two. By phase portraits, Poincare maps and bifurcation diagrams, the chaotic behaviors of fractional order modified van der Pol systems are presented
The design and research of anti-color-noise chaos M-ary communication system
Energy Technology Data Exchange (ETDEWEB)
Fu, Yongqing, E-mail: fuyongqing@hrbeu.edu.cn; Li, Xingyuan; Li, Yanan [College of information and Communication Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Lin [College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China)
2016-03-15
Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator’s boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructing anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.
The design and research of anti-color-noise chaos M-ary communication system
International Nuclear Information System (INIS)
Fu, Yongqing; Li, Xingyuan; Li, Yanan; Zhang, Lin
2016-01-01
Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator’s boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructing anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.
The quantum to classical crossover for a weak link capacitor
International Nuclear Information System (INIS)
Spiller, T.P.; Clark, T.D.; Prance, H.; Prance, R.J.
1995-01-01
We consider a model weak link, an ultra-small capacitor subject to tunnelling, to ohmic dissipation and fed with an external displacement current. The framework we employ is the new approach of quantum state diffusion, which treats individual open quantum systems as well as being able to generate the conventional ensemble averages. We show how evidence, for archetypal quantum behaviour (coherent oscillations) and archetypal classical behaviour (chaos) arises, for weak links whose parameters are related by a rather modest scaling. Interestingly, the quantum behaviour can arise for a weak link with intrinsic parameter values such that it could exhibit chaos, if it were a purely classical device
Chaos based on Riemannian geometric approach to Abelian-Higgs dynamical system
International Nuclear Information System (INIS)
Kawabe, Tetsuji
2003-01-01
Based on the Riemannian geometric approach, we study chaos of the Abelian-Higgs dynamical system derived from a classical field equation consisting of a spatially homogeneous Abelian gauge field and Higgs field. Using the global indicator of chaos formulated by the sectional curvature of the ambient manifold, we show that this approach brings the same qualitative and quantitative information about order and chaos as has been provided by the Lyapunov exponents in the conventional and phenomenological approach. We confirm that the mechanism of chaos is a parametric instability of the system. By analyzing a close relation between the sectional curvature and the Gaussian curvature, we point out that the Toda-Brumer criterion becomes a sufficient condition to the criterion based on this geometric approach as to the stability condition
Doubly excited helium. From strong correlation to chaos
International Nuclear Information System (INIS)
Jiang, Yuhai
2006-03-01
In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)
International Nuclear Information System (INIS)
An Xinlei; Yu Jianning; Chu Yandong; Zhang Jiangang; Zhang Li
2009-01-01
In this paper, we discussed the fixed points and their linear stability of a new nonlinear autonomous system that introduced by J.C. Sprott. Based on Lyapunov stabilization theorem, a global chaos synchronization scheme of three coupled identical systems is investigated. By choosing proper coupling parameters, the states of all the three systems can be synchronized. Then this method was applied to secure communication through chaotic masking, used three coupled identical systems, propose a novel method of chaos encryption, after encrypting in the previous two transmitters, information signal can be recovered exactly at the receiver end. Simulation results show that the method can realize monotonous synchronization. Further more, the information signal can be recovered undistorted when applying this method to secure communication.
Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators
International Nuclear Information System (INIS)
Sabarathinam, S.; Thamilmaran, K.
2015-01-01
Highlights: •We have examined transient chaos in globally coupled oscillators. •We analyze transient chaos using new techniques. •We give experimental confirmation of transient chaos. -- Abstract: In this work, transient chaos in a ring and globally coupled system of nearly conservative Hamiltonian Duffing oscillators is reported. The networks are formed by coupling of three, four and six Duffing oscillators. The nearly conservative Hamiltonian nature of the coupled system is proved by stability analysis. The transient phenomenon is confirmed through various numerical investigations such as recurrence analysis, 0–1 test and Finite Time Lyapunov Exponents. Further, the effect of damping and the average transient lifetime of three, four and six coupled schemes for randomly generated initial conditions have been analyzed. The experimental confirmation of transient chaos in an illustrative system of three ringly coupled Duffing oscillators is also presented
International Nuclear Information System (INIS)
Flambaum, V.V.; Izrailev, F.M.
1997-01-01
A method is developed for calculation of single-particle occupation numbers in finite Fermi systems of interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are considered. All results are confirmed by numerical experiments in the two-body random interaction model. copyright 1997 The American Physical Society
Quantum level statistics of pseudointegrable billiards
International Nuclear Information System (INIS)
Cheon, T.; Cohen, T.D.
1989-01-01
We study the spectral statistics of systems of two-dimensional pseudointegrable billiards. These systems are classically nonergodic, but nonseparable. It is found that such systems possess quantum spectra which are closely simulated by the Gaussian orthogonal ensemble. We discuss the implications of these results on the conjectured relation between classical chaos and quantum level statistics. We emphasize the importance of the semiclassical nature of any such relation
Microscopic approaches to quantum nonequilibriumthermodynamics and information
2018-02-09
perspective on quantum thermalization for Science [8]. Wrote a joint experiment- theory paper on studying connections between quantum and classical chaos in...on the random matrix theory (eigenstate thermalization) and macroscopic phenomena (both equilibrium and non-equilibrium). Understanding thermodynamics...information. Specific questions to be addressed: connections of microscopic description of quantum chaotic systems based on the random matrix theory
Dynamical Chaos Rise in the System of Large Number of Nonlinear Coupled Oscillators
International Nuclear Information System (INIS)
Buts, V.A.; Koval'chuk, I.K.; Tarasov, D.V.
2007-01-01
The problem of dynamical chaos arising in distributed systems is considered. It was shown that in many cases it is possible to allocate relatively isolated subsystem which may be simpler for investigation. We suppose that chaos in this subsystem leads to chaotic behaviour of all system. Besides, the allocated subsystem may be used for describing complex dynamics of nonlinear three-wave interaction, in particular, in plasma systems. The analytical criterion of arising dynamics chaos in distributed system was obtained. This criterion was confirmed by numerical simulation
Geometry in the large and hyperbolic chaos
Energy Technology Data Exchange (ETDEWEB)
Hasslacher, B.; Mainieri, R.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors calculated observables in strongly chaotic systems. This is difficult to do because of a lack of a workable orbit classification for such systems. This is due to global geometrical information from the original dynamical system being entangled in an unknown way throughout the orbit sequence. They used geometrical methods from modern mathematics and recent connections between global geometry and modern quantum field theory to study the natural geometrical objects belonging to hard chaos-hyperbolic manifolds.
Chaos Control in a New Three-Dimensional Chaotic T System
International Nuclear Information System (INIS)
Chen Yong; Yan Zhenya
2008-01-01
In this paper, we study chaos control of the new 3D chaotic system. We use three feedback methods (the linear, speed, doubly-periodic function controller) to suppress the chaos to unstable equilibrium. As a result, some controllers are obtained. Moreover, numerical simulations are used to verify the effectiveness of the obtained controllers
A digital bandlimited chaos-based communication system
Fontes, Rodrigo T.; Eisencraft, Marcio
2016-08-01
In recent years, many communication systems that use a function to encode an information in a chaotic signal were proposed. Since every transmission channel is bandlimited in nature, it is required to determine and to control the chaotic signal spectrum. This way, a bandlimited chaos-based communication system (CBCS) was proposed using digital filters and chaotic synchronization. As the filters modify the original chaotic system, it is necessary to study how their insertion affects chaotic synchronization. In this work, we present a digital discrete-time bandlimited CBCS system analysis, considering practical settings encountered in conventional communication systems. The proposed system is based on master-slave chaotic synchronization and the required conditions for its synchronization is obtained analytically for a general K-dimensional chaos generator map. The performance of this system is evaluated in terms of bit error rate. As a way to improve the signal to noise ratio, we also propose to filter the out-of-band noise in the receiver. Numerical simulations show the advantages of using such a scheme.
Chaos and its control in an impulsive differential system
International Nuclear Information System (INIS)
Jiang Guirong; Lu Qishao; Qian Linning
2007-01-01
In this paper, the existence of chaos and its control in an autonomous impulsive differential system are discussed both theoretically and numerically. The existence of a snap-back repeller, as well as the chaos in the sense of Li-Yorke, is proved based on the qualitative analysis using the Poincare map and the Lambert W-function. Moreover, the existence of the period-3 periodic window embedded in the chaotic region is also demonstrated. An algorithm of chaos control to stabilize the unstable periodic solutions is proposed. Detailed numerical results of chaotic attractors and stabilization of unstable periodic orbits by the impulsive effects, which are illustrated by an example, are in good agreement with the theoretical analysis
Noise tolerant spatiotemporal chaos computing.
Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L
2014-12-01
We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.
Periodic flows to chaos in time-delay systems
Luo, Albert C J
2017-01-01
This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains pro...
Robinson's chaos in set-valued discrete systems
International Nuclear Information System (INIS)
Roman-Flores, Heriberto; Chalco-Cano, Y.
2005-01-01
Let (X,d) be a compact metric space and f:X->X a continuous function. If we consider the space (K(X),H) of all non-empty compact subsets of X endowed with the Hausdorff metric induced by d and f-bar :K(X)->K(X), f-bar (A)={f(a)/a-bar A}, then the aim of this work is to show that Robinson's chaos in f-bar implies Robinson's chaos in f. Also, we give an example showing that R-chaos in f does not implies R-chaos in f-bar
International Nuclear Information System (INIS)
Dubbers, Dirk; Stoeckmann, Hans-Juergen
2013-01-01
Helps in a compact form to reach good understanding of quantum physics. Shows important analogies between problems across different disciplines. Concise and accurate, written in a readable and lively style. Concentrates on the simplest quantum system which still displays the basic features of quantum theory. Chapters end with a general outlook on multi-level systems. Results are applied to a multitude of topics in modern science, from particle physics and quantum optics to time standards and magnetic resonance imaging. This concise tutorial provides the bachelor student and the practitioner with a short text on quantum physics that allows them to understand a wealth of quantum phenomena based on a compact, well readable, yet still concise and accurate description of nonrelativistic quantum theory. This ''quadrature of the circle'' is achieved by concentrating first on the simplest quantum system that still displays all basic features of quantum theory, namely, a system with only two quantized energy levels. For most readers it is very helpful to understand such simple systems before slowly proceeding to more demanding topics like particle entanglement, quantum chaos, or the use of irreducible tensors. This tutorial does not intend to replace the standard textbooks on quantum mechanics, but will help the average student to understand them, often for the first time.
Chaos, entropy, and life-time in classical and quantum systems
International Nuclear Information System (INIS)
Seyed Majid Saberi Fathi
2007-07-01
In this thesis, we first study Lorentz gas as a billiard ball with elastic collision with the obstacles and a system of hard spheres in 2-dimensions. We study a numerical simulation of the dynamical system and we investigate the entropy increasing in non-equilibrium with time under the effect of collisions and its relation to positive Lyapunov exponents. Then, we study a decay model in a quantum system called Friedrichs model. We consider coupling of the kaons and environment with continuous energies. Then, we show that this model is well adapted to describe oscillation, regeneration, decay and CP violation of a kaonic system. In addition, we apply in the Friedrichs model, the time super-operator formalism that predicts the resonance, i.e. the survival probability of the instable states. (author)
Doroshin, Anton V.
2018-06-01
In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.
Brambila, Danilo
2012-05-01
Quantum chaos has emerged in the half of the last century with the notorious problem of scattering of heavy nuclei. Since then, theoreticians have developed powerful techniques to approach disordered quantum systems. In the late 70\\'s, Casati and Chirikov initiated a new field of research by studying the quantum counterpart of classical problems that are known to exhibit chaos. Among the several quantum-classical chaotic systems studied, the kicked rotor stimulated a lot of enthusiasm in the scientific community due to its equivalence to the Anderson tight binding model. This equivalence allows one to map the random Anderson model into a set of fully deterministic equations, making the theoretical analysis of Anderson localization considerably simpler. In the one-dimensional linear regime, it is known that Anderson localization always prevents the diffusion of the momentum. On the other hand, for higher dimensions it was demonstrated that for certain conditions of the disorder parameter, Anderson localized modes can be inhibited, allowing then a phase transition from localized (insulating) to delocalized (metallic) states. In this thesis we will numerically and theoretically investigate the properties of a multidimensional quantum kicked rotor in a nonlinear medium. The presence of nonlinearity is particularly interesting as it raises the possibility of having soliton waves as eigenfunctions of the systems. We keep the generality of our approach by using an adjustable diffusive nonlinearity, which can describe several physical phenomena. By means of Variational Calculus we develop a chaotic map which fully describes the soliton dynamics. The analysis of such a map shows a rich physical scenario that evidences the wave-particle behavior of a soliton. Through the nonlinearity, we trace a correspondence between quantum and classical mechanics, which has no equivalent in linearized systems. Matter waves experiments provide an ideal environment for studying Anderson
Quantum level dynamics as classical relaxation towards equilibrium
Energy Technology Data Exchange (ETDEWEB)
Haake, F; Kus, M
1988-08-01
We consider the transition from untypical to generic level fluctuations in quantum systems. An important example is the change from level clustering to level repulsion, a frequently observed quantum signature of the development of chaos in the classical limit. We argue that such transitions to genericity can be understood as analogues of equilibration processes in classical many-particle systems.
Rank one chaos in a class of planar systems with heteroclinic cycle.
Chen, Fengjuan; Han, Maoan
2009-12-01
In this paper, we study rank one chaos in a class of planar systems with heteroclinic cycle. We first find a stable limit cycle inside the heteroclinic cycle. We then add an external periodic forcing to create rank one chaos. We follow a step-by-step procedure guided by the theory of rank one chaos to find experimental evidence of strange attractors with Sinai, Ruelle, and Bowen measures.
The Mathematical Aspects of Quantum Maps
International Nuclear Information System (INIS)
Berkolaiko, G
2003-01-01
The book represents the collected lectures given at the Summer School on Mathematical Aspects of Quantum Maps held at Bologna University in September 2001. Quantum maps gained their prominence as a testing ground for mathematical understanding of various concepts in quantum chaos, such as the spectral statistics, quantum ergodicity, scarring of the eigenfunctions and the connection to algebraic number theory. The book is nicely structured. It begins by reviewing the relevant concepts and results from dynamical systems (a contribution by A Knauf) and number theory (by Z Rudnick). A contribution by the editors, M Degli Esposti and S Graffi, explains the quantization procedure for the quantum maps and proceeds to discuss some properties of the quantized maps, such as ergodicity and scarring, and the number theoretical techniques involved in proving these properties. The contribution by A Baeacker discusses the numerical methods used to study quantum chaotic systems. It contains both the mathematical background and a detailed explanation of the numerical techniques, possible pitfalls at the implementation stage and how to avoid them. It even contains a computer program in Python used by the author to compute the eigenvalues of a perturbed cat map. The last contribution, by R Artuso, while very interesting in itself, feels somewhat disconnected from the rest of the book. It deals with deterministic transport in hyperbolic and weakly chaotic systems, where one can observe normal and anomalous diffusion respectively. Although being a collection of contributions from various authors, the book feels very much like a well-coordinated team effort, with frequent cross-contributional references underlying the connections between different facets of the discussed subjects. I consider it an invaluable reference for researchers in the field of quantum chaos and would recommend it as a first read for people just entering the field. It contains both the necessary background
A Compton-suppressed spectrometer for studies of chaos in nuclei
Energy Technology Data Exchange (ETDEWEB)
Shriner, J.F. Jr. [Tennessee Technological Univ., Cookeville (United States); Bilpuch, E.G. [Duke University Press, Durham, NC (United States); Bybee, C.R. [Triangle Universities Nuclear Lab., Durham, NC (United States); Mitchell, G.E. [Triangle Universities Nuclear Lab., Durham, NC (United States); Moore, E.F. [Triangle Universities Nuclear Lab., Durham, NC (United States); Shriner, J.D. [Triangle Universities Nuclear Lab., Durham, NC (United States); Westerfeldt, C.R. [Duke University Press, Durham, NC (United States)
1995-05-01
One approach to studying chaos in quantum systems utilizes the statistical behavior of eigenvalues. Such analyses require data of very high quality, since both completeness and purity are essential. The design of a Compton-suppressed {gamma}-ray spectrometer for the purpose of establishing a nearly complete level scheme in {sup 30}P via the {sup 29}Si(p, {gamma}) reaction is described. Design criteria and implementation are discussed, and early results from the system are presented. (orig.).
Doubly excited helium. From strong correlation to chaos
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yuhai
2006-03-15
In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)
Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations
International Nuclear Information System (INIS)
Udaltsov, Vladimir S.; Goedgebuer, Jean-Pierre; Larger, Laurent; Cuenot, Jean-Baptiste; Levy, Pascal; Rhodes, William T.
2003-01-01
We report that signal encoding with high-dimensional chaos produced by delayed feedback systems with a strong nonlinearity can be broken. We describe the procedure and illustrate the method with chaotic waveforms obtained from a strongly nonlinear optical system that we used previously to demonstrate signal encryption/decryption with chaos in wavelength. The method can be extended to any systems ruled by nonlinear time-delayed differential equations
Li-Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice
International Nuclear Information System (INIS)
Khellat, Farhad; Ghaderi, Akashe; Vasegh, Nastaran
2011-01-01
Highlights: → A globally nonlocal coupled map lattice is introduced. → A sufficient condition for the existence of Li-Yorke chaos is determined. → A sufficient condition for synchronous behaviors is obtained. - Abstract: This paper investigates a globally nonlocal coupled map lattice. A rigorous proof to the existence of chaos in the scene of Li-Yorke in that system is presented in terms of the Marotto theorem. Analytical sufficient conditions under which the system is chaotic, and has synchronous behaviors are determined, respectively. The wider regions associated with chaos and synchronous behaviors are shown by simulations. Spatiotemporal chaos, synchronous chaos and some other synchronous behaviors such as fixed points, 2-cycles and 2 2 -cycles are also shown by simulations for some values of the parameters.
International Nuclear Information System (INIS)
Stamatiou, George; Ghikas, Demetris P.K.
2007-01-01
Properties related to entanglement in quantum systems, are known to be associated with distinct properties of the corresponding classical systems, as for example stability, integrability and chaos. This means that the detailed topology, both local and global, of the classical phase space may reveal, or influence, the entangling power of the quantum system. As it has been shown in the literature, the bifurcation points, in autonomous dynamical systems, play a crucial role for the onset of entanglement. Similarly, the existence of scars among the quantum states seems to be a factor in the dynamics of entanglement. Here we study these issues for a non-autonomous system, the quantum kicked top, as a collective model of a multi-qubit system. Using the bifurcation diagram of the corresponding classical limit (the classical kicked top), we analyzed the pair-wise and the bi-partite entanglement of the qubits and their relation to scars, as a function of the critical parameter of the system. We found that the pair-wise entanglement and pair-wise negativity show a strong maximum precisely at the bifurcation points, while the bi-partite entanglement changes slope at these points. We have also investigated the connection between entanglement and the fixed points on the branch of the bifurcation diagram between the two first bifurcation points and we found that the entanglement measures take their extreme values precisely on these points. We conjecture that our results on this behavior of entanglement is generic for many quantum systems with a nonlinear classical analogue
Nonlinear Multiuser Receiver for Optimized Chaos-Based DS-CDMA Systems
Directory of Open Access Journals (Sweden)
S. Shaerbaf
2011-09-01
Full Text Available Chaos based communications have drawn increasing attention over the past years. Chaotic signals are derived from non-linear dynamic systems. They are aperiodic, broadband and deterministic signals that appear random in the time domain. Because of these properties, chaotic signals have been proposed to generate spreading sequences for wide-band secure communication recently. Like conventional DS-CDMA systems, chaos-based CDMA systems suffer from multi-user interference (MUI due to other users transmitting in the cell. In this paper, we propose a novel method based on radial basis function (RBF for both blind and non-blind multiuser detection in chaos-based DS-CDMA systems. We also propose a new method for optimizing generation of binary chaotic sequences using Genetic Algorithm. Simulation results show that our proposed nonlinear receiver with optimized chaotic sequences outperforms in comparison to other conventional detectors such as a single-user detector, decorrelating detector and minimum mean square error detector, particularly for under-loaded CDMA condition, which the number of active users is less than processing gain.
He, Temple; Habib, Salman
2013-09-01
Simple dynamical systems--with a small number of degrees of freedom--can behave in a complex manner due to the presence of chaos. Such systems are most often (idealized) limiting cases of more realistic situations. Isolating a small number of dynamical degrees of freedom in a realistically coupled system generically yields reduced equations with terms that can have a stochastic interpretation. In situations where both noise and chaos can potentially exist, it is not immediately obvious how Lyapunov exponents, key to characterizing chaos, should be properly defined. In this paper, we show how to do this in a class of well-defined noise-driven dynamical systems, derived from an underlying Hamiltonian model.
Tracing control of chaos for the coupled dynamos dynamical system
International Nuclear Information System (INIS)
Wang Xuedi; Tian Lixin
2004-01-01
This paper introduces a new method for the coupled dynamos dynamical system, which can be applied to the decision of the chaotic behavior of the system. And research the tracing control of the chaos for the coupled dynamos dynamical system by gradually changing the driving parameter for the chaos. With the different design of controllers, the numerical simulation results show the relation between the chaotic behavior and the changes of the parameter value. Furthermore, the result shows the difference of the controllers. In the mean time, it reveals the process of the orbit's gradual changing with the parameter value
An exploration of dynamical systems and chaos
Argyris, John H; Haase, Maria; Friedrich, Rudolf
2015-01-01
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlar...
Chaos synchronization between two different chaotic dynamical systems
International Nuclear Information System (INIS)
Park, Ju H.
2006-01-01
This work presents chaos synchronization between two different chaotic systems by nonlinear control laws. First, synchronization problem between Genesio system and Rossler system has been investigated, and then the similar approach is applied to the synchronization problem between Genesio system and a new chaotic system developed recently in the literature. The control performances are verified by two numerical examples
Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control
Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan
2014-03-01
This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.
Quantum chaos, thermalization and dissipation in nuclear systems
Indian Academy of Sciences (India)
as a partition function for equilibrium positions of charged particles on a line with a neutralizing background ... With the advance- ment of our .... Quantum mechanically, the difficulty is in showing that the energy distribution,η´Eµ, defined below.
Shilnikov sense chaos in a simple three-dimensional system
International Nuclear Information System (INIS)
Wei, Wang; Qi-Chang, Zhang; Rui-Lan, Tian
2010-01-01
The Shilnikov sense Smale horseshoe chaos in a simple 3D nonlinear system is studied. The proportional integral derivative (PID) controller is improved by introducing the quadratic and cubic nonlinearities into the governing equations. For the discussion of chaos, the bifurcate parameter value is selected in a reasonable regime at the requirement of the Shilnikov theorem. The analytic expression of the Shilnikov type homoclinic orbit is accomplished. It depends on the series form of the manifolds surrounding the saddle-focus equilibrium. Then the methodology is extended to research the dynamical behaviours of the simplified solar-wind-driven-magnetosphere-ionosphere system. As is illustrated, the Lyapunov characteristic exponent spectra of the two systems indicate the existence of chaotic attractor under some specific parameter conditions
Chaos synchronization of uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity
International Nuclear Information System (INIS)
Sun, Y.-J.
2009-01-01
In this Letter, the concept of practical synchronization is introduced and the chaos synchronization of uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity is investigated. Based on the time-domain approach, a tracking control is proposed to realize chaos synchronization for the uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity. Moreover, the guaranteed exponential convergence rate and convergence radius can be pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.
Origin of chaos near critical points of quantum flow.
Efthymiopoulos, C; Kalapotharakos, C; Contopoulos, G
2009-03-01
The general theory of motion in the vicinity of a moving quantum nodal point (vortex) is studied in the framework of the de Broglie-Bohm trajectory method of quantum mechanics. Using an adiabatic approximation, we find that near any nodal point of an arbitrary wave function psi there is an unstable point (called the X point) in a frame of reference moving with the nodal point. The local phase portrait forms always a characteristic pattern called the "nodal-point- X -point complex." We find general formulas for this complex as well as necessary and sufficient conditions of validity of the adiabatic approximation. We demonstrate that chaos emerges from the consecutive scattering events of the orbits with nodal-point- X -point complexes. The scattering events are of two types (called type I and type II). A theoretical model is constructed yielding the local value of the Lyapunov characteristic numbers in scattering events of both types. The local Lyapunov characteristic number scales as an inverse power of the speed of the nodal point in the rest frame, implying that it scales proportionally to the size of the nodal-point- X -point complex. It is also an inverse power of the distance of a trajectory from the X point's stable manifold far from the complex. This distance plays the role of an effective "impact parameter." The results of detailed numerical experiments with different wave functions, possessing one, two, or three moving nodal points, are reported. Examples are given of regular and chaotic trajectories, and the statistics of the Lyapunov characteristic numbers of the orbits are found and compared to the number of encounter events of each orbit with the nodal-point- X -point complexes. The numerical results are in agreement with the theory, and various phenomena appearing at first as counterintuitive find a straightforward explanation.
Signatures of chaos in the Brillouin zone.
Barr, Aaron; Barr, Ariel; Porter, Max D; Reichl, Linda E
2017-10-01
When the classical dynamics of a particle in a finite two-dimensional billiard undergoes a transition to chaos, the quantum dynamics of the particle also shows manifestations of chaos in the form of scarring of wave functions and changes in energy level spacing distributions. If we "tile" an infinite plane with such billiards, we find that the Bloch states on the lattice undergo avoided crossings, energy level spacing statistics change from Poisson-like to Wigner-like, and energy sheets of the Brillouin zone begin to "mix" as the classical dynamics of the billiard changes from regular to chaotic behavior.
Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning
Fujii, Keisuke; Nakajima, Kohei
2017-08-01
The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.
Control and synchronization of chaos in nonlinear systems and prospects for application. Pt.1
International Nuclear Information System (INIS)
Fang Jinqing
1996-01-01
Main progress in one challenging subject of nonlinear science--control and synchronization of chaos in nonlinear systems are reviewed systematically, including recent advance in controlling and synchronizing hyperchaos. Current methods and principles of schemes of chaos control and synchronization are classified and summarized in detail. Potential prospects for application are commented both in theory and experiment. The whole review is divided into two parts. In the first one, subject on the mechanism and method of chaos control are analyzed and discussed extensively. In the second one, the synchronization of non-chaos, chaos, hyperchaos and their control and application are described. Main trends for development of the subject is mentioned. (101 refs.)
Controlled quantum-state transfer in a spin chain
International Nuclear Information System (INIS)
Gong, Jiangbin; Brumer, Paul
2007-01-01
Control of the transfer of quantum information encoded in quantum wave packets moving along a spin chain is demonstrated. Specifically, based on a relationship with control in a paradigm of quantum chaos, it is shown that wave packets with slow dispersion can automatically emerge from a class of initial superposition states involving only a few spins, and that arbitrary unspecified traveling wave packets can be nondestructively stopped and later relaunched with perfection. The results establish an interesting application of quantum chaos studies in quantum information science
Spatiotemporal chaos of self-replicating spots in reaction-diffusion systems.
Wang, Hongli; Ouyang, Qi
2007-11-23
The statistical properties of self-replicating spots in the reaction-diffusion Gray-Scott model are analyzed. In the chaotic regime of the system, the spots that dominate the spatiotemporal chaos grow and divide in two or decay into the background randomly and continuously. The rates at which the spots are created and decay are observed to be linearly dependent on the number of spots in the system. We derive a probabilistic description of the spot dynamics based on the statistical independence of spots and thus propose a characterization of the spatiotemporal chaos dominated by replicating spots.
Chaos of several typical asymmetric systems
International Nuclear Information System (INIS)
Feng Jingjing; Zhang Qichang; Wang Wei
2012-01-01
The threshold for the onset of chaos in asymmetric nonlinear dynamic systems can be determined using an extended Padé method. In this paper, a double-well asymmetric potential system with damping under external periodic excitation is investigated, as well as an asymmetric triple-well potential system under external and parametric excitation. The integrals of Melnikov functions are established to demonstrate that the motion is chaotic. Threshold values are acquired when homoclinic and heteroclinic bifurcations occur. The results of analytical and numerical integration are compared to verify the effectiveness and feasibility of the analytical method.
Dichotomy of nonlinear systems: Application to chaos control of nonlinear electronic circuit
International Nuclear Information System (INIS)
Wang Jinzhi; Duan Zhisheng; Huang Lin
2006-01-01
In this Letter a new method of chaos control for Chua's circuit and the modified canonical Chua's electrical circuit is proposed by using the results of dichotomy in nonlinear systems. A linear feedback control based on linear matrix inequality (LMI) is given such that chaos oscillation or hyperchaos phenomenon of circuit systems injected control signal disappear. Numerical simulations are presented to illustrate the efficiency of the proposed method
Kwuimy, C A Kitio; Nataraj, C; Litak, G
2011-12-01
We consider the problems of chaos and parametric control in nonlinear systems under an asymmetric potential subjected to a multiscale type excitation. The lower bound line for horseshoes chaos is analyzed using the Melnikov's criterion for a transition to permanent or transient nonperiodic motions, complement by the fractal or regular shape of the basin of attraction. Numerical simulations based on the basins of attraction, bifurcation diagrams, Poincaré sections, Lyapunov exponents, and phase portraits are used to show how stationary dissipative chaos occurs in the system. Our attention is focussed on the effects of the asymmetric potential term and the driven frequency. It is shown that the threshold amplitude ∣γ(c)∣ of the excitation decreases for small values of the driven frequency ω and increases for large values of ω. This threshold value decreases with the asymmetric parameter α and becomes constant for sufficiently large values of α. γ(c) has its maximum value for asymmetric load in comparison with the symmetric load. Finally, we apply the Melnikov theorem to the controlled system to explore the gain control parameter dependencies.
Control of complex dynamics and chaos in distributed parameter systems
Energy Technology Data Exchange (ETDEWEB)
Chakravarti, S.; Marek, M.; Ray, W.H. [Univ. of Wisconsin, Madison, WI (United States)
1995-12-31
This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in the complex quasi-periodic or chaotic spatiotemporal patterns.
Hunt, Brian R; Ott, Edward
2015-09-01
In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call "expansion entropy," and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.
Analysis of transition between chaos and hyper-chaos of an improved hyper-chaotic system
International Nuclear Information System (INIS)
Qiao-Lun, Gu; Tie-Gang, Gao
2009-01-01
An improved hyper-chaotic system based on the hyper-chaos generated from Chen's system is presented, and some basic dynamical properties of the system are investigated by means of Lyapunov exponent spectrum, bifurcation diagrams and characteristic equation roots. Simulations show that the new improved system evolves into hyper-chaotic, chaotic, various quasi-periodic or periodic orbits when one parameter of the system is fixed to be a certain value while the other one is variable. Some computer simulations and bifurcation analyses are given to testify the findings. (general)
Chaos as an intermittently forced linear system.
Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan
2017-05-30
Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.
Chaos synchronization and parameter identification of three time scales brushless DC motor system
International Nuclear Information System (INIS)
Ge, Z.-M.; Cheng, J.-W.
2005-01-01
Chaotic anticontrol and chaos synchronization of brushless DC motor system are studied in this paper. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. Then, chaos synchronization of two identical systems via additional inputs and Lyapunov stability theory are studied. And further, the parameter of the system is traced via adaptive control and random optimization method
Generalized Semiflows and Chaos in Multivalued Dynamical Systems
Czech Academy of Sciences Publication Activity Database
Beran, Zdeněk; Čelikovský, Sergej
2012-01-01
Roč. 26, č. 25 (2012), 1246016-1-1246016-11 ISSN 0217-9792 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Multivalued dynamical systems * chaos * differential inclusions Subject RIV: BC - Control Systems Theory Impact factor: 0.358, year: 2012 http://library.utia.cas.cz/separaty/2012/TR/beran-0380290.pdf
CHAOS THEORY, GLOBAL SYSTEMIC CHANGE, AND HYBRID WARS
Directory of Open Access Journals (Sweden)
A. Korybko
2016-01-01
Full Text Available The global system is being rocked by the dueling ambitions of two competing blocs, with the US and its allies fighting to reinforce their unipolar system while Russia and its partners struggle to forge a multipolar future. The rapidity and scope with which events are unfolding makes it overwhelming for the casual observer to make sense of all of the complex processes currently at play, and truth be told, it’s understandable that all of this can appear confusing. In an attempt to clarify the present state of global affairs and forecast the direction that it’s all headed in, the article begins by explaining the nature of chaos theory and describing how it’s applicable to conceptualizing contemporary international relations. Afterwards, the idea of “chaos sequencing” is proposed, which in essence is a model that can be used in understanding the process of chaotic change. Following that, the article addresses the topic of global systemic change and includes the most relevant examples for how this relates to the present day. Next, the research combines these two aforementioned elements (chaos theory and global systemic change and presents a forward-looking geopolitical analysis that incorporates cutting-edge Hybrid War theory and aims to put the New Cold War into its proper perspective. Finally, the article ends on a suggestive note in encouraging analysts to study the authors’ conceptualization of Hybrid War in order to better prepare themselves for understanding and responding to forthcoming international events.
Chaos and routes to chaos in coupled Duffing oscillators with multiple degrees of freedom
International Nuclear Information System (INIS)
Musielak, D.E.; Musielak, Z.E.; Benner, J.W.
2005-01-01
New results are reported on the routes to chaos in increasingly complex Duffing oscillator systems, which are formed by coupling several oscillators, thereby increasing the number of degrees of freedom. Other forms of increasing system complexity through distributed excitation, different forcing function phasing, different excitation frequency ratios, and higher order coupling are also studied. Changes in the quantitative aspects of the chaotic regions and in the routes to chaos of complex Duffing systems are investigated by performing numerical simulations. It is shown that the number of chaotic regions in these systems is significantly reduced when compared to the original Duffing system, and that crisis replaces period doubling as the dominant route to chaos when the number of degrees of freedom is increased. A new discovered phenomenon is that chaos emerges in the symmetrically and asymmetrically coupled Duffing oscillators only after the quasi-periodic torus breaks down through a 3-periodic and 2-periodic window, respectively
Generalized multistability and chaos in quantum optics
Energy Technology Data Exchange (ETDEWEB)
Arecchi, F T
1984-12-18
Three experimental situations for CO2 lasers (a laser with modulated losses, a ring laser with competition between forward and backward waves, and a laser with injected signal) are analysed as examples of the onset of chaos in systems with a homogeneous gain line and with a particular timescale imposed by the values of the relaxation constants. The coexistence of several basins of attraction (generalized multistability) and their coupling by external noise is stressed. This coupling induces a low-frequency branch in the power spectrum. Comparison is made between the spectra of noise-induced jumps over independent attractors and the spectrum of deterministic diffusion within subregions of the same attractor. At the borderline between the two classes of phenomena a scaling law holds, relating the control parameter and the external noise in their effect on the mean escape time from a given stability region. 10 references.
Chaos in nuclei: Theory and experiment
Muñoz, L.; Molina, R. A.; Gómez, J. M. G.
2018-05-01
During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.
Lithwick, Yoram; Wu, Yanqin
2014-09-02
In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.
Lithwick, Yoram; Wu, Yanqin
2014-01-01
In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108
Reshaping-induced spatiotemporal chaos in driven, damped sine-Gordon systems
International Nuclear Information System (INIS)
Chacon, R.
2007-01-01
Spatiotemporal chaos arising from the competition between sine-Gordon-breather and kink-antikink-pair solitons by reshaping an ac force is demonstrated. After introducing soliton collective coordinates, Melnikov's method is applied to the resulting effective equation of motion to estimate the parameter-space regions of the ac force where homoclinic bifurcations are induced. The analysis reveals that the chaos-order threshold exhibits sensitivity to small changes in the force shape. Computer simulations of the sine-Gordon system show good agreement with these theoretical predictions
Reshaping-induced spatiotemporal chaos in driven, damped sine-Gordon systems
Energy Technology Data Exchange (ETDEWEB)
Chacon, R. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, E-06071 Badajoz (Spain)]. E-mail: rchacon@unex.es
2007-03-15
Spatiotemporal chaos arising from the competition between sine-Gordon-breather and kink-antikink-pair solitons by reshaping an ac force is demonstrated. After introducing soliton collective coordinates, Melnikov's method is applied to the resulting effective equation of motion to estimate the parameter-space regions of the ac force where homoclinic bifurcations are induced. The analysis reveals that the chaos-order threshold exhibits sensitivity to small changes in the force shape. Computer simulations of the sine-Gordon system show good agreement with these theoretical predictions.
Introduction to quantum graphs
Berkolaiko, Gregory
2012-01-01
A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...
Encounters with chaos and fractals
Gulick, Denny
2012-01-01
Periodic Points Iterates of Functions Fixed Points Periodic Points Families of Functions The Quadratic Family Bifurcations Period-3 Points The Schwarzian Derivative One-Dimensional Chaos Chaos Transitivity and Strong Chaos Conjugacy Cantor Sets Two-Dimensional Chaos Review of Matrices Dynamics of Linear FunctionsNonlinear Maps The Hénon Map The Horseshoe Map Systems of Differential Equations Review of Systems of Differential Equations Almost Linearity The Pendulum The Lorenz System Introduction to Fractals Self-Similarity The Sierpiński Gasket and Other "Monsters"Space-Filling Curves Similarity and Capacity DimensionsLyapunov Dimension Calculating Fractal Dimensions of Objects Creating Fractals Sets Metric Spaces The Hausdorff Metric Contractions and Affine Functions Iterated Function SystemsAlgorithms for Drawing Fractals Complex Fractals: Julia Sets and the Mandelbrot Set Complex Numbers and Functions Julia Sets The Mandelbrot Set Computer Programs Answers to Selected Exercises References Index.
Advances in chaos theory and intelligent control
Vaidyanathan, Sundarapandian
2016-01-01
The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...
Sakhel, Roger R.; Sakhel, Asaad R.; Ghassib, Humam B.; Balaz, Antun
2016-03-01
We investigate numerically conditions for order and chaos in the dynamics of an interacting Bose-Einstein condensate (BEC) confined by an external trap cut off by a hard-wall box potential. The BEC is stirred by a laser to induce excitations manifesting as irregular spatial and energy oscillations of the trapped cloud. Adding laser stirring to the external trap results in an effective time-varying trapping frequency in connection with the dynamically changing combined external+laser potential trap. The resulting dynamics are analyzed by plotting their trajectories in coordinate phase space and in energy space. The Lyapunov exponents are computed to confirm the existence of chaos in the latter space. Quantum effects and trap anharmonicity are demonstrated to generate chaos in energy space, thus confirming its presence and implicating either quantum effects or trap anharmonicity as its generator. The presence of chaos in energy space does not necessarily translate into chaos in coordinate space. In general, a dynamic trapping frequency is found to promote chaos in a trapped BEC. An apparent means to suppress chaos in a trapped BEC is achieved by increasing the characteristic scale of the external trap with respect to the condensate size.
Energy Technology Data Exchange (ETDEWEB)
Tél, Tamás [Institute for Theoretical Physics, Eötvös University, and MTA-ELTE Theoretical Physics Research Group, Pázmány P. s. 1/A, Budapest H-1117 (Hungary)
2015-09-15
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
Tél, Tamás
2015-09-01
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
2012 Symposium on Chaos, Complexity and Leadership
Erçetin, Şefika
2014-01-01
These proceedings from the 2012 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
Quantum chaos in ultracold collisions of gas-phase erbium atoms.
Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana
2014-03-27
Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.
Hopf bifurcation and chaos from torus breakdown in voltage-mode controlled DC drive systems
International Nuclear Information System (INIS)
Dai Dong; Ma Xikui; Zhang Bo; Tse, Chi K.
2009-01-01
Period-doubling bifurcation and its route to chaos have been thoroughly investigated in voltage-mode and current-mode controlled DC motor drives under simple proportional control. In this paper, the phenomena of Hopf bifurcation and chaos from torus breakdown in a voltage-mode controlled DC drive system is reported. It has been shown that Hopf bifurcation may occur when the DC drive system adopts a more practical proportional-integral control. The phenomena of period-adding and phase-locking are also observed after the Hopf bifurcation. Furthermore, it is shown that the stable torus can breakdown and chaos emerges afterwards. The work presented in this paper provides more complete information about the dynamical behaviors of DC drive systems.
In the Wake of Chaos Unpredictable Order in Dynamical Systems
Kellert, Stephen H
1993-01-01
Chaos theory has captured scientific and popular attention. What began as the discovery of randomness in simple physical systems has become a widespread fascination with "chaotic" models of everything from business cycles to brainwaves to heart attacks. But what exactly does this explosion of new research into chaotic phenomena mean for our understanding of the world? In this timely book, Stephen Kellert takes the first sustained look at the broad intellectual and philosophical questions raised by recent advances in chaos theory—its implications for science as a source of knowledge a
Effect of measurement on the quantum kicked reactor
Energy Technology Data Exchange (ETDEWEB)
Sarkar, S; Satchell, J S
1987-07-15
The detailed time-dependent behaviour of the kinetic energy of the quantum kicked rotator is found for both destructive and nondestructive measurement models. This represents a full measurement analysis of a nonlinear dynamical system which shows chaos classically.
4th international interdisciplinary chaos symposium
Banerjee, Santo; Caglar, Suleyman; Ozer, Mehmet; Chaos and complex systems
2013-01-01
Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the “4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems,” which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysic...
Hastily Formed Networks-Chaos to Recovery
2015-09-01
NETWORKS— CHAOS TO RECOVERY by Mark Arezzi September 2015 Thesis Co-Advisors: Douglas J. MacKinnon Brian Steckler THIS PAGE......systems to self-organize, adapt, and exert control over the chaos . Defining the role of communications requires an understanding of complexity, chaos
From Hamiltonian chaos to complex systems a nonlinear physics approach
Leonetti, Marc
2013-01-01
From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...
Chaotic behavior of a quantum waveguide
Energy Technology Data Exchange (ETDEWEB)
Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)
2013-02-15
In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.
Chaotic behavior of a quantum waveguide
International Nuclear Information System (INIS)
Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.
2013-01-01
In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system
International Nuclear Information System (INIS)
Kun, S.Yu.; Australian Nat. Univ., Canberra; Australian National Univ., Canberra, ACT
1997-01-01
We employ stochastic modelling of statistical reactions with memory to study quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. The Fourier analysis of excitation function oscillations is presented. It suggests that S-matrix spin and parity decoherence, damping of the coherent nuclear rotation and quantum chaos are sufficient conditions to explain the nonself-averaging of quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. (orig.)
International Nuclear Information System (INIS)
Wang Jun-Song; Yuan Rui-Xi; Gao Zhi-Wei; Wang De-Jin
2011-01-01
We study the Hopf bifurcation and the chaos phenomena in a random early detection-based active queue management (RED-AQM) congestion control system with a communication delay. We prove that there is a critical value of the communication delay for the stability of the RED-AQM control system. Furthermore, we show that the system will lose its stability and Hopf bifurcations will occur when the delay exceeds the critical value. When the delay is close to its critical value, we demonstrate that typical chaos patterns may be induced by the uncontrolled stochastic traffic in the RED-AQM control system even if the system is still stable, which reveals a new route to the chaos besides the bifurcation in the network congestion control system. Numerical simulations are given to illustrate the theoretical results. (general)
On stability of fixed points and chaos in fractional systems.
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0chaos is impossible in the corresponding continuous fractional systems.
Chaos anticontrol and synchronization of three time scales brushless DC motor system
International Nuclear Information System (INIS)
Ge Zhengming; Cheng Juiwen; Chen Yensheng
2004-01-01
Chaos anticontrol of three time scale brushless dc motors and chaos synchronization of different order systems are studied. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. By adding constant term, periodic square wave, the periodic triangle wave, the periodic sawtooth wave, and kx vertical bar x vertical bar term, to achieve anticontrol of chaotic or periodic systems, it is found that more chaotic phenomena of the system can be observed. Then, by coupled terms and linearization of error dynamics, we obtain the partial synchronization of two different order systems, i.e. brushless DC motor system and rate gyroscope system
Bounding the space of holographic CFTs with chaos
Energy Technology Data Exchange (ETDEWEB)
Perlmutter, Eric [Department of Physics, Princeton University,Jadwin Hall, Princeton, NJ 08544 (United States)
2016-10-13
Thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ{sub L}≤2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ{sub L}=2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge and a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS{sub 3} higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W{sub ∞}[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ{sub L}=0. Independently, we show that such theories violate unitarity for |λ|>2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.
Ancient and Current Chaos Theories
Directory of Open Access Journals (Sweden)
Güngör Gündüz
2006-07-01
Full Text Available Chaos theories developed in the last three decades have made very important contributions to our understanding of dynamical systems and natural phenomena. The meaning of chaos in the current theories and in the past is somewhat different from each other. In this work, the properties of dynamical systems and the evolution of chaotic systems were discussed in terms of the views of ancient philosophers. The meaning of chaos in Anaximenes’ philosophy and its role in the Ancient natural philosophy has been discussed in relation to other natural philosophers such as of Anaximander, Parmenides, Heraclitus, Empedocles, Leucippus (i.e. atomists and Aristotle. In addition, the fundamental concepts of statistical mechanics and the current chaos theories were discussed in relation to the views in Ancient natural philosophy. The roots of the scientific concepts such as randomness, autocatalysis, nonlinear growth, information, pattern, etc. in the Ancient natural philosophy were investigated.
Further discussion on chaos in duopoly games
International Nuclear Information System (INIS)
Lu, Tianxiu; Zhu, Peiyong
2013-01-01
In this paper, we study Li–Yorke chaos, distributional chaos in a sequence, Li–Yorke sensitivity, sensitivity and distributional chaos of two-dimensional dynamical system of the form Φ(x, y) = (f(y), g(x))
Energy Technology Data Exchange (ETDEWEB)
Seyed Majid Saberi Fathi
2007-07-15
In this thesis, we first study Lorentz gas as a billiard ball with elastic collision with the obstacles and a system of hard spheres in 2-dimensions. We study a numerical simulation of the dynamical system and we investigate the entropy increasing in non-equilibrium with time under the effect of collisions and its relation to positive Lyapunov exponents. Then, we study a decay model in a quantum system called Friedrichs model. We consider coupling of the kaons and environment with continuous energies. Then, we show that this model is well adapted to describe oscillation, regeneration, decay and CP violation of a kaonic system. In addition, we apply in the Friedrichs model, the time super-operator formalism that predicts the resonance, i.e. the survival probability of the instable states. (author)
International Nuclear Information System (INIS)
Fujiwara, Shigeyasu; Sakata, Fumihiko
2003-01-01
In many quantum systems, random matrix theory has been used to characterize quantum level fluctuations, which is known to be a quantum correspondent to a regular-to-chaos transition in classical systems. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of the quantum level density is roughly inversely proportional relation to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)
Chaos in a new bistable rotating electromechanical system
International Nuclear Information System (INIS)
Tsapla Fotsa, R.; Woafo, P.
2016-01-01
Highlights: • A new electromechanical system with rotating arm and bistable potential energy is studied. • The bistability is generated by the interaction of three permanent magnets, one fixed at the end of the arm and two other fixed at equal distance relative to the central position of the arm. • It exhibits dissipative and Hamiltonian chaos. • Such a bistable electromechanical system can be used as the actuation part of chaotic sieves and mixers. - Abstract: A device consisting of an induction motor activating a rotating rigid arm is designed and comprises a bistable potential due to the presence of three permanent magnets. Its mathematical equations are established and the numerical results both in the absence and in the presence of magnets are compared. The generation of chaotic behavior is achieved using two different external excitations: sinewave and square wave. In the presence of magnets, the system presents periodic and dissipative chaotic dynamics. Approximating the global potential energy to a bistable quartic potential, the Melnikov method is used to derive the conditions for the appearance of Hamiltonian chaos. Such a device can be used for industrial and domestic applications for mixing and sieving activities.
Mode-locking and the transition to chaos in dissipative systems
International Nuclear Information System (INIS)
Bak, P.; Bohr, T.; Jensen, M.H.
1984-01-01
Dissipative systems with two competing frequencies exhibit transitions to chaos. We have investigated the transition through a study of discrete maps of the circle onto itself, and by constructing and analyzing return maps of differential equations representing some physical systems. The transition is caused by interaction and overlap of mode-locked resonances and takes place at a critical line where the map losses invertibility. At this line the mode-locked intervals trace up a complete Devil's Staircase whose complementary set is a Cantor set with universal fractal dimension D approx. 0.87. Below criticality there is room for quasiperiodic orbits, whose measure is given by an exponent β approx. 0.34 which can be related to D through a scaling relation, just as for second order phase transitions. The Lebesgue measure serves as an order parameter for the transition to chaos. The resistively shunted Josephson junction, and charge density waves (CDWs) in rf electric fields are usually described by the differential equation of the damped driven pendulum. The 2d return map for this equation collapses to ld circle map at and below the transition to chaos. The theoretical results on universal behavior, derived here and elsewhere, can thus readily be checked experimentally by studying real physical systems. Recent experiments on Josephson junctions and CDWs indicating the predicted fractal scaling of mode-locking at criticality are reviewed
Chaos synchronization of the energy resource system
International Nuclear Information System (INIS)
Li Xiuchun; Xu Wei; Li Ruihong
2009-01-01
This paper presents the chaos synchronization problem for new dynamical system (that is, energy resource demand-supply system), where the controller is designed using two different control methods. Firstly, based on stability criterion of linear system, chaotic synchronization is achieved with the help of the active theory, and accordingly, the simulation results are given for verifying the feasibility of the method. Secondly, based on Lyapunov stability theory, on the assumption that all the parameters of the system are unknown, adaptive control approach is proposed to make the states of two chaotic systems asymptotic synchronization. In the end, numerical simulations are used to show the effectiveness of the proposed control method.
Controlling chaos through compactification in cosmological models with a collapsing phase
International Nuclear Information System (INIS)
Wesley, Daniel H.; Steinhardt, Paul J.; Turok, Neil
2005-01-01
We consider the effect of compactification of extra dimensions on the onset of classical chaotic mixmaster behavior during cosmic contraction. Assuming a universe that is well-approximated as a four-dimensional Friedmann-Robertson-Walker model (with negligible Kaluza-Klein excitations) when the contraction phase begins, we identify compactifications that allow a smooth contraction and delay the onset of chaos until arbitrarily close to the big crunch. These compactifications are defined by the de Rham cohomology (Betti numbers) and Killing vectors of the compactification manifold. We find compactifications that control chaos in vacuum Einstein gravity, as well as in string theories with N=1 supersymmetry and M-theory. In models where chaos is controlled in this way, the universe can remain homogeneous and flat until it enters the quantum gravity regime. At this point, the classical equations leading to chaotic behavior can no longer be trusted, and quantum effects may allow a smooth approach to the big crunch and transition into a subsequent expanding phase. Our results may be useful for constructing cosmological models with contracting phases, such as the ekpyrotic/cyclic and pre-big bang models
Chaos applications in telecommunications
Stavroulakis, Peter
2005-01-01
IntroductionPeter StavroulakisChaotic Signal Generation and Transmission Antonio Cândido Faleiros,Waldecir João Perrella,TâniaNunes Rabello,Adalberto Sampaio Santos, andNeiYoshihiro SomaChaotic Transceiver Design Arthur Fleming-DahlChaos-Based Modulation and DemodulationTechniques Francis C.M. Lau and Chi K. TseA Chaos Approach to Asynchronous DS-CDMASystems S. Callegari, G. Mazzini, R. Rovatti, and G. SettiChannel Equalization in Chaotic CommunicationSystems Mahmut CiftciOptical Communications using ChaoticTechniques Gregory D. VanWiggerenAPPENDIX AFundamental Concepts of the Theory ofChaos a
Chaos in World Politics: A Reflection
Ferreira, Manuel Alberto Martins; Filipe, José António Candeias Bonito; Coelho, Manuel F. P.; Pedro, Isabel C.
Chaos theory results from natural scientists' findings in the area of non-linear dynamics. The importance of related models has increased in the last decades, by studying the temporal evolution of non-linear systems. In consequence, chaos is one of the concepts that most rapidly have been expanded in what research topics respects. Considering that relationships in non-linear systems are unstable, chaos theory aims to understand and to explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusion, scientifically it represents a disarray connection, but basically it involves much more than that. The existing close relationship between change and time seems essential to understand what happens in the basics of chaos theory. In fact, this theory got a crucial role in the explanation of many phenomena. The relevance of this kind of theories has been well recognized to explain social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. The goal of this chapter is to make a reflection on chaos theory - and dynamical systems such as the theories of complexity - in terms of the interpretation of political issues, considering some kind of events in the political context and also considering the macro-strategic ideas of states positioning in the international stage.
Nee, Sean
2018-05-01
Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality- sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy.
Simulations of Probabilities for Quantum Computing
Zak, M.
1996-01-01
It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.
Collet, P; Métens, S; Neishtadt, A; Zaslavsky, G; Chaotic Dynamics and Transport in Classical and Quantum Systems
2005-01-01
This book offers a modern updated review on the most important activities in today dynamical systems and statistical mechanics by some of the best experts in the domain. It gives a contemporary and pedagogical view on theories of classical and quantum chaos and complexity in hamiltonian and ergodic systems and their applications to anomalous transport in fluids, plasmas, oceans and atom-optic devices and to control of chaotic transport. The book is issued from lecture notes of the International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems" held in Cargèse (Corsica) 18th to the 30th August 2003. It reflects the spirit of the School to provide lectures at the post-doctoral level on basic concepts and tools. The first part concerns ergodicity and mixing, complexity and entropy functions, SRB measures, fractal dimensions and bifurcations in hamiltonian systems. Then, models of dynamical evolutions of transport processes in classical and quantum systems have been largely expla...
Scaling of chaos in strongly nonlinear lattices.
Mulansky, Mario
2014-06-01
Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.
Cryptanalyzing a discrete-time chaos synchronization secure communication system
International Nuclear Information System (INIS)
Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.
2004-01-01
This paper describes the security weakness of a recently proposed secure communication method based on discrete-time chaos synchronization. We show that the security is compromised even without precise knowledge of the chaotic system used. We also make many suggestions to improve its security in future versions
Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.
Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng
2018-03-23
We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting-henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.
Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera
Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng
2018-03-01
We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting—henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.
Complex motions and chaos in nonlinear systems
Machado, José; Zhang, Jiazhong
2016-01-01
This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
Complex dynamics in diatomic molecules. Part II: Quantum trajectories
International Nuclear Information System (INIS)
Yang, C.-D.; Weng, H.-J.
2008-01-01
The second part of this paper deals with quantum trajectories in diatomic molecules, which has not been considered before in the literature. Morse potential serves as a more accurate function than a simple harmonic oscillator for illustrating a realistic picture about the vibration of diatomic molecules. However, if we determine molecular dynamics by integrating the classical force equations derived from a Morse potential, we will find that the resulting trajectories do not consist with the probabilistic prediction of quantum mechanics. On the other hand, the quantum trajectory determined by Bohmian mechanics [Bohm D. A suggested interpretation of the quantum theory in terms of hidden variable. Phys. Rev. 1952;85:166-179] leads to the conclusion that a diatomic molecule is motionless in all its vibrational eigen-states, which also contradicts probabilistic prediction of quantum mechanics. In this paper, we point out that the quantum trajectory of a diatomic molecule completely consistent with quantum mechanics does exist and can be solved from the quantum Hamilton equations of motion derived in Part I, which is based on a complex-space formulation of fractal spacetime [El Naschie MS. A review of E-Infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. E-Infinity theory - some recent results and new interpretations. Chaos, Solitons and Fractals 2006;29:845-853; El Naschie MS. The concepts of E-infinity. An elementary introduction to the cantorian-fractal theory of quantum physics. Chaos, Solitons and Fractals 2004;22:495-511; El Naschie MS. SU(5) grand unification in a transfinite form. Chaos, Solitons and Fractals 2007;32:370-374; Nottale L. Fractal space-time and microphysics: towards a theory of scale relativity. Singapore: World Scientific; 1993; Ord G. Fractal space time and the statistical mechanics of random works. Chaos, Soiltons and Fractals 1996;7:821-843] approach to quantum
Chaos Modelling with Computers
Indian Academy of Sciences (India)
Chaos is one of the major scientific discoveries of our times. In fact many scientists ... But there are other natural phenomena that are not predictable though ... characteristics of chaos. ... The position and velocity are all that are needed to determine the motion of a .... a system of equations that modelled the earth's weather ...
2nd International Symposium on Chaos, Complexity and Leadership
Banerjee, Santo
2015-01-01
These proceedings from the 2013 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
CHAOS-BASED ADVANCED ENCRYPTION STANDARD
Abdulwahed, Naif B.
2013-05-01
This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores the behavior of the AES algorithm by replacing two of its original modules, namely the S-Box and the Key Schedule, with two other chaos- based modules. Three chaos systems are considered in designing the new modules which are Lorenz system with multiplication nonlinearity, Chen system with sign modules nonlinearity, and 1D multiscroll system with stair case nonlinearity. The three systems are evaluated on their sensitivity to initial conditions and as Pseudo Random Number Generators (PRNG) after applying a post-processing technique to their output then performing NIST SP. 800-22 statistical tests. The thesis presents a hardware implementation of dynamic S-Boxes for AES that are populated using the three chaos systems. Moreover, a full MATLAB package to analyze the chaos generated S-Boxes based on graphical analysis, Walsh-Hadamard spectrum analysis, and image encryption analysis is developed. Although these S-Boxes are dynamic, meaning they are regenerated whenever the encryption key is changed, the analysis results show that such S-Boxes exhibit good properties like the Strict Avalanche Criterion (SAC) and the nonlinearity and in the application of image encryption. Furthermore, the thesis presents a new Lorenz-chaos-based key expansion for the AES. Many researchers have pointed out that there are some defects in the original key expansion of AES and thus have motivated such chaos-based key expansion proposal. The new proposed key schedule is analyzed and assessed in terms of confusion and diffusion by performing the frequency and SAC test respectively. The obtained results show that the new proposed design is more secure than the original AES key schedule and other proposed designs in the literature. The proposed
International Nuclear Information System (INIS)
Kinnebrock, Werner
2011-01-01
The past century changed the classical, scientific way of view enormously. The quantum theory broke with the imagination of continuity of all dynamical processes and gave space to completely new, nearly revolutionary approaches of thinking. Einstein's relativity theory put the absoluteness of time and space as well as the general validity of the Euclidean geometry in question. The absolute calculability, as it was formulated by Laplace, was by the influence of chaos theory proven as illusion. Computers made by the Mandelbrot set the presentation of new esthetic and never seen structures. Hilbert's century program of a complete formalization of mathematics failed because of the famous law of Goedel. It is the demand of this book to present all these theories and conclusions easily understandably and entertainingly.
Chaos concepts, control and constructive use
Bolotin, Yurii; Yanovsky, Vladimir
2017-01-01
This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interf...
On stability of fixed points and chaos in fractional systems
Edelman, Mark
2018-02-01
In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0 logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.
Directory of Open Access Journals (Sweden)
I Made Ginarsa
2013-11-01
Full Text Available Chaos and voltage collapse occurred in critical power systems due to disturbing of energy. PID-SVC layered reccurrent neural network-based (LRN-based PID-SVC was proposed to solve this problem. A PID was used to control chaos and voltage collapse. Then, an SVC LRN-based to maintan the load voltage. By using the proposed controller, chaos and voltage collapse were able to suppress and maintain the load voltage around the setting value. Furthemore, the proposed controller gives better response than PI-SVC controller.
Fundamental aspects of quantum theory
International Nuclear Information System (INIS)
Gorini, V.; Frigerio, A.
1986-01-01
This book presents information on the following topics: general problems and crucial experiments; the classical behavior of measuring instruments; quantum interference effect for two atoms radiating a single photon; quantization and stochastic processes; quantum Markov processes driven by Bose noise; chaotic behavior in quantum mechanics; quantum ergodicity and chaos; microscopic and macroscopic levels of description; fundamental properties of the ground state of atoms and molecules; n-level systems interacting with Bosons - semiclassical limits; general aspects of gauge theories; adiabatic phase shifts for neutrons and photons; the spins of cyons and dyons; round-table discussion the the Aharonov-Bohm effect; gravity in quantum mechanics; the gravitational phase transition; anomalies and their cancellation; a new gauge without any ghost for Yang-Mills Theory; and energy density and roughening in the 3-D Ising ferromagnet
Controlling chaos in dynamical systems described by maps
International Nuclear Information System (INIS)
Crispin, Y.; Marduel, C.
1994-01-01
The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps
International Nuclear Information System (INIS)
Yan Zhenya; Yu Pei
2007-01-01
In this paper, we study chaos (lag) synchronization of a new LC chaotic system, which can exhibit not only a two-scroll attractor but also two double-scroll attractors for different parameter values, via three types of state feedback controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a combination of linear feedback and adaptive feedback controls. As a consequence, ten families of new feedback control laws are designed to obtain global chaos lag synchronization for τ < 0 and global chaos synchronization for τ = 0 of the LC system. Numerical simulations are used to illustrate these theoretical results. Each family of these obtained feedback control laws, including two linear (adaptive) functions or one linear function and one adaptive function, is added to two equations of the LC system. This is simpler than the known synchronization controllers, which apply controllers to all equations of the LC system. Moreover, based on the obtained results of the LC system, we also derive the control laws for chaos (lag) synchronization of another new type of chaotic system
RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Deck, Katherine M.; Winn, Joshua N. [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Holman, Matthew J.; Carter, Joshua A.; Ragozzine, Darin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Agol, Eric [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Lissauer, Jack J. [NASA Ames Research Center, Moffet Field, CA 94035 (United States)
2012-08-10
We report on the long-term dynamical evolution of the two-planet Kepler-36 system, which consists of a super-Earth and a sub-Neptune in a tightly packed orbital configuration. The orbits of the planets, which we studied through numerical integrations of initial conditions that are consistent with observations of the system, are chaotic with a Lyapunov time of only {approx}10 years. The chaos is a consequence of a particular set of orbital resonances, with the inner planet orbiting 34 times for every 29 orbits of the outer planet. The rapidity of the chaos is due to the interaction of the 29:34 resonance with the nearby first-order 6:7 resonance, in contrast to the usual case in which secular terms in the Hamiltonian play a dominant role. Only one contiguous region of phase space, accounting for {approx}4.5% of the sample of initial conditions studied, corresponds to planetary orbits that do not show large-scale orbital instabilities on the timescale of our integrations ({approx}200 million years). Restricting the orbits to this long-lived region allows a refinement of estimates of the masses and radii of the planets. We find that the long-lived region consists of the initial conditions that satisfy the Hill stability criterion by the largest margin. Any successful theory for the formation of this system will need to account for why its current state is so close to unstable regions of phase space.
International Nuclear Information System (INIS)
Fujiwara, Shigeyasu; Sakata, Fumihiko
2003-01-01
The quantum level fluctuation in various systems has been shown to be characterized by the random matrix theory, and to be related to a regular-to-chaos transition in classical system. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of quantum level density is inversely proportional to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)
Genome chaos: survival strategy during crisis.
Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H
2014-01-01
Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.
Torus Destruction and Chaos-Chaos Intermittency in a Commodity Distribution Chain
DEFF Research Database (Denmark)
Sosnovtseva, O.; Mosekilde, Erik
1997-01-01
The destruction of two-dimensional tori T2 and the transitions to chaos are studied in a high-dimensional model describing the decision-making behavior of human subjects in a simulated managerial environment (the beer production-distribution model). Two different routes from quasiperiodicity...... to chaos can be distinguished. Intermittency transitions between chaotic and hyperchaotic attractors are characterized, and transients in which the system "pursues the ghost" of a vanished hyperchaotic attractor are studied....
Quantum Bio-Informatics II From Quantum Information to Bio-Informatics
Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori
2009-02-01
The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems
Study of chaos in chaotic satellite systems
Khan, Ayub; Kumar, Sanjay
2018-01-01
In this paper, we study the qualitative behaviour of satellite systems using bifurcation diagrams, Poincaré section, Lyapunov exponents, dissipation, equilibrium points, Kaplan-Yorke dimension etc. Bifurcation diagrams with respect to the known parameters of satellite systems are analysed. Poincaré sections with different sowing axes of the satellite are drawn. Eigenvalues of Jacobian matrices for the satellite system at different equilibrium points are calculated to justify the unstable regions. Lyapunov exponents are estimated. From these studies, chaos in satellite system has been established. Solution of equations of motion of the satellite system are drawn in the form of three-dimensional, two-dimensional and time series phase portraits. Phase portraits and time series display the chaotic nature of the considered system.
Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.
Kuwamura, Masataka; Chiba, Hayato
2009-12-01
It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.
Exploiting chaos for applications.
Ditto, William L; Sinha, Sudeshna
2015-09-01
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.
Exploiting chaos for applications
Energy Technology Data Exchange (ETDEWEB)
Ditto, William L., E-mail: wditto@hawaii.edu [Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822 (United States); Sinha, Sudeshna, E-mail: sudeshna@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli 140306, Punjab (India)
2015-09-15
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.
Spectral properties of billiards and quantum chaos
Energy Technology Data Exchange (ETDEWEB)
Schmit, C [Institut de Physique Nucleaire, 91 - Orsay (France)
1984-06-01
The first 800 eigenvalues of the stadium billiard have been evaluated numerically. It is shown that the four spectra obtained (corresponding to the four types of symmetry of the wave function) exhibit the fluctuation properties of the Gaussian Orthogonal Ensemble of Random Matrices. This reinforces the belief that these fluctuation properties are characteristic of quantum chaotic systems.
Quantum correlations in multipartite quantum systems
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.
2016-01-01
The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.
International Nuclear Information System (INIS)
Angius, S.; Bisegni, C.; Ciuffetti, P.
2016-01-01
The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of abstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.
Ruette, Sylvie
2017-01-01
The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the "most interesting" part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gi...
The CHAOS-4 Geomagnetic Field Model
DEFF Research Database (Denmark)
Olsen, Nils; Finlay, Chris; Lühr, H.
We present CHAOS-4, a new version in the CHAOS model series, which aims at describing the Earth's magnetic field with high spatial resolution (terms up to spherical degree n=90 for the crustal field, and up to n=16 for the time-varying core field are robustly determined) and high temporal...... between the coordinate systems of the vector magnetometer and of the star sensor providing attitude information). The final CHAOS-4 model is derived by merging two sub-models: its low-degree part has been obtained using similar model parameterization and data sets as used for previous CHAOS models (but...
Interplay of Determinism and Randomness: From Irreversibility to Chaos, Fractals, and Stochasticity
Tsonis, A.
2017-12-01
We will start our discussion into randomness by looking exclusively at our formal mathematical system to show that even in this pure and strictly logical system one cannot do away with randomness. By employing simple mathematical models, we will identify the three possible sources of randomness: randomness due to inability to find the rules (irreversibility), randomness due to inability to have infinite power (chaos), and randomness due to stochastic processes. Subsequently we will move from the mathematical system to our physical world to show that randomness, through the quantum mechanical character of small scales, through chaos, and because of the second law of thermodynamics, is an intrinsic property of nature as well. We will subsequently argue that the randomness in the physical world is consistent with the three sources of randomness suggested from the study of simple mathematical systems. Many examples ranging from purely mathematical to natural processes will be presented, which clearly demonstrate how the combination of rules and randomness produces the world we live in. Finally, the principle of least effort or the principle of minimum energy consumption will be suggested as the underlying principle behind this symbiosis between determinism and randomness.
Chaos synchronization of a unified chaotic system via partial linearization
International Nuclear Information System (INIS)
Yu Yongguang; Li Hanxiong; Duan Jian
2009-01-01
A partial linearization method is proposed for realizing the chaos synchronization of an unified chaotic system. Through synchronizing partial state of the chaotic systems can result in the synchronization of their entire states, and the resulting controller is singularity free. The results can be easily extended to the synchronization of other similar chaotic systems. Simulation results are conducted to show the effectiveness of the method.
Low-dimensional chaos in a hydrodynamic system
International Nuclear Information System (INIS)
Brandstater, A.; Swift, J.; Swinney, H.L.; Wolf, A.; Farmer, J.D.; Jen, E.; Crutchfield, J.P.
1983-01-01
Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension less than 5 for Reynolds numbers up to 30% above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number
Hyperbolic Chaos A Physicist’s View
Kuznetsov, Sergey P
2012-01-01
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.
Kaszás, Bálint; Feudel, Ulrike; Tél, Tamás
2016-12-01
We investigate the death and revival of chaos under the impact of a monotonous time-dependent forcing that changes its strength with a non-negligible rate. Starting on a chaotic attractor it is found that the complexity of the dynamics remains very pronounced even when the driving amplitude has decayed to rather small values. When after the death of chaos the strength of the forcing is increased again with the same rate of change, chaos is found to revive but with a different history. This leads to the appearance of a hysteresis in the complexity of the dynamics. To characterize these dynamics, the concept of snapshot attractors is used, and the corresponding ensemble approach proves to be superior to a single trajectory description, that turns out to be nonrepresentative. The death (revival) of chaos is manifested in a drop (jump) of the standard deviation of one of the phase-space coordinates of the ensemble; the details of this chaos-nonchaos transition depend on the ratio of the characteristic times of the amplitude change and of the internal dynamics. It is demonstrated that chaos cannot die out as long as underlying transient chaos is present in the parameter space. As a condition for a "quasistatically slow" switch-off, we derive an inequality which cannot be fulfilled in practice over extended parameter ranges where transient chaos is present. These observations need to be taken into account when discussing the implications of "climate change scenarios" in any nonlinear dynamical system.
Gravitational collapse, chaos in CFT correlators and the information paradox
Energy Technology Data Exchange (ETDEWEB)
Farahi, Arya, E-mail: aryaf@umich.edu; Pando Zayas, Leopoldo A., E-mail: lpandoz@umich.edu
2014-06-27
We consider gravitational collapse of a massless scalar field in asymptotically anti-de Sitter spacetime. Following the AdS/CFT dictionary we further study correlations in the field theory side by way of the Klein–Gordon equation of a probe scalar field in the collapsing background. We present evidence that in a certain regime the probe scalar field behaves chaotically, thus supporting Hawking's argument in the black hole information paradox proposing that although the information can be retrieved in principle, deterministic chaos impairs, in practice, the process of unitary extraction of information from a black hole. We emphasize that quantum chaos will change this picture.
Chaos. Possible underpinnings for quantum mechanics?
International Nuclear Information System (INIS)
McHarris, Wm.C.
2004-01-01
Alternative, parallel explanations for a number of counter-intuitive concepts connected with the foundations of quantum mechanics can be constructed in terms of nonlinear dynamics. These include ideas as diverse as the statistical exponential decay law and spontaneous symmetry breaking to decoherence itself and the inference from violations of Bell's inequality that local reality is ruled out in hidden variable extensions of quantum mechanics. Such alternative explanations must not be taken as demonstrations of nonlinear underpinnings for quantum mechanics, but they do raise the possibility of their existence. In this article I delve a bit into ideas connected with the exponential decay law and with Bell's inequality as demonstrations. Then an investigation of the Klein-Gordon equation shows that it should not come as a complete surprise that quantum mechanics just might contain fundamental nonlinearities. (author)
Replication of chaos in neural networks, economics and physics
Akhmet, Marat
2016-01-01
This book presents detailed descriptions of chaos for continuous-time systems. It is the first-ever book to consider chaos as an input for differential and hybrid equations. Chaotic sets and chaotic functions are used as inputs for systems with attractors: equilibrium points, cycles and tori. The findings strongly suggest that chaos theory can proceed from the theory of differential equations to a higher level than previously thought. The approach selected is conducive to the in-depth analysis of different types of chaos. The appearance of deterministic chaos in neural networks, economics and mechanical systems is discussed theoretically and supported by simulations. As such, the book offers a valuable resource for mathematicians, physicists, engineers and economists studying nonlinear chaotic dynamics.
A Chaos-Based Secure Direct-Sequence/Spread-Spectrum Communication System
Directory of Open Access Journals (Sweden)
Nguyen Xuan Quyen
2013-01-01
Full Text Available This paper proposes a chaos-based secure direct-sequence/spread-spectrum (DS/SS communication system which is based on a novel combination of the conventional DS/SS and chaos techniques. In the proposed system, bit duration is varied according to a chaotic behavior but is always equal to a multiple of the fixed chip duration in the communication process. Data bits with variable duration are spectrum-spread by multiplying directly with a pseudonoise (PN sequence and then modulated onto a sinusoidal carrier by means of binary phase-shift keying (BPSK. To recover exactly the data bits, the receiver needs an identical regeneration of not only the PN sequence but also the chaotic behavior, and hence data security is improved significantly. Structure and operation of the proposed system are analyzed in detail. Theoretical evaluation of bit-error rate (BER performance in presence of additive white Gaussian noise (AWGN is provided. Parameter choice for different cases of simulation is also considered. Simulation and theoretical results are shown to verify the reliability and feasibility of the proposed system. Security of the proposed system is also discussed.
Markov transitions and the propagation of chaos
International Nuclear Information System (INIS)
Gottlieb, A.
1998-01-01
The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also show that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution
The Capabilities of Chaos and Complexity
Directory of Open Access Journals (Sweden)
David L. Abel
2009-01-01
Full Text Available To what degree could chaos and complexity have organized a Peptide or RNA World of crude yet necessarily integrated protometabolism? How far could such protolife evolve in the absence of a heritable linear digital symbol system that could mutate, instruct, regulate, optimize and maintain metabolic homeostasis? To address these questions, chaos, complexity, self-ordered states, and organization must all be carefully defined and distinguished. In addition their cause-and-effect relationships and mechanisms of action must be delineated. Are there any formal (non physical, abstract, conceptual, algorithmic components to chaos, complexity, self-ordering and organization, or are they entirely physicodynamic (physical, mass/energy interaction alone? Chaos and complexity can produce some fascinating self-ordered phenomena. But can spontaneous chaos and complexity steer events and processes toward pragmatic benefit, select function over non function, optimize algorithms, integrate circuits, produce computational halting, organize processes into formal systems, control and regulate existing systems toward greater efficiency? The question is pursued of whether there might be some yet-to-be discovered new law of biology that will elucidate the derivation of prescriptive information and control. Ã¢Â€ÂœSystemÃ¢Â€Â will be rigorously defined. Can a low-informational rapid succession of PrigogineÃ¢Â€Â™s dissipative structures self-order into bona fide organization?
Nonlinear Dynamics, Chaotic and Complex Systems
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
International Nuclear Information System (INIS)
Li Qianshu; Zhu Rui
2004-01-01
A three-variable model of the Belousov-Zhabotinsky reaction system subject to external sinusoidal perturbations is investigated by means of frequency spectrum analysis. In the period-1 window of the model, the transitions from periodicity to chaos are observed; in the chaotic window, the transitions from chaos to periodicity are found. The former might be understood by the circle map of two coupled oscillators, and the latter is partly explained by the resonance between the main frequency of the chaos and the frequency of the external periodic perturbations
International Nuclear Information System (INIS)
Duan Zhisheng; Wang Jinzhi; Yang Ying; Huang Lin
2009-01-01
This paper surveys frequency-domain and time-domain methods for feedback nonlinear systems and their possible applications to chaos control, coupled systems and complex dynamical networks. The absolute stability of Lur'e systems with single equilibrium and global properties of a class of pendulum-like systems with multi-equilibria are discussed. Time-domain and frequency-domain criteria for the convergence of solutions are presented. Some latest results on analysis and control of nonlinear systems with multiple equilibria and applications to chaos control are reviewed. Finally, new chaotic oscillating phenomena are shown in a pendulum-like system and a new nonlinear system with an attraction/repulsion function.
Chaos synchronization in autonomous chaotic system via hybrid feedback control
International Nuclear Information System (INIS)
Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang
2009-01-01
This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.
Experimental chaos in nonlinear vibration isolation system
International Nuclear Information System (INIS)
Lou Jingjun; Zhu Shijian; He Lin; He Qiwei
2009-01-01
The chaotic vibration isolation method was studied thoroughly from an experimental perspective. The nonlinear load-deflection characteristic of the conical coil spring used in the experiment was surveyed. Chaos and subharmonic responses including period-2 and period-6 motions were observed. The line spectrum reduction and the drop of the acceleration vibration level in chaotic state and that in non-chaotic state were compared, respectively. It was concluded from the experiment that the nonlinear vibration isolation system in chaotic state has strong ability in line spectrum reduction.
International Nuclear Information System (INIS)
Redi, M.H.; Johnson, J.L.; Klasky, S.; Canik, J.; Dewar, R.L.; Cooper, W.A.
2002-01-01
The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s,α,θ k ); s is the edge normalized toroidal flux, α is the field line variable, and θ k is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong 'quantum chaos'. The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit
Stochastic chaos in a Duffing oscillator and its control
International Nuclear Information System (INIS)
Wu Cunli; Lei Youming; Fang Tong
2006-01-01
Stochastic chaos discussed here means a kind of chaotic responses in a Duffing oscillator with bounded random parameters under harmonic excitations. A system with random parameters is usually called a stochastic system. The modifier 'stochastic' here implies dependent on some random parameter. As the system itself is stochastic, so is the response, even under harmonic excitations alone. In this paper stochastic chaos and its control are verified by the top Lyapunov exponent of the system. A non-feedback control strategy is adopted here by adding an adjustable noisy phase to the harmonic excitation, so that the control can be realized by adjusting the noise level. It is found that by this control strategy stochastic chaos can be tamed down to the small neighborhood of a periodic trajectory or an equilibrium state. In the analysis the stochastic Duffing oscillator is first transformed into an equivalent deterministic nonlinear system by the Gegenbauer polynomial approximation, so that the problem of controlling stochastic chaos can be reduced into the problem of controlling deterministic chaos in the equivalent system. Then the top Lyapunov exponent of the equivalent system is obtained by Wolf's method to examine the chaotic behavior of the response. Numerical simulations show that the random phase control strategy is an effective way to control stochastic chaos
Experimental Induction of Genome Chaos.
Ye, Christine J; Liu, Guo; Heng, Henry H
2018-01-01
Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.
Chaos control using sliding-mode theory
International Nuclear Information System (INIS)
Nazzal, Jamal M.; Natsheh, Ammar N.
2007-01-01
Chaos control means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, a nonlinear Sliding-Mode Controller (SMC) is presented. Two nonlinear chaotic systems are chosen to be our case study in this paper, the well known Chua's circuit and Lorenz system. The study shows the effectiveness of the designed nonlinear Sliding-Mode Controller
The chaos cookbook a practical programming guide
Pritchard, Joe
2014-01-01
The Chaos Cookbook: A Practical Programming Guide discusses the use of chaos in computer programming. The book is comprised of 11 chapters that tackle various topics relevant to chaos and programming. Chapter 1 reviews the concept of chaos, and Chapter 2 discusses the iterative functions. Chapters 3 and 4 cover differential and Lorenz equations. Chapter 5 talks about strange attractors, while Chapter 6 deals with the fractal link. The book also discusses the Mandelbrot set, and then covers the Julia sets. The other fractal systems and the cellular automata are also explained. The last chapter
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2018-03-01
We present a novel class of nonlinear dynamical systems-a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.
International Nuclear Information System (INIS)
Frolov, A.M.
1986-01-01
The problem of exact variational calculations of few-particle systems in the exponential basis of the relative coordinates using nonlinear parameters is studied. The techniques of stepwise optimization and global chaos of nonlinear parameters are used to calculate the S and P states of homonuclear muonic molecules with an error of no more than +0.001 eV. The global-chaos technique also has proved to be successful in the case of the nuclear systems 3 H and 3 He
Biologically inspired rate control of chaos.
Olde Scheper, Tjeerd V
2017-10-01
The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.
Quantum and wave dynamical chaos in superconducting microwave billiards.
Dietz, B; Richter, A
2015-09-01
Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.
Si'lnikov chaos and Hopf bifurcation analysis of Rucklidge system
International Nuclear Information System (INIS)
Wang Xia
2009-01-01
A three-dimensional autonomous system - the Rucklidge system is considered. By the analytical method, Hopf bifurcation of Rucklidge system may occur when choosing an appropriate bifurcation parameter. Using the undetermined coefficient method, the existence of heteroclinic and homoclinic orbits in the Rucklidge system is proved, and the explicit and uniformly convergent algebraic expressions of Si'lnikov type orbits are given. As a result, the Si'lnikov criterion guarantees that there exists the Smale horseshoe chaos motion for the Rucklidge system.
Stochastic quantum gravity-(2+1)-dimensional case
International Nuclear Information System (INIS)
Hosoya, Akio
1991-01-01
At first the amazing coincidences are pointed out in quantum field theory in curved space-time and quantum gravity, when they exhibit stochasticity. To explore the origin of them, the (2+1)-dimensional quantum gravity is considered as a toy model. It is shown that the torus universe in the (2+1)-dimensional quantum gravity is a quantum chaos in a rigorous sense. (author). 15 refs
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2018-03-01
We present a novel class of nonlinear dynamical systems—a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.
International Nuclear Information System (INIS)
Loskutov, Alexander
2010-01-01
This review introduces most of the concepts used in the study of chaotic phenomena in nonlinear systems and has as its objective to summarize the current understanding of results from the theory of chaotic dynamical systems and to describe the original ideas underlying the study of deterministic chaos. The presentation relies on informal analysis, with abstract mathematical ideas visualized geometrically or by examples from physics. Hyperbolic dynamics, homoclinic trajectories and tangencies, wild hyperbolic sets, and different types of attractors which appear in dynamical systems are considered. The key aspects of ergodic theory are discussed, and the basic statistical properties of chaotic dynamical systems are described. The fundamental difference between stochastic dynamics and deterministic chaos is explained. The review concludes with an investigation of the possibility of studying complex systems on the basis of the analysis of registered signals, i.e. the generated time series. (reviews of topical problems)
International Nuclear Information System (INIS)
Zhang Fang-Fang; Liu Shu-Tang; Yu Wei-Yong
2013-01-01
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes. (general)
Prediction based chaos control via a new neural network
International Nuclear Information System (INIS)
Shen Liqun; Wang Mao; Liu Wanyu; Sun Guanghui
2008-01-01
In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network
Using chaos theory: the implications for nursing.
Haigh, Carol
2002-03-01
The purpose of this paper is to review chaos theory and to examine the role that it may have in the discipline of nursing. In this paper, the fundamental ingredients of chaotic thinking are outlined. The earlier days of chaos thinking were characterized by an almost exclusively physiological focus. By the 21st century, nurse theorists were applying its principles to the organization and evaluation of care delivery with varying levels of success. Whilst the biological use of chaos has focused on pragmatic approaches to knowledge enhancement, nursing has often focused on the mystical aspects of chaos as a concept. The contention that chaos theory has yet to find a niche within nursing theory and practice is examined. The application of chaotic thinking across nursing practice, nursing research and statistical modelling is reviewed. The use of chaos theory as a way of identifying the attractor state of specific systems is considered and the suggestion is made that it is within statistical modelling of services that chaos theory is most effective.
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03200 Iani Chaos This VIS image of Iani Chaos shows the layered deposit that occurs on the floor. It appears that the layers were deposited after the chaos was formed. Image information: VIS instrument. Latitude 2.3S, Longitude 342.3E. 17 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
Synchronization of chaos in non-identical parametrically excited systems
International Nuclear Information System (INIS)
Idowu, B.A.; Vincent, U.E.; Njah, A.N.
2009-01-01
In this paper, we investigate the synchronization of chaotic systems consisting of non-identical parametrically excited oscillators. The active control technique is employed to design control functions based on Lyapunov stability theory and Routh-Hurwitz criteria so as to achieve global chaos synchronization between a parametrically excited gyroscope and each of the parametrically excited pendulum and Duffing oscillator. Numerical simulations are implemented to verify the results.
Manifestations of classical phase space structures in quantum mechanics
International Nuclear Information System (INIS)
Bohigas, O.; Ullmo, D.; Tomsovic, S.; Paris-11 Univ., 91 - Orsay
1992-11-01
Using two coupled quartic oscillators for illustration, the quantum mechanics of simple systems whose classical analogues have varying degrees of non-integrability is investigated. By taking advantage of discrete symmetries and dynamical quasidegeneracies it is shown that Percival's semiclassical classification scheme, i.e. eigenstates may be separated into a regular or an irregular group, basically works. Some observations of intermediate status states are made. Generalized ensembles are constructed which apply equally well to both spectral and eigenstate properties. They typically show non-universal, but nevertheless characteristic level fluctuations. In addition, they predict 'semiclassical localization' of eigenfunctions and 'quantum suppression of chaos' which are quantitatively borne out in the quantum systems. (author) 101 refs.; 27 figs.; 6 tabs
Chaos control for a class of chaotic systems using PI-type state observer approach
International Nuclear Information System (INIS)
Jiang Guoping; Zheng Weixing
2004-01-01
In this paper, by using the PI-type state observer design approach and the characteristic of ergodicity of chaos, a new method is presented for controlling chaos, including the stabilization of unstable equilibrium points and set-point tracking, for a class of chaotic systems. Based on the theory of nonlinear ordinary differential equations, a simple criterion is derived for designing the controller gains for stabilization and tracking, in which control parameters can be selected via the pole placement technique of linear control theory. More importantly, this control method has a simple controller structure, high robustness against system parametric variations, and strong rejection of external constant disturbances. The method is applied to the chaotic Lorenz system for demonstration
Decoherence, determinism and chaos revisited
International Nuclear Information System (INIS)
Noyes, H.P.
1994-01-01
We suggest that the derivation of the free space Maxwell Equations for classical electromagnetism, using a discrete ordered calculus developed by L.H. Kauffman and T. Etter, necessarily pushes the discussion of determinism in natural science down to the level of relativistic quantum mechanics and hence renders the mathematical phenomena studied in deterministic chaos research irrelevant to the question of whether the world investigated by physics is deterministic. We believe that this argument reinforces Suppes' contention that the issue of determinism versus indeterminism should be viewed as a Kantian antinomy incapable of investigation using currently available scientific tools
Decoherence, determinism and chaos revisited
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1994-11-15
We suggest that the derivation of the free space Maxwell Equations for classical electromagnetism, using a discrete ordered calculus developed by L.H. Kauffman and T. Etter, necessarily pushes the discussion of determinism in natural science down to the level of relativistic quantum mechanics and hence renders the mathematical phenomena studied in deterministic chaos research irrelevant to the question of whether the world investigated by physics is deterministic. We believe that this argument reinforces Suppes` contention that the issue of determinism versus indeterminism should be viewed as a Kantian antinomy incapable of investigation using currently available scientific tools.
Chaos in the fractional order logistic delay system: Circuit realization and synchronization
International Nuclear Information System (INIS)
Baskonus, Haci Mehmet; Hammouch, Zakia; Mekkaoui, Toufik; Bulut, Hasan
2016-01-01
In this paper, we present a numerical study and a circuit design to prove existence of chaos in the fractional order Logistic delay system. In addition, we investigate an active control synchronization scheme in this system. Numerical and cicruit simulations show the effectiveness and feasibility of this method.
Quantum Butterfly Effect in Weakly Interacting Diffusive Metals
Directory of Open Access Journals (Sweden)
Aavishkar A. Patel
2017-09-01
Full Text Available We study scrambling, an avatar of chaos, in a weakly interacting metal in the presence of random potential disorder. It is well known that charge and heat spread via diffusion in such an interacting disordered metal. In contrast, we show within perturbation theory that chaos spreads in a ballistic fashion. The squared anticommutator of the electron-field operators inherits a light-cone-like growth, arising from an interplay of a growth (Lyapunov exponent that scales as the inelastic electron scattering rate and a diffusive piece due to the presence of disorder. In two spatial dimensions, the Lyapunov exponent is universally related at weak coupling to the sheet resistivity. We are able to define an effective temperature-dependent butterfly velocity, a speed limit for the propagation of quantum information that is much slower than microscopic velocities such as the Fermi velocity and that is qualitatively similar to that of a quantum critical system with a dynamical critical exponent z>1.
Semiconductor Lasers Stability, Instability and Chaos
Ohtsubo, Junji
2008-01-01
This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.
Chua's circuit a paradigm for chaos
1993-01-01
For uninitiated researchers, engineers, and scientists interested in a quick entry into the subject of chaos, this book offers a timely collection of 55 carefully selected papers covering almost every aspect of this subject. Because Chua's circuit is endowed with virtually every bifurcation phenomena reported in the extensive literature on chaos, and because it is the only chaotic system which can be easily built by a novice, simulated in a personal computer, and tractable mathematically, it has become a paradigm for chaos, and a vehicle for illustrating this ubiquitous phenomenon. Its supreme
Chaos in plasma simulation and experiment
International Nuclear Information System (INIS)
Watts, C.; Sprott, J.C.
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system
Chaos in plasma simulation and experiment
Energy Technology Data Exchange (ETDEWEB)
Watts, C. [Texas Univ., Austin, TX (United States). Fusion Research Center; Newman, D.E. [Oak Ridge National Lab., TN (United States); Sprott, J.C. [Wisconsin Univ., Madison, WI (United States). Plasma Physics Research
1993-09-01
We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.
Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems
International Nuclear Information System (INIS)
Xiao-Dan, Zhang; Zhen, Wang; Pin-Dong, Zhao
2008-01-01
We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system
Synchronised laser chaos communication: statistical investigation of an experimental system
Lawrance, Anthony J.; Papamarkou, Theodore; Uchida, Atsushi
2017-01-01
The paper is concerned with analyzing data from an experimental antipodal laser-based chaos shift-keying communication system. Binary messages are embedded in a chaotically behaving laser wave which is transmitted through a fiber-optic cable and are decoded at the receiver using a second laser synchronized with the emitter laser. Instrumentation in the experimental system makes it particularly interesting to be able to empirically analyze both optical noise and synchronization error as well a...
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Classical foundations of many-particle quantum chaos
International Nuclear Information System (INIS)
Gutkin, Boris; Osipov, Vladimir
2016-01-01
In the framework of semiclassical theory the universal properties of quantum systems with classically chaotic dynamics can be accounted for through correlations between partner periodic orbits with small action differences. So far, however, the scope of this approach has been mainly limited to systems of a few particles with low-dimensional phase spaces. In the present work we consider N-particle chaotic systems with local homogeneous interactions, where N is not necessarily small. Based on a model of coupled cat maps we demonstrate emergence of a new mechanism for correlation between periodic orbit actions. In particular, we show the existence of partner orbits which are specific to many-particle systems. For a sufficiently large N these new partners dominate the spectrum of correlating periodic orbits and seem to be necessary for construction of a consistent many-particle semiclassical theory. (paper)
Quantum Statistics of the Toda Oscillator in the Wigner Function Formalism
Vojta, Günter; Vojta, Matthias
Classical and quantum mechanical Toda systems (Toda molecules, Toda lattices, Toda quantum fields) recently found growing interest as nonlinear systems showing solitons and chaos. In this paper the statistical thermodynamics of a system of quantum mechanical Toda oscillators characterized by a potential energy V(q) = Vo cos h q is treated within the Wigner function formalism (phase space formalism of quantum statistics). The partition function is given as a Wigner- Kirkwood series expansion in terms of powers of h2 (semiclassical expansion). The partition function and all thermodynamic functions are written, with considerable exactness, as simple closed expressions containing only the modified Hankel functions Ko and K1 of the purely imaginary argument i with = Vo/kT.Translated AbstractQuantenstatistik des Toda-Oszillators im Formalismus der Wigner-FunktionKlassische und quantenmechanische Toda-Systeme (Toda-Moleküle, Toda-Gitter, Toda-Quantenfelder) haben als nichtlineare Systeme mit Solitonen und Chaos in jüngster Zeit zunehmend an Interesse gewonnen. Wir untersuchen die statistische Thermodynamik eines Systems quantenmechanischer Toda-Oszillatoren, die durch eine potentielle Energie der Form V(q) = Vo cos h q charakterisiert sind, im Formalismus der Wigner-Funktion (Phasenraum-Formalismus der Quantenstatistik). Die Zustandssumme wird als Wigner-Kirkwood-Reihe nach Potenzen von h2 (semiklassische Entwicklung) dargestellt, und aus ihr werden die thermodynamischen Funktionen berechnet. Sämtliche Funktionen sind durch einfache geschlossene Formeln allein mit den modifizierten Hankel-Funktionen Ko und K1 des rein imaginären Arguments i mit = Vo/kT mit großer Genauigkeit darzustellen.
Chaos suppression based on adaptive observer for a P-class of chaotic systems
International Nuclear Information System (INIS)
Rodriguez, Angel; Leon, Jesus de; Femat, Ricardo
2007-01-01
A feedback approach is presented to suppress chaos in a P-class of chaotic system. The approach is based on an adaptive observer; which provides estimated values of both the unmeasured states and the uncertain model parameters. A continuous-time feedback law is taken as suppressing force. The feedback law attains chaos suppression as the observer provides estimated values close to the actual state/parameter values along time. The proposed scheme is robust in the sense that suppression is achieved despite only some states are measured and uncertainties in parameters are compensated. Results are corroborated experimentally by implementation in chaotic circuits
Chaos suppression based on adaptive observer for a P-class of chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Angel [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, Av. Pedro de Alba s/n Cd. Universitaria, CP 66450 San Nicolas de los Garza, NL (Mexico); Leon, Jesus de [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, Av. Pedro de Alba s/n Cd. Universitaria, CP 66450 San Nicolas de los Garza, NL (Mexico); Femat, Ricardo [Division de Matematicas Aplicadas y Sistemas Computacionales, IPICyT, Camino a la Presa San Jose 2055 Col. Lomas 4a. Secc. CP 78216 San Luis Potosi, SLP (Mexico)]. E-mail: rfemat@ipicyt.edu.mx
2007-05-15
A feedback approach is presented to suppress chaos in a P-class of chaotic system. The approach is based on an adaptive observer; which provides estimated values of both the unmeasured states and the uncertain model parameters. A continuous-time feedback law is taken as suppressing force. The feedback law attains chaos suppression as the observer provides estimated values close to the actual state/parameter values along time. The proposed scheme is robust in the sense that suppression is achieved despite only some states are measured and uncertainties in parameters are compensated. Results are corroborated experimentally by implementation in chaotic circuits.
Chaos Concepts, Control and Constructive Use
Bolotin, Yurii; Yanovsky, Vladimir
2009-01-01
The study of chaotic behaviour in nonlinear, dynamical systems is now a well established research domain with ramifications into all fields of sciences, spanning a vast range of applications, from celestial mechanics, via climate change, to the functioning of brownian motors in cells. A more recent discovery is that chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter itself for the system under investigation, stochastic resonance being a prime example. The present work is putting emphasis on the latter aspects, and after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing relevant algorithms for both Hamiltonian and dissipative systems amongst others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance and a survey of ratchet models. This short and concise pr...
Chaos regularization of quantum tunneling rates
International Nuclear Information System (INIS)
Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward
2011-01-01
Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.
Chaos and its Role in Design and Simulation of Railway Vehicles
DEFF Research Database (Denmark)
True, Hans
1996-01-01
First certain important properties of nonlinear problems are discussed. Thenthe concept of chaos is described. It can only appear in nonlinear systemsand it is very common in the real world. Certain characteristic features ofdeterministic chaos and in relation hereto tests for the existence...... of chaos indynamical systems are presented.\\ Next the relevance of chaos for railwaydynamics is discussed and examples of chaotic oscillations in railwaydynamical model are shown, whereby the distinction between a chaoticattractor and transient chaos is introduces. Some causes of chaos in railwaytechnology...... are discussed. Finally the effects of chaos on field tests andnumerical simulations are discussed....
Quantum chaos in nuclear single-particle motion and damping of giant resonances
International Nuclear Information System (INIS)
Pal, Santanu; Mukhopadhyay, Tapan
1995-01-01
The spectral statistics of single particle motion in deformed cavities with axial symmetry are presented. The single particle motion in the cavities considered are non-integrable and the systematics of the fluctuation measures of the spectra reveal a transition from regular to chaotic regime in the corresponding classical systems. Quantitative estimate of the degree of chaos enables us to introduce a correction factor to the one-body wall formula for the damping widths of isoscalar giant resonances. The damping widths calculated with this correction factor give much better agreement with experimental values than earlier calculations of one-body damping widths. (author). 21 refs., 5 figs
Global chaos synchronization with channel time-delay
International Nuclear Information System (INIS)
Jiang Guoping; Zheng Weixing; Chen Guanrong
2004-01-01
This paper addresses a practical issue in chaos synchronization where there is a time-delay in the receiver as compared with the transmitter. A new synchronization scheme and a general criterion for global chaos synchronization are proposed and developed from the approach of unidirectional linear error feedback coupling with time-delay. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criterion under which the global chaos synchronization of the time-delay coupled systems is achieved
Control design and robustness analysis of a ball and plate system by using polynomial chaos
Energy Technology Data Exchange (ETDEWEB)
Colón, Diego [University of São Paulo, Polytechnic School, LAC -PTC, São Paulo (Brazil); Balthazar, José M. [São Paulo State University - Rio Claro Campus, Rio Claro (Brazil); Reis, Célia A. dos [São Paulo State University - Bauru Campus, Bauru (Brazil); Bueno, Átila M.; Diniz, Ivando S. [São Paulo State University - Sorocaba Campus, Sorocaba (Brazil); Rosa, Suelia de S. R. F. [University of Brasilia, Brasilia (Brazil)
2014-12-10
In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.
Chaos and order in models of black hole pairs
International Nuclear Information System (INIS)
Levin, Janna
2006-01-01
Chaos in the orbits of black hole pairs has by now been confirmed by several independent groups. While the chaotic behavior of binary black hole orbits is no longer argued, it remains difficult to quantify the importance of chaos to the evolutionary dynamics of a pair of comparable mass black holes. None of our existing approximations are robust enough to offer convincing quantitative conclusions in the most highly nonlinear regime. It is intriguing to note that, in three different approximations to a black hole pair built of a spinning black hole and a nonspinning companion, two approximations exhibit chaos and one approximation does not. The fully relativistic scenario of a spinning test mass around a Schwarzschild black hole shows chaos, as does the post-Newtonian Lagrangian approximation. However, the approximately equivalent post-Newtonian Hamiltonian approximation does not show chaos when only one body spins. It is well known in dynamical systems theory that one system can be regular while an approximately related system is chaotic, so there is no formal conflict. However, the physical question remains: Is there chaos for comparable mass binaries when only one object spins? We are unable to answer this question given the poor convergence of the post-Newtonian approximation to the fully relativistic system. A resolution awaits better approximations that can be trusted in the highly nonlinear regime
International Nuclear Information System (INIS)
Frolov, A.M.
1986-01-01
Exact variational calculations are treated for few-particle systems in the exponential basis of relative coordinates using nonlinear parameters. The methods of step-by-step optimization and global chaos of nonlinear parameters are applied to calculate the S and P states of ppμ, ddμ, ttμ homonuclear mesomolecules within the error ≤±0.001 eV. The global chaos method turned out to be well applicable to nuclear 3 H and 3 He systems
Generalized Statistical Mechanics at the Onset of Chaos
Directory of Open Access Journals (Sweden)
Alberto Robledo
2013-11-01
Full Text Available Transitions to chaos in archetypal low-dimensional nonlinear maps offer real and precise model systems in which to assess proposed generalizations of statistical mechanics. The known association of chaotic dynamics with the structure of Boltzmann–Gibbs (BG statistical mechanics has suggested the potential verification of these generalizations at the onset of chaos, when the only Lyapunov exponent vanishes and ergodic and mixing properties cease to hold. There are three well-known routes to chaos in these deterministic dissipative systems, period-doubling, quasi-periodicity and intermittency, which provide the setting in which to explore the limit of validity of the standard BG structure. It has been shown that there is a rich and intricate behavior for both the dynamics within and towards the attractors at the onset of chaos and that these two kinds of properties are linked via generalized statistical-mechanical expressions. Amongst the topics presented are: (i permanently growing sensitivity fluctuations and their infinite family of generalized Pesin identities; (ii the emergence of statistical-mechanical structures in the dynamics along the routes to chaos; (iii dynamical hierarchies with modular organization; and (iv limit distributions of sums of deterministic variables. The occurrence of generalized entropy properties in condensed-matter physical systems is illustrated by considering critical fluctuations, localization transition and glass formation. We complete our presentation with the description of the manifestations of the dynamics at the transitions to chaos in various kinds of complex systems, such as, frequency and size rank distributions and complex network images of time series. We discuss the results.
Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system
International Nuclear Information System (INIS)
Bishop, A.R.; Flesch, R.; Forests, M.G.; Overman, E.A.
1990-01-01
The purpose of this paper is to present a first step toward providing coordinates and associated dynamics for low-dimensional attractors in nearly integrable partial differential equations (pdes), in particular, where the truncated system reflects salient geometric properties of the pde. This is achieved by correlating: (1) numerical results on the bifurcations to temporal chaos with spatial coherence of the damped, periodically forced sine-Gordon equation with periodic boundary conditions; (2) an interpretation of the spatial and temporal bifurcation structures of this perturbed integrable system with regard to the exact structure of the sine-Gordon phase space; (3) a model dynamical systems problem, which is itself a perturbed integrable Hamiltonian system, derived from the perturbed sine-Gordon equation by a finite mode Fourier truncation in the nonlinear Schroedinger limit; and (4) the bifurcations to chaos in the truncated phase space. In particular, a potential source of chaos in both the pde and the model ordinary differential equation systems is focused on: the existence of homoclinic orbits in the unperturbed integrable phase space and their continuation in the perturbed problem. The evidence presented here supports the thesis that the chaotic attractors of the weakly perturbed periodic sine-Gordon system consists of low-dimensional metastable attacking states together with intermediate states that are O(1) unstable and correspond to homoclinic states in the integrable phase space. It is surmised that the chaotic dynamics on these attractors is due to the perturbation of these homocline integrable configurations
Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences.
Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria
2018-01-26
Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.
Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences
Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria
2018-01-01
Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.
Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips
Bruck, Roman
2016-06-08
The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
How to test for partially predictable chaos.
Wernecke, Hendrik; Sándor, Bulcsú; Gros, Claudius
2017-04-24
For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation can split into an initial exponential decrease and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. Both processes can be either of the same or of very different time scales. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall extent of the attractor) for exceedingly long times and remain partially predictable. Standard tests for chaos widely use inter-orbital correlations as an indicator. However, testing partially predictable chaos yields mostly ambiguous results, as this type of chaos is characterized by attractors of fractally broadened braids. For a resolution we introduce a novel 0-1 indicator for chaos based on the cross-distance scaling of pairs of initially close trajectories. This test robustly discriminates chaos, including partially predictable chaos, from laminar flow. Additionally using the finite time cross-correlation of pairs of initially close trajectories, we are able to identify laminar flow as well as strong and partially predictable chaos in a 0-1 manner solely from the properties of pairs of trajectories.
Shuffling cards, factoring numbers and the quantum baker's map
International Nuclear Information System (INIS)
Lakshminarayan, Arul
2005-01-01
It is pointed out that an exactly solvable permutation operator, viewed as the quantization of cyclic shifts, is useful in constructing a basis in which to study the quantum baker's map, a paradigm system of quantum chaos. In the basis of this operator the eigenfunctions of the quantum baker's map are compressed by factors of around five or more. We show explicitly its connection to an operator that is closely related to the usual quantum baker's map. This permutation operator has interesting connections to the art of shuffling cards as well as to the quantum factoring algorithm of Shor via the quantum order finding one. Hence we point out that this well-known quantum algorithm makes crucial use of a quantum chaotic operator, or at least one that is close to the quantization of the left-shift, a closeness that we also explore quantitatively. (letter to the editor)
Huwe, Terence K.
2009-01-01
"Embracing the chaos" is an ongoing challenge for librarians. Embracing the chaos means librarians must have a plan for responding to the flood of new products, widgets, web tools, and gizmos that students use daily. In this article, the author argues that library instruction and access services have been grappling with that chaos with…
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Pattern formation and chaos in synergetic systems
Energy Technology Data Exchange (ETDEWEB)
Haken, H
1985-01-01
A general approach to the reduction of the equations of systems composed of many subsystems of equations for, in general, few order parameters at instability points is sketched. As special case generalized Ginzburg-Landau equations are obtained. Recent results based on these equations, showing pattern formation in the convection instability and flames, are presented. Bifurcations from tori to other tori are treated, and some general conclusions are drawn. Analogies between fluid dynamics and lasers which led to the prediction of laser light chaos by Haken (1975) are pointed out. Finally the suspension of a class of discrete one-dimensional maps is discussed and explicitly presented for a typical case. 21 references.
Kalantari, Bahman
Polynomiography is the algorithmic visualization of iterative systems for computing roots of a complex polynomial. It is well known that iterations of a rational function in the complex plane result in chaotic behavior near its Julia set. In one scheme of computing polynomiography for a given polynomial p(z), we select an individual member from the Basic Family, an infinite fundamental family of rational iteration functions that in particular include Newton's. Polynomiography is an excellent means for observing, understanding, and comparing chaotic behavior for variety of iterative systems. Other iterative schemes in polynomiography are possible and result in chaotic behavior of different kinds. In another scheme, the Basic Family is collectively applied to p(z) and the iterates for any seed in the Voronoi cell of a root converge to that root. Polynomiography reveals chaotic behavior of another kind near the boundary of the Voronoi diagram of the roots. We also describe a novel Newton-Ellipsoid iterative system with its own chaos and exhibit images demonstrating polynomiographies of chaotic behavior of different kinds. Finally, we consider chaos for the more general case of polynomiography of complex analytic functions. On the one hand polynomiography is a powerful medium capable of demonstrating chaos in different forms, it is educationally instructive to students and researchers, also it gives rise to numerous research problems. On the other hand, it is a medium resulting in images with enormous aesthetic appeal to general audiences.
Hamiltonian Chaos and Fractional Dynamics
International Nuclear Information System (INIS)
Combescure, M
2005-01-01
This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not
Energy Technology Data Exchange (ETDEWEB)
Frolov, A M
1986-09-01
Exact variational calculations are treated for few-particle systems in the exponential basis of relative coordinates using nonlinear parameters. The methods of step-by-step optimization and global chaos of nonlinear parameters are applied to calculate the S and P states of pp..mu.., dd..mu.., tt..mu.. homonuclear mesomolecules within the error less than or equal to+-0.001 eV. The global chaos method turned out to be well applicable to nuclear /sup 3/H and /sup 3/He systems.
Effect of smoothing on robust chaos.
Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae
2010-08-01
In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.
Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera
Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng
2018-01-01
We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical ...
Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos
Directory of Open Access Journals (Sweden)
Bin Wang
2015-01-01
Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Chaos in neurons and its application: perspective of chaos engineering.
Hirata, Yoshito; Oku, Makito; Aihara, Kazuyuki
2012-12-01
We review our recent work on chaos in neurons and its application to neural networks from perspective of chaos engineering. Especially, we analyze a dataset of a squid giant axon by newly combining our previous work of identifying Devaney's chaos with surrogate data analysis, and show that an axon can behave chaotically. Based on this knowledge, we use a chaotic neuron model to investigate possible information processing in the brain.
International Nuclear Information System (INIS)
Priyadarshi, S; Pierce, I; Hong, Y; Shore, K A
2012-01-01
In optical chaos communications a message is masked in the noise-like broadband output of a chaotic transmitter laser, and message recovery is enabled through the synchronization of the transmitter and the (chaotic) receiver laser. Key issues are to identify the laser operating conditions which provide the highest quality synchronization conditions and those which provide optimized message extraction. In general such operating conditions are not coincident. In this paper numerical simulations are performed with the aim of identifying a regime of operation where the highest quality synchronization and optimizing message extraction efficiency are achieved simultaneously. Use of such an operating regime will facilitate practical deployment of optical chaos communications systems without the need for re-adjustment of laser operating conditions in the field. (paper)
Chaos Theory and James Joyce's "ulysses": Leopold Bloom as a Human COMPLEX@SYSTEM^
Mackey, Peter Francis
1995-01-01
These four ideas apply as much to our lives as to the life of Leopold Bloom: (1) A trivial decision can wholly change a life. (2) A chance encounter can dramatically alter life's course. (3) A contingent nexus exists between consciousness and environment. (4) A structure of meaning helps us interpret life's chaos. These ideas also relate to a contemporary science called by some "chaos theory." The connection between Ulysses and chaos theory enhances our understanding of Bloom's day; it also suggests that this novel may be about the real process of life itself. The first chapter explains how Joyce's own essays and comments to friends compel attention to the links between Ulysses and chaos theory. His scientific contemporaries anticipated chaos theory, and their ideas seem to have rubbed off on him. We see this in his sense of trivial things and chance, his modernistic organizational impulses, and the contingent nature of Bloom's experience. The second chapter studies what chaos theory and Joyce's ideas tell us about "Ithaca," the episode which particularly implicates our processes of interpreting this text as well as life itself as we face their chaos. The third chapter examines Bloom's close feel for the aboriginal world, a contingency that clarifies his vulnerability to trivial changes. The fourth chapter studies how Bloom's stream of consciousness unfolds--from his chance encounters with trivial things. Beneath this stream's seeming chaos, Bloom's distinct personality endures, similar to how Joyce's schemas give Ulysses an imbedded, underlying order. The fifth chapter examines how trivial perturbations, such as Lyons' misunderstanding about "Throwaway," produce small crises for Bloom, exacerbating his seeming impotence before his lonely "fate.". The final chapter analyzes Bloom's views that fate and chance dictate his life. His views provide an opportunity to explore the implications chaos theory has for our understanding of free will and determinism. Ultimately
Sliding bifurcations and chaos induced by dry friction in a braking system
International Nuclear Information System (INIS)
Yang, F.H.; Zhang, W.; Wang, J.
2009-01-01
In this paper, non-smooth bifurcations and chaotic dynamics are investigated for a braking system. A three-degree-of-freedom model is considered to capture the complicated nonlinear characteristics, in particular, non-smooth bifurcations in the braking system. The stick-slip transition is analyzed for the braking system. From the results of numerical simulation, it is observed that there also exist the grazing-sliding bifurcation and stick-slip chaos in the braking system.
Chaos-based hash function (CBHF) for cryptographic applications
International Nuclear Information System (INIS)
Amin, Mohamed; Faragallah, Osama S.; Abd El-Latif, Ahmed A.
2009-01-01
As the core of cryptography, hash is the basic technique for information security. Many of the hash functions generate the message digest through a randomizing process of the original message. Subsequently, a chaos system also generates a random behavior, but at the same time a chaos system is completely deterministic. In this paper, an algorithm for one-way hash function construction based on chaos theory is introduced. Theoretical analysis and computer simulation indicate that the algorithm can satisfy all performance requirements of hash function in an efficient and flexible manner and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication.
Chaos-based hash function (CBHF) for cryptographic applications
Energy Technology Data Exchange (ETDEWEB)
Amin, Mohamed [Dept. of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511 (Egypt)], E-mail: mamin04@yahoo.com; Faragallah, Osama S. [Dept. of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952 (Egypt)], E-mail: osam_sal@yahoo.com; Abd El-Latif, Ahmed A. [Dept. of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511 (Egypt)], E-mail: ahmed_rahiem@yahoo.com
2009-10-30
As the core of cryptography, hash is the basic technique for information security. Many of the hash functions generate the message digest through a randomizing process of the original message. Subsequently, a chaos system also generates a random behavior, but at the same time a chaos system is completely deterministic. In this paper, an algorithm for one-way hash function construction based on chaos theory is introduced. Theoretical analysis and computer simulation indicate that the algorithm can satisfy all performance requirements of hash function in an efficient and flexible manner and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication.
Directory of Open Access Journals (Sweden)
Jian Liu
2014-11-01
Full Text Available This paper introduces a type of modified hybrid projective synchronization with complex transformationmatrix (CMHPS for different dimensional fractional-order complex chaos and fractional-order real hyper-chaos. The transformationmatrix in this type of chaotic synchronization is a non-square matrix, and its elements are complex numbers. Based on the stability theory of fractional-order systems, by employing the feedback control technique, necessary and sufficient criteria on CMHPS are derived. Furthermore, CMHPS between fractional-order real hyper-chaotic Rössler system and other two different dimensional fractional-order complex Lorenz-like chaotic systems is provided as two examples to discuss reduced order and increased order synchronization, respectively.
A simple method of chaos control for a class of chaotic discrete-time systems
International Nuclear Information System (INIS)
Jiang Guoping; Zheng Weixing
2005-01-01
In this paper, a simple method is proposed for chaos control for a class of discrete-time chaotic systems. The proposed method is built upon the state feedback control and the characteristic of ergodicity of chaos. The feedback gain matrix of the controller is designed using a simple criterion, so that control parameters can be selected via the pole placement technique of linear control theory. The new controller has a feature that it only uses the state variable for control and does not require the target equilibrium point in the feedback path. Moreover, the proposed control method cannot only overcome the so-called 'odd eigenvalues number limitation' of delayed feedback control, but also control the chaotic systems to the specified equilibrium points. The effectiveness of the proposed method is demonstrated by a two-dimensional discrete-time chaotic system
Jiang, Xingxing; Cheng, Mengfan; Luo, Fengguang; Deng, Lei; Fu, Songnian; Ke, Changjian; Zhang, Minming; Tang, Ming; Shum, Ping; Liu, Deming
2016-12-12
A novel electro-optic chaos source is proposed on the basis of the reverse-time chaos theory and an analog-digital hybrid feedback loop. The analog output of the system can be determined by the numeric states of shift registers, which makes the system robust and easy to control. The dynamical properties as well as the complexity dependence on the feedback parameters are investigated in detail. The correlation characteristics of the system are also studied. Two improving strategies which were established in digital field and analog field are proposed to conceal the time-delay signature. The proposed scheme has the potential to be used in radar and optical secure communication systems.
A New 3-D Piecewise-Linear System for Chaos Generation
Directory of Open Access Journals (Sweden)
Z. Elhadj
2007-06-01
Full Text Available We propose in this paper a new simple continuous-time piecewise-linear three dimensional system for chaos generation. Nonlinearity in this model is introduced by the characteristic function of the Chua's circuit given in [1]. Simulated results of some chaotic attractors are shown and justified numerically via computing the largest Lyapunov exponent. The possibility and the robustness of the circuitry realization is also given and discussed.
Decoherence, entanglement, and chaos in the Dicke model
International Nuclear Information System (INIS)
Hou Xiwen; Hu Bambi
2004-01-01
The dynamical properties of quantum entanglement in the Dicke model without rotating-wave approximation are investigated in terms of the reduced-density linear entropy. The characteristic time of decoherence process in the early-time evolution is numerically obtained and it is shown that the characteristic time decreases as the coupling parameter increases. The mean entanglement, which is defined to be averaged over time, is employed to describe the influences of both quantum phase transition and corresponding classical chaos on the behavior of entanglement. For a given energy, initial conditions are taken to be minimum uncertainty wave packets centered at regular and chaotic regions of the classical phase space. It is shown that the entanglement has a distinct change at the quantum phase transition, and that the entanglement for regular initial conditions is smaller than that for chaotic ones in the case of weak coupling, while it fluctuates with small amplitude in strong coupling and for chaotic initial conditions
From chaos to order methodologies, perspectives and applications
Chen Guan Rong
1998-01-01
Chaos control has become a fast-developing interdisciplinary research field in recent years. This book is for engineers and applied scientists who want to have a broad understanding of the emerging field of chaos control. It describes fundamental concepts, outlines representative techniques, provides case studies, and highlights recent developments, putting the reader at the forefront of current research.Important topics presented in the book include: Fundamentals of nonlinear dynamical systems, essential for understanding and developing chaos control methods.; Parametric variation and paramet
On Nonextensive Statistics, Chaos and Fractal Strings
Castro, C
2004-01-01
Motivated by the growing evidence of universality and chaos in QFT and string theory, we study the Tsallis non-extensive statistics ( with a non-additive $ q$-entropy ) of an ensemble of fractal strings and branes of different dimensionalities. Non-equilibrium systems with complex dynamics in stationary states may exhibit large fluctuations of intensive quantities which are described in terms of generalized statistics. Tsallis statistics is a particular representative of such class. The non-extensive entropy and probability distribution of a canonical ensemble of fractal strings and branes is studied in terms of their dimensional spectrum which leads to a natural upper cutoff in energy and establishes a direct correlation among dimensions, energy and temperature. The absolute zero temperature ( Kelvin ) corresponds to zero dimensions (energy ) and an infinite temperature corresponds to infinite dimensions. In the concluding remarks some applications of fractal statistics, quasi-particles, knot theory, quantum...
Chaos control for the family of Roessler systems using feedback controllers
International Nuclear Information System (INIS)
Liao Xiaoxin; Yu Pei
2006-01-01
This paper presents a new method for controlling chaos in several classical chaotic Roessler systems using feedback control strategy. In particular, for an arbitrarily given equilibrium point of a Roessler system, we design explicit and simple feedback control laws by which the equilibrium point is globally and exponentially stabilized. Six typical Roessler systems are studied, and explicit formulas are derived for estimating the convergence rate of these systems. Numerical examples are presented to illustrate the theoretical results. A mistake has been found in the existing literature, and a correct result is given
Locality for quantum systems on graphs depends on the number field
Hall, H. Tracy; Severini, Simone
2013-07-01
Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47-79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.
Locality for quantum systems on graphs depends on the number field
International Nuclear Information System (INIS)
Hall, H Tracy; Severini, Simone
2013-01-01
Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47–79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics. (paper)
Quantum Dot Systems: a versatile platform for quantum simulations
International Nuclear Information System (INIS)
Barthelemy, Pierre; Vandersypen, Lieven M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
DEFF Research Database (Denmark)
Lykke, Marianne; Lund, Haakon; Skov, Mette
2016-01-01
CHAOS (Cultural Heritage Archive Open System) provides streaming access to more than 500,000 broadcasts by the Danish Broadcast Corporation from 1931 and onwards. The archive is part of the LARM project with the purpose of enabling researchers to search, annotate, and interact with recordings...
A new approach for realizing electronic chaos generators
International Nuclear Information System (INIS)
Elwakeel, A.E.
1997-01-01
A dictionary definition of chaos is a 'formless primordial matter, utter confusion' [1]. The study of chaos is part of a larger program of study of so-called strongly nonlinear systems. No strict definition of chaos yet exists, however, nonrandom complicated motions that exhibit a very rapid growth of errors and that, despite perfect determinism, inhibit any ability to render accurate long-term prediction are usually termed chaotic. In other words, chaos may be referred to as deterministic randomness since it is the phenomenon where deterministic laws, are sometimes extremely simple, show random (or random-like) behaviours while random (or random-like) motions happen to follow strict deterministic laws. The sense of order in chaos can be usually observed in the space of dimensions where time is not a dimension, while the sense of randomness is usually evident when time is incorporated. 10 refs., 29 figs
Controlling chaos in the current-driven ion acoustic instability
International Nuclear Information System (INIS)
Fukuyama, T.; Taniguchi, K.; Kawai, Y.
2002-01-01
Control of intermittent chaos caused by the current-driven ion acoustic instability is attempted and the controlling mechanism is investigated. When a small negative dc voltage is applied to the chaotic system as a perturbation, the system changes from a chaotic state to a periodic state while maintaining the instability, indicating that the chaotic state caused by the ion acoustic instability is well controlled by applying a small negative dc voltage. A hysteresis structure is observed on the V-I curve of the mesh grid to which the negative dc voltage to control is applied. Furthermore, when a negative dc voltage is applied to the state which shows a laminar structure existing under same experimental conditions, the system becomes chaotic via a bifurcation. Driven-chaos is excited when a negative dc voltage is applied to the laminar state. Applying a small negative dc voltage leads to controlling intermittent chaos while exciting driven-chaos
Mobayen, Saleh
2018-06-01
This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
The Limits of the Newtonian Forecast and the search of order in the chaos
Directory of Open Access Journals (Sweden)
N. Sánchez–Santillán
2008-04-01
Full Text Available Newtonian deterministic mechanichs can only describe and predict the behavior of simple natural systems with few components, which represent approximately 10% of those conforming the universal reality known until now. The remaining 90%, whose complexity and degree of uncertainty make them practically inaccessible to this approach, require a new holistic or total vision, with an approach that includes concepts of Newton's and Descartes's classical mechanics, as much as those emanated from the indeterministic stream, such as nonlinearity and aleatory sequences, calculus of probability and statistics, chaos and order, exponential instability, quantum Theory, attractors and fractals, and information theory.
International Nuclear Information System (INIS)
Gao Fei; Tong Hengqing; Li Zhuoqiu
2008-01-01
This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises
Directory of Open Access Journals (Sweden)
A. Elsonbaty
2014-10-01
Full Text Available In this article, the adaptive chaos synchronization technique is implemented by an electronic circuit and applied to the hyperchaotic system proposed by Chen et al. We consider the more realistic and practical case where all the parameters of the master system are unknowns. We propose and implement an electronic circuit that performs the estimation of the unknown parameters and the updating of the parameters of the slave system automatically, and hence it achieves the synchronization. To the best of our knowledge, this is the first attempt to implement a circuit that estimates the values of the unknown parameters of chaotic system and achieves synchronization. The proposed circuit has a variety of suitable real applications related to chaos encryption and cryptography. The outputs of the implemented circuits and numerical simulation results are shown to view the performance of the synchronized system and the proposed circuit.
DEFF Research Database (Denmark)
Lykke, Marianne; Skov, Mette; Lund, Haakon
CHAOS (Cultural Heritage Archive Open System) provides streaming access to more than 500.000 broad-casts by the Danish Broadcast Corporation from 1931 and onwards. The archive is part of the LARM project with the purpose of enabling researchers to search, annotate, and interact with recordings...
Suppression of chaos at slow variables by rapidly mixing fast dynamics
Abramov, R.
2012-04-01
One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables.
Schmid, Gary Bruno
Underlying idea: A new hypothesis about how the mental state of psychosis may arise in the brain as a "linear" information processing pathology is briefly introduced. This hypothesis is proposed in the context of a complementary approach to psychiatry founded in the logical paradigm of chaos theory. To best understand the relation between chaos theory and psychiatry, the semantic structure of chaos theory is analyzed with the help of six general, and six specific, fundamental characteristics which can be directly inferred from empirical observations on chaotic systems. This enables a mathematically and physically stringent perspective on psychological phenomena which until now could only be grasped intuitively: Chaotic systems are in a general sense dynamic, intrinsically coherent, deterministic, recursive, reactive and structured: in a specific sense, self-organizing, unpredictable, nonreproducible, triadic, unstable and self-similar. To a great extent, certain concepts of chaos theory can be associated with corresponding concepts in psychiatry, psychology and psychotherapy, thus enabling an understanding of the human psyche in general as a (fractal) chaotic system and an explanation of certain mental developments, such as the course of schizophrenia, the course of psychosis and psychotherapy as chaotic processes. General overview: A short comparison and contrast of classical and chaotic physical theory leads to four postulates and one hypothesis motivating a new, dynamic, nonlinear approach to classical, causal psychiatry: Process-Oriented PSYchiatry or "POPSY", for short. Four aspects of the relationship between chaos theory and POPSY are discussed: (1) The first of these, namely, Identification of Chaos / Picture of Illness involves a definition of Chaos / Psychosis and a discussion of the 6 logical characteristics of each. This leads to the concept of dynamical disease (definition, characteristics and examples) and to the idea of "psychological disturbance as
Geometric and dynamic perspectives on phase-coherent and noncoherent chaos.
Zou, Yong; Donner, Reik V; Kurths, Jürgen
2012-03-01
Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time series is a contemporary problem in nonlinear sciences. In this work, we propose different measures based on recurrence properties of recorded trajectories, which characterize the underlying systems from both geometric and dynamic viewpoints. The potentials of the individual measures for discriminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numerical analysis is performed for the chaotic Rössler system, which displays both types of chaos as one control parameter is varied, and the Mackey-Glass system as an example of a time-delay system with noncoherent chaos. Our results demonstrate that especially geometric measures from recurrence network analysis are well suited for tracing transitions between spiral- and screw-type chaos, a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscillators. A detailed explanation of the observed behavior in terms of attractor geometry is given.
Chaos analysis and chaotic EMI suppression of DC-DC converters
Zhang, Bo
2014-01-01
Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co
International Nuclear Information System (INIS)
Chen Yun; Wu Xiaofeng; Liu Zhong
2009-01-01
This paper studies global synchronization of non-autonomous chaotic electro-mechanical gyrostat systems via variable substitution control. A master-slave non-autonomous synchronization scheme with variable substitution control is mathematically presented. Based on the scheme, some sufficient algebraic criteria for global chaos synchronization of master and slave electro-mechanical gyrostat systems via various single-variable coupling are derived. The effectiveness of the obtained criteria is numerically illustrated by the examples.
Bifurcations and chaos of a vibration isolation system with magneto-rheological damper
Energy Technology Data Exchange (ETDEWEB)
Zhang, Hailong [Magneto-electronics Lab, School of Physics and Technology, Nanjing Normal University, Nanjing 210046 (China); Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042 (China); Zhang, Ning [Magneto-electronics Lab, School of Physics and Technology, Nanjing Normal University, Nanjing 210046 (China); Min, Fuhong; Yan, Wei; Wang, Enrong, E-mail: erwang@njnu.edu.cn [Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042 (China)
2016-03-15
Magneto-rheological (MR) damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF) MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE) spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.
Bifurcations and chaos of a vibration isolation system with magneto-rheological damper
Directory of Open Access Journals (Sweden)
Hailong Zhang
2016-03-01
Full Text Available Magneto-rheological (MR damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.
Mondal, S; Pawar, S A; Sujith, R I
2017-10-01
Thermoacoustic instability, caused by a positive feedback between the unsteady heat release and the acoustic field in a combustor, is a major challenge faced in most practical combustors such as those used in rockets and gas turbines. We employ the synchronization theory for understanding the coupling between the unsteady heat release and the acoustic field of a thermoacoustic system. Interactions between coupled subsystems exhibiting different collective dynamics such as periodic, quasiperiodic, and chaotic oscillations are addressed. Even though synchronization studies have focused on different dynamical states separately, synchronous behaviour of two coupled systems exhibiting a quasiperiodic route to chaos has not been studied. In this study, we report the first experimental observation of different synchronous behaviours between two subsystems of a thermoacoustic system exhibiting such a transition as reported in Kabiraj et al. [Chaos 22, 023129 (2012)]. A rich variety of synchronous behaviours such as phase locking, intermittent phase locking, and phase drifting are observed as the dynamics of such subsystem change. The observed synchronization behaviour is further characterized using phase locking value, correlation coefficient, and relative mean frequency. These measures clearly reveal the boundaries between different states of synchronization.
A new method for chaos control in communication systems
International Nuclear Information System (INIS)
Lin, S.-L.; Tung, P.-C.
2009-01-01
With the increasing needs of global communication, the improvement of secure communication is of vital importance. This study proposes a new scheme for establishing secure communication systems. The new scheme separates white Gaussian noises from the chaotic signals with modified Independent Component Analysis (ICA) and then controls each chaotic signal. This scheme is able to deal with white Gaussian noises in the natural world. However, the signals separated by traditional ICA shows opposite phase and unequal amplitude, making chaos control impossible. Our study proposed a modified ICA, which can calculate accurately the phase and amplitude and ensure control of the chaotic systems. The result indicates that our proposed system can successfully separate white Gaussian noise and stabilize all the chaotic signals.
Deterministic chaos in the processor load
International Nuclear Information System (INIS)
Halbiniak, Zbigniew; Jozwiak, Ireneusz J.
2007-01-01
In this article we present the results of research whose purpose was to identify the phenomenon of deterministic chaos in the processor load. We analysed the time series of the processor load during efficiency tests of database software. Our research was done on a Sparc Alpha processor working on the UNIX Sun Solaris 5.7 operating system. The conducted analyses proved the presence of the deterministic chaos phenomenon in the processor load in this particular case
Applying Chaos Theory to Lesson Planning and Delivery
Cvetek, Slavko
2008-01-01
In this article, some of the ways in which thinking about chaos theory can help teachers and student-teachers to accept uncertainty and randomness as natural conditions in the classroom are considered. Building on some key features of complex systems commonly attributed to chaos theory (e.g. complexity, nonlinearity, sensitivity to initial…
Anticipated chaos in a nonsymmetric coupled external-cavity-laser system
International Nuclear Information System (INIS)
Rees, Paul; Spencer, Paul S.; Pierce, Iestyn; Sivaprakasam, S.; Shore, K. Alan
2003-01-01
We explain how the anticipation of chaos in a coupled external cavity laser system described by Sivaprakasam, Shahverdiev, Spencer, and Shore [Phys. Rev. Lett. 87, 154101 (2001)] is obtained. We show that the external cavity induces the required symmetry breaking necessary for the existence of a time delay between the synchronized output of the two laser diodes. The inclusion of a detuning between the two lasers causes one laser to anticipate the chaotic dynamics of the other
Quantum equivalence of a driven triple-well Van der Pol oscillator: A QTM study
International Nuclear Information System (INIS)
Chakraborty, Debdutta; Chattaraj, Pratim Kumar
2014-01-01
Highlights: • Quantum–classical correspondence is manifested at strong external coupling regime. • Suppression of classical chaos takes place in quantum domain. • Quantum chaos promotes quantum diffusion. • Quantum localisation is realised when interference effects are dominant. - Abstract: A quantum mechanical analogue of the classically chaotic triple-well oscillator under the influence of an external field and parametric excitation has been studied by using the quantum theory of motion. The on the fly calculations show the correspondence between some dynamical aspects of the classical and quantum oscillators along with a strictly quantum mechanical behaviour in case of diffusion and tunneling. Suitable external conditions have been obtained which can either assist or suppress the movement of quantum particles from one well to another. Quantum interference effects play a critical role in determining the nature of the quantum dynamics and in the presence of strong coupling to the external forces, quantum interference effects reduce drastically leading to decoherence of the quantum wave packet. In such situations, quantum dynamical features qualitatively resemble the corresponding classical dynamical behaviour and a correspondence between classical and quantum dynamics is obtained
Chaos control of ferroresonance system based on RBF-maximum entropy clustering algorithm
International Nuclear Information System (INIS)
Liu Fan; Sun Caixin; Sima Wenxia; Liao Ruijin; Guo Fei
2006-01-01
With regards to the ferroresonance overvoltage of neutral grounded power system, a maximum-entropy learning algorithm based on radial basis function neural networks is used to control the chaotic system. The algorithm optimizes the object function to derive learning rule of central vectors, and uses the clustering function of network hidden layers. It improves the regression and learning ability of neural networks. The numerical experiment of ferroresonance system testifies the effectiveness and feasibility of using the algorithm to control chaos in neutral grounded system
Controlling Mackey-Glass chaos
Kiss, Gábor; Röst, Gergely
2017-11-01
The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.
Controlling Mackey-Glass chaos.
Kiss, Gábor; Röst, Gergely
2017-11-01
The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.
Noise-induced chaos in a quadratically nonlinear oscillator
International Nuclear Information System (INIS)
Gan Chunbiao
2006-01-01
The present paper focuses on the noise-induced chaos in a quadratically nonlinear oscillator. Simple zero points of the stochastic Melnikov integral theoretically mean the necessary rising of noise-induced chaotic response in the system based on the stochastic Melnikov method. To quantify the noise-induced chaos, the boundary of the system's safe basin is firstly studied and it is shown to be incursively fractal when chaos arises. Three cases are considered in simulating the safe basin of the system, i.e., the system is excited only by the harmonic excitation, by both the harmonic and the Gaussian white noise excitations, and only by the Gaussian white noise excitation. Secondly, the leading Lyapunov exponent by Rosenstein's algorithm is shown to quantify the chaotic nature of the sample time series of the system. The results show that the boundary of the safe basin can also be fractal even if the system is excited only by the external Gaussian white noise. Most importantly, the almost-harmonic, the noise-induced chaotic and the thoroughly random responses can be found in the system
International Nuclear Information System (INIS)
Chirikov, B.V.
1990-01-01
Classification of chaotic patterns in classical Hamiltonian systems is given as a series of levels with increasing disorder. Hamiltonian dynamics is presented, including the renormalization chaos, based upon the fairly simple resonant theory. First estimates for the critical structure and related statistical anomalies in arbitrary dimensions are discussed. 49 refs
Mechanics from Newton's laws to deterministic chaos
Scheck, Florian
2018-01-01
This book covers all topics in mechanics from elementary Newtonian mechanics, the principles of canonical mechanics and rigid body mechanics to relativistic mechanics and nonlinear dynamics. It was among the first textbooks to include dynamical systems and deterministic chaos in due detail. As compared to the previous editions the present 6th edition is updated and revised with more explanations, additional examples and problems with solutions, together with new sections on applications in science. Symmetries and invariance principles, the basic geometric aspects of mechanics as well as elements of continuum mechanics also play an important role. The book will enable the reader to develop general principles from which equations of motion follow, to understand the importance of canonical mechanics and of symmetries as a basis for quantum mechanics, and to get practice in using general theoretical concepts and tools that are essential for all branches of physics. The book contains more than 150 problems ...
Discrete chaos with applications in science and engineering
Elaydi, Saber N
2007-01-01
PREFACE FOREWORD The Stability of One-Dimensional Maps Introduction Maps vs. Difference Equations Maps vs. Differential Equations Linear Maps/Difference Equations Fixed (Equilibrium) Points Graphical Iteration and Stability Criteria for Stability Periodic Points and Their Stability The Period-Doubling Route to Chaos Applications Attraction and Bifurcation Introduction Basin of Attraction of Fixed Points Basin of Attraction of Periodic Orbits Singer's Theorem Bifurcation Sharkovsky's Theorem The Lorenz Map Period-Doubling in the Real World Poincaré Section/Map Appendix Chaos in One Dimension Introduction Density of the Set of Periodic Points Transitivity Sensitive Dependence Definition of Chaos Cantor Sets Symbolic Dynamics Conjugacy Other Notions of Chaos Rössler's Attractor Saturn's Rings Stability of Two-Dimensional Maps Linear Maps vs. Linear Systems Computing An Fundamental Set of Solutions Second-Order Difference Equations Phase Space ...
Synchronization and suppression of chaos in non-locally coupled ...
Indian Academy of Sciences (India)
Coupled map lattices have been intensively investigated as models to understand many spatiotemporal phenomena observed in extended system, and consequently spatiotemporal chaos. We used the complex order parameter to quantify chaos synchronization for a one-dimensional chain of coupled logistic maps with a ...
International Nuclear Information System (INIS)
Evdokimov, Nikolai V; Komolov, Pavel V; Komolov, Vladimir P
2001-01-01
The sign correlation of quasiperiodic oscillations with close incommensurable frequencies forms a dynamic chaos, which interferes like noise with a single interference peak and is controlled by the delay of its constituent oscillations. This property of oscillations with incommensurable frequencies can be employed in multichannel information transfer systems to form radar reception patterns and obtain uninterrupted coherent key streams in symmetric cryptographic systems. The review of known results on the generation and properties of quasiperiodic oscillations is complemented by a description of new experiments. (methodological notes)
Dynamic analysis, controlling chaos and chaotification of a SMIB power system
International Nuclear Information System (INIS)
Chen, H.-K.; Lin, T.-N.; Chen, J.-H.
2005-01-01
The dynamic behaviors of a SMIB power system are studied in this paper. A single modal equation is used to analyze the qualitative behaviors of the system. The famous equation of motion is called 'swing equation'. The Lyapunov direct method is applied to obtain conditions of stability of the equilibrium points of the system. The bifurcation of the parameter dependent system is studied numerically. Besides, the phase portraits, the Poincare maps, and the Lyapunov exponents are presented to observe periodic and chaotic motions. Further, the addition of periodic force and the feedback control are used to control chaos effectively. Finally, the chaotification problem of the SMIB power system is also issued
Chaos and the (un)predictability of evolution in a changing environment.
Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel
2018-02-01
Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Chaos Modelling with Computers
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Chaos Modelling with Computers Unpredicatable Behaviour of Deterministic Systems. Balakrishnan Ramasamy T S K V Iyer. General Article Volume 1 Issue 5 May 1996 pp 29-39 ...
Schuster, H G
2008-01-01
This long-awaited revised second edition of the standard reference on the subject has been considerably expanded to include such recent developments as novel control schemes, control of chaotic space-time patterns, control of noisy nonlinear systems, and communication with chaos, as well as promising new directions in research. The contributions from leading international scientists active in the field provide a comprehensive overview of our current level of knowledge on chaos control and its applications in physics, chemistry, biology, medicine, and engineering. In addition, they show the overlap with the traditional field of control theory in the engineering community.An interdisciplinary approach of interest to scientists and engineers working in a number of areas
Weyl corrections to diffusion and chaos in holography
Li, Wei-Jia; Liu, Peng; Wu, Jian-Pin
2018-04-01
Using holographic methods in the Einstein-Maxwell-dilaton-axion (EMDA) theory, it was conjectured that the thermal diffusion in a strongly coupled metal without quasi-particles saturates an universal lower bound that is associated with the chaotic property of the system at infrared (IR) fixed points [1]. In this paper, we investigate the thermal transport and quantum chaos in the EMDA theory with a small Weyl coupling term. It is found that the Weyl coupling correct the thermal diffusion constant D Q and butterfly velocity v B in different ways, hence resulting in a modified relation between the two at IR fixed points. Unlike that in the EMDA case, our results show that the ratio D Q /( v B 2 τ L ) always contains a non-universal Weyl correction which depends also on the bulk fields as long as the U(1) current is marginally relevant in the IR.
Fine Grained Chaos in AdS_{2} Gravity.
Haehl, Felix M; Rozali, Moshe
2018-03-23
Quantum chaos can be characterized by an exponential growth of the thermal out-of-time-order four-point function up to a scrambling time u[over ^]_{*}. We discuss generalizations of this statement for certain higher-point correlation functions. For concreteness, we study the Schwarzian theory of a one-dimensional time reparametrization mode, which describes two-dimensional anti-de Sitter space (AdS_{2}) gravity and the low-energy dynamics of the Sachdev-Ye-Kitaev model. We identify a particular set of 2k-point functions, characterized as being both "maximally braided" and "k-out of time order," which exhibit exponential growth until progressively longer time scales u[over ^]_{*}^{(k)}∼(k-1)u[over ^]_{*}. We suggest an interpretation as scrambling of increasingly fine grained measures of quantum information, which correspondingly take progressively longer time to reach their thermal values.
Fine Grained Chaos in AdS2 Gravity
Haehl, Felix M.; Rozali, Moshe
2018-03-01
Quantum chaos can be characterized by an exponential growth of the thermal out-of-time-order four-point function up to a scrambling time u^*. We discuss generalizations of this statement for certain higher-point correlation functions. For concreteness, we study the Schwarzian theory of a one-dimensional time reparametrization mode, which describes two-dimensional anti-de Sitter space (AdS2 ) gravity and the low-energy dynamics of the Sachdev-Ye-Kitaev model. We identify a particular set of 2 k -point functions, characterized as being both "maximally braided" and "k -out of time order," which exhibit exponential growth until progressively longer time scales u^*(k)˜(k -1 )u^*. We suggest an interpretation as scrambling of increasingly fine grained measures of quantum information, which correspondingly take progressively longer time to reach their thermal values.
International Nuclear Information System (INIS)
Quan-Xing, Liu; Gui-Quan, Sun; Zhen, Jin; Bai-Lian, Li
2009-01-01
It has been reported that the minimal spatially extended phytoplankton–zooplankton system exhibits both temporal regular/chaotic behaviour, and spatiotemporal chaos in a patchy environment. As a further investigation by means of computer simulations and theoretical analysis, in this paper we observe that the spiral waves may exist and the spatiotemporal chaos emerge when the parameters are within the mixed Turing–Hopf bifurcation region, which arises from the far-field breakup of the spiral waves over a large range of diffusion coefficients of phytoplankton and zooplankton. Moreover, the spatiotemporal chaos arising from the far-field breakup of spiral waves does not gradually invade the whole space of that region. Our results are confirmed by nonlinear bifurcation of wave trains. We also discuss ecological implications of these spatially structured patterns. (general)
Murray Gell-Mann, the Eightfold Way, Quarks, and Quantum Chromodynamics
. Professor Gell-Mann's "eightfold way" theory brought order to the chaos created by the discovery , Professor Gell-Mann received the Nobel Prize in physics for his work on the theory of elementary particles later constructed the quantum field theory of quarks and gluons, called "quantum chromodynamics
Application of Chaos Theory to Psychological Models
Blackerby, Rae Fortunato
This dissertation shows that an alternative theoretical approach from physics--chaos theory--offers a viable basis for improved understanding of human beings and their behavior. Chaos theory provides achievable frameworks for potential identification, assessment, and adjustment of human behavior patterns. Most current psychological models fail to address the metaphysical conditions inherent in the human system, thus bringing deep errors to psychological practice and empirical research. Freudian, Jungian and behavioristic perspectives are inadequate psychological models because they assume, either implicitly or explicitly, that the human psychological system is a closed, linear system. On the other hand, Adlerian models that require open systems are likely to be empirically tenable. Logically, models will hold only if the model's assumptions hold. The innovative application of chaotic dynamics to psychological behavior is a promising theoretical development because the application asserts that human systems are open, nonlinear and self-organizing. Chaotic dynamics use nonlinear mathematical relationships among factors that influence human systems. This dissertation explores these mathematical relationships in the context of a sample model of moral behavior using simulated data. Mathematical equations with nonlinear feedback loops describe chaotic systems. Feedback loops govern the equations' value in subsequent calculation iterations. For example, changes in moral behavior are affected by an individual's own self-centeredness, family and community influences, and previous moral behavior choices that feed back to influence future choices. When applying these factors to the chaos equations, the model behaves like other chaotic systems. For example, changes in moral behavior fluctuate in regular patterns, as determined by the values of the individual, family and community factors. In some cases, these fluctuations converge to one value; in other cases, they diverge in
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
Directory of Open Access Journals (Sweden)
Geoff Boeing
2016-11-01
Full Text Available Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior.
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Quantum internet using code division multiple access
Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco
2013-01-01
A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488
Chaos control in duffing system
International Nuclear Information System (INIS)
Wang Ruiqi; Deng Jin; Jing Zhujun
2006-01-01
Analytical and numerical results concerning the inhibition of chaos in Duffing's equation with two weak forcing excitations are presented. We theoretically give parameter-space regions by using Melnikov's function, where chaotic states can be suppressed. The intervals of initial phase difference between the two excitations for which chaotic dynamics can be eliminated are given. Meanwhile, the influence of the phase difference on Lyapunov exponents for different frequencies is investigated. Numerical simulation results show the consistence with the theoretical analysis and the chaotic motions can be controlled to period-motions by adjusting parameter of suppressing excitation
Dynamical thermalization in isolated quantum dots and black holes
Kolovsky, Andrey R.; Shepelyansky, Dima L.
2017-01-01
We study numerically a model of quantum dot with interacting fermions. At strong interactions with small conductance the model is reduced to the Sachdev-Ye-Kitaev black-hole model while at weak interactions and large conductance it describes a Landau-Fermi liquid in a regime of quantum chaos. We show that above the Åberg threshold for interactions there is an onset of dynamical themalization with the Fermi-Dirac distribution describing the eigenstates of an isolated dot. At strong interactions in the isolated black-hole regime there is also the onset of dynamical thermalization with the entropy described by the quantum Gibbs distribution. This dynamical thermalization takes place in an isolated system without any contact with a thermostat. We discuss the possible realization of these regimes with quantum dots of 2D electrons and cold ions in optical lattices.
Kasimov, Aslan R.; Faria, Luiz; Rosales, Rodolfo R.
2013-01-01
: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation
Chaos synchronization communication using extremely unsymmetrical bidirectional injections.
Zhang, Wei Li; Pan, Wei; Luo, Bin; Zou, Xi Hua; Wang, Meng Yao; Zhou, Zhi
2008-02-01
Chaos synchronization and message transmission between two semiconductor lasers with extremely unsymmetrical bidirectional injections (EUBIs) are discussed. By using EUBIs, synchronization is realized through injection locking. Numerical results show that if the laser subjected to strong injection serves as the receiver, chaos pass filtering (CPF) of the system is similar to that of unidirectional coupled systems. Moreover, if the other laser serves as the receiver, a stronger CPF can be obtained. Finally, we demonstrate that messages can be extracted successfully from either of the two transmission directions of the system.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Train flow chaos analysis based on an improved cellular automata model
International Nuclear Information System (INIS)
Meng, Xuelei; Xiang, Wanli; Jia, Limin; Xu, Jie
2015-01-01
To control the chaos in the railway traffic flow and offer valuable information for the dispatchers of the railway system, an improved cellular model is presented to detect and analyze the chaos in the traffic flow. We first introduce the working mechanism of moving block system, analyzing the train flow movement characteristics. Then we improve the cellular model on the evolution rules to adjust the train flow movement. We give the train operation steps from three cases: the trains running on a railway section, a train will arrive in a station and a train will departure from a station. We simulate 4 trains to run on a high speed section fixed with moving block system and record the distances between the neighbor trains and draw the Poincare section to analyze the chaos in the train operation. It is concluded that there is not only chaos but order in the train operation system with moving blocking system and they can interconvert to each other. The findings have the potential value in train dispatching system construction and offer supporting information for the daily dispatching work.
Suppression of chaos via control of energy flow
Guo, Shengli; Ma, Jun; Alsaedi, Ahmed
2018-03-01
Continuous energy supply is critical and important to support oscillating behaviour; otherwise, the oscillator will die. For nonlinear and chaotic circuits, enough energy supply is also important to keep electric devices working. In this paper, Hamilton energy is calculated for dimensionless dynamical system (e.g., the chaotic Lorenz system) using Helmholtz's theorem. The Hamilton energy is considered as a new variable and then the dynamical system is controlled by using the scheme of energy feedback. It is found that chaos can be suppressed even when intermittent feedback scheme is applied. This scheme is effective to control chaos and to stabilise other dynamical systems.
Scheme of thinking quantum systems
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field
THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT
International Nuclear Information System (INIS)
Lithwick, Yoram; Wu Yanqin
2011-01-01
We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within ∼25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.
Adaptive chaos control and synchronization in only locally Lipschitz systems
International Nuclear Information System (INIS)
Lin Wei
2008-01-01
In the existing results on chaos control and synchronization based on the adaptive controlling technique (ACT), a uniform Lipschitz condition on a given dynamical system is always assumed in advance. However, without this uniform Lipschitz condition, the ACT might be failed in both theoretical analysis and in numerical experiment. This Letter shows how to utilize the ACT to get a rigorous control for the system which is not uniformly Lipschitz but only locally Lipschitz, and even for the system which has unbounded trajectories. In fact, the ACT is proved to possess some limitation, which is actually induced by the nonlinear degree of the original system. Consequently, a piecewise ACT is proposed so as to improve the performance of the existing techniques
Controlling the optical field chaos in storage ring free-electron lasers
International Nuclear Information System (INIS)
Wang Wenjie
1995-01-01
The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained
Chaos in charged AdS black hole extended phase space
Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S.
2018-06-01
We present an analytical study of chaos in a charged black hole in the extended phase space in the context of the Poincare-Melnikov theory. Along with some background on dynamical systems, we compute the relevant Melnikov function and find its zeros. Then we analyse these zeros either to identify the temporal chaos in the spinodal region, or to observe spatial chaos in the small/large black hole equilibrium configuration. As a byproduct, we derive a constraint on the Black hole' charge required to produce chaotic behaviour. To the best of our knowledge, this is the first endeavour to understand the correlation between chaos and phase picture in black holes.
Bifurcation and chaos response of a cracked rotor with random disturbance
Leng, Xiaolei; Meng, Guang; Zhang, Tao; Fang, Tong
2007-01-01
The Monte-Carlo method is used to investigate the bifurcation and chaos characteristics of a cracked rotor with a white noise process as its random disturbance. Special attention is paid to the influence of the stiffness change ratio and the rotating speed ratio on the bifurcation and chaos response of the system. Numerical simulations show that the affect of the random disturbance is significant as the undisturbed response of the cracked rotor system is a quasi-periodic or chaos one, and such affect is smaller as the undisturbed response is a periodic one.
Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems
Bäcker, A.
Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.
Czech Academy of Sciences Publication Activity Database
Beran, Zdeněk; Čelikovský, Sergej
2013-01-01
Roč. 23, č. 5 (2013), 1350084-1-1350084-9 ISSN 0218-1274 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : Hyperspace * chaos * shadowing * Bernoulli shift Subject RIV: BC - Control Systems Theory Impact factor: 1.017, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/beran-0392926.pdf