Quantum statistical Monte Carlo methods and applications to spin systems
International Nuclear Information System (INIS)
Suzuki, M.
1986-01-01
A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures
Recommender engine for continuous-time quantum Monte Carlo methods
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
Simulation of quantum systems by the tomography Monte Carlo method
International Nuclear Information System (INIS)
Bogdanov, Yu I
2007-01-01
A new method of statistical simulation of quantum systems is presented which is based on the generation of data by the Monte Carlo method and their purposeful tomography with the energy minimisation. The numerical solution of the problem is based on the optimisation of the target functional providing a compromise between the maximisation of the statistical likelihood function and the energy minimisation. The method does not involve complicated and ill-posed multidimensional computational procedures and can be used to calculate the wave functions and energies of the ground and excited stationary sates of complex quantum systems. The applications of the method are illustrated. (fifth seminar in memory of d.n. klyshko)
Analytic continuation of quantum Monte Carlo data. Stochastic sampling method
Energy Technology Data Exchange (ETDEWEB)
Ghanem, Khaldoon; Koch, Erik [Institute for Advanced Simulation, Forschungszentrum Juelich, 52425 Juelich (Germany)
2016-07-01
We apply Bayesian inference to the analytic continuation of quantum Monte Carlo (QMC) data from the imaginary axis to the real axis. Demanding a proper functional Bayesian formulation of any analytic continuation method leads naturally to the stochastic sampling method (StochS) as the Bayesian method with the simplest prior, while it excludes the maximum entropy method and Tikhonov regularization. We present a new efficient algorithm for performing StochS that reduces computational times by orders of magnitude in comparison to earlier StochS methods. We apply the new algorithm to a wide variety of typical test cases: spectral functions and susceptibilities from DMFT and lattice QMC calculations. Results show that StochS performs well and is able to resolve sharp features in the spectrum.
Quantum Monte Carlo diagonalization method as a variational calculation
International Nuclear Information System (INIS)
Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio.
1997-01-01
A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
Directory of Open Access Journals (Sweden)
Bardenet Rémi
2013-07-01
Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
International Nuclear Information System (INIS)
Rajabalinejad, M.
2010-01-01
To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.
International Nuclear Information System (INIS)
Sakai, Shiro; Arita, Ryotaro; Aoki, Hideo
2006-01-01
We propose a new quantum Monte Carlo method especially intended to couple with the dynamical mean-field theory. The algorithm is not only much more efficient than the conventional Hirsch-Fye algorithm, but is applicable to multiorbital systems having an SU(2)-symmetric Hund's coupling as well
Flat-histogram methods in quantum Monte Carlo simulations: Application to the t-J model
International Nuclear Information System (INIS)
Diamantis, Nikolaos G.; Manousakis, Efstratios
2016-01-01
We discuss that flat-histogram techniques can be appropriately applied in the sampling of quantum Monte Carlo simulation in order to improve the statistical quality of the results at long imaginary time or low excitation energy. Typical imaginary-time correlation functions calculated in quantum Monte Carlo are subject to exponentially growing errors as the range of imaginary time grows and this smears the information on the low energy excitations. We show that we can extract the low energy physics by modifying the Monte Carlo sampling technique to one in which configurations which contribute to making the histogram of certain quantities flat are promoted. We apply the diagrammatic Monte Carlo (diag-MC) method to the motion of a single hole in the t-J model and we show that the implementation of flat-histogram techniques allows us to calculate the Green's function in a wide range of imaginary-time. In addition, we show that applying the flat-histogram technique alleviates the “sign”-problem associated with the simulation of the single-hole Green's function at long imaginary time. (paper)
Off-diagonal expansion quantum Monte Carlo.
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Determinantal and worldline quantum Monte Carlo methods for many-body systems
International Nuclear Information System (INIS)
Vekic, M.; White, S.R.
1993-01-01
We examine three different quantum Monte Carlo methods for studying systems of interacting particles. The determinantal quantum Monte Carlo method is compared to two different worldline simulations. The first worldline method consists of a simulation carried out in the real-space basis, while the second method is implemented using as basis the eigenstates of the Hamiltonian on blocks of the two-dimensional lattice. We look, in particular, at the Hubbard model on a 4x4 lattice with periodic boundary conditions. The block method is superior to the real-space method in terms of the computational cost of the simulation, but shows a much worse negative sign problem. For larger values of U and away from half-filling it is found that the real-space method can provide results at lower temperatures than the determinantal method. We show that the sign problem in the block method can be slightly improved by an appropriate choice of basis
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.; Dean, D.J.; Langanke, K.
1997-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.
1996-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs
Monte Carlo Methods in Physics
International Nuclear Information System (INIS)
Santoso, B.
1997-01-01
Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained
Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures
Energy Technology Data Exchange (ETDEWEB)
Lang, Thomas C.
2010-12-16
In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases
Lectures on Monte Carlo methods
Madras, Neal
2001-01-01
Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati
Review of quantum Monte Carlo methods and results for Coulombic systems
International Nuclear Information System (INIS)
Ceperley, D.
1983-01-01
The various Monte Carlo methods for calculating ground state energies are briefly reviewed. Then a summary of the charged systems that have been studied with Monte Carlo is given. These include the electron gas, small molecules, a metal slab and many-body hydrogen
A study of potential energy curves from the model space quantum Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Ohtsuka, Yuhki; Ten-no, Seiichiro, E-mail: tenno@cs.kobe-u.ac.jp [Department of Computational Sciences, Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501 (Japan)
2015-12-07
We report on the first application of the model space quantum Monte Carlo (MSQMC) to potential energy curves (PECs) for the excited states of C{sub 2}, N{sub 2}, and O{sub 2} to validate the applicability of the method. A parallel MSQMC code is implemented with the initiator approximation to enable efficient sampling. The PECs of MSQMC for various excited and ionized states are compared with those from the Rydberg-Klein-Rees and full configuration interaction methods. The results indicate the usefulness of MSQMC for precise PECs in a wide range obviating problems concerning quasi-degeneracy.
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay; Law, Kody; Suciu, Carina
2017-01-01
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay
2017-04-24
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method.
Lee, Hung-Wen; Chang, Chun-Ming; Hsing, Cheng-Rong
2017-02-28
The puzzle of the magnetic moments of small nickel clusters arises from the discrepancy between values predicted using density functional theory (DFT) and experimental measurements. Traditional DFT approaches underestimate the magnetic moments of nickel clusters. Two fundamental problems are associated with this puzzle, namely, calculating the exchange-correlation interaction accurately and determining the global minimum structures of the clusters. Theoretically, the two problems can be solved using quantum Monte Carlo (QMC) calculations and the ab initio random structure searching (AIRSS) method correspondingly. Therefore, we combined the fixed-moment AIRSS and QMC methods to investigate the magnetic properties of Ni n (n = 5-9) clusters. The spin moments of the diffusion Monte Carlo (DMC) ground states are higher than those of the Perdew-Burke-Ernzerhof ground states and, in the case of Ni 8-9 , two new ground-state structures have been discovered using the DMC calculations. The predicted results are closer to the experimental findings, unlike the results predicted in previous standard DFT studies.
Quantum Monte Carlo calculations of light nuclei
International Nuclear Information System (INIS)
Pandharipande, V. R.
1999-01-01
Quantum Monte Carlo methods provide an essentially exact way to calculate various properties of nuclear bound, and low energy continuum states, from realistic models of nuclear interactions and currents. After a brief description of the methods and modern models of nuclear forces, we review the results obtained for all the bound, and some continuum states of up to eight nucleons. Various other applications of the methods are reviewed along with future prospects
Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods
International Nuclear Information System (INIS)
Bajdich, Michal; Kolorenc, Jindrich; Mitas, Lubos; Reynolds, P.J.
2010-01-01
We discuss the importance of the fermion nodes for the quantum Monte Carlo (QMC) methods and find two cases of the exact nodes. We describe the structure of the generalized pairing wave functions in Pfaffian antisymmetric form and demonstrate their equivalency with certain class of configuration interaction wave functions. We present the QMC calculations of a model fermion system at unitary limit. We find the system to have the energy of E = 0.425Efree and the condensate fraction of = 0.48. Further we also perform the QMC calculations of the potential energy surface and the electric dipole moment along that surface of the LiSr molecule. We estimate the vibrationally averaged dipole moment to be D =0 = 0.4(2).
Quantum Monte Carlo for vibrating molecules
International Nuclear Information System (INIS)
Brown, W.R.; Lawrence Berkeley National Lab., CA
1996-08-01
Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies
A contribution Monte Carlo method
International Nuclear Information System (INIS)
Aboughantous, C.H.
1994-01-01
A Contribution Monte Carlo method is developed and successfully applied to a sample deep-penetration shielding problem. The random walk is simulated in most of its parts as in conventional Monte Carlo methods. The probability density functions (pdf's) are expressed in terms of spherical harmonics and are continuous functions in direction cosine and azimuthal angle variables as well as in position coordinates; the energy is discretized in the multigroup approximation. The transport pdf is an unusual exponential kernel strongly dependent on the incident and emergent directions and energies and on the position of the collision site. The method produces the same results obtained with the deterministic method with a very small standard deviation, with as little as 1,000 Contribution particles in both analog and nonabsorption biasing modes and with only a few minutes CPU time
(U) Introduction to Monte Carlo Methods
Energy Technology Data Exchange (ETDEWEB)
Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-20
Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.
Zimmerman, George B.
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
International Nuclear Information System (INIS)
Zimmerman, G.B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Zimmerman, George B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials
Frontiers of quantum Monte Carlo workshop: preface
International Nuclear Information System (INIS)
Gubernatis, J.E.
1985-01-01
The introductory remarks, table of contents, and list of attendees are presented from the proceedings of the conference, Frontiers of Quantum Monte Carlo, which appeared in the Journal of Statistical Physics
Extending canonical Monte Carlo methods
International Nuclear Information System (INIS)
Velazquez, L; Curilef, S
2010-01-01
In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model
Deterministic flows of order-parameters in stochastic processes of quantum Monte Carlo method
International Nuclear Information System (INIS)
Inoue, Jun-ichi
2010-01-01
In terms of the stochastic process of quantum-mechanical version of Markov chain Monte Carlo method (the MCMC), we analytically derive macroscopically deterministic flow equations of order parameters such as spontaneous magnetization in infinite-range (d(= ∞)-dimensional) quantum spin systems. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding (d + 1)-dimensional classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. In the steady state, we show that the equations are identical to the saddle point equations for the equilibrium state of the same system. The equation for the dynamical Ising model is recovered in the classical limit. We also check the validity of the static approximation by making use of computer simulations for finite size systems and discuss several possible extensions of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we shall use our procedure to evaluate the decoding process of Bayesian image restoration. With the assistance of the concept of dynamical replica theory (the DRT), we derive the zero-temperature flow equation of image restoration measure showing some 'non-monotonic' behaviour in its time evolution.
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Tubman, Norm M.; Lee, Joonho; Takeshita, Tyler Y.; Head-Gordon, Martin; Whaley, K. Birgitta [University of California, Berkeley, Berkeley, California 94720 (United States)
2016-07-28
Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr{sub 2} molecule. We demonstrate for systems like Cr{sub 2} that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C{sub 2}.
Bridging the gap between quantum Monte Carlo and F12-methods
Chinnamsetty, Sambasiva Rao; Luo, Hongjun; Hackbusch, Wolfgang; Flad, Heinz-Jürgen; Uschmajew, André
2012-06-01
Tensor product approximation of pair-correlation functions opens a new route from quantum Monte Carlo (QMC) to explicitly correlated F12 methods. Thereby one benefits from stochastic optimization techniques used in QMC to get optimal pair-correlation functions which typically recover more than 85% of the total correlation energy. Our approach incorporates, in particular, core and core-valence correlation which are poorly described by homogeneous and isotropic ansatz functions usually applied in F12 calculations. We demonstrate the performance of the tensor product approximation by applications to atoms and small molecules. It turns out that the canonical tensor format is especially suitable for the efficient computation of two- and three-electron integrals required by explicitly correlated methods. The algorithm uses a decomposition of three-electron integrals, originally introduced by Boys and Handy and further elaborated by Ten-no in his 3d numerical quadrature scheme, which enables efficient computations in the tensor format. Furthermore, our method includes the adaptive wavelet approximation of tensor components where convergence rates are given in the framework of best N-term approximation theory.
Bridging the gap between quantum Monte Carlo and F12-methods
International Nuclear Information System (INIS)
Chinnamsetty, Sambasiva Rao; Luo, Hongjun; Hackbusch, Wolfgang; Flad, Heinz-Jürgen; Uschmajew, André
2012-01-01
Graphical abstract: Tensor product approximation of pair-correlation functions: τ(x,y)≈∑ κ=1 κ u k (1) (x 1 ,y 1 )u k (2) (x 2 ,y 2 )u k (3) (x 3 ,y 3 ) Pair-correlation function τ(x,y)∣ ∣x·y∣=∣x∣∣y∣ of the He atom and corresponding tensor product approximation errors. Display Omitted - Abstract: Tensor product approximation of pair-correlation functions opens a new route from quantum Monte Carlo (QMC) to explicitly correlated F12 methods. Thereby one benefits from stochastic optimization techniques used in QMC to get optimal pair-correlation functions which typically recover more than 85% of the total correlation energy. Our approach incorporates, in particular, core and core-valence correlation which are poorly described by homogeneous and isotropic ansatz functions usually applied in F12 calculations. We demonstrate the performance of the tensor product approximation by applications to atoms and small molecules. It turns out that the canonical tensor format is especially suitable for the efficient computation of two- and three-electron integrals required by explicitly correlated methods. The algorithm uses a decomposition of three-electron integrals, originally introduced by Boys and Handy and further elaborated by Ten-no in his 3d numerical quadrature scheme, which enables efficient computations in the tensor format. Furthermore, our method includes the adaptive wavelet approximation of tensor components where convergence rates are given in the framework of best N-term approximation theory.
Tubman, Norm; Whaley, Birgitta
The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.
Spectral functions from Quantum Monte Carlo
International Nuclear Information System (INIS)
Silver, R.N.
1989-01-01
In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig
Diffusion quantum Monte Carlo for molecules
International Nuclear Information System (INIS)
Lester, W.A. Jr.
1986-07-01
A quantum mechanical Monte Carlo method has been used for the treatment of molecular problems. The imaginary-time Schroedinger equation written with a shift in zero energy [E/sub T/ - V(R)] can be interpreted as a generalized diffusion equation with a position-dependent rate or branching term. Since diffusion is the continuum limit of a random walk, one may simulate the Schroedinger equation with a function psi (note, not psi 2 ) as a density of ''walks.'' The walks undergo an exponential birth and death as given by the rate term. 16 refs., 2 tabs
Advanced Computational Methods for Monte Carlo Calculations
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-12
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
No-compromise reptation quantum Monte Carlo
International Nuclear Information System (INIS)
Yuen, W K; Farrar, Thomas J; Rothstein, Stuart M
2007-01-01
Since its publication, the reptation quantum Monte Carlo algorithm of Baroni and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several important problems in physics, but its mathematical foundations are not well understood. We show that their algorithm is not of typical Metropolis-Hastings type, and we specify conditions required for the generated Markov chain to be stationary and to converge to the intended distribution. The time-step bias may add up, and in many applications it is only the middle of a reptile that is the most important. Therefore, we propose an alternative, 'no-compromise reptation quantum Monte Carlo' to stabilize the middle of the reptile. (fast track communication)
Proceedings of the conference on frontiers of Quantum Monte Carlo
International Nuclear Information System (INIS)
Gubernatis, J.E.
1986-01-01
This journal of conference proceedings includes papers on topics such as: computers and science; Quantum Monte Carlo; condensed matter physics (with papers including the statistical error of Green's Function Monte Carlo, a study of Trotter-like approximations, simulations of the Hubbard model, and stochastic simulation of fermions); chemistry (including papers on quantum simulations of aqueous systems, fourier path integral methods, and a study of electron solvation in polar solvents using path integral calculations); atomic molecular and nuclear physics; high-energy physics, and advanced computer designs
Hybrid Monte Carlo methods in computational finance
Leitao Rodriguez, A.
2017-01-01
Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the
Monte Carlo methods and applications in nuclear physics
International Nuclear Information System (INIS)
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs
Monte Carlo methods and applications in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.
1990-01-01
Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.
Experience with the Monte Carlo Method
Energy Technology Data Exchange (ETDEWEB)
Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)
2007-06-15
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.
Experience with the Monte Carlo Method
International Nuclear Information System (INIS)
Hussein, E.M.A.
2007-01-01
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed
Simulation and the Monte Carlo method
Rubinstein, Reuven Y
2016-01-01
Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...
Monte Carlo method applied to medical physics
International Nuclear Information System (INIS)
Oliveira, C.; Goncalves, I.F.; Chaves, A.; Lopes, M.C.; Teixeira, N.; Matos, B.; Goncalves, I.C.; Ramalho, A.; Salgado, J.
2000-01-01
The main application of the Monte Carlo method to medical physics is dose calculation. This paper shows some results of two dose calculation studies and two other different applications: optimisation of neutron field for Boron Neutron Capture Therapy and optimization of a filter for a beam tube for several purposes. The time necessary for Monte Carlo calculations - the highest boundary for its intensive utilisation - is being over-passed with faster and cheaper computers. (author)
Monte Carlo studies of nuclei and quantum liquid drops
International Nuclear Information System (INIS)
Pandharipande, V.R.; Pieper, S.C.
1989-01-01
The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs
Monte Carlo studies of nuclei and quantum liquid drops
Energy Technology Data Exchange (ETDEWEB)
Pandharipande, V.R.; Pieper, S.C.
1989-01-01
The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs.
International Nuclear Information System (INIS)
Ohta, Shigemi
1996-01-01
The Self-Test Monte Carlo (STMC) method resolves the main problems in using algebraic pseudo-random numbers for Monte Carlo (MC) calculations: that they can interfere with MC algorithms and lead to erroneous results, and that such an error often cannot be detected without known exact solution. STMC is based on good randomness of about 10 10 bits available from physical noise or transcendental numbers like π = 3.14---. Various bit modifiers are available to get more bits for applications that demands more than 10 10 random bits such as lattice quantum chromodynamics (QCD). These modifiers are designed so that a) each of them gives a bit sequence comparable in randomness as the original if used separately from each other, and b) their mutual interference when used jointly in a single MC calculation is adjustable. Intermediate data of the MC calculation itself are used to quantitatively test and adjust the mutual interference of the modifiers in respect of the MC algorithm. STMC is free of systematic error and gives reliable statistical error. Also it can be easily implemented on vector and parallel supercomputers. (author)
Pseudopotentials for quantum-Monte-Carlo-calculations
International Nuclear Information System (INIS)
Burkatzki, Mark Thomas
2008-01-01
The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)
Random Numbers and Monte Carlo Methods
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Nuyens, Dirk
2016-01-01
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Monte Carlo method for array criticality calculations
International Nuclear Information System (INIS)
Dickinson, D.; Whitesides, G.E.
1976-01-01
The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced
Quantum Monte Carlo for atoms and molecules
International Nuclear Information System (INIS)
Barnett, R.N.
1989-11-01
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H 2 , LiH, Li 2 , and H 2 O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li 2 , and H 2 O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions
Burnup calculations using Monte Carlo method
International Nuclear Information System (INIS)
Ghosh, Biplab; Degweker, S.B.
2009-01-01
In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code
A keff calculation method by Monte Carlo
International Nuclear Information System (INIS)
Shen, H; Wang, K.
2008-01-01
The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)
Some problems on Monte Carlo method development
International Nuclear Information System (INIS)
Pei Lucheng
1992-01-01
This is a short paper on some problems of Monte Carlo method development. The content consists of deep-penetration problems, unbounded estimate problems, limitation of Mdtropolis' method, dependency problem in Metropolis' method, random error interference problems and random equations, intellectualisation and vectorization problems of general software
Closed-shell variational quantum Monte Carlo simulation for the ...
African Journals Online (AJOL)
Closed-shell variational quantum Monte Carlo simulation for the electric dipole moment calculation of hydrazine molecule using casino-code. ... Nigeria Journal of Pure and Applied Physics ... The variational quantum Monte Carlo (VQMC) technique used in this work employed the restricted Hartree-Fock (RHF) scheme.
Continuum variational and diffusion quantum Monte Carlo calculations
International Nuclear Information System (INIS)
Needs, R J; Towler, M D; Drummond, N D; Lopez RIos, P
2010-01-01
This topical review describes the methodology of continuum variational and diffusion quantum Monte Carlo calculations. These stochastic methods are based on many-body wavefunctions and are capable of achieving very high accuracy. The algorithms are intrinsically parallel and well suited to implementation on petascale computers, and the computational cost scales as a polynomial in the number of particles. A guide to the systems and topics which have been investigated using these methods is given. The bulk of the article is devoted to an overview of the basic quantum Monte Carlo methods, the forms and optimization of wavefunctions, performing calculations under periodic boundary conditions, using pseudopotentials, excited-state calculations, sources of calculational inaccuracy, and calculating energy differences and forces. (topical review)
Monte Carlo method in neutron activation analysis
International Nuclear Information System (INIS)
Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.
2009-01-01
Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA
Monte Carlo methods beyond detailed balance
Schram, Raoul D.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080
2015-01-01
Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying
Monte Carlo method for random surfaces
International Nuclear Information System (INIS)
Berg, B.
1985-01-01
Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)
Variance Reduction Techniques in Monte Carlo Methods
Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.
2010-01-01
Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
Molecular physics and chemistry applications of quantum Monte Carlo
International Nuclear Information System (INIS)
Reynolds, P.J.; Barnett, R.N.; Hammond, B.L.; Lester, W.A. Jr.
1985-09-01
We discuss recent work with the diffusion quantum Monte Carlo (QMC) method in its application to molecular systems. The formal correspondence of the imaginary time Schroedinger equation to a diffusion equation allows one to calculate quantum mechanical expectation values as Monte Carlo averages over an ensemble of random walks. We report work on atomic and molecular total energies, as well as properties including electron affinities, binding energies, reaction barriers, and moments of the electronic charge distribution. A brief discussion is given on how standard QMC must be modified for calculating properties. Calculated energies and properties are presented for a number of molecular systems, including He, F, F - , H 2 , N, and N 2 . Recent progress in extending the basic QMC approach to the calculation of ''analytic'' (as opposed to finite-difference) derivatives of the energy is presented, together with an H 2 potential-energy curve obtained using analytic derivatives. 39 refs., 1 fig., 2 tabs
Prospect on general software of Monte Carlo method
International Nuclear Information System (INIS)
Pei Lucheng
1992-01-01
This is a short paper on the prospect of Monte Carlo general software. The content consists of cluster sampling method, zero variance technique, self-improved method, and vectorized Monte Carlo method
Monte Carlo method for neutron transport problems
International Nuclear Information System (INIS)
Asaoka, Takumi
1977-01-01
Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)
International Nuclear Information System (INIS)
Kist, Tarso B.L.; Orszag, M.; Davidovich, L.
1997-01-01
The dynamics of open system is frequently modeled in terms of a small system S coupled to a reservoir R, the last having an infinitely larger number of degree of freedom than S. Usually the dynamics of the S variables may be of interest, which can be studied using either Langevin equations, or master equations, or yet the path integral formulation. Useful alternatives for the master equation method are the Monte Carlo Wave-function method (MCWF), and Stochastic Schroedinger Equations (SSE's). The methods MCWF and SSE's recently experienced a fast development both in their theoretical background and applications to the study of the dissipative quantum systems dynamics in quantum optics. Even though these alternatives can be shown to be formally equivalent to the master equation approach, they are often regarded as mathematical tricks, with no relation to a concrete physical evolution of the system. The advantage of using them is that one has to deal with state vectors, instead of density matrices, thus reducing the total amount of matrix elements to be calculated. In this work, we consider the possibility of giving a physical interpretation to these methods, in terms of continuous measurements made on the evolving system. We show that physical realizations of the two methods are indeed possible, for a mode of the electromagnetic field in a cavity interacting with a continuum of modes corresponding to the field outside the cavity. Two schemes are proposed, consisting of a mode of the electromagnetic field interacting with a beam of Rydberg two-level atoms. In these schemes, the field mode plays the role of a small system and the atomic beam plays the role of a reservoir (infinitely larger number of degrees of freedom at finite temperature, the interaction between them being given by the Jaynes-Cummings model
Monte Carlo methods for shield design calculations
International Nuclear Information System (INIS)
Grimstone, M.J.
1974-01-01
A suite of Monte Carlo codes is being developed for use on a routine basis in commercial reactor shield design. The methods adopted for this purpose include the modular construction of codes, simplified geometries, automatic variance reduction techniques, continuous energy treatment of cross section data, and albedo methods for streaming. Descriptions are given of the implementation of these methods and of their use in practical calculations. 26 references. (U.S.)
Introduction to the Monte Carlo methods
International Nuclear Information System (INIS)
Uzhinskij, V.V.
1993-01-01
Codes illustrating the use of Monte Carlo methods in high energy physics such as the inverse transformation method, the ejection method, the particle propagation through the nucleus, the particle interaction with the nucleus, etc. are presented. A set of useful algorithms of random number generators is given (the binomial distribution, the Poisson distribution, β-distribution, γ-distribution and normal distribution). 5 figs., 1 tab
Monte Carlo methods for preference learning
DEFF Research Database (Denmark)
Viappiani, P.
2012-01-01
Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query the users about their preferences and give recommendations based on the system’s belief about the utility function. Critical to these applications is th...... is the acquisition of prior distribution about the utility parameters and the possibility of real time Bayesian inference. In this paper we consider Monte Carlo methods for these problems....
Applications of Monte Carlo method in Medical Physics
International Nuclear Information System (INIS)
Diez Rios, A.; Labajos, M.
1989-01-01
The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
Systat Software Asia-Pacific. Ltd., in Bangalore, where the technical work for the development of the statistica' software ... concepts that are relevant for the application of MCMC methods and ... joint distribution of the vector N of the numbers of.
Performance of quantum Monte Carlo for calculating molecular bond lengths
Energy Technology Data Exchange (ETDEWEB)
Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au [CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052 (Australia)
2016-03-28
This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
levels. This is based on the famous Laws of Large Num- bers {LLN}: Let XI,X2,X3, ... of the volume of Ai nD to the volume of D (here volume ... This method depends on being able to generate' a sarnple ... casinos offering games of chance.
Monte Carlo methods and models in finance and insurance
Korn, Ralf; Kroisandt, Gerald
2010-01-01
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...
Generalized hybrid Monte Carlo - CMFD methods for fission source convergence
International Nuclear Information System (INIS)
Wolters, Emily R.; Larsen, Edward W.; Martin, William R.
2011-01-01
In this paper, we generalize the recently published 'CMFD-Accelerated Monte Carlo' method and present two new methods that reduce the statistical error in CMFD-Accelerated Monte Carlo. The CMFD-Accelerated Monte Carlo method uses Monte Carlo to estimate nonlinear functionals used in low-order CMFD equations for the eigenfunction and eigenvalue. The Monte Carlo fission source is then modified to match the resulting CMFD fission source in a 'feedback' procedure. The two proposed methods differ from CMFD-Accelerated Monte Carlo in the definition of the required nonlinear functionals, but they have identical CMFD equations. The proposed methods are compared with CMFD-Accelerated Monte Carlo on a high dominance ratio test problem. All hybrid methods converge the Monte Carlo fission source almost immediately, leading to a large reduction in the number of inactive cycles required. The proposed methods stabilize the fission source more efficiently than CMFD-Accelerated Monte Carlo, leading to a reduction in the number of active cycles required. Finally, as in CMFD-Accelerated Monte Carlo, the apparent variance of the eigenfunction is approximately equal to the real variance, so the real error is well-estimated from a single calculation. This is an advantage over standard Monte Carlo, in which the real error can be underestimated due to inter-cycle correlation. (author)
Assaraf, Roland
2014-12-01
We show that the recently proposed correlated sampling without reweighting procedure extends the locality (asymptotic independence of the system size) of a physical property to the statistical fluctuations of its estimator. This makes the approach potentially vastly more efficient for computing space-localized properties in large systems compared with standard correlated methods. A proof is given for a large collection of noninteracting fragments. Calculations on hydrogen chains suggest that this behavior holds not only for systems displaying short-range correlations, but also for systems with long-range correlations.
Monte Carlo methods to calculate impact probabilities
Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.
2014-09-01
Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward
Monte Carlo method in radiation transport problems
International Nuclear Information System (INIS)
Dejonghe, G.; Nimal, J.C.; Vergnaud, T.
1986-11-01
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr
Continuous-time quantum Monte Carlo impurity solvers
Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias
2011-04-01
Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as
Quantum Monte Carlo: Faster, More Reliable, And More Accurate
Anderson, Amos Gerald
2010-06-01
The Schrodinger Equation has been available for about 83 years, but today, we still strain to apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but practical, since we're held back by lack of sufficient computing power. Consequently, effort is applied to find acceptable approximations to facilitate real time solutions. In the meantime, computer technology has begun rapidly advancing and changing the way we think about efficient algorithms. For those who can reorganize their formulas to take advantage of these changes and thereby lift some approximations, incredible new opportunities await. Over the last decade, we've seen the emergence of a new kind of computer processor, the graphics card. Designed to accelerate computer games by optimizing quantity instead of quality in processor, they have become of sufficient quality to be useful to some scientists. In this thesis, we explore the first known use of a graphics card to computational chemistry by rewriting our Quantum Monte Carlo software into the requisite "data parallel" formalism. We find that notwithstanding precision considerations, we are able to speed up our software by about a factor of 6. The success of a Quantum Monte Carlo calculation depends on more than just processing power. It also requires the scientist to carefully design the trial wavefunction used to guide simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to simply, and yet effectively, captured the essential static correlation in atoms and molecules. Furthermore, we have developed significantly improved two particle correlation functions, designed with both flexibility and simplicity considerations, representing an effective and reliable way to add the necessary dynamic correlation. Lastly, we present our method for stabilizing the statistical nature of the calculation, by manipulating configuration weights, thus facilitating efficient and robust calculations. Our
Reactor perturbation calculations by Monte Carlo methods
International Nuclear Information System (INIS)
Gubbins, M.E.
1965-09-01
Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)
Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing
Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias
2017-10-01
Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.
Energy Technology Data Exchange (ETDEWEB)
Burkatzki, Mark Thomas
2008-07-01
The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)
From Monte Carlo to Quantum Computation
Heinrich, Stefan
2001-01-01
Quantum computing was so far mainly concerned with discrete problems. Recently, E. Novak and the author studied quantum algorithms for high dimensional integration and dealt with the question, which advantages quantum computing can bring over classical deterministic or randomized methods for this type of problem. In this paper we give a short introduction to the basic ideas of quantum computing and survey recent results on high dimensional integration. We discuss connections to the Monte Carl...
Applications of the Monte Carlo method in radiation protection
International Nuclear Information System (INIS)
Kulkarni, R.N.; Prasad, M.A.
1999-01-01
This paper gives a brief introduction to the application of the Monte Carlo method in radiation protection. It may be noted that an exhaustive review has not been attempted. The special advantage of the Monte Carlo method has been first brought out. The fundamentals of the Monte Carlo method have next been explained in brief, with special reference to two applications in radiation protection. Some sample current applications have been reported in the end in brief as examples. They are, medical radiation physics, microdosimetry, calculations of thermoluminescence intensity and probabilistic safety analysis. The limitations of the Monte Carlo method have also been mentioned in passing. (author)
Entropic sampling in the path integral Monte Carlo method
International Nuclear Information System (INIS)
Vorontsov-Velyaminov, P N; Lyubartsev, A P
2003-01-01
We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced
Methods for Monte Carlo simulations of biomacromolecules.
Vitalis, Andreas; Pappu, Rohit V
2009-01-01
The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
The Monte Carlo method the method of statistical trials
Shreider, YuA
1966-01-01
The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio
Forest canopy BRDF simulation using Monte Carlo method
Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.
2006-01-01
Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.
MORGENSTERN, [No Value; FRICK, M; VONDERLINDEN, W
We present quantum simulation studies for a system of strongly correlated fermions coupled to local anharmonic phonons. The Monte Carlo calculations are based on a generalized version of the Projector Quantum Monte Carlo Method allowing a simultaneous treatment of fermions and dynamical phonons. The
Quantum computational finance: Monte Carlo pricing of financial derivatives
Rebentrost, Patrick; Gupt, Brajesh; Bromley, Thomas R.
2018-01-01
Financial derivatives are contracts that can have a complex payoff dependent upon underlying benchmark assets. In this work, we present a quantum algorithm for the Monte Carlo pricing of financial derivatives. We show how the relevant probability distributions can be prepared in quantum superposition, the payoff functions can be implemented via quantum circuits, and the price of financial derivatives can be extracted via quantum measurements. We show how the amplitude estimation algorithm can...
Cluster monte carlo method for nuclear criticality safety calculation
International Nuclear Information System (INIS)
Pei Lucheng
1984-01-01
One of the most important applications of the Monte Carlo method is the calculation of the nuclear criticality safety. The fair source game problem was presented at almost the same time as the Monte Carlo method was applied to calculating the nuclear criticality safety. The source iteration cost may be reduced as much as possible or no need for any source iteration. This kind of problems all belongs to the fair source game prolems, among which, the optimal source game is without any source iteration. Although the single neutron Monte Carlo method solved the problem without the source iteration, there is still quite an apparent shortcoming in it, that is, it solves the problem without the source iteration only in the asymptotic sense. In this work, a new Monte Carlo method called the cluster Monte Carlo method is given to solve the problem further
Quasi-Monte Carlo methods for lattice systems. A first look
International Nuclear Information System (INIS)
Jansen, K.; Cyprus Univ., Nicosia; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.
2013-02-01
We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
Multiple histogram method and static Monte Carlo sampling
Inda, M.A.; Frenkel, D.
2004-01-01
We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From
Statistics of Monte Carlo methods used in radiation transport calculation
International Nuclear Information System (INIS)
Datta, D.
2009-01-01
Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport
Problems in radiation shielding calculations with Monte Carlo methods
International Nuclear Information System (INIS)
Ueki, Kohtaro
1985-01-01
The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)
Extending Strong Scaling of Quantum Monte Carlo to the Exascale
Shulenburger, Luke; Baczewski, Andrew; Luo, Ye; Romero, Nichols; Kent, Paul
Quantum Monte Carlo is one of the most accurate and most computationally expensive methods for solving the electronic structure problem. In spite of its significant computational expense, its massively parallel nature is ideally suited to petascale computers which have enabled a wide range of applications to relatively large molecular and extended systems. Exascale capabilities have the potential to enable the application of QMC to significantly larger systems, capturing much of the complexity of real materials such as defects and impurities. However, both memory and computational demands will require significant changes to current algorithms to realize this possibility. This talk will detail both the causes of the problem and potential solutions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the US Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.
Neutron monitor generated data distributions in quantum variational Monte Carlo
Kussainov, A. S.; Pya, N.
2016-08-01
We have assessed the potential applications of the neutron monitor hardware as random number generator for normal and uniform distributions. The data tables from the acquisition channels with no extreme changes in the signal level were chosen as the retrospective model. The stochastic component was extracted by fitting the raw data with splines and then subtracting the fit. Scaling the extracted data to zero mean and variance of one is sufficient to obtain a stable standard normal random variate. Distributions under consideration pass all available normality tests. Inverse transform sampling is suggested to use as a source of the uniform random numbers. Variational Monte Carlo method for quantum harmonic oscillator was used to test the quality of our random numbers. If the data delivery rate is of importance and the conventional one minute resolution neutron count is insufficient, we could always settle for an efficient seed generator to feed into the faster algorithmic random number generator or create a buffer.
Understanding quantum tunneling using diffusion Monte Carlo simulations
Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.
2018-03-01
In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
International Nuclear Information System (INIS)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
Neutron flux calculation by means of Monte Carlo methods
International Nuclear Information System (INIS)
Barz, H.U.; Eichhorn, M.
1988-01-01
In this report a survey of modern neutron flux calculation procedures by means of Monte Carlo methods is given. Due to the progress in the development of variance reduction techniques and the improvements of computational techniques this method is of increasing importance. The basic ideas in application of Monte Carlo methods are briefly outlined. In more detail various possibilities of non-analog games and estimation procedures are presented, problems in the field of optimizing the variance reduction techniques are discussed. In the last part some important international Monte Carlo codes and own codes of the authors are listed and special applications are described. (author)
Quantum Monte Carlo for electronic structure: Recent developments and applications
International Nuclear Information System (INIS)
Rodriguez, M.M.S.; Lawrence Berkeley Lab., CA
1995-04-01
Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function's nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2 H and C 2 H 2 . The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included
Dielectric response of periodic systems from quantum Monte Carlo calculations.
Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola
2005-11-11
We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.
Monte Carlo method for solving a parabolic problem
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.
A MONTE-CARLO METHOD FOR ESTIMATING THE CORRELATION EXPONENT
MIKOSCH, T; WANG, QA
We propose a Monte Carlo method for estimating the correlation exponent of a stationary ergodic sequence. The estimator can be considered as a bootstrap version of the classical Hill estimator. A simulation study shows that the method yields reasonable estimates.
Hou, Aiqiang; Zhou, Xiaojun; Wang, Ting; Wang, Fan
2018-05-15
Achieving both bond dissociation energies (BDEs) and their trends for the R-X bonds with R = Me, Et, i-Pr, and t-Bu reliably is nontrivial. Density functional theory (DFT) methods with traditional exchange-correlation functionals usually have large error on both the BDEs and their trends. The M06-2X functional gives rise to reliable BDEs, but the relative BDEs are determined not as accurately. More demanding approaches such as some double-hybrid functionals, for example, G4 and CCSD(T), are generally required to achieve the BDEs and their trends reliably. The fixed-node diffusion quantum Monte Carlo method (FN-DMC) is employed to calculated BDEs of these R-X bonds with X = H, CH 3 , OCH 3 , OH, and F in this work. The single Slater-Jastrow wave function is adopted as trial wave function, and pseudopotentials (PPs) developed for quantum Monte Carlo calculations are chosen. Error of these PPs is modest in wave function methods, while it is more pronounced in DFT calculations. Our results show that accuracy of BDEs with FN-DMC is similar to that of M06-2X and G4, and trends in BDEs are calculated more reliably than M06-2X. Both BDEs and trends in BDEs of these bonds are reproduced reasonably with FN-DMC. FN-DMC using PPs can thus be applied to BDEs and their trends of similar chemical bonds in larger molecules reliably and provide valuable information on properties of these molecules.
Quantum Monte Carlo formulation of volume polarization in dielectric continuum theory
Amovilli, Claudio; Filippi, Claudia; Floris, Franca Maria
2008-01-01
We present a novel formulation based on quantum Monte Carlo techniques for the treatment of volume polarization due to quantum mechanical penetration of the solute charge density in the solvent domain. The method allows to accurately solve Poisson’s equation of the solvation model coupled with the
Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models
Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun
2018-03-01
The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.
Quantum Monte Carlo simulations for high-Tc superconductors
International Nuclear Information System (INIS)
Muramatsu, A.; Dopf, G.; Wagner, J.; Dieterich, P.; Hanke, W.
1992-01-01
Quantum Monte Carlo simulations for a multi-band model of high-Tc superconductors are reviewed with special emphasis on the comparison of different observabels with experiments. It is shown that a give parameter set of the three-band Hubbard model leads to a consistent description of normal-state propteries as well as pairing correlation function for the copper-oxide superconductors as a function of doping and temperature. (orig.)
Quantum Monte Carlo Calculations Applied to Magnetic Molecules
International Nuclear Information System (INIS)
Larry Engelhardt
2006-01-01
We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these
Quantum Monte Carlo Calculations Applied to Magnetic Molecules
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Larry [Iowa State Univ., Ames, IA (United States)
2006-01-01
We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these
Combinatorial nuclear level density by a Monte Carlo method
International Nuclear Information System (INIS)
Cerf, N.
1994-01-01
We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations
Alternative implementations of the Monte Carlo power method
International Nuclear Information System (INIS)
Blomquist, R.N.; Gelbard, E.M.
2002-01-01
We compare nominal efficiencies, i.e. variances in power shapes for equal running time, of different versions of the Monte Carlo eigenvalue computation, as applied to criticality safety analysis calculations. The two main methods considered here are ''conventional'' Monte Carlo and the superhistory method, and both are used in criticality safety codes. Within each of these major methods, different variants are available for the main steps of the basic Monte Carlo algorithm. Thus, for example, different treatments of the fission process may vary in the extent to which they follow, in analog fashion, the details of real-world fission, or may vary in details of the methods by which they choose next-generation source sites. In general the same options are available in both the superhistory method and conventional Monte Carlo, but there seems not to have been much examination of the special properties of the two major methods and their minor variants. We find, first, that the superhistory method is just as efficient as conventional Monte Carlo and, secondly, that use of different variants of the basic algorithms may, in special cases, have a surprisingly large effect on Monte Carlo computational efficiency
Study of the Transition Flow Regime using Monte Carlo Methods
Hassan, H. A.
1999-01-01
This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Engineering local optimality in quantum Monte Carlo algorithms
Pollet, Lode; Van Houcke, Kris; Rombouts, Stefan M. A.
2007-08-01
Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of bosonic models. Both algorithms work in the grand-canonical ensemble and can have a winding number larger than zero. However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide numerical examples for the soft-core Bose-Hubbard model and various spin- S models.
A residual Monte Carlo method for discrete thermal radiative diffusion
International Nuclear Information System (INIS)
Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.
2003-01-01
Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems
An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism
Energy Technology Data Exchange (ETDEWEB)
Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria); Nedjalkov, M. [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria); Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien (Austria); Dimov, I. [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria)
2015-05-12
The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H{sub 2} molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future.
An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism
International Nuclear Information System (INIS)
Sellier, J.M.; Nedjalkov, M.; Dimov, I.
2015-01-01
The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H 2 molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future
Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations
Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias
2015-01-01
Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.
Quantum Monte Carlo for electronic structure: Recent developments and applications
Energy Technology Data Exchange (ETDEWEB)
Rodriquez, Maria Milagos Soto [Lawrence Berkeley Lab. and Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
1995-04-01
Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C_{2}H and C_{2}H_{2}. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is
Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data
International Nuclear Information System (INIS)
Gubernatis, J.E.; Bonca, J.; Jarrell, M.
1995-01-01
We present brief description of how methods of Bayesian inference are used to obtain real frequency information by the analytic continuation of imaginary-time quantum Monte Carlo data. We present the procedure we used, which is due to R. K. Bryan, and summarize several bottleneck issues
Improved Green’s function measurement for hybridization expansion quantum Monte Carlo
Czech Academy of Sciences Publication Activity Database
Augustinský, Pavel; Kuneš, Jan
2013-01-01
Roč. 184, č. 9 (2013), s. 2119-2126 ISSN 0010-4655 Institutional support: RVO:68378271 Keywords : continuous time quantum Monte Carlo method * Green function estimator Subject RIV: BE - Theoretical Physics Impact factor: 2.407, year: 2013
Acceleration of monte Carlo solution by conjugate gradient method
International Nuclear Information System (INIS)
Toshihisa, Yamamoto
2005-01-01
The conjugate gradient method (CG) was applied to accelerate Monte Carlo solutions in fixed source problems. The equilibrium model based formulation enables to use CG scheme as well as initial guess to maximize computational performance. This method is available to arbitrary geometry provided that the neutron source distribution in each subregion can be regarded as flat. Even if it is not the case, the method can still be used as a powerful tool to provide an initial guess very close to the converged solution. The major difference of Monte Carlo CG to deterministic CG is that residual error is estimated using Monte Carlo sampling, thus statistical error exists in the residual. This leads to a flow diagram specific to Monte Carlo-CG. Three pre-conditioners were proposed for CG scheme and the performance was compared with a simple 1-D slab heterogeneous test problem. One of them, Sparse-M option, showed an excellent performance in convergence. The performance per unit cost was improved by four times in the test problem. Although direct estimation of efficiency of the method is impossible mainly because of the strong problem-dependence of the optimized pre-conditioner in CG, the method seems to have efficient potential as a fast solution algorithm for Monte Carlo calculations. (author)
Present status of transport code development based on Monte Carlo method
International Nuclear Information System (INIS)
Nakagawa, Masayuki
1985-01-01
The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)
Monte Carlo methods for the reliability analysis of Markov systems
International Nuclear Information System (INIS)
Buslik, A.J.
1985-01-01
This paper presents Monte Carlo methods for the reliability analysis of Markov systems. Markov models are useful in treating dependencies between components. The present paper shows how the adjoint Monte Carlo method for the continuous time Markov process can be derived from the method for the discrete-time Markov process by a limiting process. The straightforward extensions to the treatment of mean unavailability (over a time interval) are given. System unavailabilities can also be estimated; this is done by making the system failed states absorbing, and not permitting repair from them. A forward Monte Carlo method is presented in which the weighting functions are related to the adjoint function. In particular, if the exact adjoint function is known then weighting factors can be constructed such that the exact answer can be obtained with a single Monte Carlo trial. Of course, if the exact adjoint function is known, there is no need to perform the Monte Carlo calculation. However, the formulation is useful since it gives insight into choices of the weight factors which will reduce the variance of the estimator
Quantum Monte Carlo studies in Hamiltonian lattice gauge theory
International Nuclear Information System (INIS)
Hamer, C.J.; Samaras, M.; Bursill, R.J.
2000-01-01
Full text: The application of Monte Carlo methods to the 'Hamiltonian' formulation of lattice gauge theory has been somewhat neglected, and lags at least ten years behind the classical Monte Carlo simulations of Euclidean lattice gauge theory. We have applied a Green's Function Monte Carlo algorithm to lattice Yang-Mills theories in the Hamiltonian formulation, combined with a 'forward-walking' technique to estimate expectation values and correlation functions. In this approach, one represents the wave function in configuration space by a discrete ensemble of random walkers, and application of the time development operator is simulated by a diffusion and branching process. The approach has been used to estimate the ground-state energy and Wilson loop values in the U(1) theory in (2+1)D, and the SU(3) Yang-Mills theory in (3+1)D. The finite-size scaling behaviour has been explored, and agrees with the predictions of effective Lagrangian theory, and weak-coupling expansions. Crude estimates of the string tension are derived, which agree with previous results at intermediate couplings; but more accurate results for larger loops will be required to establish scaling behaviour at weak couplings. A drawback to this method is that it is necessary to introduce a 'trial' or 'guiding wave function' to guide the walkers towards the most probable regions of configuration space, in order to achieve convergence and accuracy. The 'forward-walking' estimates should be independent of this guidance, but in fact for the SU(3) case they turn out to be sensitive to the choice of trial wave function. It would be preferable to use some sort of Metropolis algorithm instead to produce a correct distribution of walkers: this may point in the direction of a Path Integral Monte Carlo approach
Graphics Processing Unit Accelerated Hirsch-Fye Quantum Monte Carlo
Moore, Conrad; Abu Asal, Sameer; Rajagoplan, Kaushik; Poliakoff, David; Caprino, Joseph; Tomko, Karen; Thakur, Bhupender; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark
2012-02-01
In Dynamical Mean Field Theory and its cluster extensions, such as the Dynamic Cluster Algorithm, the bottleneck of the algorithm is solving the self-consistency equations with an impurity solver. Hirsch-Fye Quantum Monte Carlo is one of the most commonly used impurity and cluster solvers. This work implements optimizations of the algorithm, such as enabling large data re-use, suitable for the Graphics Processing Unit (GPU) architecture. The GPU's sheer number of concurrent parallel computations and large bandwidth to many shared memories takes advantage of the inherent parallelism in the Green function update and measurement routines, and can substantially improve the efficiency of the Hirsch-Fye impurity solver.
A Multivariate Time Series Method for Monte Carlo Reactor Analysis
International Nuclear Information System (INIS)
Taro Ueki
2008-01-01
A robust multivariate time series method has been established for the Monte Carlo calculation of neutron multiplication problems. The method is termed Coarse Mesh Projection Method (CMPM) and can be implemented using the coarse statistical bins for acquisition of nuclear fission source data. A novel aspect of CMPM is the combination of the general technical principle of projection pursuit in the signal processing discipline and the neutron multiplication eigenvalue problem in the nuclear engineering discipline. CMPM enables reactor physicists to accurately evaluate major eigenvalue separations of nuclear reactors with continuous energy Monte Carlo calculation. CMPM was incorporated in the MCNP Monte Carlo particle transport code of Los Alamos National Laboratory. The great advantage of CMPM over the traditional Fission Matrix method is demonstrated for the three space-dimensional modeling of the initial core of a pressurized water reactor
Monte Carlo study of quantum number retention in hadron jets
International Nuclear Information System (INIS)
Hayward, S.K.; Weiss, N.
1992-01-01
We present a Monte Carlo study in which we used weighted quantum numbers of hadron jets in an attempt to identify the parent parton of these jets. Two-jet events produced by e + e- annihilation were studied using the Lund Monte Carlo program. It was found that the sign of the charge of the leading parton could be determined in a majority of events and that the quark jet could be distinguished from the antiquark jet in a majority of events containing baryons. A careful selection of a subset of the events by making cuts on the value of these weighted quantum numbers increased significantly the accuracy with which both the charge and the baryon number of the leading parton could be determined. Some success was also made in differentiating light-quark from heavy-quark events and in determining the leading quark flavor in the light-quark events. Unfortunately quantum number retention does not differentiate gluon jets from quark jets. The consequences of this for three-jet events and for jet identification in other reactions is discussed
Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-01
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Monte Carlo burnup codes acceleration using the correlated sampling method
International Nuclear Information System (INIS)
Dieudonne, C.
2013-01-01
For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step. In this document we present an original methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time we develop a theoretical model to study the features of the correlated sampling method to understand its effects on depletion calculations. In a third time the implementation of this method in the TRIPOLI-4 code will be discussed, as well as the precise calculation scheme used to bring important speed-up of the depletion calculation. We will begin to validate and optimize the perturbed depletion scheme with the calculation of a REP-like fuel cell depletion. Then this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes. (author) [fr
Improved Monte Carlo Method for PSA Uncertainty Analysis
International Nuclear Information System (INIS)
Choi, Jongsoo
2016-01-01
The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard
Improved Monte Carlo Method for PSA Uncertainty Analysis
Energy Technology Data Exchange (ETDEWEB)
Choi, Jongsoo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2016-10-15
The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard.
Proton therapy analysis using the Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Noshad, Houshyar [Center for Theoretical Physics and Mathematics, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)]. E-mail: hnoshad@aeoi.org.ir; Givechi, Nasim [Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)
2005-10-01
The range and straggling data obtained from the transport of ions in matter (TRIM) computer program were used to determine the trajectories of monoenergetic 60 MeV protons in muscle tissue by using the Monte Carlo technique. The appropriate profile for the shape of a proton pencil beam in proton therapy as well as the dose deposited in the tissue were computed. The good agreements between our results as compared with the corresponding experimental values are presented here to show the reliability of our Monte Carlo method.
Quasi-Monte Carlo methods for lattice systems. A first look
Energy Technology Data Exchange (ETDEWEB)
Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Leovey, H.; Griewank, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Nube, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Mueller-Preussker, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2013-02-15
We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N{sup -1/2}, where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N{sup -1}. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
Monte Carlo methods of PageRank computation
Litvak, Nelli
2004-01-01
We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink
Particle-transport simulation with the Monte Carlo method
International Nuclear Information System (INIS)
Carter, L.L.; Cashwell, E.D.
1975-01-01
Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)
Continuous energy Monte Carlo method based lattice homogeinzation
International Nuclear Information System (INIS)
Li Mancang; Yao Dong; Wang Kan
2014-01-01
Based on the Monte Carlo code MCNP, the continuous energy Monte Carlo multi-group constants generation code MCMC has been developed. The track length scheme has been used as the foundation of cross section generation. The scattering matrix and Legendre components require special techniques, and the scattering event method has been proposed to solve this problem. Three methods have been developed to calculate the diffusion coefficients for diffusion reactor core codes and the Legendre method has been applied in MCMC. To the satisfaction of the equivalence theory, the general equivalence theory (GET) and the superhomogenization method (SPH) have been applied to the Monte Carlo method based group constants. The super equivalence method (SPE) has been proposed to improve the equivalence. GET, SPH and SPE have been implemented into MCMC. The numerical results showed that generating the homogenization multi-group constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data library can be used for a wide range of applications due to the versatility. The MCMC scheme can be seen as a potential alternative to the widely used deterministic lattice codes. (authors)
Monte Carlo simulations of quantum systems on massively parallel supercomputers
International Nuclear Information System (INIS)
Ding, H.Q.
1993-01-01
A large class of quantum physics applications uses operator representations that are discrete integers by nature. This class includes magnetic properties of solids, interacting bosons modeling superfluids and Cooper pairs in superconductors, and Hubbard models for strongly correlated electrons systems. This kind of application typically uses integer data representations and the resulting algorithms are dominated entirely by integer operations. The authors implemented an efficient algorithm for one such application on the Intel Touchstone Delta and iPSC/860. The algorithm uses a multispin coding technique which allows significant data compactification and efficient vectorization of Monte Carlo updates. The algorithm regularly switches between two data decompositions, corresponding naturally to different Monte Carlo updating processes and observable measurements such that only nearest-neighbor communications are needed within a given decomposition. On 128 nodes of Intel Delta, this algorithm updates 183 million spins per second (compared to 21 million on CM-2 and 6.2 million on a Cray Y-MP). A systematic performance analysis shows a better than 90% efficiency in the parallel implementation
The Hybrid Monte Carlo (HMC) method and dynamic fermions
International Nuclear Information System (INIS)
Amaral, Marcia G. do
1994-01-01
Nevertheless the Monte Carlo method has been extensively used in the simulation of many types of theories, the successful application has been established only for models containing boson fields. With the present computer generation, the development of faster and efficient algorithms became necessary and urgent. This paper studies the HMC and the dynamic fermions
Monte Carlo method for magnetic impurities in metals
Hirsch, J. E.; Fye, R. M.
1986-01-01
The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.
Markov chain Monte Carlo methods in radiotherapy treatment planning
International Nuclear Information System (INIS)
Hugtenburg, R.P.
2001-01-01
The Markov chain method can be used to incorporate measured data in Monte Carlo based radiotherapy treatment planning. This paper shows that convergence to the measured data, within the target precision, is achievable. Relative output factors for blocked fields and oblique beams are shown to compare well with independent measurements according to the same criterion. (orig.)
Multiple-time-stepping generalized hybrid Monte Carlo methods
Energy Technology Data Exchange (ETDEWEB)
Escribano, Bruno, E-mail: bescribano@bcamath.org [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); Akhmatskaya, Elena [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Reich, Sebastian [Universität Potsdam, Institut für Mathematik, D-14469 Potsdam (Germany); Azpiroz, Jon M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, Donostia (Spain)
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.
Extending the alias Monte Carlo sampling method to general distributions
International Nuclear Information System (INIS)
Edwards, A.L.; Rathkopf, J.A.; Smidt, R.K.
1991-01-01
The alias method is a Monte Carlo sampling technique that offers significant advantages over more traditional methods. It equals the accuracy of table lookup and the speed of equal probable bins. The original formulation of this method sampled from discrete distributions and was easily extended to histogram distributions. We have extended the method further to applications more germane to Monte Carlo particle transport codes: continuous distributions. This paper presents the alias method as originally derived and our extensions to simple continuous distributions represented by piecewise linear functions. We also present a method to interpolate accurately between distributions tabulated at points other than the point of interest. We present timing studies that demonstrate the method's increased efficiency over table lookup and show further speedup achieved through vectorization. 6 refs., 12 figs., 2 tabs
Extracting the Single-Particle Gap in Carbon Nanotubes with Lattice Quantum Monte Carlo
Directory of Open Access Journals (Sweden)
Berkowitz Evan
2018-01-01
Full Text Available We show how lattice Quantum Monte Carlo simulations can be used to calculate electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path integral formalism and use methods developed within the lattice QCD community for our numerical work and compare our results to empirical data of the Anti-Ferromagnetic Mott Insulating gap in large diameter tubes.
Magnetism of iron and nickel from rotationally invariant Hirsch-Fye quantum Monte Carlo calculations
Belozerov, A. S.; Leonov, I.; Anisimov, V. I.
2013-03-01
We present a rotationally invariant Hirsch-Fye quantum Monte Carlo algorithm in which the spin rotational invariance of Hund's exchange is approximated by averaging over all possible directions of the spin quantization axis. We employ this technique to perform benchmark calculations for the two- and three-band Hubbard models on the infinite-dimensional Bethe lattice. Our results agree quantitatively well with those obtained using the continuous-time quantum Monte Carlo method with rotationally invariant Coulomb interaction. The proposed approach is employed to compute the electronic and magnetic properties of paramagnetic α iron and nickel. The obtained Curie temperatures agree well with experiment. Our results indicate that the magnetic transition temperature is significantly overestimated by using the density-density type of Coulomb interaction.
Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Departments of Physics and Astronomy, University College London, Thomas Young Center, London Centre for Nanotechnology, London WC1E 6BT (United Kingdom); Cohen, R. E. [Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015 (United States); Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333 (Germany); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)
2016-08-14
We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.
Improvement of correlated sampling Monte Carlo methods for reactivity calculations
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Asaoka, Takumi
1978-01-01
Two correlated Monte Carlo methods, the similar flight path and the identical flight path methods, have been improved to evaluate up to the second order change of the reactivity perturbation. Secondary fission neutrons produced by neutrons having passed through perturbed regions in both unperturbed and perturbed systems are followed in a way to have a strong correlation between secondary neutrons in both the systems. These techniques are incorporated into the general purpose Monte Carlo code MORSE, so as to be able to estimate also the statistical error of the calculated reactivity change. The control rod worths measured in the FCA V-3 assembly are analyzed with the present techniques, which are shown to predict the measured values within the standard deviations. The identical flight path method has revealed itself more useful than the similar flight path method for the analysis of the control rod worth. (auth.)
Superalloy design - A Monte Carlo constrained optimization method
CSIR Research Space (South Africa)
Stander, CM
1996-01-01
Full Text Available optimization method C. M. Stander Division of Materials Science and Technology, CSIR, PO Box 395, Pretoria, Republic of South Africa Received 74 March 1996; accepted 24 June 1996 A method, based on Monte Carlo constrained... successful hit, i.e. when Liow < LMP,,, < Lhiph, and for all the properties, Pj?, < P, < Pi@?. If successful this hit falls within the ROA. Repeat steps 4 and 5 to find at least ten (or more) successful hits with values...
Monte Carlo Methods in ICF (LIRPP Vol. 13)
Zimmerman, George B.
2016-10-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved SOX in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
Development of ray tracing visualization program by Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro
1997-09-01
Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)
Uniform distribution and quasi-Monte Carlo methods discrepancy, integration and applications
Kritzer, Peter; Pillichshammer, Friedrich; Winterhof, Arne
2014-01-01
The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology.
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids
Energy Technology Data Exchange (ETDEWEB)
Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morales, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-11-10
We propose a method of implementing projected wave functions for second-quantized auxiliary-field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. As such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids
International Nuclear Information System (INIS)
Chang, C.; Morales, M. A.
2016-01-01
We propose a method of implementing projected wave functions for second-quantized auxiliary-field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. As such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.
Calculations of pair production by Monte Carlo methods
International Nuclear Information System (INIS)
Bottcher, C.; Strayer, M.R.
1991-01-01
We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs
Difficult Sudoku Puzzles Created by Replica Exchange Monte Carlo Method
Watanabe, Hiroshi
2013-01-01
An algorithm to create difficult Sudoku puzzles is proposed. An Ising spin-glass like Hamiltonian describing difficulty of puzzles is defined, and difficult puzzles are created by minimizing the energy of the Hamiltonian. We adopt the replica exchange Monte Carlo method with simultaneous temperature adjustments to search lower energy states efficiently, and we succeed in creating a puzzle which is the world hardest ever created in our definition, to our best knowledge. (Added on Mar. 11, the ...
POWER ANALYSIS FOR COMPLEX MEDIATIONAL DESIGNS USING MONTE CARLO METHODS
Thoemmes, Felix; MacKinnon, David P.; Reiser, Mark R.
2010-01-01
Applied researchers often include mediation effects in applications of advanced methods such as latent variable models and linear growth curve models. Guidance on how to estimate statistical power to detect mediation for these models has not yet been addressed in the literature. We describe a general framework for power analyses for complex mediational models. The approach is based on the well known technique of generating a large number of samples in a Monte Carlo study, and estimating power...
Comparison of deterministic and Monte Carlo methods in shielding design.
Oliveira, A D; Oliveira, C
2005-01-01
In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions.
Comparison of deterministic and Monte Carlo methods in shielding design
International Nuclear Information System (INIS)
Oliveira, A. D.; Oliveira, C.
2005-01-01
In shielding calculation, deterministic methods have some advantages and also some disadvantages relative to other kind of codes, such as Monte Carlo. The main advantage is the short computer time needed to find solutions while the disadvantages are related to the often-used build-up factor that is extrapolated from high to low energies or with unknown geometrical conditions, which can lead to significant errors in shielding results. The aim of this work is to investigate how good are some deterministic methods to calculating low-energy shielding, using attenuation coefficients and build-up factor corrections. Commercial software MicroShield 5.05 has been used as the deterministic code while MCNP has been used as the Monte Carlo code. Point and cylindrical sources with slab shield have been defined allowing comparison between the capability of both Monte Carlo and deterministic methods in a day-by-day shielding calculation using sensitivity analysis of significant parameters, such as energy and geometrical conditions. (authors)
Monte Carlo method to characterize radioactive waste drums
International Nuclear Information System (INIS)
Lima, Josenilson B.; Dellamano, Jose C.; Potiens Junior, Ademar J.
2013-01-01
Non-destructive methods for radioactive waste drums characterization have being developed in the Waste Management Department (GRR) at Nuclear and Energy Research Institute IPEN. This study was conducted as part of the radioactive wastes characterization program in order to meet specifications and acceptance criteria for final disposal imposed by regulatory control by gamma spectrometry. One of the main difficulties in the detectors calibration process is to obtain the counting efficiencies that can be solved by the use of mathematical techniques. The aim of this work was to develop a methodology to characterize drums using gamma spectrometry and Monte Carlo method. Monte Carlo is a widely used mathematical technique, which simulates the radiation transport in the medium, thus obtaining the efficiencies calibration of the detector. The equipment used in this work is a heavily shielded Hyperpure Germanium (HPGe) detector coupled with an electronic setup composed of high voltage source, amplifier and multiport multichannel analyzer and MCNP software for Monte Carlo simulation. The developing of this methodology will allow the characterization of solid radioactive wastes packed in drums and stored at GRR. (author)
International Nuclear Information System (INIS)
Reboredo, F.A.; Hood, R.Q.; Kent, P.C.
2009-01-01
We develop a formalism and present an algorithm for optimization of the trial wave-function used in fixed-node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator of the ground state probability density. We take advantage of a basic property of the walker configuration distribution generated in a DMC calculation, to (i) project-out a multi-determinant expansion of the fixed node ground state wave function and (ii) to define a cost function that relates the interacting-ground-state-fixed-node and the non-interacting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node ground-state wave function at the node generates a new trial wave function with better nodal structure and (b) we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role, allowing the nodes to adjust towards the ones of the exact many-body ground state in a simulated annealing-like process. Based on these principles, we propose a method to improve both single determinant and multi-determinant expansions of the trial wave function. The method can be generalized to other wave function forms such as pfaffians. We test the method in a model system where benchmark configuration interaction calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved. The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to the exact solutions for the model. In the optimization process we find an optimal non-interacting nodal potential of density-functional-like form whose existence was predicted in a previous publication (Phys. Rev. B 77 245110 (2008)). Tests of the method are
Kinetic Monte Carlo simulation of growth of Ge quantum dot multilayers with amorphous matrix
Energy Technology Data Exchange (ETDEWEB)
Endres, Jan, E-mail: endres.jan@gmail.com; Holý, Václav; Daniš, Stanislav [Charles University, Faculty of Mathematics and Physics (Czech Republic); Buljan, Maja [Ruđer Bošković Institute (Croatia)
2017-04-15
Kinetic Monte Carlo method is used to simulate the growth of germanium quantum dot multilayers with amorphous matrix. We modified a model for self-assembled growth of quantum dots in crystalline matrix for the case of the amorphous one. The surface morphology given as hills above the buried dots is the main driving force for the ordering of the quantum dots. In the simulations, we observed a short-range self-ordering in the lateral direction. The ordering in lateral and vertical direction depends strongly on the surface morphology, mostly on the strength how the deposited material replicates previous surfaces.
Monte Carlo study of one hole in a quantum antiferromagnet
International Nuclear Information System (INIS)
Sorella, S.
1992-01-01
Using the standard Quantum Monte Carlo technique for the Hubbard model, I present here a numerical investigation of the hole propagation in a Quantum Antiferromagnet. The calculation is very well stabilized, using selected sized systems and special use of the trial wavefunction that satisfy the close shell condition in presence of an arbitrarily weak Zeeman magnetic field, vanishing in the thermodynamic limit. In this paper the author investigates the question of vanishing or nonvanishing quasiparticle weight, in order to clarify whether the Mott insulator should behave just as conventional insulator with an upper and lower Hubbard band. By comparing the present finite size scaling with several techniques predicting a finite quasiparticle weight the data seem more consistent with a vanishing quasiparticle weight, i.e., as recently suggested by P.W. Anderson the Hubbard-Mott insulator should be characterized by non-trivial excitations which cannot be interpreted in a simple quasi-particle picture. However it cannot be excluded, based only on numerical grounds, that a very small but non vanishing quasiparticle weight should survive in the thermodynamic limit
Research on Monte Carlo improved quasi-static method for reactor space-time dynamics
International Nuclear Information System (INIS)
Xu Qi; Wang Kan; Li Shirui; Yu Ganglin
2013-01-01
With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)
Applications to shielding design and others of monte carlo method
Energy Technology Data Exchange (ETDEWEB)
Ito, Daiichiro [Mitsui Engineering and Shipbuiding Co., Ltd., Tokyo (Japan)
2001-01-01
One-dimensional or two-dimensional Sn computer code (ANISN, DOT3.5, etc.) and a point attenuation kernel integral code (QAD, etc.) have been used widely for shielding design. Application examples of monte carlo method which could follow precisely the three-dimensional configuration of shielding structure are shown as follow: (1) CASTER cask has a complex structure which consists of a large number of fuel baskets (stainless steel), neutron moderators (polyethylene rods), the body (cast iron), and cooling fin. The R-{theta} model of Sn code DOT3.5 cannot follow closely the complex form of polyethylene rods and fuel baskets. A monte carlo code MORSE is used to ascertain the calculation results of DOT3.5. The discrepancy between the calculation results of DOT3.5 and MORSE was in 10% for dose rate at distance of 1 m from the cask surface. (2) The dose rates of an iron cell at 10 cm above the floor are calculated by the code QAD and the MORSE. The reflected components of gamma ray caused by the auxiliary floor shield (lead) are analyzed by the MORSE. (3) A monte carlo code MCNP4A is used for skyshine evaluation of spent fuel carrier ship 'ROKUEIMARU'. The direct and skyshine components of gamma ray and neutron flux are estimated at each center of engine room and wheel house. The skyshine dose rate of neutron flux is 5-15 times larger than the gamma ray. (M. Suetake)
Multiscale Monte Carlo algorithms in statistical mechanics and quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Lauwers, P G
1990-12-01
Conventional Monte Carlo simulation algorithms for models in statistical mechanics and quantum field theory are afflicted by problems caused by their locality. They become highly inefficient if investigations of critical or nearly-critical systems, i.e., systems with important large scale phenomena, are undertaken. We present two types of multiscale approaches that alleveate problems of this kind: Stochastic cluster algorithms and multigrid Monte Carlo simulation algorithms. Another formidable computational problem in simulations of phenomenologically relevant field theories with fermions is the need for frequently inverting the Dirac operator. This inversion can be accelerated considerably by means of deterministic multigrid methods, very similar to the ones used for the numerical solution of differential equations. (orig.).
Cohesion energetics of carbon allotropes: Quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Shin, Hyeondeok; Kang, Sinabro; Koo, Jahyun; Lee, Hoonkyung; Kwon, Yongkyung, E-mail: ykwon@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Kim, Jeongnim, E-mail: jnkim@ornl.gov [Materials Science and Technology Division and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2014-03-21
We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp{sup 3}-bonded diamond, sp{sup 2}-bonded graphene, sp–sp{sup 2} hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon–carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here.
Cohesion Energetics of Carbon Allotropes: Quantum Monte Carlo Study
Energy Technology Data Exchange (ETDEWEB)
Shin, Hyeondeok [Konkuk University, South Korea; Kang, Sinabro [Konkuk University, South Korea; Koo, Jahyun [Konkuk University, South Korea; Lee, Hoonkyung [Konkuk University, South Korea; Kim, Jeongnim [ORNL; Kwon, Yongkyung [Konkuk University, South Korea
2014-01-01
We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp3-bonded diamond, sp2-bonded graphene, sp-sp2 hybridized graphynes, and sp-bonded carbyne. The comput- ed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values de- termined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases system- atically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of -graphyne, the most energetically- stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experi- mental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally we conclude that the cohesive energy of a newly-proposed two-dimensional carbon network can be accurately estimated with the carbon-carbon bond energies determined from the cohesive energies of graphene and three different graphynes.
Quantum Monte Carlo studies of superfluid Fermi gases
International Nuclear Information System (INIS)
Chang, S.Y.; Pandharipande, V.R.; Carlson, J.; Schmidt, K.E.
2004-01-01
We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak F . We report results for the ground-state energy, the pairing gap Δ, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak F FG . When a>0, the interaction is strong enough to form bound molecules with energy E mol . For 1/ak F > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with Δ and gas energy per particle approaching E mol /2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5 F <0.5, is discussed
The Monte Carlo method in mining nuclear geophysics: Pt. 1
International Nuclear Information System (INIS)
Burmistenko, Yu.N.; Lukhminsky, B.E.
1990-01-01
Prospects for using a new generation of neutron generators in mining geophysics are discussed. For their evaluation we use Monte Carlo computational methods with a special package of FORTRAN programs code-named MOK. Among the methods of pulsed neutron logging we discuss the method of time-dependent slowing down for the measurement of resonance neutron absorbers (mercury, tungsten, silver, gold, gadolinium, etc.) and time dependent spectral analysis of capture γ-rays (mercury). Among the neutron activation methods, we discuss the two source methods ( 252 Cf + neutron generator) and the method of spectral activation ratio for bauxites ( 27 Al/ 27 Mg or 27 Al/ 24m Na). (author)
Low field Monte-Carlo calculations in heterojunctions and quantum wells
Hall, van P.J.; Rooij, de R.; Wolter, J.H.
1990-01-01
We present results of low-field Monte-Carlo calculations and compare them with experimental results. The negative absolute mobility of minority electrons in p-type quantum wells, as found in recent experiments, is described quite well.
Monte Carlo methods for medical physics a practical introduction
Schuemann, Jan; Paganetti, Harald
2018-01-01
The Monte Carlo (MC) method, established as the gold standard to predict results of physical processes, is now fast becoming a routine clinical tool for applications that range from quality control to treatment verification. This book provides a basic understanding of the fundamental principles and limitations of the MC method in the interpretation and validation of results for various scenarios. It shows how user-friendly and speed optimized MC codes can achieve online image processing or dose calculations in a clinical setting. It introduces this essential method with emphasis on applications in hardware design and testing, radiological imaging, radiation therapy, and radiobiology.
Advanced Markov chain Monte Carlo methods learning from past samples
Liang, Faming; Carrol, Raymond J
2010-01-01
This book provides comprehensive coverage of simulation of complex systems using Monte Carlo methods. Developing algorithms that are immune to the local trap problem has long been considered as the most important topic in MCMC research. Various advanced MCMC algorithms which address this problem have been developed include, the modified Gibbs sampler, the methods based on auxiliary variables and the methods making use of past samples. The focus of this book is on the algorithms that make use of past samples. This book includes the multicanonical algorithm, dynamic weighting, dynamically weight
Novel extrapolation method in the Monte Carlo shell model
International Nuclear Information System (INIS)
Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio
2010-01-01
We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pf-shell calculation of 56 Ni, and the applicability of the method to a system beyond the current limit of exact diagonalization is shown for the pf+g 9/2 -shell calculation of 64 Ge.
Monte Carlo methods in electron transport problems. Pt. 1
International Nuclear Information System (INIS)
Cleri, F.
1989-01-01
The condensed-history Monte Carlo method for charged particles transport is reviewed and discussed starting from a general form of the Boltzmann equation (Part I). The physics of the electronic interactions, together with some pedagogic example will be introduced in the part II. The lecture is directed to potential users of the method, for which it can be a useful introduction to the subject matter, and wants to establish the basis of the work on the computer code RECORD, which is at present in a developing stage
Reliability analysis of neutron transport simulation using Monte Carlo method
International Nuclear Information System (INIS)
Souza, Bismarck A. de; Borges, Jose C.
1995-01-01
This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
'Odontologic dosimetric card' experiments and simulations using Monte Carlo methods
International Nuclear Information System (INIS)
Menezes, C.J.M.; Lima, R. de A.; Peixoto, J.E.; Vieira, J.W.
2008-01-01
The techniques for data processing, combined with the development of fast and more powerful computers, makes the Monte Carlo methods one of the most widely used tools in the radiation transport simulation. For applications in diagnostic radiology, this method generally uses anthropomorphic phantoms to evaluate the absorbed dose to patients during exposure. In this paper, some Monte Carlo techniques were used to simulation of a testing device designed for intra-oral X-ray equipment performance evaluation called Odontologic Dosimetric Card (CDO of 'Cartao Dosimetrico Odontologico' in Portuguese) for different thermoluminescent detectors. This paper used two computational models of exposition RXD/EGS4 and CDO/EGS4. In the first model, the simulation results are compared with experimental data obtained in the similar conditions. The second model, it presents the same characteristics of the testing device studied (CDO). For the irradiations, the X-ray spectra were generated by the IPEM report number 78, spectrum processor. The attenuated spectrum was obtained for IEC 61267 qualities and various additional filters for a Pantak 320 X-ray industrial equipment. The results obtained for the study of the copper filters used in the determination of the kVp were compared with experimental data, validating the model proposed for the characterization of the CDO. The results shower of the CDO will be utilized in quality assurance programs in order to guarantee that the equipment fulfill the requirements of the Norm SVS No. 453/98 MS (Brazil) 'Directives of Radiation Protection in Medical and Dental Radiodiagnostic'. We conclude that the EGS4 is a suitable code Monte Carlo to simulate thermoluminescent dosimeters and experimental procedures employed in the routine of the quality control laboratory in diagnostic radiology. (author)
Optimization of sequential decisions by least squares Monte Carlo method
DEFF Research Database (Denmark)
Nishijima, Kazuyoshi; Anders, Annett
change adaptation measures, and evacuation of people and assets in the face of an emerging natural hazard event. Focusing on the last example, an efficient solution scheme is proposed by Anders and Nishijima (2011). The proposed solution scheme takes basis in the least squares Monte Carlo method, which...... is proposed by Longstaff and Schwartz (2001) for pricing of American options. The present paper formulates the decision problem in a more general manner and explains how the solution scheme proposed by Anders and Nishijima (2011) is implemented for the optimization of the formulated decision problem...
Advanced Monte Carlo methods for thermal radiation transport
Wollaber, Allan B.
During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more
Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.
Energy Technology Data Exchange (ETDEWEB)
Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L
2008-10-01
Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.
Condensed history Monte Carlo methods for photon transport problems
International Nuclear Information System (INIS)
Bhan, Katherine; Spanier, Jerome
2007-01-01
We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte Carlo algorithms. These methods - called Condensed History (CH) methods - have been very successfully used to model the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of the most promising of the CH models - one based on satisfying certain similarity relations and the second making use of a scattering phase function that permits only discrete directional changes - can be developed using these approaches. The main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations and suggest that CH models should play a useful role in modeling light-tissue interactions
International Nuclear Information System (INIS)
Martin, William R.; Brown, Forrest B.
2001-01-01
We present an alternative Monte Carlo method for solving the coupled equations of radiation transport and material energy. This method is based on incorporating the analytical solution to the material energy equation directly into the Monte Carlo simulation for the radiation intensity. This method, which we call the Analytical Monte Carlo (AMC) method, differs from the well known Implicit Monte Carlo (IMC) method of Fleck and Cummings because there is no discretization of the material energy equation since it is solved as a by-product of the Monte Carlo simulation of the transport equation. Our method also differs from the method recently proposed by Ahrens and Larsen since they use Monte Carlo to solve both equations, while we are solving only the radiation transport equation with Monte Carlo, albeit with effective sources and cross sections to represent the emission sources. Our method bears some similarity to a method developed and implemented by Carter and Forest nearly three decades ago, but there are substantive differences. We have implemented our method in a simple zero-dimensional Monte Carlo code to test the feasibility of the method, and the preliminary results are very promising, justifying further extension to more realistic geometries. (authors)
Stabilizing canonical-ensemble calculations in the auxiliary-field Monte Carlo method
Gilbreth, C. N.; Alhassid, Y.
2015-03-01
Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.
Many-body optimization using an ab initio monte carlo method.
Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J
2003-01-01
Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.
International Nuclear Information System (INIS)
Molayem, M.; Tayebi-Rad, Gh.; Esmaeli, L.; Namiranian, A.; Fouladvand, M. E.; Neek-Amal, M.
2006-01-01
Using the diffusion quantum monte Carlo method, the ground state energy of an Hydrogen atom confined in a carbon nano tube and a C60 molecule is calculated. For Hydrogen atom confined in small diameter tubes, the ground state energy shows significant deviation from a free Hydrogen atom, while with increasing the diameter this deviation tends to zero.
Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo.
Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W
2016-03-07
Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree-Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.
Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Vigor, W. A.; Bearpark, M. J. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Spencer, J. S. [Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thom, A. J. W. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom)
2016-03-07
Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree–Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.
Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems
Suwa, Hidemaro
2013-03-01
We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad
Crop canopy BRDF simulation and analysis using Monte Carlo method
Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.
2006-01-01
This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
A simple eigenfunction convergence acceleration method for Monte Carlo
International Nuclear Information System (INIS)
Booth, Thomas E.
2011-01-01
Monte Carlo transport codes typically use a power iteration method to obtain the fundamental eigenfunction. The standard convergence rate for the power iteration method is the ratio of the first two eigenvalues, that is, k_2/k_1. Modifications to the power method have accelerated the convergence by explicitly calculating the subdominant eigenfunctions as well as the fundamental. Calculating the subdominant eigenfunctions requires using particles of negative and positive weights and appropriately canceling the negative and positive weight particles. Incorporating both negative weights and a ± weight cancellation requires a significant change to current transport codes. This paper presents an alternative convergence acceleration method that does not require modifying the transport codes to deal with the problems associated with tracking and cancelling particles of ± weights. Instead, only positive weights are used in the acceleration method. (author)
Sign Learning Kink-based (SiLK) Quantum Monte Carlo for molecular systems
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiaoyao [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Hall, Randall W. [Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901 (United States); Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Löffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Kowalski, Karol [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Bhaskaran-Nair, Kiran; Jarrell, Mark; Moreno, Juana [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
2016-01-07
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H{sub 2}O, N{sub 2}, and F{sub 2} molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.
Sign Learning Kink-based (SiLK) Quantum Monte Carlo for molecular systems
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiaoyao [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA; Hall, Randall W. [Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, USA; Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA; Löffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA; Kowalski, Karol [William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Bhaskaran-Nair, Kiran [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA; Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA; Jarrell, Mark [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA; Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA; Moreno, Juana [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA; Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
2016-01-07
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H2O, N2, and F2 molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.
Sign Learning Kink-based (SiLK) Quantum Monte Carlo for molecular systems
International Nuclear Information System (INIS)
Ma, Xiaoyao; Hall, Randall W.; Löffler, Frank; Kowalski, Karol; Bhaskaran-Nair, Kiran; Jarrell, Mark; Moreno, Juana
2016-01-01
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H 2 O, N 2 , and F 2 molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem
Research on Monte Carlo simulation method of industry CT system
International Nuclear Information System (INIS)
Li Junli; Zeng Zhi; Qui Rui; Wu Zhen; Li Chunyan
2010-01-01
There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)
Quantum Monte Carlo and the equation of state of liquid 3He
International Nuclear Information System (INIS)
Panoff, R.M.
1987-01-01
The author briefly reviews the present status of Monte Carlo technology as it applies to the study of the ground-state properties of strongly-interacting many-fermion systems in general, and to liquid 3 He at zero temperature in particular. Variational Monte Carlo methods are reviewed and the model many-body problem to be tackled is introduced. He outlines the domain Green's function Monte Carlo method with mirror potentials providing a coherent framework for discussing solutions to the fermion problem. He presents results for the zero-temperature equation of state of 3 He, along with other ground-state properties derived from the many-body wave function
Hybrid Monte-Carlo method for ICF calculations
International Nuclear Information System (INIS)
Clouet, J.F.; Samba, G.
2003-01-01
) conduction and ray-tracing for laser description. Radiation transport is usually solved by a Monte-Carlo method. In coupling diffusion approximation and transport description, the difficult part comes from the need for an implicit discretization of the emission-absorption terms: this problem was solved by using the symbolic Monte-Carlo method. This means that at each step of the simulation a matrix is computed by a Monte-Carlo method which accounts for the radiation energy exchange between the cells. Because of time step limitation by hydrodynamic motion, energy exchange is limited to a small number of cells and the matrix remains sparse. This matrix is added to usual diffusion matrix for thermal and radiative conductions: finally we arrive at a non-symmetric linear system to invert. A generalized Marshak condition describe the coupling between transport and diffusion. In this paper we will present the principles of the method and numerical simulation of an ICF hohlraum. We shall illustrate the benefits of the method by comparing the results with full implicit Monte-Carlo calculations. In particular we shall show how the spectral cut-off evolves during the propagation of the radiative front in the gold wall. Several issues are still to be addressed (robust algorithm for spectral cut- off calculation, coupling with ALE capabilities): we shall briefly discuss these problems. (authors)
Modelling a gamma irradiation process using the Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Soares, Gabriela A.; Pereira, Marcio T., E-mail: gas@cdtn.br, E-mail: mtp@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2011-07-01
In gamma irradiation service it is of great importance the evaluation of absorbed dose in order to guarantee the service quality. When physical structure and human resources are not available for performing dosimetry in each product irradiated, the appliance of mathematic models may be a solution. Through this, the prediction of the delivered dose in a specific product, irradiated in a specific position and during a certain period of time becomes possible, if validated with dosimetry tests. At the gamma irradiation facility of CDTN, equipped with a Cobalt-60 source, the Monte Carlo method was applied to perform simulations of products irradiations and the results were compared with Fricke dosimeters irradiated under the same conditions of the simulations. The first obtained results showed applicability of this method, with a linear relation between simulation and experimental results. (author)
Radiative heat transfer by the Monte Carlo method
Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko
1995-01-01
This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering
Modelling a gamma irradiation process using the Monte Carlo method
International Nuclear Information System (INIS)
Soares, Gabriela A.; Pereira, Marcio T.
2011-01-01
In gamma irradiation service it is of great importance the evaluation of absorbed dose in order to guarantee the service quality. When physical structure and human resources are not available for performing dosimetry in each product irradiated, the appliance of mathematic models may be a solution. Through this, the prediction of the delivered dose in a specific product, irradiated in a specific position and during a certain period of time becomes possible, if validated with dosimetry tests. At the gamma irradiation facility of CDTN, equipped with a Cobalt-60 source, the Monte Carlo method was applied to perform simulations of products irradiations and the results were compared with Fricke dosimeters irradiated under the same conditions of the simulations. The first obtained results showed applicability of this method, with a linear relation between simulation and experimental results. (author)
Interacting multiagent systems kinetic equations and Monte Carlo methods
Pareschi, Lorenzo
2014-01-01
The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough number of individuals. Examples of such systems are interacting agents in a financial market, potential voters during political elections, or groups of animals with a tendency to flock or herd. Among other possible approaches, this book provides a step-by-step introduction to the mathematical modelling based on a mesoscopic description and the construction of efficient simulation algorithms by Monte Carlo methods. The ar...
Optimal mesh hierarchies in Multilevel Monte Carlo methods
Von Schwerin, Erik
2016-01-08
I will discuss how to choose optimal mesh hierarchies in Multilevel Monte Carlo (MLMC) simulations when computing the expected value of a quantity of interest depending on the solution of, for example, an Ito stochastic differential equation or a partial differential equation with stochastic data. I will consider numerical schemes based on uniform discretization methods with general approximation orders and computational costs. I will compare optimized geometric and non-geometric hierarchies and discuss how enforcing some domain constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. I will also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. This talk presents joint work with N.Collier, A.-L.Haji-Ali, F. Nobile, and R. Tempone.
Optimal mesh hierarchies in Multilevel Monte Carlo methods
Von Schwerin, Erik
2016-01-01
I will discuss how to choose optimal mesh hierarchies in Multilevel Monte Carlo (MLMC) simulations when computing the expected value of a quantity of interest depending on the solution of, for example, an Ito stochastic differential equation or a partial differential equation with stochastic data. I will consider numerical schemes based on uniform discretization methods with general approximation orders and computational costs. I will compare optimized geometric and non-geometric hierarchies and discuss how enforcing some domain constraints on parameters of MLMC hierarchies affects the optimality of these hierarchies. I will also discuss the optimal tolerance splitting between the bias and the statistical error contributions and its asymptotic behavior. This talk presents joint work with N.Collier, A.-L.Haji-Ali, F. Nobile, and R. Tempone.
Kohn-Sham orbitals and potentials from quantum Monte Carlo molecular densities
International Nuclear Information System (INIS)
Varsano, Daniele; Barborini, Matteo; Guidoni, Leonardo
2014-01-01
In this work we show the possibility to extract Kohn-Sham orbitals, orbital energies, and exchange correlation potentials from accurate Quantum Monte Carlo (QMC) densities for atoms (He, Be, Ne) and molecules (H 2 , Be 2 , H 2 O, and C 2 H 4 ). The Variational Monte Carlo (VMC) densities based on accurate Jastrow Antisymmetrised Geminal Power wave functions are calculated through different estimators. Using these reference densities, we extract the Kohn-Sham quantities with the method developed by Zhao, Morrison, and Parr (ZMP) [Phys. Rev. A 50, 2138 (1994)]. We compare these extracted quantities with those obtained form CISD densities and with other data reported in the literature, finding a good agreement between VMC and other high-level quantum chemistry methods. Our results demonstrate the applicability of the ZMP procedure to QMC molecular densities, that can be used for the testing and development of improved functionals and for the implementation of embedding schemes based on QMC and Density Functional Theory
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
Modeling granular phosphor screens by Monte Carlo methods
International Nuclear Information System (INIS)
Liaparinos, Panagiotis F.; Kandarakis, Ioannis S.; Cavouras, Dionisis A.; Delis, Harry B.; Panayiotakis, George S.
2006-01-01
The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phosphor screen imaging performance. However, it was found that, depending on the experimental technique and fitting methodology, the optical parameters of a specific phosphor material varied within a wide range of values, i.e., variations of light scattering with respect to light absorption coefficients were often observed for the same phosphor material. In this study, x-ray and light transport within granular phosphor materials was studied by developing a computational model using Monte Carlo methods. The model was based on the intrinsic physical characteristics of the phosphor. Input values required to feed the model can be easily obtained from tabulated data. The complex refractive index was introduced and microscopic probabilities for light interactions were produced, using Mie scattering theory. Model validation was carried out by comparing model results on x-ray and light parameters (x-ray absorption, statistical fluctuations in the x-ray to light conversion process, number of emitted light photons, output light spatial distribution) with previous published experimental data on Gd 2 O 2 S:Tb phosphor material (Kodak Min-R screen). Results showed the dependence of the modulation transfer function (MTF) on phosphor grain size and material packing density. It was predicted that granular Gd 2 O 2 S:Tb screens of high packing density and small grain size may exhibit considerably better resolution and light emission properties than the conventional Gd 2 O 2 S:Tb screens, under similar conditions (x-ray incident energy, screen thickness)
Directory of Open Access Journals (Sweden)
José Luiz Ferreira Martins
2011-09-01
Full Text Available O objetivo deste artigo é o de analisar a viabilidade da utilização do método de Monte Carlo para estimar a produtividade na soldagem de tubulações industriais de aço carbono com base em amostras pequenas. O estudo foi realizado através de uma análise de uma amostra de referência contendo dados de produtividade de 160 juntas soldadas pelo processo Eletrodo Revestido na REDUC (refinaria de Duque de Caxias, utilizando o software ControlTub 5.3. A partir desses dados foram retiradas de forma aleatória, amostras com, respectivamente, 10, 15 e 20 elementos e executadas simulações pelo método de Monte Carlo. Comparando-se os resultados da amostra com 160 elementos e os dados gerados por simulação se observa que bons resultados podem ser obtidos usando o método de Monte Carlo para estimativa da produtividade da soldagem. Por outro lado, na indústria da construção brasileira o valor da média de produtividade é normalmente usado como um indicador de produtividade e é baseado em dados históricos de outros projetos coletados e avaliados somente após a conclusão do projeto, o que é uma limitação. Este artigo apresenta uma ferramenta para avaliação da execução em tempo real, permitindo ajustes nas estimativas e monitoramento de produtividade durante o empreendimento. Da mesma forma, em licitações, orçamentos e estimativas de prazo, a utilização desta técnica permite a adoção de outras estimativas diferentes da produtividade média, que é comumente usada e como alternativa, se sugerem três critérios: produtividade otimista, média e pessimista.The aim of this article is to analyze the feasibility of using Monte Carlo method to estimate productivity in industrial pipes welding of carbon steel based on small samples. The study was carried out through an analysis of a reference sample containing productivity data of 160 welded joints by SMAW process in REDUC (Duque de Caxias Refinery, using ControlTub 5.3 software
Fish, Laurel J.; Halcoussis, Dennis; Phillips, G. Michael
2017-01-01
The Monte Carlo method and related multiple imputation methods are traditionally used in math, physics and science to estimate and analyze data and are now becoming standard tools in analyzing business and financial problems. However, few sources explain the application of the Monte Carlo method for individuals and business professionals who are…
Usefulness of the Monte Carlo method in reliability calculations
International Nuclear Information System (INIS)
Lanore, J.M.; Kalli, H.
1977-01-01
Three examples of reliability Monte Carlo programs developed in the LEP (Laboratory for Radiation Shielding Studies in the Nuclear Research Center at Saclay) are presented. First, an uncertainty analysis is given for a simplified spray system; a Monte Carlo program PATREC-MC has been written to solve the problem with the system components given in the fault tree representation. The second program MONARC 2 has been written to solve the problem of complex systems reliability by the Monte Carlo simulation, here again the system (a residual heat removal system) is in the fault tree representation. Third, the Monte Carlo program MONARC was used instead of the Markov diagram to solve the simulation problem of an electric power supply including two nets and two stand-by diesels
International Nuclear Information System (INIS)
Yamamoto, Toshihiro
2014-01-01
Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed
Safety assessment of infrastructures using a new Bayesian Monte Carlo method
Rajabali Nejad, Mohammadreza; Demirbilek, Z.
2011-01-01
A recently developed Bayesian Monte Carlo (BMC) method and its application to safety assessment of structures are described in this paper. We use a one-dimensional BMC method that was proposed in 2009 by Rajabalinejad in order to develop a weighted logical dependence between successive Monte Carlo
Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G
2013-01-07
We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.
Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation
Haji Ali, Abdul Lateef; Tempone, Raul
2017-01-01
of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting
Comparison of Monte Carlo method and deterministic method for neutron transport calculation
International Nuclear Information System (INIS)
Mori, Takamasa; Nakagawa, Masayuki
1987-01-01
The report outlines major features of the Monte Carlo method by citing various applications of the method and techniques used for Monte Carlo codes. Major areas of its application include analysis of measurements on fast critical assemblies, nuclear fusion reactor neutronics analysis, criticality safety analysis, evaluation by VIM code, and calculation for shielding. Major techniques used for Monte Carlo codes include the random walk method, geometric expression method (combinatorial geometry, 1, 2, 4-th degree surface and lattice geometry), nuclear data expression, evaluation method (track length, collision, analog (absorption), surface crossing, point), and dispersion reduction (Russian roulette, splitting, exponential transform, importance sampling, corrected sampling). Major features of the Monte Carlo method are as follows: 1) neutron source distribution and systems of complex geometry can be simulated accurately, 2) physical quantities such as neutron flux in a place, on a surface or at a point can be evaluated, and 3) calculation requires less time. (Nogami, K.)
Analytic continuation of quantum Monte Carlo data by stochastic analytical inference.
Fuchs, Sebastian; Pruschke, Thomas; Jarrell, Mark
2010-05-01
We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum-entropy calculation.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
International Nuclear Information System (INIS)
Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Sorella, Sandro; Guidoni, Leonardo
2015-01-01
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems
Quantum Monte Carlo study of the singlet-triplet transition in ethylene
International Nuclear Information System (INIS)
El Akramine, Ouafae; Kollias, Alexander C.; Lester, William A. Jr.
2003-01-01
A theoretical study is reported of the transition between the ground state ( 1 A g ) and the lowest triplet state (1 3 B 1u ) of ethylene based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using DMC trial functions constructed from Hartree-Fock, complete active space self-consistent field and multi-configuration self-consistent field wave functions, we have computed the atomization energy and the heat of formation of both states, and adiabatic and vertical energy differences between these states using both all-electron and effective core potential DMC. The ground state atomization energy and heat of formation are found to agree with experiment to within the error bounds of the computation and experiment. Predictions by DMC of the triplet state atomization energy and heat of formation are presented. The adiabatic singlet-triplet energy difference is found to differ by 5 kcal/mol from the value obtained in a recent photodissociation experiment
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
Zio, Enrico
2013-01-01
Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling. Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques. This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...
Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods
Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.
2014-12-01
Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.
Alternative Implementations of the Monte Carlo Power Method
International Nuclear Information System (INIS)
Blomquist, R.N.; Gelbard, E.M.
2002-01-01
We compare nominal efficiencies, i.e., variances in power shapes for equal running time, of different versions of the Monte Carlo (MC) eigenvalue computation. The two main methods considered here are 'conventional' MC and the superhistory method. Within each of these major methods, different variants are available for the main steps of the basic MC algorithm. Thus, for example, different treatments of the fission process may vary in the extent to which they follow, in analog fashion, the details of real-world fission, or they may vary in details of the methods by which they choose next-generation source sites. In general the same options are available in both the superhistory method and conventional MC, but there seems not to have been much examination of the special properties of the two major methods and their minor variants. We find, first, that the superhistory method is just as efficient as conventional MC and, second, that use of different variants of the basic algorithms may, in special cases, have a surprisingly large effect on MC computational efficiency
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.
Recursive Monte Carlo method for deep-penetration problems
International Nuclear Information System (INIS)
Goldstein, M.; Greenspan, E.
1980-01-01
The Recursive Monte Carlo (RMC) method developed for estimating importance function distributions in deep-penetration problems is described. Unique features of the method, including the ability to infer the importance function distribution pertaining to many detectors from, essentially, a single M.C. run and the ability to use the history tape created for a representative region to calculate the importance function in identical regions, are illustrated. The RMC method is applied to the solution of two realistic deep-penetration problems - a concrete shield problem and a Tokamak major penetration problem. It is found that the RMC method can provide the importance function distributions, required for importance sampling, with accuracy that is suitable for an efficient solution of the deep-penetration problems considered. The use of the RMC method improved, by one to three orders of magnitude, the solution efficiency of the two deep-penetration problems considered: a concrete shield problem and a Tokamak major penetration problem. 8 figures, 4 tables
Bandyopadhyay, Pradipta
2008-04-07
The efficiency of the two-surface monte carlo (TSMC) method depends on the closeness of the actual potential and the biasing potential used to propagate the system of interest. In this work, it is shown that by combining the basin hopping method with TSMC, the efficiency of the method can be increased by several folds. TSMC with basin hopping is used to generate quantum mechanical trajectory and large number of stationary points of water clusters.
High-efficiency wavefunction updates for large scale Quantum Monte Carlo
Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed
Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.
BACKWARD AND FORWARD MONTE CARLO METHOD IN POLARIZED RADIATIVE TRANSFER
Energy Technology Data Exchange (ETDEWEB)
Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu, E-mail: huangy_zl@263.net [School of Aeronautical Science and Engineering, Beihang University, Beijing 100191 (China)
2016-03-20
In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.
LISA data analysis using Markov chain Monte Carlo methods
International Nuclear Information System (INIS)
Cornish, Neil J.; Crowder, Jeff
2005-01-01
The Laser Interferometer Space Antenna (LISA) is expected to simultaneously detect many thousands of low-frequency gravitational wave signals. This presents a data analysis challenge that is very different to the one encountered in ground based gravitational wave astronomy. LISA data analysis requires the identification of individual signals from a data stream containing an unknown number of overlapping signals. Because of the signal overlaps, a global fit to all the signals has to be performed in order to avoid biasing the solution. However, performing such a global fit requires the exploration of an enormous parameter space with a dimension upwards of 50 000. Markov Chain Monte Carlo (MCMC) methods offer a very promising solution to the LISA data analysis problem. MCMC algorithms are able to efficiently explore large parameter spaces, simultaneously providing parameter estimates, error analysis, and even model selection. Here we present the first application of MCMC methods to simulated LISA data and demonstrate the great potential of the MCMC approach. Our implementation uses a generalized F-statistic to evaluate the likelihoods, and simulated annealing to speed convergence of the Markov chains. As a final step we supercool the chains to extract maximum likelihood estimates, and estimates of the Bayes factors for competing models. We find that the MCMC approach is able to correctly identify the number of signals present, extract the source parameters, and return error estimates consistent with Fisher information matrix predictions
Application to risk analysis of Monte Carlo method
International Nuclear Information System (INIS)
Mihara, Takashi
2001-01-01
Phased mission analysis code, PHAMMON by means of monte carlo method is developed for reliability assessment of decay heat removal system in LMFBR. Success criteria and grace periods of the decay heat removal system which has long mission times (∼1 week or ∼1 month) change as a function of time. It is necessary to divide mission time into some phases. In probability safety assessment (PSA) of real systems, it usually happens that the mean time to component failure (MTTF) is considerably long (1000-10 6 hours) and the mean time to component repair (MTTR) is short (∼10 hours). The failure probability of the systems, therefore, is extremely small (10 -6 -10 -9 ). Suitable variance reduction techniques are needed. The PHAMMON code involved two kinds of variance reduction techniques: (1) forced time transitions, and (2) failure biasing. For further reducing the variance of the result from the PHAMMON code execution, a biasing method of the transitions towards the closest cut set incorporating a new distance concept is introduced to the PHAMMON code. Failure probability and it's fractional standard deviation for the decay heat removal system are calculated by the PHAMMON code under the conditions of various success criteria over 168hrs after reactor shutdown. The biasing of the transition towards the closet cut set is an effective means of reducing the variance. (M. Suetake)
Monte Carlo methods for flux expansion solutions of transport problems
International Nuclear Information System (INIS)
Spanier, J.
1999-01-01
Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error
Medical Imaging Image Quality Assessment with Monte Carlo Methods
International Nuclear Information System (INIS)
Michail, C M; Fountos, G P; Kalyvas, N I; Valais, I G; Kandarakis, I S; Karpetas, G E; Martini, Niki; Koukou, Vaia
2015-01-01
The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations. (paper)
Comparison between a diagrammatic theory for the BCS-BEC crossover and quantum Monte Carlo results
International Nuclear Information System (INIS)
Pieri, P.; Pisani, L.; Strinati, G.C.
2005-01-01
Predictions for the chemical potential and the excitation gap recently obtained by our diagrammatic theory for the Bardeen-Cooper-Schreiffer-Bose-Einstein Condensation crossover in the superfluid phase are compared with quantum Monte Carlo results at zero temperature now available in the literature. A remarkable agreement is found between the results obtained by the two approaches
Solvent effects on excited-state structures: A quantum Monte Carlo and density functional study
Guareschi, R.; Floris, F.M.; Amovilli, C.; Filippi, Claudia
2014-01-01
We present the first application of quantum Monte Carlo (QMC) in its variational flavor combined with the polarizable continuum model (PCM) to perform excited-state geometry optimization in solution. Our implementation of the PCM model is based on a reaction field that includes both volume and
Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water
Floris, F.M.; Filippi, Claudia; Amovilli, C.
2014-01-01
We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
Filippi, Claudia; Assaraf, R.; Moroni, S.
2016-01-01
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the
Quantum Monte Carlo Studies of Bulk and Few- or Single-Layer Black Phosphorus
Shulenburger, Luke; Baczewski, Andrew; Zhu, Zhen; Guan, Jie; Tomanek, David
2015-03-01
The electronic and optical properties of phosphorus depend strongly on the structural properties of the material. Given the limited experimental information on the structure of phosphorene, it is natural to turn to electronic structure calculations to provide this information. Unfortunately, given phosphorus' propensity to form layered structures bound by van der Waals interactions, standard density functional theory methods provide results of uncertain accuracy. Recently, it has been demonstrated that Quantum Monte Carlo (QMC) methods achieve high accuracy when applied to solids in which van der Waals forces play a significant role. In this talk, we will present QMC results from our recent calculations on black phosphorus, focusing on the structural and energetic properties of monolayers, bilayers and bulk structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Phase Transition between Black and Blue Phosphorenes: A Quantum Monte Carlo Study
Li, Lesheng; Yao, Yi; Reeves, Kyle; Kanai, Yosuke
Phase transition of the more common black phosphorene to blue phosphorene is of great interest because they are predicted to exhibit unique electronic and optical properties. However, these two phases are predicted to be separated by a rather large energy barrier. In this work, we study the transition pathway between black and blue phosphorenes by using the variable cell nudge elastic band method combined with density functional theory calculation. We show how diffusion quantum Monte Carlo method can be used for determining the energetics of the phase transition and demonstrate the use of two approaches for removing finite-size errors. Finally, we predict how applied stress can be used to control the energetic balance between these two different phases of phosphorene.
An excited-state approach within full configuration interaction quantum Monte Carlo
International Nuclear Information System (INIS)
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-01-01
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available
Quantum Monte Carlo simulations of the Fermi-polaron problem and bosons with Gaussian interactions
Energy Technology Data Exchange (ETDEWEB)
Kroiss, Peter Michael
2017-02-01
This thesis deals with the application of current Quantum Monte Carlo algorithms to many-body systems of fermionic and bosonic species. The first part applies the diagrammatic Monte Carlo method to the Fermi polaron problem, a system of an impurity interacting resonantly with a homogeneous Fermi bath. It is numerically shown that the three particle-hole diagrams do not contribute significantly to the final answer in a quasi-two-dimensional setup, thus demonstrating a nearly perfect destructive interference of contributions in subspaces with higher-order particle-hole lines. Consequently, for strong-enough confinement in the third direction, the transition between the polaron and the molecule ground state is found to be in good agreement with the pure two-dimensional case and agrees very well with the one found by the wave-function approach in the two-particle-hole subspace. In three-dimensional Fermi-polaron systems with mass imbalance of impurity and bath atoms, polaron energy and quasiparticle residue can be accurately determined over a broad range of impurity masses. Furthermore, the spectral function of an imbalanced polaron demonstrates the stability of the quasiparticle and also allows us to locate the repulsive polaron as an excited state. The quantitative exactness of two-particle-hole wave functions is investigated, resulting in a relative lowering of polaronic energies in the mass-imbalance phase diagram. Tan's contact coefficient for the mass-balanced polaron system is found to be in good agreement with variational methods. Mass-imbalanced systems can be studied experimentally by ultracold atom mixtures such as {sup 6}Li-{sup 40}K. In the second part of the thesis, the ground state of a two-dimensional system of Bose particles of spin zero, interacting via a repulsive Gaussian-Core potential, is investigated by means of path integral Monte Carlo simulations. The quantum phase diagram is qualitatively identical to that of two-dimensional Yukawa
Fourier path-integral Monte Carlo methods: Partial averaging
International Nuclear Information System (INIS)
Doll, J.D.; Coalson, R.D.; Freeman, D.L.
1985-01-01
Monte Carlo Fourier path-integral techniques are explored. It is shown that fluctuation renormalization techniques provide an effective means for treating the effects of high-order Fourier contributions. The resulting formalism is rapidly convergent, is computationally convenient, and has potentially useful variational aspects
Feldt, Jonas; Miranda, Sebastião; Pratas, Frederico; Roma, Nuno; Tomás, Pedro; Mata, Ricardo A
2017-12-28
In this work, we present an optimized perturbative quantum mechanics/molecular mechanics (QM/MM) method for use in Metropolis Monte Carlo simulations. The model adopted is particularly tailored for the simulation of molecular systems in solution but can be readily extended to other applications, such as catalysis in enzymatic environments. The electrostatic coupling between the QM and MM systems is simplified by applying perturbation theory to estimate the energy changes caused by a movement in the MM system. This approximation, together with the effective use of GPU acceleration, leads to a negligible added computational cost for the sampling of the environment. Benchmark calculations are carried out to evaluate the impact of the approximations applied and the overall computational performance.
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137-4, place Jussieu F-75252 Paris Cedex 05 (France); Moroni, Saverio, E-mail: moroni@democritos.it [CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, and SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)
2016-05-21
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, in both all-electron and pseudopotential calculations.
Linear-scaling evaluation of the local energy in quantum Monte Carlo
International Nuclear Information System (INIS)
Austin, Brian; Aspuru-Guzik, Alan; Salomon-Ferrer, Romelia; Lester, William A. Jr.
2006-01-01
For atomic and molecular quantum Monte Carlo calculations, most of the computational effort is spent in the evaluation of the local energy. We describe a scheme for reducing the computational cost of the evaluation of the Slater determinants and correlation function for the correlated molecular orbital (CMO) ansatz. A sparse representation of the Slater determinants makes possible efficient evaluation of molecular orbitals. A modification to the scaled distance function facilitates a linear scaling implementation of the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that preserves the efficient matrix multiplication structure of the SMBH function. For the evaluation of the local energy, these two methods lead to asymptotic linear scaling with respect to the molecule size
A contribution to the Monte Carlo method in the reactor theory
International Nuclear Information System (INIS)
Lieberoth, J.
1976-01-01
The report gives a contribution to the further development of the Monte-Carlo Method to solve the neutron transport problem. The necessary fundamentals, mainly of statistical nature, are collected and partly derived, such as the statistical weight, the use of random numbers or the Monte-Carlo integration method. Special emphasis is put on the so-called team-method, which will help to reduce the statistical error of Monte-Carlo estimates, and on the path-method, which can be used to calculate the neutron fluxes in pre-defined local points
Gamma ray energy loss spectra simulation in NaI detectors with the Monte Carlo method
International Nuclear Information System (INIS)
Vieira, W.J.
1982-01-01
With the aim of studying and applying the Monte Carlo method, a computer code was developed to calculate the pulse height spectra and detector efficiencies for gamma rays incident on NaI (Tl) crystals. The basic detector processes in NaI (Tl) detectors are given together with an outline of Monte Carlo methods and a general review of relevant published works. A detailed description of the application of Monte Carlo methods to ν-ray detection in NaI (Tl) detectors is given. Comparisons are made with published, calculated and experimental, data. (Author) [pt
Latent uncertainties of the precalculated track Monte Carlo method
International Nuclear Information System (INIS)
Renaud, Marc-André; Seuntjens, Jan; Roberge, David
2015-01-01
Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D max . Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the
Latent uncertainties of the precalculated track Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Renaud, Marc-André; Seuntjens, Jan [Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada); Roberge, David [Département de radio-oncologie, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2L 4M1 (Canada)
2015-01-15
Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of
A functional method for estimating DPA tallies in Monte Carlo calculations of Light Water Reactors
International Nuclear Information System (INIS)
Read, Edward A.; Oliveira, Cassiano R.E. de
2011-01-01
There has been a growing need in recent years for the development of methodology to calculate radiation damage factors, namely displacements per atom (dpa), of structural components for Light Water Reactors (LWRs). The aim of this paper is to discuss the development and implementation of a dpa method using Monte Carlo method for transport calculations. The capabilities of the Monte Carlo code Serpent such as Woodcock tracking and fuel depletion are assessed for radiation damage calculations and its capability demonstrated and compared to those of the Monte Carlo code MCNP for radiation damage calculations of a typical LWR configuration. (author)
Quantum Monte Carlo studies of a metallic spin-density wave transition
Energy Technology Data Exchange (ETDEWEB)
Gerlach, Max Henner
2017-01-20
Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.
Application of Monte Carlo method to solving boundary value problem of differential equations
International Nuclear Information System (INIS)
Zuo Yinghong; Wang Jianguo
2012-01-01
This paper introduces the foundation of the Monte Carlo method and the way how to generate the random numbers. Based on the basic thought of the Monte Carlo method and finite differential method, the stochastic model for solving the boundary value problem of differential equations is built. To investigate the application of the Monte Carlo method to solving the boundary value problem of differential equations, the model is used to solve Laplace's equations with the first boundary condition and the unsteady heat transfer equation with initial values and boundary conditions. The results show that the boundary value problem of differential equations can be effectively solved with the Monte Carlo method, and the differential equations with initial condition can also be calculated by using a stochastic probability model which is based on the time-domain finite differential equations. Both the simulation results and theoretical analyses show that the errors of numerical results are lowered as the number of simulation particles is increased. (authors)
A study of certain Monte Carlo search and optimisation methods
International Nuclear Information System (INIS)
Budd, C.
1984-11-01
Studies are described which might lead to the development of a search and optimisation facility for the Monte Carlo criticality code MONK. The facility envisaged could be used to maximise a function of k-effective with respect to certain parameters of the system or, alternatively, to find the system (in a given range of systems) for which that function takes a given value. (UK)
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
Energy Technology Data Exchange (ETDEWEB)
Badal, A [U.S. Food and Drug Administration (CDRH/OSEL), Silver Spring, MD (United States); Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Bolch, W [University of Florida, Gainesville, FL (United States); Sechopoulos, I [Emory University, Atlanta, GA (United States)
2014-06-15
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
International Nuclear Information System (INIS)
Badal, A; Zbijewski, W; Bolch, W; Sechopoulos, I
2014-01-01
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10 7 xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual
Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
Sharma, Sanjib
2017-08-01
Markov Chain Monte Carlo based Bayesian data analysis has now become the method of choice for analyzing and interpreting data in almost all disciplines of science. In astronomy, over the last decade, we have also seen a steady increase in the number of papers that employ Monte Carlo based Bayesian analysis. New, efficient Monte Carlo based methods are continuously being developed and explored. In this review, we first explain the basics of Bayesian theory and discuss how to set up data analysis problems within this framework. Next, we provide an overview of various Monte Carlo based methods for performing Bayesian data analysis. Finally, we discuss advanced ideas that enable us to tackle complex problems and thus hold great promise for the future. We also distribute downloadable computer software (available at https://github.com/sanjibs/bmcmc/ ) that implements some of the algorithms and examples discussed here.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.
2017-11-01
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Study of the quantitative analysis approach of maintenance by the Monte Carlo simulation method
International Nuclear Information System (INIS)
Shimizu, Takashi
2007-01-01
This study is examination of the quantitative valuation by Monte Carlo simulation method of maintenance activities of a nuclear power plant. Therefore, the concept of the quantitative valuation of maintenance that examination was advanced in the Japan Society of Maintenology and International Institute of Universality (IUU) was arranged. Basis examination for quantitative valuation of maintenance was carried out at simple feed water system, by Monte Carlo simulation method. (author)
Scattering theory on the lattice and with a Monte Carlo method
International Nuclear Information System (INIS)
Kroeger, H.; Moriarty, K.J.M.; Potvin, J.
1990-01-01
We present an alternative time-dependent method of calculating the S matrix in quantum systems governed by a Hamiltonian. In the first step one constructs a new Hamiltonian that describes the physics of scattering at energy E with a reduced number of degrees of freedom. Its matrix elements are computed with a Monte Carlo projector method. In the second step the scattering matrix is computed algebraically via diagonalization and exponentiation of the new Hamiltonian. Although we have in mind applications in many-body systems and quantum field theory, the method should be applicable and useful in such diverse areas as atomic and molecular physics, nuclear physics, high-energy physics and solid-state physics. As an illustration of the method, we compute s-wave scattering of two nucleons in a nonrelativistic potential model (Yamaguchi potential), for which the S matrix is known exactly
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT
International Nuclear Information System (INIS)
Abdikamalov, Ernazar; Ott, Christian D.; O'Connor, Evan; Burrows, Adam; Dolence, Joshua C.; Löffler, Frank; Schnetter, Erik
2012-01-01
Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.
A NEW MONTE CARLO METHOD FOR TIME-DEPENDENT NEUTRINO RADIATION TRANSPORT
Energy Technology Data Exchange (ETDEWEB)
Abdikamalov, Ernazar; Ott, Christian D.; O' Connor, Evan [TAPIR, California Institute of Technology, MC 350-17, 1200 E California Blvd., Pasadena, CA 91125 (United States); Burrows, Adam; Dolence, Joshua C. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Loeffler, Frank; Schnetter, Erik, E-mail: abdik@tapir.caltech.edu [Center for Computation and Technology, Louisiana State University, 216 Johnston Hall, Baton Rouge, LA 70803 (United States)
2012-08-20
Monte Carlo approaches to radiation transport have several attractive properties such as simplicity of implementation, high accuracy, and good parallel scaling. Moreover, Monte Carlo methods can handle complicated geometries and are relatively easy to extend to multiple spatial dimensions, which makes them potentially interesting in modeling complex multi-dimensional astrophysical phenomena such as core-collapse supernovae. The aim of this paper is to explore Monte Carlo methods for modeling neutrino transport in core-collapse supernovae. We generalize the Implicit Monte Carlo photon transport scheme of Fleck and Cummings and gray discrete-diffusion scheme of Densmore et al. to energy-, time-, and velocity-dependent neutrino transport. Using our 1D spherically-symmetric implementation, we show that, similar to the photon transport case, the implicit scheme enables significantly larger timesteps compared with explicit time discretization, without sacrificing accuracy, while the discrete-diffusion method leads to significant speed-ups at high optical depth. Our results suggest that a combination of spectral, velocity-dependent, Implicit Monte Carlo and discrete-diffusion Monte Carlo methods represents a robust approach for use in neutrino transport calculations in core-collapse supernovae. Our velocity-dependent scheme can easily be adapted to photon transport.
Simulation of Rossi-α method with analog Monte-Carlo method
International Nuclear Information System (INIS)
Lu Yuzhao; Xie Qilin; Song Lingli; Liu Hangang
2012-01-01
The analog Monte-Carlo code for simulating Rossi-α method based on Geant4 was developed. The prompt neutron decay constant α of six metal uranium configurations in Oak Ridge National Laboratory were calculated. α was also calculated by Burst-Neutron method and the result was consistent with the result of Rossi-α method. There is the difference between results of analog Monte-Carlo simulation and experiment, and the reasons for the difference is the gaps between uranium layers. The influence of gaps decrease as the sub-criticality deepens. The relative difference between results of analog Monte-Carlo simulation and experiment changes from 19% to 0.19%. (authors)
A Pipelined and Parallel Architecture for Quantum Monte Carlo Simulations on FPGAs
Directory of Open Access Journals (Sweden)
Akila Gothandaraman
2010-01-01
Full Text Available Recent advances in Field-Programmable Gate Array (FPGA technology make reconfigurable computing using FPGAs an attractive platform for accelerating scientific applications. We develop a deeply pipelined and parallel architecture for Quantum Monte Carlo simulations using FPGAs. Quantum Monte Carlo simulations enable us to obtain the structural and energetic properties of atomic clusters. We experiment with different pipeline structures for each component of the design and develop a deeply pipelined architecture that provides the best performance in terms of achievable clock rate, while at the same time has a modest use of the FPGA resources. We discuss the details of the pipelined and generic architecture that is used to obtain the potential energy and wave function of a cluster of atoms.
International Nuclear Information System (INIS)
Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali
2014-01-01
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems
Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings
Azadi, Sam; Kühne, T. D.
2018-05-01
The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.
Review of Monte Carlo methods for particle multiplicity evaluation
Armesto-Pérez, Nestor
2005-01-01
I present a brief review of the existing models for particle multiplicity evaluation in heavy ion collisions which are at our disposal in the form of Monte Carlo simulators. Models are classified according to the physical mechanisms with which they try to describe the different stages of a high-energy collision between heavy nuclei. A comparison of predictions, as available at the beginning of year 2000, for multiplicities in central AuAu collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and PbPb collisions at the CERN Large Hadron Collider (LHC) is provided.
Review of Monte Carlo methods for particle multiplicity evaluation
International Nuclear Information System (INIS)
Armesto, Nestor
2005-01-01
I present a brief review of the existing models for particle multiplicity evaluation in heavy ion collisions which are at our disposal in the form of Monte Carlo simulators. Models are classified according to the physical mechanisms with which they try to describe the different stages of a high-energy collision between heavy nuclei. A comparison of predictions, as available at the beginning of year 2000, for multiplicities in central AuAu collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and PbPb collisions at the CERN Large Hadron Collider (LHC) is provided
Quantum Monte-Carlo programming for atoms, molecules, clusters, and solids
International Nuclear Information System (INIS)
Schattke, Wolfgang; Diez Muino, Ricardo
2013-01-01
This is a book that initiates the reader into the basic concepts and practical applications of Quantum Monte Carlo. Because of the simplicity of its theoretical concept, the authors focus on the variational Quantum Monte Carlo scheme. The reader is enabled to proceed from simple examples as the hydrogen atom to advanced ones as the Lithium solid. In between, several intermediate steps are introduced, including the Hydrogen molecule (2 electrons), the Lithium atom (3 electrons) and expanding to an arbitrary number of electrons to finally treat the three-dimensional periodic array of Lithium atoms in a crystal. The book is unique, because it provides both theory and numerical programs. It pedagogically explains how to transfer into computational tools what is usually described in a theoretical textbook. It also includes the detailed physical understanding of methodology that cannot be found in a code manual. The combination of both aspects allows the reader to assimilate the fundamentals of Quantum Monte Carlo not only by reading but also by practice.
Fully accelerating quantum Monte Carlo simulations of real materials on GPU clusters
Esler, Kenneth
2011-03-01
Quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting the properties of matter from fundamental principles, combining very high accuracy with extreme parallel scalability. By solving the many-body Schrödinger equation through a stochastic projection, it achieves greater accuracy than mean-field methods and better scaling with system size than quantum chemical methods, enabling scientific discovery across a broad spectrum of disciplines. In recent years, graphics processing units (GPUs) have provided a high-performance and low-cost new approach to scientific computing, and GPU-based supercomputers are now among the fastest in the world. The multiple forms of parallelism afforded by QMC algorithms make the method an ideal candidate for acceleration in the many-core paradigm. We present the results of porting the QMCPACK code to run on GPU clusters using the NVIDIA CUDA platform. Using mixed precision on GPUs and MPI for intercommunication, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core CPUs alone, while reproducing the double-precision CPU results within statistical error. We discuss the algorithm modifications necessary to achieve good performance on this heterogeneous architecture and present the results of applying our code to molecules and bulk materials. Supported by the U.S. DOE under Contract No. DOE-DE-FG05-08OR23336 and by the NSF under No. 0904572.
Application of the Monte Carlo method to diagnostic radiology
International Nuclear Information System (INIS)
Persliden, J.
1986-01-01
A Monte Carlo program for photon transport is developed. The program is used to investigate the energy imparted to water slabs (simulating patients), and the related backscattered and transmitted energies as functions of primary photon energy and water slab thickness. The accuracy of the results depends on the cross-section data for the probabilities of the various interactions in the slab and on the physical quantity calculated. Backscattered energy fractions can vary by as much as 10-20 %, using different sets of published data for the photoelectric cross section while imparted fractions are only slightly affected. The results are used to calculate improved conversion factors for determining the energy imparted to the patient in X-ray diagnostic examinations from measurements of the air collision kerma integrated over beam area. The small angle distribution of scattered photons transmitted through a water slab, relevant to problems of image quality, is calculated taking into account the diffraction phenomena of liquid water. The calculations are performed with a collision density estimator. This estimator makes it possible to calculate important physical quantities which are virtually impracticable to assess with the Monte Carlo codes commonly used in medical physics or in experiments. With the collision density estimator, the influence of air gaps on the reduction of scattered radiation is investigated for different detectors, field areas and primary X-ray spectra. Contrast degradation and contrast improvement factors are given as functions of field area for various air gaps. (With 105 refs.) (author)
Energy Technology Data Exchange (ETDEWEB)
Zychor, I. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)
1994-12-31
The application of a Monte Carlo method to study a transport in matter of electron and photon beams is presented, especially for electrons with energies up to 18 MeV. The SHOWME Monte Carlo code, a modified version of GEANT3 code, was used on the CONVEX C3210 computer at Swierk. It was assumed that an electron beam is mono directional and monoenergetic. Arbitrary user-defined, complex geometries made of any element or material can be used in calculation. All principal phenomena occurring when electron beam penetrates the matter are taken into account. The use of calculation for a therapeutic electron beam collimation is presented. (author). 20 refs, 29 figs.
Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement
Directory of Open Access Journals (Sweden)
Joko Siswantoro
2014-01-01
Full Text Available Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.
Monte Carlo method with heuristic adjustment for irregularly shaped food product volume measurement.
Siswantoro, Joko; Prabuwono, Anton Satria; Abdullah, Azizi; Idrus, Bahari
2014-01-01
Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.
International Nuclear Information System (INIS)
Yamamoto, Toshihiro; Miyoshi, Yoshinori
2004-01-01
A new algorithm of Monte Carlo criticality calculations for implementing Wielandt's method, which is one of acceleration techniques for deterministic source iteration methods, is developed, and the algorithm can be successfully implemented into MCNP code. In this algorithm, part of fission neutrons emitted during random walk processes are tracked within the current cycle, and thus a fission source distribution used in the next cycle spread more widely. Applying this method intensifies a neutron interaction effect even in a loosely-coupled array where conventional Monte Carlo criticality methods have difficulties, and a converged fission source distribution can be obtained with fewer cycles. Computing time spent for one cycle, however, increases because of tracking fission neutrons within the current cycle, which eventually results in an increase of total computing time up to convergence. In addition, statistical fluctuations of a fission source distribution in a cycle are worsened by applying Wielandt's method to Monte Carlo criticality calculations. However, since a fission source convergence is attained with fewer source iterations, a reliable determination of convergence can easily be made even in a system with a slow convergence. This acceleration method is expected to contribute to prevention of incorrect Monte Carlo criticality calculations. (author)
Kadioglu, Yelda; Santana, Juan A.; Özaydin, H. Duygu; Ersan, Fatih; Aktürk, O. Üzengi; Aktürk, Ethem; Reboredo, Fernando A.
2018-06-01
We have studied the structural stability of monolayer and bilayer arsenene (As) in the buckled (b) and washboard (w) phases with diffusion quantum Monte Carlo (DMC) and density functional theory (DFT) calculations. DMC yields cohesive energies of 2.826(2) eV/atom for monolayer b-As and 2.792(3) eV/atom for w-As. In the case of bilayer As, DMC and DFT predict that AA-stacking is the more stable form of b-As, while AB is the most stable form of w-As. The DMC layer-layer binding energies for b-As-AA and w-As-AB are 30(1) and 53(1) meV/atom, respectively. The interlayer separations were estimated with DMC at 3.521(1) Å for b-As-AA and 3.145(1) Å for w-As-AB. A comparison of DMC and DFT results shows that the van der Waals density functional method yields energetic properties of arsenene close to DMC, while the DFT + D3 method closely reproduced the geometric properties from DMC. The electronic properties of monolayer and bilayer arsenene were explored with various DFT methods. The bandgap values vary significantly with the DFT method, but the results are generally qualitatively consistent. We expect the present work to be useful for future experiments attempting to prepare multilayer arsenene and for further development of DFT methods for weakly bonded systems.
The calculation of neutron flux using Monte Carlo method
Günay, Mehtap; Bardakçı, Hilal
2017-09-01
In this study, a hybrid reactor system was designed by using 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2 fluids, ENDF/B-VII.0 evaluated nuclear data library and 9Cr2WVTa structural material. The fluids were used in the liquid first wall, liquid second wall (blanket) and shield zones of a fusion-fission hybrid reactor system. The neutron flux was calculated according to the mixture components, radial, energy spectrum in the designed hybrid reactor system for the selected fluids, library and structural material. Three-dimensional nucleonic calculations were performed using the most recent version MCNPX-2.7.0 the Monte Carlo code.
Whole core calculations of power reactors by Monte Carlo method
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Mori, Takamasa
1993-01-01
Whole core calculations have been performed for a commercial size PWR and a prototype LMFBR by using vectorized Monte Carlo codes. Geometries of cores were precisely represented in a pin by pin model. The calculated parameters were k eff , control rod worth, power distribution and so on. Both multigroup and continuous energy models were used and the accuracy of multigroup approximation was evaluated through the comparison of both results. One million neutron histories were tracked to considerably reduce variances. It was demonstrated that the high speed vectorized codes could calculate k eff , assembly power and some reactivity worths within practical computation time. For pin power and small reactivity worth calculations, the order of 10 million histories would be necessary. Required number of histories to achieve target design accuracy were estimated for those neutronic parameters. (orig.)
Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo
International Nuclear Information System (INIS)
Evans, T.M.; Densmore, J.D.
2007-01-01
We present three methods for extending the Implicit Monte Carlo (IMC) method to treat the time-evolution of coupled radiation, electron, and ion energies. The first method splits the ion and electron coupling and conduction from the standard IMC radiation-transport process. The second method recasts the IMC equations such that part of the coupling is treated during the Monte Carlo calculation. The third method treats all of the coupling and conduction in the Monte Carlo simulation. We apply modified equation analysis (MEA) to simplified forms of each method that neglects the errors in the conduction terms. Through MEA we show that the third method is theoretically the most accurate. We demonstrate the effectiveness of each method on a series of 0-dimensional, nonlinear benchmark problems where the accuracy of the third method is shown to be up to ten times greater than the other coupling methods for selected calculations
A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport
International Nuclear Information System (INIS)
Serov, I.V.; John, T.M.; Hoogenboom, J.E.
1999-01-01
The midway Monte Carlo method for calculating detector responses combines a forward and an adjoint Monte Carlo calculation. In both calculations, particle scores are registered at a surface to be chosen by the user somewhere between the source and detector domains. The theory of the midway response determination is developed within the framework of transport theory for external sources and for criticality theory. The theory is also developed for photons, which are generated at inelastic scattering or capture of neutrons. In either the forward or the adjoint calculation a so-called black absorber technique can be applied; i.e., particles need not be followed after passing the midway surface. The midway Monte Carlo method is implemented in the general-purpose MCNP Monte Carlo code. The midway Monte Carlo method is demonstrated to be very efficient in problems with deep penetration, small source and detector domains, and complicated streaming paths. All the problems considered pose difficult variance reduction challenges. Calculations were performed using existing variance reduction methods of normal MCNP runs and using the midway method. The performed comparative analyses show that the midway method appears to be much more efficient than the standard techniques in an overwhelming majority of cases and can be recommended for use in many difficult variance reduction problems of neutral particle transport
A Hardware-Accelerated Quantum Monte Carlo framework (HAQMC) for N-body systems
Gothandaraman, Akila; Peterson, Gregory D.; Warren, G. Lee; Hinde, Robert J.; Harrison, Robert J.
2009-12-01
Interest in the study of structural and energetic properties of highly quantum clusters, such as inert gas clusters has motivated the development of a hardware-accelerated framework for Quantum Monte Carlo simulations. In the Quantum Monte Carlo method, the properties of a system of atoms, such as the ground-state energies, are averaged over a number of iterations. Our framework is aimed at accelerating the computations in each iteration of the QMC application by offloading the calculation of properties, namely energy and trial wave function, onto reconfigurable hardware. This gives a user the capability to run simulations for a large number of iterations, thereby reducing the statistical uncertainty in the properties, and for larger clusters. This framework is designed to run on the Cray XD1 high performance reconfigurable computing platform, which exploits the coarse-grained parallelism of the processor along with the fine-grained parallelism of the reconfigurable computing devices available in the form of field-programmable gate arrays. In this paper, we illustrate the functioning of the framework, which can be used to calculate the energies for a model cluster of helium atoms. In addition, we present the capabilities of the framework that allow the user to vary the chemical identities of the simulated atoms. Program summaryProgram title: Hardware Accelerated Quantum Monte Carlo (HAQMC) Catalogue identifier: AEEP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 691 537 No. of bytes in distributed program, including test data, etc.: 5 031 226 Distribution format: tar.gz Programming language: C/C++ for the QMC application, VHDL and Xilinx 8.1 ISE/EDK tools for FPGA design and development Computer: Cray XD
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...
Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis
International Nuclear Information System (INIS)
Al-Saidi, W.A.; Zhang Shiwei; Krakauer, Henry
2006-01-01
We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schroedinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H 2 O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T)
Continuous energy Monte Carlo method based homogenization multi-group constants calculation
International Nuclear Information System (INIS)
Li Mancang; Wang Kan; Yao Dong
2012-01-01
The efficiency of the standard two-step reactor physics calculation relies on the accuracy of multi-group constants from the assembly-level homogenization process. In contrast to the traditional deterministic methods, generating the homogenization cross sections via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data bank can be used for a wide range of applications, resulting in the versatility using Monte Carlo codes for homogenization. As the first stage to realize Monte Carlo based lattice homogenization, the track length scheme is used as the foundation of cross section generation, which is straight forward. The scattering matrix and Legendre components, however, require special techniques. The Scattering Event method was proposed to solve the problem. There are no continuous energy counterparts in the Monte Carlo calculation for neutron diffusion coefficients. P 1 cross sections were used to calculate the diffusion coefficients for diffusion reactor simulator codes. B N theory is applied to take the leakage effect into account when the infinite lattice of identical symmetric motives is assumed. The MCMC code was developed and the code was applied in four assembly configurations to assess the accuracy and the applicability. At core-level, A PWR prototype core is examined. The results show that the Monte Carlo based multi-group constants behave well in average. The method could be applied to complicated configuration nuclear reactor core to gain higher accuracy. (authors)
Quantum Monte Carlo simulation for S=1 Heisenberg model with uniaxial anisotropy
International Nuclear Information System (INIS)
Tsukamoto, Mitsuaki; Batista, Cristian; Kawashima, Naoki
2007-01-01
We perform quantum Monte Carlo simulations for S=1 Heisenberg model with an uniaxial anisotropy. The system exhibits a phase transition as we vary the anisotropy and a long range order appears at a finite temperature when the exchange interaction J is comparable to the uniaxial anisotropy D. We investigate quantum critical phenomena of this model and obtain the line of the phase transition which approaches a power-law with logarithmic corrections at low temperature. We derive the form of logarithmic corrections analytically and compare it to our simulation results
Open-Source Development Experiences in Scientific Software: The HANDE Quantum Monte Carlo Project
Directory of Open Access Journals (Sweden)
J. S. Spencer
2015-11-01
Full Text Available The HANDE quantum Monte Carlo project offers accessible stochastic algorithms for general use for scientists in the field of quantum chemistry. HANDE is an ambitious and general high-performance code developed by a geographically-dispersed team with a variety of backgrounds in computational science. In the course of preparing a public, open-source release, we have taken this opportunity to step back and look at what we have done and what we hope to do in the future. We pay particular attention to development processes, the approach taken to train students joining the project, and how a flat hierarchical structure aids communication.
Study of Atoms and Molecules with Auxiliary-Field Quantum Monte Carlo
Purwanto, Wirawan; Suewattana, Malliga; Krakauer, Henry; Zhang, Shiwei; Walter, Eric J.
2006-03-01
We study the ground-state properties of second-row atoms and molecules using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method projects the many-body ground state from a trial wave function by means of random walks in the Slater-determinant space. We use a single Slater-determinant trial wave function obtained from density-functional theory (DFT) or Hartree-Fock (HF) calculations. The calculations were done with a plane-wave basis and supercells with periodic boundary condition. We investigate the finite-size effects and the accuracy of pseudopotentials within DFT, HF, and AF QMC frameworks. Pseudopotentials generated from both LDA (OPIUM) and HF are employed. We find that the many-body QMC calculations show a greater sensitivity to the accuracy of the pseudopotentials. With reliable pseudopotentials, the ionization potentials and dissociation energies obtained using AF QMC are in excellent agreement with the experimental results. S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003) http://opium.sourceforge.net I. Ovcharenko, A. Aspuru-Guzik, and W. A. Lester, J. Chem. Phys. 114, 7790 (2001)
Li Manni, Giovanni; Smart, Simon D; Alavi, Ali
2016-03-08
A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.
Quantum Monte Carlo programming for atoms, molecules, clusters, and solids
Schattke, Wolfgang
2013-01-01
In one source, this textbook provides quick and comprehensive access to quantitative calculations in materials science. The authors address both newcomers as well as researchers who would like to become familiar with QMC in order to apply to their research. As such, they cover the basic theory required for applying the method, and describe how to transfer this knowledge into calculation. The book includes a series of problems of increasing difficulty with associated stand-alone programs which will be available for free download.
A new method to assess the statistical convergence of monte carlo solutions
International Nuclear Information System (INIS)
Forster, R.A.
1991-01-01
Accurate Monte Carlo confidence intervals (CIs), which are formed with an estimated mean and an estimated standard deviation, can only be created when the number of particle histories N becomes large enough so that the central limit theorem can be applied. The Monte Carlo user has a limited number of marginal methods to assess the fulfillment of this condition, such as statistical error reduction proportional to 1/√N with error magnitude guidelines and third and fourth moment estimators. A new method is presented here to assess the statistical convergence of Monte Carlo solutions by analyzing the shape of the empirical probability density function (PDF) of history scores. Related work in this area includes the derivation of analytic score distributions for a two-state Monte Carlo problem. Score distribution histograms have been generated to determine when a small number of histories accounts for a large fraction of the result. This summary describes initial studies of empirical Monte Carlo history score PDFs created from score histograms of particle transport simulations. 7 refs., 1 fig
Exact Monte Carlo for molecules
International Nuclear Information System (INIS)
Lester, W.A. Jr.; Reynolds, P.J.
1985-03-01
A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H 2 , and the singlet-triplet splitting in methylene are presented and discussed. 17 refs
Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations
Energy Technology Data Exchange (ETDEWEB)
Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian
2006-10-01
An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.
H + H2 reaction barrier: A fixed-node quantum Monte Carlo study
International Nuclear Information System (INIS)
Barnett, R.N.; Reynolds, P.J.; Lester, W.A. Jr.
1985-01-01
The classical barrier height for the H+H 2 exchange reaction, as well as the energies at two other points along the reaction path, are calculated using fixed-node quantum Monte Carlo (FNQMC). Several single-determinant importance functions are used at the saddle point in order to relate the quality of the importance function to the accuracy and precision of the final result. The computed barrier is an upper bound since the energy of H and of H 2 is obtained exactly by FNQMC. Our best upper bound (9.70 +- 0.13 kcal/mol) has a mean within 0.1 kcal/mol of the presumed exact value. This best bound is obtained with a single determinant, double-zeta basis importance function. Contrary to experience with expansion methods, it is found that an importance function with a basis set of near Hartree--Fock quality, as well as one derived from a spin-unrestricted SCF calculation, are among the least efficient and least accurate of the importance functions used. Specifically, a nodal surface appearing in the lowest energy molecular orbital in these functions apparently increases the FNQMC energy. The FNQMC energy at the two other points along the reaction path is found to agree with the most accurate CI results of Liu to within statistical error
Phase stability of TiO2 polymorphs from diffusion Quantum Monte Carlo
International Nuclear Information System (INIS)
Luo, Ye; Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T; Heinonen, Olle; Kent, Paul R C
2016-01-01
Titanium dioxide, TiO 2 , has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of these applications utilize the naturally existing phases: rutile, anatase and brookite. Despite the simple form of TiO 2 and its wide uses, there is long-standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We also include the effects of temperature by calculating the Helmholtz free energy including both internal energy and vibrational contributions from density functional perturbation theory based quasi harmonic phonon calculations. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean-field calculations. However, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase. (paper)
International Nuclear Information System (INIS)
Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.
2015-01-01
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation
Quantum Monte Carlo simulations of Ti4 O7 Magnéli phase
Benali, Anouar; Shulenburger, Luke; Krogel, Jaron; Zhong, Xiaoliang; Kent, Paul; Heinonen, Olle
2015-03-01
Ti4O7 is ubiquitous in Ti-oxides. It has been extensively studied, both experimentally and theoretically in the past decades using multiple levels of theories, resulting in multiple diverse results. The latest DFT +SIC methods and state of the art HSE06 hybrid functionals even propose a new anti-ferromagnetic state at low temperature. Using Quantum Monte Carlo (QMC), as implemented in the QMCPACK simulation package, we investigated the electronic and magnetic properties of Ti4O7 at low (120K) and high (298K) temperatures and at different magnetic states. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. L.S, J.K and P.K were supported through Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE) Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Energy Technology Data Exchange (ETDEWEB)
Morillon, B.
1996-12-31
With most of the traditional and contemporary techniques, it is still impossible to solve the transport equation if one takes into account a fully detailed geometry and if one studies precisely the interactions between particles and matters. Only the Monte Carlo method offers such a possibility. However with significant attenuation, the natural simulation remains inefficient: it becomes necessary to use biasing techniques where the solution of the adjoint transport equation is essential. The Monte Carlo code Tripoli has been using such techniques successfully for a long time with different approximate adjoint solutions: these methods require from the user to find out some parameters. If this parameters are not optimal or nearly optimal, the biases simulations may bring about small figures of merit. This paper presents a description of the most important biasing techniques of the Monte Carlo code Tripoli ; then we show how to calculate the importance function for general geometry with multigroup cases. We present a completely automatic biasing technique where the parameters of the biased simulation are deduced from the solution of the adjoint transport equation calculated by collision probabilities. In this study we shall estimate the importance function through collision probabilities method and we shall evaluate its possibilities thanks to a Monte Carlo calculation. We compare different biased simulations with the importance function calculated by collision probabilities for one-group and multigroup problems. We have run simulations with new biasing method for one-group transport problems with isotropic shocks and for multigroup problems with anisotropic shocks. The results show that for the one-group and homogeneous geometry transport problems the method is quite optimal without splitting and russian roulette technique but for the multigroup and heterogeneous X-Y geometry ones the figures of merit are higher if we add splitting and russian roulette technique.
Selection of Investment Projects by Monte Carlo Method in Risk Condition
Directory of Open Access Journals (Sweden)
M. E.
2017-12-01
Full Text Available The Monte Carlo method (also known as the Monte Carlo simulation was proposed by Nicholas Metropolis, S. Ulam and Jhon Von Neiman in 50-th years of the past century. The method can be widely applied to analysis of investment projects due to the advantages recognized both by practitioners and the academic community. The balance model of a project with discounted financial flows has been implemented for Microsoft Excel and Google Docs spread-sheet solutions. The Monte Carlo method for project with low and high correlated net present value (NPV parameters in the environment of the electronic tables of MS Excel/Google Docs. A distinct graduation of risk was identified. A necessity of account of correlation effects and the use of multivariate imitation during the project selection has been demonstrated.
Quasi-Monte Carlo methods: applications to modeling of light transport in tissue
Schafer, Steven A.
1996-05-01
Monte Carlo modeling of light propagation can accurately predict the distribution of light in scattering materials. A drawback of Monte Carlo methods is that they converge inversely with the square root of the number of iterations. Theoretical considerations suggest that convergence which scales inversely with the first power of the number of iterations is possible. We have previously shown that one can obtain at least a portion of that improvement by using van der Corput sequences in place of a conventional pseudo-random number generator. Here, we present our further analysis, and show that quasi-Monte Carlo methods do have limited applicability to light scattering problems. We also discuss potential improvements which may increase the applicability.
Monte Carlo method for calculating the radiation skyshine produced by electron accelerators
Energy Technology Data Exchange (ETDEWEB)
Kong Chaocheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China)]. E-mail: kongchaocheng@tsinghua.org.cn; Li Quanfeng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Chen Huaibi [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Du Taibin [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Cheng Cheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Tang Chuanxiang [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Zhu Li [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Zhang Hui [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Pei Zhigang [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Ming Shenjin [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China)
2005-06-01
Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.
Calculation Aspects of the European Rebalanced Basket Option using Monte Carlo Methods: Valuation
Directory of Open Access Journals (Sweden)
CJ van der Merwe
2012-06-01
Full Text Available Extra premiums can be charged to a client to guarantee a minimum payout of a contract on a portfolio that gets rebalanced on a regular basis back to fixed proportions. The valuation of this premium can be changed to that of the pricing of a European put option with underlying rebalanced portfolio. This article finds the most efficient estimators for the value of this path-dependant multi-asset put option using different Monte Carlo methods. With the help of a refined method, computing time of the value decreased significantly. Furthermore, Variance Reduction Techniques and Quasi-Monte Carlo methods delivered more accurate and faster converging estimates as well.
Directory of Open Access Journals (Sweden)
Hammou Amine Bouziane
2013-03-01
Full Text Available We study the thermodynamic and structural properties of a flexible homopolymer chain using both multi canonical Monte Carlo method and Wang-Landau method. In this work, we focus on the coil-globule transition. Starting from a completely random chain, we have obtained a globule for different sizes of the chain. The implementation of these advanced Monte Carlo methods allowed us to obtain a flat histogram in energy space and calculate various thermodynamic quantities such as the density of states, the free energy and the specific heat. Structural quantities such as the radius of gyration where also calculated.
Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2006-01-01
Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations
Two- and three-nucleon chiral interactions in quantum Monte Carlo calculations for nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Lynn, Joel [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tews, Ingo [Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195 (United States); Carlson, Joseph; Gandolfi, Stefano [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gezerlis, Alexandros [Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Schmidt, Kevin [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)
2016-07-01
I present our recent work on Green's function Monte Carlo calculations of light nuclei using local two- and three-nucleon interactions derived from chiral effective field theory up to next-to-next-to-leading order (N{sup 2}LO). I discuss the choice of observables we make to fit the two low-energy constants which enter in the three-nucleon sector at N{sup 2}LO: the {sup 4}He binding energy and n-α elastic scattering P-wave phase shifts. I then show some results for light nuclei. I also show our results for the energy per neutron in pure neutron matter using the auxiliary-field diffusion Monte Carlo method and discuss regulator choices. Finally I discuss some exciting future projects which are now possible.
Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport
International Nuclear Information System (INIS)
McKinley, M S; Brooks III, E D; Daffin, F
2004-01-01
Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations
Monte Carlo and Quasi-Monte Carlo Sampling
Lemieux, Christiane
2009-01-01
Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.
Alfè, D; Bartók, A P; Csányi, G; Gillan, M J
2013-06-14
We show the feasibility of using quantum Monte Carlo (QMC) to compute benchmark energies for configuration samples of thermal-equilibrium water clusters and the bulk liquid containing up to 64 molecules. Evidence that the accuracy of these benchmarks approaches that of basis-set converged coupled-cluster calculations is noted. We illustrate the usefulness of the benchmarks by using them to analyze the errors of the popular BLYP approximation of density functional theory (DFT). The results indicate the possibility of using QMC as a routine tool for analyzing DFT errors for non-covalent bonding in many types of condensed-phase molecular system.
Energy Technology Data Exchange (ETDEWEB)
Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)
2008-08-11
Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.
An algorithm of α-and γ-mode eigenvalue calculations by Monte Carlo method
International Nuclear Information System (INIS)
Yamamoto, Toshihiro; Miyoshi, Yoshinori
2003-01-01
A new algorithm for Monte Carlo calculation was developed to obtain α- and γ-mode eigenvalues. The α is a prompt neutron time decay constant measured in subcritical experiments, and the γ is a spatial decay constant measured in an exponential method for determining the subcriticality. This algorithm can be implemented into existing Monte Carlo eigenvalue calculation codes with minimum modifications. The algorithm was implemented into MCNP code and the performance of calculating the both mode eigenvalues were verified through comparison of the calculated eigenvalues with the ones obtained by fixed source calculations. (author)
User's guide to Monte Carlo methods for evaluating path integrals
Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan
2018-04-01
We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.
A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.
2007-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the
Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo
Umari, Paolo
2006-03-01
We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).
Speed-Up of the Monte Carlo Method by Using a Physical Model of the Dempster-Shafer Theory
Resconi, G.; Wal, A.J. van der; Ruan, D.
1998-01-01
By using the Monte Carlo method, we can obtain the minimum value of a function V(r) that is generally associated with the potential energy. In this paper we present a method that makes it possible to speed up the classical Monte Carlo method. The new method is based on the observation that the
International Nuclear Information System (INIS)
Han Jingru; Chen Yixue; Yuan Longjun
2013-01-01
The Monte Carlo (MC) and discrete ordinates (SN) are the commonly used methods in the design of radiation shielding. Monte Carlo method is able to treat the geometry exactly, but time-consuming in dealing with the deep penetration problem. The discrete ordinate method has great computational efficiency, but it is quite costly in computer memory and it suffers from ray effect. Single discrete ordinates method or single Monte Carlo method has limitation in shielding calculation for large complex nuclear facilities. In order to solve the problem, the Monte Carlo and discrete ordinates bidirectional coupling method is developed. The bidirectional coupling method is implemented in the interface program to transfer the particle probability distribution of MC and angular flux of discrete ordinates. The coupling method combines the advantages of MC and SN. The test problems of cartesian and cylindrical coordinate have been calculated by the coupling methods. The calculation results are performed with comparison to MCNP and TORT and satisfactory agreements are obtained. The correctness of the program is proved. (authors)
Numerical simulation of logging-while-drilling density image by Monte-Carlo method
International Nuclear Information System (INIS)
Yue Aizhong; He Biao; Zhang Jianmin; Wang Lijuan
2010-01-01
Logging-while-drilling system is researched by Monte Carlo Method. Model of Logging-while-drilling system is built, tool response and azimuth density image are acquired, methods dealing with azimuth density data is discussed. This outcome lay foundation for optimizing tool, developing new tool and logging explanation. (authors)
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2004-01-01
The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions
Research on reactor physics analysis method based on Monte Carlo homogenization
International Nuclear Information System (INIS)
Ye Zhimin; Zhang Peng
2014-01-01
In order to meet the demand of nuclear energy market in the future, many new concepts of nuclear energy systems has been put forward. The traditional deterministic neutronics analysis method has been challenged in two aspects: one is the ability of generic geometry processing; the other is the multi-spectrum applicability of the multigroup cross section libraries. Due to its strong geometry modeling capability and the application of continuous energy cross section libraries, the Monte Carlo method has been widely used in reactor physics calculations, and more and more researches on Monte Carlo method has been carried out. Neutronics-thermal hydraulics coupling analysis based on Monte Carlo method has been realized. However, it still faces the problems of long computation time and slow convergence which make it not applicable to the reactor core fuel management simulations. Drawn from the deterministic core analysis method, a new two-step core analysis scheme is proposed in this work. Firstly, Monte Carlo simulations are performed for assembly, and the assembly homogenized multi-group cross sections are tallied at the same time. Secondly, the core diffusion calculations can be done with these multigroup cross sections. The new scheme can achieve high efficiency while maintain acceptable precision, so it can be used as an effective tool for the design and analysis of innovative nuclear energy systems. Numeric tests have been done in this work to verify the new scheme. (authors)
Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems
Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi
2016-03-01
A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.
A Monte Carlo Green's function method for three-dimensional neutron transport
International Nuclear Information System (INIS)
Gamino, R.G.; Brown, F.B.; Mendelson, M.R.
1992-01-01
This paper describes a Monte Carlo transport kernel capability, which has recently been incorporated into the RACER continuous-energy Monte Carlo code. The kernels represent a Green's function method for neutron transport from a fixed-source volume out to a particular volume of interest. This method is very powerful transport technique. Also, since kernels are evaluated numerically by Monte Carlo, the problem geometry can be arbitrarily complex, yet exact. This method is intended for problems where an ex-core neutron response must be determined for a variety of reactor conditions. Two examples are ex-core neutron detector response and vessel critical weld fast flux. The response is expressed in terms of neutron transport kernels weighted by a core fission source distribution. In these types of calculations, the response must be computed for hundreds of source distributions, but the kernels only need to be calculated once. The advance described in this paper is that the kernels are generated with a highly accurate three-dimensional Monte Carlo transport calculation instead of an approximate method such as line-of-sight attenuation theory or a synthesized three-dimensional discrete ordinates solution
DEFF Research Database (Denmark)
Debrabant, Kristian; Samaey, Giovanni; Zieliński, Przemysław
2017-01-01
We present and analyse a micro-macro acceleration method for the Monte Carlo simulation of stochastic differential equations with separation between the (fast) time-scale of individual trajectories and the (slow) time-scale of the macroscopic function of interest. The algorithm combines short...
A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation
Energy Technology Data Exchange (ETDEWEB)
Muscato, Orazio; Di Stefano, Vincenza [Univ. degli Studi di Catania (Italy). Dipt. di Matematica e Informatica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin (Germany)
2012-11-01
This paper is concerned with electron transport and heat generation in semiconductor devices. An improved version of the electrothermal Monte Carlo method is presented. This modification has better approximation properties due to reduced statistical fluctuations. The corresponding transport equations are provided and results of numerical experiments are presented.
Application of monte-carlo method in definition of key categories of most radioactive polluted soil
Energy Technology Data Exchange (ETDEWEB)
Mahmudov, H M; Valibeyova, G; Jafarov, Y D; Musaeva, Sh Z [Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Baku (Azerbaijan); others, and
2006-10-15
Full text: The principle of analysis by Monte Carlo method consists of a choice of random variables of coefficients of an exposition doze capasites of radiation and data on activity within the boundaries of their individual density of frequency distribution of exposition doses capacities.The analysis using Monte Carlo method is useful for realization of sensitivity analysis of measured capacity amount of an exposition dose in order to define the major factors causing uncertainly in reports.Reception of such conceptions can be valuable for definition of key categories of radiation polluted soil and establishment of priorities to use resources for enhancement of the report.Relative uncertainly of radiation polluted soil categories determined with the help of the analysis by Monte Carlo method in case of their availability can be applied using more significant divergence between average value and a confidential limit in case when borders of resources available for preparation and to prepare possible estimations for the most significant categories of sources.Usage of the notion {sup u}ncertainty{sup i}n reports also allows to set threshold value for a key category of sources, if it necessary, for exact reflection of 90 per cent uncertainty in reports.According to radiation safety norms level of radiation backgrounds exceeding 33 mkR/hour is considered dangerous.By calculated Monte Carlo method much more dangerous sites and sites frequently imposed to disposals and utilization were chosen from analyzed samples of polluted soil.
Application of monte-carlo method in definition of key categories of most radioactive polluted soil
International Nuclear Information System (INIS)
Mahmudov, H.M; Valibeyova, G.; Jafarov, Y.D; Musaeva, Sh.Z
2006-01-01
Full text: The principle of analysis by Monte Carlo method consists of a choice of random variables of coefficients of an exposition doze capasites of radiation and data on activity within the boundaries of their individual density of frequency distribution of exposition doses capacities.The analysis using Monte Carlo method is useful for realization of sensitivity analysis of measured capacity amount of an exposition dose in order to define the major factors causing uncertainly in reports.Reception of such conceptions can be valuable for definition of key categories of radiation polluted soil and establishment of priorities to use resources for enhancement of the report.Relative uncertainly of radiation polluted soil categories determined with the help of the analysis by Monte Carlo method in case of their availability can be applied using more significant divergence between average value and a confidential limit in case when borders of resources available for preparation and to prepare possible estimations for the most significant categories of sources.Usage of the notion u ncertainty i n reports also allows to set threshold value for a key category of sources, if it necessary, for exact reflection of 90 per cent uncertainty in reports.According to radiation safety norms level of radiation backgrounds exceeding 33 mkR/hour is considered dangerous.By calculated Monte Carlo method much more dangerous sites and sites frequently imposed to disposals and utilization were chosen from analyzed samples of polluted soil.
Some aspects of Trim-algorithm modernization for Monte-Carlo method
International Nuclear Information System (INIS)
Dovnar, S.V.; Grigor'ev, V.V.; Kamyshan, M.A.; Leont'ev, A.V.; Yanusko, S.V.
2001-01-01
Some aspects of Trim-algorithm modernization in Monte-Carlo method are discussed. This modification permits to raise the universality of program work with various potentials of ion-atom interactions and to improve the calculation precision for scattering angle θ c
DEFF Research Database (Denmark)
Tycho, Andreas; Jørgensen, Thomas Martini; Andersen, Peter E.
2002-01-01
A Monte Carlo (MC) method for modeling optical coherence tomography (OCT) measurements of a diffusely reflecting discontinuity emb edded in a scattering medium is presented. For the first time to the authors' knowledge it is shown analytically that the applicability of an MC approach to this opti...
Monte Carlo method implementation on IPSC 860 for the resolution of the Boltzmann equation
International Nuclear Information System (INIS)
AloUGES, Francois
1993-01-01
This note deals with the implementation on a massively parallel machine (IPSC-860) of a Monte-Carlo method aiming at resolving the Boltzmann equation. The parallelism of the machine incites to consider a multi-domain approach and poses the problem of the automatic generation of local meshes from a non-structured 3-D global mesh [fr
Markov chain Monte Carlo methods for statistical analysis of RF photonic devices
DEFF Research Database (Denmark)
Piels, Molly; Zibar, Darko
2016-01-01
uncertainty is shown to give unsatisfactory and incorrect results due to the nonlinear relationship between the circuit parameters and the measured data. Markov chain Monte Carlo methods are shown to provide superior results, both for individual devices and for assessing within-die variation...
Analysis of the distribution of X-ray characteristic production using the Monte Carlo methods
International Nuclear Information System (INIS)
Del Giorgio, Marcelo; Brizuela, Horacio; Riveros, J.A.
1987-01-01
The Monte Carlo method has been applied for the simulation of electron trajectories in a bulk sample, and therefore for the distribution of signals produced in an electron microprobe. Results for the function φ(ρz) are compared with experimental data. Some conclusions are drawn with respect to the parameters involved in the gaussian model. (Author) [es
Thomas B. Lynch; Jeffrey H. Gove
2014-01-01
The typical "double counting" application of the mirage method of boundary correction cannot be applied to sampling systems such as critical height sampling (CHS) that are based on a Monte Carlo sample of a tree (or debris) attribute because the critical height (or other random attribute) sampled from a mirage point is generally not equal to the critical...
Generation of triangulated random surfaces by the Monte Carlo method in the grand canonical ensemble
International Nuclear Information System (INIS)
Zmushko, V.V.; Migdal, A.A.
1987-01-01
A model of triangulated random surfaces which is the discrete analog of the Polyakov string is considered. An algorithm is proposed which enables one to study the model by the Monte Carlo method in the grand canonical ensemble. Preliminary results on the determination of the critical index γ are presented
Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan
2017-11-01
A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.
International Nuclear Information System (INIS)
Murata, Isao; Mori, Takamasa; Nakagawa, Masayuki; Shirai, Hiroshi.
1996-03-01
High Temperature Gas-cooled Reactors (HTGRs) employ spherical fuels named coated fuel particles (CFPs) consisting of a microsphere of low enriched UO 2 with coating layers in order to prevent FP release. There exist many spherical fuels distributed randomly in the cores. Therefore, the nuclear design of HTGRs is generally performed on the basis of the multigroup approximation using a diffusion code, S N transport code or group-wise Monte Carlo code. This report summarizes a Monte Carlo hard sphere packing simulation code to simulate the packing of equal hard spheres and evaluate the necessary probability distribution of them, which is used for the application of the new Monte Carlo calculation method developed to treat randomly distributed spherical fuels with the continuous energy Monte Carlo method. By using this code, obtained are the various statistical values, namely Radial Distribution Function (RDF), Nearest Neighbor Distribution (NND), 2-dimensional RDF and so on, for random packing as well as ordered close packing of FCC and BCC. (author)
International Nuclear Information System (INIS)
Bécares, V.; Pérez-Martín, S.; Vázquez-Antolín, M.; Villamarín, D.; Martín-Fuertes, F.; González-Romero, E.M.; Merino, I.
2014-01-01
Highlights: • Review of several Monte Carlo effective delayed neutron fraction calculation methods. • These methods have been implemented with the Monte Carlo code MCNPX. • They have been benchmarked against against some critical and subcritical systems. • Several nuclear data libraries have been used. - Abstract: The calculation of the effective delayed neutron fraction, β eff , with Monte Carlo codes is a complex task due to the requirement of properly considering the adjoint weighting of delayed neutrons. Nevertheless, several techniques have been proposed to circumvent this difficulty and obtain accurate Monte Carlo results for β eff without the need of explicitly determining the adjoint flux. In this paper, we make a review of some of these techniques; namely we have analyzed two variants of what we call the k-eigenvalue technique and other techniques based on different interpretations of the physical meaning of the adjoint weighting. To test the validity of all these techniques we have implemented them with the MCNPX code and we have benchmarked them against a range of critical and subcritical systems for which either experimental or deterministic values of β eff are available. Furthermore, several nuclear data libraries have been used in order to assess the impact of the uncertainty in nuclear data in the calculated value of β eff
External individual monitoring: experiments and simulations using Monte Carlo Method
International Nuclear Information System (INIS)
Guimaraes, Carla da Costa
2005-01-01
In this work, we have evaluated the possibility of applying the Monte Carlo simulation technique in photon dosimetry of external individual monitoring. The GEANT4 toolkit was employed to simulate experiments with radiation monitors containing TLD-100 and CaF 2 :NaCl thermoluminescent detectors. As a first step, X ray spectra were generated impinging electrons on a tungsten target. Then, the produced photon beam was filtered in a beryllium window and additional filters to obtain the radiation with desired qualities. This procedure, used to simulate radiation fields produced by a X ray tube, was validated by comparing characteristics such as half value layer, which was also experimentally measured, mean photon energy and the spectral resolution of simulated spectra with that of reference spectra established by international standards. In the construction of thermoluminescent dosimeter, two approaches for improvements have. been introduced. The first one was the inclusion of 6% of air in the composition of the CaF 2 :NaCl detector due to the difference between measured and calculated values of its density. Also, comparison between simulated and experimental results showed that the self-attenuation of emitted light in the readout process of the fluorite dosimeter must be taken into account. Then, in the second approach, the light attenuation coefficient of CaF 2 :NaCl compound estimated by simulation to be 2,20(25) mm -1 was introduced. Conversion coefficients C p from air kerma to personal dose equivalent were calculated using a slab water phantom with polymethyl-metacrilate (PMMA) walls, for reference narrow and wide X ray spectrum series [ISO 4037-1], and also for the wide spectra implanted and used in routine at Laboratorio de Dosimetria. Simulations of backscattered radiations by PMMA slab water phantom and slab phantom of ICRU tissue-equivalent material produced very similar results. Therefore, the PMMA slab water phantom that can be easily constructed with low
Application of Monte-Carlo method in definition of key categories of most radioactive polluted soil
International Nuclear Information System (INIS)
Mahmudov, H.M.; Valibeyova, G.; Jafarov, Y.D.; Musaeva, Sh.Z.
2006-01-01
Full text: The principle of analysis by Monte Carlo method consists of a choice of random variables of coefficients of an exposition doze capacities of radiation and data on activity within the boundaries of their individual density of frequency distribution upon corresponding sizes of exposition doses capacities. This procedure repeats for many times using computer and results of each round of calculations create universal density of frequency distribution of exposition doses capacities. The analysis using Monte Carlo method can be carried out at the level of radiation polluted soil categories. The analysis by Monte Carlo method is useful for realization of sensitivity analysis of measured capacity amount of an exposition dose in order to define the major factors causing uncertainty in reports. Reception of such conceptions can be valuable for definition of key categories of radiation polluted soil and establishment of priorities to use resources for enhancement of the report. Relative uncertainty of radiation polluted soil categories determined with the help of the analysis by Monte Carlo method in case of their availability can be applied using more significant divergence between average value and a confidential limit in case when borders of a confidential interval are asymmetric. It is important to determine key categories of radiation polluted soil to establish priorities to use reports of resources available for preparation and to prepare possible estimations for the most significant categories of sources. Usage of the notion u ncertainty i n reports also allows to set threshold value for a key category of sources, if it is necessary, for exact reflection of 90 percent uncertainty in reports. According to radiation safety norms level of radiation background exceeding 33 mkR/hour is considered dangerous. By calculated Monte Carlo method much more dangerous sites and sites frequently imposed to disposals and utilization were chosen from analyzed samples of
Application of Monte-Carlo method in definition of key categories of most radioactive polluted soil
Energy Technology Data Exchange (ETDEWEB)
Mahmudov, H M; Valibeyova, G; Jafarov, Y D; Musaeva, Sh Z [Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)
2006-11-15
Full text: The principle of analysis by Monte Carlo method consists of a choice of random variables of coefficients of an exposition doze capacities of radiation and data on activity within the boundaries of their individual density of frequency distribution upon corresponding sizes of exposition doses capacities. This procedure repeats for many times using computer and results of each round of calculations create universal density of frequency distribution of exposition doses capacities. The analysis using Monte Carlo method can be carried out at the level of radiation polluted soil categories. The analysis by Monte Carlo method is useful for realization of sensitivity analysis of measured capacity amount of an exposition dose in order to define the major factors causing uncertainty in reports. Reception of such conceptions can be valuable for definition of key categories of radiation polluted soil and establishment of priorities to use resources for enhancement of the report. Relative uncertainty of radiation polluted soil categories determined with the help of the analysis by Monte Carlo method in case of their availability can be applied using more significant divergence between average value and a confidential limit in case when borders of a confidential interval are asymmetric. It is important to determine key categories of radiation polluted soil to establish priorities to use reports of resources available for preparation and to prepare possible estimations for the most significant categories of sources. Usage of the notion {sup u}ncertainty{sup i}n reports also allows to set threshold value for a key category of sources, if it is necessary, for exact reflection of 90 percent uncertainty in reports. According to radiation safety norms level of radiation background exceeding 33 mkR/hour is considered dangerous. By calted Monte Carlo method much more dangerous sites and sites frequently imposed to disposals and utilization were chosen from analyzed samples of
International Nuclear Information System (INIS)
Chen, Zhenping; Song, Jing; Zheng, Huaqing; Wu, Bin; Hu, Liqin
2015-01-01
Highlights: • The subdivision combines both advantages of uniform and non-uniform schemes. • The grid models were proved to be more efficient than traditional CSG models. • Monte Carlo simulation performance was enhanced by Optimal Spatial Subdivision. • Efficiency gains were obtained for realistic whole reactor core models. - Abstract: Geometry navigation is one of the key aspects of dominating Monte Carlo particle transport simulation performance for large-scale whole reactor models. In such cases, spatial subdivision is an easily-established and high-potential method to improve the run-time performance. In this study, a dedicated method, named Optimal Spatial Subdivision, is proposed for generating numerically optimal spatial grid models, which are demonstrated to be more efficient for geometry navigation than traditional Constructive Solid Geometry (CSG) models. The method uses a recursive subdivision algorithm to subdivide a CSG model into non-overlapping grids, which are labeled as totally or partially occupied, or not occupied at all, by CSG objects. The most important point is that, at each stage of subdivision, a conception of quality factor based on a cost estimation function is derived to evaluate the qualities of the subdivision schemes. Only the scheme with optimal quality factor will be chosen as the final subdivision strategy for generating the grid model. Eventually, the model built with the optimal quality factor will be efficient for Monte Carlo particle transport simulation. The method has been implemented and integrated into the Super Monte Carlo program SuperMC developed by FDS Team. Testing cases were used to highlight the performance gains that could be achieved. Results showed that Monte Carlo simulation runtime could be reduced significantly when using the new method, even as cases reached whole reactor core model sizes
Evaluation of equivalent doses in 18F PET/CT using the Monte Carlo method with MCNPX code
International Nuclear Information System (INIS)
Belinato, Walmir; Santos, William Souza; Perini, Ana Paula; Neves, Lucio Pereira; Souza, Divanizia N.
2017-01-01
The present work used the Monte Carlo method (MMC), specifically the Monte Carlo NParticle - MCNPX, to simulate the interaction of radiation involving photons and particles, such as positrons and electrons, with virtual adult anthropomorphic simulators on PET / CT scans and to determine absorbed and equivalent doses in adult male and female patients
Motta, Mario; Zhang, Shiwei
2018-05-01
We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.
A Monte Carlo method using octree structure in photon and electron transport
International Nuclear Information System (INIS)
Ogawa, K.; Maeda, S.
1995-01-01
Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that with electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting
Crevillén-García, D.; Power, H.
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Crevillén-García, D; Power, H
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Monte Carlo principles and applications
Energy Technology Data Exchange (ETDEWEB)
Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center
1976-03-01
The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.
Umari, P; Marzari, Nicola
2009-09-07
We calculate the linear and nonlinear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electronic polarization as a function of applied finite electric field--an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hypersusceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry--usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hypersusceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wave function affect the accuracy of the calculated susceptibilities.
Energy Technology Data Exchange (ETDEWEB)
Makovicka, L.; Vasseur, A.; Sauget, M.; Martin, E.; Gschwind, R.; Henriet, J. [Universite de Franche-Comte, Equipe IRMA/ENISYS/FEMTO-ST, UMR6174 CNRS, 25 - Montbeliard (France); Vasseur, A.; Sauget, M.; Martin, E.; Gschwind, R.; Henriet, J.; Salomon, M. [Universite de Franche-Comte, Equipe AND/LIFC, 90 - Belfort (France)
2009-01-15
Monte Carlo codes, precise but slow, are very important tools in the vast majority of specialities connected to Radiation Physics, Radiation Protection and Dosimetry. A discussion about some other computing solutions is carried out; solutions not only based on the enhancement of computer power, or on the 'biasing'used for relative acceleration of these codes (in the case of photons), but on more efficient methods (A.N.N. - artificial neural network, C.B.R. - case-based reasoning - or other computer science techniques) already and successfully used for a long time in other scientific or industrial applications and not only Radiation Protection or Medical Dosimetry. (authors)
Mazzola, Guglielmo; Helled, Ravit; Sorella, Sandro
2018-01-01
Understanding planetary interiors is directly linked to our ability of simulating exotic quantum mechanical systems such as hydrogen (H) and hydrogen-helium (H-He) mixtures at high pressures and temperatures. Equation of state (EOS) tables based on density functional theory are commonly used by planetary scientists, although this method allows only for a qualitative description of the phase diagram. Here we report quantum Monte Carlo (QMC) molecular dynamics simulations of pure H and H-He mixture. We calculate the first QMC EOS at 6000 K for a H-He mixture of a protosolar composition, and show the crucial influence of He on the H metallization pressure. Our results can be used to calibrate other EOS calculations and are very timely given the accurate determination of Jupiter's gravitational field from the NASA Juno mission and the effort to determine its structure.
Energy Technology Data Exchange (ETDEWEB)
Leoevey, H.; Roemisch, W. [Humboldt-Univ., Berlin (Germany)
2015-07-01
We discuss progress in quasi Monte Carlo methods for numerical calculation integrals or expected values and justify why these methods are more efficient than the classic Monte Carlo methods. Quasi Monte Carlo methods are found to be particularly efficient if the integrands have a low effective dimension. That's why We also discuss the concept of effective dimension and prove on the example of a stochastic Optimization model of the energy industry that such models can posses a low effective dimension. Modern quasi Monte Carlo methods are therefore for such models very promising. [German] Wir diskutieren Fortschritte bei Quasi-Monte Carlo Methoden zur numerischen Berechnung von Integralen bzw. Erwartungswerten und begruenden warum diese Methoden effizienter sind als die klassischen Monte Carlo Methoden. Quasi-Monte Carlo Methoden erweisen sich als besonders effizient, falls die Integranden eine geringe effektive Dimension besitzen. Deshalb diskutieren wir auch den Begriff effektive Dimension und weisen am Beispiel eines stochastischen Optimierungsmodell aus der Energiewirtschaft nach, dass solche Modelle eine niedrige effektive Dimension besitzen koennen. Moderne Quasi-Monte Carlo Methoden sind deshalb fuer solche Modelle sehr erfolgversprechend.
A new effective Monte Carlo Midway coupling method in MCNP applied to a well logging problem
Energy Technology Data Exchange (ETDEWEB)
Serov, I.V.; John, T.M.; Hoogenboom, J.E
1998-12-01
The background of the Midway forward-adjoint coupling method including the black absorber technique for efficient Monte Carlo determination of radiation detector responses is described. The method is implemented in the general purpose MCNP Monte Carlo code. The utilization of the method is fairly straightforward and does not require any substantial extra expertise. The method was applied to a standard neutron well logging porosity tool problem. The results exhibit reliability and high efficiency of the Midway method. For the studied problem the efficiency gain is considerably higher than for a normal forward calculation, which is already strongly optimized by weight-windows. No additional effort is required to adjust the Midway model if the position of the detector or the porosity of the formation is changed. Additionally, the Midway method can be used with other variance reduction techniques if extra gain in efficiency is desired.
International Nuclear Information System (INIS)
Fay, P.J.; Ray, J.R.; Wolf, R.J.
1994-01-01
We present a new, nondestructive, method for determining chemical potentials in Monte Carlo and molecular dynamics simulations. The method estimates a value for the chemical potential such that one has a balance between fictitious successful creation and destruction trials in which the Monte Carlo method is used to determine success or failure of the creation/destruction attempts; we thus call the method a detailed balance method. The method allows one to obtain estimates of the chemical potential for a given species in any closed ensemble simulation; the closed ensemble is paired with a ''natural'' open ensemble for the purpose of obtaining creation and destruction probabilities. We present results for the Lennard-Jones system and also for an embedded atom model of liquid palladium, and compare to previous results in the literature for these two systems. We are able to obtain an accurate estimate of the chemical potential for the Lennard-Jones system at higher densities than reported in the literature
A Field-Theoretical Approach to the P vs. NP Problem via the Phase Sign of Quantum Monte Carlo
Directory of Open Access Journals (Sweden)
Andrei T. Patrascu
2017-10-01
Full Text Available I present here a new method that allows the introduction of a discrete auxiliary symmetry in a theory in such a way that the eigenvalue spectrum of the fermion functional determinant is made up of complex conjugated pairs. The method implies a particular way of introducing and integrating over auxiliary fields related to a set of artificial shift symmetries. Gauge fixing the artificial continuous shift symmetries in the direct and dual sectors leads to the appearance of direct and dual Becchi–Rouet–Stora–Tyutin (BRST-type global symmetries and of a symplectic structure over the field space. Such a method may allow the extension of the applicability of quantum Monte Carlo methods to some problems plagued by the fermionic sign problem.
Improved Monte Carlo-perturbation method for estimation of control rod worths in a research reactor
International Nuclear Information System (INIS)
Kalcheva, Silva; Koonen, Edgar
2009-01-01
A hybrid method dedicated to improve the experimental technique for estimation of control rod worths in a research reactor is presented. The method uses a combination of Monte Carlo technique and perturbation theory. Perturbation method is used to obtain the equation for the relative efficiency of control rod insertion. A series of coefficients, describing the axial absorption profile are used to correct the equation for a composite rod, having a complicated burn-up irradiation history. These coefficients have to be determined - by experiment or by using some theoretical/numerical method. In the present paper they are derived from the macroscopic absorption cross-sections, obtained from detailed Monte Carlo calculations by MCNPX 2.6.F of the axial burn-up profile during control rod life. The method is validated on measurements of control rod worths at the BR2 reactor. Comparison with direct MCNPX evaluations of control rod worths is also presented
Directory of Open Access Journals (Sweden)
David J. Luitz, Nicolas Laflorencie
2017-03-01
Full Text Available Using quantum Monte Carlo simulations, we compute the participation (Shannon-R\\'enyi entropies for groundstate wave functions of Heisenberg antiferromagnets for one-dimensional (line subsystems of length $L$ embedded in two-dimensional ($L\\times L$ square lattices. We also study the line entropy at finite temperature, i.e. of the diagonal elements of the density matrix, for three-dimensional ($L\\times L\\times L$ cubic lattices. The breaking of SU(2 symmetry is clearly captured by a universal logarithmic scaling term $l_q\\ln L$ in the R\\'enyi entropies, in good agreement with the recent field-theory results of Misguish, Pasquier and Oshikawa [arXiv:1607.02465]. We also study the dependence of the log prefactor $l_q$ on the R\\'enyi index $q$ for which a transition is detected at $q_c\\simeq 1$.
Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model
Energy Technology Data Exchange (ETDEWEB)
Bonnard, J. [INFN, Sezione di Padova, Padova (Italy); LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Juillet, O. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France)
2016-04-15
The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction. (orig.)
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis
Energy Technology Data Exchange (ETDEWEB)
Vrbik, Jan [Department of Mathematics, Brock University, St. Catharines, Ontario L2S 3A1 (Canada); Ospadov, Egor; Rothstein, Stuart M., E-mail: srothstein@brocku.ca [Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1 (Canada)
2016-07-14
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x′; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Note: A pure-sampling quantum Monte Carlo algorithm with independent Metropolis
International Nuclear Information System (INIS)
Vrbik, Jan; Ospadov, Egor; Rothstein, Stuart M.
2016-01-01
Recently, Ospadov and Rothstein published a pure-sampling quantum Monte Carlo algorithm (PSQMC) that features an auxiliary Path Z that connects the midpoints of the current and proposed Paths X and Y, respectively. When sufficiently long, Path Z provides statistical independence of Paths X and Y. Under those conditions, the Metropolis decision used in PSQMC is done without any approximation, i.e., not requiring microscopic reversibility and without having to introduce any G(x → x′; τ) factors into its decision function. This is a unique feature that contrasts with all competing reptation algorithms in the literature. An example illustrates that dependence of Paths X and Y has adverse consequences for pure sampling.
Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study
Masrour, R.; Jabar, A.
2018-05-01
The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.
Kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dot islands
International Nuclear Information System (INIS)
Song Xin; Feng Hao; Liu Yu-Min; Yu Zhong-Yuan; Yin Hao-Zhi
2014-01-01
By three-dimensional kinetic Monte Carlo simulations, the effects of the temperature, the flux rate, the total coverage and the interruption time on the distribution and the number of self-assembled InAs/GaAs (001) quantum dot (QD) islands are studied, which shows that a higher temperature, a lower flux rate and a longer growth time correspond to a better island distribution. The relations between the number of islands and the temperature and the flux rate are also successfully simulated. It is observed that for the total coverage lower than 0.5 ML, the number of islands decreases with the temperature increasing and other growth parameters fixed and the number of islands increases with the flux rate increasing when the deposition is lower than 0.6 ML and the other parameters are fixed. (condensed matter: structural, mechanical, and thermal properties)
Derian, R; Tokár, K; Somogyi, B; Gali, Á; Štich, I
2017-12-12
We present a time-dependent density functional theory (TDDFT) study of the optical gaps of light-emitting nanomaterials, namely, pristine and heavily B- and P-codoped silicon crystalline nanoparticles. Twenty DFT exchange-correlation functionals sampled from the best currently available inventory such as hybrids and range-separated hybrids are benchmarked against ultra-accurate quantum Monte Carlo results on small model Si nanocrystals. Overall, the range-separated hybrids are found to perform best. The quality of the DFT gaps is correlated with the deviation from Koopmans' theorem as a possible quality guide. In addition to providing a generic test of the ability of TDDFT to describe optical properties of silicon crystalline nanoparticles, the results also open up a route to benchmark-quality DFT studies of nanoparticle sizes approaching those studied experimentally.
A hybrid multiscale kinetic Monte Carlo method for simulation of copper electrodeposition
International Nuclear Information System (INIS)
Zheng Zheming; Stephens, Ryan M.; Braatz, Richard D.; Alkire, Richard C.; Petzold, Linda R.
2008-01-01
A hybrid multiscale kinetic Monte Carlo (HMKMC) method for speeding up the simulation of copper electrodeposition is presented. The fast diffusion events are simulated deterministically with a heterogeneous diffusion model which considers site-blocking effects of additives. Chemical reactions are simulated by an accelerated (tau-leaping) method for discrete stochastic simulation which adaptively selects exact discrete stochastic simulation for the appropriate reaction whenever that is necessary. The HMKMC method is seen to be accurate and highly efficient
Analysis of Monte Carlo methods for the simulation of photon transport
International Nuclear Information System (INIS)
Carlsson, G.A.; Kusoffsky, L.
1975-01-01
In connection with the transport of low-energy photons (30 - 140 keV) through layers of water of different thicknesses, various aspects of Monte Carlo methods are examined in order to improve their effectivity (to produce statistically more reliable results with shorter computer times) and to bridge the gap between more physical methods and more mathematical ones. The calculations are compared with results of experiments involving the simulation of photon transport, using direct methods and collision density ones (J.S.)
Determination of axial diffusion coefficients by the Monte-Carlo method
International Nuclear Information System (INIS)
Milgram, M.
1994-01-01
A simple method to calculate the homogenized diffusion coefficient for a lattice cell using Monte-Carlo techniques is demonstrated. The method relies on modelling a finite reactor volume to induce a curvature in the flux distribution, and then follows a large number of histories to obtain sufficient statistics for a meaningful result. The goal is to determine the diffusion coefficient with sufficient accuracy to test approximate methods built into deterministic lattice codes. Numerical results are given. (author). 4 refs., 8 figs
Comments on the use of the Monte Carlo method for criticality calculations
International Nuclear Information System (INIS)
Whitesides, G.E.
1975-01-01
As evidenced by recent papers given at Nuclear Criticality Safety Division meetings, the use of the Monte Carlo method has become a very popular computational tool. The ease of use has undoubtably been a primary reason for this popularity. This ease of use, however, may lead to a false sense of security when using the method. Guidance on the effective use of the method and some suggestions on how to avoid some of the pitfalls that can occur are presented
Investigation of Compton scattering correction methods in cardiac SPECT by Monte Carlo simulations
International Nuclear Information System (INIS)
Silva, A.M. Marques da; Furlan, A.M.; Robilotta, C.C.
2001-01-01
The goal of this work was the use of Monte Carlo simulations to investigate the effects of two scattering correction methods: dual energy window (DEW) and dual photopeak window (DPW), in quantitative cardiac SPECT reconstruction. MCAT torso-cardiac phantom, with 99m Tc and non-uniform attenuation map was simulated. Two different photopeak windows were evaluated in DEW method: 15% and 20%. Two 10% wide subwindows centered symmetrically within the photopeak were used in DPW method. Iterative ML-EM reconstruction with modified projector-backprojector for attenuation correction was applied. Results indicated that the choice of the scattering and photopeak windows determines the correction accuracy. For the 15% window, fitted scatter fraction gives better results than k = 0.5. For the 20% window, DPW is the best method, but it requires parameters estimation using Monte Carlo simulations. (author)
Probability-neighbor method of accelerating geometry treatment in reactor Monte Carlo code RMC
International Nuclear Information System (INIS)
She, Ding; Li, Zeguang; Xu, Qi; Wang, Kan; Yu, Ganglin
2011-01-01
Probability neighbor method (PNM) is proposed in this paper to accelerate geometry treatment of Monte Carlo (MC) simulation and validated in self-developed reactor Monte Carlo code RMC. During MC simulation by either ray-tracking or delta-tracking method, large amounts of time are spent in finding out which cell one particle is located in. The traditional way is to search cells one by one with certain sequence defined previously. However, this procedure becomes very time-consuming when the system contains a large number of cells. Considering that particles have different probability to enter different cells, PNM method optimizes the searching sequence, i.e., the cells with larger probability are searched preferentially. The PNM method is implemented in RMC code and the numerical results show that the considerable time of geometry treatment in MC calculation for complicated systems is saved, especially effective in delta-tracking simulation. (author)
CAD-based Monte Carlo automatic modeling method based on primitive solid
International Nuclear Information System (INIS)
Wang, Dong; Song, Jing; Yu, Shengpeng; Long, Pengcheng; Wang, Yongliang
2016-01-01
Highlights: • We develop a method which bi-convert between CAD model and primitive solid. • This method was improved from convert method between CAD model and half space. • This method was test by ITER model and validated the correctness and efficiency. • This method was integrated in SuperMC which could model for SuperMC and Geant4. - Abstract: Monte Carlo method has been widely used in nuclear design and analysis, where geometries are described with primitive solids. However, it is time consuming and error prone to describe a primitive solid geometry, especially for a complicated model. To reuse the abundant existed CAD models and conveniently model with CAD modeling tools, an automatic modeling method for accurate prompt modeling between CAD model and primitive solid is needed. An automatic modeling method for Monte Carlo geometry described by primitive solid was developed which could bi-convert between CAD model and Monte Carlo geometry represented by primitive solids. While converting from CAD model to primitive solid model, the CAD model was decomposed into several convex solid sets, and then corresponding primitive solids were generated and exported. While converting from primitive solid model to the CAD model, the basic primitive solids were created and related operation was done. This method was integrated in the SuperMC and was benchmarked with ITER benchmark model. The correctness and efficiency of this method were demonstrated.
Estimation of magnetocaloric properties by using Monte Carlo method for AMRR cycle
International Nuclear Information System (INIS)
Arai, R; Fukuda, H; Numazawa, T; Tamura, R; Li, J; Saito, A T; Nakagome, H; Kaji, S
2015-01-01
In order to achieve a wide refrigerating temperature range in magnetic refrigeration, it is effective to layer multiple materials with different Curie temperatures. It is crucial to have a detailed understanding of physical properties of materials to optimize the material selection and the layered structure. In the present study, we discuss methods for estimating a change in physical properties, particularly the Curie temperature when some of the Gd atoms are substituted for non-magnetic elements for material design, based on Gd as a ferromagnetic material which is a typical magnetocaloric material. For this purpose, whilst making calculations using the S=7/2 Ising model and the Monte Carlo method, we made a specific heat measurement and a magnetization measurement of Gd-R alloy (R = Y, Zr) to compare experimental values and calculated ones. The results showed that the magnetic entropy change, specific heat, and Curie temperature can be estimated with good accuracy using the Monte Carlo method. (paper)
Approximation of the Monte Carlo Sampling Method for Reliability Analysis of Structures
Directory of Open Access Journals (Sweden)
Mahdi Shadab Far
2016-01-01
Full Text Available Structural load types, on the one hand, and structural capacity to withstand these loads, on the other hand, are of a probabilistic nature as they cannot be calculated and presented in a fully deterministic way. As such, the past few decades have witnessed the development of numerous probabilistic approaches towards the analysis and design of structures. Among the conventional methods used to assess structural reliability, the Monte Carlo sampling method has proved to be very convenient and efficient. However, it does suffer from certain disadvantages, the biggest one being the requirement of a very large number of samples to handle small probabilities, leading to a high computational cost. In this paper, a simple algorithm was proposed to estimate low failure probabilities using a small number of samples in conjunction with the Monte Carlo method. This revised approach was then presented in a step-by-step flowchart, for the purpose of easy programming and implementation.
Energy Technology Data Exchange (ETDEWEB)
Dixon, D.A., E-mail: ddixon@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, MS P365, Los Alamos, NM 87545 (United States); Prinja, A.K., E-mail: prinja@unm.edu [Department of Nuclear Engineering, MSC01 1120, 1 University of New Mexico, Albuquerque, NM 87131-0001 (United States); Franke, B.C., E-mail: bcfrank@sandia.gov [Sandia National Laboratories, Albuquerque, NM 87123 (United States)
2015-09-15
This paper presents the theoretical development and numerical demonstration of a moment-preserving Monte Carlo electron transport method. Foremost, a full implementation of the moment-preserving (MP) method within the Geant4 particle simulation toolkit is demonstrated. Beyond implementation details, it is shown that the MP method is a viable alternative to the condensed history (CH) method for inclusion in current and future generation transport codes through demonstration of the key features of the method including: systematically controllable accuracy, computational efficiency, mathematical robustness, and versatility. A wide variety of results common to electron transport are presented illustrating the key features of the MP method. In particular, it is possible to achieve accuracy that is statistically indistinguishable from analog Monte Carlo, while remaining up to three orders of magnitude more efficient than analog Monte Carlo simulations. Finally, it is shown that the MP method can be generalized to any applicable analog scattering DCS model by extending previous work on the MP method beyond analytical DCSs to the partial-wave (PW) elastic tabulated DCS data.
Generation of gamma-ray streaming kernels through cylindrical ducts via Monte Carlo method
International Nuclear Information System (INIS)
Kim, Dong Su
1992-02-01
Since radiation streaming through penetrations is often the critical consideration in protection against exposure of personnel in a nuclear facility, it has been of great concern in radiation shielding design and analysis. Several methods have been developed and applied to the analysis of the radiation streaming in the past such as ray analysis method, single scattering method, albedo method, and Monte Carlo method. But they may be used for order-of-magnitude calculations and where sufficient margin is available, except for the Monte Carlo method which is accurate but requires a lot of computing time. This study developed a Monte Carlo method and constructed a data library of solutions using the Monte Carlo method for radiation streaming through a straight cylindrical duct in concrete walls of a broad, mono-directional, monoenergetic gamma-ray beam of unit intensity. The solution named as plane streaming kernel is the average dose rate at duct outlet and was evaluated for 20 source energies from 0 to 10 MeV, 36 source incident angles from 0 to 70 degrees, 5 duct radii from 10 to 30 cm, and 16 wall thicknesses from 0 to 100 cm. It was demonstrated that average dose rate due to an isotropic point source at arbitrary positions can be well approximated using the plane streaming kernel with acceptable error. Thus, the library of the plane streaming kernels can be used for the accurate and efficient analysis of radiation streaming through a straight cylindrical duct in concrete walls due to arbitrary distributions of gamma-ray sources
Extrapolation method in the Monte Carlo Shell Model and its applications
International Nuclear Information System (INIS)
Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio
2011-01-01
We demonstrate how the energy-variance extrapolation method works using the sequence of the approximated wave functions obtained by the Monte Carlo Shell Model (MCSM), taking 56 Ni with pf-shell as an example. The extrapolation method is shown to work well even in the case that the MCSM shows slow convergence, such as 72 Ge with f5pg9-shell. The structure of 72 Se is also studied including the discussion of the shape-coexistence phenomenon.
Floris, F.; Filippi, Claudia; Amovilli, C.
2012-01-01
We present density functional theory (DFT) and quantum Monte Carlo (QMC) calculations of the glutamic acid and glutamate ion in vacuo and in various dielectric continuum media within the polarizable continuum model (PCM). In DFT, we employ the integral equation formalism variant of PCM while, in
Fracchia, F.; Filippi, Claudia; Amovilli, C.
2014-01-01
We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we
A recursive Monte Carlo method for estimating importance functions in deep penetration problems
International Nuclear Information System (INIS)
Goldstein, M.
1980-04-01
A pratical recursive Monte Carlo method for estimating the importance function distribution, aimed at importance sampling for the solution of deep penetration problems in three-dimensional systems, was developed. The efficiency of the recursive method was investigated for sample problems including one- and two-dimensional, monoenergetic and and multigroup problems, as well as for a practical deep-penetration problem with streaming. The results of the recursive Monte Carlo calculations agree fairly well with Ssub(n) results. It is concluded that the recursive Monte Carlo method promises to become a universal method for estimating the importance function distribution for the solution of deep-penetration problems, in all kinds of systems: for many systems the recursive method is likely to be more efficient than previously existing methods; for three-dimensional systems it is the first method that can estimate the importance function with the accuracy required for an efficient solution based on importance sampling of neutron deep-penetration problems in those systems
Motta, Mario; Zhang, Shiwei
2017-11-14
We address the computation of ground-state properties of chemical systems and realistic materials within the auxiliary-field quantum Monte Carlo method. The phase constraint to control the Fermion phase problem requires the random walks in Slater determinant space to be open-ended with branching. This in turn makes it necessary to use back-propagation (BP) to compute averages and correlation functions of operators that do not commute with the Hamiltonian. Several BP schemes are investigated, and their optimization with respect to the phaseless constraint is considered. We propose a modified BP method for the computation of observables in electronic systems, discuss its numerical stability and computational complexity, and assess its performance by computing ground-state properties in several molecular systems, including small organic molecules.
New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors
International Nuclear Information System (INIS)
Murata, Isao; Takahashi, Akito; Mori, Takamasa; Nakagawa, Masayuki.
1997-01-01
A pebble bed reactor generally has double heterogeneity consisting of two kinds of spherical fuel element. In the core, there exist many fuel balls piled up randomly in a high packing fraction. And each fuel ball contains a lot of small fuel particles which are also distributed randomly. In this study, to realize precise neutron transport calculation of such reactors with the continuous energy Monte Carlo method, a new sampling method has been developed. The new method has been implemented in the general purpose Monte Carlo code MCNP to develop a modified version MCNP-BALL. This method was validated by calculating inventory of spherical fuel elements arranged successively by sampling during transport calculation and also by performing criticality calculations in ordered packing models. From the results, it was confirmed that the inventory of spherical fuel elements could be reproduced using MCNP-BALL within a sufficient accuracy of 0.2%. And the comparison of criticality calculations in ordered packing models between MCNP-BALL and the reference method shows excellent agreement in neutron spectrum as well as multiplication factor. MCNP-BALL enables us to analyze pebble bed type cores such as PROTEUS precisely with the continuous energy Monte Carlo method. (author)
An improved method for storing and retrieving tabulated data in a scalar Monte Carlo code
International Nuclear Information System (INIS)
Hollenbach, D.F.; Reynolds, K.H.; Dodds, H.L.; Landers, N.F.; Petrie, L.M.
1990-01-01
The KENO-Va code is a production-level criticality safety code used to calculate the k eff of a system. The code is stochastic in nature, using a Monte Carlo algorithm to track individual particles one at a time through the system. The advent of computers with vector processors has generated an interest in improving KENO-Va to take advantage of the potential speed-up associated with these new processors. Unfortunately, the original Monte Carlo algorithm and method of storing and retrieving cross-section data is not adaptable to vector processing. This paper discusses an alternate method for storing and retrieving data that not only is readily vectorizable but also improves the efficiency of the current scalar code
Stability analysis and time-step limits for a Monte Carlo Compton-scattering method
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.
2010-01-01
A Monte Carlo method for simulating Compton scattering in high energy density applications has been presented that models the photon-electron collision kinematics exactly [E. Canfield, W.M. Howard, E.P. Liang, Inverse Comptonization by one-dimensional relativistic electrons, Astrophys. J. 323 (1987) 565]. However, implementing this technique typically requires an explicit evaluation of the material temperature, which can lead to unstable and oscillatory solutions. In this paper, we perform a stability analysis of this Monte Carlo method and develop two time-step limits that avoid undesirable behavior. The first time-step limit prevents instabilities, while the second, more restrictive time-step limit avoids both instabilities and nonphysical oscillations. With a set of numerical examples, we demonstrate the efficacy of these time-step limits.
Sink strength simulations using the Monte Carlo method: Applied to spherical traps
Ahlgren, T.; Bukonte, L.
2017-12-01
The sink strength is an important parameter for the mean-field rate equations to simulate temporal changes in the micro-structure of materials. However, there are noteworthy discrepancies between sink strengths obtained by the Monte Carlo and analytical methods. In this study, we show the reasons for these differences. We present the equations to estimate the statistical error for sink strength calculations and show the way to determine the sink strengths for multiple traps. We develop a novel, very fast Monte Carlo method to obtain sink strengths. The results show that, in addition to the well-known sink strength dependence of the trap concentration, trap radius and the total sink strength, the sink strength also depends on the defect diffusion jump length and the total trap volume fraction. Taking these factors into account, allows us to obtain a very accurate analytic expression for the sink strength of spherical traps.
Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport
International Nuclear Information System (INIS)
Lynch, J.E.
1985-01-01
Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs
Analysis of subgrid scale mixing using a hybrid LES-Monte-Carlo PDF method
International Nuclear Information System (INIS)
Olbricht, C.; Hahn, F.; Sadiki, A.; Janicka, J.
2007-01-01
This contribution introduces a hybrid LES-Monte-Carlo method for a coupled solution of the flow and the multi-dimensional scalar joint pdf in two complex mixing devices. For this purpose an Eulerian Monte-Carlo method is used. First, a complex mixing device (jet-in-crossflow, JIC) is presented in which the stochastic convergence and the coherency between the scalar field solution obtained via finite-volume methods and that from the stochastic solution of the pdf for the hybrid method are evaluated. Results are compared to experimental data. Secondly, an extensive investigation of the micromixing on the basis of assumed shape and transported SGS-pdfs in a configuration with practical relevance is carried out. This consists of a mixing chamber with two opposite rows of jets penetrating a crossflow (multi-jet-in-crossflow, MJIC). Some numerical results are compared to available experimental data and to RANS based results. It turns out that the hybrid LES-Monte-Carlo method could achieve a detailed analysis of the mixing at the subgrid level
International Nuclear Information System (INIS)
Kalcheva, Silva; Koonen, Edgar
2008-01-01
A hybrid method dedicated to improve the experimental technique for estimation of control rod worths in a research reactor is presented. The method uses a combination of Monte Carlo technique and perturbation theory. The perturbation theory is used to obtain the relation between the relative rod efficiency and the buckling of the reactor with partially inserted rod. A series of coefficients, describing the axial absorption profile are used to correct the buckling for an arbitrary composite rod, having complicated burn up irradiation history. These coefficients have to be determined - by experiment or by using some theoretical/numerical method. In the present paper they are derived from the macroscopic absorption cross sections, obtained from detailed Monte Carlo calculations by MCNPX 2.6.F of the axial burn up profile during control rod life. The method is validated on measurements of control rod worths at the BR2 reactor. Comparison with direct Monte Carlo evaluations of control rod worths is also presented. The uncertainties, arising from the used approximations in the presented hybrid method are discussed. (authors)
A comparison of generalized hybrid Monte Carlo methods with and without momentum flip
International Nuclear Information System (INIS)
Akhmatskaya, Elena; Bou-Rabee, Nawaf; Reich, Sebastian
2009-01-01
The generalized hybrid Monte Carlo (GHMC) method combines Metropolis corrected constant energy simulations with a partial random refreshment step in the particle momenta. The standard detailed balance condition requires that momenta are negated upon rejection of a molecular dynamics proposal step. The implication is a trajectory reversal upon rejection, which is undesirable when interpreting GHMC as thermostated molecular dynamics. We show that a modified detailed balance condition can be used to implement GHMC without momentum flips. The same modification can be applied to the generalized shadow hybrid Monte Carlo (GSHMC) method. Numerical results indicate that GHMC/GSHMC implementations with momentum flip display a favorable behavior in terms of sampling efficiency, i.e., the traditional GHMC/GSHMC implementations with momentum flip got the advantage of a higher acceptance rate and faster decorrelation of Monte Carlo samples. The difference is more pronounced for GHMC. We also numerically investigate the behavior of the GHMC method as a Langevin-type thermostat. We find that the GHMC method without momentum flip interferes less with the underlying stochastic molecular dynamics in terms of autocorrelation functions and it to be preferred over the GHMC method with momentum flip. The same finding applies to GSHMC
Multilevel markov chain monte carlo method for high-contrast single-phase flow problems
Efendiev, Yalchin R.
2014-12-19
In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates. © Global Science Press Limited 2015.
BRAND program complex for neutron-physical experiment simulation by the Monte-Carlo method
International Nuclear Information System (INIS)
Androsenko, A.A.; Androsenko, P.A.
1984-01-01
Possibilities of the BRAND program complex for neutron and γ-radiation transport simulation by the Monte-Carlo method are described in short. The complex includes the following modules: geometric module, source module, detector module, modules of simulation of a vector of particle motion direction after interaction and a free path. The complex is written in the FORTRAN langauage and realized by the BESM-6 computer
Multiquark masses and wave functions through modified Green's function Monte Carlo method
International Nuclear Information System (INIS)
Kerbikov, B.O.; Polikarpov, M.I.; Shevchenko, L.V.
1987-01-01
The Modified Green's function Monte Carlo method (MGFMC) is used to calculate the masses and ground-state wave functions of multiquark systems in the potential model. The previously developed MGFMC is generalized in order to treat systems containing quarks with inequal masses. The obtained results are presented with the Cornell potential for the masses and the wave functions of light and heavy flavoured baryons and multiquark states (N=6, 9, 12) made of light quarks
Study of the multiple scattering effect in TEBENE using the Monte Carlo method
International Nuclear Information System (INIS)
Singkarat, Somsorn.
1990-01-01
The neutron time-of-flight and energy spectra, from the TEBENE set-up, have been calculated by a computer program using the Monte Carlo method. The neutron multiple scattering within the polyethylene scatterer ring is closely investigated. The results show that multiple scattering has a significant effect on the detected neutron yield. They also indicate that the thickness of the scatterer ring has to be carefully chosen. (author)
Application of Monte Carlo method in determination of secondary characteristic X radiation in XFA
International Nuclear Information System (INIS)
Roubicek, P.
1982-01-01
Secondary characteristic radiation is excited by primary radiation from the X-ray tube and by secondary radiation of other elements so that excitations of several orders result. The Monte Carlo method was used to consider all these possibilities and the resulting flux of characteristic radiation was simulated for samples of silicate raw materials. A comparison of the results of these computations with experiments allows to determine the effect of sample preparation on the characteristic radiation flux. (M.D.)
Efficiency determination of whole-body counters by Monte Carlo method, using a microcomputer
International Nuclear Information System (INIS)
Fernandes Neto, J.M.
1987-01-01
A computing program using Monte Carlo method for calculate the whole efficiency of distributed radiation counters in human body is developed. A simulater of human proportions was used, of which was filled with a known and uniform solution containing a quantity of radioisopes. The 99m Tc, 131 I and 42 K were used in this experience, and theirs activities compared by a liquid scintillator. (C.G.C.) [pt
A study of orientational disorder in ND4Cl by the reverse Monte Carlo method
International Nuclear Information System (INIS)
Belushkin, A.V.; Kozlenko, D.P.; Savenko, B.N.; McGreevy, R.L.; Zetterstroem, P.
1998-01-01
The total structure factor for deuterated ammonium chloride measured by neutron diffraction has been modeled using the reverse Monte Carlo method. The results show that the orientational disorder of the ammonium ions consists of a local librational motion with an average angular amplitude α = 17 deg and reorientations of ammonium ions by 90 deg jumps around two-fold axes. Reorientations around three-fold axes have a very low probability
S.V. Kryuchkov; E.I. Kukhar’; D.V. Zav’yalov
2015-01-01
The power of the elliptically polarized electromagnetic radiation absorbed by band-gap graphene in presence of constant magnetic field is calculated. The linewidth of cyclotron absorption is shown to be non-zero even if the scattering is absent. The calculations are performed analytically with the Boltzmann kinetic equation and confirmed numerically with the Monte Carlo method. The dependence of the linewidth of the cyclotron absorption on temperature applicable for a band-gap graphene in the...
A new fuzzy Monte Carlo method for solving SLAE with ergodic fuzzy Markov chains
Directory of Open Access Journals (Sweden)
Maryam Gharehdaghi
2015-05-01
Full Text Available In this paper we introduce a new fuzzy Monte Carlo method for solving system of linear algebraic equations (SLAE over the possibility theory and max-min algebra. To solve the SLAE, we first define a fuzzy estimator and prove that this is an unbiased estimator of the solution. To prove unbiasedness, we apply the ergodic fuzzy Markov chains. This new approach works even for cases with coefficients matrix with a norm greater than one.
R and D on automatic modeling methods for Monte Carlo codes FLUKA
International Nuclear Information System (INIS)
Wang Dianxi; Hu Liqin; Wang Guozhong; Zhao Zijia; Nie Fanzhi; Wu Yican; Long Pengcheng
2013-01-01
FLUKA is a fully integrated particle physics Monte Carlo simulation package. It is necessary to create the geometry models before calculation. However, it is time- consuming and error-prone to describe the geometry models manually. This study developed an automatic modeling method which could automatically convert computer-aided design (CAD) geometry models into FLUKA models. The conversion program was integrated into CAD/image-based automatic modeling program for nuclear and radiation transport simulation (MCAM). Its correctness has been demonstrated. (authors)
Atmosphere Re-Entry Simulation Using Direct Simulation Monte Carlo (DSMC Method
Directory of Open Access Journals (Sweden)
Francesco Pellicani
2016-05-01
Full Text Available Hypersonic re-entry vehicles aerothermodynamic investigations provide fundamental information to other important disciplines like materials and structures, assisting the development of thermal protection systems (TPS efficient and with a low weight. In the transitional flow regime, where thermal and chemical equilibrium is almost absent, a new numerical method for such studies has been introduced, the direct simulation Monte Carlo (DSMC numerical technique. The acceptance and applicability of the DSMC method have increased significantly in the 50 years since its invention thanks to the increase in computer speed and to the parallel computing. Anyway, further verification and validation efforts are needed to lead to its greater acceptance. In this study, the Monte Carlo simulator OpenFOAM and Sparta have been studied and benchmarked against numerical and theoretical data for inert and chemically reactive flows and the same will be done against experimental data in the near future. The results show the validity of the data found with the DSMC. The best setting of the fundamental parameters used by a DSMC simulator are presented for each software and they are compared with the guidelines deriving from the theory behind the Monte Carlo method. In particular, the number of particles per cell was found to be the most relevant parameter to achieve valid and optimized results. It is shown how a simulation with a mean value of one particle per cell gives sufficiently good results with very low computational resources. This achievement aims to reconsider the correct investigation method in the transitional regime where both the direct simulation Monte Carlo (DSMC and the computational fluid-dynamics (CFD can work, but with a different computational effort.
Study on critical effect in lattice homogenization via Monte Carlo method
International Nuclear Information System (INIS)
Li Mancang; Wang Kan; Yao Dong
2012-01-01
In contrast to the traditional deterministic lattice codes, generating the homogenization multigroup constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum. thus provides more accuracy parameters. An infinite lattice of identical symmetric motives is usually assumed when performing the homogenization. However, the finite size of a reactor is reality and it should influence the lattice calculation. In practice of the homogenization with Monte Carlo method, B N theory is applied to take the leakage effect into account. The fundamental mode with the buckling B is used as a measure of the finite size. The critical spectrum in the solution of 0-dimensional fine-group B 1 equations is used to correct the weighted spectrum for homogenization. A PWR prototype core is examined to verify that the presented method indeed generates few group constants effectively. In addition, a zero power physical experiment verification is performed. The results show that B N theory is adequate for leakage correction in the multigroup constants generation via Monte Carlo method. (authors)
Application of Macro Response Monte Carlo method for electron spectrum simulation
International Nuclear Information System (INIS)
Perles, L.A.; Almeida, A. de
2007-01-01
During the past years several variance reduction techniques for Monte Carlo electron transport have been developed in order to reduce the electron computation time transport for absorbed dose distribution. We have implemented the Macro Response Monte Carlo (MRMC) method to evaluate the electron spectrum which can be used as a phase space input for others simulation programs. Such technique uses probability distributions for electron histories previously simulated in spheres (called kugels). These probabilities are used to sample the primary electron final state, as well as the creation secondary electrons and photons. We have compared the MRMC electron spectra simulated in homogeneous phantom against the Geant4 spectra. The results showed an agreement better than 6% in the spectra peak energies and that MRMC code is up to 12 time faster than Geant4 simulations
Graham, Eleanor; Cuore Collaboration
2017-09-01
The CUORE experiment is a large-scale bolometric detector seeking to observe the never-before-seen process of neutrinoless double beta decay. Predictions for CUORE's sensitivity to neutrinoless double beta decay allow for an understanding of the half-life ranges that the detector can probe, and also to evaluate the relative importance of different detector parameters. Currently, CUORE uses a Bayesian analysis based in BAT, which uses Metropolis-Hastings Markov Chain Monte Carlo, for its sensitivity studies. My work evaluates the viability and potential improvements of switching the Bayesian analysis to Hamiltonian Monte Carlo, realized through the program Stan and its Morpho interface. I demonstrate that the BAT study can be successfully recreated in Stan, and perform a detailed comparison between the results and computation times of the two methods.
Visual improvement for bad handwriting based on Monte-Carlo method
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2014-03-01
A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.
Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation
Haji-Ali, Abdul-Lateef
2017-09-12
We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean–Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $$\\\\mathrm {TOL}$$TOL, is when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of . Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.
Response matrix of regular moderator volumes with 3He detector using Monte Carlo methods
International Nuclear Information System (INIS)
Baltazar R, A.; Vega C, H. R.; Ortiz R, J. M.; Solis S, L. O.; Castaneda M, R.; Soto B, T. G.; Medina C, D.
2017-10-01
In the last three decades the uses of Monte Carlo methods, for the estimation of physical phenomena associated with the interaction of radiation with matter, have increased considerably. The reason is due to the increase in computing capabilities and the reduction of computer prices. Monte Carlo methods allow modeling and simulating real systems before their construction, saving time and costs. The interaction mechanisms between neutrons and matter are diverse and range from elastic dispersion to nuclear fission; to facilitate the neutrons detection, is necessary to moderate them until reaching electronic equilibrium with the medium at standard conditions of pressure and temperature, in this state the total cross section of the 3 He is large. The objective of the present work was to estimate the response matrix of a proportional detector of 3 He using regular volumes of moderator through Monte Carlo methods. Neutron monoenergetic sources with energies of 10 -9 to 20 MeV and polyethylene moderators of different sizes were used. The calculations were made with the MCNP5 code; the number of stories for each detector-moderator combination was large enough to obtain errors less than 1.5%. We found that for small moderators the highest response is obtained for lower energy neutrons, when increasing the moderator dimension we observe that the response decreases for neutrons of lower energy and increases for higher energy neutrons. The total sum of the responses of each moderator allows obtaining a response close to a constant function. (Author)
Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method
International Nuclear Information System (INIS)
Pilla, R.P.; Shaham, J.
1997-01-01
A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons. These are coupled nonlinear integro-differential equations. The collision kernels for the photons as well as pairs are evaluated for Compton scattering, pair annihilation and creation, bremsstrahlung, and Coulomb collisions. They are given as multidimensional integrals which are valid for all energies. For an homogeneous and isotropic plasma with no particle escape, the equilibrium solution is expressed analytically in terms of the initial conditions. For two specific cases, for which the photon and the pair spectra are initially constant or have a power-law distribution within the given limits, the time evolution of the plasma is analyzed using the new method. The final spectra are found to be in a good agreement with the analytical solutions. The new algorithm is faster than the Monte Carlo scheme based on uniform sampling and more flexible than the numerical methods used in the past, which do not involve Monte Carlo sampling. It is also found to be very stable. Some astrophysical applications of this technique are discussed. copyright 1997 The American Astronomical Society
On the Markov Chain Monte Carlo (MCMC) method
Indian Academy of Sciences (India)
included a short appendix that gives basic definitions and results in this case. ... Moreover, the central limit theorem gives the order of error; the error here is ... Indeed, the common method to generate samples from N(0,1) also uses the idea of ...
Power Analysis for Complex Mediational Designs Using Monte Carlo Methods
Thoemmes, Felix; MacKinnon, David P.; Reiser, Mark R.
2010-01-01
Applied researchers often include mediation effects in applications of advanced methods such as latent variable models and linear growth curve models. Guidance on how to estimate statistical power to detect mediation for these models has not yet been addressed in the literature. We describe a general framework for power analyses for complex…
Markov chain Monte Carlo methods in directed graphical models
DEFF Research Database (Denmark)
Højbjerre, Malene
Directed graphical models present data possessing a complex dependence structure, and MCMC methods are computer-intensive simulation techniques to approximate high-dimensional intractable integrals, which emerge in such models with incomplete data. MCMC computations in directed graphical models h...
Efendiev, Yalchin R.; Iliev, Oleg; Kronsbein, C.
2013-01-01
In this paper, we propose multilevel Monte Carlo (MLMC) methods that use ensemble level mixed multiscale methods in the simulations of multiphase flow and transport. The contribution of this paper is twofold: (1) a design of ensemble level mixed
Evaluation of Investment Risks in CBA with Monte Carlo Method
Directory of Open Access Journals (Sweden)
Jana Korytárová
2015-01-01
Full Text Available Investment decisions are at the core of any development strategy. Economic growth and welfare depend on productive capital, infrastructure, human capital, knowledge, total factor productivity and the quality of institutions. Decision-making process on the selection of suitable projects in the public sector is in some aspects more difficult than in the private sector. Evaluating projects on the basis of their financial profitability, where the basic parameter is the value of the potential profit, can be misleading in these cases. One of the basic objectives of the allocation of public resources is respecting of the 3E principle (Economy, Effectiveness, Efficiency in their whole life cycle. The life cycle of the investment projects consists of four main phases. The first pre-investment phase is very important for decision-making process whether to accept or reject a public project for its realization. A well-designed feasibility study as well as cost-benefit analysis (CBA in this phase are important assumptions for future success of the project. A future financial and economical CF which represent the fundamental basis for calculation of economic effectiveness indicators are formed and modelled in these documents. This paper deals with the possibility to calculate the financial and economic efficiency of the public investment projects more accurately by simulation methods used.
MONTE CARLO METHOD AND APPLICATION IN @RISK SIMULATION SYSTEM
Directory of Open Access Journals (Sweden)
Gabriela Ižaríková
2015-12-01
Full Text Available The article is an example of using the software simulation @Risk designed for simulation in Microsoft Excel spread sheet, demonstrated the possibility of its usage in order to show a universal method of solving problems. The simulation is experimenting with computer models based on the real production process in order to optimize the production processes or the system. The simulation model allows performing a number of experiments, analysing them, evaluating, optimizing and afterwards applying the results to the real system. A simulation model in general is presenting modelling system by using mathematical formulations and logical relations. In the model is possible to distinguish controlled inputs (for instance investment costs and random outputs (for instance demand, which are by using a model transformed into outputs (for instance mean value of profit. In case of a simulation experiment at the beginning are chosen controlled inputs and random (stochastic outputs are generated randomly. Simulations belong into quantitative tools, which can be used as a support for a decision making.
Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations
Jiang, Zhang; Smelyanskiy, Vadim N.; Isakov, Sergei V.; Boixo, Sergio; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut
2017-01-01
We develop an instantonic calculus to derive an analytical expression for the thermally assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path-integral quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single-site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the "spiky" barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins N while a purely classical over-the-barrier activation rate scales exponentially with N .
Energy Technology Data Exchange (ETDEWEB)
Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K. [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.
Directory of Open Access Journals (Sweden)
Qian Zhang
2014-01-01
Full Text Available The paper presents a framework for the construction of Monte Carlo finite volume element method (MCFVEM for the convection-diffusion equation with a random diffusion coefficient, which is described as a random field. We first approximate the continuous stochastic field by a finite number of random variables via the Karhunen-Loève expansion and transform the initial stochastic problem into a deterministic one with a parameter in high dimensions. Then we generate independent identically distributed approximations of the solution by sampling the coefficient of the equation and employing finite volume element variational formulation. Finally the Monte Carlo (MC method is used to compute corresponding sample averages. Statistic error is estimated analytically and experimentally. A quasi-Monte Carlo (QMC technique with Sobol sequences is also used to accelerate convergence, and experiments indicate that it can improve the efficiency of the Monte Carlo method.
Dupuy, Nicolas; Casula, Michele
2018-04-01
By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.
A Monte Carlo implementation of the predictor-corrector Quasi-Static method
International Nuclear Information System (INIS)
Hackemack, M. W.; Ragusa, J. C.; Griesheimer, D. P.; Pounders, J. M.
2013-01-01
The Quasi-Static method (QS) is a useful tool for solving reactor transients since it allows for larger time steps when updating neutron distributions. Because of the beneficial attributes of Monte Carlo (MC) methods (exact geometries and continuous energy treatment), it is desirable to develop a MC implementation for the QS method. In this work, the latest version of the QS method known as the Predictor-Corrector Quasi-Static method is implemented. Experiments utilizing two energy-groups provide results that show good agreement with analytical and reference solutions. The method as presented can easily be implemented in any continuous energy, arbitrary geometry, MC code. (authors)
Khan, Hasan; Gazit, Snir; Randeria, Mohit; Trivedi, Nandini
The superconductor-insulator transition (SIT) in two dimensions is a paradigm for quantum criticality that has been observed experimentally in Josephson junction arrays, superconducting thin films, and cold atoms trapped in an optical lattice. The conventional picture of the transition is in terms of the condensation of bosonic degrees of freedom (Cooper pairs in superconductors). Interestingly, the transition has a dual description, where the insulating phase is a Bose condensate of vortices. We study the SIT numerically by means of a large-scale quantum Monte Carlo (QMC) simulation in the vortex representation. This provides direct access to both the boson and vortex degrees of freedom and allows us to numerically test the duality and quantify deviations from self-duality. Our main focus is on critical properties such as the vortex and the boson phase stiffness. We compare our results to previous studies in the bosonic representation. We acknowledge support from Grant DOE-BES DE-FG02-07ER46423 (HK, NT).
International Nuclear Information System (INIS)
Brown, F.B.
1981-01-01
Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes
Research of Monte Carlo method used in simulation of different maintenance processes
International Nuclear Information System (INIS)
Zhao Siqiao; Liu Jingquan
2011-01-01
The paper introduces two kinds of Monte Carlo methods used in equipment life process simulation under the least maintenance: condition: method of producing the interval of lifetime, method of time scale conversion. The paper also analyzes the characteristics and the using scope of the two methods. By using the conception of service age reduction factor, the model of equipment's life process under incomplete maintenance condition is established, and also the life process simulation method applicable to this situation is invented. (authors)
International Nuclear Information System (INIS)
Cacais, F.L.; Delgado, J.U.; Loayza, V.M.
2016-01-01
In preparing solutions for the production of radionuclide metrology standards is necessary measuring the quantity Activity by mass. The gravimetric method by elimination is applied to perform weighing with smaller uncertainties. At this work is carried out the validation, by the Monte Carlo method, of the uncertainty calculation approach implemented by Lourenco and Bobin according to ISO GUM for the method by elimination. The results obtained by both uncertainty calculation methods were consistent indicating that were fulfilled the conditions for the application of ISO GUM in the preparation of radioactive standards. (author)
Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus
2017-07-01
We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.
International Nuclear Information System (INIS)
Ljungberg, M.
1990-05-01
Quantitative scintigrafic images, obtained by NaI(Tl) scintillation cameras, are limited by photon attenuation and contribution from scattered photons. A Monte Carlo program was developed in order to evaluate these effects. Simple source-phantom geometries and more complex nonhomogeneous cases can be simulated. Comparisons with experimental data for both homogeneous and nonhomogeneous regions and with published results have shown good agreement. The usefulness for simulation of parameters in scintillation camera systems, stationary as well as in SPECT systems, has also been demonstrated. An attenuation correction method based on density maps and build-up functions has been developed. The maps were obtained from a transmission measurement using an external 57 Co flood source and the build-up was simulated by the Monte Carlo code. Two scatter correction methods, the dual-window method and the convolution-subtraction method, have been compared using the Monte Carlo method. The aim was to compare the estimated scatter with the true scatter in the photo-peak window. It was concluded that accurate depth-dependent scatter functions are essential for a proper scatter correction. A new scatter and attenuation correction method has been developed based on scatter line-spread functions (SLSF) obtained for different depths and lateral positions in the phantom. An emission image is used to determine the source location in order to estimate the scatter in the photo-peak window. Simulation studies of a clinically realistic source in different positions in cylindrical water phantoms were made for three photon energies. The SLSF-correction method was also evaluated by simulation studies for 1. a myocardial source, 2. uniform source in the lungs and 3. a tumour located in the lungs in a realistic, nonhomogeneous computer phantom. The results showed that quantitative images could be obtained in nonhomogeneous regions. (67 refs.)
Use of the Monte Carlo uncertainty combination method in nuclear reactor setpoint evaluation
International Nuclear Information System (INIS)
Berte, Frank J.
2004-01-01
This paper provides an overview of an alternate method for the performance of instrument uncertainty calculation and instrument setpoint determination, when a setpoint analysis requires application of techniques beyond that provided by the widely used 'Root Sum Squares' approach. The paper will address, when the application of the Monte Carlo (MC) method should be considered, application of the MC method when independent and/or dependent uncertainties are involved, and finally interpretation of results obtained. Both single module as well as instrument string sample applications will be presented. (author)
Simulation of clinical X-ray tube using the Monte Carlo Method - PENELOPE code
International Nuclear Information System (INIS)
Albuquerque, M.A.G.; David, M.G.; Almeida, C.E. de; Magalhaes, L.A.G.; Braz, D.
2015-01-01
Breast cancer is the most common type of cancer among women. The main strategy to increase the long-term survival of patients with this disease is the early detection of the tumor, and mammography is the most appropriate method for this purpose. Despite the reduction of cancer deaths, there is a big concern about the damage caused by the ionizing radiation to the breast tissue. To evaluate these measures it was modeled a mammography equipment, and obtained the depth spectra using the Monte Carlo method - PENELOPE code. The average energies of the spectra in depth and the half value layer of the mammography output spectrum. (author)
International Nuclear Information System (INIS)
Noack, K.
1982-01-01
The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method
Binocular optical axis parallelism detection precision analysis based on Monte Carlo method
Ying, Jiaju; Liu, Bingqi
2018-02-01
According to the working principle of the binocular photoelectric instrument optical axis parallelism digital calibration instrument, and in view of all components of the instrument, the various factors affect the system precision is analyzed, and then precision analysis model is established. Based on the error distribution, Monte Carlo method is used to analyze the relationship between the comprehensive error and the change of the center coordinate of the circle target image. The method can further guide the error distribution, optimize control the factors which have greater influence on the comprehensive error, and improve the measurement accuracy of the optical axis parallelism digital calibration instrument.
A Monte Carlo method for nuclear evaporation and fission at intermediate energies
International Nuclear Information System (INIS)
Deppman, A.; Likhachev, V.P.; Mesa, J.; Pina, S.R. de; Arruda-Neto, J.D.T.; Goncalves, M.; Rodriguez, O.
2003-04-01
We describe a Monte Carlo method to calculate the characteristics of the competition between particle evaporation and nuclear fission processes taking place in the compound nucleus formed after the intranuclear cascade following the absorption of intermediate energy photons by the nucleus. In this version we include not only neutrons, but also protons and alphas as possible evaporating particles. However, this method allows an ease inclusion of other evaporating particles, as deuteron or heavier clusters. Some results for 237 Np, 238 U, and 232 Th are shown. (author)
A Monte Carlo method for nuclear evaporation and fission at intermediate energies
International Nuclear Information System (INIS)
Deppman, A.; Tavares, O.A.P.; Duarte, S.B.; Arruda-Neto, J.D.T.; Goncalves, M.; Likhachev, V.P.; Mesa, J.; Oliveira, E.C. de; Pina, S.R. de; Rodriguez, O.
2003-01-01
We describe a Monte Carlo method to calculate the characteristics of the competition between particle evaporation and nuclear fission processes taking place in the compound nucleus formed after the intranuclear cascade following the absorption of intermediate energy photons by the nucleus. In this version we include not only neutrons, but also protons and alphas as possible evaporating particles. The present method allows the easy inclusion of other evaporating particles, such as deuteron or heavier clusters. Some fissility results are discussed for the target nuclei 237 Np, 238 U and 232 Th
International Nuclear Information System (INIS)
Goshtasbi, K.; Ahmadi, M; Naeimi, Y.
2008-01-01
Locating the critical slip surface and the associated minimum factor of safety are two complementary parts in a slope stability analysis. A large number of computer programs exist to solve slope stability problems. Most of these programs, however, have used inefficient and unreliable search procedures to locate the global minimum factor of safety. This paper presents an efficient and reliable method to determine the global minimum factor of safety coupled with a modified version of the Monte Carlo technique. Examples arc presented to illustrate the reliability of the proposed method
Plasma flow to a surface using the iterative Monte Carlo method
International Nuclear Information System (INIS)
Pitcher, C.S.
1994-01-01
The iterative Monte Carlo (IMC) method is applied to a number of one-dimensional plasma flow problems, which encompass a wide range of conditions typical of those present in the boundary of magnetic fusion devices. The kinetic IMC method of solving plasma flow to a surface consists of launching and following particles within a grid of 'bins' into which weights are left according to the time a particle spends within a bin. The density and potential distributions within the plasma are iterated until the final solution is arrived at. The IMC results are compared with analytical treatments of these problems and, in general, good agreement is obtained. (author)
International Nuclear Information System (INIS)
David, Mariano Gazineu; Salata, Camila; Almeida, Carlos Eduardo
2014-01-01
The Laboratorio de Ciencias Radiologicas develops a methodology for the determination of the absorbed dose to water by Fricke chemical dosimetry method for brachytherapy sources of 192 Ir high dose rate and have compared their results with the laboratory of the National Research Council Canada. This paper describes the determination of the correction factors by Monte Carlo method, with the Penelope code. Values for all factors are presented, with a maximum difference of 0.22% for their determination by an alternative way. (author)
Remarks on a financial inverse problem by means of Monte Carlo Methods
Cuomo, Salvatore; Di Somma, Vittorio; Sica, Federica
2017-10-01
Estimating the price of a barrier option is a typical inverse problem. In this paper we present a numerical and statistical framework for a market with risk-free interest rate and a risk asset, described by a Geometric Brownian Motion (GBM). After approximating the risk asset with a numerical method, we find the final option price by following an approach based on sequential Monte Carlo methods. All theoretical results are applied to the case of an option whose underlying is a real stock.
International Nuclear Information System (INIS)
Scemama, Anthony; Caffarel, Michel; Oseret, Emmanuel; Jalby, William
2013-01-01
Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done), (ii) the possibility of keeping the memory footprint minimal, (iii) the important enhancement of single-core performance when efficient optimization tools are used, and (iv) the definition of a universal, dynamic, fault-tolerant, and load-balanced framework adapted to all kinds of computational platforms (massively parallel machines, clusters, or distributed grids). These strategies have been implemented in the QMC-Chem code developed at Toulouse and illustrated with numerical applications on small peptides of increasing sizes (158, 434, 1056, and 1731 electrons). Using 10-80 k computing cores of the Curie machine (GENCI-TGCC-CEA, France), QMC-Chem has been shown to be capable of running at the peta scale level, thus demonstrating that for this machine a large part of the peak performance can be achieved. Implementation of large-scale QMC simulations for future exa scale platforms with a comparable level of efficiency is expected to be feasible. (authors)
Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo
Krogel, Jaron T.; Reboredo, Fernando A.
2018-01-01
Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.
Magnitude of pseudopotential localization errors in fixed node diffusion quantum Monte Carlo.
Krogel, Jaron T; Kent, P R C
2017-06-28
Growth in computational resources has lead to the application of real space diffusion quantum Monte Carlo to increasingly heavy elements. Although generally assumed to be small, we find that when using standard techniques, the pseudopotential localization error can be large, on the order of an electron volt for an isolated cerium atom. We formally show that the localization error can be reduced to zero with improvements to the Jastrow factor alone, and we define a metric of Jastrow sensitivity that may be useful in the design of pseudopotentials. We employ an extrapolation scheme to extract the bare fixed node energy and estimate the localization error in both the locality approximation and the T-moves schemes for the Ce atom in charge states 3+ and 4+. The locality approximation exhibits the lowest Jastrow sensitivity and generally smaller localization errors than T-moves although the locality approximation energy approaches the localization free limit from above/below for the 3+/4+ charge state. We find that energy minimized Jastrow factors including three-body electron-electron-ion terms are the most effective at reducing the localization error for both the locality approximation and T-moves for the case of the Ce atom. Less complex or variance minimized Jastrows are generally less effective. Our results suggest that further improvements to Jastrow factors and trial wavefunction forms may be needed to reduce localization errors to chemical accuracy when medium core pseudopotentials are applied to heavy elements such as Ce.
Haghighi Mood, Kaveh; Lüchow, Arne
2017-08-17
Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.
Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations
Energy Technology Data Exchange (ETDEWEB)
Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.
2010-12-22
In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientific questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to
Zen, Andrea; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo
2014-01-01
Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely, the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC calculations. We also introduce a new method for the computation of forces with finite variance on open systems and a new strategy for the definition of the atomic orbitals involved in the Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. PMID:24526929
Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods
Alexander, Steven; Coldwell, R. L.
2015-03-01
The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.
Application of direct simulation Monte Carlo method for analysis of AVLIS evaporation process
International Nuclear Information System (INIS)
Nishimura, Akihiko
1995-01-01
The computation code of the direct simulation Monte Carlo (DSMC) method was developed in order to analyze the atomic vapor evaporation in atomic vapor laser isotope separation (AVLIS). The atomic excitation temperatures of gadolinium atom were calculated for the model with five low lying states. Calculation results were compared with the experiments obtained by laser absorption spectroscopy. Two types of DSMC simulations which were different in inelastic collision procedure were carried out. It was concluded that the energy transfer was forbidden unless the total energy of the colliding atoms exceeds a threshold value. (author)
Reliability Assessment of Active Distribution System Using Monte Carlo Simulation Method
Directory of Open Access Journals (Sweden)
Shaoyun Ge
2014-01-01
Full Text Available In this paper we have treated the reliability assessment problem of low and high DG penetration level of active distribution system using the Monte Carlo simulation method. The problem is formulated as a two-case program, the program of low penetration simulation and the program of high penetration simulation. The load shedding strategy and the simulation process were introduced in detail during each FMEA process. Results indicate that the integration of DG can improve the reliability of the system if the system was operated actively.
A Monte-Carlo study of landmines detection by neutron backscattering method
International Nuclear Information System (INIS)
Maucec, M.; De Meijer, R.J.
2000-01-01
The use of Monte-Carlo simulations for modelling a simplified landmine detector system with a 252 Cf- neutron source is presented in this contribution. Different aspects and variety of external conditions, affecting the localisation and identification of a buried suspicious object (such as landmine) have been tested. Results of sensitivity calculations confirm that the landmine detection methods, based on the analysis of the backscattered neutron radiation can be applicable in higher density formations, with the mass fraction of present pore-water <15 %. (author)
International Nuclear Information System (INIS)
Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D.A.; Gurler, Orhan
2017-01-01
A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi 2 O 3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented. - Highlights: • Radiation shielding properties of bismuth borate glass systems have been reported. • Mass attenuation coefficients increase linearly with increase in Bi concentration. • Half-value layer decreases with increasing concentration of Bi. • Half-value layer decreases with the increase in the sample density.
Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy
Energy Technology Data Exchange (ETDEWEB)
Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)
2007-07-01
The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.
Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy
International Nuclear Information System (INIS)
Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.
2007-01-01
The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.
The future of new calculation concepts in dosimetry based on the Monte Carlo Methods
International Nuclear Information System (INIS)
Makovicka, L.; Vasseur, A.; Sauget, M.; Martin, E.; Gschwind, R.; Henriet, J.; Vasseur, A.; Sauget, M.; Martin, E.; Gschwind, R.; Henriet, J.; Salomon, M.
2009-01-01
Monte Carlo codes, precise but slow, are very important tools in the vast majority of specialities connected to Radiation Physics, Radiation Protection and Dosimetry. A discussion about some other computing solutions is carried out; solutions not only based on the enhancement of computer power, or on the 'biasing'used for relative acceleration of these codes (in the case of photons), but on more efficient methods (A.N.N. - artificial neural network, C.B.R. - case-based reasoning - or other computer science techniques) already and successfully used for a long time in other scientific or industrial applications and not only Radiation Protection or Medical Dosimetry. (authors)
Reliability analysis of PWR thermohydraulic design by the Monte Carlo method
International Nuclear Information System (INIS)
Silva Junior, H.C. da; Berthoud, J.S.; Carajilescov, P.
1977-01-01
The operating power level of a PWR is limited by the occurence of DNB. Without affecting the safety and performance of the reactor, it is possible to admit failure of a certain number of core channels. The thermohydraulic design, however, is affect by a great number of uncertainties of deterministic or statistical nature. In the present work, the Monte Carlo method is applied to yield the probability that a number F of channels submitted to boiling crises will not exceed a number F* previously given. This probability is obtained as function of the reactor power level. (Author) [pt
Monte Carlo simulations in theoretical physic
International Nuclear Information System (INIS)
Billoire, A.
1991-01-01
After a presentation of the MONTE CARLO method principle, the method is applied, first to the critical exponents calculations in the three dimensions ISING model, and secondly to the discrete quantum chromodynamic with calculation times in function of computer power. 28 refs., 4 tabs
Charged-particle thermonuclear reaction rates: I. Monte Carlo method and statistical distributions
International Nuclear Information System (INIS)
Longland, R.; Iliadis, C.; Champagne, A.E.; Newton, J.R.; Ugalde, C.; Coc, A.; Fitzgerald, R.
2010-01-01
A method based on Monte Carlo techniques is presented for evaluating thermonuclear reaction rates. We begin by reviewing commonly applied procedures and point out that reaction rates that have been reported up to now in the literature have no rigorous statistical meaning. Subsequently, we associate each nuclear physics quantity entering in the calculation of reaction rates with a specific probability density function, including Gaussian, lognormal and chi-squared distributions. Based on these probability density functions the total reaction rate is randomly sampled many times until the required statistical precision is achieved. This procedure results in a median (Monte Carlo) rate which agrees under certain conditions with the commonly reported recommended 'classical' rate. In addition, we present at each temperature a low rate and a high rate, corresponding to the 0.16 and 0.84 quantiles of the cumulative reaction rate distribution. These quantities are in general different from the statistically meaningless 'minimum' (or 'lower limit') and 'maximum' (or 'upper limit') reaction rates which are commonly reported. Furthermore, we approximate the output reaction rate probability density function by a lognormal distribution and present, at each temperature, the lognormal parameters μ and σ. The values of these quantities will be crucial for future Monte Carlo nucleosynthesis studies. Our new reaction rates, appropriate for bare nuclei in the laboratory, are tabulated in the second paper of this issue (Paper II). The nuclear physics input used to derive our reaction rates is presented in the third paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.
Energy Technology Data Exchange (ETDEWEB)
Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Wulin [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Zheng Jun [Center of Modern Experimental Technology, Anhui University, Hefei 230039 (China); Yu Huiyou [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Wang Jianguo, E-mail: jgw@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)
2012-08-15
A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Sign 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.
Directory of Open Access Journals (Sweden)
Zhong Wu
2017-04-01
Full Text Available Since AASHTO released the Mechanistic-Empirical Pavement Design Guide (MEPDG for public review in 2004, many highway research agencies have performed sensitivity analyses using the prototype MEPDG design software. The information provided by the sensitivity analysis is essential for design engineers to better understand the MEPDG design models and to identify important input parameters for pavement design. In literature, different studies have been carried out based on either local or global sensitivity analysis methods, and sensitivity indices have been proposed for ranking the importance of the input parameters. In this paper, a regional sensitivity analysis method, Monte Carlo filtering (MCF, is presented. The MCF method maintains many advantages of the global sensitivity analysis, while focusing on the regional sensitivity of the MEPDG model near the design criteria rather than the entire problem domain. It is shown that the information obtained from the MCF method is more helpful and accurate in guiding design engineers in pavement design practices. To demonstrate the proposed regional sensitivity method, a typical three-layer flexible pavement structure was analyzed at input level 3. A detailed procedure to generate Monte Carlo runs using the AASHTOWare Pavement ME Design software was provided. The results in the example show that the sensitivity ranking of the input parameters in this study reasonably matches with that in a previous study under a global sensitivity analysis. Based on the analysis results, the strengths, practical issues, and applications of the MCF method were further discussed.
New Hybrid Monte Carlo methods for efficient sampling. From physics to biology and statistics
International Nuclear Information System (INIS)
Akhmatskaya, Elena; Reich, Sebastian
2011-01-01
We introduce a class of novel hybrid methods for detailed simulations of large complex systems in physics, biology, materials science and statistics. These generalized shadow Hybrid Monte Carlo (GSHMC) methods combine the advantages of stochastic and deterministic simulation techniques. They utilize a partial momentum update to retain some of the dynamical information, employ modified Hamiltonians to overcome exponential performance degradation with the system’s size and make use of multi-scale nature of complex systems. Variants of GSHMCs were developed for atomistic simulation, particle simulation and statistics: GSHMC (thermodynamically consistent implementation of constant-temperature molecular dynamics), MTS-GSHMC (multiple-time-stepping GSHMC), meso-GSHMC (Metropolis corrected dissipative particle dynamics (DPD) method), and a generalized shadow Hamiltonian Monte Carlo, GSHmMC (a GSHMC for statistical simulations). All of these are compatible with other enhanced sampling techniques and suitable for massively parallel computing allowing for a range of multi-level parallel strategies. A brief description of the GSHMC approach, examples of its application on high performance computers and comparison with other existing techniques are given. Our approach is shown to resolve such problems as resonance instabilities of the MTS methods and non-preservation of thermodynamic equilibrium properties in DPD, and to outperform known methods in sampling efficiency by an order of magnitude. (author)
The adaptation method in the Monte Carlo simulation for computed tomography
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyoung Gun; Yoon, Chang Yeon; Lee, Won Ho [Dept. of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); Cho, Seung Ryong [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sung Ho [Dept. of Neurosurgery, Ulsan University Hospital, Ulsan (Korea, Republic of)
2015-06-15
The patient dose incurred from diagnostic procedures during advanced radiotherapy has become an important issue. Many researchers in medical physics are using computational simulations to calculate complex parameters in experiments. However, extended computation times make it difficult for personal computers to run the conventional Monte Carlo method to simulate radiological images with high-flux photons such as images produced by computed tomography (CT). To minimize the computation time without degrading imaging quality, we applied a deterministic adaptation to the Monte Carlo calculation and verified its effectiveness by simulating CT image reconstruction for an image evaluation phantom (Catphan; Phantom Laboratory, New York NY, USA) and a human-like voxel phantom (KTMAN-2) (Los Alamos National Laboratory, Los Alamos, NM, USA). For the deterministic adaptation, the relationship between iteration numbers and the simulations was estimated and the option to simulate scattered radiation was evaluated. The processing times of simulations using the adaptive method were at least 500 times faster than those using a conventional statistical process. In addition, compared with the conventional statistical method, the adaptive method provided images that were more similar to the experimental images, which proved that the adaptive method was highly effective for a simulation that requires a large number of iterations-assuming no radiation scattering in the vicinity of detectors minimized artifacts in the reconstructed image.
International Nuclear Information System (INIS)
Caffarel, Michel; Applencourt, Thomas; Scemama, Anthony; Giner, Emmanuel
2016-01-01
All-electron Fixed-node Diffusion Monte Carlo calculations for the nonrelativistic ground-state energy of the water molecule at equilibrium geometry are presented. The determinantal part of the trial wavefunction is obtained from a selected Configuration Interaction calculation [Configuration Interaction using a Perturbative Selection done Iteratively (CIPSI) method] including up to about 1.4 × 10 6 of determinants. Calculations are made using the cc-pCVnZ family of basis sets, with n = 2 to 5. In contrast with most quantum Monte Carlo works no re-optimization of the determinantal part in presence of a Jastrow is performed. For the largest cc-pCV5Z basis set the lowest upper bound for the ground-state energy reported so far of −76.437 44(18) is obtained. The fixed-node energy is found to decrease regularly as a function of the cardinal number n and the Complete Basis Set limit associated with exact nodes is easily extracted. The resulting energy of −76.438 94(12) — in perfect agreement with the best experimentally derived value — is the most accurate theoretical estimate reported so far. We emphasize that employing selected configuration interaction nodes of increasing quality in a given family of basis sets may represent a simple, deterministic, reproducible, and systematic way of controlling the fixed-node error in diffusion Monte Carlo.
Energy Technology Data Exchange (ETDEWEB)
Caffarel, Michel; Applencourt, Thomas; Scemama, Anthony [Laboratoire de Chimie et Physique Quantique, CNRS-Université de Toulouse, Toulouse (France); Giner, Emmanuel [Dipartimento di Scienze Chimiche e Farmaceutiche, Universit degli Studi di Ferrara, Ferrara (Italy)
2016-04-21
All-electron Fixed-node Diffusion Monte Carlo calculations for the nonrelativistic ground-state energy of the water molecule at equilibrium geometry are presented. The determinantal part of the trial wavefunction is obtained from a selected Configuration Interaction calculation [Configuration Interaction using a Perturbative Selection done Iteratively (CIPSI) method] including up to about 1.4 × 10{sup 6} of determinants. Calculations are made using the cc-pCVnZ family of basis sets, with n = 2 to 5. In contrast with most quantum Monte Carlo works no re-optimization of the determinantal part in presence of a Jastrow is performed. For the largest cc-pCV5Z basis set the lowest upper bound for the ground-state energy reported so far of −76.437 44(18) is obtained. The fixed-node energy is found to decrease regularly as a function of the cardinal number n and the Complete Basis Set limit associated with exact nodes is easily extracted. The resulting energy of −76.438 94(12) — in perfect agreement with the best experimentally derived value — is the most accurate theoretical estimate reported so far. We emphasize that employing selected configuration interaction nodes of increasing quality in a given family of basis sets may represent a simple, deterministic, reproducible, and systematic way of controlling the fixed-node error in diffusion Monte Carlo.
Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan
2016-04-01
We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.
A new Monte Carlo method for neutron noise calculations in the frequency domain
International Nuclear Information System (INIS)
Rouchon, Amélie; Zoia, Andrea; Sanchez, Richard
2017-01-01
Neutron noise equations, which are obtained by assuming small perturbations of macroscopic cross sections around a steady-state neutron field and by subsequently taking the Fourier transform in the frequency domain, have been usually solved by analytical techniques or by resorting to diffusion theory. A stochastic approach has been recently proposed in the literature by using particles with complex-valued weights and by applying a weight cancellation technique. We develop a new Monte Carlo algorithm that solves the transport neutron noise equations in the frequency domain. The stochastic method presented here relies on a modified collision operator and does not need any weight cancellation technique. In this paper, both Monte Carlo methods are compared with deterministic methods (diffusion in a slab geometry and transport in a simplified rod model) for several noise frequencies and for isotropic and anisotropic noise sources. Our stochastic method shows better performances in the frequency region of interest and is easier to implement because it relies upon the conventional algorithm for fixed-source problems.
Determination of the spatial response of neutron based analysers using a Monte Carlo based method
International Nuclear Information System (INIS)
Tickner, James
2000-01-01
One of the principal advantages of using thermal neutron capture (TNC, also called prompt gamma neutron activation analysis or PGNAA) or neutron inelastic scattering (NIS) techniques for measuring elemental composition is the high penetrating power of both the incident neutrons and the resultant gamma-rays, which means that large sample volumes can be interrogated. Gauges based on these techniques are widely used in the mineral industry for on-line determination of the composition of bulk samples. However, attenuation of both neutrons and gamma-rays in the sample and geometric (source/detector distance) effects typically result in certain parts of the sample contributing more to the measured composition than others. In turn, this introduces errors in the determination of the composition of inhomogeneous samples. This paper discusses a combined Monte Carlo/analytical method for estimating the spatial response of a neutron gauge. Neutron propagation is handled using a Monte Carlo technique which allows an arbitrarily complex neutron source and gauge geometry to be specified. Gamma-ray production and detection is calculated analytically which leads to a dramatic increase in the efficiency of the method. As an example, the method is used to study ways of reducing the spatial sensitivity of on-belt composition measurements of cement raw meal
Monte Carlo method for polarized radiative transfer in gradient-index media
International Nuclear Information System (INIS)
Zhao, J.M.; Tan, J.Y.; Liu, L.H.
2015-01-01
Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated
International Nuclear Information System (INIS)
Wagner, J. C.; Blakeman, E. D.; Peplow, D. E.
2009-01-01
This paper presents a new hybrid (Monte Carlo/deterministic) method for increasing the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted CADIS (FW-CADIS), is a variation on the Consistent Adjoint Driven Importance Sampling (CADIS) method, which has been used for some time to very effectively improve the efficiency of Monte Carlo calculations of localized quantities, e.g., flux, dose, or reaction rate at a specific location. The basis of this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space- and energy-dependent source biasing parameters and weight windows that are used in a forward Monte Carlo calculation to obtain approximately uniform statistical uncertainties in the desired tally regions. The FW-CADIS method has been implemented in the ADVANTG/MCNP framework and has been fully automated within the MAVRIC sequence of SCALE 6. Results of the application of the method to enabling the calculation of dose rates throughout an entire full-scale pressurized-water reactor facility are presented and discussed. (authors)
Energy Technology Data Exchange (ETDEWEB)
Sjenitzer, Bart L.; Hoogenboom, J. Eduard, E-mail: B.L.Sjenitzer@TUDelft.nl, E-mail: J.E.Hoogenboom@TUDelft.nl [Delft University of Technology (Netherlands)
2011-07-01
A new Dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli 4.6.1. With this new method incorporated, a general purpose code can be used for safety transient analysis, such as the movement of a control rod or in an accident scenario. To make the Tripoli code ready for calculating on dynamic systems, the Tripoli scheme had to be altered to incorporate time steps, to include the simulation of delayed neutron precursors and to simulate prompt neutron chains. The modified Tripoli code is tested on two sample cases, a steady-state system and a subcritical system and the resulting neutron fluxes behave just as expected. The steady-state calculation has a constant neutron flux over time and this result shows the stability of the calculation. The neutron flux stays constant with acceptable variance. This also shows that the starting conditions are determined correctly. The sub-critical case shows that the code can also handle dynamic systems with a varying neutron flux. (author)
International Nuclear Information System (INIS)
Sjenitzer, Bart L.; Hoogenboom, J. Eduard
2011-01-01
A new Dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli 4.6.1. With this new method incorporated, a general purpose code can be used for safety transient analysis, such as the movement of a control rod or in an accident scenario. To make the Tripoli code ready for calculating on dynamic systems, the Tripoli scheme had to be altered to incorporate time steps, to include the simulation of delayed neutron precursors and to simulate prompt neutron chains. The modified Tripoli code is tested on two sample cases, a steady-state system and a subcritical system and the resulting neutron fluxes behave just as expected. The steady-state calculation has a constant neutron flux over time and this result shows the stability of the calculation. The neutron flux stays constant with acceptable variance. This also shows that the starting conditions are determined correctly. The sub-critical case shows that the code can also handle dynamic systems with a varying neutron flux. (author)
Application of Monte Carlo method in forward simulation of azimuthal gamma imaging while drilling
International Nuclear Information System (INIS)
Yuan Chao; Zhou Cancan; Zhang Feng; Chen Zhi
2014-01-01
Monte Carlo simulation is one of the most important numerical simulation methods in nuclear logging. Formation models can be conveniently built with MCNP code, which provides a simple and effective approach for fundamental study of nuclear logging. Monte Carlo method is employed to set up formation models under logging while drilling condition, and the characteristic of azimuthal gamma imaging is simulated. The results present that the azimuthal gamma imaging shows a sinusoidal curve features. The imaging can be used to accurately calculate the relative dip angle of borehole and thickness of radioactive formation. The larger relative dip angle of borehole and the thicker radioactive formation lead to the larger height of the sinusoidal curve in the imaging. The borehole size has no affect for the calculation of the relative dip angle, but largely affects the determination of formation thickness. The standoff of logging tool has great influence for the calculation of the relative dip angle and formation thickness. If the gamma ray counts meet the demand of counting statistics in nuclear logging, the effect of borehole fluid on the imaging can be ignored. (authors)
A virtual source method for Monte Carlo simulation of Gamma Knife Model C
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Hoon; Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun Tai [Seoul National University College of Medicine, Seoul (Korea, Republic of)
2016-05-15
The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results.
A virtual source method for Monte Carlo simulation of Gamma Knife Model C
International Nuclear Information System (INIS)
Kim, Tae Hoon; Kim, Yong Kyun; Chung, Hyun Tai
2016-01-01
The Monte Carlo simulation method has been used for dosimetry of radiation treatment. Monte Carlo simulation is the method that determines paths and dosimetry of particles using random number. Recently, owing to the ability of fast processing of the computers, it is possible to treat a patient more precisely. However, it is necessary to increase the simulation time to improve the efficiency of accuracy uncertainty. When generating the particles from the cobalt source in a simulation, there are many particles cut off. So it takes time to simulate more accurately. For the efficiency, we generated the virtual source that has the phase space distribution which acquired a single gamma knife channel. We performed the simulation using the virtual sources on the 201 channel and compared the measurement with the simulation using virtual sources and real sources. A virtual source file was generated to reduce the simulation time of a Gamma Knife Model C. Simulations with a virtual source executed about 50 times faster than the original source code and there was no statistically significant difference in simulated results
Monteray Mark-I: Computer program (PC-version) for shielding calculation with Monte Carlo method
International Nuclear Information System (INIS)
Pudjijanto, M.S.; Akhmad, Y.R.
1998-01-01
A computer program for gamma ray shielding calculation using Monte Carlo method has been developed. The program is written in WATFOR77 language. The MONTERAY MARH-1 is originally developed by James Wood. The program was modified by the authors that the modified version is easily executed. Applying Monte Carlo method the program observe photon gamma transport in an infinity planar shielding with various thick. A photon gamma is observed till escape from the shielding or when its energy less than the cut off energy. Pair production process is treated as pure absorption process that annihilation photons generated in the process are neglected in the calculation. The out put data calculated by the program are total albedo, build-up factor, and photon spectra. The calculation result for build-up factor of a slab lead and water media with 6 MeV parallel beam gamma source shows that they are in agreement with published data. Hence the program is adequate as a shielding design tool for observing gamma radiation transport in various media
Broecker, Peter; Trebst, Simon
2016-12-01
In the absence of a fermion sign problem, auxiliary-field (or determinantal) quantum Monte Carlo (DQMC) approaches have long been the numerical method of choice for unbiased, large-scale simulations of interacting many-fermion systems. More recently, the conceptual scope of this approach has been expanded by introducing ingenious schemes to compute entanglement entropies within its framework. On a practical level, these approaches, however, suffer from a variety of numerical instabilities that have largely impeded their applicability. Here we report on a number of algorithmic advances to overcome many of these numerical instabilities and significantly improve the calculation of entanglement measures in the zero-temperature projective DQMC approach, ultimately allowing us to reach similar system sizes as for the computation of conventional observables. We demonstrate the applicability of this improved DQMC approach by providing an entanglement perspective on the quantum phase transition from a magnetically ordered Mott insulator to a band insulator in the bilayer square lattice Hubbard model at half filling.
Energy Technology Data Exchange (ETDEWEB)
Baltas, D; Geramani, K N; Ioannidis, G T; Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Giannouli, S [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)
1999-12-31
Source anisotropy is a very important factor in brachytherapy quality assurance of high dose rate HDR Ir 192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalisation) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir 192 is used for brachytherapy afterloading. Our MCI calculation results are comparable with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir 192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir 192 sources, one for microSelectron-HDR and two for the microSelectron-PDR, for which data currently is not available. The information we have obtained in this study can be incorporated into clinical practice.
International Nuclear Information System (INIS)
Ghassoun, Jillali; Jehoauni, Abdellatif
2000-01-01
In practice, the estimation of the flux obtained by Fredholm integral equation needs a truncation of the Neuman series. The order N of the truncation must be large in order to get a good estimation. But a large N induces a very large computation time. So the conditional Monte Carlo method is used to reduce time without affecting the estimation quality. In a previous works, in order to have rapid convergence of calculations it was considered only weakly diffusing media so that has permitted to truncate the Neuman series after an order of 20 terms. But in the most practical shields, such as water, graphite and beryllium the scattering probability is high and if we truncate the series at 20 terms we get bad estimation of flux, so it becomes useful to use high orders in order to have good estimation. We suggest two simple techniques based on the conditional Monte Carlo. We have proposed a simple density of sampling the steps for the random walk. Also a modified stretching factor density depending on a biasing parameter which affects the sample vector by stretching or shrinking the original random walk in order to have a chain that ends at a given point of interest. Also we obtained a simple empirical formula which gives the neutron flux for a medium characterized by only their scattering probabilities. The results are compared to the exact analytic solution, we have got a good agreement of results with a good acceleration of convergence calculations. (author)
TREEDE, Point Fluxes and Currents Based on Track Rotation Estimator by Monte-Carlo Method
International Nuclear Information System (INIS)
Dubi, A.
1985-01-01
1 - Description of problem or function: TREEDE is a Monte Carlo transport code based on the Track Rotation estimator, used, in general, to calculate fluxes and currents at a point. This code served as a test code in the development of the concept of the Track Rotation estimator, and therefore analogue Monte Carlo is used (i.e. no importance biasing). 2 - Method of solution: The basic idea is to follow the particle's track in the medium and then to rotate it such that it passes through the detector point. That is, rotational symmetry considerations (even in non-spherically symmetric configurations) are applied to every history, so that a very large fraction of the track histories can be rotated and made to pass through the point of interest; in this manner the 1/r 2 singularity in the un-collided flux estimator (next event estimator) is avoided. TREEDE, being a test code, is used to estimate leakage or in-medium fluxes at given points in a 3-dimensional finite box, where the source is an isotropic point source at the centre of the z = 0 surface. However, many of the constraints of geometry and source can be easily removed. The medium is assumed homogeneous with isotropic scattering, and one energy group only is considered. 3 - Restrictions on the complexity of the problem: One energy group, a homogeneous medium, isotropic scattering
Directory of Open Access Journals (Sweden)
Xingchu Gong
Full Text Available A design space approach was applied to optimize the extraction process of Danhong injection. Dry matter yield and the yields of five active ingredients were selected as process critical quality attributes (CQAs. Extraction number, extraction time, and the mass ratio of water and material (W/M ratio were selected as critical process parameters (CPPs. Quadratic models between CPPs and CQAs were developed with determination coefficients higher than 0.94. Active ingredient yields and dry matter yield increased as the extraction number increased. Monte-Carlo simulation with models established using a stepwise regression method was applied to calculate the probability-based design space. Step length showed little effect on the calculation results. Higher simulation number led to results with lower dispersion. Data generated in a Monte Carlo simulation following a normal distribution led to a design space with a smaller size. An optimized calculation condition was obtained with 10,000 simulation times, 0.01 calculation step length, a significance level value of 0.35 for adding or removing terms in a stepwise regression, and a normal distribution for data generation. The design space with a probability higher than 0.95 to attain the CQA criteria was calculated and verified successfully. Normal operating ranges of 8.2-10 g/g of W/M ratio, 1.25-1.63 h of extraction time, and two extractions were recommended. The optimized calculation conditions can conveniently be used in design space development for other pharmaceutical processes.
On stochastic error and computational efficiency of the Markov Chain Monte Carlo method
Li, Jun
2014-01-01
In Markov Chain Monte Carlo (MCMC) simulations, thermal equilibria quantities are estimated by ensemble average over a sample set containing a large number of correlated samples. These samples are selected in accordance with the probability distribution function, known from the partition function of equilibrium state. As the stochastic error of the simulation results is significant, it is desirable to understand the variance of the estimation by ensemble average, which depends on the sample size (i.e., the total number of samples in the set) and the sampling interval (i.e., cycle number between two consecutive samples). Although large sample sizes reduce the variance, they increase the computational cost of the simulation. For a given CPU time, the sample size can be reduced greatly by increasing the sampling interval, while having the corresponding increase in variance be negligible if the original sampling interval is very small. In this work, we report a few general rules that relate the variance with the sample size and the sampling interval. These results are observed and confirmed numerically. These variance rules are derived for theMCMCmethod but are also valid for the correlated samples obtained using other Monte Carlo methods. The main contribution of this work includes the theoretical proof of these numerical observations and the set of assumptions that lead to them. © 2014 Global-Science Press.
International Nuclear Information System (INIS)
Meschede, Henning; Dunkelberg, Heiko; Stöhr, Fabian; Peesel, Ron-Hendrik; Hesselbach, Jens
2017-01-01
This paper investigates the use of renewable energies to supply hotels in island regions. The aim is to evaluate the effect of weather and occupancy fluctuations on the sensitivity of investment criteria. The sensitivity of the chosen energy system is examined using a Monte Carlo simulation considering stochastic weather data, occupancy rates and energy needs. For this purpose, algorithms based on measured data are developed and applied to a case study on the Canary Islands. The results underline that electricity use in hotels is by far the largest contributor to their overall energy cost. For the invested hotel on the Canary Islands, the optimal share of renewable electricity generation is found to be 63%, split into 67% photovoltaic and 33% wind power. Furthermore, a battery is used to balance the differences between day and night. It is found, that the results are sensitive to weather fluctuations as well as economic parameters to about the same degree. The results underline the risk caused by using reference time series for designing energy systems. The Monte Carlo method helps to define the mean of the annuity more precisely and to rate the risk of fluctuating weather and occupancy better. - Highlights: • An approach to generate synthetic weather data was pointed out. • A methodology to create synthetic energy demand data for hotels was developed. • The influence to the sensitivity of renewable energy systems was analysed. • Fluctuations in weather data have a greater impact on the economy than occupancy.
Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water
Energy Technology Data Exchange (ETDEWEB)
Floris, Franca Maria, E-mail: floris@dcci.unipi.it; Amovilli, Claudio [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy); Filippi, Claudia [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)
2014-01-21
We investigate here the vertical n → π{sup *} and π → π{sup *} transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π{sup *} case and also improve considerably the shift for the π → π{sup *} transition.
Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water
International Nuclear Information System (INIS)
Floris, Franca Maria; Amovilli, Claudio; Filippi, Claudia
2014-01-01
We investigate here the vertical n → π * and π → π * transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π * case and also improve considerably the shift for the π → π * transition
Electronic excitations in a dielectric continuum solvent with quantum Monte Carlo: Acrolein in water
Floris, Franca Maria; Filippi, Claudia; Amovilli, Claudio
2014-01-01
We investigate here the vertical n → π* and π → π* transitions of s-trans-acrolein in aqueous solution by means of a polarizable continuum model (PCM) we have developed for the treatment of the solute at the quantum Monte Carlo (QMC) level of the theory. We employ the QMC approach which allows us to work with highly correlated electronic wave functions for both the solute ground and excited states and, to study the vertical transitions in the solvent, adopt the commonly used scheme of considering fast and slow dielectric polarization. To perform calculations in a non-equilibrium solvation regime for the solute excited state, we add a correction to the global dielectric polarization charge density, obtained self consistently with the solute ground-state wave function by assuming a linear-response scheme. For the solvent polarization in the field of the solute in the ground state, we use the static dielectric constant while, for the electronic dielectric polarization, we employ the solvent refractive index evaluated at the same frequency of the photon absorbed by the solute for the transition. This choice is shown to be better than adopting the most commonly used value of refractive index measured in the region of visible radiation. Our QMC calculations show that, for standard cavities, the solvatochromic shifts obtained with the PCM are underestimated, even though of the correct sign, for both transitions of acrolein in water. Only by reducing the size of the cavity to values where more than one electron is escaped to the solvent region, we regain the experimental shift for the n → π* case and also improve considerably the shift for the π → π* transition.
International Nuclear Information System (INIS)
Siegel, A.; Smith, K.; Fischer, P.; Mahadevan, V.
2012-01-01
A domain decomposed Monte Carlo communication kernel is used to carry out performance tests to establish the feasibility of using Monte Carlo techniques for practical Light Water Reactor (LWR) core analyses. The results of the prototype code are interpreted in the context of simplified performance models which elucidate key scaling regimes of the parallel algorithm.
Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas
2005-01-01
The performance of high-powered wavelength-division multiplexed (WDM) optical networks can be severely degraded by four-wave-mixing- (FWM-) induced distortion. The multicanonical Monte Carlo method (MCMC) is used to calculate the probability-density function (PDF) of the decision variable of a receiver, limited by FWM noise. Compared with the conventional Monte Carlo method previously used to estimate this PDF, the MCMC method is much faster and can accurately estimate smaller error probabilities. The method takes into account the correlation between the components of the FWM noise, unlike the Gaussian model, which is shown not to provide accurate results.
International Nuclear Information System (INIS)
Ji Gang; Guo Yong; Luo Yisheng; Zhang Wenzhong
2001-01-01
Objective: To provide useful parameters for neutron radiotherapy, the author presents results of a Monte Carlo simulation study investigating the dosimetric characteristics of linear 252 Cf fission neutron sources. Methods: A 252 Cf fission source and tissue equivalent phantom were modeled. The dose of neutron and gamma radiations were calculated using Monte Carlo Code. Results: The dose of neutron and gamma at several positions for 252 Cf in the phantom made of equivalent materials to water, blood, muscle, skin, bone and lung were calculated. Conclusion: The results by Monte Carlo methods were compared with the data by measurement and references. According to the calculation, the method using water phantom to simulate local tissues such as muscle, blood and skin is reasonable for the calculation and measurements of dose distribution for 252 Cf
Driver, K. P.; Cohen, R. E.; Wu, Z.; Militzer, B.; Ríos, P. L.; Towler, M. D.; Needs, R. J.; Wilkins, J. W.
2011-12-01
Silica (SiO2) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense α-PbO2 structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.
On solution to the problem of criticality by alternative Monte Carlo method
International Nuclear Information System (INIS)
Kyncl, J.
2005-03-01
The problem of criticality for the neutron transport equation is analyzed. The problem is transformed into an equivalent problem in a suitable set of complex functions, and the existence and uniqueness of its solution is demonstrated. The source iteration method is discussed. It is shown that the final result of the iterative process is strongly affected by the insufficient accuracy of the individual iterations. A modified method is suggested to circumvent this problem based on the theory of positive operators; the criticality problem is solved by the Monte Carlo method constructing special random process and variable so that the difference between the result and the true value can be arbitrarily small. The efficiency of this alternative method is analysed
International Nuclear Information System (INIS)
Wang, Ruihong; Yang, Shulin; Pei, Lucheng
2011-01-01
Deep penetration problem has been one of the difficult problems in shielding calculation with Monte Carlo method for several decades. In this paper, an adaptive technique under the emission point as a sampling station is presented. The main advantage is to choose the most suitable sampling number from the emission point station to get the minimum value of the total cost in the process of the random walk. Further, the related importance sampling method is also derived. The main principle is to define the importance function of the response due to the particle state and ensure the sampling number of the emission particle is proportional to the importance function. The numerical results show that the adaptive method under the emission point as a station could overcome the difficulty of underestimation to the result in some degree, and the related importance sampling method gets satisfied results as well. (author)
Haji Ali, Abdul Lateef
2016-01-01
I discuss using single level and multilevel Monte Carlo methods to compute quantities of interests of a stochastic particle system in the mean-field. In this context, the stochastic particles follow a coupled system of Ito stochastic differential equations (SDEs). Moreover, this stochastic particle system converges to a stochastic mean-field limit as the number of particles tends to infinity. I start by recalling the results of applying different versions of Multilevel Monte Carlo (MLMC) for particle systems, both with respect to time steps and the number of particles and using a partitioning estimator. Next, I expand on these results by proposing the use of our recent Multi-index Monte Carlo method to obtain improved convergence rates.
Haji Ali, Abdul Lateef
2016-01-08
I discuss using single level and multilevel Monte Carlo methods to compute quantities of interests of a stochastic particle system in the mean-field. In this context, the stochastic particles follow a coupled system of Ito stochastic differential equations (SDEs). Moreover, this stochastic particle system converges to a stochastic mean-field limit as the number of particles tends to infinity. I start by recalling the results of applying different versions of Multilevel Monte Carlo (MLMC) for particle systems, both with respect to time steps and the number of particles and using a partitioning estimator. Next, I expand on these results by proposing the use of our recent Multi-index Monte Carlo method to obtain improved convergence rates.
Uncertainty analysis using Monte Carlo method in the measurement of phase by ESPI
International Nuclear Information System (INIS)
Anguiano Morales, Marcelino; Martinez, Amalia; Rayas, J. A.; Cordero, Raul R.
2008-01-01
A method for simultaneously measuring whole field in-plane displacements by using optical fiber and based on the dual-beam illumination principle electronic speckle pattern interferometry (ESPI) is presented in this paper. A set of single mode optical fibers and beamsplitter are employed to split the laser beam into four beams of equal intensity.One pair of fibers is utilized to illuminate the sample in the horizontal plane so it is sensitive only to horizontal in-plane displacement. Another pair of optical fibers is set to be sensitive only to vertical in-plane displacement. Each pair of optical fibers differs in longitude to avoid unwanted interference. By means of a Fourier-transform method of fringe-pattern analysis (Takeda method), we can obtain the quantitative data of whole field displacements. We found the uncertainty associated with the phases by mean of Monte Carlo-based technique
Monte Carlo based statistical power analysis for mediation models: methods and software.
Zhang, Zhiyong
2014-12-01
The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.
Multi-chain Markov chain Monte Carlo methods for computationally expensive models
Huang, M.; Ray, J.; Ren, H.; Hou, Z.; Bao, J.
2017-12-01
Markov chain Monte Carlo (MCMC) methods are used to infer model parameters from observational data. The parameters are inferred as probability densities, thus capturing estimation error due to sparsity of the data, and the shortcomings of the model. Multiple communicating chains executing the MCMC method have the potential to explore the parameter space better, and conceivably accelerate the convergence to the final distribution. We present results from tests conducted with the multi-chain method to show how the acceleration occurs i.e., for loose convergence tolerances, the multiple chains do not make much of a difference. The ensemble of chains also seems to have the ability to accelerate the convergence of a few chains that might start from suboptimal starting points. Finally, we show the performance of the chains in the estimation of O(10) parameters using computationally expensive forward models such as the Community Land Model, where the sampling burden is distributed over multiple chains.
DEFF Research Database (Denmark)
Anders, Annett; Nishijima, Kazuyoshi
The present paper aims at enhancing a solution approach proposed by Anders & Nishijima (2011) to real-time decision problems in civil engineering. The approach takes basis in the Least Squares Monte Carlo method (LSM) originally proposed by Longstaff & Schwartz (2001) for computing American option...... prices. In Anders & Nishijima (2011) the LSM is adapted for a real-time operational decision problem; however it is found that further improvement is required in regard to the computational efficiency, in order to facilitate it for practice. This is the focus in the present paper. The idea behind...... the improvement of the computational efficiency is to “best utilize” the least squares method; i.e. least squares method is applied for estimating the expected utility for terminal decisions, conditional on realizations of underlying random phenomena at respective times in a parametric way. The implementation...
Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe
2007-01-14
Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.
International Nuclear Information System (INIS)
Trias, Miquel; Vecchio, Alberto; Veitch, John
2009-01-01
Bayesian analysis of Laser Interferometer Space Antenna (LISA) data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a delayed rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.
Markov Chain Monte Carlo (MCMC) methods for parameter estimation of a novel hybrid redundant robot
International Nuclear Information System (INIS)
Wang Yongbo; Wu Huapeng; Handroos, Heikki
2011-01-01
This paper presents a statistical method for the calibration of a redundantly actuated hybrid serial-parallel robot IWR (Intersector Welding Robot). The robot under study will be used to carry out welding, machining, and remote handing for the assembly of vacuum vessel of International Thermonuclear Experimental Reactor (ITER). The robot has ten degrees of freedom (DOF), among which six DOF are contributed by the parallel mechanism and the rest are from the serial mechanism. In this paper, a kinematic error model which involves 54 unknown geometrical error parameters is developed for the proposed robot. Based on this error model, the mean values of the unknown parameters are statistically analyzed and estimated by means of Markov Chain Monte Carlo (MCMC) approach. The computer simulation is conducted by introducing random geometric errors and measurement poses which represent the corresponding real physical behaviors. The simulation results of the marginal posterior distributions of the estimated model parameters indicate that our method is reliable and robust.
Reproduction of the coincidence effect in gamma ray spectrometry by using Monte Carlo method
International Nuclear Information System (INIS)
Park, S. H.; Kim, J. K.; Lee, S. H.
2001-01-01
Scintillation detector such as NaI(TI), or semiconductor detector, such as HPGe, are used for Measurement/Assessment of the radiation type and radiation activity. The measured energy spectrum are used for measuring the radiation type and activity. Corrections for true coincidence due to emit more than 2 photons at the same time and random coincidence due to measuring system when increasing of the radiation intensity. For accurate assessment, measurement with adequate measure system is performed, and corrections for coincidence are performed in the hardware aspect and software aspect. In general, there are limitations or difficulties in measurement of radiation assessment, computational simulation is instead used. In simulation, it has much advantages than measurement in technically, timely, and financially, it is widely used instead of measurement. In this study, the method to reproduce of the coincidence effect was proposed by using monte carlo method
Transport calculation of medium-energy protons and neutrons by Monte Carlo method
International Nuclear Information System (INIS)
Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.
1978-09-01
A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)
The Linked Neighbour List (LNL) method for fast off-lattice Monte Carlo simulations of fluids
Mazzeo, M. D.; Ricci, M.; Zannoni, C.
2010-03-01
We present a new algorithm, called linked neighbour list (LNL), useful to substantially speed up off-lattice Monte Carlo simulations of fluids by avoiding the computation of the molecular energy before every attempted move. We introduce a few variants of the LNL method targeted to minimise memory footprint or augment memory coherence and cache utilisation. Additionally, we present a few algorithms which drastically accelerate neighbour finding. We test our methods on the simulation of a dense off-lattice Gay-Berne fluid subjected to periodic boundary conditions observing a speedup factor of about 2.5 with respect to a well-coded implementation based on a conventional link-cell. We provide several implementation details of the different key data structures and algorithms used in this work.
Schwarz, Karsten; Rieger, Heiko
2013-03-01
We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.
Thermal studies of a superconducting current limiter using Monte-Carlo method
International Nuclear Information System (INIS)
Leveque, J.; Rezzoug, A.
1999-01-01
Considering the increase of the fault current level in electrical network, the current limiters become very interesting. The superconducting limiters are based on the quasi-instantaneous intrinsic transition from superconducting state to normal resistive one. Without detection of default or given order, they reduce the constraints supported by electrical installations above the fault. To avoid the destruction of the superconducting coil, the temperature must not exceed a certain value. Therefore the design of a superconducting coil needs the simultaneous resolution of an electrical equation and a thermal one. This papers deals with a resolution of this coupled problem by the method of Monte-Carlo. This method allows us to calculate the evolution of the resistance of the coil as well as the current of limitation. Experimental results are compared with theoretical ones. (orig.)
New one-flavor hybrid Monte Carlo simulation method for lattice fermions with γ5 hermiticity
International Nuclear Information System (INIS)
Ogawa, Kenji
2011-01-01
We propose a new method for Hybrid Monte Carlo (HMC) simulations with odd numbers of dynamical fermions on the lattice. It employs a different approach from polynomial or rational HMC. In this method, γ 5 hermiticity of the lattice Dirac operators is crucial and it can be applied to Wilson, domain-wall, and overlap fermions. We compare HMC simulations with two degenerate flavors and (1+1) degenerate flavors using optimal domain-wall fermions. The ratio of the efficiency, (number of accepted trajectories)/(simulation time), is about 3:2. The relation between pseudofermion action of chirally symmetric lattice fermions in four-dimensional (overlap) and five-dimensional (domain-wall) representation are also analyzed.
Application of Monte Carlo method for dose calculation in thyroid follicle
International Nuclear Information System (INIS)
Silva, Frank Sinatra Gomes da
2008-02-01
The Monte Carlo method is an important tool to simulate radioactive particles interaction with biologic medium. The principal advantage of the method when compared with deterministic methods is the ability to simulate a complex geometry. Several computational codes use the Monte Carlo method to simulate the particles transport and they have the capacity to simulate energy deposition in models of organs and/or tissues, as well models of cells of human body. Thus, the calculation of the absorbed dose to thyroid's follicles (compound of colloid and follicles' cells) have a fundamental importance to dosimetry, because these cells are radiosensitive due to ionizing radiation exposition, in particular, exposition due to radioisotopes of iodine, because a great amount of radioiodine may be released into the environment in case of a nuclear accidents. In this case, the goal of this work was use the code of particles transport MNCP4C to calculate absorbed doses in models of thyroid's follicles, for Auger electrons, internal conversion electrons and beta particles, by iodine-131 and short-lived iodines (131, 132, 133, 134 e 135), with diameters varying from 30 to 500 μm. The results obtained from simulation with the MCNP4C code shown an average percentage of the 25% of total absorbed dose by colloid to iodine- 131 and 75% to short-lived iodine's. For follicular cells, this percentage was of 13% to iodine-131 and 87% to short-lived iodine's. The contributions from particles with low energies, like Auger and internal conversion electrons should not be neglected, to assessment the absorbed dose in cellular level. Agglomerative hierarchical clustering was used to compare doses obtained by codes MCNP4C, EPOTRAN, EGS4 and by deterministic methods. (author)