Graphene-based superconducting quantum point contacts
International Nuclear Information System (INIS)
Moghaddam, A.G.; Zareyan, M.
2007-01-01
We investigate the Josephson effect in the graphene nanoribbons of length L smaller than the superconducting coherence length and an arbitrary width W. We find that in contrast to an ordinary superconducting quantum point contact (SQPC), the critical supercurrent I c is not quantized for the nanoribbons with smooth and armchair edges. For a low concentration of the carriers, I c decreases monotonically with lowering W/L and tends to a constant minimum for a narrow nanoribbon with W c is zero for the smooth edges but eΔ 0 /ℎ for the armchair edges. At higher concentrations of the carriers this monotonic variation acquires a series of peaks. Further analysis of the current-phase relation and the Josephson coupling strength I c R N in terms of W/L and the concentration of carriers revels significant differences with those of an ordinary SQPC. On the other hand for a zigzag nanoribbon, we find that, similar to an ordinary SQPC, I c is quantized but to the half-integer values (n+1/2)4eΔ 0 /ℎ. (orig.)
Nanomechanical displacement sensing using a quantum point contact
International Nuclear Information System (INIS)
Cleland, A.N.; Aldridge, J.S.; Driscoll, D.C.; Gossard, A. C.
2002-01-01
We describe a radio frequency mechanical resonator that includes a quantum point contact, defined using electrostatic top gates. We can mechanically actuate the resonator using either electrostatic or magnetomotive forces. We demonstrate the use of the quantum point contact as a displacement sensor, operating as a radio frequency mixer at the mechanical resonance frequency of 1.5 MHz. We calculate a displacement sensitivity of about 3x10 -12 m/Hz 1/2 . This device will potentially permit quantum-limited displacement sensing of nanometer-scale resonators, allowing the quantum entanglement of the electronic and mechanical degrees of freedom of a nanoscale system
Current-voltage curves of gold quantum point contacts revisited
DEFF Research Database (Denmark)
Hansen, K.; Nielsen, S K.; Brandbyge, Mads
2000-01-01
We present measurements of current-voltage (I-V) curves on gold quantum point contacts (QPCs) with a conductance up to 4 G(0) (G(0) = 2e(2)/h is the conductance quantum) and voltages up to 2 V. The QPCs are formed between the gold tip of a scanning tunneling microscope and a Au(110) surface under...
Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach
International Nuclear Information System (INIS)
Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.
2007-01-01
We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Anomalous Integer Quantum Hall Effect in the Ballistic Regime with Quantum Point Contacts
Wees, B.J. van; Willems, E.M.M.; Harmans, C.J.P.M.; Beenakker, C.W.J.; Houten, H. van; Williamson, J.G.; Foxon, C.T.; Harris, J.J.
1989-01-01
The Hall conductance of a wide two-dimensional electron gas has been measured in a geometry in which two quantum point contacts form controllable current and voltage probes, separated by less than the transport mean free path. Adjustable barriers in the point contacts allow selective population and
Observation of conductance doubling in an Andreev quantum point contact
Kjaergaard, M.; Nichele, F.; Suominen, H.; Nowak, M.; Wimmer, M.; Akhmerov, A.; Folk, J.; Flensberg, K.; Shabani, J.; Palmstrom, C.; Marcus, C.
One route to study the non-Abelian nature of excitations in topological superconductors is to realise gateable two dimensional (2D) semiconducting systems, with spin-orbit coupling in proximity to an s-wave superconductor. Previous work on coupling 2D electron gases (2DEG) with superconductors has been hindered by a non-ideal interface and unstable gateability. We report measurements on a gateable 2DEG coupled to superconductors through a pristine interface, and use aluminum grown in situ epitaxially on an InGaAs/InAs electron gas. We demonstrate quantization in units of 4e2 / h in a quantum point contact (QPC) in such hybrid systems. Operating the QPC as a tunnel probe, we observe a hard superconducting gap, overcoming the soft-gap problem in 2D superconductor/semiconductor systems. Our work paves way for a new and highly scalable system in which to pursue topological quantum information processing. Research supported by Microsoft Project Q and the Danish National Research Foundation.
Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard
Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.
Probing dopants in wide semiconductor quantum point contacts
International Nuclear Information System (INIS)
Yakimenko, I I; Berggren, K-F
2016-01-01
Effects of randomly distributed impurities on conductance, spin polarization and electron localization in realistic gated semiconductor quantum point contacts (QPCs) have been simulated numerically. To this end density functional theory in the local spin-density approximation has been used. In the case when the donor layer is embedded far from the two-dimensional electron gas (2DEG) the electrostatic confinement potential exhibits the conventional parabolic form, and thus the usual ballistic transport phenomena take place both in the devices with split gates alone and with an additional metallic gate on the top. In the opposite case, i.e. when the randomly distributed donors are placed not far away from the 2DEG layer, there are drastic changes like the localization of electrons in the vicinity of confinement potential minima which give rise to fluctuations in conductance and resonances. The conductance as a function of the voltage applied to the top gate for asymmetrically charged split gates has been calculated. In this case resonances in conductance caused by randomly distributed donors are shifted and decrease in amplitude while the anomalies caused by interaction effects remain unmodified. It has been also shown that for a wide QPC the polarization can appear in the form of stripes. The importance of partial ionization of the random donors and the possibility of short range order among the ionized donors are emphasized. The motivation for this work is to critically evaluate the nature of impurities and how to guide the design of high-mobility devices. (paper)
Shot Noise Suppression in a Quantum Point Contact with Short Channel Length
International Nuclear Information System (INIS)
Jeong, Heejun
2015-01-01
An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5 meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensional non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact. (paper)
Hong, Changki; Park, Jinhong; Chung, Yunchul; Choi, Hyungkook; Umansky, Vladimir
2017-11-01
Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge (e*=e /3 ). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.
The features of ballistic electron transport in a suspended quantum point contact
International Nuclear Information System (INIS)
Shevyrin, A. A.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Pogosov, A. G.; Ishutkin, S. V.; Shesterikov, E. V.
2014-01-01
A suspended quantum point contact and the effects of the suspension are investigated by performing identical electrical measurements on the same experimental sample before and after the suspension. In both cases, the sample demonstrates conductance quantization. However, the suspended quantum point contact shows certain features not observed before the suspension, namely, plateaus at the conductance values being non-integer multiples of the conductance quantum, including the “0.7-anomaly.” These features can be attributed to the strengthening of electron-electron interaction because of the electric field confinement within the suspended membrane. Thus, the suspended quantum point contact represents a one-dimensional system with strong electron-electron interaction
Conductance enhancement in quantum-point-contact semiconductor-superconductor devices
DEFF Research Database (Denmark)
Mortensen, Asger; Jauho, Antti-Pekka; Flensberg, Karsten
1999-01-01
We present numerical calculations of the conductance of an interface between a phase-coherent two-dimensional electron gas and a superconductor with a quantum point contact in the normal region. Using a scattering matrix approach we reconsider the geometry of De Raedt, Michielsen, and Klapwijk...... [Phys. Rev. B 50, 631 (1994)] which was studied within the time-dependent Bogoliubov-de Gennes formalism. We find that the factor-of-2 enhancement of the conductance G(NS) compared to the normal state conductance GN for ideal interfaces may be suppressed for interfaces with a quantum point contact...
Capacitance and conductance of mesoscopic systems connected by quantum point contacts
DEFF Research Database (Denmark)
Flensberg, Karsten
1993-01-01
We study the transport properties of quantum dots and quantum point contacts in the Coulomb blockade regime and in the limit where the quantum point contact has nearly fully transmitting channels. Using a transformation to a multichannel Tomonaga-Luttinger-type model, we find the scaling behavior...... of the junction close to pinchoff. It is shown that the junction scales to an insulating junction. We find a crossover between a low-temperature regime with Coulomb blockade to a high-temperature regime where the quantum charge fluctuations are dominant. The crossover temperature between these regimes is given...... by Tc∼U[1-G0/NGH]N/2, where U are the bare charging energy, G0 is the nominal conductance, N is the number of channels, and GH=e2/h....
Ferromagnetic Spin Coupling as the Origin of 0.7 Anomaly in Quantum Point Contacts
Aryanpour, K.; Han, J. E.
2008-01-01
We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that $0.7(2e^{2}/h)$ anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incohe...
Fingerprints of bosonic symmetry protected topological state in a quantum point contact
Zhang, Rui-Xing; Liu, Chao-Xing
2016-01-01
In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for BSPT state, while either charge insulator/spin insulator or cha...
Peltier Coefficient and Photon-Assisted Tunnelling in Quantum Point Contact
International Nuclear Information System (INIS)
Arafa, H. Aly
2008-01-01
We present the Peltier coefficient and thermal transport in quantum point contact (QPC), under the influence of external fields and different temperatures. Also we obtain the oscillations of the Peltier coefficient in external fields. Numerical calculations of the Peltier coefficient are performed at different applied voltages, amplitudes and temperatures. The obtained results are consistent with the experimental data in the literature
Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas
2018-01-12
Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.
Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas
2018-01-01
Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.
Dynamic nuclear polarization at high Landau levels in a quantum point contact
Fauzi, M. H.; Noorhidayati, A.; Sahdan, M. F.; Sato, K.; Nagase, K.; Hirayama, Y.
2018-05-01
We demonstrate a way to polarize and detect nuclear spin in a gate-defined quantum point contact operating at high Landau levels. Resistively detected nuclear magnetic resonance (RDNMR) can be achieved up to the fifth Landau level and at a magnetic field lower than 1 T. We are able to retain the RDNMR signals in a condition where the spin degeneracy of the first one-dimensional (1D) subband is still preserved. Furthermore, the effects of orbital motion on the first 1D subband can be made smaller than those due to electrostatic confinement. This developed RDNMR technique is a promising means to study electronic states in a quantum point contact near zero magnetic field.
Ferromagnetic spin coupling as the origin of 0.7 anomaly in quantum point contacts.
Aryanpour, K; Han, J E
2009-02-06
We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of the 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that 0.7(2e;{2}/h) anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incoherent scattering at high temperature when the electron traversal time matches the time scale of dynamic ferromagnetic excitations.
Measurement Back-Action in Quantum Point-Contact Charge Sensing
Directory of Open Access Journals (Sweden)
Bruno Küng
2010-06-01
Full Text Available Charge sensing with quantum point-contacts (QPCs is a technique widely used in semiconductor quantum-dot research. Understanding the physics of this measurement process, as well as finding ways of suppressing unwanted measurement back-action, are therefore both desirable. In this article, we present experimental studies targeting these two goals. Firstly, we measure the effect of a QPC on electron tunneling between two InAs quantum dots, and show that a model based on the QPC’s shot-noise can account for it. Secondly, we discuss the possibility of lowering the measurement current (and thus the back-action used for charge sensing by correlating the signals of two independent measurement channels. The performance of this method is tested in a typical experimental setup.
Modeling A.C. Electronic Transport through a Two-Dimensional Quantum Point Contact
International Nuclear Information System (INIS)
Aronov, I.E.; Beletskii, N.N.; Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Dudiy, S.V.
1998-01-01
We present the results on the a.c. transport of electrons moving through a two-dimensional (2D) semiconductor quantum point contact (QPC). We concentrate our attention on the characteristic properties of the high frequency admittance (ωapproximately0 - 50 GHz), and on the oscillations of the admittance in the vicinity of the separatrix (when a channel opens or closes), in presence of the relaxation effects. The experimental verification of such oscillations in the admittance would be a strong confirmation of the semi-classical approach to the a.c. transport in a QPC, in the separatrix region
Feedback cooling of cantilever motion using a quantum point contact transducer
International Nuclear Information System (INIS)
Montinaro, M.; Mehlin, A.; Solanki, H. S.; Peddibhotla, P.; Poggio, M.; Mack, S.; Awschalom, D. D.
2012-01-01
We use a quantum point contact (QPC) as a displacement transducer to measure and control the low-temperature thermal motion of a nearby micromechanical cantilever. The QPC is included in an active feedback loop designed to cool the cantilever's fundamental mechanical mode, achieving a squashing of the QPC noise at high gain. The minimum achieved effective mode temperature of 0.2 K and the displacement resolution of 10 -11 m/√(Hz) are limited by the performance of the QPC as a one-dimensional conductor and by the cantilever-QPC capacitive coupling.
Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts
Wan, J.; Cahay, M.; Debray, P.; Newrock, R.
2009-01-01
A non-equilibrium Green function formalism (NEGF) is used to study the conductance of a side-gated quantum point contact (QPC) in the presence of lateral spin-orbit coupling (LSOC). A small difference of bias voltage between the two side gates (SGs) leads to an inversion asymmetry in the LSOC between the opposite edges of the channel. In single electron modeling of transport, this triggers a spontaneous but insignificant spin polarization in the QPC. However, the spin polarization of the QPC ...
Fingerprints of bosonic symmetry protected topological state in a quantum point contact
Zhang, Rui-Xing; Liu, Chao-Xing
In this work, we study the transport through a quantum point contact for two-channel interacting helical liquids that exist at the edge of a bilayer graphene under a strong magnetic field. We identify ``smoking gun'' transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for a weak repulsive interaction in the BSPT state, while either charge insulator/spin insulator or charge conductor/spin conductor phase is expected for the two-channel QSH state. In the strong interaction limit, shot noise measurement for the BSPT state is expect to reveal charge-2e instanton tunneling, in comparison with the charge-e tunneling in the two-channel QSH phase.
Fingerprints of a Bosonic Symmetry-Protected Topological State in a Quantum Point Contact
Zhang, Rui-Xing; Liu, Chao-Xing
2017-05-01
In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish a bosonic symmetry-protected topological (BSPT) state from a fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge-insulator-spin-conductor phase is found for the BSPT state, while either the charge-insulator-spin-insulator or the charge-conductor-spin-conductor phase is expected for the two-channel QSH state. Consequently, a simple transport measurement will reveal the fingerprint of bosonic topological physics in bilayer graphene systems.
Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts
Tu, Xingchen; Wang, Minglang; Sanvito, Stefano; Hou, Shimin
2014-01-01
© 2014 AIP Publishing LLC. Besides the peak at one conductance quantum, G0, two additional features at ∼0.4 G0 and ∼1.3 G0 have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions
Debray, Philippe; Shorubalko, Ivan; Xu, Hongqi
2007-03-01
We have studied polarized spin transport in a device consisting of three quantum point contacts (QPCs) in series made on InGaAs/InP quantum-well (QW) structures. The QPCs were created by independent pairs of side gates, each pair for one QPC. By adjusting the bias voltages of the side gates, the widths of the QPCs are independently tuned to have transport in the fundamental mode. An external magnetic field of a few T causes spin splitting of the lowest one-dimensional (1D) subbands. The widths of the end QPCs are adjusted to position the Fermi level in the spin-split energy gap, while that of the central QPC is kept wide enough to populate both spin-split bands. Measurement of the conductance of the end QPCs at low temperatures (spinFET.
Multi-valued logic gates based on ballistic transport in quantum point contacts.
Seo, M; Hong, C; Lee, S-Y; Choi, H K; Kim, N; Chung, Y; Umansky, V; Mahalu, D
2014-01-22
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs.
Roldán, J. B.; Miranda, E.; González-Cordero, G.; García-Fernández, P.; Romero-Zaliz, R.; González-Rodelas, P.; Aguilera, A. M.; González, M. B.; Jiménez-Molinos, F.
2018-01-01
A multivariate analysis of the parameters that characterize the reset process in Resistive Random Access Memory (RRAM) has been performed. The different correlations obtained can help to shed light on the current components that contribute in the Low Resistance State (LRS) of the technology considered. In addition, a screening method for the Quantum Point Contact (QPC) current component is presented. For this purpose, the second derivative of the current has been obtained using a novel numerical method which allows determining the QPC model parameters. Once the procedure is completed, a whole Resistive Switching (RS) series of thousands of curves is studied by means of a genetic algorithm. The extracted QPC parameter distributions are characterized in depth to get information about the filamentary pathways associated with LRS in the low voltage conduction regime.
Multi-Valued Logic Gates based on Ballistic Transport in Quantum Point Contacts
Seo, M.; Hong, C.; Lee, S.-Y.; Choi, H. K.; Kim, N.; Chung, Y.; Umansky, V.; Mahalu, D.
2014-01-01
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs.
Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact
Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.
2018-02-01
The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.
The Occurrence of Anomalous Conductance Plateaus and Spin Textures in Quantum Point Contacts
Wan, J.; Cahay, M.; Debray, P.; Newrock, R.
2010-03-01
Recently, we used a NEGF formalism [1] to provide a theoretical explanation for the experimentally observed 0.5G0 (G0=2e^2/h) plateau in the conductance of side-gated quantum point contacts (QPCs) in the presence of lateral spin-orbit coupling (LSOC) [2]. We showed that the 0.5G0 plateau appears in the QPCs without any external magnetic field as a result of three ingredients: an asymmetric lateral confinement, a LSOC, and a strong electron-electron (e-e) interaction. In this report, we present the results of simulations for a wide range of QPC dimensions and biasing parameters showing that the same physics predicts the appearance of other anomalous plateaus at non-integer values of G0, including the well-known 0.7G0 anomaly. These features are related to a plethora of spin textures in the QPC that depend sensitively on material, device, biasing parameters, temperature, and the strength of the e-e interaction. [1] J. Wan, M. Cahay, P. Debray, and R.S. Newrock, Phys. Rev. B 80, 155440 (2009). [2] P. Debray, S.M. Rahman, J. Wan, R.S. Newrock, M. Cahay, A.T. Ngo, S.E. Ulloa, S.T. Herbert, M. Muhammad, and M. Johnson, Nature Nanotech. 4, 759 (2009).
Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact
Energy Technology Data Exchange (ETDEWEB)
Karadi, Chandu [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1995-09-01
The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO_{x}Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
International Nuclear Information System (INIS)
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-01-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-07-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.
Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact
International Nuclear Information System (INIS)
Karadi, C.; Lawrence Berkeley Lab., CA
1995-09-01
The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO x /Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic. 133 refs., 49 figs
Belenov, É. M.; Danileĭko, M. V.; Derkach, V. E.; Romanenko, V. I.; Uskov, A. V.
1988-05-01
An investigation was made of the influence of submillimeter radiation emitted by an HCN laser operating at a frequency νl = 891 GHz on a superconducting point contact made of Nb3Sn. Three steps of the electric current were recorded. The experimental results indicated that such a contact could be used for frequency multiplication up to 3 THz.
International Nuclear Information System (INIS)
Zozoulenko, I V; Ihnatsenka, S
2008-01-01
We have developed a mean-field first-principles approach for studying electronic and transport properties of low dimensional lateral structures in the integer quantum Hall regime. The electron interactions and spin effects are included within the spin density functional theory in the local density approximation where the conductance, the density, the effective potentials and the band structure are calculated on the basis of the Green's function technique. In this paper we present a systematic review of the major results obtained on the energetics, spin polarization, effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and open quantum dots. In particular, we discuss how the spin-resolved subband structure, the current densities, the confining potentials, as well as the spin polarization of the electron and current densities in quantum wires and antidots evolve when an applied magnetic field varies. We also discuss the role of the electron interaction and spin effects in the conductance of open systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis is given to the effect of the electron interaction on the conductance oscillations and their statistics in open quantum dots as well as to interpretation of the related experiments on the ultralow temperature saturation of the coherence time in open dots
Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.
Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant
2017-11-28
Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.
Onset of Spin Polarization in Four-Gate Quantum Point Contacts
Jones, Alex
A series of simulations which utilize a Non-equilibrium Green's function (NEGF) formalism is suggested which can provide indirect evidence of the fine and non-local electrostatic tuning of the onset of spin polarization in two closely spaced quantum point contacts (QPCs) that experience a phenomenon known as lateral spin-orbit coupling (LSOC). Each of the QPCs that create the device also has its own pair of side gates (SGs) which are in-plane with the device channel. Numerical simulations of the conductance of the two closely spaced QPCs or four-gate QPC are carried out for different biasing conditions applied to two leftmost and rightmost SGs. Conductance plots are then calculated as a function of the variable, Vsweep, which is the common sweep voltage applied to the QPC. When Vsweep is only applied to two of the four side gates, the plots show several conductance anomalies, i.e., below G0 = 2e2/h, characterized by intrinsic bistability, i.e., hysteresis loops due to a difference in the conductance curves for forward and reverse common voltage sweep simulations. The appearance of hysteresis loops is attributed to the co-existence of multistable spin textures in the narrow channel of the four-gate QPC. The shape, location, and number of hysteresis loops are very sensitive to the biasing conditions on the four SGs. The shape and size of the conductance anomalies and hysteresis loops are shown to change when the biasing conditions on the leftmost and rightmost SGs are swapped, a rectifying behavior providing an additional indirect evidence for the onset of spontaneous spin polarization in nanoscale devices made of QPCs. The results of the simulations reveal that the occurrence and fine tuning of conductance anomalies in QPC structures are highly sensitive to the non-local action of closely spaced SGs. It is therefore imperative to take into account this proximity effect in the design of all electrical spin valves making use of middle gates to fine tune the spin
Wang, S.L.; Son, P.C. van; Wees, B.J. van; Klapwijk, T.M.
1992-01-01
The conductance of ballistic point contacts in high-mobility Si-inversion layers has been studied at several temperatures between 75 and 600 mK both without and in a magnetic field (up to 12T). When the width of constriction is varied in zero magnetic field, step-like features at multiples of 4e2/h
Coherent electron focusing with quantum point contacts in a two-dimensional electron gas
Houten, H. van; Beenakker, C.W.J.; Williamson, J.G.; Broekaart, M.E.I.; Loosdrecht, P.H.M. van; Wees, B.J. van; Mooij, J.E.; Foxon, C.T.; Harris, J.J.
1989-01-01
Transverse electron focusing in a two-dimensional electron gas is investigated experimentally and theoretically for the first time. A split Schottky gate on top of a GaAs-AlxGa1–xAs heterostructure defines two point contacts of variable width, which are used as injector and collector of ballistic
Quantization and anomalous structures in the conductance of Si/SiGe quantum point contacts
Energy Technology Data Exchange (ETDEWEB)
Pock, J. F. von; Salloch, D.; Qiao, G.; Wieser, U.; Kunze, U. [Werkstoffe und Nanoelektronik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Hackbarth, T. [Daimler AG, D-89081 Ulm (Germany)
2016-04-07
Quantum point contacts (QPCs) are fabricated on modulation-doped Si/SiGe heterostructures and ballistic transport is studied at low temperatures. We observe quantized conductance with subband separations up to 4 meV and anomalies in the first conductance plateau at 4e{sup 2}/h. At a temperature of T = 22 mK in the linear transport regime, a weak anomalous kink structure arises close to 0.5(4e{sup 2}/h), which develops into a distinct plateau-like structure as temperature is raised up to T = 4 K. Under magnetic field parallel to the wire up to B = 14 T, the anomaly evolves into the Zeeman spin-split level at 0.5(4e{sup 2}/h), resembling the '0.7 anomaly' in GaAs/AlGaAs QPCs. Additionally, a zero-bias anomaly (ZBA) is observed in nonlinear transport spectroscopy. At T = 22 mK, a parallel magnetic field splits the ZBA peak up into two peaks. At B = 0, elevated temperatures lead to similar splitting, which differs from the behavior of ZBAs in GaAs/AlGaAs QPCs. Under finite dc bias, the differential resistance exhibits additional plateaus approximately at 0.8(4e{sup 2}/h) and 0.2(4e{sup 2}/h) known as '0.85 anomaly' and '0.25 anomaly' in GaAs/AlGaAs QPCs. Unlike the first regular plateau at 4e{sup 2}/h, the 0.2(4e{sup 2}/h) plateau is insensitive to dc bias voltage up to at least V{sub DS} = 80 mV, in-plane magnetic fields up to B = 15 T, and to elevated temperatures up to T = 25 K. We interpret this effect as due to pinching off one of the reservoirs close to the QPC. We do not see any indication of lifting of the valley degeneracy in our samples.
International Nuclear Information System (INIS)
den Hartog, S.G.; van Wees, B.J.; Klapwijk, T.M.; Nazarov, Y.V.; Borghs, G.
1997-01-01
We have investigated the superconducting-phase-modulated reduction in the resistance of a ballistic quantum point contact (QPC) connected via a disordered two-dimensional electron gas (2DEG) to superconductors. We show that this reduction is caused by coherent Andreev backscattering of holes through the QPC, which increases monotonically by reducing the bias voltage to zero. In contrast, the magnitude of the phase-dependent resistance of the disordered 2DEG displays a nonmonotonic reentrant behavior versus bias voltage. copyright 1997 The American Physical Society
Detection and Control of Spin-Orbit Interactions in a GaAs Hole Quantum Point Contact
Srinivasan, A.; Miserev, D. S.; Hudson, K. L.; Klochan, O.; Muraki, K.; Hirayama, Y.; Reuter, D.; Wieck, A. D.; Sushkov, O. P.; Hamilton, A. R.
2017-04-01
We investigate the relationship between the Zeeman interaction and the inversion-asymmetry-induced spin-orbit interactions (Rashba and Dresselhaus SOIs) in GaAs hole quantum point contacts. The presence of a strong SOI results in the crossing and anticrossing of adjacent spin-split hole subbands in a magnetic field. We demonstrate theoretically and experimentally that the anticrossing energy gap depends on the interplay between the SOI terms and the highly anisotropic hole g tensor and that this interplay can be tuned by selecting the crystal axis along which the current and magnetic field are aligned. Our results constitute the independent detection and control of the Dresselhaus and Rashba SOIs in hole systems, which could be of importance for spintronics and quantum information applications.
Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts
Tu, Xingchen
2014-11-21
© 2014 AIP Publishing LLC. Besides the peak at one conductance quantum, G0, two additional features at ∼0.4 G0 and ∼1.3 G0 have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions. In order to understand such feature, here we investigate the electronic transport and mechanical properties of clean and oxygen-doped silver atomic contacts by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that, unlike clean Ag single-atom contacts showing a conductance of 1 G0, the low-bias conductance of oxygen-doped Ag atomic contacts depends on the number of oxygen impurities and their binding configuration. When one oxygen atom binds to an Ag monatomic chain sandwiched between two Ag electrodes, the low-bias conductance of the junction always decreases. In contrast, when the number of oxygen impurities is two and the O-O axis is perpendicular to the Ag-Ag axis, the transmission coefficients at the Fermi level are, respectively, calculated to be 1.44 for the junction with Ag(111) electrodes and 1.24 for that with Ag(100) electrodes, both in good agreement with the measured value of ∼1.3 G0. The calculated rupture force (1.60 nN for the junction with Ag(111) electrodes) is also consistent with the experimental value (1.66 ± 0.09 nN), confirming that the measured ∼1.3 G0 conductance should originate from Ag single-atom contacts doped with two oxygen atoms in a perpendicular configuration.
DEFF Research Database (Denmark)
Gloos, K.; Utko, P.; Aagesen, M.
2006-01-01
We investigate the I(V) characteristics (current versus bias voltage) of side-gated quantum-point contacts, defined in GaAs/AlxGa1-xAs heterostructures. These point contacts are operated in the closed-channel regime, that is, at fixed gate voltages below zero-bias pinch-off for conductance. Our....... Such a built-in energy-voltage calibration allows us to distinguish between the different contributions to the electron transport across the pinched-off contact due to thermal activation or quantum tunneling. The first involves the height of the barrier, and the latter also its length. In the model that we...
Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory
Energy Technology Data Exchange (ETDEWEB)
Miranda, E., E-mail: enrique.miranda@uab.cat; Suñé, J. [Departament d' Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona (Spain); Mehonic, A.; Kenyon, A. J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2013-11-25
A simple analytic model for the electron transport through filamentary-type structures in Si-rich silica (SiO{sub x})-based resistive switches is proposed. The model is based on a mesoscopic description and is able to account for the linear and nonlinear components of conductance that arise from both fully and partially formed conductive channels spanning the dielectric film. Channels are represented by arrays of identical scatterers whose number and quantum transmission properties determine the current magnitude in the low and high resistance states. We show that the proposed model not only reproduces the experimental current-voltage (I-V) characteristics but also the normalized differential conductance (dln(I)/dln(V)-V) curves of devices under test.
Koop, E. J.; Lerescu, A. I.; Liu, J.; van Wees, B. J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.
The conductance of a quantum point contact (QPC) shows several features that result from many-body electron interactions. The spin degeneracy in zero magnetic field appears to be spontaneously lifted due to the so-called 0.7 anomaly. Further, the g-factor for electrons in the QPC is enhanced, and a
Oliver, Sean; Fairfield, Jessamyn; Lee, Sunghun; Bellew, Allen; Stone, Iris; Ruppalt, Laura; Boland, John; Vora, Patrick
Resistive switching is ideal for use in non-volatile memory where information is stored in a metallic or insulating state. Nanowire junctions formed at the intersection of two Ni/NiO core/shell nanowires have emerged as a leading candidate structure where resistive switching occurs due to the formation and destruction of conducting filaments. However, significant knowledge gaps remain regarding the conduction mechanisms as measurements are typically only performed at room temperature. Here, we combine temperature-dependent current-voltage (IV) measurements from 15 - 300 K with magnetoresistance studies and achieve new insight into the nature of the conducting filaments. We identify a novel semiconducting state that behaves as a quantum point contact and find evidence for a possible electric-field driven phase transition. The insulating state exhibits unexpectedly complex IV characteristics that highlight the disordered nature of the ruptured filament while we find clear signs of anisotropic magnetoresistance in the metallic state. Our results expose previously unobserved behaviors in nanowire resistive switching devices and pave the way for future applications where both electrical and magnetic switching can be achieved in a single device. This work was supported by ONR Grant N-00014-15-1-2357.
On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.
Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y
2014-03-26
We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.
Unconventional Quantum Critical Points
Xu, Cenke
2012-01-01
In this paper we review the theory of unconventional quantum critical points that are beyond the Landau's paradigm. Three types of unconventional quantum critical points will be discussed: (1). The transition between topological order and semiclassical spin ordered phase; (2). The transition between topological order and valence bond solid phase; (3). The direct second order transition between different competing orders. We focus on the field theory and universality class of these unconventio...
DEFF Research Database (Denmark)
Jensen, Ole B.; Wind, Simon; Lanng, Ditte Bendix
2012-01-01
In this brief article, we shall illustrate the application of the analytical and interventionist concept of ‘Critical Points of Contact’ (CPC) through a number of urban design studios. The notion of CPC has been developed over a span of the last three to four years and is reported in more detail...... elsewhere (Jensen & Morelli 2011). In this article, we will only discuss the conceptual and theoretical framing superficially, since our real interest is to show and discuss the concept's application value to spatial design in a number of urban design studios. The 'data' or the projects presented are seven...... in urban design at Aalborg University, where urban design consists of both an analytical and an interventionist field of operation. Furthermore, the content of the CPC concept links to research in mobilities, the network city, and urban design. These are among the core pillars of both the masters programme...
Contact conductance between graphene and quantum wires
International Nuclear Information System (INIS)
Li Haidong; Zheng Yisong
2009-01-01
The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene-lead coupling configuration. When each quantum wire couples solely to one carbon atom, the contact conductance vanishes at the Dirac point if the two carbon atoms coupling to the two leads belong to the same sublattice of graphene. We find that such a feature arises from the chirality of the Dirac electron in graphene. Such a chirality associated with conductance zero disappears when a quantum wire couples to multiple carbon atoms. The general result irrelevant to the coupling configuration is that the contact conductance decays rapidly with the increase of the distance between the two leads. In addition, in the weak graphene-lead coupling limit, when the distance between the two leads is much larger than the size of the graphene-lead contact areas and the incident electron energy is close to the Dirac point, the contact conductance is proportional to the square of the product of the two graphene-lead contact areas, and inversely proportional to the square of the distance between the two leads
Sensing with Superconducting Point Contacts
Directory of Open Access Journals (Sweden)
Argo Nurbawono
2012-05-01
Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.
Contact geometry and quantum mechanics
Herczeg, Gabriel; Waldron, Andrew
2018-06-01
We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.
Fixed points of quantum operations
International Nuclear Information System (INIS)
Arias, A.; Gheondea, A.; Gudder, S.
2002-01-01
Quantum operations frequently occur in quantum measurement theory, quantum probability, quantum computation, and quantum information theory. If an operator A is invariant under a quantum operation φ, we call A a φ-fixed point. Physically, the φ-fixed points are the operators that are not disturbed by the action of φ. Our main purpose is to answer the following question. If A is a φ-fixed point, is A compatible with the operation elements of φ? We shall show in general that the answer is no and we shall give some sufficient conditions under which the answer is yes. Our results will follow from some general theorems concerning completely positive maps and injectivity of operator systems and von Neumann algebras
Heinemann, Martina; Groot, R.A. de
1997-01-01
Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the
Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Newrock, Richard S.; Cahay, Marc; Herbert, Stephen T.
2013-03-01
Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta-Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin-orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin-orbit coupling and a strong e-e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. Keynote talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.
International Nuclear Information System (INIS)
Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Cahay, Marc; Newrock, Richard S; Herbert, Stephen T
2013-01-01
Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta–Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin–orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin–orbit coupling and a strong e–e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. (review)
Fixed points of quantum gravity
Litim, D F
2003-01-01
Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
Point contact to single-crystalline diamond
Czech Academy of Sciences Publication Activity Database
Mareš, Jiří J.; Hubík, Pavel; Uxa, Štěpán; Krištofik, Jozef; Kozak, Halyna
2012-01-01
Roč. 27, č. 6 (2012), 1-4 ISSN 0268-1242 R&D Projects: GA ČR GAP204/10/0212 Institutional research plan: CEZ:AV0Z10100521 Keywords : point-contact * diamond * space-charge–limited transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.921, year: 2012
Quantum motion on two planes connected at one point
International Nuclear Information System (INIS)
Exner, P.; Seba, P.
1986-01-01
Free motion of a particle on the manifold which consists of two planes connected at one point is studied. The four-parameter family of admissible Hamiltonians is constructed by self-adjoint extensions of the free Hamiltonian with the singular point removed. The probability of penetration between the two parts of the configuration manifold is calculated. The results can be used as a model for quantum point-contact spectroscopy
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Fixed point algebras for easy quantum groups
DEFF Research Database (Denmark)
Gabriel, Olivier; Weber, Moritz
2016-01-01
Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author,we prove...... that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group S+ n,the free orthogonal quantum group O+ n and the quantum reflection groups Hs+ n. Our fixed point......-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups,which are related to Hopf-Galois extensions....
Controlling superconductivity by tunable quantum critical points.
Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson
2015-03-04
The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.
Spotlighting quantum critical points via quantum correlations at finite temperatures
International Nuclear Information System (INIS)
Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo
2011-01-01
We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.
Quench dynamics across quantum critical points
International Nuclear Information System (INIS)
Sengupta, K.; Powell, Stephen; Sachdev, Subir
2004-01-01
We study the quantum dynamics of a number of model systems as their coupling constants are changed rapidly across a quantum critical point. The primary motivation is provided by the recent experiments of Greiner et al. [Nature (London) 415, 39 (2002)] who studied the response of a Mott insulator of ultracold atoms in an optical lattice to a strong potential gradient. In a previous work, it had been argued that the resonant response observed at a critical potential gradient could be understood by proximity to an Ising quantum critical point describing the onset of density wave order. Here we obtain numerical results on the evolution of the density wave order as the potential gradient is scanned across the quantum critical point. This is supplemented by studies of the integrable quantum Ising spin chain in a transverse field, where we obtain exact results for the evolution of the Ising order correlations under a time-dependent transverse field. We also study the evolution of transverse superfluid order in the three-dimensional case. In all cases, the order parameter is best enhanced in the vicinity of the quantum critical point
Quantum entanglement and fixed-point bifurcations
International Nuclear Information System (INIS)
Hines, Andrew P.; McKenzie, Ross H.; Milburn, G.J.
2005-01-01
How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state--the ground state--achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation
Detecting quantum critical points using bipartite fluctuations.
Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn
2012-03-16
We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.
Fermion-induced quantum critical points
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-01-01
A unified theory of quantum critical points beyond the conventional Landau?Ginzburg?Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau?Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such t...
2-point functions in quantum cosmology
International Nuclear Information System (INIS)
Gielen, Steffen
2012-01-01
We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories, with particular reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, deriving vertex expansions and composition laws they satisfy. We clarify the tie between definitions using a group averaging procedure and those in a deparametrised framework. We draw some conclusions about the physics of a single quantum universe and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
International Nuclear Information System (INIS)
Wirtz, R; Taylor, R.P.; Newbury, R.; Nicholls, J.T.; Tribe, W.R.; Simmons, M.Y.
1999-01-01
Full text: The conductance of a quasi one-dimensional channel defined by a split-gate quantum point contact (QPC) on the surface of a AlGaAs/GaAs heterostructure shows quantised steps at n(2e 2 /h) where n is an integer. This experimental result is due to the reduction of the number of current carrying one-dimensional subbands caused by narrowing the QPC. The theoretical explanation however does not take electron-electron interactions into account. Recently Thomas et al. discovered a new feature at non-integral value of n ∼ 0.7 in very low-disorder samples (μ ∼ 450 m 2 V -1 s -1 ) which may originate from electron-electron interactions (e.g. spin polarisation at zero magnetic field). We are currently investigating the 0.7 feature as a function of applied hydrostatic pressure. Hydrostatic pressure affects the band structure and therefore the effective mass and the effective g-factor. In the case of bulk GaAs hydrostatic pressure reduces the magnitude of the effective g-factor, reaching a value of zero at approximately 1.7x10 9 Pa. Using a non-magnetic BeCu clamp-cell we achieve pressures up to 1 x 10 9 Pa, reducing the effective g-factor by more than 60%, in a temperature range 30mK to 300K and at magnetic fields up to 17T. We are therefore able to map the 0.7 feature as a function of p,T and B to assess the evidence for an electron-electron interaction driven origin of the 0.7 feature. We will present the preliminary results of our measurements
Quantized conductance in an atom-sized point contact
DEFF Research Database (Denmark)
Olesen, L.; Laegsgaard, E.; Stensgaard, I.
1994-01-01
We present direct measurements at room temperature of the conductance of a point contact between a scanning tunneling microscope tip and Ni, Cu, and Pt surfaces. As the contact is stretched the conductance jumps in units of 2e2/h. Atomistic simulations of the stretch of the contact combined...
Exact Identification of a Quantum Change Point
Sentís, Gael; Calsamiglia, John; Muñoz-Tapia, Ramon
2017-10-01
The detection of change points is a pivotal task in statistical analysis. In the quantum realm, it is a new primitive where one aims at identifying the point where a source that supposedly prepares a sequence of particles in identical quantum states starts preparing a mutated one. We obtain the optimal procedure to identify the change point with certainty—naturally at the price of having a certain probability of getting an inconclusive answer. We obtain the analytical form of the optimal probability of successful identification for any length of the particle sequence. We show that the conditional success probabilities of identifying each possible change point show an unexpected oscillatory behavior. We also discuss local (online) protocols and compare them with the optimal procedure.
Exceptional points in open quantum systems
International Nuclear Information System (INIS)
Mueller, Markus; Rotter, Ingrid
2008-01-01
Open quantum systems are embedded in the continuum of scattering wavefunctions and are naturally described by non-Hermitian Hamilton operators. In the complex energy plane, exceptional points appear at which two (or more) eigenvalues of the Hamilton operator coalesce. Although they are a countable set of single points in the complex energy plane and therefore of measure zero, they determine decisively the dynamics of open quantum systems. A powerful method for the description of open quantum systems is the Feshbach projection operator formalism. It is used in the present paper as a basic tool for the study of exceptional points and of the role they play for the dynamics of open quantum systems. Among others, the topological structure of the exceptional points, the rigidity of the phases of the eigenfunctions in their vicinity, the enhancement of observable values due to the reduced phase rigidity and the appearance of phase transitions are considered. The results are compared with existing experimental data on microwave cavities. In the last section, some questions being still unsolved, are considered
Characterizations of fixed points of quantum operations
International Nuclear Information System (INIS)
Li Yuan
2011-01-01
Let φ A be a general quantum operation. An operator B is said to be a fixed point of φ A , if φ A (B)=B. In this note, we shall show conditions under which B, a fixed point φ A , implies that B is compatible with the operation element of φ A . In particular, we offer an extension of the generalized Lueders theorem.
Dynamical Response near Quantum Critical Points.
Lucas, Andrew; Gazit, Snir; Podolsky, Daniel; Witczak-Krempa, William
2017-02-03
We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high-frequency optical conductivity and the corresponding sum rule.
Interplay of quantum and classical fluctuations near quantum critical points
International Nuclear Information System (INIS)
Continentino, Mucio Amado
2011-01-01
For a system near a quantum critical point (QCP), above its lower critical dimension d L , there is in general a critical line of second-order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, d eff = d + z (d is the Euclidean dimension of the system and z the dynamic quantum critical exponent) is above its upper critical dimension d c there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ = νz between the shift exponent ψ of the critical line and the crossover exponent νz, for d + z > d c by a dangerous irrelevant interaction. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP. (author)
Probing multiband superconductivity by point-contact spectroscopy
International Nuclear Information System (INIS)
Daghero, D; Gonnelli, R S
2010-01-01
Point-contact spectroscopy was originally developed for the determination of the electron-phonon spectral function in normal metals. However, in the past 20 years it has become an important tool in the investigation of superconductors. As a matter of fact, point contacts between a normal metal and a superconductor can provide information on the amplitude and symmetry of the energy gap that, in the superconducting state, opens up at the Fermi level. In this paper we review the experimental and theoretical aspects of point-contact spectroscopy in superconductors, and we give an experimental survey of the most recent applications of this technique to anisotropic and multiband superconductors. (topical review)
Two point function for a simple general relativistic quantum model
Colosi, Daniele
2007-01-01
We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.
Quantum Triple Point and Quantum Critical End Points in Metallic Magnets.
Belitz, D; Kirkpatrick, T R
2017-12-29
In low-temperature metallic magnets, ferromagnetic (FM) and antiferromagnetic (AFM) orders can exist, adjacent to one another or concurrently, in the phase diagram of a single system. We show that universal quantum effects qualitatively alter the known phase diagrams for classical magnets. They shrink the region of concurrent FM and AFM order, change various transitions from second to first order, and, in the presence of a magnetic field, lead to either a quantum triple point where the FM, AFM, and paramagnetic phases all coexist or a quantum critical end point.
Universal signatures of fractionalized quantum critical points.
Isakov, Sergei V; Melko, Roger G; Hastings, Matthew B
2012-01-13
Ground states of certain materials can support exotic excitations with a charge equal to a fraction of the fundamental electron charge. The condensation of these fractionalized particles has been predicted to drive unusual quantum phase transitions. Through numerical and theoretical analysis of a physical model of interacting lattice bosons, we establish the existence of such an exotic critical point, called XY*. We measure a highly nonclassical critical exponent η = 1.493 and construct a universal scaling function of winding number distributions that directly demonstrates the distinct topological sectors of an emergent Z(2) gauge field. The universal quantities used to establish this exotic transition can be used to detect other fractionalized quantum critical points in future model and material systems.
Supersymmetric quantum mechanics under point singularities
International Nuclear Information System (INIS)
Uchino, Takashi; Tsutsui, Izumi
2003-01-01
We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed
Dynamic trapping near a quantum critical point
Kolodrubetz, Michael; Katz, Emanuel; Polkovnikov, Anatoli
2015-02-01
The study of dynamics in closed quantum systems has been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins driven across a second-order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon—dynamic critical trapping—in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus field.
Multiple contacts with diversion at the point of arrest.
Riordan, Sharon; Wix, Stuart; Haque, M Sayeed; Humphreys, Martin
2003-04-01
A diversion at the point of arrest (DAPA) scheme was set up in five police stations in South Birmingham in 1992. In a study of all referrals made over a four-year period a sub group of multiple contact individuals was identified. During that time four hundred and ninety-two contacts were recorded in total, of which 130 were made by 58 individuals. The latter group was generally no different from the single contact group but did have a tendency to be younger. This research highlights the need for a re-evaluation of service provision and associated education of police officers and relevant mental health care professionals.
Deconfined Quantum Critical Points: Symmetries and Dualities
Directory of Open Access Journals (Sweden)
Chong Wang
2017-09-01
Full Text Available The deconfined quantum critical point (QCP, separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of (2+1D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N_{f}=2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an O(4×Z_{2}^{T} symmetry. We propose several dualities for the deconfined QCP with SU(2 spin symmetry which together make natural the emergence of a previously suggested SO(5 symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of (3+1D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.
A novel design of submicron thin film point contacts
International Nuclear Information System (INIS)
Koch, H.
1986-01-01
A thin film point contact design applicable to SIS-, SNS-, and microbridge-type Josephson junctions is presented, which offers potentially advanced junction characteristics (low capacitance, low stray inductance, increased quasi-particle resistance). The design philosophy is based on the fact that a point contact results if two planes having a common symmetry axis but oriented perpendicular to each other are brought into contact with each other. For the case of thin films, instead of two-dimensional planes, the cross section of the resulting ''point''-contact is defined by the thicknesses of the two thin films. Film thicknesses can be controlled much more precisely than lateral dimensions created by lithography. Hence, submicron junction geometries can be achieved using only conventional fabrication techniques. Following this idea, Josephson weak links of the ultrashort microbridge-type have been fabricated by an all-Nb technique having a 0.3-μm X 0.2-μm cross section with a R /SUB q/ I /SUB c/ product (R /SUB q/ = quasiparticle resistance, I /SUB c/ = critical current) of more than 20 mV
Detection of quantum critical points by a probe qubit.
Zhang, Jingfu; Peng, Xinhua; Rajendran, Nageswaran; Suter, Dieter
2008-03-14
Quantum phase transitions occur when the ground state of a quantum system undergoes a qualitative change when an external control parameter reaches a critical value. Here, we demonstrate a technique for studying quantum systems undergoing a phase transition by coupling the system to a probe qubit. It uses directly the increased sensibility of the quantum system to perturbations when it is close to a critical point. Using an NMR quantum simulator, we demonstrate this measurement technique for two different types of quantum phase transitions in an Ising spin chain.
Quantum field theory of point particles and strings
Hatfield, Brian
1992-01-01
The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.
Wuertz, A.; Wildfeuer, R.; Lorke, A.; Deviatov, E. V.; Dolgopolov, V. T.
2001-01-01
Using an innovative combination of a quasi-Corbino sample geometry and the cross-gate technique, we have developed a method that enables us to separately contact single edge channels in the quantum Hall regime and investigate equilibration among them. Performing 4-point resistance measurements, we directly obtain information on the energetic and geometric structure of the edge region and the equilibration-length for current transport across the Landau- as well as the spin-gap. Based on an alm...
Fixed points of quantum gravity in extra dimensions
International Nuclear Information System (INIS)
Fischer, Peter; Litim, Daniel F.
2006-01-01
We study quantum gravity in more than four dimensions with renormalisation group methods. We find a non-trivial ultraviolet fixed point in the Einstein-Hilbert action. The fixed point connects with the perturbative infrared domain through finite renormalisation group trajectories. We show that our results for fixed points and related scaling exponents are stable. If this picture persists at higher order, quantum gravity in the metric field is asymptotically safe. We discuss signatures of the gravitational fixed point in models with low scale quantum gravity and compact extra dimensions
Design and construction of a point-contact spectroscopy rig with lateral scanning capability
Energy Technology Data Exchange (ETDEWEB)
Tortello, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Torino 10129 (Italy); Park, W. K., E-mail: wkpark@illinois.edu; Ascencio, C. O.; Saraf, P.; Greene, L. H. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2016-06-15
The design and realization of a cryogenic rig for point-contact spectroscopy measurements in the needle-anvil configuration is presented. Thanks to the use of two piezoelectric nano-positioners, the tip can move along the vertical (z) and horizontal (x) direction and thus the rig is suitable to probe different regions of a sample in situ. Moreover, it can also form double point-contacts on different facets of a single crystal for achieving, e.g., an interferometer configuration for phase-sensitive measurements. For the later purpose, the sample holder can also host a Helmholtz coil for applying a small transverse magnetic field to the junction. A semi-rigid coaxial cable can be easily added for studying the behavior of Josephson junctions under microwave irradiation. The rig can be detached from the probe and thus used with different cryostats. The performance of this new probe has been tested in a Quantum Design PPMS system by conducting point-contact Andreev reflection measurements on Nb thin films over large areas as a function of temperature and magnetic field.
Vector boson excitations near deconfined quantum critical points.
Huh, Yejin; Strack, Philipp; Sachdev, Subir
2013-10-18
We show that the Néel states of two-dimensional antiferromagnets have low energy vector boson excitations in the vicinity of deconfined quantum critical points. We compute the universal damping of these excitations arising from spin-wave emission. Detection of such a vector boson will demonstrate the existence of emergent topological gauge excitations in a quantum spin system.
Josephson effect in point contacts between 'f-wave' superconductors
International Nuclear Information System (INIS)
Mahmoodi, R.; Shevchenko, S.N.; Kolesnichenko, Yu.A
2002-01-01
A stationary Josephson effect in point contacts between triplet superconductors is analyzed theoretically for most probable models of the order parameter in UPt 3 and Sr 2 RuO 4 . The consequence of misorientation of crystals in the superconducting banks on this effect is considered. We show that different models for the order parameter lead to quit different current-phase relations. For certain angles of misorientation a boundary between superconductors can generate a spontaneous current parallel to the surface. In a number of cases the state with a zero Josephson current and minimum of the free energy corresponds to a spontaneous phase difference. This phase difference depends on the misorientation angle and may possess any value. We conclude that experimental investigations of the current-phase relations of small junctions can be used for determination of the order parameter symmetry in the superconductors mentioned above
Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops
Tanaka, Atushi; Kim, Sang Wook; Cheon, Taksu
2014-01-01
The correspondence between exotic quantum holonomy that occurs in families of Hermitian cycles, and exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable condition, an explicit expressions of the adiabatic parameter dependencies of quasienergies and stationary states, which exhibit anholonomies, are obtained. It is also shown that the quantum kicked tops with the complexified adiabatic parameter have a higher order EP, which is broken i...
Localized excitations in superconducting point contacts: probing the Andreev doublet
International Nuclear Information System (INIS)
Bretheau, L.
2013-01-01
The Josephson effect describes the coherent coupling between superconductors and the resulting supercurrent. Microscopically, it arises from the existence of discrete quasiparticle states, localized at the weak link, the Andreev bound states. They come in doublets in each conduction channel of the weak link, with energies symmetric about the Fermi energy and opposite supercurrents. Each Andreev doublet gives rise to four states: the ground state |-> and the excited state |+>, with even parity, and the excited odd states |↑> and |↓>. Is it possible to address and control Andreev doublets? This thesis describes two sets of experiments designed to answer this question using the most basic Josephson element, a one-atom contact between two superconducting electrodes. In a first experiment, we have observed and characterized the excited odd states |↑> and |↓>. As expected for a spin-degenerate system, they do not carry supercurrent. In this experiment the excitation was uncontrolled and resulted from trapping of spurious quasiparticles. We have measured the lifetime of the odd states: under some condition, it is found to exceed 100 μs. The second experiment is a photon-absorption spectroscopy of the Andreev doublet. It was performed by using a Josephson junction as an integrated on-chip microwave emitter and detector. The observed Andreev transitions correspond to excitation from the ground state |->to the excited even state |+>, and are well accounted for by our quantum model. This result opens the way to coherent manipulation of this two level system. The direct observation of the excited Andreev state, either by quasiparticle-injection or photon-absorption, strongly supports the mesoscopic theory of the Josephson effect. It shows that in addition to the phase difference, each channel of a Josephson weak link possesses an internal fermionic degree of freedom. It could be used to code information in a novel type of superconducting qubit. (author) [fr
Klink, William H.; Schweiger, Wolfgang
2018-03-01
This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.
Quantum gravity at a Lifshitz point
International Nuclear Information System (INIS)
Horava, Petr
2009-01-01
We present a candidate quantum field theory of gravity with dynamical critical exponent equal to z=3 in the UV. (As in condensed-matter systems, z measures the degree of anisotropy between space and time.) This theory, which at short distances describes interacting nonrelativistic gravitons, is power-counting renormalizable in 3+1 dimensions. When restricted to satisfy the condition of detailed balance, this theory is intimately related to topologically massive gravity in three dimensions, and the geometry of the Cotton tensor. At long distances, this theory flows naturally to the relativistic value z=1, and could therefore serve as a possible candidate for a UV completion of Einstein's general relativity or an infrared modification thereof. The effective speed of light, the Newton constant and the cosmological constant all emerge from relevant deformations of the deeply nonrelativistic z=3 theory at short distances.
Black holes as critical point of quantum phase transition.
Dvali, Gia; Gomez, Cesar
We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.
Universal Postquench Prethermalization at a Quantum Critical Point
Gagel, Pia; Orth, Peter P.; Schmalian, Jörg
2014-11-01
We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive nonequilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are: (i) a power law rise of order and correlations after an initial collapse of the equilibrium state and (ii) a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches.
Exceptional points and quantum correlations in precise measurements
International Nuclear Information System (INIS)
Thilagam, A
2012-01-01
We examine the physical manifestations of exceptional points and passage times in a two-level system which is subjected to quantum measurements and which admits a non-Hermitian description. Using an effective Hamiltonian acting in the two-dimensional space spanned by the evolving initial and final states, the effects of highly precise quantum measurements in which the monitoring device interferes significantly with the evolution dynamics of the monitored two-level system is analyzed. The dynamics of a multipartite system consisting of the two-level system, a source of external potential and the measurement device is examined using correlation measures such as entanglement and non-classical quantum correlations. Results show that the quantum correlations between the monitored (monitoring) systems is considerably decreased (increased) as the measurement precision nears the exceptional point, at which the passage time is half of the measurement duration. The results indicate that the underlying mechanism by which the non-classical correlations of quantum systems are transferred from one subsystem to another may be better revealed via use of geometric approaches. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops.
Tanaka, Atushi; Kim, Sang Wook; Cheon, Taksu
2014-04-01
The correspondence between exotic quantum holonomy, which occurs in families of Hermitian cycles, and exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable condition, an explicit expression of the adiabatic parameter dependencies of quasienergies and stationary states, which exhibit anholonomies, is obtained. It is also shown that the quantum kicked tops with the complexified adiabatic parameter have a higher-order EP, which is broken into lower-order EPs with the application of small perturbations. The stability of exotic holonomy against such bifurcation is demonstrated.
Two-point functions in (loop) quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca; Oriti, Daniele [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Gielen, Steffen [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2011-07-01
We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions, with particular but non-exclusive reference to loop quantum cosmology (LQC). Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Two-point functions in (loop) quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele, E-mail: calcagni@aei.mpg.de, E-mail: gielen@aei.mpg.de, E-mail: doriti@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany)
2011-06-21
The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Two-point functions in (loop) quantum cosmology
International Nuclear Information System (INIS)
Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele
2011-01-01
The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Thermal conductivity at a disordered quantum critical point
International Nuclear Information System (INIS)
Hartnoll, Sean A.; Ramirez, David M.; Santos, Jorge E.
2016-01-01
Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T"0"."3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick.
Origin of chaos near critical points of quantum flow.
Efthymiopoulos, C; Kalapotharakos, C; Contopoulos, G
2009-03-01
The general theory of motion in the vicinity of a moving quantum nodal point (vortex) is studied in the framework of the de Broglie-Bohm trajectory method of quantum mechanics. Using an adiabatic approximation, we find that near any nodal point of an arbitrary wave function psi there is an unstable point (called the X point) in a frame of reference moving with the nodal point. The local phase portrait forms always a characteristic pattern called the "nodal-point- X -point complex." We find general formulas for this complex as well as necessary and sufficient conditions of validity of the adiabatic approximation. We demonstrate that chaos emerges from the consecutive scattering events of the orbits with nodal-point- X -point complexes. The scattering events are of two types (called type I and type II). A theoretical model is constructed yielding the local value of the Lyapunov characteristic numbers in scattering events of both types. The local Lyapunov characteristic number scales as an inverse power of the speed of the nodal point in the rest frame, implying that it scales proportionally to the size of the nodal-point- X -point complex. It is also an inverse power of the distance of a trajectory from the X point's stable manifold far from the complex. This distance plays the role of an effective "impact parameter." The results of detailed numerical experiments with different wave functions, possessing one, two, or three moving nodal points, are reported. Examples are given of regular and chaotic trajectories, and the statistics of the Lyapunov characteristic numbers of the orbits are found and compared to the number of encounter events of each orbit with the nodal-point- X -point complexes. The numerical results are in agreement with the theory, and various phenomena appearing at first as counterintuitive find a straightforward explanation.
A magnetically induced quantum critical point in holography
Gursoy, U.; Gnecchi, A.; Toldo, C.; Papadoulaki, O.
We investigate quantum critical points in a 2+1 dimensional gauge theory at finite chemical potential χ and magnetic field B. The gravity dual is based on 4D NN = 2 Fayet-Iliopoulos gauged supergravity and the solutions we consider — that are constructed analytically — are extremal, dyonic,
Electron self-trapping at quantum and classical critical points
Auslender, M.I.; Katsnelson, M.I.
2006-01-01
Using Feynman path integral technique estimations of the ground state energy have been found for a conduction electron interacting with order parameter fluctuations near quantum critical points. In some cases only singular perturbation theory in the coupling constant emerges for the electron ground
Multiply Degenerate Exceptional Points and Quantum Phase Transitions
Czech Academy of Sciences Publication Activity Database
Borisov, D.; Růžička, František; Znojil, Miloslav
2015-01-01
Roč. 54, č. 12 (2015), s. 4293-4305 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum mechanics * Cryptohermitian observbles * spectra and pseudospectra * real exceptional points * phase transitions Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015
Discrimination of the change point in a quantum setting
International Nuclear Information System (INIS)
Akimoto, Daiki; Hayashi, Masahito
2011-01-01
In the change point problem, we determine when the observed distribution has changed to another one. We expand this problem to a quantum case where copies of an unknown pure state are being distributed. That is, we estimate when the distributed quantum pure state is changed. As the most fundamental case, we treat the problem of deciding the true change point t c between the two given candidates t 1 and t 2 . Our problem is mathematically equal to identifying a given state with one of the two unknown states when multiple copies of the states are provided. The minimum of the averaged error probability is given and the optimal positive operator-valued measure (POVM) is given to obtain it when the initial and final quantum pure states are subject to the invariant prior. We also compute the error probability for deciding the change point under the above POVM when the initial and final quantum pure states are fixed. These analytical results allow us to calculate the value in the asymptotic case.
Zero-point energy in early quantum theory
International Nuclear Information System (INIS)
Milonni, P.W.; Shih, M.-L.
1991-01-01
In modern physics the vacuum is not a tranquil void but a quantum state with fluctuations having observable consequences. The present concept of the vacuum has its roots in the zero-point energy of harmonic oscillators and the electromagnetic field, and arose before the development of the formalism of quantum mechanics. This article discusses these roots in the blackbody research of Planck and Einstein in 1912--1913, and the relation to Bose--Einstein statistics and the first indication of wave--particle duality uncovered by Einstein's fluctuation formula. Also considered are the Einstein--Stern theory of specific heats, which invoked zero-point energy in a way which turned out to be incorrect, and the experimental implications of zero-point energy recognized by Mulliken and Debye in vibrational spectroscopy and x-ray diffraction
48 CFR 15.604 - Agency points of contact.
2010-10-01
... agency: upcoming solicitations; Broad Agency Announcements; Small Business Innovation Research programs; Small Business Technology Transfer Research programs; Program Research and Development Announcements; or... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Unsolicited Proposals 15.604 Agency points...
Point contacts and localization in generic helical liquids
Orth, Christoph P.; Strübi, Grégory; Schmidt, Thomas L.
2013-10-01
We consider two helical liquids on opposite edges of a two-dimensional topological insulator, which are connected by one or several local tunnel junctions. In the presence of spatially inhomogeneous Rashba spin-orbit coupling, the spin of the helical edge states is momentum dependent, and this spin texture can be different on opposite edges. We demonstrate that this has a strong impact on the electron transport between the edges. In particular, in the case of many random tunnel contacts, the localization length depends strongly on the spin textures of the edge states.
Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points
Energy Technology Data Exchange (ETDEWEB)
Fischer, I.A.
2006-07-01
This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We
Two-point entanglement near a quantum phase transition
International Nuclear Information System (INIS)
Chen, Han-Dong
2007-01-01
In this work, we study the two-point entanglement S(i, j), which measures the entanglement between two separated degrees of freedom (ij) and the rest of system, near a quantum phase transition. Away from the critical point, S(i, j) saturates with a characteristic length scale ξ E , as the distance |i - j| increases. The entanglement length ξ E agrees with the correlation length. The universality and finite size scaling of entanglement are demonstrated in a class of exactly solvable one-dimensional spin model. By connecting the two-point entanglement to correlation functions in the long range limit, we argue that the prediction power of a two-point entanglement is universal as long as the two involved points are separated far enough
Universal post-quench prethermalization at a quantum critical point
Orth, Peter P.; Gagel, Pia; Schmalian, Joerg
2015-03-01
We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive non-equilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are a powerlaw rise of order and correlations after an initial collapse of the equilibrium state and a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches. [1] P. Gagel, P. P. Orth, J. Schmalian, Phys.Rev. Lett. (in press) arXiv:1406.6387
Non-equilibrium dynamics near a quantum multicritical point
International Nuclear Information System (INIS)
Patra, Ayoti; Mukherjee, Victor; Dutta, Amit
2011-01-01
We study the non-equilibrium dynamics of a quantum system close to a quantum multi-critical point (MCP) using the example of a one-dimensional spin-1/2 transverse XY spin chain. We summarize earlier results of defect generenation and fidelity susceptibility for quenching through MCP and close to the MCP, respectively. For a quenching scheme which enables the system to hit the MCP along different paths, we emphasize the role of path on exponents associated with quasicritical points which appear in the scaling relations. Finally, we explicitly derive the scaling of concurrence and negativity for two spin entanglement generated following a slow quenching across the MCP and enlist the results for different quenching schemes. We explicity show the dependence of the scaling on the quenching path and dicuss the limiting situations.
Quantum electrodynamics and light rays. [Two-point correlation functions
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E.C.G.
1978-11-01
Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references.
Fixed point structure of quenched, planar quantum electrodynamics
International Nuclear Information System (INIS)
Love, S.T.
1986-07-01
Gauge theories exhibiting a hierarchy of fermion mass scales may contain a pseudo-Nambu-Boldstone boson of spontaneously broken scale invariance. The relation between scale and chiral symmetry breaking is studied analytically in quenched, planar quantum electrodynamics in four dimensions. The model possesses a novel nonperturbative ultraviolet fixed point governing its strong coupling phase which requires the mixing of four fermion operators. 12 refs
The quantum nonlinear Schroedinger model with point-like defect
International Nuclear Information System (INIS)
Caudrelier, V; Mintchev, M; Ragoucy, E
2004-01-01
We establish a family of point-like impurities which preserve the quantum integrability of the nonlinear Schroedinger model in 1+1 spacetime dimensions. We briefly describe the construction of the exact second quantized solution of this model in terms of an appropriate reflection-transmission algebra. The basic physical properties of the solution, including the spacetime symmetry of the bulk scattering matrix, are also discussed. (letter to the editor)
Ultra-low contact resistance in graphene devices at the Dirac point
Anzi, Luca; Mansouri, Aida; Pedrinazzi, Paolo; Guerriero, Erica; Fiocco, Marco; Pesquera, Amaia; Centeno, Alba; Zurutuza, Amaia; Behnam, Ashkan; Carrion, Enrique A.; Pop, Eric; Sordan, Roman
2018-04-01
Contact resistance is one of the main factors limiting performance of short-channel graphene field-effect transistors (GFETs), preventing their use in low-voltage applications. Here we investigated the contact resistance between graphene grown by chemical vapor deposition (CVD) and different metals, and found that etching holes in graphene below the contacts consistently reduced the contact resistance, down to 23 Ω \\cdot μ m with Au contacts. This low contact resistance was obtained at the Dirac point of graphene, in contrast to previous studies where the lowest contact resistance was obtained at the highest carrier density in graphene (here 200 Ω \\cdot μ m was obtained under such conditions). The ‘holey’ Au contacts were implemented in GFETs which exhibited an average transconductance of 940 S m-1 at a drain bias of only 0.8 V and gate length of 500 nm, which out-perform GFETs with conventional Au contacts.
Effect of the cut off frequency on rough point and flat surface contacts
International Nuclear Information System (INIS)
Meng, Fan Ming
2012-01-01
In the past years, contact between two bodies has been studied from various ways that do not consider the cut off frequency effect on the contact mechanism. This paper reports the correlation between rough point contact and flat surface contact at different cut off frequencies of filter. The similarity and difference between the two types of contact mechanisms are presented for materials with linear or elastic perfectly plastic deformation. The conjugate gradient method (CGM) is used for analysing the rough point contact, while the rough flat surface contact is studied with an improved CGM in which the influence coefficient for the elastic deformation of the rough flat surface is obtained with finite element method. Numerical results show that for the above two types of contacts, their von Mises stress and maximum shear stress are greatly affected by the cut-off frequency of a high pass filter. Moreover, a decrease in the cut-off frequency leads to an increase in the contact area and a decrease in the approach for the rough flat surface contact, while the opposite variations is for the point contact between rough bodies with the small radii
Universal postquench coarsening and aging at a quantum critical point
Gagel, Pia; Orth, Peter P.; Schmalian, Jörg
2015-09-01
The nonequilibrium dynamics of a system that is located in the vicinity of a quantum critical point is affected by the critical slowing down of order-parameter correlations with the potential for novel out-of-equilibrium universality. After a quantum quench, i.e., a sudden change of a parameter in the Hamiltonian, such a system is expected to almost instantly fall out of equilibrium and undergo aging dynamics, i.e., dynamics that depends on the time passed since the quench. Investigating the quantum dynamics of an N -component φ4 model coupled to an external bath, we determine this universal aging and demonstrate that the system undergoes a coarsening, governed by a critical exponent that is unrelated to the equilibrium exponents of the system. We analyze this behavior in the large-N limit, which is complementary to our earlier renormalization-group analysis, allowing in particular the direct investigation of the order-parameter dynamics in the symmetry-broken phase and at the upper critical dimension. By connecting the long-time limit of fluctuations and response, we introduce a distribution function that shows that the system remains nonthermal and exhibits quantum coherence even on long time scales.
International Nuclear Information System (INIS)
Bižić, Milan B; Petrović, Dragan Z; Tomić, Miloš C; Djinović, Zoran V
2017-01-01
This paper presents the development of a unique method for experimental determination of wheel–rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Ð¢hÐµ obtained results have shown that the developed method enables measurement of vertical and lateral wheel–rail contact forces Q and Y and their ratio Y / Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y / Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel–rail contact forces and contact point position using IWS. (paper)
Structure and applications of point form relativistic quantum mechanics
International Nuclear Information System (INIS)
Klink, W.H.
2003-01-01
The framework of point form relativistic quantum mechanics is used to construct mass and current operators for hadronic systems with finite degree of freedom. For the point form all of the interactions are in the four-momentum operator and, since Lorentz transformations are kinematic, the theory is manifestly covariant. In the Bakamjian-Thomas version of the point form the four-momentum operator is written as a product of the four-velocity operator and mass operator, where the mass operator is the sum of free and interacting mass operators. Interacting mass operators can be constructed from vertices, matrix elements of local field operators evaluated at the space-time point zero, where the states are eigenstates of the four-velocity. Applications include the study of the spectra and widths of vector mesons, viewed as bound states of quark-antiquark pairs. Besides mass operators, current operators are needed to compute form factors. Form factors are matrix elements of current operators on mass operator eigenstates and are often calculated with one-body current operators (in the point form this is called the point form spectator approximation); but in a properly relativistic theory there must also be many-body current operators. Minimal currents needed to satisfy current conservation in the presence of hadronic interactions (called dynamically determined currents) are shown to be easily calculated in the point form. (author)
Defect production in nonlinear quench across a quantum critical point.
Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi
2008-07-04
We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.
Pb induces superconductivity in Bi2Se3 analyzed by point contact spectroscopy
Arevalo-López, P.; López-Romero, R. E.; Escudero, R.
2015-01-01
Some topological insulators become superconducting when doped with Cu and Pd. Superconductivity in a non-superconductor may be induced by proximity effect: i.e. Contacting a non-superconductor with a superconductor. The superconducting macroscopic wave function will induce electronic pairing into the normal compound. In the simplest topological insulator, Bi$_2$Se$_3$, superconductivity may be induced with Pb. We studied with point contact junctions formed by contacting Bi$_2$Se$_3$ crystals ...
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Wave chaos in quantum systems with point interaction
International Nuclear Information System (INIS)
Albeverio, S.; Seba, P.
1991-01-01
The authors study perturbations H of the quantized version H 0 of integrable Hamiltonian systems by point interactions. They relate the eigenvalues of H to the zeros of a certain meromorphic function ξ. Assuming the eigenvalues of H 0 are Poisson distributed, they get detailed information on the joint distribution of the zeros of ξ and give bounds on the probability density for the spacings of eigenvalues of H. Their results confirm the wave chaos phenomenon, as different from the quantum chaos phenomenon predicted by random matrix theory
Ubiquity of quantum zero-point fluctuations in dislocation glide
Landeiro Dos Reis, Marie; Choudhury, Anshuman; Proville, Laurent
2017-03-01
Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.
Rounding by disorder of first-order quantum phase transitions: emergence of quantum critical points.
Goswami, Pallab; Schwab, David; Chakravarty, Sudip
2008-01-11
We give a heuristic argument for disorder rounding of a first-order quantum phase transition into a continuous phase transition. From both weak and strong disorder analysis of the N-color quantum Ashkin-Teller model in one spatial dimension, we find that, for N > or =3, the first-order transition is rounded to a continuous transition and the physical picture is the same as the random transverse field Ising model for a limited parameter regime. The results are strikingly different from the corresponding classical problem in two dimensions where the fate of the renormalization group flows is a fixed point corresponding to N-decoupled pure Ising models.
Quantum Coherent Multielectron Processes in an Atomic Scale Contact
DEFF Research Database (Denmark)
Peters, Peter-Jan; Xu, Fei; Kaasbjerg, Kristen
2017-01-01
The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hv > 2eV. A model of electrons interacting...
Thermoelectric effects in molecular quantum dots with contacts
Czech Academy of Sciences Publication Activity Database
Koch, T.; Loos, Jan; Fehske, H.
2014-01-01
Roč. 89, č. 15 (2014), "155133-1"-"155133-11" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : theory of electronic transport * scattering mechanisms * polarons and electron-phonon interactions * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Quantum Critical Point revisited by the Dynamical Mean Field Theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
Quantum critical point revisited by dynamical mean-field theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
Quantum critical point revisited by dynamical mean-field theory
International Nuclear Information System (INIS)
Xu, Wenhu; Kotliar, Gabriel; Rutgers University, Piscataway, NJ; Tsvelik, Alexei M.
2017-01-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
A sliding point contact model for the finite element structures code EURDYN
International Nuclear Information System (INIS)
Smith, B.L.
1986-01-01
A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)
Probing wavenumbers of current-induced excitations in point-contact experiments
Directory of Open Access Journals (Sweden)
Z Wei
2010-06-01
Full Text Available Z Wei, M TsoiDepartment of Physics, Center for Nano and Molecular Science and Technology, and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USAAbstract: We demonstrate how a mechanical point-contact technique can provide information on the wavenumber of spin waves excited by high-density electrical current in magnetic multilayers. By varying the size of point-contacts, we have been able to control the size of the excitation volume and therefore the wavelength of current-induced spin waves. This leads to a technique with in situ sensitivity to wavenumbers of current-induced excitations. Our detailed size-dependent measurements support the prediction that the excited wavelength is determined by the contact size.Keywords: spin transfer torque, giant magnetoresistance, spin waves, point contact
Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.
Fradkin, Eduardo; Moore, Joel E
2006-08-04
The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.
Zeighami, A; Aissaoui, R; Dumas, R
2018-03-01
Contact point (CP) trajectory is a crucial parameter in estimating medial/lateral tibio-femoral contact forces from the musculoskeletal (MSK) models. The objective of the present study was to develop a method to incorporate the subject-specific CP trajectories into the MSK model. Ten healthy subjects performed 45 s treadmill gait trials. The subject-specific CP trajectories were constructed on the tibia and femur as a function of extension-flexion using low-dose bi-plane X-ray images during a quasi-static squat. At each extension-flexion position, the tibia and femur CPs were superimposed in the three directions on the medial side, and in the anterior-posterior and proximal-distal directions on the lateral side to form the five kinematic constraints of the knee joint. The Lagrange multipliers associated to these constraints directly yielded the medial/lateral contact forces. The results from the personalized CP trajectory model were compared against the linear CP trajectory and sphere-on-plane CP trajectory models which were adapted from the commonly used MSK models. Changing the CP trajectory had a remarkable impact on the knee kinematics and changed the medial and lateral contact forces by 1.03 BW and 0.65 BW respectively, in certain subjects. The direction and magnitude of the medial/lateral contact force were highly variable among the subjects and the medial-lateral shift of the CPs alone could not determine the increase/decrease pattern of the contact forces. The suggested kinematic constraints are adaptable to the CP trajectories derived from a variety of joint models and those experimentally measured from the 3D imaging techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of occlusal contact stability on the jaw closing point during tapping movements.
Nishigawa, Keisuke; Suzuki, Yoshitake; Ishikawa, Teruaki; Bando, Eiichi
2012-04-01
We studied the relationship between tapping point reproducibility and stability of occlusal contacts at maximum intercuspation. Tapping movements of 12 adult volunteers who had dentition with natural teeth were recorded, and distances between the tapping point (TP) and the intercuspal position (ICP) at the incisal point were calculated. Occlusal contacts at the ICP of individual subjects were also evaluated with black-colored silicone impression material. The correlation between TP-ICP distance and occlusal contact stability was studied. TP-ICP distance exhibited negative correlations with the total number of teeth showing occlusal contact at the ICP. Standard deviations of TP-ICP distance also negatively correlated with the extension of occlusal contact area over dentition. This finding indicates that occlusal contacts at the ICP affect the kinematic behavior of tapping movements. The results of this study also suggest that jaw movement data may provide useful clinical information for the evaluation of occlusal contact at ICP. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Cai Haogang; Ding Guifu; Yang Zhuoqing; Su Zhijuan; Zhou Jiansheng; Wang Hong
2008-01-01
A novel inertial switch based on a micro-electro-mechanical system (MEMS) was designed, which consists of three main parts: a proof mass as the movable electrode, a cross beam as the stationary electrode and a movable contact point to prolong the contact time. A MATLAB/Simulink model, which had been verified by comparison with ANSYS transient simulation, was built to simulate the dynamic response, based on which the contact-enhancing mechanism was confirmed and the dependence of threshold acceleration on the proof mass thickness was studied. The simulated dynamic responses under various accelerations exhibit satisfactory device behaviors: the switch-on time is prolonged under transient acceleration; the switch-on state is more continuous than the conventional design under long lasting acceleration. The inertial micro-switch was fabricated by multilayer electroplating technology and then tested by a drop hammer experiment. The test results indicate that the contact effect was improved significantly and a steady switch-on time of over 50 µs was observed under half-sine wave acceleration with 1 ms duration, in agreement with the dynamic simulation
DEFF Research Database (Denmark)
Hasegawa, S.; Grey, Francois
2002-01-01
show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered...
On the many saddle points description of quantum black holes
Energy Technology Data Exchange (ETDEWEB)
Germani, Cristiano, E-mail: cristiano.germani@physik.uni-muenchen.de
2014-06-02
Considering two dimensional gravity coupled to a CFT, we show that a semiclassical black hole can be described in terms of two Liouville theories matched at the horizon. The black hole exterior corresponds to a space-like while the interior to a time-like Liouville theory. This matching automatically implies that a semiclassical black hole has an infinite entropy. The path integral description of the time-like Liouville theory (the Black Hole interior) is studied and it is found that the correlation functions of the coupled CFT-gravity system are dominated by two (complex) saddle points, even in the semiclassical limit. We argue that this system can be interpreted as two interacting Bose–Einstein condensates constructed out of two degenerate quantum states. In AdS/CFT context, the same system is mapped into two interacting strings intersecting inside a three-dimensional BTZ black hole.
Zero-point quantum fluctuations and dark energy
International Nuclear Information System (INIS)
Maggiore, Michele
2011-01-01
In the Hamiltonian formulation of general relativity, the energy associated to an asymptotically flat space-time with metric g μν is related to the Hamiltonian H GR by E=H GR [g μν ]-H GR [η μν ], where the subtraction of the flat-space contribution is necessary to get rid of an otherwise divergent boundary term. This classic result indicates that the energy associated to flat space does not gravitate. We apply the same principle to study the effect of the zero-point fluctuations of quantum fields in cosmology, proposing that their contribution to cosmic expansion is obtained computing the vacuum energy of quantum fields in a Friedmann-Robertson-Walker space-time with Hubble parameter H(t) and subtracting from it the flat-space contribution. Then the term proportional to Λ c 4 (where Λ c is the UV cutoff) cancels, and the remaining (bare) value of the vacuum energy density is proportional to Λ c 2 H 2 (t). After renormalization, this produces a renormalized vacuum energy density ∼M 2 H 2 (t), where M is the scale where quantum gravity sets is, so for M of the order of the Planck mass a vacuum energy density of the order of the critical density can be obtained without any fine-tuning. The counterterms can be chosen so that the renormalized energy density and pressure satisfy p=wρ, with w a parameter that can be fixed by comparison to the observed value, so, in particular, one can choose w=-1. An energy density evolving in time as H 2 (t) is however observationally excluded as an explanation for the dominant dark energy component that is responsible for the observed acceleration of the Universe. We rather propose that zero-point vacuum fluctuations provide a new subdominant ''dark'' contribution to the cosmic expansion that, for a UV scale M slightly smaller than the Planck mass, is consistent with existing limits and potentially detectable.
Atlas of point contact spectra of electron-phonon interactions in metals
Khotkevich, A V
1995-01-01
The characteristics of electrical contacts have long attracted the attention of researchers since these contacts are used in every electrical and electronic device. Earlier studies generally considered electrical contacts of large dimensions, having regions of current concentration with diameters substantially larger than the characteristic dimensions of the material: the interatomic distance, the mean free path for electrons, the coherence length in the superconducting state, etc. [110]. The development of microelectronics presented to scientists and engineers the task of studying the characteristics of electrical contacts with ultra-small dimensions. Characteristics of point contacts such as mechanical stability under continuous current loads, the magnitudes of electrical fluctuations, inherent sensitivity in radio devices and nonlinear characteristics in connection with electromagnetic radiation can not be understood and altered in the required way without knowledge of the physical processes occurring in c...
Smith, Charles W.; Reinertson, Randal C.; Dolan, P. J., Jr.
1993-05-01
The theoretical description by Blonder, Tinkham, and Klapwijk [Phys. Rev. B 25, 4515 (1982)] of the I-V curves of normal: superconductor point contacts encompasses a broad range of experimental behavior, from the tunnel junction case, on the one hand, to the clean metallic microconstriction limit on the other. The theory characterizes point contacts in terms of a single parameter, the barrier strength. The differential conductance of a point contact, at zero bias, as a function of temperature, offers a direct experimental method by which the barrier strength parameter can be evaluated. In view of the full range of phenomena incorporated by this theory, we suggest several different strategies for the evaluation of the barrier strength parameter from data in the low and intermediate barrier strength regimes and for measurements in the low temperature (near T=0 K) and high temperature (near T=Tc) limits.
International Nuclear Information System (INIS)
Tulina, N.A.
1985-01-01
A study was made of point-contact spectra of oxides WO 2 , ReO 3 , MoO 2 with metallic conductivity. It is shown that zero anomalies often observed in transition metal spectra are due to a higher-type oxide interlayer in the vicinity of a point contact. There are no zero anomalies in the point-contact spectra of heterocontacts Zn-MoO 2 (broken crystal) obtained directly in a helium cryostal. When studying such heterocontacts, major maxima of electron- phonon interaction in MoO 2 were determined on the energy scale hω sub(TA) approximately 28 MeV, hω sub(LA) approximately 41 MeV
Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W.; Sargent, Edward H.; Bisquert, Juan
2013-01-01
Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. © 2013 Macmillan Publishers Limited. All rights reserved.
Mora-Sero, Ivan
2013-08-12
Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. © 2013 Macmillan Publishers Limited. All rights reserved.
Conductance histogram evolution of an EC-MCBJ fabricated Au atomic point contact
Energy Technology Data Exchange (ETDEWEB)
Yang Yang; Liu Junyang; Chen Zhaobin; Tian Jinghua; Jin Xi; Liu Bo; Yang Fangzu; Tian Zhongqun [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Li Xiulan; Tao Nongjian [Center for Bioelectronics and Biosensors, Biodesign Institute, Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287-6206 (United States); Luo Zhongzi; Lu Miao, E-mail: zqtian@xmu.edu.cn [Micro-Electro-Mechanical Systems Research Center, Pen-Tung Sah Micro-Nano Technology Institute, Xiamen University, Xiamen 361005 (China)
2011-07-08
This work presents a study of Au conductance quantization based on a combined electrochemical deposition and mechanically controllable break junction (MCBJ) method. We describe the microfabrication process and discuss improved features of our microchip structure compared to the previous one. The improved structure prolongs the available life of the microchip and also increases the success rate of the MCBJ experiment. Stepwise changes in the current were observed at the last stage of atomic point contact breakdown and conductance histograms were constructed. The evolution of 1G{sub 0} peak height in conductance histograms was used to investigate the probability of formation of an atomic point contact. It has been shown that the success rate in forming an atomic point contact can be improved by decreasing the stretching speed and the degree that the two electrodes are brought into contact. The repeated breakdown and formation over thousands of cycles led to a distinctive increase of 1G{sub 0} peak height in the conductance histograms, and this increased probability of forming a single atomic point contact is discussed.
Conductance histogram evolution of an EC-MCBJ fabricated Au atomic point contact
International Nuclear Information System (INIS)
Yang Yang; Liu Junyang; Chen Zhaobin; Tian Jinghua; Jin Xi; Liu Bo; Yang Fangzu; Tian Zhongqun; Li Xiulan; Tao Nongjian; Luo Zhongzi; Lu Miao
2011-01-01
This work presents a study of Au conductance quantization based on a combined electrochemical deposition and mechanically controllable break junction (MCBJ) method. We describe the microfabrication process and discuss improved features of our microchip structure compared to the previous one. The improved structure prolongs the available life of the microchip and also increases the success rate of the MCBJ experiment. Stepwise changes in the current were observed at the last stage of atomic point contact breakdown and conductance histograms were constructed. The evolution of 1G 0 peak height in conductance histograms was used to investigate the probability of formation of an atomic point contact. It has been shown that the success rate in forming an atomic point contact can be improved by decreasing the stretching speed and the degree that the two electrodes are brought into contact. The repeated breakdown and formation over thousands of cycles led to a distinctive increase of 1G 0 peak height in the conductance histograms, and this increased probability of forming a single atomic point contact is discussed.
Energy scales and magnetoresistance at a quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a Chernova street, Syktyvkar, 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole, 45-052 (Poland)
2009-03-02
The magnetoresistance (MR) of CeCoIn{sub 5} is notably different from that in many conventional metals. We show that a pronounced crossover from negative to positive MR at elevated temperatures and fixed magnetic fields is determined by the scaling behavior of quasiparticle effective mass. At a quantum critical point (QCP) this dependence generates kinks (crossover points from fast to slow growth) in thermodynamic characteristics (like specific heat, magnetization, etc.) at some temperatures when a strongly correlated electron system transits from the magnetic field induced Landau-Fermi liquid (LFL) regime to the non-Fermi liquid (NFL) one taking place at rising temperatures. We show that the above kink-like peculiarity separates two distinct energy scales in QCP vicinity - low temperature LFL scale and high temperature one related to NFL regime. Our comprehensive theoretical analysis of experimental data permits to reveal for the first time new MR and kinks scaling behavior as well as to identify the physical reasons for above energy scales.
Directory of Open Access Journals (Sweden)
Xiao Guo
2017-10-01
Full Text Available Electrostatic properties of asymmetrically contacted carbon nanotube barrier-free bipolar diode photodetector are studied by solving the Poisson equation self-consistently with equilibrium carrier statistics. For electric field parallel to tube’s axis, the maximum electric field occurs near contact but decays rapidly in a few nanometers, followed by a slowly increasing trend when it extends to the center of channel. By considering the field ionization and the diffusion effect of exciton, a model of estimation on quantum efficiency for the device is made. We find that the quantum efficiency increases with increasing exciton lifetime, decreasing diffusion constant and channel length. For devices with a channel length shorter than 50 nm, the contribution of field ionization to the quantum efficiency can reach 60%.
International Nuclear Information System (INIS)
Yeon, Kyu Hwang; Hong, Suc Kyoung; Um, Chung In; George, Thomas F.
2006-01-01
With quantum operators corresponding to functions of the canonical variables, Schroedinger equations are constructed for systems corresponding to classical systems connected by a general point canonical transformation. Using the operator connecting quantum states between systems before and after the transformation, the quantum correction term and ordering parameter are obtained
Contact point generation for convex polytopes in interactive rigid body dynamics
DEFF Research Database (Denmark)
Silcowitz-Hansen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
When computing contact forces in rigid body dynamics systems, most state-of-the-art solutions use iterative methods such as the projected Gauss–Seidel (PGS) method. Methods such as the PGS method are preferred for their robustness. However, the time-critical nature of interactive applications...... combined with the linear convergence rates of such methods, will often result in visual artifacts in the final simulation. With this paper, we address an issue which is of major impact on the animation quality, when using methods such as the PGS method. The issue is robust generation of contact points...... for convex polytopes. A novel contact point generation method is presented, which is based on growth distances and Gauss maps. We demonstrate improvements when using our method in the context of interactive rigid body simulation...
International Nuclear Information System (INIS)
Tartaglini, E.; Verhagen, T.G.A.; Galli, F.; Trouwborst, M.L.; Aarts, J.; Van-Ruitebbeek, J.M.; Muller, R.; Shiota, T.
2013-01-01
Igor Yanson showed 38 years ago for the first time a point-contact measurement where he probed the energy resolved spectroscopy of the electronic scattering inside the metal. Since this first measurement, the pointcontact spectroscopy (PCS) technique improved enormously. The application of the scanning probe microscopy (SPM) techniques in the late 1980s allowed achieving contacts with a diameter of a single atom. With the introduction of the mechanically controlled break junction technique, even spectroscopy on freely suspended chains of atoms could be performed. In this paper, we briefly review the current developments of PCS and show recent experiments in advanced scanning PCS based on SPM techniques. We describe some results obtained with both needle-anvil type of point contacts and scanning tunneling microscopy (STM). We also show our first attempt to lift up with a STM a chain of single gold atoms from a Au(110) surface.
2011-01-25
... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2011-0009] Service Contract Inventory and... providing the Web site address (URL) for the Service Contract Inventory and the corresponding point of... Law 111-117. FOR FURTHER INFORMATION CONTACT: Dennis Wilhite, Director, Office of Budget Execution and...
CDEX-1 1 kg point-contact germanium detector for low mass dark matter searches
International Nuclear Information System (INIS)
Kang Kejun; Yue Qian; Wu Yucheng
2013-01-01
The CDEX collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold point-contact p-type germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact P + electrode and the outside N + electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both P + and N + electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments. (authors)
Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts
DEFF Research Database (Denmark)
Flensberg, K.; Hansen, Jørn Bindslev
1989-01-01
We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...
32 CFR Appendix B to Part 290 - DCAA's FOIA Points of Contact
2010-07-01
... (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE CONTRACT AUDIT AGENCY (DCAA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 290, App. B Appendix B to Part 290—DCAA's FOIA Points of Contact (Regional Offices.... Pacific Ocean and Asian Islands. Asia except the Middle East. Australia. Georgia DCAA Eastern Regional...
Superconducting energy gap of YB6 studied by point-contact spectroscopy
International Nuclear Information System (INIS)
Szabo, Pavol; Kacmarcik, Jozef; Samuely, Peter; Girovsky, Jan; Gabani, Slavomir; Flachbart, Karol; Mori, Takao
2007-01-01
Yttrium hexaboride has the second highest critical temperature, T c ∼ 8 K, among all borides. The presented paper deals with the experimental study of its superconducting energy gap established by the method of the point-contact spectroscopy. The temperature dependence of the energy gap and the strength of the superconducting coupling is presented
Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts
Debnath, Ratan
2010-01-01
With an aim to reduce the cost of depleted-heterojunction colloidal quantum dot solar cells, we describe herein a strategy that replaces costly Au with a low-cost Ni-based Ohmic contact. The resultant devices achieve 3.5% Air Mass 1.5 power conversion efficiency. Only by incorporating a 1.2-nm-thick LiF layer between the PbS quantum dot film and Ni, we were able to prevent undesired reactions and degradation at the metal-semiconductor interface. © 2010 American Institute of Physics.
Correlations in quantum systems and branch points in the complex plane
Rotter, I.
2001-01-01
Branch points in the complex plane are responsible for avoided level crossings in closed and open quantum systems. They create not only an exchange of the wave functions but also a mixing of the states of a quantum system at high level density. The influence of branch points in the complex plane on the low-lying states of the system is small.
International Nuclear Information System (INIS)
McCarter, W J; Taha, H M; Suryanto, B; Starrs, G
2015-01-01
Ac impedance spectroscopy measurements are used to critically examine the end-to-end (two-point) testing technique employed in evaluating the bulk electrical resistivity of concrete. In particular, this paper focusses on the interfacial contact region between the electrode and specimen and the influence of contacting medium and measurement frequency on the impedance response. Two-point and four-point electrode configurations were compared and modelling of the impedance response was undertaken to identify and quantify the contribution of the electrode–specimen contact region on the measured impedance. Measurements are presented in both Bode and Nyquist formats to aid interpretation. Concretes mixes conforming to BSEN206-1 and BS8500-1 were investigated which included concretes containing the supplementary cementitious materials fly ash and ground granulated blast-furnace slag. A measurement protocol is presented for the end-to-end technique in terms of test frequency and electrode–specimen contacting medium in order to minimize electrode–specimen interfacial effect and ensure correct measurement of bulk resistivity. (paper)
International Nuclear Information System (INIS)
Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.
2015-01-01
The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness
Search for Superconducting Energy Gap in UPt3 by Point-Contact Spectroscopy
International Nuclear Information System (INIS)
Gouchi, Jun; Sumiyama, Akihiko; Yamaguchi, Akira; Motoyama, Gaku; Kimura, Noriaki; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika
2015-01-01
We have investigated the differential resistance of the point contacts between heavy-fermion superconductor UPt 3 and a normal metal Pt, which were fabricated using a commercial piezo-electric actuator, and retried the observation of the energy gap of UPt 3 . A V-shaped dip is observed in both normal and superconducting states and disappeared around T K ∼ 20 K, suggesting that it is related to the Kondo effect. Below the superconducting transition temperature, a shallow double-minimum structure, which indicates the energy gap, has been observed for the contacts on the faces perpendicular to the a-, b- and c-axes of UPt 3
Elastic-plastic adhesive contact of rough surfaces using n-point asperity model
International Nuclear Information System (INIS)
Sahoo, Prasanta; Mitra, Anirban; Saha, Kashinath
2009-01-01
This study considers an analysis of the elastic-plastic contact of rough surfaces in the presence of adhesion using an n-point asperity model. The multiple-point asperity model, developed by Hariri et al (2006 Trans ASME: J. Tribol. 128 505-14) is integrated into the elastic-plastic adhesive contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19). This n-point asperity model differs from the conventional Greenwood and Williamson model (1966 Proc. R. Soc. Lond. A 295 300-19) in considering the asperities not as fixed entities but as those that change through the contact process, and hence it represents the asperities in a more realistic manner. The newly defined adhesion index and plasticity index defined for the n-point asperity model are used to consider the different conditions that arise because of varying load, surface and material parameters. A comparison between the load-separation behaviour of the new model and the conventional one shows a significant difference between the two depending on combinations of mean separation, adhesion index and plasticity index.
Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite
Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong
2018-04-01
Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.
Quantum nodal points as fingerprints of classical chaos
International Nuclear Information System (INIS)
Leboeuf, P.; Voros, A.
1992-08-01
Semiclassical analysis of the individual eigenfunctions in a quantum system is presented, especially when the classical dynamics is chaotic and the quantum bound states are considered. Quantum maps have emerged as ideal dynamical models for basic studies, with their ability to exhibit classical chaos within a single degree of freedom. On the other hand, phase space techniques have become recognized as extremely powerful for describing quantum states. It is argued that representations of eigenfunctions are essential for semiclassical analysis. An explicit realization of that program in one degree is overviewed, in which the crucial ingredient is a phase-space parametrization of 1-d wave-functions. (K.A.) 44 refs.; 6 figs
Itinerant density instability at classical and quantum critical points
Feng, Yejun; van Wezel, Jasper; Flicker, Felix; Wang, Jiyang; Silevitch, D. M.; Littlewood, P. B.; Rosenbaum, T. F.
2015-03-01
Itinerant density waves are model systems for studying quantum critical behavior. In both the model spin- and charge-density-wave systems Cr and NbSe2, it is possible to drive a continuous quantum phase transition with critical pressures below 10 GPa. Using x-ray diffraction techniques, we are able to directly track the evolution of the ordering wave vector Q across the pressure-temperature phase diagram. We find a non-monotonic dependence of Q on pressure. Using a Landau-Ginsburg theoretical framework developed by McMillan for CDWs, we evaluate the importance of the physical terms in driving the formation of ordered states at both the thermal and quantum phase transitions. We find that the itinerant instability is the deciding factor for the emergent order, which is further influenced by the critical fluctuations in both the thermal and quantum limits.
Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy
Arnold, F.; Nyéki, J.; Saunders, J.
2018-05-01
In this letter we describe the observation of a magnetic field dependent electronic gap, suggestive of local superconductivity, in the point-contact spectrum of micro-crystalline graphite. Magnetic field dependent point-contact spectroscopy was carried out at a temperature of 1.8K using an etched aluminium tip. At zero field a gap structure in the differential conductance is observed, showing a gap of Δ = 4.2 meV. On applying magnetic fields of up to 500mT, this gap gradually closes, following the theoretical prediction by Ginzburg and Landau for a fully flux-penetrated superconductor. By applying BCS-theory, we infer a critical superconducting temperature of 14K.
Pairwise contact energy statistical potentials can help to find probability of point mutations.
Saravanan, K M; Suvaithenamudhan, S; Parthasarathy, S; Selvaraj, S
2017-01-01
To adopt a particular fold, a protein requires several interactions between its amino acid residues. The energetic contribution of these residue-residue interactions can be approximated by extracting statistical potentials from known high resolution structures. Several methods based on statistical potentials extracted from unrelated proteins are found to make a better prediction of probability of point mutations. We postulate that the statistical potentials extracted from known structures of similar folds with varying sequence identity can be a powerful tool to examine probability of point mutation. By keeping this in mind, we have derived pairwise residue and atomic contact energy potentials for the different functional families that adopt the (α/β) 8 TIM-Barrel fold. We carried out computational point mutations at various conserved residue positions in yeast Triose phosphate isomerase enzyme for which experimental results are already reported. We have also performed molecular dynamics simulations on a subset of point mutants to make a comparative study. The difference in pairwise residue and atomic contact energy of wildtype and various point mutations reveals probability of mutations at a particular position. Interestingly, we found that our computational prediction agrees with the experimental studies of Silverman et al. (Proc Natl Acad Sci 2001;98:3092-3097) and perform better prediction than i Mutant and Cologne University Protein Stability Analysis Tool. The present work thus suggests deriving pairwise contact energy potentials and molecular dynamics simulations of functionally important folds could help us to predict probability of point mutations which may ultimately reduce the time and cost of mutation experiments. Proteins 2016; 85:54-64. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Fermionic quantum critical point of spinless fermions on a honeycomb lattice
International Nuclear Information System (INIS)
Wang, Lei; Corboz, Philippe; Troyer, Matthias
2014-01-01
Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)
Lighting system with thermal management system having point contact synthetic jets
Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep
2013-12-10
Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.
Modular correction method of bending elastic modulus based on sliding behavior of contact point
International Nuclear Information System (INIS)
Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi
2015-01-01
During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)
Nanostructural point-contact sensors for diagnostics of carcinogenic strains of Helicobacter pylori
Directory of Open Access Journals (Sweden)
Г. В. Камарчук
2017-12-01
Full Text Available Background: The problem of detecting the different strains of H. pylori has gained great importance today due to the worldwide prevalence of this bacterium and its role in the pathogenesis of a number of serious gastric and extragastric diseases. However, not all H. pylori strains are aggressive and require antibiotic treatment. Thus, the question arises about the necessity of differentiating these bacterium strains with respect to their virulence factors. In accordance with the IV Maastricht Consensus Report, among the variety of ways to diagnose H. pylori infection, non-invasive methods should be given preference. Most of them are based on the analysis of gas which is exhaled by a human. Mass spectrometry, gas chromatography, and IR spectroscopy are currently the mostly used ones. However, despite the obvious advantages, these techniques have a number of disadvantages that make them difficult to use in everyday medical practice. Modern sensor devices can become an inexpensive and easy to access alternative to these technologies. Objectives: The aim of the work is to develop a new type of sensor device for selective recognition of H. pylori strains which is based on analysis of a mixture of gases exhaled by human. Such a kind of device can be designed on the basis of a point-contact gas sensor. Materials and methods: Anion-radical salts of the organic conductor TCNQ were chosen as the sensitive material for point-contact sensors. The fundamental properties of point contacts which are used in the Yanson point-contact spectroscopy make it possible to create a point-contact mesoscopic matrix on the basis of this material, which is sensitive to small concentrations of components in complex gas media. The sensors were obtained by electrochemical deposition of salts from a solvent characterized by a high vapor pressure on a textolite substrate. Gas exhaled by a human served as the substance to be analyzed. The measurements were carried out following
Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook
Energy Technology Data Exchange (ETDEWEB)
Bercegol, Adrien, E-mail: adrien.bercegol@polytechnique.edu; Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert Einstein Straße 15, 12489 Berlin (Germany); Liero, Matthias [Weierstraß-Institut für Angewandte Analysis und Stochastik, 10117 Berlin (Germany)
2016-04-21
For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.
Exponential spreading and singular behavior of quantum dynamics near hyperbolic points.
Iomin, A
2013-05-01
Quantum dynamics of a particle in the vicinity of a hyperbolic point is considered. Expectation values of dynamical variables are calculated, and the singular behavior is analyzed. Exponentially fast extension of quantum dynamics is obtained, and conditions for this realization are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Inukai, S.; Sugiyama, K. [Hokkaido Univ., Dept. of Nuclear Engineering, Sapporo (Japan); Nishimura, S.; Kinoshita, I. [Central Research Institute of Electric Power Industry, Tokyo (Japan)
2001-07-01
The consequence of the core disruptive accidents in metallic-fueled Na-cooled reactors is strongly affected by the feedback reactivity originating in the boiling of Na and the dispersion of molten fuel due to fuel-coolant interactions. The design of the core configuration to promote the dispersion of molten fuel is therefore very important for social acceptance. It has been recognized in this context that metallic fuel has a potentiality to make liquefied fuel with fuel pin tube even in the temperature range below the boiling point of Na. If the liquefied fuel solidified without fuel-coolant interactions in the core region, this event leads the core condition to a pessimistic scenario of re-criticality. As a basic study related to this problem, the present experimental study investigates the possibility of fragmentation of metal drop with instantaneous contact temperature below the boiling point of Na (883 C). The molten Al drop, which has a melting point of 660 C above the operational temperature range of core, was selected as a simulant of liquefied fuel in the present study. Al particles of 5 g or 0.56 g were heated up to the initial temperature ranging from 850 C to 1113 C in a crucible by using an electric heater. The molten Al drop was dropped into a sodium pool adjusted the temperature from 280 C to 499 C. The Al drop at initial temperature sufficiently higher that the boiling point of Na was observed to fragment into pieces under the condition of instantaneous contact temperature below the boiling point of Na. It is confirmed that the fragmentation is caused due to the thermal interactions between the molten Al and the Na entrapped into the drop. (author)
International Nuclear Information System (INIS)
Inukai, S.; Sugiyama, K.; Nishimura, S.; Kinoshita, I.
2001-01-01
The consequence of the core disruptive accidents in metallic-fueled Na-cooled reactors is strongly affected by the feedback reactivity originating in the boiling of Na and the dispersion of molten fuel due to fuel-coolant interactions. The design of the core configuration to promote the dispersion of molten fuel is therefore very important for social acceptance. It has been recognized in this context that metallic fuel has a potentiality to make liquefied fuel with fuel pin tube even in the temperature range below the boiling point of Na. If the liquefied fuel solidified without fuel-coolant interactions in the core region, this event leads the core condition to a pessimistic scenario of re-criticality. As a basic study related to this problem, the present experimental study investigates the possibility of fragmentation of metal drop with instantaneous contact temperature below the boiling point of Na (883 C). The molten Al drop, which has a melting point of 660 C above the operational temperature range of core, was selected as a simulant of liquefied fuel in the present study. Al particles of 5 g or 0.56 g were heated up to the initial temperature ranging from 850 C to 1113 C in a crucible by using an electric heater. The molten Al drop was dropped into a sodium pool adjusted the temperature from 280 C to 499 C. The Al drop at initial temperature sufficiently higher that the boiling point of Na was observed to fragment into pieces under the condition of instantaneous contact temperature below the boiling point of Na. It is confirmed that the fragmentation is caused due to the thermal interactions between the molten Al and the Na entrapped into the drop. (author)
Error tolerance in an NMR implementation of Grover's fixed-point quantum search algorithm
International Nuclear Information System (INIS)
Xiao Li; Jones, Jonathan A.
2005-01-01
We describe an implementation of Grover's fixed-point quantum search algorithm on a nuclear magnetic resonance quantum computer, searching for either one or two matching items in an unsorted database of four items. In this algorithm the target state (an equally weighted superposition of the matching states) is a fixed point of the recursive search operator, so that the algorithm always moves towards the desired state. The effects of systematic errors in the implementation are briefly explored
Pleskova, S N; Mikheeva, E R
2011-08-01
Inhibition of neutrophilic granulocyte metabolism under the effect of semiconductor quantum points was demonstrated. The status of the oxidative system was evaluated by the NBT test, nonoxidative status by the lysosomal cationic test. It was found that quantum points in a dose of 0.1 mg/ml irrespective of their core and composition of coating significantly inhibited oxygen-dependent and oxygen-independent metabolism of neutrophilic granulocytes.
Some exact results for the two-point function of an integrable quantum field theory
International Nuclear Information System (INIS)
Creamer, D.B.; Thacker, H.B.; Wilkinson, D.
1981-02-01
The two point correlation function for the quantum nonlinear Schroedinger (delta-function gas) model is studied. An infinite series representation for this function is derived using the quantum inverse scattering formalism. For the case of zero temperature, the infinite coupling (c → infinity) result of Jimbo, Miwa, Mori and Sato is extended to give an exact expression for the order 1/c correction to the two point function in terms of a Painleve transcendent of the fifth kind
Model for a Ferromagnetic Quantum Critical Point in a 1D Kondo Lattice
Komijani, Yashar; Coleman, Piers
2018-04-01
Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.
International Nuclear Information System (INIS)
Amano, Y.
2010-01-01
Full text: Ladies and Gentlemen, Dear Colleagues, This is my first opportunity as Director General to share with you my views on the representation of women in the Secretariat. For many years, the proportion of Professional women at the Agency was among the lowest in the UN system - about 18%. This partially reflected the traditionally low number of women in the nuclear sciences. We can take some pride in the progress that we have made in recent years. Women now account for around 23% of Professional staff. But this is still too low. The progress seen to date is a result of joint efforts by you, the Member States, and the Secretariat. The creation of this group - the Member States Points of Contact - has been key. Sixty Member States have designated Points of Contact. This means, however, that a surprisingly large number of countries, including some Board members, have not yet joined. I encourage them to sign up today. As Director General, I would like to see more women in senior positions and I want Agency staff to be recruited from as broad a geographical distribution as possible. In my first few months in office, I have already made special efforts to recruit women to Professional positions, with some success. My first concern is naturally to recruit the best qualified person. However, in selection processes I will always give prominent consideration to the need to proactively increase the number of women working in the Secretariat. More and more women are now working in the nuclear industry as engineers, managers, inspectors, chemists, physicists and environmentalists. But I must tell you honestly: while it is difficult to find well-qualified women for P-positions in the Agency, it is particularly difficult to find suitable female candidates for more senior posts. We very much need your help in getting the message out to highly-qualified women with long experience of the nuclear sector that the Agency is a great place to work. Change will not happen overnight
Superconductor (Nb)-charge density wave (NbSe sub 3) point-contact spectroscopy
Sinchenko, A A
2003-01-01
Measurements of differential current-voltage (I-V) characteristics of point contacts between Nb and the charge density wave (CDW) conductor NbSe sub 3 formed along the conducting chain direction are reported. Below the superconducting transition of Nb, we have clearly observed Andreev reflection of the gapless electrons of NbSe sub 3. Analysis of the spectra obtained indicates that when the energy of injected particles exceeds the superconducting energy gap, the superconductivity near the S-CDW interface is suppressed because of non-equilibrium effects.
On the estimation of the spherical contact distribution Hs(y) for spatial point processes
International Nuclear Information System (INIS)
Doguwa, S.I.
1990-08-01
RIPLEY (1977, Journal of the Royal Statistical Society, B39 172-212) proposed an estimator for the spherical contact distribution H s (s), of a spatial point process observed in a bounded planar region. However, this estimator is not defined for some distances of interest, in this bounded region. A new estimator for H s (y), is proposed for use with regular grid of sampling locations. This new estimator is defined for all distances of interest. It also appears to have a smaller bias and a smaller mean squared error than the previously suggested alternative. (author). 11 refs, 4 figs, 1 tab
Carrier accumulation and depletion in point-contact capacitance-voltage measurements
Naitou, Yuichi
2017-11-01
Scanning capacitance microscopy (SCM) is a variation of atomic force microscopy in which a conductive probe tip detects the bias modulated capacitance for the purpose of measuring the nanoscale semiconductor carrier concentration. SCM can be regarded as a point-contact capacitance-voltage system, and its capacitance-voltage properties are different from those of a conventional parallel-plate capacitor. In this study, the charge accumulation and depletion behavior of a semiconductor sample were closely investigated by SCM. By analyzing the tip-sample approach curve, the effective probe tip area and charge depletion depth could be quantitatively determined.
Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device
Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard
2014-01-01
This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times...
Rectifiable PT -symmetric Quantum Toboggans with Two Branch Points
Directory of Open Access Journals (Sweden)
M. Znojil
2010-01-01
Full Text Available Certain complex-contour (a.k.a. quantum-toboggan generalizations of Schroedinger’s bound-state problem are reviewed and studied in detail. Our key message is that the practical numerical solution of these atypical eigenvalue problems may perceivably be facilitated via an appropriate complex change of variables which maps their multi-sheeted complex domain of definition to a suitable single-sheeted complex plane.
Renormalization group and fixed points in quantum field theory
International Nuclear Information System (INIS)
Hollowood, Timothy J.
2013-01-01
This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.
Directory of Open Access Journals (Sweden)
Ying-Chien Tsai
2015-01-01
Full Text Available The offset between the center lines of the polished end-face and the fiber core has a significant effect on coupling efficiency. The initial contact point and the contact force are two of the most important parameters that induce the offset. This study proposes an image assistant method to find the initial contact point and a mathematical model to estimate the contact force when fabricating the double-variable-curvature end-face of single mode glass fiber. The repeatability of finding the initial contact point via the vision assistant program is 0.3 μm. Based on the assumption of a large deflection, a mathematical model is developed to study the relationship between the contact force and the displacement of the lapping film. In order to verify the feasibility of the mathematical model, experiments, as well as DEFORM simulations, are carried out. The results show that the contact forces are alomst linearly proportional to the feed amounts of the lapping film and the errors are less than 9%. By using the method developed in this study, the offset between the grinding end-face and the center line of the fiber core is within 0.15 to 0.35 μm.
Universal conductance and conductivity at critical points in integer quantum Hall systems.
Schweitzer, L; Markos, P
2005-12-16
The sample averaged longitudinal two-terminal conductance and the respective Kubo conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, and , respectively. In the second-lowest Landau band, a critical conductance is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value . We argue that this difference is due to the multifractal structure of critical wave functions, a property that should generically show up in the conductance at quantum critical points.
Kuroda, Kagayaki; Shirakawa, Naoki; Yoshida, Yoshiyuki; Tawara, Kazuya; Kobayashi, Akihiro; Nakai, Toshiharu
2014-01-01
We evaluated the magnetization of 21 cosmetic contact lens samples that included various coloring materials with a superconducting quantum interference device with regard to magnetic resonance (MR) safety. We found 7 samples were ferromagnetic; two had both ferromagnetic and diamagnetic properties; and the rest were diamagnetic. The saturated magnetization of the most ferromagnetic sample was 15.0 µJ/T, which yielded a magnetically induced displacement force of 90.0 µN when the spatial gradient of the static magnetic field was 6.0 T/m. The force was less than one-third of the gravitational force.
One-norm geometric quantum discord and critical point estimation in the XY spin chain
Energy Technology Data Exchange (ETDEWEB)
Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com
2016-11-15
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparing with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.
Temperature evolution of subharmonic gap structures in MgB{sub 2}/Nb point-contacts
Energy Technology Data Exchange (ETDEWEB)
Giubileo, F. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy)], E-mail: giubileo@sa.infn.it; Bobba, F.; Scarfato, A.; Piano, S. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy); Aprili, M. [Laboratoire de Spectroscopie en Lumiere Polarisee, ESPCI, 10 rue Vauquelin, 75005 Paris (France); CSNSM-CNRS, Bat. 108 Universite Paris-Sud, 91405 Orsay (France); Cucolo, A.M. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy)
2007-09-01
We have performed point-contact spectroscopy experiments on superconducting micro-constrictions between Nb tips and high quality MgB{sub 2} pellets. We measured the temperature evolution (between 4.2 K and 300 K) of the current-voltage (I-V) and of the dynamical conductance (dI/dV-V) characteristics. Above the Nb critical temperature T{sub C}{sup Nb}, the conductance of the constrictions behaves as predicted by the BTK model for S/N contacts being Nb in its normal state below T{sub C}{sup Nb}, the contacts show Josephson current and subharmonic gap structures, due to multiple Andreev reflections. These observations clearly indicate the coupling of the MgB{sub 2} 3D {pi}-band with the Nb superconducting order parameter. We found {delta}{sub {pi}} = 2.4 {+-} 0.2 meV for the three-dimensional gap of MgB{sub 2}.
Evaluation of the leap motion controller as a new contact-free pointing device.
Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard
2014-12-24
This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.
Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device
Directory of Open Access Journals (Sweden)
Daniel Bachmann
2014-12-01
Full Text Available This paper presents a Fitts’ law-based analysis of the user’s performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller’s performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.
Energy Technology Data Exchange (ETDEWEB)
Groll, Nickolas; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Zasadzinksi, John F. [Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States)
2015-09-15
We describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T{sub C}) and density of states over large surface areas with size up to mm{sup 2}. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that can be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. The point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.
Theory of finite-entanglement scaling at one-dimensional quantum critical points.
Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E
2009-06-26
Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.
Quantum critical point in high-temperature superconductors
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole 45-052 (Poland)], E-mail: stef@math.uni.opole.pl
2009-02-02
Recently, in high-T{sub c} superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau-Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D {sup 3}He, the physical properties of these three classes of substances are similar to each other.
Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data
Thiele, Samuel T.; Grose, Lachlan; Samsu, Anindita; Micklethwaite, Steven; Vollgger, Stefan A.; Cruden, Alexander R.
2017-12-01
The advent of large digital datasets from unmanned aerial vehicle (UAV) and satellite platforms now challenges our ability to extract information across multiple scales in a timely manner, often meaning that the full value of the data is not realised. Here we adapt a least-cost-path solver and specially tailored cost functions to rapidly interpolate structural features between manually defined control points in point cloud and raster datasets. We implement the method in the geographic information system QGIS and the point cloud and mesh processing software CloudCompare. Using these implementations, the method can be applied to a variety of three-dimensional (3-D) and two-dimensional (2-D) datasets, including high-resolution aerial imagery, digital outcrop models, digital elevation models (DEMs) and geophysical grids. We demonstrate the algorithm with four diverse applications in which we extract (1) joint and contact patterns in high-resolution orthophotographs, (2) fracture patterns in a dense 3-D point cloud, (3) earthquake surface ruptures of the Greendale Fault associated with the Mw7.1 Darfield earthquake (New Zealand) from high-resolution light detection and ranging (lidar) data, and (4) oceanic fracture zones from bathymetric data of the North Atlantic. The approach improves the consistency of the interpretation process while retaining expert guidance and achieves significant improvements (35-65 %) in digitisation time compared to traditional methods. Furthermore, it opens up new possibilities for data synthesis and can quantify the agreement between datasets and an interpretation.
The critical point of quantum chromodynamics through lattice and ...
Indian Academy of Sciences (India)
The Padé approximants are the rational functions. PL. M (z) = .... Deviations from a smooth behaviour near the critical point are visible in these extrap- ... see that there is evidence, albeit statistically not very significant, that the kurtosis changes.
Exceptional points near first- and second-order quantum phase transitions.
Stránský, Pavel; Dvořák, Martin; Cejnar, Pavel
2018-01-01
We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first- and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.
Area law for fixed points of rapidly mixing dissipative quantum systems
Energy Technology Data Exchange (ETDEWEB)
Brandão, Fernando G. S. L. [Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052 (United States); Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); Cubitt, Toby S. [Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); DAMTP, University of Cambridge, Cambridge (United Kingdom); Lucia, Angelo, E-mail: anlucia@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Madrid (Spain); Michalakis, Spyridon [Institute for Quantum Information and Matter, Caltech, California 91125 (United States); Perez-Garcia, David [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Madrid (Spain); IMI, Universidad Complutense de Madrid, Madrid (Spain); ICMAT, C/Nicolás Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain)
2015-10-15
We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure or the system is frustration free.
Point-contact electron tunneling into the high-Tc superconductor Y-Ba-Cu-O
Kirk, M. D.; Smith, D. P. E.; Mitzi, D. B.; Sun, J. Z.; Webb, D. J.
1987-06-01
Results are reported from a study of electron tunneling into bulk samples of the new high-Tc superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Delta = 100 MeV), implying 2Delta/kBTc = about 13. Similar values were found for La-Sr-Cu-O. The structure in the I-V curves is also similar to that seen in La-Sr-Cu-O. From the asymmetries observed in the I-V characteristics, it is inferred that the natural tunneling barrier on this material is of the Schottky type.
Precise Determination of Quantum Critical Points by the Violation of the Entropic Area Law
Xavier, J. C.; Alcaraz, F. C.
2011-01-01
Finite-size scaling analysis turns out to be a powerful tool to calculate the phase diagram as well as the critical properties of two dimensional classical statistical mechanics models and quantum Hamiltonians in one dimension. The most used method to locate quantum critical points is the so called crossing method, where the estimates are obtained by comparing the mass gaps of two distinct lattice sizes. The success of this method is due to its simplicity and the ability to provide accurate r...
Zero-field quantum critical point in CeCoIn5.
Tokiwa, Y; Bauer, E D; Gegenwart, P
2013-09-06
Quantum criticality in the normal and superconducting states of the heavy-fermion metal CeCoIn5 is studied by measurements of the magnetic Grüneisen ratio ΓH and specific heat in different field orientations and temperatures down to 50 mK. A universal temperature over magnetic field scaling of ΓH in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state, the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.
Coexistence of different vacua in the effective quantum field theory and multiple point principle
International Nuclear Information System (INIS)
Volovik, G.E.
2004-01-01
According to the multiple point principle our Universe in on the coexistence curve of two or more phases of the quantum vacuum. The coexistence of different quantum vacua can be regulated by the exchange of the global fermionic charges between the vacua. If the coexistence is regulated by the baryonic charge, all the coexisting vacua exhibit the baryonic asymmetry. Due to the exchange of the baryonic charge between the vacuum and matter which occurs above the electroweak transition, the baryonic asymmetry of the vacuum induces the baryonic asymmetry of matter in our Standard-Model phase of the quantum vacuum [ru
Some exact results for the two-point function of an integrable quantum field theory
International Nuclear Information System (INIS)
Creamer, D.B.; Thacker, H.B.; Wilkinson, D.
1981-01-01
The two-point correlation function for the quantum nonlinear Schroedinger (one-dimensional delta-function gas) model is studied. An infinite-series representation for this function is derived using the quantum inverse-scattering formalism. For the case of zero temperature, the infinite-coupling (c→infinity) result of Jimbo, Miwa, Mori, and Sato is extended to give an exact expression for the order-1/c correction to the two-point function in terms of a Painleve transcendent of the fifth kind
75 FR 45673 - Compliance Assistance Resources and Points of Contact Available to Small Businesses
2010-08-03
.../business-law/contacts/federal/ FOR FURTHER INFORMATION CONTACT: Wendy Liberante, Office of Information and... businesses. This list is available today on the following Web site: http://www.business.gov/business-law....business.gov/business-law/contacts/federal/ . OMB and SBA have chosen to implement this statutory...
Spectral analysis of growing graphs a quantum probability point of view
Obata, Nobuaki
2017-01-01
This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectr...
International Nuclear Information System (INIS)
Ananthakumar, S.; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Babu, S. Moorthy; Chari, Rama
2016-01-01
The photoluminescence (PL) from semiconductor quantum dots can show a “PL bright point”, that is the PL from as prepared quantum dots is maximum at a particular size. In this work we show that, for CdTe quantum dots, upconversion photoluminescence (UCPL) originating from nonlinear absorption shows a similar “UCPL bright point”. The PL and UCPL bright points occur at nearly the same size. The existence of a UCPL bright point has important implications for upconversion microscopy applications. - Highlights: • The size dependence of the upconversion photoluminescence (UCPL) spectrum of CdTe quantum dots has been reported. • We show that the UCPL from the CdTe quantum dots is highest at a particular size. • Thus the occurrence of a "UCPL bright point" in CdTe quantum dots has been demonstrated. • It has been shown that the UCPL bright point occurs at nearly the same size as a normal bright point.
Enhanced superconductivity at the interface of W/Sr2RuO4 point contact
Wei, Jian; Wang, He; Lou, Weijian; Luo, Jiawei; Liu, Ying; Ortmann, J. E.; Mao, Z. Q.
Differential resistance measurements are conducted for point contacts (PCs) between the Sr2RuO4 (SRO) single crystal and the tungsten tip. Since the tungsten tip is hard enough to penetrate through the surface layer, consistent superconducting features are observed. Firstly, with the tip pushed towards the crystal, the zero bias conductance peak (ZBCP) due to Andreev reflection at the normal-superconducting interface increases from 3% to more than 20%, much larger than previously reported, and extends to temperature higher than the bulk transition temperature. Reproducible ZBCP within 0.2 mV may also help determine the gap value of SRO, on which no consensus has been reached. Secondly, the logarithmic background can be fitted with the Altshuler-Aronov theory of electron-electron interaction for tunneling into quasi two dimensional electron system. Feasibility of such fitting confirms that spectroscopic information like density of states is probed, and electronic temperature retrieved from such fitting can be important to analyse the PC spectra. Third, at bias much higher than 0.2 mV there are conductance dips due to the critical current effect and these dips persist up to 6.2 K. For more details see. National Basic Research Program of China (973 Program) through Grant No. 2011CBA00106 and No. 2012CB927400.
Review of laboratory programs for women Points-of-Contact Committee
Energy Technology Data Exchange (ETDEWEB)
Duke, D.; Magrini, K. [comps.] [National Renewable Energy Lab., Golden, CO (United States); McLane, V. [comp.] [Brookhaven National Lab., Upton, NY (United States); Wieda, K. [comp.] [Pacific Northwest Lab., Richland, WA (United States)
1995-06-01
The mission of the DOE Review of Laboratory Programs for Women is to: provide DOE and its Laboratories with effective strategies, targeting women, for establishing aggressive outreach programs which improve the access of women to careers in science, engineering, and mathematics. Ensure that the Department and its Laboratories are exemplary places of employment by providing programs which enhance opportunity, remove barriers, and assist women in achieving full professional development. A survey of the DOE facilities was undertaken by the Points-of-Contact for the DOE Review of Laboratory Programs for Women in order to gather data to be used as a baseline against which to measure future progress. We plan to look at current programs already in place and evaluate them with a view to deciding which programs are most effective, and selecting model programs suitable for implementation at other facilities. The survey focused on four areas: statistical data, laboratory policy, formal and informal programs which affect the quality of life in the work environment, and career development and advancement, and educational programs. Although this report focuses on women, the problems discussed affect all DOE facility employees.
Metzler, Jürgen; Kroschel, Kristian; Willersinn, Dieter
2017-03-01
Monitoring of the heart rhythm is the cornerstone of the diagnosis of cardiac arrhythmias. It is done by means of electrocardiography which relies on electrodes attached to the skin of the patient. We present a new system approach based on the so-called vibrocardiogram that allows an automatic non-contact registration of the heart rhythm. Because of the contactless principle, the technique offers potential application advantages in medical fields like emergency medicine (burn patient) or premature baby care where adhesive electrodes are not easily applicable. A laser-based, mobile, contactless vibrometer for on-site diagnostics that works with the principle of laser Doppler vibrometry allows the acquisition of vital functions in form of a vibrocardiogram. Preliminary clinical studies at the Klinikum Karlsruhe have shown that the region around the carotid artery and the chest region are appropriate therefore. However, the challenge is to find a suitable measurement point in these parts of the body that differs from person to person due to e. g. physiological properties of the skin. Therefore, we propose a new Microsoft Kinect-based approach. When a suitable measurement area on the appropriate parts of the body are detected by processing the Kinect data, the vibrometer is automatically aligned on an initial location within this area. Then, vibrocardiograms on different locations within this area are successively acquired until a sufficient measuring quality is achieved. This optimal location is found by exploiting the autocorrelation function.
Quantum phase space points for Wigner functions in finite-dimensional spaces
Luis Aina, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.
Quantum phase space points for Wigner functions in finite-dimensional spaces
International Nuclear Information System (INIS)
Luis, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas
Point group invariants in the Uqp(u(2)) quantum algebra picture
International Nuclear Information System (INIS)
Kibler, M.
1993-07-01
Some consequences of a qp-quantization of a point group invariant developed in the enveloping algebra of SU(2) are examined. A set of open problems concerning such invariants in the U qp (u(2)) quantum algebra picture is briefly discussed. (author) 18 refs
Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard.
Estrecho, E; Gao, T; Brodbeck, S; Kamp, M; Schneider, C; Höfling, S; Truscott, A G; Ostrovskaya, E A
2016-11-25
Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles-exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities.
Phase holonomy, zero-point energy cancellation and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Iida, Shinji; Kuratsuji, Hiroshi
1987-01-01
We show that the zero-point energy of bosons is cancelled out by the phase holonomy which is induced by the adiabatic deformation of a boson system coupled with a fermion. This mechanism results in a supersymmetric quantum mechanics as a special case and presents a possible dynamical origin of supersymmetry. (orig.)
'Aharonov-Bohm antiferromagnetism' and compensation points in the lattice of quantum rings
International Nuclear Information System (INIS)
Meleshenko, Peter A.; Klinskikh, Alexander F.
2011-01-01
We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points ('temperature compensation points', i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength. - Highlights: → The lattice of quantum rings as a system with antiferromagnetic-like properties. → In considered system the 'temperature compensation points' take place. → The 'temperature compensation points' positions depend on the Aharonov-Bohm flux.
International Nuclear Information System (INIS)
Tulina, N.A.
1985-01-01
The point-contact spectra of oxides with metallic conductivity WO 2 , ReO 3 , and MoO 2 are studied. It is shown that the zero-bias anomalies, which are often observed in the spectra of transition metals, are determined by the presence of an interlayer consisting of an oxide of the above type in the region of the point contact. Zero-bias anomalies do not occur in the point-contact spectra of Zn--MoO 2 -chip heterocontacts. In the studies of such heterocontacts the major maxima in the electron--phonon interaction of MoO 2 were determined at the energies hω/sub T/Aapprox.28 meV and hω/sub L/Aapprox.41 meV
Duality between the Deconfined Quantum-Critical Point and the Bosonic Topological Transition
Directory of Open Access Journals (Sweden)
Yan Qi Qin
2017-09-01
Full Text Available Recently, significant progress has been made in (2+1-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities; i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter systems: the one relating the easy-plane noncompact CP^{1} model (NCCP^{1} and noncompact quantum electrodynamics (QED with two flavors (N=2 of massless two-component Dirac fermions. The easy-plane NCCP^{1} model is the field theory of the putative deconfined quantum-critical point separating a planar (XY antiferromagnet and a dimerized (valence-bond solid ground state, while N=2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work, we present strong numerical support for the proposed duality. We realize the N=2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC simulations. Using stochastic series expansion QMC simulations, we study a planar version of the S=1/2 J-Q spin Hamiltonian (a quantum XY model with additional multispin couplings and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. In the J-Q model, we find both continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims of no deconfined
Matter fields near quantum critical point in (2+1)-dimensional U(1) gauge theory
International Nuclear Information System (INIS)
Liu Guozhu; Li Wei; Cheng Geng
2010-01-01
We study chiral phase transition and confinement of matter fields in (2+1)-dimensional U(1) gauge theory of massless Dirac fermions and scalar bosons. The vanishing scalar boson mass, r=0, defines a quantum critical point between the Higgs phase and the Coulomb phase. We consider only the critical point r=0 and the Coulomb phase with r>0. The Dirac fermion acquires a dynamical mass when its flavor is less than certain critical value N f c , which depends quantitatively on the flavor N b and the scalar boson mass r. When N f f c , the matter fields carrying internal gauge charge are all confined if r≠0 but are deconfined at the quantum critical point r=0. The system has distinct low-energy elementary excitations at the critical point r=0 and in the Coulomb phase with r≠0. We calculate the specific heat and susceptibility of the system at r=0 and r≠0, which can help to detect the quantum critical point and to judge whether dynamical fermion mass generation takes place.
The Unicellular State as a Point Source in a Quantum Biological System
Directory of Open Access Journals (Sweden)
John S. Torday
2016-05-01
Full Text Available A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins.
Quantum mechanics of a free particle on a plane with an extracted point
International Nuclear Information System (INIS)
Kowalski, K.; Podlaski, K.; Rembielinski, J.
2002-01-01
A detailed study of a quantum free particle on a pointed plane is presented in this paper. In particular, some questions posed in the very recent paper by M. A. Cirone et al, Phys. Rev. A 65, 022101 (2002) are clarified. Namely, the topological effects related to extracting a point from a plane are indicated. The proposed results are introduced concerning self-adjoint extensions of operators describing the free particle on a pointed plane as well as the role played by discrete symmetries in the analysis of such extensions
International Nuclear Information System (INIS)
Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim
2012-01-01
Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.
International Nuclear Information System (INIS)
Kupka, M.; Farkasovsky, P.C.
1992-01-01
Point-contact spectra have been calculated for normal metal -heavy-fermion metal system (described by means of a simplified model Hamiltonian). Two approaches are used: one of them states that the differential conductance reflects an energy-dependent quasi-particle density of states, and 2. one drives the differential conductance are compared
Energy Technology Data Exchange (ETDEWEB)
Kononov, A.; Egorov, S. V. [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation); Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A. [Institute of Semiconductor Physics (Russian Federation); Deviatov, E. V., E-mail: dev@issp.ac.ru [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation)
2016-11-15
We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.
Wang, Qian; Qin, Pinquan; Wang, Wen-ge
2015-10-01
Based on an analysis of Feynman's path integral formulation of the propagator, a relative criterion is proposed for validity of a semiclassical approach to the dynamics near critical points in a class of systems undergoing quantum phase transitions. It is given by an effective Planck constant, in the relative sense that a smaller effective Planck constant implies better performance of the semiclassical approach. Numerical tests of this relative criterion are given in the XY model and in the Dicke model.
Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point
Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng
2018-03-01
Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.
A Novel Quantum Dots-Based Point of Care Test for Syphilis
Yang, Hao; Li, Ding; He, Rong; Guo, Qin; Wang, Kan; Zhang, Xueqing; Huang, Peng; Cui, Daxiang
2010-05-01
One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots-based method reached up to 100% (95% confidence interval [CI], 91-100%), while those of the colloidal gold-based method were 82% (95% CI, 68-91%) and 100% (95% CI, 91-100%), respectively. In addition, the naked-eye detection limit of quantum dot-based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold-based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening.
Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids
Gao, T.; Li, G.; Estrecho, E.; Liew, T. C. H.; Comber-Todd, D.; Nalitov, A.; Steger, M.; West, K.; Pfeiffer, L.; Snoke, D. W.; Kavokin, A. V.; Truscott, A. G.; Ostrovskaya, E. A.
2018-02-01
We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.
Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids.
Gao, T; Li, G; Estrecho, E; Liew, T C H; Comber-Todd, D; Nalitov, A; Steger, M; West, K; Pfeiffer, L; Snoke, D W; Kavokin, A V; Truscott, A G; Ostrovskaya, E A
2018-02-09
We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.
International Nuclear Information System (INIS)
Lu Xin; Park, W K; Greene, L H; Yuan, H Q; Chen, G F; Luo, G L; Wang, N L; Sefat, A S; McGuire, M A; Jin, R; Sales, B C; Mandrus, D; Gillett, J; Sebastian, Suchitra E
2010-01-01
Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe 2 As 2 (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba 0.6 K 0.4 )Fe 2 As 2 and Ba(Fe 0.9 Co 0.1 ) 2 As 2 , and the other with a V 2/3 background conductance universally observed, extending even up to 100 meV for Sr 0.6 Na 0.4 Fe 2 As 2 and Sr(Fe 0.9 Co 0.1 ) 2 As 2 . The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe 2 As 2 and superconducting (Ba 0.6 K 0.4 )Fe 2 As 2 crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba 0.6 K 0.4 Fe 2 As 2 , double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of ∼ 3.0-4.0 meV with 2Δ 0 /k B T c ∼ 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe 0.9 Co 0.1 ) 2 As 2 , the G(V) curves typically display a zero-bias conductance peak.
Czech Academy of Sciences Publication Activity Database
Kopačka, Ján; Gabriel, Dušan; Plešek, Jiří; Ulbin, M.
2016-01-01
Roč. 105, č. 11 (2016), s. 803-833 ISSN 0029-5981 R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) ME10114 Institutional support: RVO:61388998 Keywords : closest point projection * local contact search * quadratic elements * Newtons methods * geometric iteration methods * simplex method Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.162, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/nme.4994/abstract
Thermoelectric voltage at a nanometer-scale heated tip point contact
Fletcher, Patrick C.; Lee, Byeonghee; King, William P.
2012-01-01
We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater-thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25-275 °C. The tip-substrate contact is ˜4 nm in diameter and its average measured Seebeck coefficient is 3.4 μV K-1. The thermoelectric voltage is used to determine tip-substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip-substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip-substrate interface temperature. Measurements agree well with modeling when the tip-substrate interface contact resistance is 108 K W-1.
Thermoelectric voltage at a nanometer-scale heated tip point contact
International Nuclear Information System (INIS)
Fletcher, Patrick C; Lee, Byeonghee; King, William P
2012-01-01
We report thermoelectric voltage measurements between the platinum-coated tip of a heated atomic force microscope (AFM) cantilever and a gold-coated substrate. The cantilevers have an integrated heater–thermometer element made from doped single crystal silicon, and a platinum tip. The voltage can be measured at the tip, independent from the cantilever heating. We used the thermocouple junction between the platinum tip and the gold substrate to measure thermoelectric voltage during heating. Experiments used either sample-side or tip-side heating, over the temperature range 25–275 °C. The tip–substrate contact is ∼4 nm in diameter and its average measured Seebeck coefficient is 3.4 μV K −1 . The thermoelectric voltage is used to determine tip–substrate interface temperature when the substrate is either glass or quartz. When the non-dimensional cantilever heater temperature is 1, the tip–substrate interface temperature is 0.593 on glass and 0.125 on quartz. Thermal contact resistance between the tip and the substrate heavily influences the tip–substrate interface temperature. Measurements agree well with modeling when the tip–substrate interface contact resistance is 10 8 K W −1 . (paper)
Spin current induced by a charged tip in a quantum point contact
Energy Technology Data Exchange (ETDEWEB)
Shchamkhalova, B.S., E-mail: s.bagun@gmail.com
2017-03-15
We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin–orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.
Quantum degeneracy in atomic point contacts revealed by chemical force and conductance
Czech Academy of Sciences Publication Activity Database
Sugimoto, Y.; Ondráček, Martin; Abe, M.; Pou, P.; Morita, S.; Perez, R.; Flores, F.; Jelínek, Pavel
2013-01-01
Roč. 111, č. 10 (2013), "106803-1"-"106803-5" ISSN 0031-9007 R&D Projects: GA ČR(CZ) GPP204/11/P578 Grant - others:GA AV ČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : scanning tunneling microscopy * atomic force microscopy * degenerate states * silicon surface * dangling bonds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.728, year: 2013
Zhang, Bin; Qian, Yao; Wu, Yuntian; Yang, Y. B.
2018-04-01
To further the technique of indirect measurement, the contact-point response of a moving test vehicle is adopted for the damage detection of bridges. First, the contact-point response of the vehicle moving over the bridge is derived both analytically and in central difference form (for field use). Then, the instantaneous amplitude squared (IAS) of the driving component of the contact-point response is calculated by the Hilbert transform, making use of its narrow-band feature. The IAS peaks serve as the key parameter for damage detection. In the numerical simulation, a damage (crack) is modeled by a hinge-spring unit. The feasibility of the proposed method to detect the location and severity of a damage or multi damages of the bridge is verified. Also, the effects of surface roughness, vehicle speed, measurement noise and random traffic are studied. In the presence of ongoing traffic, the damages of the bridge are identified from the repeated or invariant IAS peaks generated for different traffic flows by the same test vehicle over the bridge.
The resolution of point sources of light as analyzed by quantum detection theory
Helstrom, C. W.
1972-01-01
The resolvability of point sources of incoherent light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
Resolution of point sources of light as analyzed by quantum detection theory.
Helstrom, C. W.
1973-01-01
The resolvability of point sources of incoherent thermal light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
Entropy excess in strongly correlated Fermi systems near a quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)
2012-12-15
A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau
An Investigation of the Relation Between Contact Thermometry and Dew-Point Temperature Realization
Benyon, R.; Böse, N.; Mitter, H.; Mutter, D.; Vicente, T.
2012-09-01
Precision optical dew-point hygrometers are the most commonly used transfer standards for the comparison of dew-point temperature realizations at National Metrology Institutes (NMIs) and for disseminating traceability to calibration laboratories. These instruments have been shown to be highly reproducible when properly used. In order to obtain the best performance, the resistance of the platinum resistance thermometer (PRT) embedded in the mirror is usually measured with an external, traceable resistance bridge or digital multimeter. The relation between the conventional calibration of miniature PRTs, prior to their assembly in the mirrors of state-of-the-art optical dew-point hygrometers and their subsequent calibration as dew-point temperature measurement devices, has been investigated. Standard humidity generators of three NMIs were used to calibrate hygrometers of different designs, covering the dew-point temperature range from -75 °C to + 95 °C. The results span more than a decade, during which time successive improvements and modifications were implemented by the manufacturer. The findings are presented and discussed in the context of enabling the optimum use of these transfer standards and as a basis for determining contributions to the uncertainty in their calibration.
Quantum noise on a point charge from electromagnetic squeezed vacuum fluctuations
International Nuclear Information System (INIS)
Wu, Tai-Hung; Hsiang, Jen-Tsung; Lee, Da-Shin
2010-01-01
The effect of quantum noises on a point charge from electromagnetic squeezed vacuum fluctuations is studied. Here a novel reduction phenomenon in velocity dispersion is found in the situation when the particle barely moves. It shows that the velocity dispersion of the charge can be reduced below the value solely given by the normal vacuum states of the electromagnetic fields by using an appropriate choice of the squeeze parameters. This may be viewed as a transient phenomenon. Optimally utilizing this reduction scheme for gravitational wave detection is possible, but challenging.
Quantum noise on a point charge from electromagnetic squeezed vacuum fluctuations
Energy Technology Data Exchange (ETDEWEB)
Wu, Tai-Hung; Hsiang, Jen-Tsung; Lee, Da-Shin [National Dong-Hwa University, Hua-lien, Taiwan (China)
2010-09-15
The effect of quantum noises on a point charge from electromagnetic squeezed vacuum fluctuations is studied. Here a novel reduction phenomenon in velocity dispersion is found in the situation when the particle barely moves. It shows that the velocity dispersion of the charge can be reduced below the value solely given by the normal vacuum states of the electromagnetic fields by using an appropriate choice of the squeeze parameters. This may be viewed as a transient phenomenon. Optimally utilizing this reduction scheme for gravitational wave detection is possible, but challenging.
Measurement of gamma quantum interaction point in plastic scintillator with WLS strips
Energy Technology Data Exchange (ETDEWEB)
Smyrski, J., E-mail: smyrski@if.uj.edu.pl [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Gorgol, M.; Jasińska, B. [Department of Nuclear Methods, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin (Poland); Kajetanowicz, M.; Kamińska, D.; Korcyl, G. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Kowalski, P. [Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Krzemień, W. [High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); and others
2017-04-11
The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting (WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen BC-482A WLS strips we achieved a spatial resolution of 5 mm (σ) for annihilation photons from a {sup 22}Na isotope. The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner which is being developed by the J-PET collaboration.
Sakuraba, Takao
The approach to quantum physics via current algebra and unitary representations of the diffeomorphism group is established. This thesis studies possible infinite Bose gas systems using this approach. Systems of locally finite configurations and systems of configurations with accumulation points are considered, with the main emphasis on the latter. In Chapter 2, canonical quantization, quantization via current algebra and unitary representations of the diffeomorphism group are reviewed. In Chapter 3, a new definition of the space of configurations is proposed and an axiom for general configuration spaces is abstracted. Various subsets of the configuration space, including those specifying the number of points in a Borel set and those specifying the number of accumulation points in a Borel set are proved to be measurable using this axiom. In Chapter 4, known results on the space of locally finite configurations and Poisson measure are reviewed in the light of the approach developed in Chapter 3, including the approach to current algebra in the Poisson space by Albeverio, Kondratiev, and Rockner. Goldin and Moschella considered unitary representations of the group of diffeomorphisms of the line based on self-similar random processes, which may describe infinite quantum gas systems with clusters. In Chapter 5, the Goldin-Moschella theory is developed further. Their construction of measures quasi-invariant under diffeomorphisms is reviewed, and a rigorous proof of their conjectures is given. It is proved that their measures with distinct correlation parameters are mutually singular. A quasi-invariant measure constructed by Ismagilov on the space of configurations with accumulation points on the circle is proved to be singular with respect to the Goldin-Moschella measures. Finally a generalization of the Goldin-Moschella measures to the higher-dimensional case is studied, where the notion of covariance matrix and the notion of condition number play important roles. A
Direct measurement of α2F in normal metals using point-contacts: noble metals
International Nuclear Information System (INIS)
Jansen, A.G.M.; Mueller, F.M.; Wyder, P.
1976-01-01
A new technique of forming tiny point junctions, first discussed by Sharvin, is described. By measuring the second derivative of voltage with respect to current, using techniques similar to tunnel junction spectroscopy, structure is found which is consistent with bulk phonon densities of states derived from neutron scattering. The same results were reported at LT 14 by Yanson using a shorted film technique
International Nuclear Information System (INIS)
Val’kov, V. V.; Zlotnikov, A. O.
2013-01-01
Mechanisms of the appearance of anomalous properties experimentally observed at the transition through the quantum critical point in rare-earth intermetallides have been studied. Quantum phase transitions are induced by the external pressure and are manifested as the destruction of the long-range antiferromagnetic order at zero temperature. The suppression of the long-range order is accompanied by an increase in the area of the Fermi surface, and the effective electron mass is strongly renormalized near the quantum critical point. It has been shown that such a renormalization is due to the reconstruction of the quasiparticle band, which is responsible for the formation of heavy fermions. It has been established that these features hold when the coexistence phase of antiferromagnetism and superconductivity is implemented near the quantum critical point.
Energy Technology Data Exchange (ETDEWEB)
Ananthakumar, S. [Crystal Growth Centre, Anna University, Chennai 600025 (India); Jayabalan, J., E-mail: jjaya@rrcat.gov.in [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Singh, Asha; Khan, Salahuddin [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Babu, S. Moorthy [Crystal Growth Centre, Anna University, Chennai 600025 (India); Chari, Rama [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)
2016-01-15
The photoluminescence (PL) from semiconductor quantum dots can show a “PL bright point”, that is the PL from as prepared quantum dots is maximum at a particular size. In this work we show that, for CdTe quantum dots, upconversion photoluminescence (UCPL) originating from nonlinear absorption shows a similar “UCPL bright point”. The PL and UCPL bright points occur at nearly the same size. The existence of a UCPL bright point has important implications for upconversion microscopy applications. - Highlights: • The size dependence of the upconversion photoluminescence (UCPL) spectrum of CdTe quantum dots has been reported. • We show that the UCPL from the CdTe quantum dots is highest at a particular size. • Thus the occurrence of a 'UCPL bright point' in CdTe quantum dots has been demonstrated. • It has been shown that the UCPL bright point occurs at nearly the same size as a normal bright point.
Magnetic-field control of quantum critical points of valence transition.
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2008-06-13
We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be cooperative phenomena of the Zeeman and Kondo effects, which create a distinct energy scale from the Kondo temperature. This mechanism explains the peculiar magnetic response in CeIrIn(5) and the metamagnetic transition in YbXCu(4) for X=In as well as the sharp contrast between X=Ag and Cd.
Singularity of the London penetration depth at quantum critical points in superconductors.
Chowdhury, Debanjan; Swingle, Brian; Berg, Erez; Sachdev, Subir
2013-10-11
We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As(1-x)P(x))2 [K. Hashimoto et al., Science 336, 1554 (2012)].
Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point
Kastrinakis, George
2018-05-01
We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.
Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.
2008-06-01
A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.
International Nuclear Information System (INIS)
Raychaudhuri, Pratap; Sheet, Goutam; Mukhopadhyay, Sourin; Takeya, H.
2007-01-01
In this paper, we review our recent investigations on the gap anisotropy of the quaternary borocarbide superconductor YNi 2 B 2 C using directional point-contact spectroscopy. Through a detailed study of the temperature and magnetic field dependence of the superconducting energy gaps we show that the gap anisotropy in this material originates from electrons on different Fermi sheets having very different Fermi velocities. The gap anisotropy in this material is therefore well explained through a multiband scenario where electrons in different k-directions have very different electron-phonon coupling strength
Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.
2017-12-01
Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.
Charge separation in contact systems with CdSe quantum dot layers
International Nuclear Information System (INIS)
Zillner, Elisabeth Franziska
2013-01-01
Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO 2 and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer (∼ 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface
Charge separation in contact systems with CdSe quantum dot layers
Energy Technology Data Exchange (ETDEWEB)
Zillner, Elisabeth Franziska
2013-03-06
Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO{sub 2} and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer ({approx} 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface
International Nuclear Information System (INIS)
Nesterov, Alexander I; Aceves de la Cruz, F
2008-01-01
We consider the geometric phase and quantum tunneling in the vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopoles. In the limit of weak coupling, the leading contribution to the real part of the geometric phase is given by the flux of the Dirac monopole plus a quadrupole term, and the expansion of the imaginary part starts with a dipole-like field. For a two-level system governed by a generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic, complex, geometric phase by integrating over the complex Bloch sphere. We apply our results to study a dissipative two-level system driven by a periodic electromagnetic field and show that, in the vicinity of the exceptional point, the complex geometric phase behaves like a step-function. Studying the tunneling process near and at the exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by Rabi oscillations, with a one-sheeted hyperbolic monopole emerging in this region of the parameters. The two-sheeted hyperbolic monopole is associated with the incoherent regime. We show that the dissipation results in a series of pulses in the complex geometric phase which disappear when the dissipation dies out. Such a strong coupling effect of the environment is beyond the conventional adiabatic treatment of the Berry phase
End-Point Contact Force Control with Quantitative Feedback Theory for Mobile Robots
Directory of Open Access Journals (Sweden)
Shuhuan Wen
2012-12-01
Full Text Available Robot force control is an important issue for intelligent mobile robotics. The end-point stiffness of a robot is a key and open problem in the research community. The control strategies are mostly dependent on both the specifications of the task and the environment of the robot. Due to the limited stiffness of the end-effector, we may adopt inherent torque to feedback the oscillations of the controlled force. This paper proposes an effective control strategy which contains a controller using quantitative feedback theory. The nested loop controllers take into account the physical limitation of the system's inner variables and harmful interference. The biggest advantage of the method is its simplicity in both the design process and the implementation of the control algorithm in engineering practice. Taking the one-link manipulator as an example, numerical experiments are carried out to verify the proposed control method. The results show the satisfactory performance.
Properties of a tunnel point contact between aluminum and the superconducting amorphous alloy NiZr2
International Nuclear Information System (INIS)
Gantmakher, V.F.; Golubov, A.A.; Osherov, M.V.
1989-01-01
The I-V characteristics of a tunnel point contact between aluminum and an amorphous ribbon resembling NiZr 2 in composition differ qualitatively from those of ordinary tunnel junctions between a superconductor and a normal metal. It is demonstrated that the observed curve shapes cannot be explained by accounting solely for one-particle tunneling in conditions of the proximity effect. This is followed by a qualitative discussion of a model in which the current rise at the potential eV equal to the gap width Δ (T) is generated by two-particle electron tunneling through the intermediate state which is manifested as a Cooper pair on the Fermi-level in the thin superconducting layer produced in the aluminum by the proximity effect. The current flowing through the contact will cause a breakdown of superconductivity in the vicinity of the contact at voltages exceeding the gap width. Smallness of the junction plays a decisive role both in inducing superconductivity for eV Δ
Energy Technology Data Exchange (ETDEWEB)
Abgrall, N.; Bradley, A.W.; Chan, Y.D.; Mertens, S.; Poon, A.W.P. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J.; Hoppe, E.W.; Kouzes, R.T.; LaFerriere, B.D.; Orrell, J.L. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Barabash, A.S.; Konovalov, S.I.; Yumatov, V. [National Research Center ' ' Kurchatov Institute' ' Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E.; Galindo-Uribarri, A.; Radford, D.C.; Varner, R.L.; White, B.R.; Yu, C.H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Duke University, Department of Physics, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M.; Cuesta, C.; Detwiler, J.A.; Gruszko, J.; Guinn, I.S.; Leon, J.; Robertson, R.G.H. [University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Caldwell, A.S.; Christofferson, C.D.; Dunagan, C.; Howard, S.; Suriano, A.M. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.H.; Elliott, S.R.; Goett, J.; Massarczyk, R.; Rielage, K. [Los Alamos National Laboratory, Los Alamos, NM (United States); Efremenko, Yu. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Ejiri, H. [Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Finnerty, P.S.; Gilliss, T.; Giovanetti, G.K.; Henning, R.; Howe, M.A.; MacMullin, J.; Meijer, S.J.; O' Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J.E.; Vorren, K.; Xu, W. [Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States); Green, M.P. [North Carolina State University, Department of Physics, Raleigh, NC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Guiseppe, V.E.; Tedeschi, D.; Wiseman, C. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC (United States); Jasinski, B.R. [University of South Dakota, Department of Physics, Vermillion, SD (United States); Keeter, K.J. [Black Hills State University, Department of Physics, Spearfish, SD (United States); Kidd, M.F. [Tennessee Tech University, Cookeville, TN (United States); Martin, R.D. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Romero-Romero, E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); University of California, Department of Nuclear Engineering, Berkeley, CA (United States); Wilkerson, J.F. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)
2016-11-15
A search for Pauli-exclusion-principle-violating K{sub α} electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 x 10{sup 30} s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 x 10{sup 30} s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of {sup 76}Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation. (orig.)
Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts
Hauptmann, J. R.; Paaske, J.; Lindelof, P. E.
2008-05-01
Manipulation of the spin states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin filters, spin transistors and single spin memories as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the quantum dot becomes spin polarized by the local exchange field. Here, we report on the experimental realization of this tunnelling-induced spin splitting in a carbon-nanotube quantum dot coupled to ferromagnetic nickel electrodes with a strong tunnel coupling ensuring a sizeable exchange field. As charge transport in this regime is dominated by the Kondo effect, we can use this sharp many-body resonance to read off the local spin polarization from the measured bias spectroscopy. We demonstrate that the exchange field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo resonance, and we demonstrate that the exchange field itself, and hence the local spin polarization, can be tuned and reversed merely by tuning the gate voltage.
DEFF Research Database (Denmark)
Koller, Sonja; Grifoni, Milena; Paaske, Jens
2012-01-01
We analyze distinct sources of spin-dependent energy level shifts and their impact on the tunneling magnetoresistance (TMR) of interacting quantum dots coupled to collinearly polarized ferromagnetic leads. Level shifts due to virtual charge fluctuations can be quantitatively evaluated within...
Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.
Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc
2016-12-13
The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.
CePdAl. A frustrated Kondo lattice at a quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Fritsch, Veronika [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Karlsruhe Institute of Technology (Germany); Sakai, Akito; Gegenwart, Philipp [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Huesges, Zita; Lucas, Stefan; Stockert, Oliver [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Kittler, Wolfram; Taubenheim, Christian; Grube, Kai; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany); Huang, Chien-Lung [Karlsruhe Institute of Technology (Germany); Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
2016-07-01
CePdAl is one of the rare frustrated Kondo lattice systems that can be tuned across a quantum critical point (QCP) by means of chemical pressure, i. e., the substitution of Pd by Ni. Magnetic frustration and Kondo effect are antithetic phenomena: The Kondo effect with the incipient delocalization of the magnetic moments, is not beneficial for the formation of a frustrated state. On the other hand, magnetic frustrated exchange interactions between the local moments can result in a breakdown of Kondo screening. Furthermore, the fate of frustration is unclear when approaching the QCP, since there is no simple observable to quantify the degree of frustration. We present thermodynamic and neutron scattering experiments on CePd{sub 1-x}Ni{sub x}Al close to the critical concentration x ∼0.14. Our experiments indicate that even at the QCP magnetic frustration is still present, opening the perspective to find new universality classes at such a quantum phase transition.
LaCu6-xAgx : A promising host of an elastic quantum critical point
Poudel, L.; Cruz, C. de la; Koehler, M. R.; McGuire, M. A.; Keppens, V.; Mandrus, D.; Christianson, A. D.
2018-05-01
Structural properties of LaCu6-xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P21 / c) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6-xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc = 0.225 . All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6-xAgx .
Rueda, A.
1985-01-01
That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.
International Nuclear Information System (INIS)
Rueda, A.
1985-01-01
That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The calssical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnetic ZPE
Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points
Ding, Chengxiang; Zhang, Long; Guo, Wenan
2018-06-01
Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.
Point-contact electron tunneling into the high-T/sub c/ superconductor Y-Ba-Cu-O
International Nuclear Information System (INIS)
Kirk, M.D.; Smith, D.P.E.; Mitzi, D.B.
1987-01-01
We report results of a study of electron tunneling into bulk samples of the new high-T/sub c/ superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Δ = 100 meV), implying 2Δ/k/sub C/T/sub c/--13. Similar values were found previously by us for La-Sr-Cu-O. We also see Structure in the I-V curves similar to that seen in La-Sr-Cu-O. On the basis of the asymmetries observed in the I-V characteristics, we believe that the natural tunneling barrier on this material is of the Schottky type
Energy Technology Data Exchange (ETDEWEB)
McLane, V.; Layne, A.
1995-06-01
A survey of the DOE facilities was undertaken by the Points-of-Contact for the DOE Review of Laboratory Programs for Women in order to gather data to be used as a baseline against which to measure future progress. We plan to look at current programs already in place and evaluate them with a view to deciding which programs are most effective, and selecting model programs suitable for implementation at other facilities. The survey focused on four areas: 1) statistical data, 2) laboratory policy, 3) formal and informal programs which affect the quality of life in the work environment, and career development and advancement, and 4) educational programs. Although this report focuses on women, the problems discussed affect all DOE facility employees.
A periodic point-based method for the analysis of Nash equilibria in 2 x 2 symmetric quantum games
International Nuclear Information System (INIS)
Schneider, David
2011-01-01
We present a novel method of looking at Nash equilibria in 2 x 2 quantum games. Our method is based on a mathematical connection between the problem of identifying Nash equilibria in game theory, and the topological problem of the periodic points in nonlinear maps. To adapt our method to the original protocol designed by Eisert et al (1999 Phys. Rev. Lett. 83 3077-80) to study quantum games, we are forced to extend the space of strategies from the initial proposal. We apply our method to the extended strategy space version of the quantum Prisoner's dilemma and find that a new set of Nash equilibria emerge in a natural way. Nash equilibria in this set are optimal as Eisert's solution of the quantum Prisoner's dilemma and include this solution as a limit case.
A periodic point-based method for the analysis of Nash equilibria in 2 x 2 symmetric quantum games
Energy Technology Data Exchange (ETDEWEB)
Schneider, David, E-mail: schneide@tandar.cnea.gov.ar [Departamento de Fisica, Comision Nacional de EnergIa Atomica. Av. del Libertador 8250, 1429 Buenos Aires (Argentina)
2011-03-04
We present a novel method of looking at Nash equilibria in 2 x 2 quantum games. Our method is based on a mathematical connection between the problem of identifying Nash equilibria in game theory, and the topological problem of the periodic points in nonlinear maps. To adapt our method to the original protocol designed by Eisert et al (1999 Phys. Rev. Lett. 83 3077-80) to study quantum games, we are forced to extend the space of strategies from the initial proposal. We apply our method to the extended strategy space version of the quantum Prisoner's dilemma and find that a new set of Nash equilibria emerge in a natural way. Nash equilibria in this set are optimal as Eisert's solution of the quantum Prisoner's dilemma and include this solution as a limit case.
DEFF Research Database (Denmark)
Jensen, Ole B.; Morelli, Nicola
2011-01-01
. are connected (and disconnected) we get a much better understanding of how to design and intervene regardless if we are thinking about public spaces in the city or new systems of service design. The many networks orchestrating and facilitating contemporary everyday life are dependent on the strategic sites...
Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.
2014-03-01
Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.
Quantum mechanical theory of positron production in heavy ion collisions with nuclear contact
International Nuclear Information System (INIS)
Heinz, U.
1986-01-01
The interplay between atomic and nuclear interactions in heavy ion collisions with nuclear contact is studied. The general theoretical description is outlined and analyzed in a number of different limits (semiclassical approximation, DWBA, fully quantal description). The two most important physical mechanisms for generating atomic-nuclear interference, i.e., energy conservation and the introduction of additional phase shifts by nuclear reactions, are extracted. The resulting typical coupling matrix elements are analyzed for their relative importance in atomic and nuclear excitations. The description of nuclear influence on atomic excitations in terms of a classical time delay caused by nuclear reactions is reviewed, and its relationship to the underlying quantal character of the nuclear reaction is discussed. The theory is applied to spontaneous positron emission in supercritical heavy-ion collisions (Z/sub tot/ ≥ 173). It is shown that nuclear contact can lead to line structures in the positron energy spectra if the probability distribution for nuclear delay times caused by the contact has contributions for T ≥ 10 -19 sec. We explicitly evaluate a model where a pocket in the internuclear potential near the touching configuration leads to formation of nuclear molecules, and predict a resonance-like excitation function for the positron peak. 25 refs., 7 figs
Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.
2018-05-01
We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic (EM) field must be presented as the superposition of more fundamental quantum phases emerging for elementary charges. Using this idea, we find two new fundamental quantum phases for point-like charges, next to the known electric and magnetic Aharonov-Bohm (A-B) phases, named by us as the complementary electric and magnetic phases, correspondingly. We further demonstrate that these new phases can indeed be derived via the Schrödinger equation for a particle in an EM field, where however the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system "charged particle and a macroscopic source of EM field". The implications of the obtained results are discussed.
Diverging conductance at the contact between random and pure quantum XX spin chains
Chatelain, Christophe
2017-11-01
A model consisting of two quantum XX spin chains, one homogeneous and the second with random couplings drawn from a binary distribution, is considered. The two chains are coupled to two different non-local thermal baths and their dynamics is governed by a Lindblad equation. In the steady state, a current J is induced between the two chains by coupling them together by their edges and imposing different chemical potentials μ to the two baths. While a regime of linear characteristics J versus Δμ is observed in the absence of randomness, a gap opens as the disorder strength is increased. In the infinite-randomness limit, this behavior is related to the density of states of the localized states contributing to the current. The conductance is shown to diverge in this limit.
Huang, Danhong; Iurov, Andrii; Gao, Fei; Gumbs, Godfrey; Cardimona, D. A.
2018-02-01
The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-induced vertex correction to a bare polarization function of electrons within the ladder approximation, and the intralayer and interlayer screening of defect-electron interactions is also taken into account in the random-phase approximation. The numerical results of defect effects on both energy-loss and optical-absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a layered structure. For completeness, the production rate for Frenkel-pair defects and their initial concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low dark current density but also for radiation tolerance or mitigating the effects of the radiation.
Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.
Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada
2016-07-19
In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.
Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji
2014-06-01
We study the six-point gluon scattering amplitudes in N=4 super Yang-Mills theory at strong coupling based on the twisted Z 4 -symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.
Quench dynamics near a quantum critical point: Application to the sine-Gordon model
International Nuclear Information System (INIS)
De Grandi, C.; Polkovnikov, A.; Gritsev, V.
2010-01-01
We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter λ(t) changes in time as λ(t)∼υt r , based on the adiabatic expansion of the excitation probability in powers of υ. We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility χ 2r+2 (λ), which for sudden quenches (r=0) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector, respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard-core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.
Measuring the distance from saddle points and driving to locate them over quantum control landscapes
International Nuclear Information System (INIS)
Sun, Qiuyang; Riviello, Gregory; Rabitz, Herschel; Wu, Re-Bing
2015-01-01
Optimal control of quantum phenomena involves the introduction of a cost functional J to characterize the degree of achieving a physical objective by a chosen shaped electromagnetic field. The cost functional dependence upon the control forms a control landscape. Two theoretically important canonical cases are the landscapes associated with seeking to achieve either a physical observable or a unitary transformation. Upon satisfaction of particular assumptions, both landscapes are analytically known to be trap-free, yet possess saddle points at precise suboptimal J values. The presence of saddles on the landscapes can influence the effort needed to find an optimal field. As a foundation to future algorithm development and analyzes, we define metrics that identify the ‘distance’ from a given saddle based on the sufficient and necessary conditions for the existence of the saddles. Algorithms are introduced utilizing the metrics to find a control such that the dynamics arrive at a targeted saddle. The saddle distance metric and saddle-seeking methodology is tested numerically in several model systems. (paper)
Gonnelli, R. S.; Daghero, D.; Calzolari, A.; Ummarino, G. A.; Tortello, M.; Stepanov, V. A.; Zhigadlo, N. D.; Rogacki, K.; Karpinski, J.; Portesi, C.; Monticone, E.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.
2006-03-01
In the first part of the present paper we discuss the fabrication and the characterization of an MgB2-based SQUID magnetometer with a directly coupled large-area pick-up loop, made on an MgB2 film deposited by an all in situ technique. The coarse structure of the SQUID was defined by optical lithography and Ar-ion milling, while the two nanobridges acting as weak links in the superconducting loop were made by focused ion beam (FIB) milling. The device was characterized at different temperatures and showed Josephson quantum interference up to 20 K as well as a noise level already compatible with the recording of an adult magnetocardiogram. In the second part, concerning the fundamental physics of MgB2, we present the results of very recent point-contact measurements on Mg1-xMnxB2 single crystals with 34.1 ⩾ Tc ⩾ 13.3 K (i.e. 0.37% ⩽ x ⩽ 1.5%). The experimental conductance curves were fitted with the generalized two-band BTK model and their behaviour in magnetic fields was studied to check if both the order parameters (OPs) of the σ and π bands were present in the whole doping range. The dependence of the OPs (evaluated through the fit) on the Andreev critical temperature of the junctions is analyzed in the framework of the two-band Eliashberg theory by including the effects of magnetic impurities. The results give an evidence of a dominant effect of the magnetic impurities on the σ-band channel.
Probing chiral superconductivity in Sr_2RuO_4 underneath the surface by point contact measurements
International Nuclear Information System (INIS)
Wang, He; Luo, Jiawei; Lou, Weijian
2017-01-01
Sr2RuO4 (SRO) is the prime candidate for a chiral p-wave superconductor with critical temperature T_c(SRO)∼1.5 K. Chiral domains with opposite chiralities p_x±ip_y have been proposed, but are yet to be confirmed. We measure the field dependence of the point contact (PC) resistance between a tungsten tip and an SRO–Ru eutectic crystal, where micrometer-sized Ru inclusions are embedded in SRO with an atomically sharp interface. Ruthenium is an s-wave superconductor with T_c(Ru)∼0.5 K; flux pinned near the Ru inclusions can suppress its superconductivity, as reflected in the PC resistance and spectra. This flux pinning effect originates from SRO underneath the surface and is very strong once flux is introduced. To fully remove flux pinning, one needs to thermally cycle the sample above T_c(SRO) or apply alternating fields with decreasing amplitude. With alternating fields, the observed hysteresis in magnetoresistance can be explained by domain dynamics, providing support for the existence of chiral domains. The origin of the strong pinning could be the chiral domains themselves.
Three-dimensional quantum algebras: a Cartan-like point of view
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2004-01-01
A perturbative quantization procedure for Lie bialgebras is introduced. The relevance of the choice of a completely symmetrized basis of the quantum universal enveloping algebra is stressed. Sets of elements of the quantum algebra that play a role similar to generators in the case of Lie algebras are considered and a Cartan-like procedure applied to find a representative for each class of quantum algebras. The method is used to construct and classify all three-dimensional complex quantum algebras that are compatible with a given type of coproduct. The quantization of all Lie algebras that, in the classical limit, belong to the most relevant sector in the classification for three-dimensional Lie bialgebras is thus performed. New quantizations of solvable algebras, whose simplicity makes them suitable for possible physical applications, are obtained and already known related quantum algebras recovered
The Casimir Effect from the Point of View of Algebraic Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio, E-mail: claudio.dappiaggi@unipv.it; Nosari, Gabriele [Università degli Studi di Pavia, Dipartimento di Fisica (Italy); Pinamonti, Nicola [Università di Genova, Dipartimento di Matematica (Italy)
2016-06-15
We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.
Directory of Open Access Journals (Sweden)
Agus Wahidi
2017-03-01
Full Text Available This research is experimental, using first class learning a quantum model of learning with concept maps media and the second media using real environments by power point presentation. The population is all class XI Science, number 2 grade. The sampling technique is done by purposive random sampling. Data collection techniques to test for cognitive performance and memory capabilities, with a questionnaire for creativity. Hypothesis testing using three-way ANOVA different cells with the help of software Minitab 15.Based on the results of data processing, concluded: (1 there is no influence of the quantum model of learning with media learning concept maps and real environments for learning achievement chemistry, (2 there is a high impact memory ability and low on student achievement, (3 there is no the effect of high and low creativity in student performance, (4 there is no interaction learning model quantum media learning concept maps and real environments with memory ability on student achievement, (5 there is no interaction learning model quantum media learning concept maps and real environments with creativity of student achievement, (6 there is no interaction memory skills and creativity of student achievement, (7 there is no interaction learning model quantum media learning concept maps and real environments, memory skills, and creativity on student achievement.
International Nuclear Information System (INIS)
Szabo, P.; Pribulova, Z.; Pristas, G.; Bud'ko, S.L.; Canfield, P.C.; Samuely, P.
2009-01-01
First directional point-contact Andreev reflection spectroscopy on the Ba 0.55 K 0.45 Fe 2 As 2 single crystals is presented. The spectra show significant differences when measured in the ab plane in comparison with those measured in the c direction. In the latter case no traces of superconducting energy gap could be found, just a reduced point-contact conductance persisting up to about 100 K and indicating reduced density of states. On the other hand within the ab plane two nodeless superconducting energy gaps Δ S ∼2-5 meV and Δ L ∼9-11 meV are detected.
Directory of Open Access Journals (Sweden)
Dominique Placko
2016-10-01
Full Text Available The distributed point source method, or DPSM, developed in the last decade has been used for solving various engineering problems—such as elastic and electromagnetic wave propagation, electrostatic, and fluid flow problems. Based on a semi-analytical formulation, the DPSM solution is generally built by superimposing the point source solutions or Green’s functions. However, the DPSM solution can be also obtained by superimposing elemental solutions of volume sources having some source density called the equivalent source density (ESD. In earlier works mostly point sources were used. In this paper the DPSM formulation is modified to introduce a new kind of ESD, replacing the classical single point source by a family of point sources that are referred to as quantum sources. The proposed formulation with these quantum sources do not change the dimension of the global matrix to be inverted to solve the problem when compared with the classical point source-based DPSM formulation. To assess the performance of this new formulation, the ultrasonic field generated by a circular planer transducer was compared with the classical DPSM formulation and analytical solution. The results show a significant improvement in the near field computation.
Energy Technology Data Exchange (ETDEWEB)
Levy, F; Huxley, A [CEA, SPSMS, DRFMC, F-38054 Grenoble, (France); Levy, F; Sheikin, I [CNRS, GHMFL, F-38042 Grenoble, (France); Huxley, A [Univ Edinburgh, Scottish Univ Phys Alliance, Sch Phys, Edinburgh EH9 3JZ, Midlothian, (United Kingdom)
2007-07-01
When a pure material is tuned to the point where a continuous phase-transition line is crossed at zero temperature, known as a quantum critical point (QCP), completely new correlated quantum ordered states can form. These phases include exotic forms of superconductivity. However, as superconductivity is generally suppressed by a magnetic field, the formation of superconductivity ought not to be possible at extremely high field. Here, we report that as we tune the ferromagnet, URhGe, towards a QCP by applying a component of magnetic field in the material's easy magnetic plane, superconductivity survives in progressively higher fields applied simultaneously along the material's magnetic hard axis. Thus, although superconductivity never occurs above a temperature of 0.5 K, we find that it can survive in extremely high magnetic fields, exceeding 28 T. (authors)
Relation between quantum phase transitions and classical instability points in the pairing model
International Nuclear Information System (INIS)
Reis, Mauricio; Terra Cunha, M.O.; Oliveira, Adelcio C.; Nemes, M.C.
2005-01-01
A quantum phase transition, characterized by an accumulation of energy levels in the espectrum of the model, is associated with a qualitative change in the corresponding classical dynamic obtained upon generalized coherent states of angular momentum
Bandyopadhyay, Pradipta
2008-04-07
The efficiency of the two-surface monte carlo (TSMC) method depends on the closeness of the actual potential and the biasing potential used to propagate the system of interest. In this work, it is shown that by combining the basin hopping method with TSMC, the efficiency of the method can be increased by several folds. TSMC with basin hopping is used to generate quantum mechanical trajectory and large number of stationary points of water clusters.
Fröb, Markus B.
2018-02-01
We study a proposal for gauge-invariant correlation functions in perturbative quantum gravity, which are obtained by fixing the geodesic distance between points in the fluctuating geometry. These correlation functions are non-local and strongly divergent, and we show how to renormalise them by performing a ‘wave function renormalisation’ of the geodesic embedding coordinates. The result is finite and gauge-independent, but displays unusual features such as double logarithms at one-loop order.
Fu, Bo; Zhu, Wei; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong; Zhang, Zhenyu
2017-04-07
Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behavior is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. We further show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.
Nonato, Fábio; Cavalca, Katia L.
2014-12-01
This work presents a methodology for including the Elastohydrodynamic (EHD) film effects to a lateral vibration model of a deep groove ball bearing by using a novel approximation for the EHD contacts by a set of equivalent nonlinear spring and viscous damper. The fitting of the equivalent contact model used the results of a transient multi-level finite difference EHD algorithm to adjust the dynamic parameters. The comparison between the approximated model and the finite difference simulated results showed a suitable representation of the stationary and dynamic contact behaviors. The linear damping hypothesis could be shown as a rough representation of the actual hysteretic behavior of the EHD contact. Nevertheless, the overall accuracy of the model was not impaired by the use of such approximation. Further on, the inclusion of the equivalent EHD contact model is equated for both the restoring and the dissipative components of the bearing's lateral dynamics. The derived model was used to investigate the effects of the rolling element bearing lubrication on the vibration response of a rotor's lumped parameter model. The fluid film stiffening effect, previously only observable by experimentation, could be quantified using the proposed model, as well as the portion of the bearing damping provided by the EHD fluid film. Results from a laboratory rotor-bearing test rig were used to indirectly validate the proposed contact approximation. A finite element model of the rotor accounting for the lubricated bearing formulation adequately portrayed the frequency content of the bearing orbits observed on the test rig.
Xie, Xufen; Yan, Jiawei; Liang, Jinghong; Li, Jijun; Zhang, Meng; Mao, Bingwei
2013-10-01
We present quantum conductance measurements of germanium by means of an electrochemical scanning tunneling microscope (STM) break junction based on a jump-to-contact mechanism. Germanium nanowires between a platinum/iridium tip and different substrates were constructed to measure the quantum conductance. By applying appropriate potentials to the substrate and the tip, the process of heterogeneous contact and homogeneous breakage was realized. Typical conductance traces exhibit steps at 0.025 and 0.05 G0. The conductance histogram indicates that the conductance of germanium nanowires is located between 0.02 and 0.15 G0 in the low-conductance region and is free from the influence of substrate materials. However, the distribution of conductance plateaus is too discrete to display distinct peaks in the conductance histogram of the high-conductance region. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the possibility of complete revivals after quantum quenches to a critical point
Najafi, K.; Rajabpour, M. A.
2017-07-01
In a recent letter [J. Cardy, Phys. Rev. Lett. 112, 220401 (2014), 10.1103/PhysRevLett.112.220401], the author made a very interesting observation that complete revivals of quantum states after quantum quench can happen in a period that is a fraction of the system size. This is possible for critical systems that can be described by minimal conformal field theories with central charge c detect a regime in the phase diagram of the XY chain in which one can not determine the period of the partial revivals using the quasiparticle picture.
Stomp, Romain-Pierre
This thesis is devoted to the studies of self-assembled InAs quantum dots (QD) by low-temperature Atomic Force Microscopy (AFM) in frequency modulation mode. Several spectroscopic methods are developed to investigate single electron charging from a two-dimensional electron gas (2DEG) to an individual InAs QD. Furthermore, a new technique to measure the absolute tip-sample capacitance is also demonstrated. The main observables are the electrostatic force between the metal-coated AFM tip and sample as well as the sample-induced energy dissipation, and therefore no tunneling current has to be collected at the AFM tip. Measurements were performed by recording simultaneously the shift in the resonant frequency and the Q-factor degradation of the oscillating cantilever either as a function of tip-sample voltage or distance. The signature of single electron charging was detected as an abrupt change in the frequency shift as well as corresponding peaks in the dissipation. The main experimental features in the force agree well with the semi-classical theory of Coulomb blockade by considering the free energy of the system. The observed dissipation peaks can be understood as a back-action effect on the oscillating cantilever beam due to the fluctuation in time of electrons tunneling back and forth between the 2DEG and the QD. It was also possible to extract the absolute value of the tip-sample capacitance, as a consequence of the spectroscopic analysis of the electrostic force as a function of tip-sample distance for different values of the applied voltage. At the same time, the contact potential difference and the residual non-capacitive force could also be determined as a function of tip-sample distance.
Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation
DEFF Research Database (Denmark)
Zheng, Kaibo; Zídek, Karel; Abdellah, Mohamed
2014-01-01
Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of ...
Nuclear spin dynamics in double quantum dots : Fixed points, transients, and intermittency
Rudner, M.S.; Koppens, F.H.L.; Folk, J.A.; Vandersypen, L.M.K.; Levitov, L.S.
2011-01-01
Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin
International Nuclear Information System (INIS)
Baggenstos, M.A.; Frey, P.E.; Schmid, A.
2006-01-01
Mission The Swiss Federal Concept for Emergency Protection in the Vicinity of Nuclear Power Plants requires the preparation of a 'Contact Point' (C.P.) for psychological and medical care of the affected public in case of an accident in a nuclear power plant. Purpose The central questions, which during a release of radioactivity could cause anxiety within the population, are: - Have I come into contact with radioactive substances? - If so, what are the short-term and long-term radiological consequences? - How dangerous is the dose I have received? These questions are answered with the following procedures: - Examination of all persons arriving at the contact point with respect to radioactive contamination and, if necessary decontamination (showers). - Screening of the thyroid for the purpose of checking for incorporation of radioactive iodine and dose measurement in case screening is positive. - Answering of personal questions related to radioactivity and radiological consequences. - Information and advisory service concerning impact of radiation and possibilities of protective measures. Experience The Paper will discusses the experience from an exercise taken place 18./19. november 2005. In this exercise 100 players will be involved. The background of the exercise is a scenario taken from a federal exercise with a NPP. In addition to the direct support at the contact point a telephone hot line will be exercised. We expect lessons learned in man y areas of the management of psychological and medical care. (authors)
Zaletel, Michael P; Bardarson, Jens H; Moore, Joel E
2011-07-08
Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.
Supercurrent through a spin-split quasi-ballistic point contact in an InAs nanowire
DEFF Research Database (Denmark)
Saldaña, J. C. Estrada; Žitko, R.; Cleuziou, J. P.
2018-01-01
We study the superconducting proximity effect in an InAs nanowire contacted by Ta-based superconducting electrodes. Using local bottom gates, we control the potential landscape along the nanowire, tuning its conductance to a quasi-ballistic regime. At high magnetic field ($B$), we observe...
Hofstad, van der R.W.; Sakai, A.
2005-01-01
We consider self-avoiding walk and percolation in d, oriented percolation in d×+, and the contact process in d, with p D(·) being the coupling function whose range is proportional to L. For percolation, for example, each bond is independently occupied with probability p D(y–x). The above models are
Point-contact properties of cubic YbCu .sub.5./sub. prepared by melt spinning technique
Czech Academy of Sciences Publication Activity Database
Reiffers, M.; Idzikowski, B.; Ilkovič, S.; Zorkovská, A.; Šebek, Josef; Müller, K. H.
272-276, - (2004), s. 209-210 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z1010914 Keywords : heavy-fermion * pont-contact * YbCu 5 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004
International Nuclear Information System (INIS)
Deeney, F A; O'Leary, J P
2008-01-01
The connection between quantum zero point fluctuations and a density maximum in water and in liquid He 4 has recently been established. Here we present a description of a simple and rapid method of determining the temperatures at which maximum densities in water and aqueous solutions occur. The technique is such as to allow experiments to be carried out in one session of an undergraduate laboratory thereby introducing students to the concept of quantum zero point energy
Khots, Boris; Khots, Dmitriy
2014-12-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
Directory of Open Access Journals (Sweden)
KOIKE Hitonobu
2017-01-01
Full Text Available Subsurface fatigue cracks under rolling contact area of the PEEK shaft against an alumina bearing’s ball were investigated for application of frictional part in mechanical element in special situations such as chemical environments. In order to explore the flaking process of the PEEK shaft, the rolling contact fatigue tests were carried out by using a one-point radial loading rolling contact machine. The flaking occurred on the rolling track of the PEEK shaft at approximate 4⨉105 fatigue cycles. The subsurface fatigue crack propagation was investigated by using 2.5-Dimension layer observation method. The flaking was caused by the propagations of surface cracks and subsurface shear cracks, and the flaking shape was half-ellipse. Moreover, beach marks as fatigue crack propagation in the flaking were observed.
DEFF Research Database (Denmark)
Aramburu, José Antonio; García-Fernández, Pablo; García Lastra, Juan Maria
2016-01-01
that the anomalous positive g∥ shift (g∥−g0=0.065) measured at T=20 K obeys the superposition of the |3 z2−r2⟩ and |x2−y2⟩ states driven by quantum effects associated with the zero-point motion, a mechanism first put forward by O'Brien for static Jahn–Teller systems and later extended by Ham to the dynamic Jahn...... of the calculated energy barriers for different Jahn–Teller systems allowed us to explain the origin of the compressed geometry observed for CaO:Ni+....
Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto
2016-06-16
This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.
Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field
International Nuclear Information System (INIS)
Schwabl, H; Mesa Pascasio, J; Fussy, S; Grössing, G
2012-01-01
In our bouncer-walker model a quantum is a nonequilibrium steady-state maintained by a permanent throughput of energy. Specifically, we consider a 'particle' as a bouncer whose oscillations are phase-locked with those of the energy-momentum reservoir of the zero-point field (ZPF), and we combine this with the random-walk model of the walker, again driven by the ZPF. Starting with this classical toy model of the bouncer-walker we were able to derive fundamental elements of quantum theory. Here this toy model is revisited with special emphasis on the mechanism of emergence. Especially the derivation of the total energy hω o and the coupling to the ZPF are clarified. For this we make use of a sub-quantum equipartition theorem. It can further be shown that the couplings of both bouncer and walker to the ZPF are identical. Then we follow this path in accordance with Ref. [2], expanding the view from the particle in its rest frame to a particle in motion. The basic features of ballistic diffusion are derived, especially the diffusion constant D, thus providing a missing link between the different approaches of our previous works.
Energy gap in La/sub 1. 85/Sr/sub 0. 15/CuO/sub 4-//sub y/ from point-contact tunneling
Energy Technology Data Exchange (ETDEWEB)
Hawley, M.E.; Gray, K.E.; Capone II, D.W.; Hinks, D.G.
1987-05-01
Point-contact tunneling into the high-T/sub c/ superconductor La/sub 1.85/Sr/sub 0.15/CuO/sub 4-//sub y/ reveals the first direct measure of the energy gap. Values range from 8 to 14 meV with the variation perhaps due to impurity phases, pressure-induced changes, or anisotropy. Even the minimum value indicates a strong-coupling superconductor.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Gao, Yali; Lam, Albert W Y; Chan, Warren C W
2013-04-24
The impact of detecting multiple infectious diseases simultaneously at point-of-care with good sensitivity, specificity, and reproducibility would be enormous for containing the spread of diseases in both resource-limited and rich countries. Many barcoding technologies have been introduced for addressing this need as barcodes can be applied to detecting thousands of genetic and protein biomarkers simultaneously. However, the assay process is not automated and is tedious and requires skilled technicians. Barcoding technology is currently limited to use in resource-rich settings. Here we used magnetism and microfluidics technology to automate the multiple steps in a quantum dot barcode assay. The quantum dot-barcoded microbeads are sequentially (a) introduced into the chip, (b) magnetically moved to a stream containing target molecules, (c) moved back to the original stream containing secondary probes, (d) washed, and (e) finally aligned for detection. The assay requires 20 min, has a limit of detection of 1.2 nM, and can detect genetic targets for HIV, hepatitis B, and syphilis. This study provides a simple strategy to automate the entire barcode assay process and moves barcoding technologies one step closer to point-of-care applications.
EXAMPLES OF QUANTUM HOLONOMY WITH TOPOLOGY CHANGES
Directory of Open Access Journals (Sweden)
Taksu Cheon
2013-10-01
Full Text Available We study a family of closed quantum graphs described by one singular vertex of order n = 4. By suitable choice of the parameters specifying the singular vertex, we can construct a closed path in the parameter space that physically corresponds to the smooth interpolation of different topologies - a ring, separate two lines, separate two rings, two rings with a contact point. We find that the spectrum of a quantum particle on this family of graphs shows quantum holonomy.
Spectral dimension of the universe in quantum gravity at a lifshitz point.
Horava, Petr
2009-04-24
We extend the definition of "spectral dimension" d_{s} (usually defined for fractal and lattice geometries) to theories in spacetimes with anisotropic scaling. We show that in gravity with dynamical critical exponent z in D+1 dimensions, the spectral dimension of spacetime is d_{s}=1+D/z. In the case of gravity in 3+1 dimensions with z=3 in the UV which flows to z=1 in the IR, the spectral dimension changes from d_{s}=4 at large scales to d_{s}=2 at short distances. Remarkably, this is the behavior found numerically by Ambjørn et al. in their causal dynamical triangulations approach to quantum gravity.
Fermi points and topological quantum phase transitions in a multi-band superconductor.
Puel, T O; Sacramento, P D; Continentino, M A
2015-10-28
The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. The Kitaev model plays a guiding role in the search for Majorana modes in condensed matter systems. Also, the sp-chain with an anti-symmetric mixing among the s and p bands is a paradigmatic example of a topological insulator with well understood properties. Interestingly, these models share the same universality class for their topological quantum phase transitions. In this work we study a two-band model of spinless fermions with attractive inter-band interactions. We obtain its zero temperature phase diagram, which presents a rich variety of phases including a Weyl superconductor and a topological insulator. The transition from the topological to the trivial superconducting phase has critical exponents different from those of Kitaev's model.
Colloidal 3-Mercaptopropionic Acid Capped Lead Sulfide Quantum Dots in a Low Boiling Point Solvent.
Reinhart, Chase C; Johansson, Erik
2017-04-26
Colloidal 3-mercaptopropionic acid (3-MPA) capped lead sulfide quantum dots were prepared in a variety of organic solvents stabilized with a quaternary ammonium halide salt. The stabilized colloids' optical properties were studied through optical absorption and emission spectroscopy and found to be dependent on both the concentration of a new ligand and stabilizer, and sample age. Nanocrystal ligand chemistry was studied through a combination of 1 H NMR and two-dimensional Nuclear Overhauser Effect Spectroscopy (NOESY) which revealed full displacement of the original oleate ligand to form a dynamically exchanging ligand shell. The colloids were studied optically and via NMR as they aged and revealed a quantitative conversion of monomeric 3-mercaptopropionic acid to its dimer, dithiodipropionic acid (dTdPA).
Tachibana, Tomihisa; Tanahashi, Katsuto; Mochizuki, Toshimitsu; Shirasawa, Katsuhiko; Takato, Hidetaka
2018-04-01
Bifacial interdigitated-back-contact (IBC) silicon solar cells with a high bifaciality of 0.91 were fabricated. Screen printing and firing technology were used to reduce the production cost. For the first time, the relationship between the rear side structure and carrier collection probability was evaluated using internal quantum efficiency (IQE) mapping. The measurement results showed that the screen-printed electrode and back surface field (BSF) area led to low IQE. The low carrier collection probability by BSF area can be explained by electrical shading effects. Thus, it is clear that the IQE mapping system is useful to evaluate the IBC cell.
Tricritical point in quantum phase transitions of the Coleman–Weinberg model at Higgs mass
International Nuclear Information System (INIS)
Fiolhais, Miguel C.N.; Kleinert, Hagen
2013-01-01
The tricritical point, which separates first and second order phase transitions in three-dimensional superconductors, is studied in the four-dimensional Coleman–Weinberg model, and the similarities as well as the differences with respect to the three-dimensional result are exhibited. The position of the tricritical point in the Coleman–Weinberg model is derived and found to be in agreement with the Thomas–Fermi approximation in the three-dimensional Ginzburg–Landau theory. From this we deduce a special role of the tricritical point for the Standard Model Higgs sector in the scope of the latest experimental results, which suggests the unexpected relevance of tricritical behavior in the electroweak interactions.
Xiu-Xing, Zhang; Fu-Li, Li
2012-01-01
We study the classical correlation (CC) and quantum discord (QD) between two spin subgroups of the Lipkin-Meshkov-Glick (LMG) model in both binary and trinary decompositions of spins. In the case of bipartition, we find that the classical correlations and all the quantum correlations including the QD, the entanglement of formation (EoF) and the logarithmic negativity (LN) are divergent in the same singular behavior at the critical point of the LMG model. In the case of tripartition, however, ...
Directory of Open Access Journals (Sweden)
Nikolić Marko
2008-09-01
Full Text Available Abstract Introduction Operations on the common bile duct may lead to potentially serious complications such as biliary peritonitis. T-tube insertion is performed to reduce the risk of this occurring postoperatively. Biliary leakage at the point of insertion into the common bile duct, or along the fistula, can sometimes occur after T-tube removal and this has been reported extensively in the literature. We report a case where the site at which the T-tube fistula leaked proved to be the point of contact between the fistula and the anterior abdominal wall, a previously unreported complication. Case presentation A 36-year-old sub-Saharan African woman presented with gallstone-induced pancreatitis and, once her symptoms settled, laparoscopic cholecystectomy was performed, common bile duct stones were removed and a T-tube was inserted. Three weeks later, T-tube removal led to biliary peritonitis due to the disconnection of the T-tube fistula which was recannulated laparoscopically using a Latex drain. Conclusion This case highlights a previously unreported mechanism for bile leak following T-tube removal caused by detachment of a fistula tract at its contact point with the anterior abdominal wall. Hepatobiliary surgeons should be aware of this mechanism of biliary leakage and the use of laparoscopy to recannulate the fistula.
ν-Dimensional ideal quantum q-gas: Bose-Einstein condensation and λ-point transition
International Nuclear Information System (INIS)
R-Monteiro, M.; Roditi, I.; Rodrigues, L.M.C.S.
1994-01-01
The authors consider an ideal quantum q-gas in ν spatial dimensions and energy spectrum ω i αp α . Departing from the Hamiltonian H = ω[N], the authors study the effect of the deformation on thermodynamic functions and equation of state of that system. The virial expansion is obtained for the high temperature (or low density) regime. The critical temperature is higher than in non-deformed ideal gases. They show that Bose-Einstein condensation always exists (unless when ν/α = 1) for finite q but not for q = ∞. Employing numerical calculations and selecting for ν/α the values 3/2, 2 and 3, the authors show the critical temperature as a function of q, the specific heat C V and the chemical potential μ as functions of T/T c q for q = 1.05 and q= 4.5. C V exhibits a λ-point discontinuity in all cases, instead of the cusp singularity found in the usual ideal gas. The results indicate that physical systems which have quantum symmetries can exhibit Bose-Einstein condensation phenomenon, the critical temperature being favored by the deformation parameter
Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy
Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.
2018-03-01
The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.
Energy Technology Data Exchange (ETDEWEB)
Cong, P. T., E-mail: t.pham@hzdr.de [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Postulka, L.; Wolf, B.; Ritter, F.; Assmus, W.; Krellner, C.; Lang, M., E-mail: michael.lang@physik.uni-frankfurt.de [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Well, N. van [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)
2016-10-14
Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.
Surface and 3D Quantum Hall Effects from Engineering of Exceptional Points in Nodal-Line Semimetals
Molina, Rafael A.; González, José
2018-04-01
We show that, under a strong magnetic field, a 3D nodal-line semimetal is driven into a topological insulating phase in which the electronic transport takes place at the surface of the material. When the magnetic field is perpendicular to the nodal ring, the surface states of the semimetal are transmuted into Landau states which correspond to exceptional points, i.e., branch points in the spectrum of a non-Hermitian Hamiltonian which arise upon the extension to complex values of the momentum. The complex structure of the spectrum then allows us to express the number of zero-energy flat bands in terms of a new topological invariant counting the number of exceptional points. When the magnetic field is parallel to the nodal ring, we find that the bulk states are built from the pairing of surfacelike evanescent waves, giving rise to a 3D quantum Hall effect with a flat level of Landau states residing in parallel 2D slices of the 3D material. The Hall conductance is quantized in either case in units of e2/h , leading in the 3D Hall effect to a number of channels growing linearly with the section of the surface and opening the possibility to observe a macroscopic chiral current at the surface of the material.
Renormalized G-convolution of n-point functions in quantum field theory. I. The Euclidean case
International Nuclear Information System (INIS)
Bros, Jacques; Manolessou-Grammaticou, Marietta.
1977-01-01
The notion of Feynman amplitude associated with a graph G in perturbative quantum field theory admits a generalized version in which each vertex v of G is associated with a general (non-perturbative) nsub(v)-point function Hsup(nsub(v)), nsub(v) denoting the number of lines which are incident to v in G. In the case where no ultraviolet divergence occurs, this has been performed directly in complex momentum space through Bros-Lassalle's G-convolution procedure. The authors propose a generalization of G-convolution which includes the case when the functions Hsup(nsub(v)) are not integrable at infinity but belong to a suitable class of slowly increasing functions. A finite part of the G-convolution integral is then defined through an algorithm which closely follows Zimmermann's renormalization scheme. The case of Euclidean four-momentum configurations is only treated
Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2
International Nuclear Information System (INIS)
Kawasaki, S; Tabuchi, T; Zheng Guoqing; Wang, X F; Chen, X H
2010-01-01
75 As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe 2 As 2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependencies of nuclear-spin-lattice relaxation rate (1/T 1 ) measured in the tetragonal phase show no coherence peak just below T c (P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar ≤ P ≤ 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.
Bocian, Kacper; Rudziński, Wojciech; Weymann, Ireneusz
2018-05-01
We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green's function formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel magnetoresistance on the gate and bias voltages applied to the system. We show that the system's transport properties are strongly affected by spin dependence of tunneling processes and quantum interference between different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms leading to these effects are thoroughly discussed.
Huddleston, Lisa L.; Roeder, William; Merceret, Francis J.
2010-01-01
A technique has been developed to calculate the probability that any nearby lightning stroke is within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than the error ellipses centered on the stroke. This process takes the current bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to get the probability that the stroke is inside any specified radius. This new facility-centric technique will be much more useful to the space launch customers and may supersede the lightning error ellipse approach discussed in [5], [6].
Algebraic and analyticity properties of the n-point function in quantum field theory
International Nuclear Information System (INIS)
Bros, Jacques
1970-01-01
The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr
Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As(1-x)P(x))2.
Walmsley, P; Putzke, C; Malone, L; Guillamón, I; Vignolles, D; Proust, C; Badoux, S; Coldea, A I; Watson, M D; Kasahara, S; Mizukami, Y; Shibauchi, T; Matsuda, Y; Carrington, A
2013-06-21
We report a combined study of the specific heat and de Haas-van Alphen effect in the iron-pnictide superconductor BaFe2(As(1-x)P(x))2. Our data when combined with results for the magnetic penetration depth give compelling evidence for the existence of a quantum critical point close to x=0.30 which affects the majority of the Fermi surface by enhancing the quasiparticle mass. The results show that the sharp peak in the inverse superfluid density seen in this system results from a strong increase in the quasiparticle mass at the quantum critical point.
Points of Contact, Points of Distance
DEFF Research Database (Denmark)
Nielsen, Jakob Isak
2016-01-01
of co-production set-ups by discussing two recent cases that involve American co-production partners, namely HBO and Netflix. The article highlights tension and resistance at media systemic, organisational and narrative/aesthetic levels prohibiting or undermining the ‘transnational dialogues’ between DR...... and TV2 on one hand, and HBO and Netflix on the other....
Heterostructures on the basis of GaAs with quantum points of InAs for photo-electric transformers
Directory of Open Access Journals (Sweden)
Maronchuk I. E.
2008-12-01
Full Text Available Heterostructures based on GaAs with InAs quantum dots obtained in the process of liquid-phase epitaxy by the method of pulse cooling of saturated solution in indium or heterostructures containing quantum dots in the area of the p–n-junction were much worse than control solar cells manufactured on the same structures but without quantum dots. Solar cells containing quantum dots in the p-region were slightly better than control solar cells.
Quantum kinematic theory of a point charge in a constant magnetic field
International Nuclear Information System (INIS)
Krause, J.
1996-01-01
A group-theoretic quantization method is applied to the open-quote open-quote complete symmetry group close-quote close-quote describing the motion of a point charge in a constant magnetic field. Within the regular ray representation, the Schroedinger operator is obtained as the Casimir operator of the extended Lie algebra. Configuration ray representations of the complete group cast the Schroedinger operator into the familiar space-time differential operator. Next, open-quote open-quote group quantization close-quote close-quote yields the superselection rules, which produce irreducible configuration ray representations. In this way, the Schroedinger operator becomes diagonalized, together with the angular momentum. Finally, the evaluation of an invariant integral, over the group manifold, gives rise to the Feynman propagation kernel left-angle t',x'|t,x right-angle of the system. Everything stems from the assumed symmetry group. Neither canonical quantization nor the path-integral method is used in the present analysis. copyright 1996 The American Physical Society
Palasantzas, George
2007-01-01
Capillary condensation between the electrodes of microswitches influences the effective pull-in voltage in a manner that depends on the contact angle of the capillary meniscus and the presence of plate surface roughness. Indeed, surface roughening is shown to have a stronger influence on the pull-in
Quantum interferometer based on GaAs/InAs core/shell nanowires connected to superconducting contacts
Haas, F.; Dickheuer, S.; Zellekens, P.; Rieger, T.; Lepsa, M. I.; Lüth, H.; Grützmacher, D.; Schäpers, Th
2018-06-01
An interferometer structure was realized based on a GaAs/InAs core/shell nanowire and Nb superconducting electrodes. Two pairs of Nb contacts are attached to the side facets of the nanowire allowing for carrier transport in three different orientations. Owing to the core/shell geometry, the current flows in the tubular conductive InAs shell. In transport measurements with superconducting electrodes directly facing each other, indications of a Josephson supercurrent are found. In contrast for junctions in diagonal and longitudinal configuration a deficiency current is observed, owing to the weaker coupling on longer distances. By applying a magnetic field along the nanowires axis pronounced h/2e flux-periodic oscillations are measured in all three contact configurations. The appearance of these oscillations is explained in terms of interference effects in the Josephson supercurrent and long-range phase-coherent Andreev reflection.
International Nuclear Information System (INIS)
Daghero, D.; Gonnelli, R.S.; Ummarino, G.A.; Calzolari, A.; Dellarocca, Valeria; Stepanov, V.A.; Zhigadlo, N.; Kazakov, S.M.; Karpinski, J.
2005-01-01
We studied the effects of carbon and aluminum substitutions on the gaps of the two-band superconductor MgB 2 by means of point-contact measurements in Mg(B 1-x C x ) 2 and Mg 1-y Al y B 2 single crystals with 0≤x≤0.132 and 0≤y≤0.21. The gap amplitudes, Δ ω and Δ π , were determined by fitting the conductance curves of the point contacts with the standard Blonder-Tinkham-Klapwijk (BTK) model generalized to the two-band case. Whenever possible, their values were confirmed by the independent fit (with a single-band BTK model) of the partial contribution of the two bands to the conductance, separated by means of a suitable magnetic field B*. In C-substituted crystals, the two gaps remain clearly distinct up to x∝0.10, but at x=0.132 we observed for the first time their merging into a single gap Δ≅3 meV with a gap ratio 2Δ=k B T c close to the standard BCS value. In Al-substituted crystals, we found no evidence of this gap merging. Instead, Δ π reaches the value 0.4 meV at y=0.21, where Δ π saturates at about 4 meV. These results are compared with other recent experimental findings in polycrystals and with the predictions of the models for multiband superconductivity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Detection of fractional solitons in quantum spin Hall systems
Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.
2018-03-01
We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.
Directory of Open Access Journals (Sweden)
E. Svanidze
2015-03-01
Full Text Available A quantum critical point (QCP occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid behavior, manifested in the logarithmic divergence of the specific heat both in the ferro-and the paramagnetic states, as well as linear temperature dependence of the low-temperature resistivity. With doping, critical scaling is observed close to the QCP, as the critical exponents δ, γ, and β have weak composition dependence, with δ nearly twice and β almost half of their respective mean-field values. The unusually large paramagnetic moment μ_{PM}∼1.3μ_{B}/F.U. is nearly composition independent. Evidence for strong spin fluctuations, accompanying the QCP at x_{c}=0.035±0.005, may be ascribed to the reduced dimensionality of Sc_{3.1}In, associated with the nearly one-dimensional Sc-In chains.
Habershon, Scott; Manolopoulos, David E.
2009-12-01
The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.
Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe
2007-01-14
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.
Habershon, Scott; Manolopoulos, David E
2009-12-28
The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.
Demir, Ilkay; Altuntas, Ismail; Bulut, Baris; Ezzedini, Maher; Ergun, Yuksel; Elagoz, Sezai
2018-05-01
We present growth and characterization studies of highly n-doped InGaAs epilayers on InP substrate by metal organic vapor phase epitaxy to use as an n-contact layer in quantum cascade laser applications. We have introduced quasi two-dimensional electrons between 10 s pulsed growth n-doped InGaAs epilayers to improve both carrier concentration and mobility of structure by applying pulsed growth and doping methods towards increasing the Si dopant concentration in InGaAs. Additionally, the V/III ratio optimization under fixed group III source flow has been investigated with this new method to understand the effects on both crystalline quality and electrical properties of n-InGaAs epilayers. Finally, we have obtained high crystalline quality of n-InGaAs epilayers grown by 10 s pulsed as a contact layer with 2.8 × 1019 cm‑3 carrier concentration and 1530 cm2 V‑1 s‑1 mobility.
The emerging quantum the physics behind quantum mechanics
Pena, Luis de la; Valdes-Hernandez, Andrea
2014-01-01
This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...
Yu, Shoukai; Lemos, Bernardo
2016-12-31
Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...
Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M
2016-11-18
The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.
McCarthy, Kimberly Ann
1990-01-01
Divisions in definitions of creativity have centered primarily on the working definition of discontinuity and the inclusion of intrinsic features such as unconscious processing and intrinsic motivation and reinforcement. These differences generally result from Cohen's two world views underlying theories of creativity: Organismic, oriented toward holism; or mechanistic, oriented toward cause-effect reductionism. The quantum world view is proposed which theoretically and empirically unifies organismic and mechanistic elements of creativity. Based on Goswami's Idealistic Interpretation of quantum physics, the quantum view postulates the mind -brain as consisting of both classical and quantum structures and functions. The quantum domain accesses the transcendent order through coherent superpositions (a state of potentialities), while the classical domain performs the function of measuring apparatus through amplifying and recording the result of the collapse of the pure mental state. A theoretical experiment, based on the 1980 Marcel study of conscious and unconscious word-sense disambiguation, is conducted which compares the predictions of the quantum model with those of the 1975 Posner and Snyder Facilitation and Inhibition model. Each model agrees that while conscious access to information is limited, unconscious access is unlimited. However, each model differently defines the connection between these states: The Posner model postulates a central processing mechanism while the quantum model postulates a self-referential consciousness. Consequently, the two models predict differently. The strength of the quantum model lies in its ability to distinguish between classical and quantum definitions of discontinuity, as well as clarifying the function of consciousness, without added assumptions or ad-hoc analysis: Consciousness is an essential, valid feature of quantum mechanisms independent of the field of cognitive psychology. According to the quantum model, through a
Evtikhiev, V P; Kotelnikov, E Y; Matveentsev, A V; Titkov, A N; Shkolnik, A S
2002-01-01
The methodology for processing the images, obtained through the atomic force microscopy, is proposed. It is shown by the concrete example, how the parameters of the InAs clusters on the vicinal surface of the GaAs crystal are determined. This makes it possible to calculate the energy levels of the electrons and holes in the quantum point with application of the previously developed cluster spherical model
International Nuclear Information System (INIS)
Whittingham, I.B.
1977-12-01
The bound electron propagator in quantum electrodynamics is reviewed and the Brown and Schaefer angular momentum representation of the propagator discussed. Regular and irregular solutions of the radial Dirac equations for both /E/ 2 and /E/ >or= mc 2 are required for the computation of the propagator. Analytical expressions for these solutions, and their corresponding Wronskians, are obtained for a point Coulomb potential. Some computational aspects are discussed in an appendix
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2013-01-01
Roč. 336, SEP (2013), s. 98-111 ISSN 0003-4916 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : Non-Hermitian quantum Hamiltonian * exceptional point * phase transition * exactly solvable model Subject RIV: BE - Theoretical Physics Impact factor: 3.065, year: 2013 http://www.sciencedirect.com/science/article/pii/S0003491613001267
From quantum dots to quantum circuits
International Nuclear Information System (INIS)
Ensslin, K.
2008-01-01
Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse
Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro
2018-01-22
A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.
International Nuclear Information System (INIS)
Zhang, Xiu-xing; Li, Fu-li
2013-01-01
By using the lowest order expansion in the number of spins, we study the classical correlation (CC) and quantum correlations (QCs) between two spin subgroups of the Lipkin–Meshkov–Glick (LMG) model in both binary and trinary decompositions of spins. In the case of bipartitions, we find that the CC and all the QCs are divergent in the same singular behavior at the critical point of the LMG model. In the case of tripartitions, however, the CC is still divergent but the QCs remain finite at the critical point. The present result shows that the CC is very robust but the QCs are much frangible to the environment disturbance.
Wong, Kin-Yiu; Gao, Jiali
2008-09-09
In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property
Non-Lipschitz Approach to Quantum Mechnics
Zak, Michail
1997-01-01
An attempt to reconcile quantum mechanics with Newton's laws represented by the non-Lipschitz formalism has been made. As a Proof-of-concept, a line of equally spaced atoms was studied. It appeared that enforcement of atom incompressibility required relaxation of the lipschitz condition at the points of contact.
International Nuclear Information System (INIS)
Santos Coelho, Leandro dos; Mariani, Viviana Cocco
2008-01-01
Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature
Energy Technology Data Exchange (ETDEWEB)
dos Santos Coelho, Leandro [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil); Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)
2008-11-15
Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature. (author)
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: leandro.coelho@pucpr.br; Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: viviana.mariani@pucpr.br
2008-11-15
Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature.
Watanabe, Atsushi; Shiga, Hiroshi; Kobayashi, Yoshinori
2011-10-01
To clarify the difference in the state of occlusal contact and masticatory function between two patterns of masticatory movement path that differed in the closing path. Fifteen healthy subjects with Pattern I (a linear or concave opening path and a convex closing path) and Pattern II (similar opening path to that in Pattern I and a concave closing path) were selected. The state of occlusal contact on the working and balancing sides and the masticatory function (integral value of the masseter muscular activity, gape, masticatory width, cycle time, indicators representing the stability of the path and rhythm, and glucose extraction) were compared between the two patterns. The occlusal contact on the working side was about the same. For the balancing side, occlusal contact at the molar region was observed for Pattern II in most cases, whereas no occlusal contact was observed for Pattern I. The integral value of the masseter muscular activity and the glucose extraction were greater for Pattern I. The gape was not different between the two patterns. Pattern I had a wide masticatory width and a short cycle time. The values of the indicators representing the stability of the path and rhythm were smaller for Pattern I. It was suggested that Pattern I with a convex closing path had a functional difference and a superior masticatory function from Pattern II with a concave closing path, and the difference in the occlusal contact on the balancing side was related. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton
2018-04-01
We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.
Quantum teleportation for continuous variables and related quantum information processing
International Nuclear Information System (INIS)
Furusawa, Akira; Takei, Nobuyuki
2007-01-01
Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view
Roy, Bitan; Foster, Matthew S.
2018-01-01
We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the
Directory of Open Access Journals (Sweden)
Bitan Roy
2018-03-01
Full Text Available We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (E_{k}=±sqrt[v^{2}k_{x}^{2}+b^{2}k_{y}^{2n}] with n=2, which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ(E∼|E|^{1/n}], this anisotropic semimetal (ASM is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model or (ii get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ε=1/n, augmented with a 1/n expansion (parametrically suppressing quantum fluctuations in the higher dimension by perturbing away from the one-dimensional limit, realized by setting ε=0 and n→∞. We identify charge density wave (CDW, antiferromagnet (AFM, and singlet s-wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (∼ε takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2-symmetric quantum critical
Directory of Open Access Journals (Sweden)
Böyükata M.
2014-03-01
Full Text Available Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point.
Quantum Correlations Evolution Asymmetry in Quantum Channels
International Nuclear Information System (INIS)
Li Meng; Huang Yun-Feng; Guo Guang-Can
2017-01-01
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. (paper)
Directory of Open Access Journals (Sweden)
Hong-Yun Zhang
2012-09-01
Full Text Available Quantum-behaved particle swarm optimization (QPSO is an efficient and powerful population-based optimization technique, which is inspired by the conventional particle swarm optimization (PSO and quantum mechanics theories. In this paper, an improved QPSO named SQPSO is proposed, which combines QPSO with a selective probability operator to solve the economic dispatch (ED problems with valve-point effects and multiple fuel options. To show the performance of the proposed SQPSO, it is tested on five standard benchmark functions and two ED benchmark problems, including a 40-unit ED problem with valve-point effects and a 10-unit ED problem with multiple fuel options. The results are compared with differential evolution (DE, particle swarm optimization (PSO and basic QPSO, as well as a number of other methods reported in the literature in terms of solution quality, convergence speed and robustness. The simulation results confirm that the proposed SQPSO is effective and reliable for both function optimization and ED problems.
Energy Technology Data Exchange (ETDEWEB)
Khots, Boris, E-mail: bkhots@cccglobal.com [Compressor Controls Corp., Des Moines, Iowa (United States); Khots, Dmitriy, E-mail: dkhots@imathconsulting.com [iMath Consulting LLC Omaha, Nebraska (United States)
2014-12-10
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
International Nuclear Information System (INIS)
Khots, Boris; Khots, Dmitriy
2014-01-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided
Gruszko, Julieta
Though the existence of neutrino oscillations proves that neutrinos must have non-zero mass, Beyond-the-Standard-Model physics is needed to explain the origins of that mass. One intriguing possibility is that neutrinos are Majorana particles, i.e., they are their own anti-particles. Such a mechanism could naturally explain the observed smallness of the neutrino masses, and would have consequences that go far beyond neutrino physics, with implications for Grand Unification and leptogenesis. If neutrinos are Majorana particles, they could undergo neutrinoless double-beta decay (0nBB), a hypothesized rare decay in which two antineutrinos annihilate one another. This process, if it exists, would be exceedingly rare, with a half-life over 1E25 years. Therefore, searching for it requires experiments with extremely low background rates. One promising technique in the search for 0nBB is the use of P-type point-contact (P-PC) high-purity Germanium (HPGe) detectors enriched in 76Ge, operated in large low-background arrays. This approach is used, with some key differences, by the MAJORANA and GERDA Collaborations. A problematic background in such large granular detector arrays is posed by alpha particles incident on the surfaces of the detectors, often caused by 222Rn contamination of parts or of the detectors themselves. In the MAJORANA DEMONSTRATOR, events have been observed that are consistent with energy-degraded alphas originating near the passivated surface of the detectors, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, high charge trapping occurs along with subsequent slow charge re-release. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. Here we discuss the characteristics of these events and the development of a filter that can identify the
Yang, Z.; Li, Z.; Dollevoet, R.P.B.J.; Tournay, H; Grassie, S
2015-01-01
The precise mechanism which activates squeal, especially flange squeal has not been fully explained. The complex non-Hertzian contact and the broad-band high frequency feature bring great challenges to the modelling work of flange squeal. In this paper, an explicit integration finite element method
Ujevic, Sebastian; Mendoza, Michel
2010-07-01
We propose numerical simulations of longitudinal magnetoconductance through a finite antidot lattice located inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal magnetoconductance and the generation of transversal couplings between the induced open quantum dots in the system. The system presents longitudinal magnetoconductance maps with crossovers (between transversal bands) and closings (longitudinal decoupling) of fundamental quantum states related to the open quantum dots induced by the antidot lattice. A relationship is observed between the distribution of antidots and the formed conductance bands, allowing a systematic follow up of the bands as a function of the applied magnetic field and quantum point-contact width. We observed a high conductance intensity [between n and (n+1) quantum of conductance, n=1,2,… ] in the regions of crossover and closing of states. This suggests transversal couplings between the induced open quantum dots of the system that can be modulated by varying both the antidots potential and the quantum point-contact width. A new continuous channel (not expected) is induced by the variation in the contact width and generate Fano resonances in the conductance. These resonances can be manipulated by the applied magnetic field.
Nelde, Peter Hans
1995-01-01
Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)
Tortello, M; Daghero, D; Ummarino, G A; Stepanov, V A; Jiang, J; Weiss, J D; Hellstrom, E E; Gonnelli, R S
2010-12-03
Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ≃ Ω(b)(0).
Energy Technology Data Exchange (ETDEWEB)
Szabo, P.; Pribulova, Z. [Centre of Low Temperature Physics, IEP Slovak Academy of Sciences and P.J.Safarik University, Watsonova 47, SK-04001 Kosice (Slovakia); Pristas, G.; Bud' ko, S.L.; Canfield, P.C. [Ames Laboratory and Iowa State University, Ames, IA 50011 (United States); Samuely, P., E-mail: samuely@saske.s [Centre of Low Temperature Physics, IEP Slovak Academy of Sciences and P.J.Safarik University, Watsonova 47, SK-04001 Kosice (Slovakia)
2009-10-15
First directional point-contact Andreev reflection spectroscopy on the Ba{sub 0.55}K{sub 0.45}Fe{sub 2}As{sub 2} single crystals is presented. The spectra show significant differences when measured in the ab plane in comparison with those measured in the c direction. In the latter case no traces of superconducting energy gap could be found, just a reduced point-contact conductance persisting up to about 100 K and indicating reduced density of states. On the other hand within the ab plane two nodeless superconducting energy gaps DELTA{sub S}approx2-5 meV and DELTA{sub L}approx9-11 meV are detected.
Vodopyanov, B P
2010-05-12
The influence of the spin-dependent phase shifts (SDPSs) associated with the electronic reflection and transmission amplitudes acquired by electrons upon scattering at the potential barrier on the Andreev reflection probability of electron and hole excitations for a ferromagnet/isolator/d-wave superconductor (FIS) contact and on the charge conductance of the FIS contact is studied. Various superconductor orientations are considered. It has been found that for strong ferromagnets and ultrathin interface potential for the {110} oriented d-wave superconductor the presence of the SDPS can lead to the appearance of finite-voltage peaks in the charge conductance of the F/I/d-wave superconductor contact. On the contrary, for the {100} orientation of the d-wave superconductor the presence of the SDPS can lead to restoration of the zero-voltage peak and suppression of finite-voltage peaks. The spin-dependent amplitudes of the Andreev reflection probability and energy levels of the spin-dependent Andreev bound states are found.
International Nuclear Information System (INIS)
Bonhommeau, David; Truhlar, Donald G.
2008-01-01
The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode ν 2 with n 2 =0,...,6 quanta of vibration) in the A-tilde electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTU/SD+trajectory projection onto ZPE orbit (TRAPZ) and FSTU/SD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH 2 internal energy distributions obtained for n 2 =0 and n 2 >1, as observed in experiments. Distributions obtained for n 2 =1 present an intermediate behavior between distributions obtained for smaller and larger n 2 values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH 2 internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n 2 =0 and n 2 =6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching
International Nuclear Information System (INIS)
Ganjefar, Soheil; Ghassemi, Ali Akbar; Ahmadi, Mohamad Mehdi
2014-01-01
In this paper, a quantum neural network (QNN) is used as controller in the adaptive control structures to improve efficiency of the maximum power point tracking (MPPT) methods in the wind turbine system. For this purpose, direct and indirect adaptive control structures equipped with QNN are used in tip-speed ratio (TSR) and optimum torque (OT) MPPT methods. The proposed control schemes are evaluated through a battery-charging windmill system equipped with PMSG (permanent magnet synchronous generator) at a random wind speed to demonstrate transcendence of their effectiveness as compared to PID controller and conventional neural network controller (CNNC). - Highlights: • Using a new control method to harvest the maximum power from wind energy system. • Using an adaptive control scheme based on quantum neural network (QNN). • Improving of MPPT-TSR method by direct adaptive control scheme based on QNN. • Improving of MPPT-OT method by indirect adaptive control scheme based on QNN. • Using a windmill system based on PMSG to evaluate proposed control schemes
Hechster, Elad; Sarusi, Gabby
2017-07-01
The complex dielectric function ɛ(E )=ɛR(E )+i ɛI(E ) of a semiconductor is a key parameter that dictates the material's optical and electrical properties. Surprisingly, the ɛ(E ) of Lead Sulfide (PbS) quantum dots (QDs) has not been widely studied. In the present work, we develop a new model that aims to simulate the ɛ(E ) of QDs. Our model is based on the fact that the quantum confinement in the nano regime affects all the electronic transitions throughout the entire Brillouin zone. Hence, as a first approximation, we attribute an equal contribution of energy, equivalent to the bandgap broadening, to each critical point (CP) in the E-k diagram. This is mathematically realized by adding these energy contributions to the central energy parameters of the Lorentz oscillator model. In order to validate our model, we used the CP parameters of bulk PbS to simulate the ɛ(E ) of PbS QDs. Next, we use Maxwell Relations to calculate the refractive index and the extinction coefficient of PbS QDs from ɛ(" separators="|E ). Our results were compared with those published in the previous literature and showed good agreement. Our findings open a new avenue that may enable the calculation of the ɛ(" separators="|E ) for nanoparticle systems.
Quantum interference of ballistic carriers in one-dimensional semiconductor rings
International Nuclear Information System (INIS)
Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.
2000-01-01
Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru
Free-time and fixed end-point multi-target optimal control theory: Application to quantum computing
International Nuclear Information System (INIS)
Mishima, K.; Yamashita, K.
2011-01-01
Graphical abstract: The two-state Deutsch-Jozsa algortihm used to demonstrate the utility of free-time and fixed-end point multi-target optimal control theory. Research highlights: → Free-time and fixed-end point multi-target optimal control theory (FRFP-MTOCT) was constructed. → The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. → The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361 (2009) 106]. → The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. → The calculation examples show that our theory is useful for minor adjustment of the external fields. - Abstract: An extension of free-time and fixed end-point optimal control theory (FRFP-OCT) to monotonically convergent free-time and fixed end-point multi-target optimal control theory (FRFP-MTOCT) is presented. The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361, (2009), 106]. The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. The calculation examples show that our theory is useful for minor
LaCu_{6-x}Ag_{x}: A promising host of an elastic quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Poudel, Lekh [ORNL; Dela Cruz, Clarina R. [ORNL; Koehler, Michael R. [University of Tennessee, Knoxville (UTK); McGuire, Michael A. [ORNL; Keppens, Veerle [University of Tennessee, Knoxville (UTK); Mandrus, David [ORNL; Christianson, Andrew D. [ORNL
2018-05-01
Structural properties of LaCu_{6-x}Ag_{x} have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P2₁/C) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu_{6-x}Ag_{x} decrease with Ag composition until the monoclinic phase is completely suppressed at x_{c}=0.225. All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu_{6-x}Ag_{x}.
International Nuclear Information System (INIS)
Mikkelsen, H.H.; Flyvbjerg, H.
1991-05-01
The time-dependent Schroedinger equation for a Coulomb collision between a heavy point charge and a harmonically bound electron is solved exactly numerically. The energy transferred to the electron is studied as a function of impact parameter and projectile charge. Special attention is given to the Barkas effect, and the transition from light ion to heavy ion stopping. All results are compared with classical and recent approximate results, whose precision and ranges of validity are discussed. (orig.)
Choi, Youngsun; Hahn, Choloong; Yoon, Jae Woong; Song, Seok Ho; Berini, Pierre
2017-01-20
Time-asymmetric state-evolution properties while encircling an exceptional point are presently of great interest in search of new principles for controlling atomic and optical systems. Here, we show that encircling-an-exceptional-point interactions that are essentially reciprocal in the linear interaction regime make a plausible nonlinear integrated optical device architecture highly nonreciprocal over an extremely broad spectrum. In the proposed strategy, we describe an experimentally realizable coupled-waveguide structure that supports an encircling-an-exceptional-point parametric evolution under the influence of a gain saturation nonlinearity. Using an intuitive time-dependent Hamiltonian and rigorous numerical computations, we demonstrate strictly nonreciprocal optical transmission with a forward-to-backward transmission ratio exceeding 10 dB and high forward transmission efficiency (∼100%) persisting over an extremely broad bandwidth approaching 100 THz. This predicted performance strongly encourages experimental realization of the proposed concept to establish a practical on-chip optical nonreciprocal element for ultra-short laser pulses and broadband high-density optical signal processing.
International Nuclear Information System (INIS)
Mandyla, Spyridoula P.; Tsogas, George Z.; Vlessidis, Athanasios G.; Giokas, Dimosthenis L.
2017-01-01
Highlights: • A new method has been developed to determine gold nanoparticles in water samples. • Extraction was achieved by cloud point extraction. • A nano-hybrid assembly between AuNPs and dithiol-coated quantum dots was formulated. • Detection was accomplished at pico-molar levels by second-order light scattering. • The method was selective against ionic gold and other nanoparticle species. - Abstract: This work presents a new method for the sensitive and selective determination of gold nanoparticles in water samples. The method combines a sample preparation and enrichment step based on cloud point extraction with a new detection motif that relies on the optical incoherent light scattering of a nano-hybrid assembly that is formed by hydrogen bond interactions between gold nanoparticles and dithiotreitol-functionalized CdS quantum dots. The experimental parameters affecting the extraction and detection of gold nanoparticles were optimized and evaluated to the analysis of gold nanoparticles of variable size and surface coating. The selectivity of the method against gold ions and other nanoparticle species was also evaluated under different conditions reminiscent to those usually found in natural water samples. The developed method was applied to the analysis of gold nanoparticles in natural waters and wastewater with satisfactory results in terms of sensitivity (detection limit at the low pmol L −1 levels), recoveries (>80%) and reproducibility (<9%). Compared to other methods employing molecular spectrometry for metal nanoparticle analysis, the developed method offers improved sensitivity and it is easy-to-operate thus providing an additional tool for the monitoring and the assessment of nanoparticles toxicity and hazards in the environment.
Energy Technology Data Exchange (ETDEWEB)
Mandyla, Spyridoula P.; Tsogas, George Z.; Vlessidis, Athanasios G.; Giokas, Dimosthenis L., E-mail: dgiokas@cc.uoi.gr
2017-02-05
Highlights: • A new method has been developed to determine gold nanoparticles in water samples. • Extraction was achieved by cloud point extraction. • A nano-hybrid assembly between AuNPs and dithiol-coated quantum dots was formulated. • Detection was accomplished at pico-molar levels by second-order light scattering. • The method was selective against ionic gold and other nanoparticle species. - Abstract: This work presents a new method for the sensitive and selective determination of gold nanoparticles in water samples. The method combines a sample preparation and enrichment step based on cloud point extraction with a new detection motif that relies on the optical incoherent light scattering of a nano-hybrid assembly that is formed by hydrogen bond interactions between gold nanoparticles and dithiotreitol-functionalized CdS quantum dots. The experimental parameters affecting the extraction and detection of gold nanoparticles were optimized and evaluated to the analysis of gold nanoparticles of variable size and surface coating. The selectivity of the method against gold ions and other nanoparticle species was also evaluated under different conditions reminiscent to those usually found in natural water samples. The developed method was applied to the analysis of gold nanoparticles in natural waters and wastewater with satisfactory results in terms of sensitivity (detection limit at the low pmol L{sup −1} levels), recoveries (>80%) and reproducibility (<9%). Compared to other methods employing molecular spectrometry for metal nanoparticle analysis, the developed method offers improved sensitivity and it is easy-to-operate thus providing an additional tool for the monitoring and the assessment of nanoparticles toxicity and hazards in the environment.
Tunneling between edge states in a quantum spin Hall system.
Ström, Anders; Johannesson, Henrik
2009-03-06
We analyze a quantum spin Hall device with a point contact connecting two of its edges. The contact supports a net spin tunneling current that can be probed experimentally via a two-terminal resistance measurement. We find that the low-bias tunneling current and the differential conductance exhibit scaling with voltage and temperature that depend nonlinearly on the strength of the electron-electron interaction.
Lebedieva, Tetiana; Gubanov, Victor; Dovbeshko, Galyna; Pidhirnyi, Denys
2015-12-01
Different notations of graphene irreducible representations and optical modes could be found in the literature. The goals of this paper are to identify the correspondence between available notations, to calculate the optical modes of graphene in different points of the Brillouin zone, and to compare them with experimental data obtained by Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy. The mechanism of the resonance enhancement of vibration modes of the molecules adsorbed on graphene in CARS experiments is proposed. The possibility of appearance of the discrete breathing modes is discussed.
International Nuclear Information System (INIS)
Ujevic, Sebastian; Mendoza, Michel
2011-01-01
Full text. We propose numerical simulations of longitudinal magneto conductance through a finite anti dot lattice located inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal magneto conductance and the generation of transversal couplings between the induced open quantum dots in the system. The system presents longitudinal magneto conductance maps with crossovers (between transversal bands) and closings (longitudinal decoupling) of fundamental quantum states related to the open quantum dots induced by the anti dot lattice. A relationship is observed between the distribution of anti dots and the formed conductance bands, allowing a systematic follow-up of the bands as a function of the applied magnetic field and quantum point contact width. We observed a high conductance intensity (between n- and (n + 1)-quantum of conductance, n = 1; 2...) in the regions of crossover and closing of states. This suggests transversal couplings between the induced open quantum dots of the system that can be modulated by varying both the anti dots potential and the quantum point contact width. A new continuous channel (not expected) is induced by the variation of the contact width and generate Fano resonances in the conductance. These resonances can be manipulated by the applied magnetic field
Tognetti, Vincent; Joubert, Laurent; Raucoules, Roman; De Bruin, Theodorus; Adamo, Carlo
2012-06-07
In this paper, we extend the work of Popelier and Logothetis [J. Organomet. Chem. 1998, 555, 101] on the characterization of agosticity by considerably enlarging the set of the studied organometallic molecules. To this aim, 23 representative complexes have been considered, including all first line transition metals at various oxidation states and exhibiting four types of agosticity (α, β, γ, and δ). From these examples, the concepts of agostic atom, agostic bond, and agostic interaction are defined and discussed, notably by advocating Bader's analysis of the electron density. The nature and the local properties of the bond critical points are then investigated, and the relationships with the main geometric parameters of the complexes are particularly examined. Moreover, new local descriptors based on kinetic energy densities are developed in order to provide new tools for bond characterization.
Arakcheev, V. G.; Bagratashvili, Viktor N.; Valeev, A. A.; Gordienko, Vyacheslav M.; Kireev, Vyacheslav V.; Morozov, V. B.; Olenin, A. N.; Popov, Vladimir K.; Tunkin, V. G.; Yakovlev, D. V.
2004-01-01
The transformation of the Q-band of the low-frequency 1285-cm-1 component of the 2v2/v1 Fermi doublet of a CO2 molecule is studied in the critical point vicinity (Tc=31.03 °C, Pc=72.8 atm) by the CARS method. CARS spectra were recorded by changing pressure isothermically from 48 to 120 atm at several temperatures in the range between 25 and 36°C. At the temperature above 29°C, the pressure dependences of the Q-band width pass through the maximum, which exceeds by 40% —50% the typical Q-band width in the liquid phase. The position of the maximum shifts to higher pressures with increasing temperature. The inhomogeneous broadening of the Q-band is interpreted based on the cluster microstructure of a supercritical fluid.
Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit
Mendoza, Michel; Ujevic, Sebastian
2012-06-01
We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit.
Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit
International Nuclear Information System (INIS)
Mendoza, Michel; Ujevic, Sebastian
2012-01-01
We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit. (paper)
Quantum conductance staircase of holes in silicon nanosandwiches
Directory of Open Access Journals (Sweden)
Nikolay T. Bagraev
2017-03-01
Full Text Available The results of studying the quantum conductance staircase of holes in one-dimensional channels obtained by the split-gate method inside silicon nanosandwiches that are the ultra-narrow quantum well confined by the delta barriers heavily doped with boron on the n-type Si (100 surface are reported. Since the silicon quantum wells studied are ultra-narrow (~2 nm and confined by the delta barriers that consist of the negative-U dipole boron centers, the quantized conductance of one-dimensional channels is observed at relatively high temperatures (T>77 K. Further, the current-voltage characteristic of the quantum conductance staircase is studied in relation to the kinetic energy of holes and their sheet density in the quantum wells. The results show that the quantum conductance staircase of holes in p-Si quantum wires is caused by independent contributions of the one-dimensional (1D subbands of the heavy and light holes. In addition, the field-related inhibition of the quantum conductance staircase is demonstrated in the situation when the energy of the field-induced heating of the carriers become comparable to the energy gap between the 1D subbands. The use of the split-gate method made it possible to detect the effect of a drastic increase in the height of the quantum conductance steps when the kinetic energy of holes is increased; this effect is most profound for quantum wires of finite length, which are not described under conditions of a quantum point contact. In the concluding section of this paper we present the findings for the quantum conductance staircase of holes that is caused by the edge channels in the silicon nanosandwiches prepared within frameworks of the Hall geometry. This longitudinal quantum conductance staircase, Gxx, is revealed by the voltage applied to the Hall contacts, with the plateaus and steps that bring into correlation respectively with the odd and even fractional values.
Quantum nondemolition squeezing of a nanomechanical resonator
Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander
2005-03-01
We discuss squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wavepacket center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.
Quantum space and quantum completeness
Jurić, Tajron
2018-05-01
Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.
Bonhommeau, David; Truhlar, Donald G
2008-07-07
The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode nu(2) with n(2)=0,[ellipsis (horizontal)],6 quanta of vibration) in the A electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTUSD+trajectory projection onto ZPE orbit (TRAPZ) and FSTUSD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH(2) internal energy distributions obtained for n(2)=0 and n(2)>1, as observed in experiments. Distributions obtained for n(2)=1 present an intermediate behavior between distributions obtained for smaller and larger n(2) values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH(2) internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n(2)=0 and n(2)=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.
Bonhommeau, David; Truhlar, Donald G.
2008-07-01
The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode ν2 with n2=0,…,6 quanta of vibration) in the Ã electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTU /SD+trajectory projection onto ZPE orbit (TRAPZ) and FSTU /SD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH2 internal energy distributions obtained for n2=0 and n2>1, as observed in experiments. Distributions obtained for n2=1 present an intermediate behavior between distributions obtained for smaller and larger n2 values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH2 internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n2=0 and n2=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.
Energy Technology Data Exchange (ETDEWEB)
Moog, E.R.; Hawley, M.E.; Gray, K.E.; Liu, J.Z.; Hinks, D.G.; Capone, D.W. II; Downey, J.
1988-06-01
The effects of junction resistance and counterelectrode material on the results of point-contact tunneling studies into single- and polycrystalline YBa/sub 2/Cu/sub 3/O/sub 7-y/ are illustrated. Although reasonably symmetric I(V) curves predominantly indicate energy gap values /Delta/ /approx/ 20 meV, large asymmetries are often found for high-resistance junctions. Very low-resistance junctions show the expected behavior of pure metallic bridge and indicate /Delta/ /approx/ 25-30 meV.
Directory of Open Access Journals (Sweden)
S. V. LOSKUTOV
2018-05-01
Full Text Available Purpose. To determine the contribution of the real contact spots distribution in the total conductivity of the conductors contact. Methodology. The electrical contact resistance research was carried out on models. The experimental part of this work was done on paper with a graphite layer with membranes (the first type and conductive liquids with discrete partitions (the second type. Findings. It is shown that the contact electrical resistance is mainly determined by the real area of metal contact. The experimental dependence of the electrical resistance of the second type model on the distance between the electrodes and the potential distribution along the sample surface for the first type model were obtained. The theoretical model based on the principle of electric field superposition was considered. The dependences obtained experimentally and calculated by using the theoretical model are in good agreement. Originality. The regularity of the electrical contact resistance formation on a large number of membranes was researched for the first time. A new model of discrete electrical contact based on the liquid as the conducting environment with nuclear membrane partitions was developed. The conclusions of the additivity of contact and bulk electrical resistance were done. Practical value. Based on these researches, a new experimental method of kinetic macroidentation that as a parameter of the metal surface layer deformation uses the real contact area was developed. This method allows to determine the value of average contact stresses, yield point, change of the stress on the depth of deformation depending on the surface treatment.
Quantum optics for experimentalists
Ou, Zhe-Yu Jeff
2017-01-01
This book on quantum optics is from the point of view of an experimentalist. It approaches the theory of quantum optics with the language of optical modes of classical wave theory, with which experimentalists are most familiar.
Quantum physics in the nanoworld Schrödinger's cat and the dwarfs
Lüth, Hans
2015-01-01
The second edition deals with all essential aspects of non-relativistic quantum physics up to the quantisation of fields. In contrast to common textbooks of quantum mechanics, modern experiments are described both for the purpose of foundation of the theory and in relation to recent applications. Links are made to important research fields and applications such as elementary particle physics, solid state physics and nuclear magnetic resonance in medicine, biology and material science. Special emphasis is paid to quantum physics in nanoelectronics such as resonant tunnelling, Coulomb blockade and the realisation of quantum bits. This second edition also considers quantum transport through quantum point contacts and its application as charge detectors in nanoelectronic circuits. Also the realization and the study of electronic properties of an artificial quantum dot molecule are presented. Because of its recent interest a brief discussion of Bose-Einstein condensation has been included, as well as the rece...
Shrestha, Santosh; Chung, Simon; Liao, Yuanxun; Wang, Pei; Cao, Wenkai; Wen, Xiaoming; Gupta, Neeti; Conibeer, Gavin
2017-08-01
The hot carrier (HC) solar cell is one of the most promising advanced photovoltaic concepts. It aims to minimise two major losses in single junction solar cells due to sub-band gap loss and thermalisation of above band gap photons by using a small bandgap absorber, and, importantly, collecting the photo-generated carriers before they thermalise. In this paper we will present recent development of the two critical components of the HC solar cell, i.e., the absorber and energy selective contacts (ESCs). For absorber, fabrication and carrier cooling rates in potential bulk materials — hafnium nitride, zirconium nitride, and titanium hydride are presented. Results of ESCs employing double barrier resonant tunneling structures Al2O3/Ge quantum well (QW)/Al2O3 and Al2O3/PbS quantum dots (QDs)/Al2O3 are also presented. These results are expected to guide further development of practical HC solar cell devices.
Directory of Open Access Journals (Sweden)
J. K. Dong
2011-09-01
Full Text Available The in-plane resistivity ρ and thermal conductivity κ of the heavy-fermion superconductor Ce_{2}PdIn_{8} single crystals were measured down to 50 mK. A field-induced quantum critical point, occurring at the upper critical field H_{c2}, is demonstrated from the ρ(T∼T near H_{c2} and ρ(T∼T^{2} when further increasing the field. The large residual linear term κ_{0}/T at zero field and the rapid increase of κ(H/T at low field give evidence for nodal superconductivity in Ce_{2}PdIn_{8}. The jump of κ(H/T near H_{c2} suggests a first-order-like phase transition at low temperature. These results mimic the features of the famous CeCoIn_{5} superconductor, implying that Ce_{2}PdIn_{8} may be another interesting compound to investigate for the interplay between magnetism and superconductivity.
Quantum groups and quantum homogeneous spaces
International Nuclear Information System (INIS)
Kulish, P.P.
1994-01-01
The usefulness of the R-matrix formalism and the reflection equations is demonstrated on examples of the quantum group covariant algebras (quantum homogeneous spaces): quantum Minkowski space-time, quantum sphere and super-sphere. The irreducible representations of some covariant algebras are constructed. The generalization of the reflection equation to super case is given and the existence of the quasiclassical limits is pointed out. (orig.)
Grunspan, C.
2003-01-01
This text gives some results about quantum torsors. Our starting point is an old reformulation of torsors recalled recently by Kontsevich. We propose an unification of the definitions of torsors in algebraic geometry and in Poisson geometry. Any quantum torsor is equipped with two comodule-algebra structures over Hopf algebras and these structures commute with each other. In the finite dimensional case, these two Hopf algebras share the same finite dimension. We show that any Galois extension...
Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu
2018-02-01
Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.
Strong quasi-particle tunneling study in the paired quantum Hall states
Nomura, Kentaro; Yoshioka, Daijiro
2001-01-01
The quasi-particle tunneling phenomena in the paired fractional quantum Hall states are studied. A single point-contact system is first considered. Because of relevancy of the quasi-particle tunneling term, the strong tunneling regime should be investigated. Using the instanton method it is shown that the strong quasi-particle tunneling regime is described as the weak electron tunneling regime effectively. Expanding to the network model the paired quantum Hall liquid to insulator transition i...
Interfacial properties of stanene-metal contacts
Guo, Ying; Pan, Feng; Ye, Meng; Wang, Yangyang; Pan, Yuanyuan; Zhang, Xiuying; Li, Jingzhen; Zhang, Han; Lu, Jing
2016-09-01
Recently, two-dimensional buckled honeycomb stanene has been manufactured by molecular beam epitaxy growth. Free-standing stanene is predicted to have a sizable opened band gap of 100 meV at the Dirac point due to spin-orbit coupling (SOC), resulting in many fascinating properties such as quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. In the first time, we systematically study the interfacial properties of stanene-metal interfaces (metals = Ag, Au, Cu, Al, Pd, Pt, Ir, and Ni) by using ab initio electronic structure calculations considering the SOC effects. The honeycomb structure of stanene is preserved on the metal supports, but the buckling height is changed. The buckling of stanene on the Au, Al, Ag, and Cu metal supports is higher than that of free-standing stanene. By contrast, a planar graphene-like structure is stabilized for stanene on the Ir, Pd, Pt, and Ni metal supports. The band structure of stanene is destroyed on all the metal supports, accompanied by a metallization of stanene because the covalent bonds between stanene and the metal supports are formed and the structure of stanene is distorted. Besides, no tunneling barrier exists between stanene and the metal supports. Therefore, stanene and the eight metals form a good vertical Ohmic contact.
Quantum discord and quantum phase transition in spin chains
Dillenschneider, Raoul
2008-01-01
Quantum phase transitions of the transverse Ising and antiferromagnetic XXZ spin S=1/2 chains are studied using quantum discord. Quantum discord allows the measure of quantum correlations present in many-body quantum systems. It is shown that the amount of quantum correlations increases close to the critical points. The observations are in agreement with the information provided by the concurrence which measures the entanglement of the many-body system.
Bondar', N. V.
2009-03-01
A characteristic feature due to the formation of a percolation phase transition of carriers has been observed in a two-phase system consisting of borosilicate glass with ZnSe quantum dots. For near-threshold quantum-dot concentrations, changes due to microscopic fluctuations of the quantum-dot density have been observed in the intensities of radiation emission bands. This phenomenon is reminiscent of critical opalescence, where similar fluctuations of the density of a pure substance arise near a phase transition. It is proposed that the dielectric mismatch between the matrix and ZnSe plays a large role in the carrier (exciton) delocalization, resulting in the appearance of a "dielectric trap" on the interface and the formation there of surface states of excitons. The spatial overlapping of states which occurs at the critical concentration of quantum dots results in carrier tunneling and the appearance of a percolation transition in such a system.
Quantum computing and spintronics
International Nuclear Information System (INIS)
Kantser, V.
2007-01-01
Tentative to build a computer, which can operate according to the quantum laws, has leaded to concept of quantum computing algorithms and hardware. In this review we highlight recent developments which point the way to quantum computing on the basis solid state nanostructures after some general considerations concerning quantum information science and introducing a set of basic requirements for any quantum computer proposal. One of the major direction of research on the way to quantum computing is to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. We address some semiconductor approach based on spin orbit coupling in semiconductor nanostructures. (authors)
Kreiss, Gunilla; Holmgren, Hanna; Kronbichler, Martin; Ge, Anthony; Brant, Luca
2017-11-01
The conventional no-slip boundary condition leads to a non-integrable stress singularity at a moving contact line. This makes numerical simulations of two-phase flow challenging, especially when capillarity of the contact point is essential for the dynamics of the flow. We will describe a modeling methodology, which is suitable for numerical simulations, and present results from numerical computations. The methodology is based on combining a relation between the apparent contact angle and the contact line velocity, with the similarity solution for Stokes flow at a planar interface. The relation between angle and velocity can be determined by theoretical arguments, or from simulations using a more detailed model. In our approach we have used results from phase field simulations in a small domain, but using a molecular dynamics model should also be possible. In both cases more physics is included and the stress singularity is removed.
Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.
2018-01-01
Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.
DEFF Research Database (Denmark)
Niebe, Sarah Maria
. A contact point determination method, based on boolean surface maps, is developed to handle collisions between tetrahedral meshes. The novel nonsmooth nonlinear conjugate gradient (NNCG) method is presented. The NNCG method is comparable in terms of accuracy to the state-of-the-art method, projected Gauss...
[Sport injuries in full contact and semi-contact karate].
Greier, K; Riechelmann, H; Ziemska, J
2014-03-01
Karate enjoys great popularity both in professional and recreational sports and can be classified into full, half and low contact styles. The aim of this study was the analysis of sports injuries in Kyokushinkai (full contact) and traditional Karate (semi-contact). In a retrospective study design, 215 active amateur karateka (114 full contact, 101 semi-contact) were interviewed by means of a standardised questionnaire regarding typical sport injuries during the last 36 months. Injuries were categorised into severity grade I (not requiring medical treatment), grade II (single medical treatment), grade III (several outpatient medical treatments) and grade IV (requiring hospitalisation). In total, 217 injuries were reported in detail. 125 injuries (58%) occurred in full contact and 92 (42%) in semi-contact karate. The time related injury rate of full contact karateka was 1.9/1000 h compared to 1.3/1000 h of semi-contact karateka (p injuries were musculoskeletal contusions (33% full contact, 20% semi-contact), followed by articular sprains with 19% and 16%. The lower extremity was affected twice as often in full contact (40%) as in semi-contact (20%) karate. Training injuries were reported by 80% of the full contact and 77% of the semi-contact karateka. Most injuries, both in training and competition, occurred in kumite. 75% of the reported injuries of full contact and 70% of semi-contact karateka were classified as low grade (I or II). The high rate of injuries during training and kumite (sparring) points to specific prevention goals. The emphasis should be put on proprioceptive training and consistent warm-up. In the actual competition the referees play a vital role regarding prevention. © Georg Thieme Verlag KG Stuttgart · New York.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Directory of Open Access Journals (Sweden)
D. S. Blinov
2017-01-01
Full Text Available One of the most important trends in development of machine engineering is to improve load capacity of mechanisms, assemblies and parts without increasing their overall dimensions and weight. This is also relevant to the most promising items so far, i.e. orbital roller drives (ORD, which are the rotational-to-progressive motion converters widely used in vehicles. The previously published article suggested increasing a load capacity (by about 15% through reducing a thread turn section angle of the threaded ORD components and change of the radius of roller thread turn section outline. Due to such ORD modification, a number of the most critical ORD parameters are to be changed thereby demanding further research. Further, the article published suggests a method considering the abovementioned changes to calculate the dimensions of ORD main components and their tolerance ranges.Though this method being not complete as the increment of ORD center-to-center spacing in relation to its rated value, required for assembly, is unknown; and to determine the ORD center-to-center spacing increment, outer diameters of the roller and screw threads are to be known. Hence, these two methods are interconnected.This article presents the numerical calculation method, mathematical support and method to determine the increment of ORD center-to-center spacing and initial contact point of the mating roller and screw thread turns. Due to considerable scope of calculations, the method was turned into the software.Similar calculation methods and techniques were developed to a particular case, where the thread turn section angle of the threaded components was of 90°, and the roller thread turn section outline was a circular arc centered to the roller axis. Hence the developed numerical calculation method, mathematical support and technique refer to the general case which is to determine the ORD center-to-center spacing increment and initial contact point of the mating roller
: (505) 665-3664 ethics@lanl.gov Journalist queries Communications Office (505) 667-7000 Media contacts programs and employee resources. General Employee directory Emergency communication Communications Office (505) 667-7000 Ethics & Audits Internal Audit: (505) 665-3104 Ethics Office: (505) 667-7506 Fax
Maximally causal quantum mechanics
International Nuclear Information System (INIS)
Roy, S.M.
1998-01-01
We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics. (author)
Local Thermometry of Neutral Modes on the Quantum Hall Edge
Hart, Sean; Venkatachalam, Vivek; Pfeiffer, Loren; West, Ken; Yacoby, Amir
2012-02-01
A system of electrons in two dimensions and strong magnetic fields can be tuned to create a gapped 2D system with one dimensional channels along the edge. Interactions among these edge modes can lead to independent transport of charge and heat, even in opposite directions. Measuring the chirality and transport properties of these charge and heat modes can reveal otherwise hidden structure in the edge. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream along the edge of the heater, we can measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall physics.
International Nuclear Information System (INIS)
Knapen, M.; Anink, D.; Donze, G.
2000-01-01
Solar systems seem a sustainable way of providing energy. But are nowadays PV-systems with materials like heavy metals sustainable? Is PV really environmentally sound with the actual efficiency? And what about solar collectors? This paper provides the answers and indicates improvement options for solar systems to make them more overall sustainable in the future. With Eco-Quantum, a simulation tool for analysing the environmental performance of buildings, the overall environmental profit of buildings with PV-systems and solar collectors is shown. It calculates the environmental effects during the entire life cycle of a complete building ('cradle to grave'). This includes the impact of energy and water use, maintenance during use phase, differences in durability of parts or construction needs, like adhesives and nails. The basis of Eco-Quantum is environmental life cycle assessment (LCA). IEA BCS Annex 31 indicated Eco-Quantum as one of the most sophisticated tools to calculate environment al performance of a build ing. The results of Eco-Quantum are the environmental indicators: Exhaustion of resources; Emissions; Energy and Waste. Options like PV and solar collectors are investigated in a reference building. On the one hand the energy during use is reduced by the options. On the other hand the environmental effects because of materials exhaustion of resources and emissions during production is increased as a consequence of additional material use. (au)
International Nuclear Information System (INIS)
Beenakker, C W J
2005-01-01
Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The
Two path transport measurements on a triple quantum dot
Energy Technology Data Exchange (ETDEWEB)
Rogge, Maximilian C.; Haug, Rolf J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)
2008-07-01
We present a novel triple quantum dot device made with local anodic oxidation on a GaAs/AlGaAs heterostructure. The geometry provides two path transport via a three lead setup with each lead connected to one of the three quantum dots. In addition charge detection is implemented via a quantum point contact. One lead is used as a common source contact, the other two are used as two separate drain contacts with independent current measurement. Thus two paths are formed with two dots in each path. Along both paths serial transport is observed at the triple points of the two corresponding dots. With four side gates a wide tunability is given. Thus the system can be tuned in and out of triple dot resonances. When all three dots come into resonance, quadruple points are formed with simultaneous transport along both paths. The data are analysed in combined two colour plots and compared to the charge detection showing sets of three different lines, one for each dot. This way the two path setup allows to investigate the transition from double dot physics to triple dot physics.
Fluctuation dynamics near the quantum critical point in the S=1/2 Ising chain CoNb{sub 2}O{sub 6}
Energy Technology Data Exchange (ETDEWEB)
Harms, Steffen; Engelmayer, Johannes; Lorenz, Thomas; Hemberger, Joachim [II. Physikalisches Institut, Koeln Univ. (Germany)
2016-07-01
CoNb{sub 2}O{sub 6} is a model system for quantum phase transitions in magnetic field. Its structure consists of layers of CoO{sub 6} octahedrons separated by non-magnetic NbO{sub 6} layers. The edge-sharing oxygen octahedrons link the Co{sup 2+} spins via Co-O-Co superexchange and form 1D ferromagnetic zigzag chains along the orthorhombic c axis. Crystal field effects lead to an easy-axis anisotropy of the Co{sup 2+} moments in the ac plane and to an effective spin-1/2 chain system. The 1D spin system can be described by the Ising model. At T=0 K a transverse magnetic field can induce a quantum phase transition from a long range ferromagnetic state into a quantum paramagnetic state. Employing measurements of the complex AC-susceptibility in the frequency range 10 MHz < ν < 5 GHz for temperatures down to 50 mK we investigate the slowing down of the magnetic fluctuation dynamics in the vicinity of the critical field at μ{sub 0}H=5.25 T.
Quantum decay of metastable current states in rf squids
International Nuclear Information System (INIS)
Dmitrenko, I.M.; Khlus, V.A.; Tsoj, C.M.; Shnyrkov, V.I.
1985-01-01
Quantum decay of metastable current states in a rf SQUID superconducting ring of a hysteresis mode are considered. Point contacts are used as a Josephson weak link. The first derivative of rf IVC, dVsub(T)/dIsub(RF), is measured which gives the dependence of the density of decay probability on the amplitude of magnetic flux oscillations in the ring. The temperature dependence of probability distribution width between 4.2 and 0.5 K suggests that for most of high-ohmic contacts Nb-Nb, Nb-Ag-Nb the quantum mechanisms of decay become dominant beginning with the temperature of about 2 K. The experimental parameters of distribution of decay probability in the quantum limit are compared to those calculated by the theory of macroscopic quantum tunneling in the limit of high and low dissipation. The experimental values of probability density distribution width and characteristic quantum temperature are higher than the theoretical ones, the fact can be attributed to the deviation of current-phase relation of contact from a sinusoidal one. Besides, some contacts seem to correspond to the case of an intermediate value of dissipation. As the frequency of rf oscillations varies from 30 to 6 MHz, the distribution width remains unchanged in accordance with the theory of quantum tunneling decay of metastable current state in the ring in the limit of high damping. At low temperatures (T approximately 0.5 K), and rather small damping coefficient, the density of probability displays anomalous peaks when the amplitude of rf oscillations is lower considerably than the critical vaiue of magnetic flux in the ring
Simulation Results: Optimization of Contact Ratio for Interdigitated Back-Contact Solar Cells
Directory of Open Access Journals (Sweden)
Vinay Budhraja
2017-01-01
Full Text Available In the fabrication of interdigitated back contact (IBC solar cells, it is very important to choose the right size of contact to achieve the maximum efficiency. Line contacts and point contacts are the two possibilities, which are being chosen for IBC structure. It is expected that the point contacts would give better results because of the reduced recombination rate. In this work, we are simulating the effect of contact size on the performance of IBC solar cells. Simulations were done in three dimension using Quokka, which numerically solves the charge carrier transport. Our simulation results show that around 10% of contact ratio is able to achieve optimum cell efficiency.
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
Contact and Non-contact Measurements of Grinding Pins
Directory of Open Access Journals (Sweden)
Magdziak Marek
2015-01-01
Full Text Available The paper presents the results of contact and non-contact measurements of external profiles of selected grinding pins. The measurements were conducted in order to choose the appropriate measuring technique in the case of the considered measurement task. In the case of contact measurements the coordinate measuring machine ACCURA II was applied. The used coordinate measuring machine was equipped with the contact scanning probe VAST XT and the Calypso inspection software. Contact coordinate measurements were performed by using of different measurement strategies. The applied strategies included different scanning velocities and distances between measured points. Non-contact measurements were conducted by means of the tool presetter produced by the Mahr company. On the basis of gained results the guidelines concerning measurements of grinding pins were formulated. The measurements of analyzed grinding pins performed by means of the non-contact measuring system are characterized by higher reproducibility than the contact measurements. The low reproducibility of contact measurements may be connected with the inaccuracy of the selected coordinate measuring machine and the measuring probe, the measurement parameters and environmental conditions in the laboratory where the coordinate measuring machine is located. Moreover, the paper presents the possible application of results of conducted investigations. The results of non-contact measurements can be used in the simulation studies of grinding processes. The simulations may reduce the costs of machining processes.
Prioritized Contact Transport Stream
Hunt, Walter Lee, Jr. (Inventor)
2015-01-01
A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.
Jean-Claude Gadmer
2013-01-01
30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.
Scheman, Andrew; Severson, David
2016-01-01
Data on the prevalence of contact allergy in North America are currently reported by groups of academic contact allergy specialists at select academic centers. Sampling of data from numerous centers across North America, including practices performing more limited patch testing, would provide a broader perspective of contact allergen prevalence in North America. The American Contact Dermatitis Society Contact Allergy Management Program is an ideal tool for collection of epidemiologic data regarding contact allergy prevalence in North America. The aim of the study was to identify the relative prevalence of contact allergy to common contact allergens in North America. Mapping of Contact Allergy Management Program (CAMP) data was performed to allow analysis of how frequently searches were performed for various contact allergens. The number of searches performed for specific allergens provides a measure of the relative prevalence of contact allergy to these allergens. The top 35 allergens for the period from November 18, 2012 to November 18, 2013 are reported. Although these data are useful, specific recommendations for minor alterations to CAMP are discussed, which will allow future CAMP data to be stratified and more powerful. With minor modifications, CAMP can provide a quantum leap in the reporting of contact allergy epidemiologic data in North America.
Quantum optics experiments with atoms
International Nuclear Information System (INIS)
Bachor, H.A.; McClelland, D.E.
1992-01-01
Quantum fluctuations of light ultimately limit the sensitivity of spectroscopic measurements. The quantum properties of coherent laser light and of nonclassical types of light are reviewed. Two recent experiments are described which generate light with suppressed quantum noise, pointing the way to improved and more sensitive measurements. (orig.)
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
Directory of Open Access Journals (Sweden)
Tetsuo Deguchi
2011-06-01
Full Text Available We show some symmetry relations among the correlation functions of the integrable higher-spin XXX and XXZ spin chains, where we explicitly evaluate the multiple integrals representing the one-point functions in the spin-1 case. We review the multiple-integral representations of correlation functions for the integrable higher-spin XXZ chains derived in a region of the massless regime including the anti-ferromagnetic point. Here we make use of the gauge transformations between the symmetric and asymmetric R-matrices, which correspond to the principal and homogeneous gradings, respectively, and we send the inhomogeneous parameters to the set of complete 2s-strings. We also give a numerical support for the analytical expression of the one-point functions in the spin-1 case.
... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...
Quorum sensing: a quantum perspective.
Majumdar, Sarangam; Pal, Sukla
2016-09-01
Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it's the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.
Quantum repeated games revisited
International Nuclear Information System (INIS)
Frąckiewicz, Piotr
2012-01-01
We present a scheme for playing quantum repeated 2 × 2 games based on Marinatto and Weber’s approach to quantum games. As a potential application, we study the twice repeated Prisoner’s Dilemma game. We show that results not available in the classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games proposed by Iqbal and Toor. We point out the drawbacks that make their results unacceptable. (paper)
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
Scaling behavior near the itinerant ferromagnetic quantum critical point (FQCP) of NiCoCrx for 0.8
Sales, Brian; Jin, Ke; Bei, Hongbin; Nichols, John; Chisholm, Matthew; May, Andrew; McGuire, Michael
Low temperature magnetization, resistivity and heat capacity data are reported for the concentrated solid solution NiCoCrx as a function of temperature and magnetic field. In the quantum critical region the low field (0.001-0.01 T) magnetic susceptibility, Chi, diverges as T- 1 / 2 and the magnetization data exhibits T/B scaling from 0.001 2 Tesla, the crossover temperature from the QC to Fermi liquid regime is no longer linear in B, and is better described by B0.75. This scaling behavior is particularly accurate in describing the normalized magnetoresistance data [Rho(B,T)-Rho(0,T)]/T, which is equivalent to the ratio of relaxation rates associated with magnetic field and temperature TauT/TauB. The location of the QCP is sensitive to the composition x and the strain generated during synthesis. These medium-entropy alloys are interesting model systems to explore the role of chemical disorder at FQCP. Research supported by the DOE Office of Science, Materials Science and Engineering Division, and the Energy Dissipation to Defect Evolution EFRC.
Scheme of thinking quantum systems
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Classicality in quantum mechanics
International Nuclear Information System (INIS)
Dreyer, Olaf
2007-01-01
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity
Quantum physics meets biology.
Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko
2009-12-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.
Wilde, Mark M
2017-01-01
Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...
Classicality in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)
2007-05-15
In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.
Temporal Quantum Fluctuations of Current in Nano-structures
International Nuclear Information System (INIS)
Saminadayar, Laurent
1997-01-01
In a mesoscopic conductor, the transport of current is coherent: the associated wave of the electrons keeps a well-defined phase, so that one can observe interference effects. Transport in this regime has been extensively studied in the last decade, and the main features are well understood. In this thesis, we did focus on another aspect of the quantum transport, the noise. The purpose is to detect the fluctuations of the current around its average value. Our work is divided in three parts: first, we have measured shot noise in a quantum point contact. Shot-noise is due to the granularity of the charge. In a classical conductor, it is directly related to the current. We have shown that in a quantum conductor, such as a quantum point contact, quantum correlation due to the Pauli principle reduce the shot-noise, and that it can even be suppressed under certain conditions. In a second part, we did use the fact that shot-noise is sensitive to the charge of the carriers to detect the fractionally charged quasiparticles of the quantum Hall effect. The existence of the quasiparticles has been predicted since 1983, but no experimental observation has been reported up to now. By inducing a current of quasiparticles between the two edges of a sample in the fractional quantum Hall effect regime, and by measuring the noise associated with this current, we have proved it to be SI=2(e/3)I. This is actually a direct measurement of the charge of the carriers in the fractional quantum Hall regime, which is found to be e*=e/3 as predicted by the theory. Finally, the third part of our work is devoted to a subject closer to the applied physics, namely the measurement of low frequency noise in quantum dots. As quantum systems are more and more studied for potential applications, it is crucial to characterize the low frequency noise ('1/f' noise). We have found that this is due to free charges moving on the substrate around the dot, and that any improvement of the noise of
Thermo-mechanical challenges for quantum devices
Gielen, A.W.J.; McKenzie, F.V.
2014-01-01
In the last few years Technical University of Delft, under leadership of Prof.dr.ir. Leo Kouwenhoven, has developed several successful concepts for quantum devices that are suitable for quantum computing and quantum communication. From a quantum research point of view we are still in a very
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Directory of Open Access Journals (Sweden)
J. Ambjørn
1995-07-01
Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.
Constructing quantum dynamics from mixed quantum-classical descriptions
International Nuclear Information System (INIS)
Barsegov, V.; Rossky, P.J.
2004-01-01
The influence of quantum bath effects on the dynamics of a quantum two-level system linearly coupled to a harmonic bath is studied when the coupling is both diagonal and off-diagonal. It is shown that the pure dephasing kernel and the non-adiabatic quantum transition rate between Born-Oppenheimer states of the subsystem can be decomposed into a contribution from thermally excited bath modes plus a zero point energy contribution. This quantum rate can be modewise factorized exactly into a product of a mixed quantum subsystem-classical bath transition rate and a quantum correction factor. This factor determines dynamics of quantum bath correlations. Quantum bath corrections to both the transition rate and the pure dephasing kernel are shown to be readily evaluated via a mixed quantum-classical simulation. Hence, quantum dynamics can be recovered from a mixed quantum-classical counterpart by incorporating the missing quantum bath corrections. Within a mixed quantum-classical framework, a simple approach for evaluating quantum bath corrections in calculation of the non-adiabatic transition rate is presented
Occupational contact urticaria and protein contact dermatitis.
Doutre, Marie-Sylvie
2005-01-01
Irritant dermatitis and eczema are the most prevalent occupational skin diseases. Less common are immediate contact reactions such as contact urticaria and protein contact dermatitis. Occupational contact urticaria can be subdivided into two categories, immunological and non immunological. However, some agents can induce these two types of reactions. Contact urticaria to natural rubber latex is particularly frequent among health care personnel, but contact urticaria to a wide variety of other substances occurs in many other occupations. Among those at risk are cooks, bakers, butchers, restaurant personnel, veterinarians, hairdressers, florists, gardeners, and forestry workers. Protein contact dermatitis in some of these occupations is caused principally by proteins of animal or plant origin, especially among individuals with a history of atopic dermatitis. Diagnosis requires careful interrogation, clinical examination and skin tests (open tests and prick tests with immediate lecture) to identify a particular contact allergen.
Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback
Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander N.
2005-06-01
We analyze squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wave packet center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; a similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.
Physics colloquium: Electron counting in quantum dots in and out of equilibrium
Geneva University
2011-01-01
GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92olé Lundi 31 octobre 2011 17h00 - Ecole de Physique, Auditoire Stueckelberg PHYSICS COLLOQUIUM « Electron counting in quantum dots in and out of equilibrium » Prof. Klaus Ensslin Solid State Physics Laboratory, ETH Zurich, 8093 Zurich, Switzerland Electron transport through quantum dots is governed by Coulomb blockade. Using a nearby quantum point contact the time-dependent charge flow through quantum dots can be monitored on the basis of single electrons. This way electron transport has been investigated in equilibrium as well as out of equilibrium. Recently it has become possible to experimentally verify the fluctuation theorem. The talk will also address electron counting experiments in grapheme. Une verrée ...
Bischoff, Marcel; Longo, Roberto; Rehren, Karl-Henning
2015-01-01
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
Contact Estimation in Robot Interaction
Directory of Open Access Journals (Sweden)
Filippo D'Ippolito
2014-07-01
Full Text Available In the paper, safety issues are examined in a scenario in which a robot manipulator and a human perform the same task in the same workspace. During the task execution, the human should be able to physically interact with the robot, and in this case an estimation algorithm for both interaction forces and a contact point is proposed in order to guarantee safety conditions. The method, starting from residual joint torque estimation, allows both direct and adaptive computation of the contact point and force, based on a principle of equivalence of the contact forces. At the same time, all the unintended contacts must be avoided, and a suitable post-collision strategy is considered to move the robot away from the collision area or else to reduce impact effects. Proper experimental tests have demonstrated the applicability in practice of both the post-impact strategy and the estimation algorithms; furthermore, experiments demonstrate the different behaviour resulting from the adaptation of the contact point as opposed to direct calculation.
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
Exploiting Locality in Quantum Computation for Quantum Chemistry.
McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-12-18
Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.
Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas
PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela
2018-06-01
We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.
International Nuclear Information System (INIS)
Serot, B.D.
1992-01-01
It is therefore essential to develop reliable nuclear models that go beyond the traditional non-relativistic many-body framework. The arguments for renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. The Walecka model, which contains neutrons, protons, and neutral scalar and vector mesons, is considered first as a simple example. The development is based on the relativistic mean-field and Hartree approximations, and their application to infinite matter and atomic nuclei. Some successes of this model are discussed, such as the nuclear equation of state, the derivation of the shell model, the prediction of nuclear properties throughout the periodic table, and the inclusion of zero-point vacuum corrections. The important concepts of Lorentz covariance and self-consistency are emphasized and the new dynamical features that arise in a relativistic many-body framework are highlighted. The computation of isoscalar magnetic moments is presented as an illustrative example. Calculations beyond the relativistic mean-field and Hartree approximations (for example, Dirac-Hartree-Fock and Dirac-Brueckner) are considered next, as well as recent efforts to incorporate the full role of the quantum vacuum in a consistent fashion. An extended model containing isovector pi and rho mesons is then developed; the dynamics is based on the chirally invariant linear sigma model. The difficulties in constructing realistic chiral descriptions of nuclear matter and nuclei are analysed, and the connection between the sigma model and the Walecka model is established. Finally, the relationship between quantum hadrodynamics and quantum chromodynamics is briefly addressed. (Author)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
A Germanium Back Contact Type Thermophotovoltaic Cell
International Nuclear Information System (INIS)
Nagashima, Tomonori; Okumura, Kenichi; Yamaguchi, Masafumi
2007-01-01
A Ge back contact type photovoltaic cell has been proposed to reduce resistance loss for high current densities in thermophotovoltaic systems. The back contact structure requires less surface recombination velocities than conventional structures with front grid contacts. A SiO2/SiNx double anti-reflection coating including a high refractive index SiNx layer was studied. The SiNx layer has an enough passivation effect to obtain high efficiency. The quantum efficiency of the Ge cell was around 0.8 in the 800-1600 nm wavelength range. The conversion efficiency for infrared lights was estimated at 18% for a blackbody surface and 25% for a selective emitter by using the quantum efficiency and a simulation analysis
Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...
Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
International Nuclear Information System (INIS)
Elliott, Chip
2002-01-01
We show how quantum key distribution (QKD) techniques can be employed within realistic, highly secure communications systems, using the internet architecture for a specific example. We also discuss how certain drawbacks in existing QKD point-to-point links can be mitigated by building QKD networks, where such networks can be composed of trusted relays or untrusted photonic switches. (author)
The localized quantum vacuum field
International Nuclear Information System (INIS)
Dragoman, D
2008-01-01
A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles
The localized quantum vacuum field
Energy Technology Data Exchange (ETDEWEB)
Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com
2008-03-15
A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.
Solar Cells Using Quantum Funnels
Kramer, Illan J.
2011-09-14
Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Pylkkänen, Paavo
2015-12-01
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Intrinsic Time Quantum Geometrodynamics
Ita III, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai
2015-01-01
Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of tim...
Correlated electron phenomena in ultra-low disorder quantum wires
International Nuclear Information System (INIS)
Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Lumpkin, N.E.
1999-01-01
Full text: Quantum point contacts in the lowest disorder HEMTs display structure at 0.7 x 2e 2 /h, which cannot be interpreted within a single particle Landauer model. This structure has been attributed to a spontaneous spin polarisation at zero B field. We have developed novel GaAs/AlGaAs enhancement mode FETs, which avoid the random impurity potential present in conventional MODFET devices by using epitaxially grown gates to produce ultra-low-disorder QPCs and quantum wires using electron beam lithography. The ballistic mean free path within these devices exceeds 160 μm 2 . Quantum wires of 5 μm in length show up to 15 conductance plateaux, indicating that these may be the lowest-disorder quantum wires fabricated using conventional surface patterning techniques. These structures are ideal for the study of correlation effects in QPCs and quantum wires as a function of electron density. Our data provides strong evidence that correlation effects are enhanced as the length of the 1D region is increased and also that additional structure moves close to 0.5 x 2e 2 /h, the value expected for an ideal spin-split 1D level
Contact Dermatitis in Pediatrics.
Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E
2016-08-01
Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.]. Copyright 2016, SLACK Incorporated.
Response function of a moving contact line
Perrin, H.; Belardinelli, D.; Sbragaglia, M.; Andreotti, B.
2018-04-01
The hydrodynamics of a liquid-vapor interface in contact with a heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determine the force exerted on the wedge of liquid in contact with the surface. From the mathematical point of view, defects introduce perturbation modes, whose space-time evolution is governed by the interfacial hydrodynamic equations of the contact line. In this paper we derive the response function of the contact line to such generic perturbations. The contact line response may be used to design simplified one-dimensional time-dependent models accounting for the complexity of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical framework to explore contact line motion through a disordered energy landscape.
Electronic quantum noise and microwave photons
International Nuclear Information System (INIS)
Bize-Reydellet, L.H.
2003-06-01
This work is devoted to the experimental study of quantum electronic noise in mesoscopic conductors. In the first part of this thesis, we studied shot noise in a one-dimensional ballistic conductor: a quantum point contact (QPC). We showed experimentally that, when one of the QPC contacts is irradiated with microwave photons, we observe partition noise in the absence of net current flowing through the sample. Thus, we validate the scattering theory of photo-assisted shot noise first by measuring the Fano factor without bias voltage across the conductor, and then by measuring shot noise in the doubly non equilibrium situation, where both a bias voltage and a microwave modulation are applied. In the second part, we realized the first tests of a new experimental set-up which will be able to measure high frequency noise of a mesoscopic conductor and the photon statistics emitted by this conductor in the measurement circuit. These tests consist in realizing Hanbury-Brown and Twiss type experiments (intensity interferometry) with two kinds of microwave photon source. First, we used a thermal incoherent source (macroscopic 50 Ohms resistor). It showed super-Poissonian noise, since the power fluctuations are proportional to the square of the mean photon power. Secondly, we studied a classical monochromatic source, which shows a Poissonian statistics. The giant Fano factor measured is perfectly explained by the attenuator and amplifier noise. (author)
Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G
2013-01-07
We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter
2009-06-21
Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.
Cui, Ping
-electrode coupling is further proposed to recover all existing nonlinear current-voltage behaviors including the nonequilibrium Kondo effect. Transport theory based on the exact QDT formalism will be developed in future. In Chapter 8, we study the quantum measurement of a qubit with a quantum-point-contact detector. On the basis of a unified quantum master equation (a form of QDT), we study the measurement-induced relaxation and dephasing of the qubit. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. We also derive a conditional quantum master equation for quantum measurement in general, and study the readout characteristics of the qubit measurement. Our theory is applicable to the quantum measurement at arbitrary voltage and temperature. A number of remarkable new features are found and highlighted in concern with their possible relevance to future experiments. In Chapter 9, we discuss the further development of QDT, aiming at an efficient evaluation of many-electron systems. This will be carried out by reducing the many-particle (Fermion or Boson) QDT to a single-particle one by exploring, e.g. the Wick's contraction theorem. It also results in a time-dependent density functional theory (TDDFT) for transport through complex large-scale (e.g. molecules) systems. Primary results of the TDDFT-QDT are reported. In Chapter 10, we summary the thesis, and comment and remark on the future work on both the theoretical and application aspects of QDT.
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors
International Nuclear Information System (INIS)
Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.
2014-01-01
A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped