WorldWideScience

Sample records for quantum error correction

  1. Probabilistic quantum error correction

    CERN Document Server

    Fern, J; Fern, Jesse; Terilla, John

    2002-01-01

    There are well known necessary and sufficient conditions for a quantum code to correct a set of errors. We study weaker conditions under which a quantum code may correct errors with probabilities that may be less than one. We work with stabilizer codes and as an application study how the nine qubit code, the seven qubit code, and the five qubit code perform when there are errors on more than one qubit. As a second application, we discuss the concept of syndrome quality and use it to suggest a way that quantum error correction can be practically improved.

  2. Experimental repetitive quantum error correction.

    Science.gov (United States)

    Schindler, Philipp; Barreiro, Julio T; Monz, Thomas; Nebendahl, Volckmar; Nigg, Daniel; Chwalla, Michael; Hennrich, Markus; Blatt, Rainer

    2011-05-27

    The computational potential of a quantum processor can only be unleashed if errors during a quantum computation can be controlled and corrected for. Quantum error correction works if imperfections of quantum gate operations and measurements are below a certain threshold and corrections can be applied repeatedly. We implement multiple quantum error correction cycles for phase-flip errors on qubits encoded with trapped ions. Errors are corrected by a quantum-feedback algorithm using high-fidelity gate operations and a reset technique for the auxiliary qubits. Up to three consecutive correction cycles are realized, and the behavior of the algorithm for different noise environments is analyzed.

  3. Catalytic quantum error correction

    CERN Document Server

    Brun, T; Hsieh, M H; Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-01-01

    We develop the theory of entanglement-assisted quantum error correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to pre-shared entanglement. Conventional stabilizer codes are equivalent to dual-containing symplectic codes. In contrast, EAQEC codes do not require the dual-containing condition, which greatly simplifies their construction. We show how any quaternary classical code can be made into a EAQEC code. In particular, efficient modern codes, like LDPC codes, which attain the Shannon capacity, can be made into EAQEC codes attaining the hashing bound. In a quantum computation setting, EAQEC codes give rise to catalytic quantum codes which maintain a region of inherited noiseless qubits. We also give an alternative construction of EAQEC codes by making classical entanglement assisted codes coherent.

  4. Nested Quantum Error Correction Codes

    CERN Document Server

    Wang, Zhuo; Fan, Hen; Vedral, Vlatko

    2009-01-01

    The theory of quantum error correction was established more than a decade ago as the primary tool for fighting decoherence in quantum information processing. Although great progress has already been made in this field, limited methods are available in constructing new quantum error correction codes from old codes. Here we exhibit a simple and general method to construct new quantum error correction codes by nesting certain quantum codes together. The problem of finding long quantum error correction codes is reduced to that of searching several short length quantum codes with certain properties. Our method works for all length and all distance codes, and is quite efficient to construct optimal or near optimal codes. Two main known methods in constructing new codes from old codes in quantum error-correction theory, the concatenating and pasting, can be understood in the framework of nested quantum error correction codes.

  5. Quantum error correction for beginners.

    Science.gov (United States)

    Devitt, Simon J; Munro, William J; Nemoto, Kae

    2013-07-01

    Quantum error correction (QEC) and fault-tolerant quantum computation represent one of the most vital theoretical aspects of quantum information processing. It was well known from the early developments of this exciting field that the fragility of coherent quantum systems would be a catastrophic obstacle to the development of large-scale quantum computers. The introduction of quantum error correction in 1995 showed that active techniques could be employed to mitigate this fatal problem. However, quantum error correction and fault-tolerant computation is now a much larger field and many new codes, techniques, and methodologies have been developed to implement error correction for large-scale quantum algorithms. In response, we have attempted to summarize the basic aspects of quantum error correction and fault-tolerance, not as a detailed guide, but rather as a basic introduction. The development in this area has been so pronounced that many in the field of quantum information, specifically researchers who are new to quantum information or people focused on the many other important issues in quantum computation, have found it difficult to keep up with the general formalisms and methodologies employed in this area. Rather than introducing these concepts from a rigorous mathematical and computer science framework, we instead examine error correction and fault-tolerance largely through detailed examples, which are more relevant to experimentalists today and in the near future.

  6. Quantum Steganography and Quantum Error-Correction

    Science.gov (United States)

    Shaw, Bilal A.

    2010-01-01

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…

  7. Quantum Steganography and Quantum Error-Correction

    Science.gov (United States)

    Shaw, Bilal A.

    2010-01-01

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…

  8. Quantum Steganography and Quantum Error-Correction

    CERN Document Server

    Shaw, Bilal A

    2010-01-01

    In the current thesis we first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit e...

  9. Robust Quantum Error Correction via Convex Optimization

    CERN Document Server

    Kosut, R L; Lidar, D A

    2007-01-01

    Quantum error correction procedures have traditionally been developed for specific error models, and are not robust against uncertainty in the errors. Using a semidefinite program optimization approach we find high fidelity quantum error correction procedures which present robust encoding and recovery effective against significant uncertainty in the error system. We present numerical examples for 3, 5, and 7-qubit codes. Our approach requires as input a description of the error channel, which can be provided via quantum process tomography.

  10. Quantum Error Correction Beyond Completely Positive Maps

    OpenAIRE

    Shabani, A.; Lidar, D. A.

    2006-01-01

    By introducing an operator sum representation for arbitrary linear maps, we develop a generalized theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This theory of "linear quantum error correction" is applicable in cases where the standard and restrictive assumption of a factorized initial system-bath state does not apply.

  11. Open quantum systems and error correction

    Science.gov (United States)

    Shabani Barzegar, Alireza

    Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC

  12. Quantum Information Processing and Quantum Error Correction An Engineering Approach

    CERN Document Server

    Djordjevic, Ivan

    2012-01-01

    Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer

  13. Black Holes, Holography, and Quantum Error Correction

    CERN Document Server

    CERN. Geneva

    2017-01-01

    How can it be that a local quantum field theory in some number of spacetime dimensions can "fake" a local gravitational theory in a higher number of dimensions?  How can the Ryu-Takayanagi Formula say that an entropy is equal to the expectation value of a local operator?  Why do such things happen only in gravitational theories?  In this talk I will explain how a new interpretation of the AdS/CFT correspondence as a quantum error correcting code provides satisfying answers to these questions, and more generally gives a natural way of generating simple models of the correspondence.  No familiarity with AdS/CFT or quantum error correction is assumed, but the former would still be helpful.  

  14. Long distance quantum communication using quantum error correction

    Science.gov (United States)

    Gingrich, R. M.; Lee, H.; Dowling, J. P.

    2004-01-01

    We describe a quantum error correction scheme that can increase the effective absorption length of the communication channel. This device can play the role of a quantum transponder when placed in series, or a cyclic quantum memory when inserted in an optical loop.

  15. Uncertainty relations and approximate quantum error correction

    Science.gov (United States)

    Renes, Joseph M.

    2016-09-01

    The uncertainty principle can be understood as constraining the probability of winning a game in which Alice measures one of two conjugate observables, such as position or momentum, on a system provided by Bob, and he is to guess the outcome. Two variants are possible: either Alice tells Bob which observable she measured, or he has to furnish guesses for both cases. Here I derive uncertainty relations for both, formulated directly in terms of Bob's guessing probabilities. For the former these relate to the entanglement that can be recovered by action on Bob's system alone. This gives an explicit quantum circuit for approximate quantum error correction using the guessing measurements for "amplitude" and "phase" information, implicitly used in the recent construction of efficient quantum polar codes. I also find a relation on the guessing probabilities for the latter game, which has application to wave-particle duality relations.

  16. Quantum Secret Sharing with Error Correction

    Institute of Scientific and Technical Information of China (English)

    Aziz Mouzali; Fatiha Merazka; Damian Markham

    2012-01-01

    We investigate in this work a quantum error correction on a five-qubits graph state used for secret sharing through five noisy channels. We describe the procedure for the five, seven and nine qubits codes. It is known that the three codes always allow error recovery if only one among the sent qubits is disturbed in the transmitting channel. However, if two qubits and more are disturbed, then the correction will depend on the used code. We compare in this paper the three codes by computing the average fidelity between the sent secret and that measured by the receivers. We will treat the case where, at most, two qubits are affected in each one of five depolarizing channels.

  17. Quantum secret sharing based on quantum error-correcting codes

    Institute of Scientific and Technical Information of China (English)

    Zhang Zu-Rong; Liu Wei-Tao; Li Cheng-Zu

    2011-01-01

    Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k - 1,1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k - 1) threshold scheme. It also takes advantage of classical enhancement of the [2k - 1, l,k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels.

  18. Quantum Metrology Enhanced by Repetitive Quantum Error Correction

    Science.gov (United States)

    Unden, Thomas; Balasubramanian, Priya; Louzon, Daniel; Vinkler, Yuval; Plenio, Martin B.; Markham, Matthew; Twitchen, Daniel; Stacey, Alastair; Lovchinsky, Igor; Sushkov, Alexander O.; Lukin, Mikhail D.; Retzker, Alex; Naydenov, Boris; McGuinness, Liam P.; Jelezko, Fedor

    2016-06-01

    We experimentally demonstrate the protection of a room-temperature hybrid spin register against environmental decoherence by performing repeated quantum error correction whilst maintaining sensitivity to signal fields. We use a long-lived nuclear spin to correct multiple phase errors on a sensitive electron spin in diamond and realize magnetic field sensing beyond the time scales set by natural decoherence. The universal extension of sensing time, robust to noise at any frequency, demonstrates the definitive advantage entangled multiqubit systems provide for quantum sensing and offers an important complement to quantum control techniques.

  19. Quantum Metrology Enhanced by Repetitive Quantum Error Correction.

    Science.gov (United States)

    Unden, Thomas; Balasubramanian, Priya; Louzon, Daniel; Vinkler, Yuval; Plenio, Martin B; Markham, Matthew; Twitchen, Daniel; Stacey, Alastair; Lovchinsky, Igor; Sushkov, Alexander O; Lukin, Mikhail D; Retzker, Alex; Naydenov, Boris; McGuinness, Liam P; Jelezko, Fedor

    2016-06-10

    We experimentally demonstrate the protection of a room-temperature hybrid spin register against environmental decoherence by performing repeated quantum error correction whilst maintaining sensitivity to signal fields. We use a long-lived nuclear spin to correct multiple phase errors on a sensitive electron spin in diamond and realize magnetic field sensing beyond the time scales set by natural decoherence. The universal extension of sensing time, robust to noise at any frequency, demonstrates the definitive advantage entangled multiqubit systems provide for quantum sensing and offers an important complement to quantum control techniques.

  20. Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence.

    Science.gov (United States)

    Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos

    2016-12-07

    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover's QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels' deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover's QSA at an aggressive depolarizing probability of 10(-3), the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane's quantum error correction code is employed. Finally, apart from Steane's code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered.

  1. Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence

    Science.gov (United States)

    Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos

    2016-12-01

    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10-3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered.

  2. Quantum Error Correction in the Zeno Regime

    CERN Document Server

    Erez, N; Reznik, B; Vaidman, L; Erez, Noam; Aharonov, Yakir; Reznik, Benni; Vaidman, Lev

    2003-01-01

    In order to reduce errors, error correction codes (ECCs) need to be implemented fast. They can correct the errors corresponding to the first few orders in the Taylor expansion of the Hamiltonian of the interaction with the environment. If implemented fast enough, the zeroth order error predominates and the dominant effect is of error prevention by measurement (Zeno Effect) rather than correction. In this ``Zeno Regime'', codes with less redundancy are sufficient for protection. We describe such a simple scheme, which uses two ``noiseless'' qubits to protect a large number, $n$, of information qubits from noise from the environment. The ``noisless qubits'' can be realized by treating them as logical qubits to be encoded by one of the previously introduced encoding schemes.

  3. Topics in quantum cryptography, quantum error correction, and channel simulation

    Science.gov (United States)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel

  4. Unitary Application of the Quantum Error Correction Codes

    Institute of Scientific and Technical Information of China (English)

    游波; 许可; 吴小华

    2012-01-01

    For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.

  5. Quantum Error Correction and Higher-Rank Numerical Range

    CERN Document Server

    Choi, M D; Zyczkowski, K; Choi, Man-Duen; Kribs, David W.; Zyczkowski, Karol

    2005-01-01

    We solve the fundamental quantum error correction problem for bi-unitary channels on two-qubit Hilbert space. We construct qubit codes for such channels on arbitrary dimension Hilbert space, and identify correctable codes for Pauli-error models not detected by the stabilizer formalism. This is accomplished through an application of a new tool for error correction in quantum computing called the ``higher-rank numerical range''. We describe its basic properties and discuss possible further applications.

  6. Experimental Realization of Continuous-Variable Quantum Error Correction Codes

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Madsen, Lars Skovgaard; Andersen, Ulrik Lund

    Quantum information processing relies on the robust and faithful transmission, storage and manipulation of quantum information. However, since different decoherent processes are inherent to any realistic implementation, the future of quantum information systems strongly relies on the ability to d...... to detect and perform error code correction and noise filtration. We present two different schemes to eliminate erasure errors and channel excess noise in continuous-variable quantum channels....

  7. Entanglement and Quantum Error Correction with Superconducting Qubits

    Science.gov (United States)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  8. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    Science.gov (United States)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  9. Capacities of Quantum Error Correcting Codes under adaptive concatenation

    CERN Document Server

    Fern, J

    2007-01-01

    We look at the effects of a quantum channel after each level of quantum error correcting codes (QECC) under recovery operators that are optimally adapted at each level. We use the entropy of the channel to estimate the capacities of QECCs. Considerable improvements in capacities are found under adaptive concatenation.

  10. Quantum error correction assisted by two-way noisy communication.

    Science.gov (United States)

    Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C H

    2014-11-26

    Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1

  11. Introduction to error correcting codes in quantum computers

    CERN Document Server

    Salas, P J

    2006-01-01

    The goal of this paper is to review the theoretical basis for achieving a faithful quantum information transmission and processing in the presence of noise. Initially encoding and decoding, implementing gates and quantum error correction will be considered error free. Finally we will relax this non realistic assumption, introducing the quantum fault-tolerant concept. The existence of an error threshold permits to conclude that there is no physical law preventing a quantum computer from being built. An error model based on the depolarizing channel will be able to provide a simple estimation of the storage or memory computation error threshold: < 5.2 10-5. The encoding is made by means of the [[7,1,3

  12. Combined Error Correction Techniques for Quantum Computing Architectures

    CERN Document Server

    Byrd, M S; Byrd, Mark S.; Lidar, Daniel A.

    2003-01-01

    Proposals for quantum computing devices are many and varied. They each have unique noise processes that make none of them fully reliable at this time. There are several error correction/avoidance techniques which are valuable for reducing or eliminating errors, but not one, alone, will serve as a panacea. One must therefore take advantage of the strength of each of these techniques so that we may extend the coherence times of the quantum systems and create more reliable computing devices. To this end we give a general strategy for using dynamical decoupling operations on encoded subspaces. These encodings may be of any form; of particular importance are decoherence-free subspaces and quantum error correction codes. We then give means for empirically determining an appropriate set of dynamical decoupling operations for a given experiment. Using these techniques, we then propose a comprehensive encoding solution to many of the problems of quantum computing proposals which use exchange-type interactions. This us...

  13. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    Science.gov (United States)

    Guth, Larry; Lubotzky, Alexander

    2014-08-01

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance nɛ. Their rate is evaluated via Euler characteristic arguments and their distance using {Z}_2-systolic geometry. This construction answers a question of Zémor ["On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction," in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259-273], who asked whether homological codes with such parameters could exist at all.

  14. Black Hole Entanglement and Quantum Error Correction

    NARCIS (Netherlands)

    Verlinde, E.; Verlinde, H.

    2013-01-01

    It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic

  15. Black Hole Entanglement and Quantum Error Correction

    NARCIS (Netherlands)

    Verlinde, E.; Verlinde, H.

    2013-01-01

    It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic

  16. Error suppression and error correction in adiabatic quantum computation I: techniques and challenges

    OpenAIRE

    Young, Kevin C.; Sarovar, Mohan; Blume-Kohout, Robin

    2013-01-01

    Adiabatic quantum computation (AQC) is known to possess some intrinsic robustness, though it is likely that some form of error correction will be necessary for large scale computations. Error handling routines developed for circuit-model quantum computation do not transfer easily to the AQC model since these routines typically require high-quality quantum gates, a resource not generally allowed in AQC. There are two main techniques known to suppress errors during an AQC implementation: energy...

  17. Quantum error correcting codes and one-way quantum computing: Towards a quantum memory

    CERN Document Server

    Schlingemann, D

    2003-01-01

    For realizing a quantum memory we suggest to first encode quantum information via a quantum error correcting code and then concatenate combined decoding and re-encoding operations. This requires that the encoding and the decoding operation can be performed faster than the typical decoherence time of the underlying system. The computational model underlying the one-way quantum computer, which has been introduced by Hans Briegel and Robert Raussendorf, provides a suitable concept for a fast implementation of quantum error correcting codes. It is shown explicitly in this article is how encoding and decoding operations for stabilizer codes can be realized on a one-way quantum computer. This is based on the graph code representation for stabilizer codes, on the one hand, and the relation between cluster states and graph codes, on the other hand.

  18. Iterative Phase Optimization of Elementary Quantum Error Correcting Codes

    Science.gov (United States)

    Müller, M.; Rivas, A.; Martínez, E. A.; Nigg, D.; Schindler, P.; Monz, T.; Blatt, R.; Martin-Delgado, M. A.

    2016-07-01

    Performing experiments on small-scale quantum computers is certainly a challenging endeavor. Many parameters need to be optimized to achieve high-fidelity operations. This can be done efficiently for operations acting on single qubits, as errors can be fully characterized. For multiqubit operations, though, this is no longer the case, as in the most general case, analyzing the effect of the operation on the system requires a full state tomography for which resources scale exponentially with the system size. Furthermore, in recent experiments, additional electronic levels beyond the two-level system encoding the qubit have been used to enhance the capabilities of quantum-information processors, which additionally increases the number of parameters that need to be controlled. For the optimization of the experimental system for a given task (e.g., a quantum algorithm), one has to find a satisfactory error model and also efficient observables to estimate the parameters of the model. In this manuscript, we demonstrate a method to optimize the encoding procedure for a small quantum error correction code in the presence of unknown but constant phase shifts. The method, which we implement here on a small-scale linear ion-trap quantum computer, is readily applicable to other AMO platforms for quantum-information processing.

  19. Quantum error correction against photon loss using multicomponent cat states

    Science.gov (United States)

    Bergmann, Marcel; van Loock, Peter

    2016-10-01

    We analyze a generalized quantum error-correction code against photon loss where a logical qubit is encoded into a subspace of a single oscillator mode that is spanned by distinct multicomponent cat states (coherent-state superpositions). We present a systematic code construction that includes the extension of an existing one-photon-loss code to higher numbers of losses. When subject to a photon loss (amplitude damping) channel, the encoded qubits are shown to exhibit a cyclic behavior where the code and error spaces each correspond to certain multiples of losses, half of which can be corrected. As another generalization we also discuss how to protect logical qudits against photon losses, and as an application we consider a one-way quantum communication scheme in which the encoded qubits are periodically recovered while the coherent-state amplitudes are restored as well at regular intervals.

  20. Quantum Error-Correcting Codes over Mixed Alphabets

    CERN Document Server

    Wang, Zhuo; Fan, Heng; Oh, C H

    2012-01-01

    Errors are inevitable during all kinds quantum informational tasks and quantum error-correcting codes (QECCs) are powerful tools to fight various quantum noises. For standard QECCs physical systems have the same number of energy levels. Here we shall propose QECCs over mixed alphabets, i.e., physical systems of different dimensions, and investigate their constructions as well as their quantum Singleton bound. We propose two kinds of constructions: a graphical construction based a graph-theoretical object composite coding clique and a projection-based construction. We illustrate our ideas using two alphabets by finding out some 1-error correcting or detecting codes over mixed alphabets, e.g., optimal $((6,8,3))_{4^52^1}$, $((6,4,3))_{4^42^2}$ and $((5,16,2))_{4^32^2}$ code and suboptimal $((5,9,2))_{3^42^1}$ code. Our methods also shed light to the constructions of standard QECCs, e.g., the construction of the optimal $((6,16,3))_4$ code as well as the optimal $((2n+3,p^{2n+1},2))_{p}$ codes with $p=4k$.

  1. The Ryu-Takayanagi Formula from Quantum Error Correction

    Science.gov (United States)

    Harlow, Daniel

    2017-09-01

    I argue that a version of the quantum-corrected Ryu-Takayanagi formula holds in any quantum error-correcting code. I present this result as a series of theorems of increasing generality, with the final statement expressed in the language of operator-algebra quantum error correction. In AdS/CFT this gives a "purely boundary" interpretation of the formula. I also extend a recent theorem, which established entanglement-wedge reconstruction in AdS/CFT, when interpreted as a subsystem code, to the more general, and I argue more physical, case of subalgebra codes. For completeness, I include a self-contained presentation of the theory of von Neumann algebras on finite-dimensional Hilbert spaces, as well as the algebraic definition of entropy. The results confirm a close relationship between bulk gauge transformations, edge-modes/soft-hair on black holes, and the Ryu-Takayanagi formula. They also suggest a new perspective on the homology constraint, which basically is to get rid of it in a way that preserves the validity of the formula, but which removes any tension with the linearity of quantum mechanics. Moreover, they suggest a boundary interpretation of the "bit threads" recently introduced by Freedman and Headrick.

  2. Concurrent remote entanglement with quantum error correction against photon losses

    Science.gov (United States)

    Roy, Ananda; Stone, A. Douglas; Jiang, Liang

    2016-09-01

    Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. The first implementation uses propagating Schr o ̈ dinger cat states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-qubit measurement, and homodyne detections as the final single-qubit measurements. The presence of inefficiencies in realistic quantum systems limit the success rate of generating high fidelity Bell states. This motivates us to propose a second continuous variable implementation, where we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end, we encode the ancilla qubits in superpositions of Schrödinger cat states of a given photon-number parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement, and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success rate of generating high-fidelity Bell states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting circuit-QED systems.

  3. From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Barberis-Blostein, P [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510, Mexico, DF (Mexico); Norris, D G; Orozco, L A; Carmichael, H J [Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology, College Park, MD 20742 (United States)], E-mail: lorozco@umd.edu

    2010-02-15

    It is shown how one can implement quantum feedback and probabilistic error correction in an open quantum system consisting of a single atom, with ground- and excited-state Zeeman structure, in a driven two-mode optical cavity. The ground-state superposition is manipulated and controlled through conditional measurements and external fields, which shield the coherence and correct quantum errors. Modeling an experimentally realistic situation demonstrates the robustness of the proposal for realization in the laboratory.

  4. The Ryu-Takayanagi Formula from Quantum Error Correction

    CERN Document Server

    Harlow, Daniel

    2016-01-01

    I argue that a version of the quantum-corrected Ryu-Takayanagi formula holds in any quantum error-correcting code. I present this result as a series of theorems of increasing generality, with the final statement expressed in the language of operator-algebra quantum error correction. In AdS/CFT this gives a "purely boundary" interpretation of the formula. I also extend a recent theorem, which established entanglement-wedge reconstruction in AdS/CFT, when interpreted as a subsystem code, to the more general, and I argue more physical, case of subalgebra codes. For completeness, I include a self-contained presentation of the theory of von Neumann algebras on finite-dimensional Hilbert spaces, as well as the algebraic definition of entropy. The results confirm a close relationship between bulk gauge transformations, edge-modes/soft-hair on black holes, and the Ryu-Takayanagi formula. They also suggest a new perspective on the homology constraint, which basically is to get rid of it in a way that preserves the val...

  5. Information-theoretic approach to quantum error correction and reversible measurement

    CERN Document Server

    Nielsen, M A; Schumacher, B; Barnum, H N; Caves, Carlton M.; Schumacher, Benjamin; Barnum, Howard

    1997-01-01

    Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive information-theoretic conditions and equivalent algebraic conditions that are necessary and sufficient for a general quantum operation to be reversible. We analyze the thermodynamic cost of error correction and show that error correction can be regarded as a kind of ``Maxwell demon,'' for which there is an entropy cost associated with information obtained from measurements performed during error correction. A prescription for thermodynamically efficient error correction is given.

  6. Topological quantum error correction in the Kitaev honeycomb model

    Science.gov (United States)

    Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.

    2017-08-01

    The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.

  7. Topological Quantum Computation and Error Correction by Biological Cells

    CERN Document Server

    Lofthouse, J T

    2005-01-01

    A Topological examination of phospholipid dynamics in the Far from Equilibrium state has demonstrated that metabolically active cells use waste heat to generate spatially patterned membrane flows by forced convection and shear. This paper explains the resemblance between this nonlinear membrane model and Witten Kitaev type Topological Quantum Computation systems, and demonstrates how this self-organising membrane enables biological cells to circumvent the decoherence problem, perform error correction procedures, and produce classical level output as shielded current flow through cytoskeletal protein conduit. Cellular outputs are shown to be Turing compatible as they are determined by computable in principle hydromagnetic fluid flows, and importantly, are Adaptive from an Evolutionary perspective.

  8. Quantum error correction against photon loss using NOON states

    Science.gov (United States)

    Bergmann, Marcel; van Loock, Peter

    2016-07-01

    The so-called NOON states are quantum optical resources known to be useful especially for quantum lithography and metrology. At the same time, they are known to be very sensitive to photon losses and rather hard to produce experimentally. Concerning the former, here we present a scheme where NOON states are the elementary resources for building quantum error-correction codes against photon losses, thus demonstrating that such resources can also be useful to suppress the effect of loss. Our NOON code is an exact code that can be systematically extended from one-photon to higher-number losses. Its loss scaling depending on the codeword photon number is the same as for some existing, exact loss codes such as bosonic and quantum parity codes, but its codeword mode number is intermediate between that of the other codes. Another generalization of the NOON code is given for arbitrary logical qudits instead of logical qubits. While, in general, the final codewords are always obtainable from multimode NOON states through application of beam splitters, both codewords for the one-photon-loss qubit NOON code can be simply created from single-photon states with beam splitters. We give various examples and also discuss a potential application of our qudit code for quantum communication.

  9. Repeated quantum error correction on a continuously encoded qubit by real-time feedback.

    Science.gov (United States)

    Cramer, J; Kalb, N; Rol, M A; Hensen, B; Blok, M S; Markham, M; Twitchen, D J; Hanson, R; Taminiau, T H

    2016-05-05

    Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.

  10. Repeated quantum error correction on a continuously encoded qubit by real-time feedback

    Science.gov (United States)

    Cramer, J.; Kalb, N.; Rol, M. A.; Hensen, B.; Blok, M. S.; Markham, M.; Twitchen, D. J.; Hanson, R.; Taminiau, T. H.

    2016-05-01

    Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.

  11. Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics

    Science.gov (United States)

    Sarovar, Mohan; Young, Kevin C.

    2013-12-01

    While adiabatic quantum computing (AQC) has some robustness to noise and decoherence, it is widely believed that encoding, error suppression and error correction will be required to scale AQC to large problem sizes. Previous works have established at least two different techniques for error suppression in AQC. In this paper we derive a model for describing the dynamics of encoded AQC and show that previous constructions for error suppression can be unified with this dynamical model. In addition, the model clarifies the mechanisms of error suppression and allows the identification of its weaknesses. In the second half of the paper, we utilize our description of non-equilibrium dynamics in encoded AQC to construct methods for error correction in AQC by cooling local degrees of freedom (qubits). While this is shown to be possible in principle, we also identify the key challenge to this approach: the requirement of high-weight Hamiltonians. Finally, we use our dynamical model to perform a simplified thermal stability analysis of concatenated-stabilizer-code encoded many-body systems for AQC or quantum memories. This work is a companion paper to ‘Error suppression and error correction in adiabatic quantum computation: techniques and challenges (2013 Phys. Rev. X 3 041013)’, which provides a quantum information perspective on the techniques and limitations of error suppression and correction in AQC. In this paper we couch the same results within a dynamical framework, which allows for a detailed analysis of the non-equilibrium dynamics of error suppression and correction in encoded AQC.

  12. Physical optimization of quantum error correction circuits with spatially separated quantum dot spins.

    Science.gov (United States)

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2013-05-20

    We propose an efficient protocol for optimizing the physical implementation of three-qubit quantum error correction with spatially separated quantum dot spins via virtual-photon-induced process. In the protocol, each quantum dot is trapped in an individual cavity and each two cavities are connected by an optical fiber. We propose the optimal quantum circuits and describe the physical implementation for correcting both the bit flip and phase flip errors by applying a series of one-bit unitary rotation gates and two-bit quantum iSWAP gates that are produced by the long-range interaction between two distributed quantum dot spins mediated by the vacuum fields of the fiber and cavity. The protocol opens promising perspectives for long distance quantum communication and distributed quantum computation networks.

  13. Constructing quantum error-correcting codes for p^m-state systems from classical error-correcting codes

    OpenAIRE

    Matsumoto, Ryutaroh; Uyematsu, Tomohiko

    1999-01-01

    Comment: 10 pages, LaTeX2e. To appear in IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (ISSN 0916-8508), vol. E83-A, no. 10, Oct. 2000. Revision on Dec. 14, 1999: Added a note on a systematic construction of quantum codes with efficient decoding algorithms. Revision on June 26, 2000: Corrected lots of errors, and added a review on the overall error correction process. No original materials were added

  14. Serialized quantum error correction protocol for high-bandwidth quantum repeaters

    Science.gov (United States)

    Glaudell, A. N.; Waks, E.; Taylor, J. M.

    2016-09-01

    Advances in single-photon creation, transmission, and detection suggest that sending quantum information over optical fibers may have losses low enough to be correctable using a quantum error correcting code (QECC). Such error-corrected communication is equivalent to a novel quantum repeater scheme, but crucial questions regarding implementation and system requirements remain open. Here we show that long-range entangled bit generation with rates approaching 108 entangled bits per second may be possible using a completely serialized protocol, in which photons are generated, entangled, and error corrected via sequential, one-way interactions with as few matter qubits as possible. Provided loss and error rates of the required elements are below the threshold for quantum error correction, this scheme demonstrates improved performance over transmission of single photons. We find improvement in entangled bit rates at large distances using this serial protocol and various QECCs. In particular, at a total distance of 500 km with fiber loss rates of 0.3 dB km-1, logical gate failure probabilities of 10-5, photon creation and measurement error rates of 10-5, and a gate speed of 80 ps, we find the maximum single repeater chain entangled bit rates of 51 Hz at a 20 m node spacing and 190 000 Hz at a 43 m node spacing for the {[[3,1,2

  15. Quantum Error Correction and the Future of Solid State Quantum Computing

    Science.gov (United States)

    Divincenzo, David

    Quantum error correction (QEC) theory has provided a very challenging but well defined goal for the further development of solid state qubit systems: achieve high enough fidelity so that fault-tolerant, error-corrected quantum computation in networks of these qubits becomes possible. I will begin by touching on some historical points: initial work on QEC is actually more than 20 years old, and the landmark work of Kitaev in 1996 which established 2D lattice structures as a suitable host for effective error correction, has its roots in theoretical work in many-body theory from Wegner in the 1970s. I will give some perspective on current developments in the implementation of small fragments of the surface code. The surface-code concept has driven a number of distinct requirements, beyond the reduction of error rates below the 1% range, that are actively considered as experiments are scaled beyond the 10-qubit level. Support of JARA FIT is acknolwedged.

  16. Secure deterministic communication in a quantum loss channel using quantum error correction code

    Institute of Scientific and Technical Information of China (English)

    Wu Shuang; Liang Lin-Mei; Li Cheng-Zu

    2007-01-01

    The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information loss effectively using universal quantum error correction. Then a secure direct communication scheme is proposed, such that in a loss channel the information that an eavesdropper can obtain would be limited to arbitrarily small when the code is properly chosen and the correction operation is properly arranged.

  17. Quantum error-correcting codes need not completely reveal the error syndrome

    CERN Document Server

    Shor, P W; Shor, Peter W; Smolin, John A

    1996-01-01

    Quantum error-correcting codes so far proposed have not been able to work in the presence of noise levels which introduce greater than one bit of entropy per qubit sent through the quantum channel. This has been because all such codes either find the complete error syndrome of the noise or trivially map onto such codes. We describe a code which does not find complete information on the noise and can be used for reliable transmission of quantum information through channels which introduce more than one bit of entropy per transmitted bit. In the case of the depolarizing ``Werner'' channel our code can be used in a channel of fidelity .8096 while the best existing code worked only down to .8107.

  18. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    Science.gov (United States)

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-10-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.

  19. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.

    Science.gov (United States)

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-10-26

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.

  20. Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code.

    Science.gov (United States)

    Zhang, Jingfu; Laflamme, Raymond; Suter, Dieter

    2012-09-07

    Large-scale universal quantum computing requires the implementation of quantum error correction (QEC). While the implementation of QEC has already been demonstrated for quantum memories, reliable quantum computing requires also the application of nontrivial logical gate operations to the encoded qubits. Here, we present examples of such operations by implementing, in addition to the identity operation, the NOT and the Hadamard gate to a logical qubit encoded in a five qubit system that allows correction of arbitrary single-qubit errors. We perform quantum process tomography of the encoded gate operations, demonstrate the successful correction of all possible single-qubit errors, and measure the fidelity of the encoded logical gate operations.

  1. Repeated quantum error correction by real-time feedback on continuously encoded qubits

    Science.gov (United States)

    Cramer, Julia; Kalb, Norbert; Rol, M. Adriaan; Hensen, Bas; Blok, Machiel S.; Markham, Matthew; Twitchen, Daniel J.; Hanson, Ronald; Taminiau, Tim H.

    Because quantum information is extremely fragile, large-scale quantum information processing requires constant error correction. To be compatible with universal fault-tolerant computations, it is essential that quantum states remain encoded at all times and that errors are actively corrected. I will present such active quantum error correction in a hybrid quantum system based on the nitrogen vacancy (NV) center in diamond. We encode a logical qubit in three long-lived nuclear spins, detect errors by multiple non-destructive measurements using the optically active NV electron spin and correct them by real-time feedback. By combining these new capabilities with recent advances in spin control, multiple cycles of error correction can be performed within the dephasing time. We investigate both coherent and incoherent errors and show that the error-corrected logical qubit can indeed store quantum states longer than the best spin used in the encoding. Furthermore, I will present our latest results on increasing the number of qubits in the encoding, required for quantum error correction for both phase- and bit-flip.

  2. Quantum Error-Correction-Enhanced Magnetometer Overcoming the Limit Imposed by Relaxation.

    Science.gov (United States)

    Herrera-Martí, David A; Gefen, Tuvia; Aharonov, Dorit; Katz, Nadav; Retzker, Alex

    2015-11-13

    When incorporated in quantum sensing protocols, quantum error correction can be used to correct for high frequency noise, as the correction procedure does not depend on the actual shape of the noise spectrum. As such, it provides a powerful way to complement usual refocusing techniques. Relaxation imposes a fundamental limit on the sensitivity of state of the art quantum sensors which cannot be overcome by dynamical decoupling. The only way to overcome this is to utilize quantum error correcting codes. We present a superconducting magnetometry design that incorporates approximate quantum error correction, in which the signal is generated by a two qubit Hamiltonian term. This two-qubit term is provided by the dynamics of a tunable coupler between two transmon qubits. For fast enough correction, it is possible to lengthen the coherence time of the device beyond the relaxation limit.

  3. Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor

    CERN Document Server

    Moussa, Osama; Ryan, Colm A; Laflamme, Raymond

    2011-01-01

    We report the implementation of a 3-qubit quantum error correction code (QECC) on a quantum information processor realized by the magnetic resonance of Carbon nuclei in a single crystal of Malonic Acid. The code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian. We also experimentally demonstrate sufficiently high fidelity control to implement two rounds of quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic resonance, a leading test-bed for the implementation of quantum algorithms.

  4. Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor.

    Science.gov (United States)

    Moussa, Osama; Baugh, Jonathan; Ryan, Colm A; Laflamme, Raymond

    2011-10-14

    We report the implementation of a 3-qubit quantum error-correction code on a quantum information processor realized by the magnetic resonance of carbon nuclei in a single crystal of malonic acid. The code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian. We also experimentally demonstrate sufficiently high-fidelity control to implement two rounds of quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic resonance, a leading test bed for the implementation of quantum algorithms.

  5. Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes

    Science.gov (United States)

    Harrington, James William

    Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present

  6. Quantum error correction in a solid-state hybrid spin register.

    Science.gov (United States)

    Waldherr, G; Wang, Y; Zaiser, S; Jamali, M; Schulte-Herbrüggen, T; Abe, H; Ohshima, T; Isoya, J; Du, J F; Neumann, P; Wrachtrup, J

    2014-02-13

    Error correction is important in classical and quantum computation. Decoherence caused by the inevitable interaction of quantum bits with their environment leads to dephasing or even relaxation. Correction of the concomitant errors is therefore a fundamental requirement for scalable quantum computation. Although algorithms for error correction have been known for some time, experimental realizations are scarce. Here we show quantum error correction in a heterogeneous, solid-state spin system. We demonstrate that joint initialization, projective readout and fast local and non-local gate operations can all be achieved in diamond spin systems, even under ambient conditions. High-fidelity initialization of a whole spin register (99 per cent) and single-shot readout of multiple individual nuclear spins are achieved by using the ancillary electron spin of a nitrogen-vacancy defect. Implementation of a novel non-local gate generic to our electron-nuclear quantum register allows the preparation of entangled states of three nuclear spins, with fidelities exceeding 85 per cent. With these techniques, we demonstrate three-qubit phase-flip error correction. Using optimal control, all of the above operations achieve fidelities approaching those needed for fault-tolerant quantum operation, thus paving the way to large-scale quantum computation. Besides their use with diamond spin systems, our techniques can be used to improve scaling of quantum networks relying on phosphorus in silicon, quantum dots, silicon carbide or rare-earth ions in solids.

  7. Experimental demonstration of a graph state quantum error-correction code.

    Science.gov (United States)

    Bell, B A; Herrera-Martí, D A; Tame, M S; Markham, D; Wadsworth, W J; Rarity, J G

    2014-04-22

    Scalable quantum computing and communication requires the protection of quantum information from the detrimental effects of decoherence and noise. Previous work tackling this problem has relied on the original circuit model for quantum computing. However, recently a family of entangled resources known as graph states has emerged as a versatile alternative for protecting quantum information. Depending on the graph's structure, errors can be detected and corrected in an efficient way using measurement-based techniques. Here we report an experimental demonstration of error correction using a graph state code. We use an all-optical setup to encode quantum information into photons representing a four-qubit graph state. We are able to reliably detect errors and correct against qubit loss. The graph we realize is setup independent, thus it could be employed in other physical settings. Our results show that graph state codes are a promising approach for achieving scalable quantum information processing.

  8. A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy

    CERN Document Server

    Sharf, Y; Somaroo, S S; Havel, T F; Knill, E H; Laflamme, R; Sharf, Yehuda; Cory, David G.; Somaroo, Shyamal S.; Havel, Timothy F.; Knill, Emanuel; Laflamme, Raymond

    2000-01-01

    Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, quantum coding does not alter normal relaxation, but rather converts the state of a ``data'' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on 13C-labeled alanine, using gradient-diffusion methods to implement these idealized decoherence models. Quantum error correcti...

  9. Bulk Locality and Quantum Error Correction in AdS/CFT

    OpenAIRE

    Almheiri, Ahmed; Dong, Xi; Harlow, Daniel

    2014-01-01

    We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether...

  10. New Class of Quantum Error-Correcting Codes for a Bosonic Mode

    Science.gov (United States)

    Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.

    2016-07-01

    We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.

  11. Bulk Locality and Quantum Error Correction in AdS/CFT

    CERN Document Server

    Almheiri, Ahmed; Harlow, Daniel

    2014-01-01

    We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether or not the quantum error correcting code realized by AdS/CFT is also a "quantum secret sharing scheme", and suggest a tensor network calculation that may settle the issue. Interestingly, the version of quantum error correction which is best suited to our analysis is the somewhat nonstandard "operator algebra quantum error correction" of Beny, Kempf, and Kribs. Our proposal gives a precise formulation of the idea of "subregion-subregion" duality in AdS/CFT, and clarifies the limits of its validity.

  12. Methodology for bus layout for topological quantum error correcting codes

    Energy Technology Data Exchange (ETDEWEB)

    Wosnitzka, Martin; Pedrocchi, Fabio L.; DiVincenzo, David P. [RWTH Aachen University, JARA Institute for Quantum Information, Aachen (Germany)

    2016-12-15

    Most quantum computing architectures can be realized as two-dimensional lattices of qubits that interact with each other. We take transmon qubits and transmission line resonators as promising candidates for qubits and couplers; we use them as basic building elements of a quantum code. We then propose a simple framework to determine the optimal experimental layout to realize quantum codes. We show that this engineering optimization problem can be reduced to the solution of standard binary linear programs. While solving such programs is a NP-hard problem, we propose a way to find scalable optimal architectures that require solving the linear program for a restricted number of qubits and couplers. We apply our methods to two celebrated quantum codes, namely the surface code and the Fibonacci code. (orig.)

  13. Error correction in short time steps during the application of quantum gates

    Energy Technology Data Exchange (ETDEWEB)

    Castro, L.A. de, E-mail: leonardo.castro@usp.br; Napolitano, R.D.J.

    2016-04-15

    We propose a modification of the standard quantum error-correction method to enable the correction of errors that occur due to the interaction with a noisy environment during quantum gates without modifying the codification used for memory qubits. Using a perturbation treatment of the noise that allows us to separate it from the ideal evolution of the quantum gate, we demonstrate that in certain cases it is necessary to divide the logical operation in short time steps intercalated by correction procedures. A prescription of how these gates can be constructed is provided, as well as a proof that, even for the cases when the division of the quantum gate in short time steps is not necessary, this method may be advantageous for reducing the total duration of the computation.

  14. Demonstration of a quantum error correction for enhanced sensitivity of photonic measurements

    Science.gov (United States)

    Cohen, L.; Pilnyak, Y.; Istrati, D.; Retzker, A.; Eisenberg, H. S.

    2016-07-01

    The sensitivity of classical and quantum sensing is impaired in a noisy environment. Thus, one of the main challenges facing sensing protocols is to reduce the noise while preserving the signal. State-of-the-art quantum sensing protocols that rely on dynamical decoupling achieve this goal under the restriction of long noise correlation times. We implement a proof-of-principle experiment of a protocol to recover sensitivity by using an error correction for photonic systems that does not have this restriction. The protocol uses a protected entangled qubit to correct a single error. Our results show a recovery of about 87 % of the sensitivity, independent of the noise probability.

  15. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence

    OpenAIRE

    Pastawski, Fernando; Yoshida, Beni; Harlow, Daniel; Preskill, John

    2015-01-01

    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be ...

  16. Quantum error-correcting codes from algebraic geometry codes of Castle type

    Science.gov (United States)

    Munuera, Carlos; Tenório, Wanderson; Torres, Fernando

    2016-10-01

    We study algebraic geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.

  17. Extending the lifetime of a quantum bit with error correction in superconducting circuits

    Science.gov (United States)

    Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S. M.; Jiang, L.; Mirrahimi, Mazyar; Devoret, M. H.; Schoelkopf, R. J.

    2016-08-01

    Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The ‘break-even’ point of QEC—at which the lifetime of a qubit exceeds the lifetime of the constituents of the system—has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0>f and |1>f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.

  18. Extending the lifetime of a quantum bit with error correction in superconducting circuits.

    Science.gov (United States)

    Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S M; Jiang, L; Mirrahimi, Mazyar; Devoret, M H; Schoelkopf, R J

    2016-08-25

    Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.

  19. Nuclear numerical range and quantum error correction codes for non-unitary noise models

    Science.gov (United States)

    Lipka-Bartosik, Patryk; Życzkowski, Karol

    2017-01-01

    We introduce a notion of nuclear numerical range defined as the set of expectation values of a given operator A among normalized pure states, which belong to the nucleus of an auxiliary operator Z. This notion proves to be applicable to investigate models of quantum noise with block-diagonal structure of the corresponding Kraus operators. The problem of constructing a suitable quantum error correction code for this model can be restated as a geometric problem of finding intersection points of certain sets in the complex plane. This technique, worked out in the case of two-qubit systems, can be generalized for larger dimensions.

  20. High performance single-error-correcting quantum codes for amplitude damping

    CERN Document Server

    Shor, Peter W; Smolin, John A; Zeng, Bei

    2009-01-01

    We construct families of high performance quantum amplitude damping codes. All of our codes are nonadditive and most modestly outperform the best possible additive codes in terms of encoded dimension. One family is built from nonlinear error-correcting codes for classical asymmetric channels, with which we systematically construct quantum amplitude damping codes with parameters better than any prior construction known for any block length n > 7 except n=2^r-1. We generalize this construction to employ classical codes over GF(3) with which we numerically obtain better performing codes up to length 14. Because the resulting codes are of the codeword stabilized (CWS) type, easy encoding and decoding circuits are available.

  1. Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence

    CERN Document Server

    Pastawski, Fernando; Harlow, Daniel; Preskill, John

    2015-01-01

    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an exact isometry from bulk operators to boundary operators. The entire tensor network is a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed by Almheiri et. al in arXiv:1411.70...

  2. Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits

    Science.gov (United States)

    Kapit, Eliot

    2016-04-01

    Superconducting qubits are among the most promising platforms for building a quantum computer. However, individual qubit coherence times are not far past the scalability threshold for quantum error correction, meaning that millions of physical devices would be required to construct a useful quantum computer. Consequently, further increases in coherence time are very desirable. In this Letter, we blueprint a simple circuit consisting of two transmon qubits and two additional lossy qubits or resonators, which is passively protected against all single-qubit quantum error channels through a combination of continuous driving and engineered dissipation. Photon losses are rapidly corrected through two-photon drive fields implemented with driven superconducting quantum interference device couplings, and dephasing from random potential fluctuations is heavily suppressed by the drive fields used to implement the multiqubit Hamiltonian. Comparing our theoretical model to published noise estimates from recent experiments on flux and transmon qubits, we find that logical state coherence could be improved by a factor of 40 or more compared to the individual qubit T1 and T2 using this technique. We thus demonstrate that there is substantial headroom for improving the coherence of modern superconducting qubits with a fairly modest increase in device complexity.

  3. Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits.

    Science.gov (United States)

    Kapit, Eliot

    2016-04-15

    Superconducting qubits are among the most promising platforms for building a quantum computer. However, individual qubit coherence times are not far past the scalability threshold for quantum error correction, meaning that millions of physical devices would be required to construct a useful quantum computer. Consequently, further increases in coherence time are very desirable. In this Letter, we blueprint a simple circuit consisting of two transmon qubits and two additional lossy qubits or resonators, which is passively protected against all single-qubit quantum error channels through a combination of continuous driving and engineered dissipation. Photon losses are rapidly corrected through two-photon drive fields implemented with driven superconducting quantum interference device couplings, and dephasing from random potential fluctuations is heavily suppressed by the drive fields used to implement the multiqubit Hamiltonian. Comparing our theoretical model to published noise estimates from recent experiments on flux and transmon qubits, we find that logical state coherence could be improved by a factor of 40 or more compared to the individual qubit T_{1} and T_{2} using this technique. We thus demonstrate that there is substantial headroom for improving the coherence of modern superconducting qubits with a fairly modest increase in device complexity.

  4. Asymptotic correctability of Bell-diagonal qudit states and lower bounds on tolerable error probabilities in quantum cryptography

    CERN Document Server

    Ranade, K S; Alber, Gernot; Ranade, Kedar S.

    2007-01-01

    The concept of asymptotic correctability of Bell-diagonal quantum states is generalised to elementary quantum systems of higher dimensions. Based on these results basic properties of quantum state purification protocols are investigated which are capable of purifying tensor products of Bell-diagonal states and which are based on $B$-steps of the Gottesman-Lo-type with the subsequent application of a Calderbank-Shor-Steane quantum code. Consequences for maximum tolerable error rates of quantum cryptographic protocols are discussed.

  5. Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable bit error rates

    CERN Document Server

    Ranade, K S; Ranade, Kedar S.; Alber, Gernot

    2005-01-01

    The general conditions are discussed which quantum state purification protocols have to fulfill in order to be capable of purifying Bell-diagonal qubit-pair states, provided they consist of steps that map Bell-diagonal states to Bell-diagonal states and they finally apply a suitably chosen Calderbank-Shor-Steane code to the outcome of such steps. As a main result a necessary and a sufficient condition on asymptotic correctability are presented, which relate this problem to the magnitude of a characteristic exponent governing the relation between bit and phase errors under the purification steps. These conditions allow a straightforward determination of maximum tolerable bit error rates of quantum key distribution protocols whose security analysis can be reduced to the purification of Bell-diagonal states.

  6. High speed and adaptable error correction for megabit/s rate quantum key distribution.

    Science.gov (United States)

    Dixon, A R; Sato, H

    2014-12-02

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  7. Fault-Tolerant Quantum Error Correction for non-Abelian Anyons

    Science.gov (United States)

    Dauphinais, Guillaume; Poulin, David

    2017-07-01

    While topological quantum computation is intrinsically fault-tolerant at zero temperature, it loses its topological protection at any finite temperature. We present a scheme to protect the information stored in a system supporting non-cyclic anyons against thermal and measurement errors. The correction procedure builds on the work of Gács (J Comput Syst Sci 32:15-78, 1986. doi: 10.1145/800061.808730) and Harrington (Analysis of quantum error-correcting codes: symplectic lattice codes and toric code, 2004) and operates as a local cellular automaton. In contrast to previously studied schemes, our scheme is valid for both abelian and non-abelian anyons and accounts for measurement errors. We analytically prove the existence of a fault-tolerant threshold for a certain class of non-Abelian anyon models, and numerically simulate the procedure for the specific example of Ising anyons. The result of our simulations are consistent with a threshold between {10^{-4}} and {10^{-3}}.

  8. Error correcting codes for binary unitary channels on multipartite quantum systems

    CERN Document Server

    Choi, M D; Kribs, D W; Zyczkowski, K; Choi, Man-Duen; Holbrook, John A.; Kribs, David W.; Zyczkowski, Karol

    2006-01-01

    We conduct an analysis of ideal error correcting codes for randomized unitary channels determined by two unitary error operators -- what we call ``binary unitary channels'' -- on multipartite quantum systems. In a wide variety of cases we give a complete description of the code structure for such channels. Specifically, we find a practical geometric technique to determine the existence of codes of arbitrary dimension, and then derive an explicit construction of codes of a given dimension when they exist. For instance, given any binary unitary noise model on an n-qubit system, we design codes that support n-2 qubits. We accomplish this by verifying a conjecture for higher rank numerical ranges of normal operators in many cases.

  9. Correcting errors in a quantum gate with pushed ions via optimal control

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Sklarz, Shlomo; Tannor, David

    2010-01-01

    of errors coming from the quantum dynamics and reveal that slight nonlinearities in the ion-pushing force can have a dramatic effect on the adiabaticity of gate operation. By means of quantum optimal control techniques, we show how to suppress each of the resulting gate errors in order to reach a high...

  10. Thresholds for Correcting Errors, Erasures, and Faulty Syndrome Measurements in Degenerate Quantum Codes.

    Science.gov (United States)

    Dumer, Ilya; Kovalev, Alexey A; Pryadko, Leonid P

    2015-07-31

    We suggest a technique for constructing lower (existence) bounds for the fault-tolerant threshold to scalable quantum computation applicable to degenerate quantum codes with sublinear distance scaling. We give explicit analytic expressions combining probabilities of erasures, depolarizing errors, and phenomenological syndrome measurement errors for quantum low-density parity-check codes with logarithmic or larger distances. These threshold estimates are parametrically better than the existing analytical bound based on percolation.

  11. Precursors, Gauge Invariance, and Quantum Error Correction in AdS/CFT

    CERN Document Server

    Freivogel, Ben; Kabir, Laurens

    2016-01-01

    A puzzling aspect of the AdS/CFT correspondence is that a single bulk operator can be mapped to multiple different boundary operators, or precursors. By improving upon a recent model of Mintun, Polchinski, and Rosenhaus, we demonstrate explicitly how this ambiguity arises in a simple model of the field theory. In particular, we show how gauge invariance in the boundary theory manifests as a freedom in the smearing function used in the bulk-boundary mapping, and explicitly show how this freedom can be used to localize the precursor in different spatial regions. We also show how the ambiguity can be understood in terms of quantum error correction, by appealing to the entanglement present in the CFT. The concordance of these two approaches suggests that gauge invariance and entanglement in the boundary field theory are intimately connected to the reconstruction of local operators in the dual spacetime.

  12. Overhead and noise threshold of fault-tolerant quantum error correction

    CERN Document Server

    Steane, A M

    2003-01-01

    Fault tolerant quantum error correction (QEC) networks are studied by a combination of numerical and approximate analytical treatments. The probability of failure of the recovery operation is calculated for a variety of CSS codes, including large block codes and concatenated codes. Recent insights into the syndrome extraction process, which render the whole process more efficient and more noise-tolerant, are incorporated. The average number of recoveries which can be completed without failure is thus estimated as a function of various parameters. The main parameters are the gate (gamma) and memory (epsilon) failure rates, the physical scale-up of the computer size, and the time t_m required for measurements and classical processing. The achievable computation size is given as a surface in parameter space. This indicates the noise threshold as well as other information. It is found that concatenated codes based on the [[23,1,7

  13. Experimental demonstration of topological error correction

    OpenAIRE

    2012-01-01

    Scalable quantum computing can only be achieved if qubits are manipulated fault-tolerantly. Topological error correction - a novel method which combines topological quantum computing and quantum error correction - possesses the highest known tolerable error rate for a local architecture. This scheme makes use of cluster states with topological properties and requires only nearest-neighbour interactions. Here we report the first experimental demonstration of topological error correction with a...

  14. Experimental demonstration of topological error correction.

    Science.gov (United States)

    Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei

    2012-02-22

    Scalable quantum computing can be achieved only if quantum bits are manipulated in a fault-tolerant fashion. Topological error correction--a method that combines topological quantum computation with quantum error correction--has the highest known tolerable error rate for a local architecture. The technique makes use of cluster states with topological properties and requires only nearest-neighbour interactions. Here we report the experimental demonstration of topological error correction with an eight-photon cluster state. We show that a correlation can be protected against a single error on any quantum bit. Also, when all quantum bits are simultaneously subjected to errors with equal probability, the effective error rate can be significantly reduced. Our work demonstrates the viability of topological error correction for fault-tolerant quantum information processing.

  15. The Complexity of Noise A Philosophical Outlook on Quantum Error Correction

    CERN Document Server

    Hagar, Amit

    2010-01-01

    In quantum computing, where algorithms exist that can solve computational problems more efficiently than any known classical algorithms, the elimination of errors that result from external disturbances or from imperfect gates has become the "holy grail," and a worldwide quest for a large scale fault-tolerant, and computationally superior, quantum computer is currently taking place. Optimists rely on the premise that, under a certain threshold of errors, an arbitrary long fault-tolerant quantum computation can be achieved with only moderate (i.e., at most polynomial) overhead in compu

  16. On classical and quantum error-correction in ciliate mate selection.

    Science.gov (United States)

    Clark, Kevin B

    2010-07-01

    perfect ciliate mate selection via classical repetition and quantum bit-flip error-correction codes that safeguard transmitted social information from noise and might be exploited for signal encryption.

  17. Quantum error correction of continuous-variable states against Gaussian noise

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, T. C. [Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072 (Australia)

    2011-08-15

    We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.

  18. Error Correction in Classroom

    Institute of Scientific and Technical Information of China (English)

    Dr. Grace Zhang

    2000-01-01

    Error correction is an important issue in foreign language acquisition. This paper investigates how students feel about the way in which error correction should take place in a Chinese-as-a foreign-language classroom, based on empirical data of a large scale. The study shows that there is a general consensus that error correction is necessary. In terms of correction strategy, the students preferred a combination of direct and indirect corrections, or a direct only correction. The former choice indicates that students would be happy to take either so long as the correction gets done.Most students didn't mind peer correcting provided it is conducted in a constructive way. More than halfofthe students would feel uncomfortable ifthe same error they make in class is corrected consecutively more than three times. Taking these findings into consideration, we may want to cncourage peer correcting, use a combination of correction strategies (direct only if suitable) and do it in a non-threatening and sensitive way. It is hoped that this study would contribute to the effectiveness of error correction in a Chinese language classroom and it may also have a wider implication on other languages.

  19. Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice

    Science.gov (United States)

    Kim, Isaac H.

    2011-05-01

    We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.

  20. Bulk Quantum Computation with Pulsed Electron Paramagnetic Resonance: Simulations of Single-Qubit Error Correction Schemes

    Science.gov (United States)

    Ishmuratov, I. K.; Baibekov, E. I.

    2016-12-01

    We investigate the possibility to restore transient nutations of electron spin centers embedded in the solid using specific composite pulse sequences developed previously for the application in nuclear magnetic resonance spectroscopy. We treat two types of systematic errors simultaneously: (i) rotation angle errors related to the spatial distribution of microwave field amplitude in the sample volume, and (ii) off-resonance errors related to the spectral distribution of Larmor precession frequencies of the electron spin centers. Our direct simulations of the transient signal in erbium- and chromium-doped CaWO4 crystal samples with and without error corrections show that the application of the selected composite pulse sequences can substantially increase the lifetime of Rabi oscillations. Finally, we discuss the applicability limitations of the studied pulse sequences for the use in solid-state electron paramagnetic resonance spectroscopy.

  1. ERRORS AND CORRECTION

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    To err is human . Since the 1960s, most second language teachers or language theorists have regarded errors as natural and inevitable in the language learning process . Instead of regarding them as terrible and disappointing, teachers have come to realize their value. This paper will consider these values, analyze some errors and propose some effective correction techniques.

  2. 无限维系统中的量子纠错定理%Theory of Quantum Error-Correction in Infinite-Dimensional Quantum System

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Information is often affected by noise during transmission .In order to avoid the effect of noise ,it is needed to correct the quantum information .The current quantum error‐correc‐tion theory gives the sufficient and necessary conditions for the error‐correction of quantum chan‐nel in finite dimensional quantum systems .In this paper ,the quantum error‐correction theory in infinite dimensional quantum systems was studied ,and the necessary and sufficient conditions were given for the error‐correction of quantum channel with finite dimensional error correcting codes .%信息在传输过程中,经常会受到噪声的影响。为了避免噪声的影响,就需要对量子信息进行纠错。量子纠错定理描述量子信道可纠错的充分必要条件。但目前的纠错定理基于有限维量子系统给出。本文研究无限维量子纠错定理,给出量子信道具有有限维纠错码的充要条件。

  3. Quantum-Mechanical Variant of the Thouless-Anderson-Palmer Equation for Error-Correcting Codes

    Science.gov (United States)

    Inoue, J.; Saika, Y.; Okada, M.

    Statistical mechanics of information has been applied to problems in various research topics of information science and technology [1],[2]. Among those research topics, error-correcting code is one of the most developed subjects. In the research field of error-correcting codes, Nicolas Sourlas showed that the so-called convolutional codes can be constructed by spin glass with infinite range p-body interactions and the decoded message should be corresponded to the ground state of the Hamiltonian [3]. Ruján pointed out that the bit error can be suppressed if one uses finite temperature equilibrium states as the decoding result, instead of the ground state [4], and the so-called Bayes-optimal decoding at some specific condition was proved by Nishimori [5] and Nishimori and Wong [6]. Kabashima and Saad succeeded in constructing more practical codes, namely low-density parity check (LDPC) codes by using the infinite range spin glass model with finite connectivities [7]. They used the so-called TAP (Thouless-Anderson-Palmer) equations to decode the original message for a given parity check.

  4. Realization of error correction and reconciliation of continuous quantum key distribution in detail

    Institute of Scientific and Technical Information of China (English)

    QIAN XuDong; HE GuangQiang; ZENG GuiHua

    2009-01-01

    The efficiency of reconciliation In the continuous key distribution is the main factor which limits the ratio of secret key distribution.However,the efficiency depends on the computational complexity of the algorithm.This paper optimizes the two main aspects of the reconciliation process of the continuous key distribution:the partition of Interval and the estimation of bit.We use Gaussian approximation to effectively speed up the convergence of algorithm.We design the estimation function as the estimator of the SEC (sliced error correction) algorithm.Therefore,we lower the computational complexity and simplify the core problem of the reconciliation algorithm.Thus we increase the efficiency of the reconciliation process in the continuous key distribution and then the ratio of the secret key distribution is also increased.

  5. Analysis of physical requirements for simple three-qubit and nine-qubit quantum error correction on quantum-dot and superconductor qubits

    Science.gov (United States)

    Sohn, IlKwon; Tarucha, Seigo; Choi, Byung-Soo

    2017-01-01

    The implementation of a scalable quantum computer requires quantum error correction (QEC). An important step toward this goal is to demonstrate the effectiveness of QEC where the fidelity of an encoded qubit is higher than that of the physical qubits. Therefore, it is important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the swap gate worked rapidly on the quantum-dot qubit, it did not affect the performance in terms of the spatial layout.

  6. Optimal correction of independent and correlated errors

    OpenAIRE

    Jacobsen, Sol H.; Mintert, Florian

    2013-01-01

    We identify optimal quantum error correction codes for situations that do not admit perfect correction. We provide analytic n-qubit results for standard cases with correlated errors on multiple qubits and demonstrate significant improvements to the fidelity bounds and optimal entanglement decay profiles.

  7. Analytical Lower and Upper Bounds for the Threshold Surfaces of Quantum Error Correcting Codes

    Science.gov (United States)

    Takagi, Ryuji; Yoder, Theodore; Chuang, Isaac

    If all the physical gates in a fault tolerant code construction have a failure probability below a certain value, the failure probability of the construction approaches zero after many concatenations. This value is called the threshold value of the code and lower bounds for it for various codes have been reported in the literature. However, these approaches do not take into account that the failure probability of each species of logical gate depends on that of many different species of physical gates, and that the distribution of logical failure probability depends on that of many different physical gates. How can we reconcile the interdependency of the failure probabilities of all the various species of gates? Direct simulation would be one of the possible ways to attack this question, but it would be difficult to be done at high concatenation levels because of the exponential growth of simulation time. Here, we deal with this question by instead considering a multidimensional space of the failure probabilities of the physical gates and study the set of points that approach zero error after a large number of concatenations. We present a way to obtain lower and upper bounds for the boundary of this set, what we call the threshold surface, given a particular code and constructions of logical gates. Our method uses only the logical failure probabilities after one concatenation, and moreover the running time of the algorithm scales linearly with respect to concatenation levels. We hope this will establish a reasonable goal for experiments to work towards a scalable quantum computer.

  8. Gaussian Error Correction of Quantum States in a Correlated Noisy Channel

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Berni, Adriano; Madsen, Lars Skovgaard;

    2013-01-01

    Noise is the main obstacle for the realization of fault-tolerant quantum information processing and secure communication over long distances. In this work, we propose a communication protocol relying on simple linear optics that optimally protects quantum states from non-Markovian or correlated n...

  9. Increasing sensing resolution with error correction.

    Science.gov (United States)

    Arrad, G; Vinkler, Y; Aharonov, D; Retzker, A

    2014-04-18

    The signal to noise ratio of quantum sensing protocols scales with the square root of the coherence time. Thus, increasing this time is a key goal in the field. By utilizing quantum error correction, we present a novel way of prolonging such coherence times beyond the fundamental limits of current techniques. We develop an implementable sensing protocol that incorporates error correction, and discuss the characteristics of these protocols in different noise and measurement scenarios. We examine the use of entangled versue untangled states, and error correction's reach of the Heisenberg limit. The effects of error correction on coherence times are calculated and we show that measurement precision can be enhanced for both one-directional and general noise.

  10. Feature Referenced Error Correction Apparatus.

    Science.gov (United States)

    A feature referenced error correction apparatus utilizing the multiple images of the interstage level image format to compensate for positional...images and by the generation of an error correction signal in response to the sub-frame registration errors. (Author)

  11. Processor register error correction management

    Science.gov (United States)

    Bose, Pradip; Cher, Chen-Yong; Gupta, Meeta S.

    2016-12-27

    Processor register protection management is disclosed. In embodiments, a method of processor register protection management can include determining a sensitive logical register for executable code generated by a compiler, generating an error-correction table identifying the sensitive logical register, and storing the error-correction table in a memory accessible by a processor. The processor can be configured to generate a duplicate register of the sensitive logical register identified by the error-correction table.

  12. Video Error Correction Using Steganography

    Directory of Open Access Journals (Sweden)

    Robie David L

    2002-01-01

    Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  13. Correction for quadrature errors

    DEFF Research Database (Denmark)

    Netterstrøm, A.; Christensen, Erik Lintz

    1994-01-01

    In high bandwidth radar systems it is necessary to use quadrature devices to convert the signal to/from baseband. Practical problems make it difficult to implement a perfect quadrature system. Channel imbalance and quadrature phase errors in the transmitter and the receiver result in error signal...

  14. Superdense Coding Interleaved with Forward Error Correction

    Directory of Open Access Journals (Sweden)

    Sadlier Ronald J.

    2016-01-01

    Full Text Available Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. We conclude that classical FEC with interleaving is a useful method to improve the performance in near-term demonstrations of superdense coding.

  15. Role of syndrome information on a one-way quantum repeater using teleportation-based error correction

    Science.gov (United States)

    Namiki, Ryo; Jiang, Liang; Kim, Jungsang; Lütkenhaus, Norbert

    2016-11-01

    We investigate a quantum repeater scheme for quantum key distribution based on the work by S. Muralidharan et al. [Phys. Rev. Lett. 112, 250501 (2014)], 10.1103/PhysRevLett.112.250501. Our scheme extends that work by making use of error syndrome measurement outcomes available at the repeater stations. We show how to calculate the secret key rates for the case of optimizing the syndrome information, while the known key rate is based on a scenario of coarse graining the syndrome information. We show that these key rates can surpass the Pirandola-Laurenza-Ottaviani-Banchi bound on secret key rates of direct transmission over lossy bosonic channels.

  16. Binary Error Correcting Network Codes

    CERN Document Server

    Wang, Qiwen; Li, Shuo-Yen Robert

    2011-01-01

    We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. We propose a new metric for errors under this model. Using this metric, we prove a new Hamming-type upper bound on the network capacity. We also show a commensurate lower bound based on GV-type codes that can be used for error-correction. The codes used to attain the lower bound are non-coherent (do not require prior knowledge of network topology). The end-to-end nature of our design enables our codes to be overlaid on classical distributed random linear network codes. Further, we free internal nodes from having to implement potentially computationally intensive link-by-link error-correction.

  17. Error correcting coding for OTN

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Pedersen, Lars A.

    2010-01-01

    Forward error correction codes for 100 Gb/s optical transmission are currently receiving much attention from transport network operators and technology providers. We discuss the performance of hard decision decoding using product type codes that cover a single OTN frame or a small number...... of such frames. In particular we argue that a three-error correcting BCH is the best choice for the component code in such systems....

  18. Landauer's erasure, error correction and entanglement

    OpenAIRE

    Vedral, V.

    1999-01-01

    Classical and quantum error correction are presented in the form of Maxwell's demon and their efficiency analyzed from the thermodynamic point of view. We explain how Landauer's principle of information erasure applies to both cases. By then extending this principle to entanglement manipulations we rederive upper bounds on purification procedures thereby linking the ''no local increase of entanglement'' principle to the Second Law of thermodynamics.

  19. 5 CFR 1601.34 - Error correction.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Error correction. 1601.34 Section 1601.34... Contribution Allocations and Interfund Transfer Requests § 1601.34 Error correction. Errors in processing... in the wrong investment fund, will be corrected in accordance with the error correction...

  20. 基于快速Jacket变换的量子纠错码%Quantum error-correction codes based on fast Jacket transform

    Institute of Scientific and Technical Information of China (English)

    黄成荣; 郭迎; 李门浩

    2011-01-01

    Motivated by the fast block Jacket transform based on Pauli matrices, this paper showed how block Jacket matrix could simplify the coding theory of quantum error-correction.Quantum Jacket codes (QJCs) did not require the dual-containing constraint necessary for standard quantum error-correction codes (QECCs), thus allowing to construct quantum codes of large block length with efficiency.These QJCs were generated from some Abelian subgroups of Pauli group that were composed of different rows of the yielded block Jacket matrix, and had advantages of being fast constructed with asymptotically good behaviors.%受到基于Pauli矩阵的快速Jacket变换的启发,提出一种利用分块Jacket矩阵简化量子纠错码编码方案的方法.与已有的量子纠错码构造法相比,在构造量子Jacket码的稳定子的时候,不需要检验经典纠错码的自对偶条件,因此,它能促使高效地利用由分块Jacket矩阵产生的Pauli矩阵群的Abelian子群直接生成辛内积为零的独立向量,在此基础上构造出码长较大、参数较好的量子纠错码.该量子Jacket码具有构造快速、纠错行为渐进好的优点.

  1. Immediate error correction process following sleep deprivation

    National Research Council Canada - National Science Library

    HSIEH, SHULAN; CHENG, I‐CHEN; TSAI, LING‐LING

    2007-01-01

    ...) participated in this study. Participants performed a modified letter flanker task and were instructed to make immediate error corrections on detecting performance errors. Event‐related potentials (ERPs...

  2. Correction of errors in power measurements

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen

    1998-01-01

    Small errors in voltage and current measuring transformers cause inaccuracies in power measurements.In this report correction factors are derived to compensate for such errors.......Small errors in voltage and current measuring transformers cause inaccuracies in power measurements.In this report correction factors are derived to compensate for such errors....

  3. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  4. Quantum corrections for Boltzmann equation

    Institute of Scientific and Technical Information of China (English)

    M.; Levy; PETER

    2008-01-01

    We present the lowest order quantum correction to the semiclassical Boltzmann distribution function,and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation,and the quantum Wigner distribution function is expanded in pow-ers of Planck constant,too. The negative quantum correlation in the Wigner dis-tribution function which is just the quantum correction terms is naturally singled out,thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework.

  5. ERROR AND ERROR CORRECTION AT ELEMENTARY LEVEL

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    Introduction Errors are unavoidable in language learning, however, to a great extent, teachers in most middle schools in China regard errors as undesirable, a sign of failure in language learning. Most middle schools are still using the grammar-translation method which aims at encouraging students to read scientific works and enjoy literary works. The other goals of this method are to gain a greater understanding of the first language and to improve the students’ ability to cope with difficult subjects and materials, i.e. to develop the students’ minds. The practical purpose of using this method is to help learners pass the annual entrance examination. "To achieve these goals, the students must first learn grammar and vocabulary,... Grammar is taught deductively by means of long and elaborate explanations... students learn the rules of the language rather than its use." (Tang Lixing, 1983:11-12)

  6. Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Sabuncu, Metin; Huck, Alexander

    2010-01-01

    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information t...... is generally the strongest limitation to quantum communication, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances.......A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information...... technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based...

  7. 5 CFR 1604.6 - Error correction.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Error correction. 1604.6 Section 1604.6 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD UNIFORMED SERVICES ACCOUNTS § 1604.6 Error correction. (a) General rule. A service member's employing agency must correct the service member's...

  8. Using Online Annotations to Support Error Correction and Corrective Feedback

    Science.gov (United States)

    Yeh, Shiou-Wen; Lo, Jia-Jiunn

    2009-01-01

    Giving feedback on second language (L2) writing is a challenging task. This research proposed an interactive environment for error correction and corrective feedback. First, we developed an online corrective feedback and error analysis system called "Online Annotator for EFL Writing". The system consisted of five facilities: Document Maker,…

  9. Improved Error Thresholds for Measurement-Free Error Correction

    Science.gov (United States)

    Crow, Daniel; Joynt, Robert; Saffman, M.

    2016-09-01

    Motivated by limitations and capabilities of neutral atom qubits, we examine whether measurement-free error correction can produce practical error thresholds. We show that this can be achieved by extracting redundant syndrome information, giving our procedure extra fault tolerance and eliminating the need for ancilla verification. The procedure is particularly favorable when multiqubit gates are available for the correction step. Simulations of the bit-flip, Bacon-Shor, and Steane codes indicate that coherent error correction can produce threshold error rates that are on the order of 10-3 to 10-4—comparable with or better than measurement-based values, and much better than previous results for other coherent error correction schemes. This indicates that coherent error correction is worthy of serious consideration for achieving protected logical qubits.

  10. Deterministic error correction for nonlocal spatial-polarization hyperentanglement.

    Science.gov (United States)

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-02-10

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.

  11. Error-correcting codes and phase transitions

    CERN Document Server

    Manin, Yuri I

    2009-01-01

    The theory of error-correcting codes is concerned with constructing codes that optimize simultaneously transmission rate and relative minimum distance. These conflicting requirements determine an asymptotic bound, which is a continuous curve in the space of parameters. The main goal of this paper is to relate the asymptotic bound to phase diagrams of quantum statistical mechanical systems. We first identify the code parameters with Hausdorff and von Neumann dimensions, by considering fractals consisting of infinite sequences of code words. We then construct operator algebras associated to individual codes. These are Toeplitz algebras with a time evolution for which the KMS state at critical temperature gives the Hausdorff measure on the corresponding fractal. We extend this construction to algebras associated to limit points of codes, with non-uniform multi-fractal measures, and to tensor products over varying parameters.

  12. A Hybrid Approach for Correcting Grammatical Errors

    Science.gov (United States)

    Lee, Kiyoung; Kwon, Oh-Woog; Kim, Young-Kil; Lee, Yunkeun

    2015-01-01

    This paper presents a hybrid approach for correcting grammatical errors in the sentences uttered by Korean learners of English. The error correction system plays an important role in GenieTutor, which is a dialogue-based English learning system designed to teach English to Korean students. During the talk with GenieTutor, grammatical error…

  13. Towards self-correcting quantum memories

    Science.gov (United States)

    Michnicki, Kamil

    This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real

  14. an Efficient Blind Signature Scheme based on Error Correcting Codes

    Directory of Open Access Journals (Sweden)

    Junyao Ye

    Full Text Available Cryptography based on the theory of error correcting codes and lattices has received a wide attention in the last years. Shor`s algorithm showed that in a world where quantum computers are assumed to exist, number theoretic cryptosystems are insecure. The ...

  15. Robot learning and error correction

    Science.gov (United States)

    Friedman, L.

    1977-01-01

    A model of robot learning is described that associates previously unknown perceptions with the sensed known consequences of robot actions. For these actions, both the categories of outcomes and the corresponding sensory patterns are incorporated in a knowledge base by the system designer. Thus the robot is able to predict the outcome of an action and compare the expectation with the experience. New knowledge about what to expect in the world may then be incorporated by the robot in a pre-existing structure whether it detects accordance or discrepancy between a predicted consequence and experience. Errors committed during plan execution are detected by the same type of comparison process and learning may be applied to avoiding the errors.

  16. Error-thresholds for qudit-based topological quantum memories

    Science.gov (United States)

    Andrist, Ruben S.; Wootton, James R.; Katzgraber, Helmut G.

    2014-03-01

    Extending the quantum computing paradigm from qubits to higher-dimensional quantum systems allows for increased channel capacity and a more efficient implementation of quantum gates. However, to perform reliable computations an efficient error-correction scheme adapted for these multi-level quantum systems is needed. A promising approach is via topological quantum error correction, where stability to external noise is achieved by encoding quantum information in non-local degrees of freedom. A key figure of merit is the error threshold which quantifies the fraction of physical qudits that can be damaged before logical information is lost. Here we analyze the resilience of generalized topological memories built from d-level quantum systems (qudits) to bit-flip errors. The error threshold is determined by mapping the quantum setup to a classical Potts-like model with bond disorder, which is then investigated numerically using large-scale Monte Carlo simulations. Our results show that topological error correction with qutrits exhibits an improved error threshold in comparison to qubit-based systems.

  17. The NASTRAN Error Correction Information System (ECIS)

    Science.gov (United States)

    Rosser, D. C., Jr.; Rogers, J. L., Jr.

    1975-01-01

    A data management procedure, called Error Correction Information System (ECIS), is described. The purpose of this system is to implement the rapid transmittal of error information between the NASTRAN Systems Management Office (NSMO) and the NASTRAN user community. The features of ECIS and its operational status are summarized. The mode of operation for ECIS is compared to the previous error correction procedures. It is shown how the user community can have access to error information much more rapidly when using ECIS. Flow charts and time tables characterize the convenience and time saving features of ECIS.

  18. Quantum annealing correction with minor embedding

    Science.gov (United States)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  19. Thermalization, Error Correction, and Memory Lifetime for Ising Anyon Systems

    Science.gov (United States)

    Brell, Courtney G.; Burton, Simon; Dauphinais, Guillaume; Flammia, Steven T.; Poulin, David

    2014-07-01

    We consider two-dimensional lattice models that support Ising anyonic excitations and are coupled to a thermal bath. We propose a phenomenological model for the resulting short-time dynamics that includes pair creation, hopping, braiding, and fusion of anyons. By explicitly constructing topological quantum error-correcting codes for this class of system, we use our thermalization model to estimate the lifetime of the quantum information stored in the encoded spaces. To decode and correct errors in these codes, we adapt several existing topological decoders to the non-Abelian setting. We perform large-scale numerical simulations of these two-dimensional Ising anyon systems and find that the thresholds of these models range from 13% to 25%. To our knowledge, these are the first numerical threshold estimates for quantum codes without explicit additive structure.

  20. Fault-tolerant error correction with the gauge color code

    Science.gov (United States)

    Brown, Benjamin J.; Nickerson, Naomi H.; Browne, Dan E.

    2016-07-01

    The constituent parts of a quantum computer are inherently vulnerable to errors. To this end, we have developed quantum error-correcting codes to protect quantum information from noise. However, discovering codes that are capable of a universal set of computational operations with the minimal cost in quantum resources remains an important and ongoing challenge. One proposal of significant recent interest is the gauge color code. Notably, this code may offer a reduced resource cost over other well-studied fault-tolerant architectures by using a new method, known as gauge fixing, for performing the non-Clifford operations that are essential for universal quantum computation. Here we examine the gauge color code when it is subject to noise. Specifically, we make use of single-shot error correction to develop a simple decoding algorithm for the gauge color code, and we numerically analyse its performance. Remarkably, we find threshold error rates comparable to those of other leading proposals. Our results thus provide the first steps of a comparative study between the gauge color code and other promising computational architectures.

  1. Fault-tolerant error correction with the gauge color code.

    Science.gov (United States)

    Brown, Benjamin J; Nickerson, Naomi H; Browne, Dan E

    2016-07-29

    The constituent parts of a quantum computer are inherently vulnerable to errors. To this end, we have developed quantum error-correcting codes to protect quantum information from noise. However, discovering codes that are capable of a universal set of computational operations with the minimal cost in quantum resources remains an important and ongoing challenge. One proposal of significant recent interest is the gauge color code. Notably, this code may offer a reduced resource cost over other well-studied fault-tolerant architectures by using a new method, known as gauge fixing, for performing the non-Clifford operations that are essential for universal quantum computation. Here we examine the gauge color code when it is subject to noise. Specifically, we make use of single-shot error correction to develop a simple decoding algorithm for the gauge color code, and we numerically analyse its performance. Remarkably, we find threshold error rates comparable to those of other leading proposals. Our results thus provide the first steps of a comparative study between the gauge color code and other promising computational architectures.

  2. Target Uncertainty Mediates Sensorimotor Error Correction.

    Science.gov (United States)

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

  3. Target Uncertainty Mediates Sensorimotor Error Correction

    Science.gov (United States)

    Vijayakumar, Sethu; Wolpert, Daniel M.

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323

  4. ERROR CORRECTION IN HIGH SPEED ARITHMETIC,

    Science.gov (United States)

    The errors due to a faulty high speed multiplier are shown to be iterative in nature. These errors are analyzed in various aspects. The arithmetic coding technique is suggested for the improvement of high speed multiplier reliability. Through a number theoretic investigation, a large class of arithmetic codes for single iterative error correction are developed. The codes are shown to have near-optimal rates and to render a simple decoding method. The implementation of these codes seems highly practical. (Author)

  5. The Nature and Correction of Diabatic Errors in Anyon Braiding

    Directory of Open Access Journals (Sweden)

    Christina Knapp

    2016-10-01

    Full Text Available Topological phases of matter are a potential platform for the storage and processing of quantum information with intrinsic error rates that decrease exponentially with inverse temperature and with the length scales of the system, such as the distance between quasiparticles. However, it is less well understood how error rates depend on the speed with which non-Abelian quasiparticles are braided. In general, diabatic corrections to the holonomy or Berry’s matrix vanish at least inversely with the length of time for the braid, with faster decay occurring as the time dependence is made smoother. We show that such corrections will not affect quantum information encoded in topological degrees of freedom, unless they involve the creation of topologically nontrivial quasiparticles. Moreover, we show how measurements that detect unintentionally created quasiparticles can be used to control this source of error.

  6. Probabilistic error correction for RNA sequencing.

    Science.gov (United States)

    Le, Hai-Son; Schulz, Marcel H; McCauley, Brenna M; Hinman, Veronica F; Bar-Joseph, Ziv

    2013-05-01

    Sequencing of RNAs (RNA-Seq) has revolutionized the field of transcriptomics, but the reads obtained often contain errors. Read error correction can have a large impact on our ability to accurately assemble transcripts. This is especially true for de novo transcriptome analysis, where a reference genome is not available. Current read error correction methods, developed for DNA sequence data, cannot handle the overlapping effects of non-uniform abundance, polymorphisms and alternative splicing. Here we present SEquencing Error CorrEction in Rna-seq data (SEECER), a hidden Markov Model (HMM)-based method, which is the first to successfully address these problems. SEECER efficiently learns hundreds of thousands of HMMs and uses these to correct sequencing errors. Using human RNA-Seq data, we show that SEECER greatly improves on previous methods in terms of quality of read alignment to the genome and assembly accuracy. To illustrate the usefulness of SEECER for de novo transcriptome studies, we generated new RNA-Seq data to study the development of the sea cucumber Parastichopus parvimensis. Our corrected assembled transcripts shed new light on two important stages in sea cucumber development. Comparison of the assembled transcripts to known transcripts in other species has also revealed novel transcripts that are unique to sea cucumber, some of which we have experimentally validated. Supporting website: http://sb.cs.cmu.edu/seecer/.

  7. Structured error recovery for code-word-stabilized quantum codes

    Science.gov (United States)

    Li, Yunfan; Dumer, Ilya; Grassl, Markus; Pryadko, Leonid P.

    2010-05-01

    Code-word-stabilized (CWS) codes are, in general, nonadditive quantum codes that can correct errors by an exhaustive search of different error patterns, similar to the way that we decode classical nonlinear codes. For an n-qubit quantum code correcting errors on up to t qubits, this brute-force approach consecutively tests different errors of weight t or less and employs a separate n-qubit measurement in each test. In this article, we suggest an error grouping technique that allows one to simultaneously test large groups of errors in a single measurement. This structured error recovery technique exponentially reduces the number of measurements by about 3t times. While it still leaves exponentially many measurements for a generic CWS code, the technique is equivalent to syndrome-based recovery for the special case of additive CWS codes.

  8. Efficient Image Transmission Through Analog Error Correction

    CERN Document Server

    Liu, Yang; Li,; Xie, Kai

    2011-01-01

    This paper presents a new paradigm for image transmission through analog error correction codes. Conventional schemes rely on digitizing images through quantization (which inevitably causes significant bandwidth expansion) and transmitting binary bit-streams through digital error correction codes (which do not automatically differentiate the different levels of significance among the bits). To strike a better overall performance in terms of transmission efficiency and quality, we propose to use a single analog error correction code in lieu of digital quantization, digital code and digital modulation. The key is to get analog coding right. We show that this can be achieved by cleverly exploiting an elegant "butterfly" property of chaotic systems. Specifically, we demonstrate a tail-biting triple-branch baker's map code and its maximum-likelihood decoding algorithm. Simulations show that the proposed analog code can actually outperform digital turbo code, one of the best codes known to date. The results and fin...

  9. Backtracking and error correction in DNA transcription

    Science.gov (United States)

    Voliotis, Margaritis; Cohen, Netta; Molina-Paris, Carmen; Liverpool, Tanniemola

    2008-03-01

    Genetic information is encoded in the nucleotide sequence of the DNA. This sequence contains the instruction code of the cell - determining protein structure and function, and hence cell function and fate. The viability and endurance of organisms crucially depend on the fidelity with which genetic information is transcribed/translated (during mRNA and protein production) and replicated (during DNA replication). However, thermodynamics introduces significant fluctuations which would incur massive error rates if efficient proofreading mechanisms were not in place. Here, we examine a putative mechanism for error correction during DNA transcription, which relies on backtracking of the RNA polymerase (RNAP). We develop an error correction model that incorporates RNAP translocation, backtracking pauses and mRNA cleavage. We calculate the error rate as a function of the relevant rates (translocation, cleavage, backtracking and polymerization) and show that the its theoretical limit is equivalent to that accomplished by a multiple-step kinetic proofreading mechanism.

  10. Rank Modulation for Translocation Error Correction

    CERN Document Server

    Farnoud, Farzad; Milenkovic, Olgica

    2012-01-01

    We consider rank modulation codes for flash memories that allow for handling arbitrary charge drop errors. Unlike classical rank modulation codes used for correcting errors that manifest themselves as swaps of two adjacently ranked elements, the proposed \\emph{translocation rank codes} account for more general forms of errors that arise in storage systems. Translocations represent a natural extension of the notion of adjacent transpositions and as such may be analyzed using related concepts in combinatorics and rank modulation coding. Our results include tight bounds on the capacity of translocation rank codes, construction techniques for asymptotically good codes, as well as simple decoding methods for one class of structured codes. As part of our exposition, we also highlight the close connections between the new code family and permutations with short common subsequences, deletion and insertion error-correcting codes for permutations and permutation arrays.

  11. Survey of Radar Refraction Error Corrections

    Science.gov (United States)

    2016-11-01

    Science Laboratory. “Data Systems Manual, Meteorology and Timing.” Prepared for White Sands Missile Range under contract DAAD07-76-0007, September, 1979...reflect the different meteorological layers within the troposphere. Atmospheric Modeling Parameters 5.1 Earth Model Refraction correction models use...Reference Atmosphere. Washington: U.S. Dept. of Commerce, National Bureau of Standards, 1959. Survey of Radar Refraction Error Corrections, RCC 266

  12. Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code

    CERN Document Server

    Lassen, Mikael; Huck, Alexander; Niset, Julien; Leuchs, Gerd; Cerf, Nicolas J; Andersen, Ulrik L

    2010-01-01

    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that QECC will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {\\it errors} translate, in an information theoretic language, the noise affecting a transmission line, {\\it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum co...

  13. Consciousness-Raising, Error Correction and Proofreading

    Science.gov (United States)

    O'Brien, Josephine

    2015-01-01

    The paper discusses the impact of developing a consciousness-raising approach in error correction at the sentence level to improve students' proofreading ability. Learners of English in a foreign language environment often rely on translation as a composing tool and while this may act as a scaffold and provide some support, it frequently leads to…

  14. Pauli Exchange Errors in Quantum Computation

    CERN Document Server

    Ruskai, M B

    2000-01-01

    We argue that a physically reasonable model of fault-tolerant computation requires the ability to correct a type of two-qubit error which we call Pauli exchange errors as well as one qubit errors. We give an explicit 9-qubit code which can handle both Pauli exchange errors and all one-bit errors.

  15. Differential effects of main error correction versus secondary error correction on motor pattern of running.

    Science.gov (United States)

    Corte, Stefano; Cavedon, Valentina; Milanese, Chiara

    2015-12-01

    The aim of this study was to gain a better understanding of how the run pattern varies as a consequence to main error correction versus secondary error correction. Twenty-two university students were randomly assigned to one of two training-conditions: 'main error' (ME) and 'secondary error' (SE) correction. The rear-foot strike at touchdown was hypothesized as the 'main error', whereas an incorrect shoulder position (i.e., behind the base of support) as the 'secondary error'. In order to evaluate any changes in run pattern at the foot touchdown instant, the ankle, knee and hip joint angles, the height of toe and heel (with respect to the ground), and the horizontal distance from the heel to the projected center of mass on the ground were measured. After the training-intervention, the ME group showed a significant improvement in the run pattern at the foot touchdown instant in all kinematic parameters, whereas no significant changes were found in the SE group. The results support the hypothesis that the main error can have a greater influence on the movement patterns than a secondary error. Furthermore, the findings highlight that a correct diagnosis and the correction of the 'main error' are fundamental for greater run pattern improvement.

  16. Surface code error correction on a defective lattice

    Science.gov (United States)

    Nagayama, Shota; Fowler, Austin G.; Horsman, Dominic; Devitt, Simon J.; Van Meter, Rodney

    2017-02-01

    The yield of physical qubits fabricated in the laboratory is much lower than that of classical transistors in production semiconductor fabrication. Actual implementations of quantum computers will be susceptible to loss in the form of physically faulty qubits. Though these physical faults must negatively affect the computation, we can deal with them by adapting error-correction schemes. In this paper we have simulated statically placed single-fault lattices and lattices with randomly placed faults at functional qubit yields of 80%, 90%, and 95%, showing practical performance of a defective surface code by employing actual circuit constructions and realistic errors on every gate, including identity gates. We extend Stace et al's superplaquettes solution against dynamic losses for the surface code to handle static losses such as physically faulty qubits [1]. The single-fault analysis shows that a static loss at the periphery of the lattice has less negative effect than a static loss at the center. The randomly faulty analysis shows that 95% yield is good enough to build a large-scale quantum computer. The local gate error rate threshold is ∼ 0.3 % , and a code distance of seven suppresses the residual error rate below the original error rate at p=0.1 % . 90% yield is also good enough when we discard badly fabricated quantum computation chips, while 80% yield does not show enough error suppression even when discarding 90% of the chips. We evaluated several metrics for predicting chip performance, and found that the average of the product of the number of data qubits and the cycle time of a stabilizer measurement of stabilizers gave the strongest correlation with logical error rates. Our analysis will help with selecting usable quantum computation chips from among the pool of all fabricated chips.

  17. Quantum corrections to unimodular gravity

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario [Instituto de Física Teórica UAM/CSIC,C/Nicolas Cabrera, 13-15, C.University Cantoblanco, 28049 Madrid (Spain); Departamento de Física Teórica,Universidad Autónoma de Madrid, 20849 Madrid (Spain); Martín, Carmelo P. [Universidad Complutense de Madrid (UCM), Departamento de Física Téorica I,Facultad de Ciencias Físicas, Av. Complutense S/N (Ciudad University), 28040 Madrid (Spain)

    2015-08-17

    The problem of the comological constant appears in a new light in Unimodular Gravity. In particular, the zero momentum piece of the potential (that is, the constant piece independent of the matter fields) does not automatically produce a cosmological constant proportional to it. The aim of this paper is to give some details on a calculation showing that quantum corrections do not renormalize the classical value of this observable.

  18. Error-correcting pairs for a public-key cryptosystem

    Science.gov (United States)

    Pellikaan, Ruud; Márquez-Corbella, Irene

    2017-06-01

    Code-based Cryptography (CBC) is a powerful and promising alternative for quantum resistant cryptography. Indeed, together with lattice-based cryptography, multivariate cryptography and hash-based cryptography are the principal available techniques for post-quantum cryptography. CBC was first introduced by McEliece where he designed one of the most efficient Public-Key encryption schemes with exceptionally strong security guarantees and other desirable properties that still resist to attacks based on Quantum Fourier Transform and Amplitude Amplification. The original proposal, which remains unbroken, was based on binary Goppa codes. Later, several families of codes have been proposed in order to reduce the key size. Some of these alternatives have already been broken. One of the main requirements of a code-based cryptosystem is having high performance t-bounded decoding algorithms which is achieved in the case the code has a t-error-correcting pair (ECP). Indeed, those McEliece schemes that use GRS codes, BCH, Goppa and algebraic geometry codes are in fact using an error-correcting pair as a secret key. That is, the security of these Public-Key Cryptosystems is not only based on the inherent intractability of bounded distance decoding but also on the assumption that it is difficult to retrieve efficiently an error-correcting pair. In this paper, the class of codes with a t-ECP is proposed for the McEliece cryptosystem. Moreover, we study the hardness of distinguishing arbitrary codes from those having a t-error correcting pair.

  19. Error correction in adders using systematic subcodes.

    Science.gov (United States)

    Rao, T. R. N.

    1972-01-01

    A generalized theory is presented for the construction of a systematic subcode for a given AN code in such a way that error control properties of the AN code are preserved in this new code. The 'systematic weight' and 'systematic distance' functions in this new code depend not only on its number representation system but also on its addition structure. Finally, to illustrate this theory, a simple error-correcting adder organization using a systematic subcode of 29 N code is sketched in some detail.

  20. Error Correction, Control Systems and Fuzzy Logic

    Science.gov (United States)

    Smith, Earl B.

    2004-01-01

    This paper will be a discussion on dealing with errors. While error correction and communication is important when dealing with spacecraft vehicles, the issue of control system design is also important. There will be certain commands that one wants a motion device to execute. An adequate control system will be necessary to make sure that the instruments and devices will receive the necessary commands. As it will be discussed later, the actual value will not always be equal to the intended or desired value. Hence, an adequate controller will be necessary so that the gap between the two values will be closed.

  1. System and method for forward error correction

    Science.gov (United States)

    Cole, Robert M. (Inventor); Bishop, James E. (Inventor)

    2006-01-01

    A system and method are provided for transferring a packet across a data link. The packet may include a stream of data symbols which is delimited by one or more framing symbols. Corruptions of the framing symbol which result in valid data symbols may be mapped to invalid symbols. If it is desired to transfer one of the valid data symbols that has been mapped to an invalid symbol, the data symbol may be replaced with an unused symbol. At the receiving end, these unused symbols are replaced with the corresponding valid data symbols. The data stream of the packet may be encoded with forward error correction information to detect and correct errors in the data stream.

  2. Algorithmic Error Correction of Impedance Measuring Sensors

    Science.gov (United States)

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  3. Algorithmic Error Correction of Impedance Measuring Sensors

    Directory of Open Access Journals (Sweden)

    Vira Tyrsa

    2009-12-01

    Full Text Available This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance.

  4. Quantum Corrections in Massive Gravity

    CERN Document Server

    de Rham, Claudia; Ribeiro, Raquel H

    2013-01-01

    We compute the one-loop quantum corrections to the potential of ghost-free massive gravity. We show how the mass of external matter fields contribute to the running of the cosmological constant, but do not change the ghost-free structure of the massive gravity potential at one-loop. When considering gravitons running in the loops, we show how the structure of the potential gets destabilized at the quantum level, but in a way which would never involve a ghost with a mass smaller than the Planck scale. This is done by explicitly computing the one-loop effective action and supplementing it with the Vainshtein mechanism. We conclude that to one-loop order the special mass structure of ghost-free massive gravity is technically natural.

  5. Quantum corrections in massive gravity

    Science.gov (United States)

    de Rham, Claudia; Heisenberg, Lavinia; Ribeiro, Raquel H.

    2013-10-01

    We compute the one-loop quantum corrections to the potential of ghost-free massive gravity. We show how the mass of external matter fields contributes to the running of the cosmological constant, but does not change the ghost-free structure of the massive gravity potential at one-loop. When considering gravitons running in the loops, we show how the structure of the potential gets destabilized at the quantum level, but in a way which would never involve a ghost with a mass smaller than the Planck scale. This is done by explicitly computing the one-loop effective action and supplementing it with the Vainshtein mechanism. We conclude that to one-loop order the special mass structure of ghost-free massive gravity is technically natural.

  6. Error-correcting pairs for a public-key cryptosystem

    CERN Document Server

    Márquez-Corbella, Irene

    2012-01-01

    Code-based cryptography is an interesting alternative to classic number-theory PKC since it is conjectured to be secure against quantum computer attacks. Many families of codes have been proposed for these cryptosystems, one of the main requirements is having high performance t-bounded decoding algorithms which in the case of having high an error-correcting pair is achieved. In this article the class of codes with a t-ECP is proposed for the McEliece cryptosystem. The hardness of retrieving the t-ECP for a given code is considered. As a first step distinguishers of several subclasses are given.

  7. Bond additivity corrections for quantum chemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    C. F. Melius; M. D. Allendorf

    1999-04-01

    In the 1980's, the authors developed a bond-additivity correction procedure for quantum chemical calculations called BAC-MP4, which has proven reliable in calculating the thermochemical properties of molecular species, including radicals as well as stable closed-shell species. New Bond Additivity Correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid DFT/MP2 method, BAC-Hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method due to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-Hybrid and BAC-MP4. The BAC-Hybrid method should scale well for large molecules. The BAC-Hybrid method uses the differences between the DFT and MP2 as an indicator of the method's accuracy, while the BAC-G2 method uses its internal methods (G1 and G2MP2) to provide an indicator of its accuracy. Indications of the average error as well as worst cases are provided for each of the BAC methods.

  8. Disorder-assisted error correction in Majorana chains

    CERN Document Server

    Bravyi, Sergey

    2011-01-01

    It was recently realized that quenched disorder may enhance the reliability of topological qubits by reducing the mobility of anyons at zero temperature. Here we compute storage times with and without disorder for quantum chains with unpaired Majorana fermions - the simplest toy model of a quantum memory. Disorder takes the form of a random site-dependent chemical potential. The corresponding one-particle problem is a one-dimensional Anderson model with disorder in the hopping amplitudes. We focus on the zero-temperature storage of a qubit encoded in the ground state of the Majorana chain. Storage and retrieval are modeled by a unitary evolution under the memory Hamiltonian with an unknown weak perturbation followed by an error-correction step. Assuming dynamical localization of the one-particle problem, we show that the storage time grows exponentially with the system size. We give supporting evidence for the required localization property by estimating Lyapunov exponents of the one-particle eigenfunctions. ...

  9. Group representations, error bases and quantum codes

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E

    1996-01-01

    This report continues the discussion of unitary error bases and quantum codes. Nice error bases are characterized in terms of the existence of certain characters in a group. A general construction for error bases which are non-abelian over the center is given. The method for obtaining codes due to Calderbank et al. is generalized and expressed purely in representation theoretic terms. The significance of the inertia subgroup both for constructing codes and obtaining the set of transversally implementable operations is demonstrated.

  10. Burst error correction extensions for large Reed Solomon codes

    Science.gov (United States)

    Owsley, P.

    1990-01-01

    Reed Solomon codes are powerful error correcting codes that include some of the best random and burst correcting codes currently known. It is well known that an (n,k) Reed Solomon code can correct up to (n - k)/2 errors. Many applications utilizing Reed Solomon codes require corrections of errors consisting primarily of bursts. In this paper, it is shown that the burst correcting ability of Reed Solomon codes can be increased beyond (n - k)/2 with an acceptable probability of miscorrect.

  11. How to Correct a Task Error: Task-Switch Effects Following Different Types of Error Correction

    Science.gov (United States)

    Steinhauser, Marco

    2010-01-01

    It has been proposed that switch costs in task switching reflect the strengthening of task-related associations and that strengthening is triggered by response execution. The present study tested the hypothesis that only task-related responses are able to trigger strengthening. Effects of task strengthening caused by error corrections were…

  12. Quantum corrections to Schwarzschild black hole

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; El-Menoufi, Basem Kamal [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einstein's gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory. (orig.)

  13. Study on Quantum Error-Correcting Code in Electric Power System Communication%电力系统通信中量子纠错码应用研究

    Institute of Scientific and Technical Information of China (English)

    魏人杰; 周静

    2012-01-01

    The technique of quantum error correcting code(QECC) is the foundation of quantum information utility, and for introduction of quantum technology to power system, it's necessary to choose a coding scheme suitable for the overhead line of electric power system and the strong electromagnetic environment of transformer substation. This paper first describes the development history of QECC and then compares the four typical QECC schemes from the principles, advantages and disadvantages, practicability, and finally analyzes the special environment faced by power system communication as compared with that by public communication network. Quantum LDPC is regarded as a scheme suitable for power system communication.%量子纠错编码技术是量子信息实用化的技术基础,电力系统在引进量子技术的同时,需要首先选择适用于电力系统架空线路环境和变电站等高电磁干扰环境下的量子纠错编码方案。文中在介绍量子纠错编码发展历史的基础上,比较4种典型的量子纠错编码方案原理、优缺点、实用性,分析电力系统通信与公共通信网相比所具有的环境特殊性,量子LDPC码被认为是一种适用于电力系统通信的量子纠错编码方案。

  14. Error correction maintains post-error adjustments after one night of total sleep deprivation.

    Science.gov (United States)

    Hsieh, Shulan; Tsai, Cheng-Yin; Tsai, Ling-Ling

    2009-06-01

    Previous behavioral and electrophysiologic evidence indicates that one night of total sleep deprivation (TSD) impairs error monitoring, including error detection, error correction, and posterror adjustments (PEAs). This study examined the hypothesis that error correction, manifesting as an overtly expressed self-generated performance feedback to errors, can effectively prevent TSD-induced impairment in the PEAs. Sixteen healthy right-handed adults (seven women and nine men) aged 19-23 years were instructed to respond to a target arrow flanked by four distracted arrows and to correct their errors immediately after committing errors. Task performance and electroencephalogram (EEG) data were collected after normal sleep (NS) and after one night of TSD in a counterbalanced repeated-measures design. With the demand of error correction, the participants maintained the same level of PEAs in reducing the error rate for trial N + 1 after TSD as after NS. Corrective behavior further affected the PEAs for trial N + 1 in the omission rate and response speed, which decreased and speeded up following corrected errors, particularly after TSD. These results show that error correction effectively maintains posterror reduction in both committed and omitted errors after TSD. A cerebral mechanism might be involved in the effect of error correction as EEG beta (17-24 Hz) activity was increased after erroneous responses compared to after correct responses. The practical application of error correction to increasing work safety, which can be jeopardized by repeated errors, is suggested for workers who are involved in monotonous but attention-demanding monitoring tasks.

  15. Error Correction in Oral Classroom English Teaching

    Science.gov (United States)

    Jing, Huang; Xiaodong, Hao; Yu, Liu

    2016-01-01

    As is known to all, errors are inevitable in the process of language learning for Chinese students. Should we ignore students' errors in learning English? In common with other questions, different people hold different opinions. All teachers agree that errors students make in written English are not allowed. For the errors students make in oral…

  16. Matrix error correction for digital data

    Science.gov (United States)

    Dotson, Ronald S. (Inventor)

    1992-01-01

    A technique for digital data error detection and correction is disclosed which adds alignment and checksum bytes to three sides of a matrix (24) of digital data to be protected. This technique is particularly used for the recording and storage (16,18) of digital data on video tape medium (14). The digital data is treated as a matrix block (24). Checksum and alignment bytes are added (20) to the digital data before tape storage and stripped (22) therefrom after successful alignment checks and data validation. In particular, the first column may be used to provide alignment bytes of a predetermined value for each row. The last column provides row checksum bytes for the data in each row. The last row provides column check sum bytes for each column, excluding the column of alignment bytes. The data location at the intersection of the row of column checksum bytes and the column of row checksum bytes may be used as a checksum byte for either the row or column checksum bytes.

  17. Polynomial theory of error correcting codes

    CERN Document Server

    Cancellieri, Giovanni

    2015-01-01

    The book offers an original view on channel coding, based on a unitary approach to block and convolutional codes for error correction. It presents both new concepts and new families of codes. For example, lengthened and modified lengthened cyclic codes are introduced as a bridge towards time-invariant convolutional codes and their extension to time-varying versions. The novel families of codes include turbo codes and low-density parity check (LDPC) codes, the features of which are justified from the structural properties of the component codes. Design procedures for regular LDPC codes are proposed, supported by the presented theory. Quasi-cyclic LDPC codes, in block or convolutional form, represent one of the most original contributions of the book. The use of more than 100 examples allows the reader gradually to gain an understanding of the theory, and the provision of a list of more than 150 definitions, indexed at the end of the book, permits rapid location of sought information.

  18. Joint Schemes for Physical Layer Security and Error Correction

    Science.gov (United States)

    Adamo, Oluwayomi

    2011-01-01

    The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…

  19. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  20. Beyond hypercorrection: remembering corrective feedback for low-confidence errors.

    Science.gov (United States)

    Griffiths, Lauren; Higham, Philip A

    2017-07-01

    Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.

  1. A Matroidal Framework for Network-Error Correcting Codes

    CERN Document Server

    Prasad, K

    2012-01-01

    Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. A particularly interesting feature of this development is the ability to construct (scalar and vector) linearly solvable networks using certain classes of matroids. The current work attempts to establish a connection between matroid theory and network-error correcting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of network-error correcting codes to arrive at the definition of a matroidal error correcting network. An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error correcting network code if and only if there it is a matroidal error correcting network associated with a representable matroid. Therefore, constructing such network-error correcting codes implies ...

  2. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  3. Joint Scheme for Physical Layer Error Correction and Security

    OpenAIRE

    Oluwayomi Adamo; Varanasi, M. R.

    2011-01-01

    We present a joint scheme that combines both error correction and security at the physical layer. In conventional communication systems, error correction is carried out at the physical layer while data security is performed at an upper layer. As a result, these steps are done as separate steps. However there has been a lot of interest in providing security at the physical layer. As a result, as opposed to the conventional system, we present a scheme that combines error correction and data sec...

  4. Errors in quantum tomography: diagnosing systematic versus statistical errors

    Science.gov (United States)

    Langford, Nathan K.

    2013-03-01

    A prime goal of quantum tomography is to provide quantitatively rigorous characterization of quantum systems, be they states, processes or measurements, particularly for the purposes of trouble-shooting and benchmarking experiments in quantum information science. A range of techniques exist to enable the calculation of errors, such as Monte-Carlo simulations, but their quantitative value is arguably fundamentally flawed without an equally rigorous way of authenticating the quality of a reconstruction to ensure it provides a reasonable representation of the data, given the known noise sources. A key motivation for developing such a tool is to enable experimentalists to rigorously diagnose the presence of technical noise in their tomographic data. In this work, I explore the performance of the chi-squared goodness-of-fit test statistic as a measure of reconstruction quality. I show that its behaviour deviates noticeably from expectations for states lying near the boundaries of physical state space, severely undermining its usefulness as a quantitative tool precisely in the region which is of most interest in quantum information processing tasks. I suggest a simple, heuristic approach to compensate for these effects and present numerical simulations showing that this approach provides substantially improved performance.

  5. On quantum corrections to dislocations mass

    CERN Document Server

    Kwiatkowski, Grzegorz

    2011-01-01

    Quasi-classical quantization of crystal dislocations field is considered in terms of functional integral. The generalized zeta-function is used to evaluate the functional integral and quantum corrections to mass in quasi-classical approximation. The quantum corrections to few classical solutions of one-dimensional Sin-Gordon model are evaluated with account of rest $n-1$ dimensions. The results are applied to appropriate crystal dislocation models.

  6. Galois Field Based Very Fast and Compact Error Correcting Technique

    Directory of Open Access Journals (Sweden)

    Alin Sindhu.A,

    2014-01-01

    Full Text Available As the technology is improving the memory devices are becoming larger, so powerful error correction codes are needed. Error correction codes are commonly used to protect memories from soft errors, which change the logical value of memory cells without damaging the circuit. These codes can correct a large number of errors, but generally require complex decoders. In order to avoid this decoding complexity, in this project it uses Euclidean geometry LDPC codes with one step majority decoding technique. This method detects words having error in the first iteration of the majority logic decoding process and reduces the decoding time by stopping the decoding process when no errors are detected as well as reduces the memory access time. And the result obtained through this technique also proves that it is an effective and compact error correcting technique.

  7. Coordinating sentence composition with error correction: A multilevel analysis

    Directory of Open Access Journals (Sweden)

    Van Waes, L.

    2011-01-01

    Full Text Available Error analysis involves detecting and correcting discrepancies between the 'text produced so far' (TPSF and the writer's mental representation of what the text should be. While many factors determine the choice of strategy, cognitive effort is a major contributor to this choice. This research shows how cognitive effort during error analysis affects strategy choice and success as measured by a series of online text production measures. We hypothesize that error correction with speech recognition software differs from error correction with keyboard for two reasons. Speech produces auditory commands and, consequently, different error types. The study reported on here measured the effects of (1 mode of presentation (auditory or visual-tactile, (2 error span, whether the error spans more or less than two characters, and (3 lexicality, whether the text error comprises an existing word. A multilevel analysis was conducted to take into account the hierarchical nature of these data. For each variable (interference reaction time, preparation time, production time, immediacy of error correction, and accuracy of error correction, multilevel regression models are presented. As such, we take into account possible disturbing person characteristics while testing the effect of the different conditions and error types at the sentence level.The results show that writers delay error correction more often when the TPSF is read out aloud first. The auditory property of speech seems to free resources for the primary task of writing, i.e. text production. Moreover, the results show that large errors in the TPSF require more cognitive effort, and are solved with a higher accuracy than small errors. The latter also holds for the correction of small errors that result in non-existing words.

  8. Second Language Learners' Beliefs about Grammar Instruction and Error Correction

    Science.gov (United States)

    Loewen, Shawn; Li, Shaofeng; Fei, Fei; Thompson, Amy; Nakatsukasa, Kimi; Ahn, Seongmee; Chen, Xiaoqing

    2009-01-01

    Learner beliefs are an important individual difference in second language (L2) learning. Furthermore, an ongoing debate surrounds the role of grammar instruction and error correction in the L2 classroom. Therefore, this study investigated the beliefs of L2 learners regarding the controversial role of grammar instruction and error correction. A…

  9. A Classroom Research Study on Oral Error Correction

    Science.gov (United States)

    Coskun, Abdullah

    2010-01-01

    This study has the main objective to present the findings of a small-scale classroom research carried out to collect data about my spoken error correction behaviors by means of self-observation. With this study, I aimed to analyze how and which spoken errors I corrected during a specific activity in a beginner's class. I used Lyster and Ranta's…

  10. A Support System for Error Correction Questions in Programming Education

    Science.gov (United States)

    Hachisu, Yoshinari; Yoshida, Atsushi

    2014-01-01

    For supporting the education of debugging skills, we propose a system for generating error correction questions of programs and checking the correctness. The system generates HTML files for answering questions and CGI programs for checking answers. Learners read and answer questions on Web browsers. For management of error injection, we have…

  11. Raptor Codes for Use in Opportunistic Error Correction

    NARCIS (Netherlands)

    Zijnge, T.; Schiphorst, R.; Shao, X.; Slump, C.H.; Goseling, Jasper; Weber, Jos H.

    2010-01-01

    In this paper a Raptor code is developed and applied in an opportunistic error correction (OEC) layer for Coded OFDM systems. Opportunistic error correction [3] tries to recover information when it is available with the least effort. This is achieved by using Fountain codes in a COFDM system, which

  12. Quantum corrected Schwarzschild thin-shell wormhole

    Energy Technology Data Exchange (ETDEWEB)

    Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of)

    2016-11-15

    Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole. (orig.)

  13. Quantum corrected Schwarzschild thin-shell wormhole

    Science.gov (United States)

    Jusufi, Kimet

    2016-11-01

    Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole.

  14. Quantum Corrected Schwarzschild Thin Shell Wormhole

    CERN Document Server

    Jusufi, Kimet

    2016-01-01

    Recently, Ali and Khalil \\cite{ahmed}, based on the Bohmian quantum mechanics derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that, quantum corrections can affect the stability domain of the wormhole.

  15. Long Burst Error Correcting Codes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long burst error mitigation is an enabling technology for the use of Ka band for high rate commercial and government users. Multiple NASA, government, and commercial...

  16. Noise, errors and information in quantum amplification

    CERN Document Server

    D'Ariano, G M; Maccone, L

    1997-01-01

    We analyze and compare the characterization of a quantum device in terms of noise, transmitted bit-error-rate (BER) and mutual information, showing how the noise description is meaningful only for Gaussian channels. After reviewing the description of a quantum communication channel, we study the insertion of an amplifier. We focus attention on the case of direct detection, where the linear amplifier has a 3 decibels noise figure, which is usually considered an unsurpassable limit, referred to as the standard quantum limit (SQL). Both noise and BER could be reduced using an ideal amplifier, which is feasible in principle. However, just a reduction of noise beyond the SQL does not generally correspond to an improvement of the BER or of the mutual information. This is the case of a laser amplifier, where saturation can greatly reduce the noise figure, although there is no corresponding improvement of the BER. Such mechanism is illustrated on the basis of Monte Carlo simulations.

  17. Environmental boundaries as an error correction mechanism for grid cells.

    Science.gov (United States)

    Hardcastle, Kiah; Ganguli, Surya; Giocomo, Lisa M

    2015-05-06

    Medial entorhinal grid cells fire in periodic, hexagonally patterned locations and are proposed to support path-integration-based navigation. The recursive nature of path integration results in accumulating error and, without a corrective mechanism, a breakdown in the calculation of location. The observed long-term stability of grid patterns necessitates that the system either performs highly precise internal path integration or implements an external landmark-based error correction mechanism. To distinguish these possibilities, we examined grid cells in behaving rodents as they made long trajectories across an open arena. We found that error accumulates relative to time and distance traveled since the animal last encountered a boundary. This error reflects coherent drift in the grid pattern. Further, interactions with boundaries yield direction-dependent error correction, suggesting that border cells serve as a neural substrate for error correction. These observations, combined with simulations of an attractor network grid cell model, demonstrate that landmarks are crucial to grid stability.

  18. Time-dependent phase error correction using digital waveform synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  19. Disorder-Assisted Error Correction in Majorana Chains

    Science.gov (United States)

    Bravyi, Sergey; König, Robert

    2012-12-01

    It was recently realized that quenched disorder may enhance the reliability of topological qubits by reducing the mobility of anyons at zero temperature. Here we compute storage times with and without disorder for quantum chains with unpaired Majorana fermions — the simplest toy model of a quantum memory. Disorder takes the form of a random site-dependent chemical potential. The corresponding one-particle problem is a one-dimensional Anderson model with disorder in the hopping amplitudes. We focus on the zero-temperature storage of a qubit encoded in the ground state of the Majorana chain. Storage and retrieval are modeled by a unitary evolution under the memory Hamiltonian with an unknown weak perturbation followed by an error-correction step. Assuming dynamical localization of the one-particle problem, we show that the storage time grows exponentially with the system size. We give supporting evidence for the required localization property by estimating Lyapunov exponents of the one-particle eigenfunctions. We also simulate the storage process for chains with a few hundred sites. Our numerical results indicate that in the absence of disorder, the storage time grows only as a logarithm of the system size. We provide numerical evidence for the beneficial effect of disorder on storage times and show that suitably chosen pseudorandom potentials can outperform random ones.

  20. A Morphographemic Model for Error Correction in Nonconcatenative Strings

    CERN Document Server

    Bowden, T; Bowden, Tanya; Kiraz, George Anton

    1995-01-01

    This paper introduces a spelling correction system which integrates seamlessly with morphological analysis using a multi-tape formalism. Handling of various Semitic error problems is illustrated, with reference to Arabic and Syriac examples. The model handles errors vocalisation, diacritics, phonetic syncopation and morphographemic idiosyncrasies, in addition to Damerau errors. A complementary correction strategy for morphologically sound but morphosyntactically ill-formed words is outlined.

  1. Error Correction Using Long Context Match for Smartphone Speech Recognition

    OpenAIRE

    梁, 原; Liang, Yuan; 岩野, 公司; Iwano, Koji; 篠田, 浩一; Shinoda, Koichi

    2015-01-01

    Most error correction interfaces for speech recognition applications on smartphones require the user to first mark an error region and choose the correct word from a candidate list. We propose a simple multimodal interface to make the process more efficient. We develop Long Context Match (LCM) to get candidates that complement the conventional word confusion network (WCN). Assuming that not only the preceding words but also the succeeding words of the error region are validated by users, we u...

  2. Comments on "A New Random-Error-Correction Code"

    DEFF Research Database (Denmark)

    Paaske, Erik

    1979-01-01

    This correspondence investigates the error propagation properties of six different systems using a (12, 6) systematic double-error-correcting convolutional encoder and a one-step majority-logic feedback decoder. For the generally accepted assumption that channel errors are much more likely to occur...

  3. Energy efficiency of error correction on wireless systems

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    1999-01-01

    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software.

  4. A Comparison of Error Correction Procedures on Word Reading

    Science.gov (United States)

    Syrek, Andrea L.; Hixson, Micheal D.; Jacob, Susan; Morgan, Sandra

    2007-01-01

    The effectiveness and efficiency of two error correction procedures on word reading were compared. Three students with below average reading skills and one student with average reading skills were provided with weekly instruction on sets of 20 unknown words. Students' errors during instruction were followed by either word supply error correction…

  5. Energy efficiency of error correction on wireless systems

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    1999-01-01

    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software.

  6. Correcting false memories: Errors must be noticed and replaced.

    Science.gov (United States)

    Mullet, Hillary G; Marsh, Elizabeth J

    2016-04-01

    Memory can be unreliable. For example, after reading The new baby stayed awake all night, people often misremember that the new baby cried all night (Brewer, 1977); similarly, after hearing bed, rest, and tired, people often falsely remember that sleep was on the list (Roediger & McDermott, 1995). In general, such false memories are difficult to correct, persisting despite warnings and additional study opportunities. We argue that errors must first be detected to be corrected; consistent with this argument, two experiments showed that false memories were nearly eliminated when conditions facilitated comparisons between participants' errors and corrective feedback (e.g., immediate trial-by-trial feedback that allowed direct comparisons between their responses and the correct information). However, knowledge that they had made an error was insufficient; unless the feedback message also contained the correct answer, the rate of false memories remained relatively constant. On the one hand, there is nothing special about correcting false memories: simply labeling an error as "wrong" is also insufficient for correcting other memory errors, including misremembered facts or mistranslations. However, unlike these other types of errors--which often benefit from the spacing afforded by delayed feedback--false memories require a special consideration: Learners may fail to notice their errors unless the correction conditions specifically highlight them.

  7. Development of a Drosophila cell-based error correction assay

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Salemi

    2013-07-01

    Full Text Available Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT interactions before anaphase onset results in chromosomal instability (CIN, which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2 cells susceptible to kinesin-5 inhibitors by functionally replacing Klp61F with human kinesin-5 (Eg5. Eg5 expression rescued the assembly of monopolar spindles typically caused by Klp61F depletion. Eg5-mediated bipoles collapsed into monopoles due to the activity of kinesin-14 (Ncd when treated with the kinesin-5 inhibitor S-trityl-L-cysteine (STLC. Furthermore, bipolar spindles reassembled and error correction was observed after STLC wash out. Importantly, error correction in Eg5-expressing S2 cells was dependent on the well-established error correction kinase Aurora B. This system provides a powerful new cell-based platform for studying error correction and

  8. Development of a Drosophila cell-based error correction assay.

    Science.gov (United States)

    Salemi, Jeffrey D; McGilvray, Philip T; Maresca, Thomas J

    2013-01-01

    Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT) interactions before anaphase onset results in chromosomal instability (CIN), which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F) is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2 cells susceptible to kinesin-5 inhibitors by functionally replacing Klp61F with human kinesin-5 (Eg5). Eg5 expression rescued the assembly of monopolar spindles typically caused by Klp61F depletion. Eg5-mediated bipoles collapsed into monopoles due, in part, to kinesin-14 (Ncd) activity when treated with the kinesin-5 inhibitor S-trityl-L-cysteine (STLC). Furthermore, bipolar spindles reassembled and error correction was observed after STLC wash out. Importantly, error correction in Eg5-expressing S2 cells was dependent on the well-established error correction kinase Aurora B. This system provides a powerful new cell-based platform for studying error correction and CIN.

  9. Error Correction ——Is it necessary or not?

    Institute of Scientific and Technical Information of China (English)

    周一书

    2012-01-01

    One of the most time-consuming and frustrating things for language teachers is that they correct students' errors time and again and, it seems that no immediate effect have on the students' language learning. In my article, I first review the basic prevailing theories about errors treatment, and then by discussing the significance of language errors, I recommend some policies for teachers to have towards errors, hoping that they will be of some held to language teaching.

  10. Simple receiver with soft decision forward error correction for binary amplitude modulation

    Energy Technology Data Exchange (ETDEWEB)

    Konyshev, V A; Treshchikov, V N; Ubaydullaev, R R [T8 LLC, ul.Krasnobogatyrskaya 44/1, office 826, 107076 Moscow (Russian Federation); Nanii, O E [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)

    2015-06-30

    A simple receiver with soft decision forward error correction (FEC) based on two comparators is proposed. It is shown that the gain in the optical signal-to-noise ratio (OSNR), as compared with conventional receivers with hard decision FEC, can reach 0.5 dB. Some design variants of such detectors are presented. (laser applications and other topics in quantum electronics)

  11. Reed Solomon error correction for the space telescope

    Science.gov (United States)

    Whitaker, S.; Cameron, K.; Canaris, J.; Vincent, P.; Liu, N.; Owsley, P.

    1990-01-01

    This paper reports a single 8.2mm by 8.4mm, 200,000 transistor CMOS chip implementation of the Reed Solomon code required by the Space Telescope. The chip features a 10 MHz sustained byte rate independent of error pattern. The 1.6 micron CMOS integrated circuit has complete decoder and encoder functions and uses a single data/system clock. Block lengths up to 255 bytes as well as shortened codes are supported with no external buffering. Erasure corrections as well as random error corrections are supported with programmable corrections of up to 10 symbol errors. Correction time is independent of error pattern and the number of errors.

  12. Detecting and Correcting Speech Rhythm Errors

    Science.gov (United States)

    Yurtbasi, Metin

    2015-01-01

    Every language has its own rhythm. Unlike many other languages in the world, English depends on the correct pronunciation of stressed and unstressed or weakened syllables recurring in the same phrase or sentence. Mastering the rhythm of English makes speaking more effective. Experiments have shown that we tend to hear speech as more rhythmical…

  13. Quality score based identification and correction of pyrosequencing errors.

    Science.gov (United States)

    Iyer, Shyamala; Bouzek, Heather; Deng, Wenjie; Larsen, Brendan; Casey, Eleanor; Mullins, James I

    2013-01-01

    Massively-parallel DNA sequencing using the 454/pyrosequencing platform allows in-depth probing of diverse sequence populations, such as within an HIV-1 infected individual. Analysis of this sequence data, however, remains challenging due to the shorter read lengths relative to that obtained by Sanger sequencing as well as errors introduced during DNA template amplification and during pyrosequencing. The ability to distinguish real variation from pyrosequencing errors with high sensitivity and specificity is crucial to interpreting sequence data. We introduce a new algorithm, CorQ (Correction through Quality), which utilizes the inherent base quality in a sequence-specific context to correct for homopolymer and non-homopolymer insertion and deletion (indel) errors. CorQ also takes uneven read mapping into account for correcting pyrosequencing miscall errors and it identifies and corrects carry forward errors. We tested the ability of CorQ to correctly call SNPs on a set of pyrosequences derived from ten viral genomes from an HIV-1 infected individual, as well as on six simulated pyrosequencing datasets generated using non-zero error rates to emulate errors introduced by PCR. When combined with the AmpliconNoise error correction method developed to remove ambiguities in signal intensities, we attained a 97% reduction in indel errors, a 98% reduction in carry forward errors, and >97% specificity of SNP detection. When compared to four other error correction methods, AmpliconNoise+CorQ performed at equal or higher SNP identification specificity, but the sensitivity of SNP detection was consistently higher (>98%) than other methods tested. This combined procedure will therefore permit examination of complex genetic populations with improved accuracy.

  14. VLSI architectures for modern error-correcting codes

    CERN Document Server

    Zhang, Xinmiao

    2015-01-01

    Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity. VLSI

  15. The dynamic correction of collimation errors of CT slicing pictures

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-xiong; Sekou Sing-are; LI Di-chen; LU Bing-heng

    2006-01-01

    To eliminate the motion artifacts of CT images caused by patient motions and other related errors,two kinds of correctors (A type and U type) are proposed to monitor the scanning process and correct the motion artifacts of the original images via reverse geometrical transformation such as reverse scaling,moving,rotating and offsetting.The results confirm that the correction method with any of the correctors can improve the accuracy and reliability of CT images,which facilitates in eliminating or decreasing the motion artifacts and correcting other static errors and image processing errors.This provides a foundation for the 3D reconstruction and accurate fabrication of the customized implants.

  16. Inflationary power spectra with quantum holonomy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, Cracow, 30-059 Poland (Poland)

    2014-03-01

    In this paper we study slow-roll inflation with holonomy corrections from loop quantum cosmology. It was previously shown that, in the Planck epoch, these corrections lead to such effects as singularity avoidance, metric signature change and a state of silence. Here, we consider holonomy corrections affecting the phase of cosmic inflation, which takes place away from the Planck epoch. Both tensor and scalar power spectra of primordial inflationary perturbations are computed up to the first order in slow-roll parameters and V/ρ{sub c}, where V is a potential of the scalar field and ρ{sub c} is a critical energy density (expected to be of the order of the Planck energy density). Possible normalizations of modes at short scales are discussed. In case the normalization is performed with use of the Wronskian condition applied to adiabatic vacuum, the tensor and scalar spectral indices are not quantum corrected in the leading order. However, by choosing an alternative method of normalization one can obtain quantum corrections in the leading order. Furthermore, we show that the holonomy-corrected equations of motion for tensor and scalar modes can be derived based on effective background metrics. This allows us to show that the classical Wronskian normalization condition is well defined for the cosmological perturbations with holonomy corrections.

  17. Errors and Correction of Precipitation Measurements in China

    Institute of Scientific and Technical Information of China (English)

    REN Zhihua; LI Mingqin

    2007-01-01

    In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the "horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper.A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.

  18. Dense Error Correction via L1-Minimization

    CERN Document Server

    Wright, John

    2008-01-01

    This paper studies the problem of recovering a non-negative sparse signal $\\x \\in \\Re^n$ from highly corrupted linear measurements $\\y = A\\x + \\e \\in \\Re^m$, where $\\e$ is an unknown error vector whose nonzero entries may be unbounded. Motivated by an observation from face recognition in computer vision, this paper proves that for highly correlated (and possibly overcomplete) dictionaries $A$, any non-negative, sufficiently sparse signal $\\x$ can be recovered by solving an $\\ell^1$-minimization problem: $\\min \\|\\x\\|_1 + \\|\\e\\|_1 \\quad {subject to} \\quad \\y = A\\x + \\e.$ More precisely, if the fraction $\\rho$ of errors is bounded away from one and the support of $\\x$ grows sublinearly in the dimension $m$ of the observation, then as $m$ goes to infinity, the above $\\ell^1$-minimization succeeds for all signals $\\x$ and almost all sign-and-support patterns of $\\e$. This result suggests that accurate recovery of sparse signals is possible and computationally feasible even with nearly 100% of the observations corr...

  19. Error Correction for Tandem Data-Transmission Paths

    Science.gov (United States)

    Posner, E. C.; Rubin, A. L.

    1985-01-01

    Mathematical analysis for digital data transmission calculates optimum number of binary error-correcting repeaters to install in given number of wideband channel links. Asymptotic results compared to computed numerical results.

  20. Reflection error correction of gas turbine blade temperature

    Science.gov (United States)

    Kipngetich, Ketui Daniel; Feng, Chi; Gao, Shan

    2016-03-01

    Accurate measurement of gas turbine blades' temperature is one of the greatest challenges encountered in gas turbine temperature measurements. Within an enclosed gas turbine environment with surfaces of varying temperature and low emissivities, a new challenge is introduced into the use of radiation thermometers due to the problem of reflection error. A method for correcting this error has been proposed and demonstrated in this work through computer simulation and experiment. The method assumed that emissivities of all surfaces exchanging thermal radiation are known. Simulations were carried out considering targets with low and high emissivities of 0.3 and 0.8 respectively while experimental measurements were carried out on blades with emissivity of 0.76. Simulated results showed possibility of achieving error less than 1% while experimental result corrected the error to 1.1%. It was thus concluded that the method is appropriate for correcting reflection error commonly encountered in temperature measurement of gas turbine blades.

  1. A Quantum Correction To Chaos

    OpenAIRE

    A. Fitzpatrick; Kaplan, Jared

    2016-01-01

    We use results on Virasoro conformal blocks to study chaotic dynamics in CFT 2 at large central charge c . The Lyapunov exponent λ L , which is a diagnostic for the early onset of chaos, receives 1 /c corrections that may be interpreted as λ L = 2 π β 1 + 12 c $$ {\\lambda}_L=\\frac{2\\pi }{\\beta}\\left(1+\\frac{12}{c}\\right) $$ . However, out of time order correlators receive other equally important 1 /c suppressed contributions that do not have such a simple interpretation. We revisit the proof ...

  2. Quantum states characterization for the zero-error capacity

    CERN Document Server

    Medeiros, R A C; Cohen, G; De Assis, F M; Alleaume, Romain; Assis, Francisco M. de; Cohen, Gerard; Medeiros, Rex A C

    2006-01-01

    The zero-error capacity of quantum channels was defined as the least upper bound of rates at which classical information is transmitted through a quantum channel with probability of error equal to zero. This paper investigates some properties of input states used to attain the zero-error capacity of quantum channels. Initially, we reformulate the problem of finding the zero-error capacity in the language of graph theory. We use this alternative definition to prove that the zero-error capacity of any quantum channel is reached by using only pure states.

  3. Continuous-variable quantum erasure correcting code

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Sabuncu, Metin; Huck, Alexander

    2010-01-01

    We experimentally demonstrate a continuous variable quantum erasure-correcting code, which protects coherent states of light against complete erasure. The scheme encodes two coherent states into a bi-party entangled state, and the resulting 4-mode code is conveyed through 4 independent channels...

  4. Motor control: correcting errors and learning from mistakes.

    Science.gov (United States)

    Miall, Chris

    2010-07-27

    How do we learn from errors during complex movement tasks with redundancy? A new study shows that ambiguous mistakes in bimanual movements are corrected by the non-dominant hand, and responsibility for the error is assumed to fall to the effector with a recent history of poor performance.

  5. Comparing Error Correction Procedures for Children Diagnosed with Autism

    Science.gov (United States)

    Townley-Cochran, Donna; Leaf, Justin B.; Leaf, Ronald; Taubman, Mitchell; McEachin, John

    2017-01-01

    The purpose of this study was to examine the effectiveness of two error correction (EC) procedures: modeling alone and the use of an error statement plus modeling. Utilizing an alternating treatments design nested into a multiple baseline design across participants, we sought to evaluate and compare the effects of these two EC procedures used to…

  6. Testing Error Correcting Codes by Multicanonical Sampling of Rare Events

    OpenAIRE

    Iba, Yukito; Hukushima, Koji

    2007-01-01

    The idea of rare event sampling is applied to the estimation of the performance of error-correcting codes. The essence of the idea is importance sampling of the pattern of noises in the channel by Multicanonical Monte Carlo, which enables efficient estimation of tails of the distribution of bit error rate. The idea is successfully tested with a convolutional code.

  7. A Quantum Correction To Chaos

    CERN Document Server

    Fitzpatrick, A Liam

    2016-01-01

    We use results on Virasoro conformal blocks to study chaotic dynamics in CFT$_2$ at large central charge c. The Lyapunov exponent $\\lambda_L$, which is a diagnostic for the early onset of chaos, receives $1/c$ corrections that may be interpreted as $\\lambda_L = \\frac{2 \\pi}{\\beta} \\left( 1 + \\frac{12}{c} \\right)$. However, out of time order correlators receive other equally important $1/c$ suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on $\\lambda_L$ that emerges at large $c$, focusing on CFT$_2$ and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.

  8. A quantum correction to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam [Department of Physics, Boston University,590 Commonwealth Avenue, Boston, MA 02215 (United States); Kaplan, Jared [Department of Physics and Astronomy, Johns Hopkins University,3400 N. Charles St, Baltimore, MD 21218 (United States)

    2016-05-12

    We use results on Virasoro conformal blocks to study chaotic dynamics in CFT{sub 2} at large central charge c. The Lyapunov exponent λ{sub L}, which is a diagnostic for the early onset of chaos, receives 1/c corrections that may be interpreted as λ{sub L}=((2π)/β)(1+(12/c)). However, out of time order correlators receive other equally important 1/c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ{sub L} that emerges at large c, focusing on CFT{sub 2} and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.

  9. Correction of placement error in EBL using model based method

    Science.gov (United States)

    Babin, Sergey; Borisov, Sergey; Militsin, Vladimir; Komagata, Tadashi; Wakatsuki, Tetsuro

    2016-10-01

    The main source of placement error in maskmaking using electron beam is charging. DISPLACE software provides a method to correct placement errors for any layout, based on a physical model. The charge of a photomask and multiple discharge mechanisms are simulated to find the charge distribution over the mask. The beam deflection is calculated for each location on the mask, creating data for the placement correction. The software considers the mask layout, EBL system setup, resist, and writing order, as well as other factors such as fogging and proximity effects correction. The output of the software is the data for placement correction. Unknown physical parameters such as fogging can be found from calibration experiments. A test layout on a single calibration mask was used to calibrate physical parameters used in the correction model. The extracted model parameters were used to verify the correction. As an ultimate test for the correction, a sophisticated layout was used for verification that was very different from the calibration mask. The placement correction results were predicted by DISPLACE, and the mask was fabricated and measured. A good correlation of the measured and predicted values of the correction all over the mask with the complex pattern confirmed the high accuracy of the charging placement error correction.

  10. Treelet Probabilities for HPSG Parsing and Error Correction

    NARCIS (Netherlands)

    Ivanova, Angelina; van Noord, Gerardus; Calzolari, Nicoletta; al, et

    2014-01-01

    Most state-of-the-art parsers take an approach to produce an analysis for any input despite errors. However, small grammatical mistakes in a sentence often cause parser to fail to build a correct syntactic tree. Applications that can identify and correct mistakes during parsing are particularly inte

  11. A Systematic Error Correction Method for TOVS Radiances

    Science.gov (United States)

    Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.

  12. Quantum Corrections in Galileons from Matter Loops

    CERN Document Server

    Heisenberg, Lavinia

    2014-01-01

    Galileon interactions represent a class of effective field theories that have received much attention since their inception. They can be treated in their own right as scalar field theories with a specific global shift and Galilean symmetry or as a descendant of a more fundamental theory like massive gravity. It is well known that the Galileon theories are stable under quantum corrections thanks to the non-renormalization theorem which is not due to the symmetry unlike the misconceptions claimed in the literature. We consider different covariant couplings of this Galileon scalar field with the matter field: the conformal coupling, the disformal coupling and the longitudinal coupling. We compute the one-loop quantum corrections to the Galileon interactions from the coupling to the external matter fields. In all the considered cases of covariant couplings we show that the terms generated by one-loop matter corrections not only renormalize the Galileon interactions but also give rise to higher order derivative gh...

  13. Correct Me to Tears: The Importance of Knowing the Learner before Correcting Errors.

    Science.gov (United States)

    Parrino, Angela

    An advocate of the Natural Approach to second language instruction discusses problems associated with error correction, highlighted in her personal experience when she visited Italy to explore her heritage and use her Italian language skills. After requesting to have her errors corrected by a native-speaking friend, the visitor experienced great…

  14. Homography-Based Correction of Positional Errors in MRT Survey

    CERN Document Server

    Nayak, Arvind; Shankar, N Udaya

    2009-01-01

    The Mauritius Radio Telescope (MRT) images show systematics in the positional errors of sources when compared to source positions in the Molonglo Reference Catalogue (MRC). We have applied two-dimensional homography to correct positional errors in the image domain and avoid re-processing the visibility data. Positions of bright (above 15-$\\sigma$) sources, common to MRT and MRC catalogues, are used to set up an over-determined system to solve for the 2-D homography matrix. After correction, the errors are found to be within 10% of the beamwidth for these bright sources and the systematics are eliminated from the images.

  15. Quantum gravitational corrections for spinning particles

    CERN Document Server

    Fröb, Markus B

    2016-01-01

    We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well-known, and the same corrections due to massless minimally coupled scalars [S. Park and R. P. Woodard, Class. Quant. Grav. 27 (2010) 245008], massless non-conformal scalars [A. Marunovic and T. Prokopec, Phys. Rev. D 87 (2013) 104027] and massive scalars, fermions and vector bosons [D. Burns and A. Pilaftsis, Phys. Rev. D 91 (2015) 064047] have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppres...

  16. Ising Spin-Based Error Correcting Private-Key Cryptosystems

    Institute of Scientific and Technical Information of China (English)

    ZHENG Dong; ZHENG Yan-fei; FAN Wu-ying

    2006-01-01

    Ising spin system has been shown to provide a new class of error-correction code and can be used to construct public-key cryptosystems by making use of statistical mechanics. The relation between Ising spin systems and private-key cryptosystems are investigated. Two private-key systems are based on two predetermined randomly constructed sparse matrices and rely on exploiting physical properties of the Mackay-Neal (MN) low-density parity-check (LDPC) error-correcting codes are proposed. One is error correcting private-key system, which is powerful to combat ciphertext errors in communications and computer systems. The other is a private-key system with authentication.

  17. Three-Dimensional Turbulent RANS Adjoint-Based Error Correction

    Science.gov (United States)

    Park, Michael A.

    2003-01-01

    Engineering problems commonly require functional outputs of computational fluid dynamics (CFD) simulations with specified accuracy. These simulations are performed with limited computational resources. Computable error estimates offer the possibility of quantifying accuracy on a given mesh and predicting a fine grid functional on a coarser mesh. Such an estimate can be computed by solving the flow equations and the associated adjoint problem for the functional of interest. An adjoint-based error correction procedure is demonstrated for transonic inviscid and subsonic laminar and turbulent flow. A mesh adaptation procedure is formulated to target uncertainty in the corrected functional and terminate when error remaining in the calculation is less than a user-specified error tolerance. This adaptation scheme is shown to yield anisotropic meshes with corrected functionals that are more accurate for a given number of grid points then isotropic adapted and uniformly refined grids.

  18. Error Correction for the JLEIC Ion Collider Ring

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guohui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, Fulvia C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nosochkov, Yuri [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, Min-Huey [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-05-01

    The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, and chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.

  19. On the Design of Error-Correcting Ciphers

    Directory of Open Access Journals (Sweden)

    Mathur Chetan Nanjunda

    2006-01-01

    Full Text Available Securing transmission over a wireless network is especially challenging, not only because of the inherently insecure nature of the medium, but also because of the highly error-prone nature of the wireless environment. In this paper, we take a joint encryption-error correction approach to ensure secure and robust communication over the wireless link. In particular, we design an error-correcting cipher (called the high diffusion cipher and prove bounds on its error-correcting capacity as well as its security. Towards this end, we propose a new class of error-correcting codes (HD-codes with built-in security features that we use in the diffusion layer of the proposed cipher. We construct an example, 128-bit cipher using the HD-codes, and compare it experimentally with two traditional concatenated systems: (a AES (Rijndael followed by Reed-Solomon codes, (b Rijndael followed by convolutional codes. We show that the HD-cipher is as resistant to linear and differential cryptanalysis as the Rijndael. We also show that any chosen plaintext attack that can be performed on the HD cipher can be transformed into a chosen plaintext attack on the Rijndael cipher. In terms of error correction capacity, the traditional systems using Reed-Solomon codes are comparable to the proposed joint error-correcting cipher and those that use convolutional codes require more data expansion in order to achieve similar error correction as the HD-cipher. The original contributions of this work are (1 design of a new joint error-correction-encryption system, (2 design of a new class of algebraic codes with built-in security criteria, called the high diffusion codes (HD-codes for use in the HD-cipher, (3 mathematical properties of these codes, (4 methods for construction of the codes, (5 bounds on the error-correcting capacity of the HD-cipher, (6 mathematical derivation of the bound on resistance of HD cipher to linear and differential cryptanalysis, (7 experimental comparison

  20. An investigation of error correcting techniques for OMV and AXAF

    Science.gov (United States)

    Ingels, Frank; Fryer, John

    1991-01-01

    The original objectives of this project were to build a test system for the NASA 255/223 Reed/Solomon encoding/decoding chip set and circuit board. This test system was then to be interfaced with a convolutional system at MSFC to examine the performance of the concantinated codes. After considerable work, it was discovered that the convolutional system could not function as needed. This report documents the design, construction, and testing of the test apparatus for the R/S chip set. The approach taken was to verify the error correcting behavior of the chip set by injecting known error patterns onto data and observing the results. Error sequences were generated using pseudo-random number generator programs, with Poisson time distribution between errors and Gaussian burst lengths. Sample means, variances, and number of un-correctable errors were calculated for each data set before testing.

  1. Detecting and correcting hard errors in a memory array

    Energy Technology Data Exchange (ETDEWEB)

    Kalamatianos, John; John, Johnsy Kanjirapallil; Gelinas, Robert; Sridharan, Vilas K.; Nevius, Phillip E.

    2015-11-19

    Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.

  2. Software for Correcting the Dynamic Error of Force Transducers

    Directory of Open Access Journals (Sweden)

    Naoki Miyashita

    2014-07-01

    Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.

  3. Variations on a theme: Songbirds, variability, and sensorimotor error correction.

    Science.gov (United States)

    Kuebrich, B D; Sober, S J

    2015-06-18

    Songbirds provide a powerful animal model for investigating how the brain uses sensory feedback to correct behavioral errors. Here, we review a recent study in which we used online manipulations of auditory feedback to quantify the relationship between sensory error size, motor variability, and vocal plasticity. We found that although inducing small auditory errors evoked relatively large compensatory changes in behavior, as error size increased the magnitude of error correction declined. Furthermore, when we induced large errors such that auditory signals no longer overlapped with the baseline distribution of feedback, the magnitude of error correction approached zero. This pattern suggests a simple and robust strategy for the brain to maintain the accuracy of learned behaviors by evaluating sensory signals relative to the previously experienced distribution of feedback. Drawing from recent studies of auditory neurophysiology and song discrimination, we then speculate as to the mechanistic underpinnings of the results obtained in our behavioral experiments. Finally, we review how our own and other studies exploit the strengths of the songbird system, both in the specific context of vocal systems and more generally as a model of the neural control of complex behavior.

  4. Influences of Gate Operation Errors in the Quantum Counting Algorithm

    Institute of Scientific and Technical Information of China (English)

    Qing Ai; Yan-Song Li; Gui-Lu Long

    2006-01-01

    In this article, the error analysis in the quantum counting algorithm is investigated. It has been found that the random error plays as important a role as the systematic error does in the phase inversion operations. Both systematic and random errors are important in the Hadamard transformation. This is quite different from the Grover algorithm and the Shor algorithm.

  5. The role of error correction in communicative second language teaching

    Directory of Open Access Journals (Sweden)

    H. Ludolph Botha

    2013-02-01

    Full Text Available According to recent rese~rch, correction of errors in both oral and written communication does little to a~d language proficiency in the second language. In the Natural Approach of Krashen and Terrell the emphasis is on the acquisition of informal communication. Because the message and the understanding of the message remain of utmost importance, error correction is avoided. In Suggestopedia where the focus is also on communication, error correction is avoided as it inhibits the pupil. Onlangse navorsing het getoon dat die verbetering van foute in beide mondelinge en skriftelike kommunikasie min bydra tot beter taalvaardigheid in die tweede taal. In die Natural Approach van Krashen en Terrell val die klem op die verwerwing van informele kommunikasie, want die boodskap en die verstaan daarvan bly verreweg die belangrikste; die verbetering van foute word vermy. In Suggestopedagogiek, waar die klem ook op kommunikasie val, word die verbetering van foute vermy omdat dit die leerling beperk.

  6. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  7. Quantum gravitational corrections for spinning particles

    Science.gov (United States)

    Fröb, Markus B.

    2016-10-01

    We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well known, and the same corrections due to massless minimally coupled scalars [23], massless non-conformal scalars [25] and massive scalars, fermions and vector bosons [98] have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppressed in comparison to the corrections from massless fields, as one would expect. However, a surprising result of our analysis is that close to the particle itself, on distances comparable to the Compton wavelength of the massive fields running in the loops, these corrections can be enhanced with respect to the massless case.

  8. Error Correction and Long Run Equilibrium in Continuous Time

    OpenAIRE

    1988-01-01

    This paper deals with error correction models (ECM's) and cointegrated systems that are formulated in continuous time. Problems of representation, identification, estimation and time aggregation are discussed. It is shown that every ECM in continuous time has a discrete time equivalent model in ECM format. Moreover, both models may be written as triangular systems with stationary errors. This formulation simplifies both the continuous and the discrete time ECM representations and it helps to ...

  9. Error Correction for Index Coding with Side Information

    CERN Document Server

    Dau, Son Hoang; Chee, Yeow Meng

    2011-01-01

    A problem of index coding with side information was first considered by Y. Birk and T. Kol (IEEE INFOCOM, 1998). In the present work, a generalization of index coding scheme, where transmitted symbols are subject to errors, is studied. Error-correcting methods for such a scheme, and their parameters, are investigated. In particular, the following question is discussed: given the side information hypergraph of index coding scheme and the maximal number of erroneous symbols $\\delta$, what is the shortest length of a linear index code, such that every receiver is able to recover the required information? This question turns out to be a generalization of the problem of finding a shortest-length error-correcting code with a prescribed error-correcting capability in the classical coding theory. The Singleton bound and two other bounds, referred to as the $\\alpha$-bound and the $\\kappa$-bound, for the optimal length of a linear error-correcting index code (ECIC) are established. For large alphabets, a construction b...

  10. Minimum mean square error method for stripe nonuniformity correction

    Institute of Scientific and Technical Information of China (English)

    Weixian Qian; Qian Chen; Guohua Gu

    2011-01-01

    @@ Stripe nonuniformity is very typical in line infrared focal plane (IRFPA) and uncooled starring IRFPA.We develop the minimum mean square error (MMSE) method for stripe nonuniformity correction (NUC).The goal of the MMSE method is to determine the optimal NUC parameters for making the corrected image the closest to the ideal image.%Stripe nonuniformity is very typical in line infrared focal plane (IRFPA) and uncooled starring IRFPA.We develop the minimum mean square error (MMSE) method for stripe nonuniformity correction (NUC).The goal of the MMSE method is to determine the optimal NUC parameters for making the corrected image the closest to the ideal image. Moreover, this method can be achieved in one frame, making it more competitive than other scene-based NUC algorithms. We also demonstrate the calibration results of our algorithm using real and virtual infrared image sequences. The experiments verify the positive effect of our algorithm.

  11. Correcting Non-Word Errors Using a Combined Method

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The weighted edit distance and metaphone + algorithm are combined to correct the non-word errors. The speed is also optimized based on the observation that people rarely make mistakes in the initial letter of a word. A spelling checker is designed for an automatic detection and correction system for student essays. To evaluate the algorithm it is compared to some famous systems (MS Word2000, Aspell, winEdt). The results show that our approach is superior to the alternative approaches.

  12. Formalization of Error-correcting Codes using SSReflect

    OpenAIRE

    Affeldt, Reynald

    2015-01-01

    By adding redundant information to transmitted data, error-correcting codes (ECCs) make it possible to communicate reliably over noisy channels. Minimizing redundancy and coding/decoding time has driven much research, culminating with Low-Density Parity-Check (LDPC) codes. Hard-disk storage, wifi communications, mobile phones, etc.: most modern devices now rely on ECCs and in particular LDPC codes. Yet, correctness guarantees are only provided by research papers of ever-growing complexity. On...

  13. Error-detection-based quantum fault tolerance against discrete Pauli noise

    CERN Document Server

    Reichardt, B W

    2006-01-01

    A quantum computer -- i.e., a computer capable of manipulating data in quantum superposition -- would find applications including factoring, quantum simulation and tests of basic quantum theory. Since quantum superpositions are fragile, the major hurdle in building such a computer is overcoming noise. Developed over the last couple of years, new schemes for achieving fault tolerance based on error detection, rather than error correction, appear to tolerate as much as 3-6% noise per gate -- an order of magnitude better than previous procedures. But proof techniques could not show that these promising fault-tolerance schemes tolerated any noise at all. With an analysis based on decomposing complicated probability distributions into mixtures of simpler ones, we rigorously prove the existence of constant tolerable noise rates ("noise thresholds") for error-detection-based schemes. Numerical calculations indicate that the actual noise threshold this method yields is lower-bounded by 0.1% noise per gate.

  14. A Review On Numerical Error Correction Using Various Techniques

    Directory of Open Access Journals (Sweden)

    Iqra Ahmed

    2015-07-01

    Full Text Available Abstract From decades the work of symbolic computations cannot be ignored in real time calculations. During the discussion of various automated machines for estimated calculations we came to know where there are inputs and the corresponding outputs the term error is obvious. But the error can be minimized by using different suitable algorithms. This study focusses on techniques used for error correction in numeric and symbolic computations. After reviewing on different techniques discussed before we generate analysis by taking some of the parameters. The Experimental results shows that these algorithm has better performance in terms of accuracy performance cost validity safety security reliability and power consumption.

  15. Performance of multi level error correction in binary holographic memory

    Science.gov (United States)

    Hanan, Jay C.; Chao, Tien-Hsin; Reyes, George F.

    2004-01-01

    At the Optical Computing Lab in the Jet Propulsion Laboratory (JPL) a binary holographic data storage system was designed and tested with methods of recording and retrieving the binary information. Levels of error correction were introduced to the system including pixel averaging, thresholding, and parity checks. Errors were artificially introduced into the binary holographic data storage system and were monitored as a function of the defect area fraction, which showed a strong influence on data integrity. Average area fractions exceeding one quarter of the bit area caused unrecoverable errors. Efficient use of the available data density was discussed. .

  16. Correcting biased observation model error in data assimilation

    CERN Document Server

    Harlim, John

    2016-01-01

    While the formulation of most data assimilation schemes assumes an unbiased observation model error, in real applications, model error with nontrivial biases is unavoidable. A practical example is the error in the radiative transfer model (which is used to assimilate satellite measurements) in the presence of clouds. As a consequence, many (in fact 99\\%) of the cloudy observed measurements are not being used although they may contain useful information. This paper presents a novel nonparametric Bayesian scheme which is able to learn the observation model error distribution and correct the bias in incoming observations. This scheme can be used in tandem with any data assimilation forecasting system. The proposed model error estimator uses nonparametric likelihood functions constructed with data-driven basis functions based on the theory of kernel embeddings of conditional distributions developed in the machine learning community. Numerically, we show positive results with two examples. The first example is des...

  17. Analysis of ionospheric refraction error corrections for GRARR systems

    Science.gov (United States)

    Mallinckrodt, A. J.; Parker, H. C.; Berbert, J. H.

    1971-01-01

    A determination is presented of the ionospheric refraction correction requirements for the Goddard range and range rate (GRARR) S-band, modified S-band, very high frequency (VHF), and modified VHF systems. The relation ships within these four systems are analyzed to show that the refraction corrections are the same for all four systems and to clarify the group and phase nature of these corrections. The analysis is simplified by recognizing that the range rate is equivalent to a carrier phase range change measurement. The equation for the range errors are given.

  18. Characterizing error propagation in quantum circuits: the Isotropic Index

    Science.gov (United States)

    Fonseca de Oliveira, André L.; Buksman, Efrain; Cohn, Ilan; García López de Lacalle, Jesús

    2017-02-01

    This paper presents a novel index in order to characterize error propagation in quantum circuits by separating the resultant mixed error state in two components: an isotropic component that quantifies the lack of information, and a disalignment component that represents the shift between the current state and the original pure quantum state. The Isotropic Triangle, a graphical representation that fits naturally with the proposed index, is also introduced. Finally, some examples with the analysis of well-known quantum algorithms degradation are given.

  19. Energy efficient error-correcting coding for wireless systems

    NARCIS (Netherlands)

    Shao, Xiaoying

    2010-01-01

    The wireless channel is a hostile environment. The transmitted signal does not only suffers multi-path fading but also noise and interference from other users of the wireless channel. That causes unreliable communications. To achieve high-quality communications, error correcting coding is required t

  20. Common Persistence and Error-Correction Mode in Conditional Variance

    Institute of Scientific and Technical Information of China (English)

    LI Han-dong; ZHANG Shi-ying

    2001-01-01

    We firstly define the persistence and common persistence of vector GARCH process from the point of view of the integration, and then discuss the sufficient and necessary condition of the copersistence in variance. In the end of this paper, we give the properties and the error correction model of vector GARCH process under the condition of the co-persistence.

  1. Phase error correction in wavefront curvature sensing via phase retrieval

    DEFF Research Database (Denmark)

    Almoro, Percival; Hanson, Steen Grüner

    2008-01-01

    Wavefront curvature sensing with phase error correction system is carried out using phase retrieval based on a partially-developed volume speckle field. Various wavefronts are reconstructed: planar, spherical, cylindrical, and a wavefront passing through the side of a bare optical fiber. Spurious...

  2. 75 FR 15371 - Time Error Correction Reliability Standard

    Science.gov (United States)

    2010-03-29

    ...Pursuant to section 215 of the Federal Power Act, the Commission proposes to remand the proposed revised Time Error Correction Reliability Standard developed by the North American Electric Reliability Corporation (NERC) in order for NERC to develop several modifications to the proposed Reliability Standard. The proposed action ensures that any modifications to Reliability Standards will be......

  3. Direct cointegration testing in error-correction models

    NARCIS (Netherlands)

    F.R. Kleibergen (Frank); H.K. van Dijk (Herman)

    1994-01-01

    textabstractAbstract An error correction model is specified having only exact identified parameters, some of which reflect a possible departure from a cointegration model. Wald, likelihood ratio, and Lagrange multiplier statistics are derived to test for the significance of these parameters. The con

  4. Forecasting the Euro exchange rate using vector error correction models

    NARCIS (Netherlands)

    Aarle, B. van; Bos, M.; Hlouskova, J.

    2000-01-01

    Forecasting the Euro Exchange Rate Using Vector Error Correction Models. — This paper presents an exchange rate model for the Euro exchange rates of four major currencies, namely the US dollar, the British pound, the Japanese yen and the Swiss franc. The model is based on the monetary approach of ex

  5. Communication Systems Simulator with Error Correcting Codes Using MATLAB

    Science.gov (United States)

    Gomez, C.; Gonzalez, J. E.; Pardo, J. M.

    2003-01-01

    In this work, the characteristics of a simulator for channel coding techniques used in communication systems, are described. This software has been designed for engineering students in order to facilitate the understanding of how the error correcting codes work. To help students understand easily the concepts related to these kinds of codes, a…

  6. Error correction method of 6-HTRT parallel mechanics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiu-feng; JI Lin-hong

    2007-01-01

    The method of error correction is one of key techniques of parallel robot. A new method of end error correction of 6-HTRT parallel robot is presented for engineering and researching on correlative theory of 6-HTRT parallel robot. The method need calculate many kinematics equations of parallel robot such as position back solution, velocity Jacobin, position forward solution and error Jacobin. New methods presented for solving these questions are simpler and fitter for programming and calculating, because former methods are too complex to use in engineering. These questions may be solved by iterative method of numerical value which has fast velocity of calculating. These new methods may be used in other mechanism of parallel robot too, and so have wider using value. The experimental results demonstrate that the system may satisfy entirely high technical request and fit for engineering in new measures.

  7. Error-Correcting Codes for Reliable Communications in Microgravity Platforms

    CERN Document Server

    Filho, Décio L Gazzoni; Tosin, Marcelo C; Granziera, Francisco

    2012-01-01

    The PAANDA experiment was conceived to characterize the acceleration ambient of a rocket launched microgravity platform, specially the microgravity phase. The recorded data was transmitted to ground stations, leading to loss of telemetry information sent during the reentry period. Traditionally, an error-correcting code for this channel consists of a block code with very large block size to protect against long periods of data loss. Instead, we propose the use of digital fountain codes along with conventional Reed-Solomon block codes to protect against long and short burst error periods, respectively. Aiming to use this approach for a second version of PAANDA to prevent data corruption, we propose a model for the communication channel based on information extracted from Cum\\~a II's telemetry data, and simulate the performance of our proposed error-correcting code under this channel model. Simulation results show that nearly all telemetry data can be recovered, including data from the reentry period.

  8. Secure and Reliable IPTV Multimedia Transmission Using Forward Error Correction

    Directory of Open Access Journals (Sweden)

    Chi-Huang Shih

    2012-01-01

    Full Text Available With the wide deployment of Internet Protocol (IP infrastructure and rapid development of digital technologies, Internet Protocol Television (IPTV has emerged as one of the major multimedia access techniques. A general IPTV transmission system employs both encryption and forward error correction (FEC to provide the authorized subscriber with a high-quality perceptual experience. This two-layer processing, however, complicates the system design in terms of computational cost and management cost. In this paper, we propose a novel FEC scheme to ensure the secure and reliable transmission for IPTV multimedia content and services. The proposed secure FEC utilizes the characteristics of FEC including the FEC-encoded redundancies and the limitation of error correction capacity to protect the multimedia packets against the malicious attacks and data transmission errors/losses. Experimental results demonstrate that the proposed scheme obtains similar performance compared with the joint encryption and FEC scheme.

  9. Forward Error Correction Convolutional Codes for RTAs' Networks: An Overview

    Directory of Open Access Journals (Sweden)

    Salehe I. Mrutu

    2014-06-01

    Full Text Available For more than half a century, Forward Error Correction Convolutional Codes (FEC-CC have been in use to provide reliable data communication over various communication networks. The recent high increase of mobile communication services that require both bandwidth intensive and interactive Real Time Applications (RTAs impose an increased demand for fast and reliable wireless communication networks. Transmission burst errors; data decoding complexity and jitter are identified as key factors influencing the quality of service of RTAs implementation over wireless transmission media. This paper reviews FEC-CC as one of the most commonly used algorithm in Forward Error Correction for the purpose of improving its operational performance. Under this category, we have analyzed various previous works for their strengths and weaknesses in decoding FEC-CC. A comparison of various decoding algorithms is made based on their decoding computational complexity.

  10. Quantum corrections in Galileons from matter loops

    Science.gov (United States)

    Heisenberg, Lavinia

    2014-09-01

    Galileon interactions represent a class of effective field theories that have received much attention since their inception. They can be treated in their own right as scalar field theories with a specific global shift and Galilean symmetry or as a descendant of a more fundamental theory like massive gravity. It is well known that the Galileon theories are stable under quantum corrections thanks to the nonrenormalization theorem which is not due to the symmetry. We consider different covariant couplings of this Galileon scalar field with the matter field: the conformal coupling, the disformal coupling and the longitudinal coupling. We compute the one-loop quantum corrections to the Galileon interactions from the coupling to the external matter fields. In all the considered cases of covariant couplings we show that the terms generated by one-loop matter corrections not only renormalize the Galileon interactions but also give rise to higher order derivative ghost interactions. However, the renormalized version of the Galileon interactions as well as the new interactions come at a scale suppressed by the original classical coupling scale and hence are harmless within the regime of the effective field theory.

  11. Correction of Discretization Errors Simulated at Supply Wells.

    Science.gov (United States)

    MacMillan, Gordon J; Schumacher, Jens

    2015-01-01

    Many hydrogeology problems require predictions of hydraulic heads in a supply well. In most cases, the regional hydraulic response to groundwater withdrawal is best approximated using a numerical model; however, simulated hydraulic heads at supply wells are subject to errors associated with model discretization and well loss. An approach for correcting the simulated head at a pumping node is described here. The approach corrects for errors associated with model discretization and can incorporate the user's knowledge of well loss. The approach is model independent, can be applied to finite difference or finite element models, and allows the numerical model to remain somewhat coarsely discretized and therefore numerically efficient. Because the correction is implemented external to the numerical model, one important benefit of this approach is that a response matrix, reduced model approach can be supported even when nonlinear well loss is considered.

  12. Iranian EFL Teachers' and Learners' Perspectives of Oral Error Correction: Does the Timeline of Correction Matter?

    Science.gov (United States)

    Farahani, Ali Akbar; Salajegheh, Soory

    2015-01-01

    Although the provision of error correction is common in education, there are controversies regarding "when" correction is most effective and why it is effective. This study investigated the differences between Iranian English as a foreign language (EFL) teachers and learners regarding their perspectives towards the timeline of error…

  13. The Pedagogy of Error Correction: Surviving the Written Corrective Feedback Challenge

    Science.gov (United States)

    Guenette, Danielle

    2012-01-01

    Should we correct our students' language errors? Most ESL teachers would answer this question with a resounding Yes while at the same time wondering how to meet the challenge. The collaborative project reported below was designed to provide ESL teacher trainees with an opportunity to experience the ups and downs of providing corrective feedback on…

  14. Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels

    Science.gov (United States)

    Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo

    2017-01-01

    We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.

  15. Surgical options for correction of refractive error following cataract surgery.

    Science.gov (United States)

    Abdelghany, Ahmed A; Alio, Jorge L

    2014-01-01

    Refractive errors are frequently found following cataract surgery and refractive lens exchange. Accurate biometric analysis, selection and calculation of the adequate intraocular lens (IOL) and modern techniques for cataract surgery all contribute to achieving the goal of cataract surgery as a refractive procedure with no refractive error. However, in spite of all these advances, residual refractive error still occasionally occurs after cataract surgery and laser in situ keratomileusis (LASIK) can be considered the most accurate method for its correction. Lens-based procedures, such as IOL exchange or piggyback lens implantation are also possible alternatives especially in cases with extreme ametropia, corneal abnormalities, or in situations where excimer laser is unavailable. In our review, we have found that piggyback IOL is safer and more accurate than IOL exchange. Our aim is to provide a review of the recent literature regarding target refraction and residual refractive error in cataract surgery.

  16. Quantum mass correction for the twisted kink

    CERN Document Server

    Pawellek, Michael

    2008-01-01

    We present an analytic result for the 1-loop quantum mass correction in semiclassical quantization for the twisted \\phi^4 kink on S^1 without explicit knowledge of the fluctuation spectrum. For this purpose we use the contour integral representation of the spectral zeta function. By solving the Bethe ansatz equations for the n=2 Lame equation we obtain an analytic expression for the corresponding spectral discriminant. We discuss the renormalization issues of this model. An energetically preferred size for the compact space is finally obtained.

  17. Engineering autonomous error correction in stabilizer codes at finite temperature

    Science.gov (United States)

    Freeman, C. Daniel; Herdman, C. M.; Whaley, K. B.

    2017-07-01

    We present an error-correcting protocol that enhances the lifetime of stabilizer code-based qubits which are susceptible to the creation of pairs of localized defects (due to stringlike error operators) at finite temperature, such as the toric code. The primary tool employed is periodic application of a local, unitary operator, which exchanges defects and thereby translates localized excitations. Crucially, the protocol does not require any measurements of stabilizer operators and therefore can be used to enhance the lifetime of a qubit in the absence of such experimental resources.

  18. Anthropometric data error detecting and correction with a computer

    Science.gov (United States)

    Chesak, D. D.

    1981-01-01

    Data obtained with automated anthropometric data aquisition equipment was examined for short term errors. The least squares curve fitting technique was used to ascertain which data values were erroneous and to replace them, if possible, with corrected values. Errors were due to random reflections of light, masking of the light rays, and other types of optical and electrical interference. It was found that the signals were impossible to eliminate from the initial data produced by the television cameras, and that this was primarily a software problem requiring a digital computer to refine the data off line. The specific data of interest was related to the arm reach envelope of a human being.

  19. Atmospheric Error Correction of the Laser Beam Ranging

    Directory of Open Access Journals (Sweden)

    J. Saydi

    2014-01-01

    Full Text Available Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.

  20. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... for linearity is of particular interest as parameters of non-linear components vanish under the null. To solve the latter type of testing, we use the so-called sup tests, which here requires development of new (uniform) weak convergence results. These results are potentially useful in general for analysis...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...

  1. Error-finding and error-correcting methods for the start-up of the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.J.; Clearwater, S.H.; Kleban, S.D.; Selig, L.J.

    1987-02-01

    During the commissioning of an accelerator, storage ring, or beam transfer line, one of the important tasks of an accelertor physicist is to check the first-order optics of the beam line and to look for errors in the system. Conceptually, it is important to distinguish between techniques for finding the machine errors that are the cause of the problem and techniques for correcting the beam errors that are the result of the machine errors. In this paper we will limit our presentation to certain applications of these two methods for finding or correcting beam-focus errors and beam-kick errors that affect the profile and trajectory of the beam respectively. Many of these methods have been used successfully in the commissioning of SLC systems. In order not to waste expensive beam time we have developed and used a beam-line simulator to test the ideas that have not been tested experimentally. To save valuable physicist's time we have further automated the beam-kick error-finding procedures by adopting methods from the field of artificial intelligence to develop a prototype expert system. Our experience with this prototype has demonstrated the usefulness of expert systems in solving accelerator control problems. The expert system is able to find the same solutions as an expert physicist but in a more systematic fashion. The methods used in these procedures and some of the recent applications will be described in this paper.

  2. Cerebellar substrates for error correction in motor conditioning.

    Science.gov (United States)

    Gluck, M A; Allen, M T; Myers, C E; Thompson, R F

    2001-11-01

    The authors evaluate a mapping of Rescorla and Wagner's (1972) behavioral model of classical conditioning onto the cerebellar substrates for motor reflex learning and illustrate how the limitations of the Rescorla-Wagner model are just as useful as its successes for guiding the development of new psychobiological theories of learning. They postulate that the inhibitory pathway that returns conditioned response information from the cerebellar interpositus nucleus back to the inferior olive is the neural basis for the error correction learning proposed by Rescorla and Wagner (Gluck, Myers, & Thompson, 1994; Thompson, 1986). The authors' cerebellar model expects that behavioral processes described by the Rescorla-Wagner model will be localized within the cerebellum and related brain stem structures, whereas behavioral processes beyond the scope of the Rescorla-Wagner model will depend on extracerebellar structures such as the hippocampus and related cortical regions. Simulations presented here support both implications. Several novel implications of the authors' cerebellar error-correcting model are described including a recent empirical study by Kim, Krupa, and Thompson (1998), who verified that suppressing the putative error correction pathway should interfere with the Kamin (1969) blocking effect, a behavioral manifestation of error correction learning. The authors also discuss the model's implications for understanding the limits of cerebellar contributions to associative learning and how this informs our understanding of hippocampal function in conditioning. This leads to a more integrative view of the neural substrates of conditioning in which the authors' real-time circuit-level model of the cerebellum can be viewed as a generalization of the long-term memory module of Gluck and Myers' (1993) trial-level theory of cerebellar-hippocampal interaction in motor conditioning.

  3. Forecasting the price of gold: An error correction approach

    Directory of Open Access Journals (Sweden)

    Kausik Gangopadhyay

    2016-03-01

    Full Text Available Gold prices in the Indian market may be influenced by a multitude of factors such as the value of gold in investment decisions, as an inflation hedge, and in consumption motives. We develop a model to explain and forecast gold prices in India, using a vector error correction model. We identify investment decision and inflation hedge as prime movers of the data. We also present out-of-sample forecasts of our model and the related properties.

  4. Equation-Method for correcting clipping errors in OFDM signals.

    Science.gov (United States)

    Bibi, Nargis; Kleerekoper, Anthony; Muhammad, Nazeer; Cheetham, Barry

    2016-01-01

    Orthogonal frequency division multiplexing (OFDM) is the digital modulation technique used by 4G and many other wireless communication systems. OFDM signals have significant amplitude fluctuations resulting in high peak to average power ratios which can make an OFDM transmitter susceptible to non-linear distortion produced by its high power amplifiers (HPA). A simple and popular solution to this problem is to clip the peaks before an OFDM signal is applied to the HPA but this causes in-band distortion and introduces bit-errors at the receiver. In this paper we discuss a novel technique, which we call the Equation-Method, for correcting these errors. The Equation-Method uses the Fast Fourier Transform to create a set of simultaneous equations which, when solved, return the amplitudes of the peaks before they were clipped. We show analytically and through simulations that this method can, correct all clipping errors over a wide range of clipping thresholds. We show that numerical instability can be avoided and new techniques are needed to enable the receiver to differentiate between correctly and incorrectly received frequency-domain constellation symbols.

  5. The contour method cutting assumption: error minimization and correction

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Kastengren, Alan L [ANL

    2010-01-01

    The recently developed contour method can measure 2-D, cross-sectional residual-stress map. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contours of the new surfaces created by the cut, which will not be flat if residual stresses are relaxed by the cutting, are then measured and used to calculate the original residual stresses. The precise nature of the assumption about the cut is presented theoretically and is evaluated experimentally. Simply assuming a flat cut is overly restrictive and misleading. The critical assumption is that the width of the cut, when measured in the original, undeformed configuration of the body is constant. Stresses at the cut tip during cutting cause the material to deform, which causes errors. The effect of such cutting errors on the measured stresses is presented. The important parameters are quantified. Experimental procedures for minimizing these errors are presented. An iterative finite element procedure to correct for the errors is also presented. The correction procedure is demonstrated on experimental data from a steel beam that was plastically bent to put in a known profile of residual stresses.

  6. Error Correcting Coding for a Non-symmetric Ternary Channel

    CERN Document Server

    Bitouze, Nicolas; Rosnes, Eirik

    2009-01-01

    Ternary channels can be used to model the behavior of some memory devices, where information is stored in three different levels. In this paper, error correcting coding for a ternary channel where some of the error transitions are not allowed, is considered. The resulting channel is non-symmetric, therefore classical linear codes are not optimal for this channel. We define the maximum-likelihood (ML) decoding rule for ternary codes over this channel and show that it is complex to compute, since it depends on the channel error probability. A simpler alternative decoding rule which depends only on code properties, called $\\da$-decoding, is then proposed. It is shown that $\\da$-decoding and ML decoding are equivalent, i.e., $\\da$-decoding is optimal, under certain conditions. Assuming $\\da$-decoding, we characterize the error correcting capabilities of ternary codes over the non-symmetric ternary channel. We also derive an upper bound and a constructive lower bound on the size of codes, given the code length and...

  7. A precise error bound for quantum phase estimation.

    Directory of Open Access Journals (Sweden)

    James M Chappell

    Full Text Available Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by ensuring symmetry in the error definitions, an exact formula can be found. This new approach may also have value in solving other related problems in quantum computing, where an expected error is calculated. Expressions for two special cases of the formula are also developed, in the limit as the number of qubits in the quantum computer approaches infinity and in the limit as the extra added qubits to improve reliability goes to infinity. It is found that this formula is useful in validating computer simulations of the phase estimation procedure and in avoiding the overestimation of the number of qubits required in order to achieve a given reliability. This formula thus brings improved precision in the design of quantum computers.

  8. Quantum loop corrections of charged dS black hole

    CERN Document Server

    Naji, J

    2016-01-01

    In this paper, a charged black hole in de Sitter space considered and logarithmic corrected entropy used to study thermodynamics. Logarithmic corrections of entropy comes from thermal fluctuations which plays role of quantum loop corrections. In that case we are able to study the effect of quantum loop on the black hole thermodynamics and statistics. As black hole is a gravitational object, so it helps to obtain some information about the quantum gravity.

  9. Quantum Mechanical Corrections to the Schwarzschild Black Hole Metric

    CERN Document Server

    Bargueño, P; Nowakowski, M; Batic, D

    2016-01-01

    Motivated by quantum mechanical corrections to the Newtonian potential, which can be translated into an $\\hbar$-correction to the $g_{00}$ component of the Schwarzschild metric, we construct a quantum mechanically corrected metric assuming $-g_{00}=g^{rr}$. We show how the Bekenstein black hole entropy $S$ receives its logarithmic contribution provided the quantum mechanical corrections to the metric are negative. In this case the standard horizon at the Schwarzschild radius $r_S$ increases by small terms proportional to $\\hbar$ and a remnant of the order of Planck mass emerges. We contrast these results with a positive correction to the metric which, apart from a corrected Schwarzschild horizon, leads to a new purely quantum mechanical horizon. In such a case the quantum mechanical corrections to the entropy are logarithmic and polynomial.

  10. Correcting the optimal resampling-based error rate by estimating the error rate of wrapper algorithms.

    Science.gov (United States)

    Bernau, Christoph; Augustin, Thomas; Boulesteix, Anne-Laure

    2013-09-01

    High-dimensional binary classification tasks, for example, the classification of microarray samples into normal and cancer tissues, usually involve a tuning parameter. By reporting the performance of the best tuning parameter value only, over-optimistic prediction errors are obtained. For correcting this tuning bias, we develop a new method which is based on a decomposition of the unconditional error rate involving the tuning procedure, that is, we estimate the error rate of wrapper algorithms as introduced in the context of internal cross-validation (ICV) by Varma and Simon (2006, BMC Bioinformatics 7, 91). Our subsampling-based estimator can be written as a weighted mean of the errors obtained using the different tuning parameter values, and thus can be interpreted as a smooth version of ICV, which is the standard approach for avoiding tuning bias. In contrast to ICV, our method guarantees intuitive bounds for the corrected error. Additionally, we suggest to use bias correction methods also to address the conceptually similar method selection bias that results from the optimal choice of the classification method itself when evaluating several methods successively. We demonstrate the performance of our method on microarray and simulated data and compare it to ICV. This study suggests that our approach yields competitive estimates at a much lower computational price.

  11. Universal control and error correction in multi-qubit spin registers in diamond.

    Science.gov (United States)

    Taminiau, T H; Cramer, J; van der Sar, T; Dobrovitski, V V; Hanson, R

    2014-03-01

    Quantum registers of nuclear spins coupled to electron spins of individual solid-state defects are a promising platform for quantum information processing. Pioneering experiments selected defects with favourably located nuclear spins with particularly strong hyperfine couplings. To progress towards large-scale applications, larger and deterministically available nuclear registers are highly desirable. Here, we realize universal control over multi-qubit spin registers by harnessing abundant weakly coupled nuclear spins. We use the electron spin of a nitrogen-vacancy centre in diamond to selectively initialize, control and read out carbon-13 spins in the surrounding spin bath and construct high-fidelity single- and two-qubit gates. We exploit these new capabilities to implement a three-qubit quantum-error-correction protocol and demonstrate the robustness of the encoded state against applied errors. These results transform weakly coupled nuclear spins from a source of decoherence into a reliable resource, paving the way towards extended quantum networks and surface-code quantum computing based on multi-qubit nodes.

  12. Piggybacking intraocular implants to correct pseudophakic refractive error.

    Science.gov (United States)

    Gayton, J L; Sanders, V; Van der Karr, M; Raanan, M G

    1999-01-01

    To determine the safety and efficacy of implanting a second intraocular lens (IOL) to correct pseudophakic refractive error. Noncomparative, prospective, consecutive case series. Eight eyes of eight normal pseudophakes and seven eyes of seven postpenetrating keratoplasty (PK) pseudophakes were included in the study. A second intraocular lens (IOL) was implanted anterior to the first in each eye in the study. Efficacy was determined based on the achieved refractive correction and Snellen uncorrected visual acuity measurements. Safety was determined based on loss of best-corrected visual acuity and operative and postoperative complications. Before surgery, spherical equivalents ranged from -5.12 diopters (D) to 7.5 D, with a mean absolute deviation from emmetropia of 3.38 D (1.62). After surgery, spherical equivalents ranged from -2.75 D to 0.5 D, with a mean absolute deviation from emmetropia of 1.21 D (0.90). Before surgery, only 7% of patients had 20/40 or better uncorrected vision, whereas after surgery, 50% had that level of vision. Implanting a second IOL is a viable option for correcting pseudophakic refractive error.

  13. Coordinated joint motion control system with position error correction

    Energy Technology Data Exchange (ETDEWEB)

    Danko, George (Reno, NV)

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  14. Coordinated joint motion control system with position error correction

    Energy Technology Data Exchange (ETDEWEB)

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  15. On Network-Error Correcting Convolutional Codes under the BSC Edge Error Model

    CERN Document Server

    Prasad, K

    2010-01-01

    Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error $p_e$($0\\leq p_e<0.5$). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small $p_e$ should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low $p_e$ and high $p_e$ regimes. For the low $p_e$ regime, convolutional codes with g...

  16. A Quantum Theoretical Explanation for Probability Judgment Errors

    Science.gov (United States)

    Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.

    2011-01-01

    A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…

  17. A Quantum Theoretical Explanation for Probability Judgment Errors

    Science.gov (United States)

    Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.

    2011-01-01

    A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…

  18. ERROR CORRECTION METHOD FOR SEQUENCING DATA WITH INSERTIONS AND DELETIONS

    Directory of Open Access Journals (Sweden)

    A. V. Alexandrov

    2016-01-01

    Full Text Available Subject of Research.A method for error correction for sequencing reads of a haploid organism with insertions and deletions was developed. It was tested on two libraries: a synthesized dataset for Escherichia coli bacterium and a real dataset of reads for Pseudomonas stutzeri. Method. The method is based on using k-mers but only for finding reads that are close to each other. For the close reads a consensus string is created which is then used for correcting errors in the initial reads. Main Results. The algorithm is implemented as a separated program. The program has been tested on both real and synthesized data. The method performance is higher than that of the other known methods (N50 metric was used as well as total contig length and maximal contig length as metrics for comparison. Practical Relevance. The method can be used together with known genome assembly methods not suitable for application with the reads containing insertion and deletion errors.

  19. Algorithm for correcting optimization convergence errors in Eclipse.

    Science.gov (United States)

    Zacarias, Albert S; Mills, Michael D

    2009-10-14

    IMRT plans generated in Eclipse use a fast algorithm to evaluate dose for optimization and a more accurate algorithm for a final dose calculation, the Analytical Anisotropic Algorithm. The use of a fast optimization algorithm introduces optimization convergence errors into an IMRT plan. Eclipse has a feature where optimization may be performed on top of an existing base plan. This feature allows for the possibility of arriving at a recursive solution to optimization that relies on the accuracy of the final dose calculation algorithm and not the optimizer algorithm. When an IMRT plan is used as a base plan for a second optimization, the second optimization can compensate for heterogeneity and modulator errors in the original base plan. Plans with the same field arrangement as the initial base plan may be added together by adding the initial plan optimal fluence to the dose correcting plan optimal fluence.A simple procedure to correct for optimization errors is presented that may be implemented in the Eclipse treatment planning system, along with an Excel spreadsheet to add optimized fluence maps together.

  20. The Relevance of Second Language Acquisition Theory to the Written Error Correction Debate

    Science.gov (United States)

    Polio, Charlene

    2012-01-01

    The controversies surrounding written error correction can be traced to Truscott (1996) in his polemic against written error correction. He claimed that empirical studies showed that error correction was ineffective and that this was to be expected "given the nature of the correction process and "the nature of language learning" (p. 328, emphasis…

  1. Non-binary unitary error bases and quantum codes

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.

    1996-06-01

    Error operator bases for systems of any dimension are defined and natural generalizations of the bit-flip/ sign-change error basis for qubits are given. These bases allow generalizing the construction of quantum codes based on eigenspaces of Abelian groups. As a consequence, quantum codes can be constructed form linear codes over {ital Z}{sub {ital n}} for any {ital n}. The generalization of the punctured code construction leads to many codes which permit transversal (i.e. fault tolerant) implementations of certain operations compatible with the error basis.

  2. Tutorial on Reed-Solomon error correction coding

    Science.gov (United States)

    Geisel, William A.

    1990-01-01

    This tutorial attempts to provide a frank, step-by-step approach to Reed-Solomon (RS) error correction coding. RS encoding and RS decoding both with and without erasing code symbols are emphasized. There is no need to present rigorous proofs and extreme mathematical detail. Rather, the simple concepts of groups and fields, specifically Galois fields, are presented with a minimum of complexity. Before RS codes are presented, other block codes are presented as a technical introduction into coding. A primitive (15, 9) RS coding example is then completely developed from start to finish, demonstrating the encoding and decoding calculations and a derivation of the famous error-locator polynomial. The objective is to present practical information about Reed-Solomon coding in a manner such that it can be easily understood.

  3. Random access to mobile networks with advanced error correction

    Science.gov (United States)

    Dippold, Michael

    1990-01-01

    A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.

  4. On the role of memory errors in quantum repeaters

    CERN Document Server

    Hartmann, L; Dür, W; Kraus, B

    2006-01-01

    We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum communication. We show that the communication distance is limited in standard operation mode due to memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these limitations by (i) improving local memory, and (ii) introducing two new operational modes of the quantum repeater. In both operational modes, the repeater is run blindly, i.e. without waiting for classical signals to arrive. In the first scheme, entanglement purification protocols based on one-way classical communication are used allowing to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are very stringent. The second scheme makes use of entanglement purification protocols with two-way classical communication and inherits the favorable error thresholds of the repeater run in standard mode. One can increase the possible communication distance by an o...

  5. Rydberg-interaction-based quantum gates free from blockade error

    CERN Document Server

    Shi, Xiao-Feng

    2016-01-01

    Accurate quantum gates are basic elements for building quantum computers. There has been great interest in designing quantum gates by using blockade effect of Rydberg atoms recently. The fidelity and operation speed of these gates, however, are fundamentally limited by the blockade error. Here we propose another type of quantum gates, which are based on Rydberg blockade effect, yet free from any blockade error. In contrast to the `blocking' method in previous schemes, we use Rydberg energy shift to realise a rational generalised Rabi frequency so that a novel $\\pi$ phase for one input state of the gate emerges. This leads to an accurate Rydberg-blockade based two-qubit quantum gate that can operate in a $0.1\\mu s$ timescale or faster thanks to that it operates by a Rabi frequency which is comparable to the blockade shift.

  6. Adaptive Forward Error Correction for Energy Efficient Optical Transport Networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2013-01-01

    In this paper we propose a novel scheme for on the fly code rate adjustment for forward error correcting (FEC) codes on optical links. The proposed scheme makes it possible to adjust the code rate independently for each optical frame. This allows for seamless rate adaption based on the link state...... of the optical light path and the required amount of throughput going towards the destination node. The result is a dynamic FEC, which can be used to optimize the connections for throughput and/or energy efficiency, depending on the current demand....

  7. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  8. Error correction and fast detectors implemented by ultrafast neuronal plasticity.

    Science.gov (United States)

    Vardi, Roni; Marmari, Hagar; Kanter, Ido

    2014-04-01

    We experimentally show that the neuron functions as a precise time integrator, where the accumulated changes in neuronal response latencies, under complex and random stimulation patterns, are solely a function of a global quantity, the average time lag between stimulations. In contrast, momentary leaps in the neuronal response latency follow trends of consecutive stimulations, indicating ultrafast neuronal plasticity. On a circuit level, this ultrafast neuronal plasticity phenomenon implements error-correction mechanisms and fast detectors for misplaced stimulations. Additionally, at moderate (high) stimulation rates this phenomenon destabilizes (stabilizes) a periodic neuronal activity disrupted by misplaced stimulations.

  9. An investigation of error correcting techniques for OMV data

    Science.gov (United States)

    Ingels, Frank; Fryer, John

    1992-01-01

    Papers on the following topics are presented: considerations of testing the Orbital Maneuvering Vehicle (OMV) system with CLASS; OMV CLASS test results (first go around); equivalent system gain available from R-S encoding versus a desire to lower the power amplifier from 25 watts to 20 watts for OMV; command word acceptance/rejection rates for OMV; a memo concerning energy-to-noise ratio for the Viterbi-BSC Channel and the impact of Manchester coding loss; and an investigation of error correcting techniques for OMV and Advanced X-ray Astrophysics Facility (AXAF).

  10. Error correction method and apparatus for electronic timepieces

    Science.gov (United States)

    Davidson, J. R.; Heyman, J. S. (Inventor)

    1983-01-01

    A method and apparatus for correcting errors in an electronic digital timepiece that includes an oscillator which has a 2 in. frequency output, an n-stage frequency divider for reducing the oscillator output frequency to a time keeping frequency, and means for displaying the count of the time keeping frequency. In first and second embodiments of the invention the timepiece is synchronized with a time standard at the beginning of the period of time T. In the first embodiment of the invention the timepiece user observes E (the difference between the time standard and the timepiece time at the end of the period T) and then operates a switch to correct the time of the timepiece and to obtain a count for E. In the second embodiment of the invention, the user operates a switch at the beginning of T and at the end of T and a count for E is obtained electronically.

  11. Analysis and Correction of Systematic Height Model Errors

    Science.gov (United States)

    Jacobsen, K.

    2016-06-01

    The geometry of digital height models (DHM) determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC). Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3) has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP), but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM) digital surface model (DSM) or the new AW3D30 DSM, based on ALOS PRISM images, are

  12. ANALYSIS AND CORRECTION OF SYSTEMATIC HEIGHT MODEL ERRORS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-06-01

    Full Text Available The geometry of digital height models (DHM determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC. Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3 has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP, but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM digital surface model (DSM or the new AW3D30 DSM, based on ALOS

  13. Efficient measurement of quantum gate error by interleaved randomized benchmarking.

    Science.gov (United States)

    Magesan, Easwar; Gambetta, Jay M; Johnson, B R; Ryan, Colm A; Chow, Jerry M; Merkel, Seth T; da Silva, Marcus P; Keefe, George A; Rothwell, Mary B; Ohki, Thomas A; Ketchen, Mark B; Steffen, M

    2012-08-24

    We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates X(π/2) and Y(π/2). These bounded values provide better estimates of the average error than those extracted via quantum process tomography.

  14. The Learner as Researcher: Student Concordancing and Error Correction

    Directory of Open Access Journals (Sweden)

    Jaqueline Mull

    2013-03-01

    Full Text Available The idea of language learners using a concordancer, to autonomously investigate vocabulary and structure in a target language was suggested over 30 years ago. Since then, some research has explored this idea further, but the potential benefit of concordancers in the hands of learners is still largely unexplored – especially with regards to structure. This study investigates what learners are able to accomplish when asked to investigate an English corpus with a concordancer in order to correct grammar errors in an essay. The study was conducted after only 30 minutes of training on a concordancer. Participants reactions to the software and to analyzing the target language autonomously are also shared. While participants’ reactions were mixed with regards to using a concordacer for error correction, all participants expressed an interest in using a concordancer during their writing process – something which was beyond the scope of this study – but which suggests a potential value for learner exposure to concordancers for autonomous language investigation.

  15. Semantically Secure Symmetric Encryption with Error Correction for Distributed Storage

    Directory of Open Access Journals (Sweden)

    Juha Partala

    2017-01-01

    Full Text Available A distributed storage system (DSS is a fundamental building block in many distributed applications. It applies linear network coding to achieve an optimal tradeoff between storage and repair bandwidth when node failures occur. Additively homomorphic encryption is compatible with linear network coding. The homomorphic property ensures that a linear combination of ciphertext messages decrypts to the same linear combination of the corresponding plaintext messages. In this paper, we construct a linearly homomorphic symmetric encryption scheme that is designed for a DSS. Our proposal provides simultaneous encryption and error correction by applying linear error correcting codes. We show its IND-CPA security for a limited number of messages based on binary Goppa codes and the following assumption: when dividing a scrambled generator matrix G^ into two parts G1^ and G2^, it is infeasible to distinguish G2^ from random and to find a statistical connection between G1^ and G2^. Our infeasibility assumptions are closely related to those underlying the McEliece public key cryptosystem but are considerably weaker. We believe that the proposed problem has independent cryptographic interest.

  16. Laser-error-correction control unit for machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Burleson, R.R.

    1978-05-23

    An ultraprecision machining capability is needed for the laser fusion program. For this work, a precision air-bearing spindle has been mounted horizontally on a modified vertical column of a Moore Number 3 measuring machine base located in a development laboratory at the Oak Ridge Y-12 Plant. An open-loop control system previously installed on this machine was inadequate to meet the upcoming requirements since accuracy is limited to 0.5 ..mu..m by the errors in the machine's gears and leadscrew. A new controller was needed that could monitor the actual position of the machine and perform real-time error correction on the programmed tool path. It was necessary that this project: (1) attain an optimum tradeoff between hardware and software; (2) use a modular design for easy maintenance; (3) use a standard NC tape service; (4) drive the x and y axes with a positioning resolution of 5.08 nm and a feedback resolution of 10 nm; (5) drive the x and y axis motors at a velocity of 0.05 cm/sec in the contouring mode and 0.18 cm/sec in the positioning mode; (6) eliminate the possibility of tape-reader errors; and (7) allow editing of the part description data. The work that was done to develop and install the new machine controller is described.

  17. Quantum money with nearly optimal error tolerance

    Science.gov (United States)

    Amiri, Ryan; Arrazola, Juan Miguel

    2017-06-01

    We present a family of quantum money schemes with classical verification which display a number of benefits over previous proposals. Our schemes are based on hidden matching quantum retrieval games and they tolerate noise up to 23 % , which we conjecture reaches 25 % asymptotically as the dimension of the underlying hidden matching states is increased. Furthermore, we prove that 25 % is the maximum tolerable noise for a wide class of quantum money schemes with classical verification, meaning our schemes are almost optimally noise tolerant. We use methods in semidefinite programming to prove security in a substantially different manner to previous proposals, leading to two main advantages: first, coin verification involves only a constant number of states (with respect to coin size), thereby allowing for smaller coins; second, the reusability of coins within our scheme grows linearly with the size of the coin, which is known to be optimal. Last, we suggest methods by which the coins in our protocol could be implemented using weak coherent states and verified using existing experimental techniques, even in the presence of detector inefficiencies.

  18. MBTI Personality Type and the Utility of Error Correction among English Majors in Taiwan

    Science.gov (United States)

    Jones, Nathan Brian; Wang, Shun Hwa

    2004-01-01

    The issue of whether or not to correct errors in students' writing is controversial. Some scholars argue that error correction is helpful, while others argue that it is ineffective, perhaps even harmful. What is missing from the literature are studies about how error correction might affect the performance of specific types of students. This…

  19. The role of prior knowledge in error correction for younger and older adults.

    Science.gov (United States)

    Sitzman, Danielle M; Rhodes, Matthew G; Tauber, Sarah K; Liceralde, Van Rynald T

    2015-01-01

    Previous work has demonstrated that, when given feedback, younger adults are more likely to correct high-confidence errors compared with low-confidence errors, a finding termed the hypercorrection effect. Research examining the hypercorrection effect in both older and younger adults has demonstrated that the relationship between confidence and error correction was stronger for younger adults compared with older adults. Their results demonstrated that the relationship between confidence and error correction was stronger for younger adults compared with older adults. However, recent work suggests that error correction is largely related to prior knowledge, while confidence may primarily serve as a proxy for prior knowledge. Prior knowledge generally remains stable or increases with age; thus, the current experiment explored how both confidence and prior knowledge contributed to error correction in younger and older adults. Participants answered general knowledge questions, rated how confident they were that their response was correct, received correct answer feedback, and rated their prior knowledge of the correct response. Overall, confidence was related to error correction for younger adults, but this relationship was much smaller for older adults. However, prior knowledge was strongly related to error correction for both younger and older adults. Confidence alone played little unique role in error correction after controlling for the role of prior knowledge. These data demonstrate that prior knowledge largely predicts error correction and suggests that both older and younger adults can use their prior knowledge to effectively correct errors in memory.

  20. Quantum correction to classical gravitational interaction between two polarizable objects

    Science.gov (United States)

    Wu, Puxun; Hu, Jiawei; Yu, Hongwei

    2016-12-01

    When gravity is quantized, there inevitably exist quantum gravitational vacuum fluctuations which induce quadrupole moments in gravitationally polarizable objects and produce a quantum correction to the classical Newtonian interaction between them. Here, based upon linearized quantum gravity and the leading-order perturbation theory, we study, from a quantum field-theoretic prospect, this quantum correction between a pair of gravitationally polarizable objects treated as two-level harmonic oscillators. We find that the interaction potential behaves like r-11 in the retarded regime and r-10 in the near regime. Our result agrees with what were recently obtained in different approaches. Our study seems to indicate that linearized quantum gravity is robust in dealing with quantum gravitational effects at low energies.

  1. Overview of Quantum Error Prevention and Leakage Elimination

    CERN Document Server

    Byrd, M S; Lidar, D A; Byrd, Mark S.; Wu, Lian-Ao; Lidar, Daniel A.

    2004-01-01

    Quantum error prevention strategies will be required to produce a scalable quantum computing device and are of central importance in this regard. Progress in this area has been quite rapid in the past few years. In order to provide an overview of the achievements in this area, we discuss the three major classes of error prevention strategies, the abilities of these methods and the shortcomings. We then discuss the combinations of these strategies which have recently been proposed in the literature. Finally we present recent results in reducing errors on encoded subspaces using decoupling controls. We show how to generally remove mixing of an encoded subspace with external states (termed leakage errors) using decoupling controls. Such controls are known as ``leakage elimination operations'' or ``LEOs.''

  2. Error threshold in topological quantum-computing models with color codes

    Science.gov (United States)

    Katzgraber, Helmut; Bombin, Hector; Martin-Delgado, Miguel A.

    2009-03-01

    Dealing with errors in quantum computing systems is possibly one of the hardest tasks when attempting to realize physical devices. By encoding the qubits in topological properties of a system, an inherent protection of the quantum states can be achieved. Traditional topologically-protected approaches are based on the braiding of quasiparticles. Recently, a braid-less implementation using brane-net condensates in 3-colexes has been proposed. In 2D it allows the transversal implementation of the whole Clifford group of quantum gates. In this work, we compute the error threshold for this topologically-protected quantum computing system in 2D, by means of mapping its error correction process onto a random 3-body Ising model on a triangular lattice. Errors manifest themselves as random perturbation of the plaquette interaction terms thus introducing frustration. Our results from Monte Carlo simulations suggest that these topological color codes are similarly robust to perturbations as the toric codes. Furthermore, they provide more computational capabilities and the possibility of having more qubits encoded in the quantum memory.

  3. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... of the process in terms of stochastic and deter- ministic trends as well as stationary components. In particular, the behaviour of the cointegrating relations is described in terms of geo- metric ergodicity. Despite the fact that no deterministic terms are included, the process will have both stochastic trends...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  4. Transition State Theory: Variational Formulation, Dynamical Corrections, and Error Estimates

    Science.gov (United States)

    vanden-Eijnden, Eric

    2009-03-01

    Transition state theory (TST) is discussed from an original viewpoint: it is shown how to compute exactly the mean frequency of transition between two predefined sets which either partition phase space (as in TST) or are taken to be well separate metastable sets corresponding to long-lived conformation states (as necessary to obtain the actual transition rate constants between these states). Exact and approximate criterions for the optimal TST dividing surface with minimum recrossing rate are derived. Some issues about the definition and meaning of the free energy in the context of TST are also discussed. Finally precise error estimates for the numerical procedure to evaluate the transmission coefficient κS of the TST dividing surface are given, and it shown that the relative error on κS scales as 1/√κS when κS is small. This implies that dynamical corrections to the TST rate constant can be computed efficiently if and only if the TST dividing surface has a transmission coefficient κS which is not too small. In particular the TST dividing surface must be optimized upon (for otherwise κS is generally very small), but this may not be sufficient to make the procedure numerically efficient (because the optimal dividing surface has maximum κS, but this coefficient may still be very small).

  5. Detecting Positioning Errors and Estimating Correct Positions by Moving Window.

    Science.gov (United States)

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research.

  6. Quantum Corrections to the Newton Law

    CERN Document Server

    Chiarelli, Piero

    2016-01-01

    In this work the author derives the Galilean limit of the gravity obtained by using the quantum hydrodynamic approach. The result shows that the quantum interaction generates, in the weak gravity limit, a non zero contribution. The work calculates the small deviation from the Newotion law due to the quantum effects on gravity and analyzes the experimental features to validate, on heart laboratories, the theoretical model. The paper shows that this contribution explain the observation of the motion of the galaxies.

  7. The Effect of Error Correction vs. Error Detection on Iranian Pre-Intermediate EFL Learners' Writing Achievement

    Science.gov (United States)

    Abedi, Razie; Latifi, Mehdi; Moinzadeh, Ahmad

    2010-01-01

    This study tries to answer some ever-existent questions in writing fields regarding approaching the most effective ways to give feedback to students' errors in writing by comparing the effect of error correction and error detection on the improvement of students' writing ability. In order to achieve this goal, 60 pre-intermediate English learners…

  8. Multi-bit upset aware hybrid error-correction for cache in embedded processors

    Science.gov (United States)

    Jiaqi, Dong; Keni, Qiu; Weigong, Zhang; Jing, Wang; Zhenzhen, Wang; Lihua, Ding

    2015-11-01

    For the processor working in the radiation environment in space, it tends to suffer from the single event effect on circuits and system failures, due to cosmic rays and high energy particle radiation. Therefore, the reliability of the processor has become an increasingly serious issue. The BCH-based error correction code can correct multi-bit errors, but it introduces large latency overhead. This paper proposes a hybrid error correction approach that combines BCH and EDAC to correct both multi-bit and single-bit errors for caches with low cost. The proposed technique can correct up to four-bit error, and correct single-bit error in one cycle. Evaluation results show that, the proposed hybrid error-correction scheme can improve the performance of cache accesses up to 20% compared to the pure BCH scheme.

  9. THE SELF-CORRECTION OF ENGLISH SPEECH ERRORS IN SECOND LANGUANGE LEARNING

    Directory of Open Access Journals (Sweden)

    Ketut Santi Indriani

    2015-05-01

    Full Text Available The process of second language (L2 learning is strongly influenced by the factors of error reconstruction that occur when the language is learned. Errors will definitely appear in the learning process. However, errors can be used as a step to accelerate the process of understanding the language. Doing self-correction (with or without giving cues is one of the examples. In the aspect of speaking, self-correction is done immediately after the error appears. This study is aimed at finding (i what speech errors the L2 speakers are able to identify, (ii of the errors identified, what speech errors the L2 speakers are able to self correct and (iii whether the self-correction of speech error are able to immediately improve the L2 learning. Based on the data analysis, it was found that the majority identified errors are related to noun (plurality, subject-verb agreement, grammatical structure and pronunciation.. B2 speakers tend to correct errors properly. Of the 78% identified speech errors, as much as 66% errors could be self-corrected accurately by the L2 speakers. Based on the analysis, it was also found that self-correction is able to improve L2 learning ability directly. This is evidenced by the absence of repetition of the same error after the error had been corrected.

  10. Bounce Loop Quantum Cosmology Corrected Gauss-Bonnet Gravity

    CERN Document Server

    Haro, J; Myagky, A N; Odintsov, S D; Oikonomou, V K

    2015-01-01

    We develop a Gauss-Bonnet extension of Loop Quantum Cosmology, by introducing holonomy corrections in modified $F(\\mathcal{G})$ theories of gravity. Within the context of our formalism, we provide a perturbative expansion in the critical density, a parameter characteristic of Loop Quantum Gravity theories, and we result in having leading order corrections to the classical $F(\\mathcal{G})$ theories of gravity. After extensively discussing the formalism, we present a reconstruction method that makes possible to find the Loop Quantum Cosmology corrected $F(\\mathcal{G})$ theory that can realize various cosmological scenarios. Specifically, we studied exponential and power-law bouncing cosmologies, emphasizing on the behavior near the bouncing point and in some cases, the behavior for all the values of the cosmic time is obtained. We exemplify our theoretical constructions by using bouncing cosmologies, and we investigate which Loop Quantum Cosmology corrected Gauss-Bonnet modified gravities can successfully reali...

  11. Practical and Reliable Error Bars in Quantum Tomography.

    Science.gov (United States)

    Faist, Philippe; Renner, Renato

    2016-07-01

    Precise characterization of quantum devices is usually achieved with quantum tomography. However, most methods which are currently widely used in experiments, such as maximum likelihood estimation, lack a well-justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining error bars. We do so by introducing a novel representation of the output of the tomography procedure, the quantum error bars. This representation is (i) concise, being given in terms of few parameters, (ii) intuitive, providing a fair idea of the "spread" of the error, and (iii) useful, containing the necessary information for constructing confidence regions. The statements resulting from our method are formulated in terms of a figure of merit, such as the fidelity to a reference state. We present an algorithm for computing this representation and provide ready-to-use software. Our procedure is applied to actual experimental data obtained from two superconducting qubits in an entangled state, demonstrating the applicability of our method.

  12. Practical and Reliable Error Bars in Quantum Tomography

    Science.gov (United States)

    Faist, Philippe; Renner, Renato

    2016-07-01

    Precise characterization of quantum devices is usually achieved with quantum tomography. However, most methods which are currently widely used in experiments, such as maximum likelihood estimation, lack a well-justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining error bars. We do so by introducing a novel representation of the output of the tomography procedure, the quantum error bars. This representation is (i) concise, being given in terms of few parameters, (ii) intuitive, providing a fair idea of the "spread" of the error, and (iii) useful, containing the necessary information for constructing confidence regions. The statements resulting from our method are formulated in terms of a figure of merit, such as the fidelity to a reference state. We present an algorithm for computing this representation and provide ready-to-use software. Our procedure is applied to actual experimental data obtained from two superconducting qubits in an entangled state, demonstrating the applicability of our method.

  13. Experimentally feasible quantum erasure-correcting code for continuous variables

    DEFF Research Database (Denmark)

    Nisset, J.; Andersen, Ulrik Lund; Cerf, N.J.

    2008-01-01

    We devise a scheme that protects quantum coherent states of light from probabilistic losses, thus achieving the first continuous-variable quantum erasure-correcting code. If the occurrence of erasures can be probed, then the decoder enables, in principle, a perfect recovery of the original light ...

  14. Algorithm-supported visual error correction (AVEC) of heart rate measurements in dogs, Canis lupus familiaris.

    Science.gov (United States)

    Schöberl, Iris; Kortekaas, Kim; Schöberl, Franz F; Kotrschal, Kurt

    2015-12-01

    Dog heart rate (HR) is characterized by a respiratory sinus arrhythmia, and therefore makes an automatic algorithm for error correction of HR measurements hard to apply. Here, we present a new method of error correction for HR data collected with the Polar system, including (1) visual inspection of the data, (2) a standardized way to decide with the aid of an algorithm whether or not a value is an outlier (i.e., "error"), and (3) the subsequent removal of this error from the data set. We applied our new error correction method to the HR data of 24 dogs and compared the uncorrected and corrected data, as well as the algorithm-supported visual error correction (AVEC) with the Polar error correction. The results showed that fewer values were identified as errors after AVEC than after the Polar error correction (p error correction is more suitable for dog HR and HR variability than is the customized Polar error correction, especially because AVEC decreases the likelihood of Type I errors, preserves the natural variability in HR, and does not lead to a time shift in the data.

  15. An Opportunistic Error Correction Layer for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Shao Xiaoying

    2009-01-01

    Full Text Available Abstract We propose a novel cross layer scheme to reduce the power consumption of ADCs in OFDM systems. The ADCs in a receiver can consume up to 50% of the total baseband energy. Our scheme is based on resolution-adaptive ADCs and Fountain codes. In a wireless frequency-selective channel some subcarriers have good channel conditions and others are attenuated. The key part of the proposed system is that the dynamic range of ADCs can be reduced by discarding subcarriers that are attenuated by the channel. Correspondingly, the power consumption in ADCs can be decreased. In our approach, each subcarrier carries a Fountain-encoded packet. To protect Fountain-encoded packets against bit errors, an LDPC code has been used. The receiver only decodes subcarriers (i.e., Fountain-encoded packets with the highest SNR. Others are discarded. For that reason a LDPC code with a relatively high code rate can be used. The new error correction layer does not require perfect channel knowledge, so it can be used in a realistic system where the channel is estimated. With our approach, more than 70% of the energy consumption in the ADCs can be saved compared with the conventional IEEE 802.11a WLAN system under the same channel conditions and throughput. In addition, it requires 7.5 dB less SNR than the 802.11a system. To reduce the overhead of Fountain codes, we apply message passing and Gaussian elimination in the decoder. In this way, the overhead is 3% for a small block size (i.e., 500 packets. Using both methods results in an efficient system with low delay.

  16. An Opportunistic Error Correction Layer for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Xiaoying Shao

    2009-01-01

    Full Text Available We propose a novel cross layer scheme to reduce the power consumption of ADCs in OFDM systems. The ADCs in a receiver can consume up to 50% of the total baseband energy. Our scheme is based on resolution-adaptive ADCs and Fountain codes. In a wireless frequency-selective channel some subcarriers have good channel conditions and others are attenuated. The key part of the proposed system is that the dynamic range of ADCs can be reduced by discarding subcarriers that are attenuated by the channel. Correspondingly, the power consumption in ADCs can be decreased. In our approach, each subcarrier carries a Fountain-encoded packet. To protect Fountain-encoded packets against bit errors, an LDPC code has been used. The receiver only decodes subcarriers (i.e., Fountain-encoded packets with the highest SNR. Others are discarded. For that reason a LDPC code with a relatively high code rate can be used. The new error correction layer does not require perfect channel knowledge, so it can be used in a realistic system where the channel is estimated. With our approach, more than 70% of the energy consumption in the ADCs can be saved compared with the conventional IEEE 802.11a WLAN system under the same channel conditions and throughput. In addition, it requires 7.5 dB less SNR than the 802.11a system. To reduce the overhead of Fountain codes, we apply message passing and Gaussian elimination in the decoder. In this way, the overhead is 3% for a small block size (i.e., 500 packets. Using both methods results in an efficient system with low delay.

  17. Quantum circuit for security proof of quantum key distribution without encryption of error syndrome and noisy processing

    CERN Document Server

    Tamaki, Kiyoshi

    2010-01-01

    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.

  18. Augmented GNSS differential corrections minimum mean square error estimation sensitivity to spatial correlation modeling errors.

    Science.gov (United States)

    Kassabian, Nazelie; Lo Presti, Letizia; Rispoli, Francesco

    2014-06-11

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.

  19. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    Directory of Open Access Journals (Sweden)

    Nazelie Kassabian

    2014-06-01

    Full Text Available Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs. This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.

  20. Magnetic-field sensing with quantum error detection under the effect of energy relaxation

    Science.gov (United States)

    Matsuzaki, Yuichiro; Benjamin, Simon

    2017-03-01

    A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.

  1. Ancient DNA sequence revealed by error-correcting codes.

    Science.gov (United States)

    Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo

    2015-07-10

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.

  2. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Directory of Open Access Journals (Sweden)

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  3. 19 CFR 173.4 - Correction of clerical error, mistake of fact, or inadvertence.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Correction of clerical error, mistake of fact, or... clerical error, mistake of fact, or inadvertence. (a) Authority to review and correct. Even though a valid...)(1), Tariff Act of 1930, as amended (19 U.S.C. 1520(c)(1), a clerical error, mistake of fact,...

  4. Error Correction in the L2 Writing Classroom: What Do Students Think?

    Science.gov (United States)

    Lee, Icy

    2005-01-01

    Error correction research has focused mostly on teachers' strategies and their effects on student writing. Much less has been done to find out about students' beliefs and attitudes about teachers' feedback on errors. This study aimed to investigate L2 students' perceptions, beliefs, and attitudes about error correction in the writing classroom.…

  5. How EFL Students Can Use Google to Correct Their "Untreatable" Written Errors

    Science.gov (United States)

    Geiller, Luc

    2014-01-01

    This paper presents the findings of an experiment in which a group of 17 French post-secondary EFL learners used Google to self-correct several "untreatable" written errors. Whether or not error correction leads to improved writing has been much debated, some researchers dismissing it is as useless and others arguing that error feedback…

  6. Quantum corrections to the Mukhanov-Sasaki equations

    CERN Document Server

    Gomar, Laura Castelló; Marugán, Guillermo A Mena

    2016-01-01

    Recently, a lot of attention has been paid to the modifications of the power spectrum of primordial fluctuations caused by quantum cosmology effects. The origin of these modifications are corrections to the Mukhanov-Sasaki equations that govern the propagation of the primeval cosmological perturbations. The specific form of these corrections depends on a series of details of the quantization approach and of the prescription followed to implement it. Generally, nonetheless, the complexity of the theoretical quantum formulation is simplified in practice appealing to a semiclassical or effective approximation, in order to perform concrete numerical computations. In this work, we introduce technical tools and design a procedure to deal with these quantum corrections beyond the most direct approximations employed so far in the literature. In particular, by introducing an interaction picture, we extract the quantum dynamics of the homogeneous geometry in absence of scalar field potential and inhomogeneities, dynami...

  7. Quantum corrections in massive bigravity and new effective composite metrics

    Science.gov (United States)

    Heisenberg, Lavinia

    2015-05-01

    We compute the one-loop quantum corrections to the interactions between the two metrics of the ghost-free massive bigravity. When considering gravitons running in the loops, we show how the structure of the interactions gets destabilized at the quantum level, exactly in the same way as in its massive gravity limit. A priori one might have expected a better quantum behavior, however, the broken diffeomorphism invariance out of the two initial diffeomorphisms in bigravity has similar consequences at the quantum level as the broken diffeomorphism in massive gravity. From lessons of the generated quantum corrections through matter loops we propose yet other types of effective composite metrics to which the matter fields can couple. Among these new effective metrics there might be one or more that could provide interesting phenomenology and important cosmological implications.

  8. Quantum corrections in massive bigravity and new effective composite metrics

    CERN Document Server

    Heisenberg, Lavinia

    2014-01-01

    We compute the one-loop quantum corrections to the interactions between the two metrics of the ghost-free massive bigravity. When considering gravitons running in the loops, we show how the structure of the interactions gets destabilized at the quantum level, exactly in the same way as in its massive gravity limit. A priori one might have expected a better quantum behavior, however the broken diffeomorphism invariance out of the two initial diffeomorphisms in bigravity has similar consequences at the quantum level as the broken diffeomorphism in massive gravity. From lessons of the generated quantum corrections through matter loops we propose yet other types of effective composite metrics to which the matter fields can couple. Among these new effective metrics there might be one or more that could provide interesting phenomenology and important cosmological implications.

  9. On the quantum corrected gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ramón, E-mail: ramon.torres-herrera@upc.edu; Fayos, Francesc, E-mail: f.fayos@upc.edu

    2015-07-30

    Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.

  10. On the quantum corrected gravitational collapse

    Directory of Open Access Journals (Sweden)

    Ramón Torres

    2015-07-01

    Full Text Available Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.

  11. Energy efficiency of error correcting mechanisms for wireless communications

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    We consider the energy efficiency of error control mechanisms for wireless communication. Since high error rates are inevitable to the wireless environment, energy efficient error control is an important issue for mobile computing systems. Although good designed retransmission schemes can be optimal

  12. Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data

    KAUST Repository

    Allam, Amin

    2015-07-14

    Motivation: Next-generation sequencing generates large amounts of data affected by errors in the form of substitutions, insertions or deletions of bases. Error correction based on the high-coverage information, typically improves de novo assembly. Most existing tools can correct substitution errors only; some support insertions and deletions, but accuracy in many cases is low. Results: We present Karect, a novel error correction technique based on multiple alignment. Our approach supports substitution, insertion and deletion errors. It can handle non-uniform coverage as well as moderately covered areas of the sequenced genome. Experiments with data from Illumina, 454 FLX and Ion Torrent sequencing machines demonstrate that Karect is more accurate than previous methods, both in terms of correcting individual-bases errors (up to 10% increase in accuracy gain) and post de novo assembly quality (up to 10% increase in NGA50). We also introduce an improved framework for evaluating the quality of error correction.

  13. Studies on National Preparatory Students’English Oral Errors and Corrections

    Institute of Scientific and Technical Information of China (English)

    李媛媛

    2014-01-01

    This paper, based on the theory and teaching practice, presents a tentative analysis about English oral errors commonly made by university’s national preparatory students. At first, I analyze the causes of oral errors, then review teachers ’different atti-tude towards oral errors and finally propose some main principles and factors and possible strategies of oral error corrections.

  14. 5 CFR 1605.16 - Claims for correction of employing agency errors; time limitations.

    Science.gov (United States)

    2010-01-01

    ... of employing agency errors; time limitations. (a) Agency's discovery of error. Upon discovery of an... it, but, in any event, the agency must act promptly in doing so. (b) Participant's discovery of error. If an agency fails to discover an error of which a participant has knowledge involving the correct...

  15. Primordial tensor modes from quantum corrected inflation

    DEFF Research Database (Denmark)

    Joergensen, Jakob; Sannino, Francesco; Svendsen, Ole

    2014-01-01

    . Finally we confront these theories with the Planck and BICEP2 data. We demonstrate that the discovery of primordial tensor modes by BICEP2 require the presence of sizable quantum departures from the $\\phi^4$-Inflaton model for the non-minimally coupled scenario which we parametrize and quantify. We...

  16. Reed-Solomon error-correction as a software patch mechanism.

    Energy Technology Data Exchange (ETDEWEB)

    Pendley, Kevin D.

    2013-11-01

    This report explores how error-correction data generated by a Reed-Solomon code may be used as a mechanism to apply changes to an existing installed codebase. Using the Reed-Solomon code to generate error-correction data for a changed or updated codebase will allow the error-correction data to be applied to an existing codebase to both validate and introduce changes or updates from some upstream source to the existing installed codebase.

  17. Band extension in digital methods of transfer function determination – signal conditioners asymmetry error corrections

    Directory of Open Access Journals (Sweden)

    Zbigniew Staroszczyk

    2014-12-01

    Full Text Available [b]Abstract[/b]. In the paper, the calibrating method for error correction in transfer function determination with the use of DSP has been proposed. The correction limits/eliminates influence of transfer function input/output signal conditioners on the estimated transfer functions in the investigated object. The method exploits frequency domain conditioning paths descriptor found during training observation made on the known reference object.[b]Keywords[/b]: transfer function, band extension, error correction, phase errors

  18. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  19. Local Influence on the Error-Correction Variable in a Cointegrated System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The concept of cointegration describes an equilibrium relationship among a set of time-varying variables,and the cointegrated relationship can be represented through an error-correction model (ECM). The error-correction variable, which represents the short-run discrepancy from the equilibrium state in a cointegrated system, plays an important role in the ECM. It is natural to ask how the error-correction mechanism works, or equivalently, how the short-run discrepancy affects the development of the cointegrated system? This paper examines the effect or local influence on the error-correction variable in an error-correction model. Following the argument of the second-order approach to local influence suggested by reference [5], we develop a diagnostic statistic to examine the local influence on the estimation of the parameter associated with the error-correction variable in an ECM. An empirical example is presented to illustrate the application of the proposed diagnostic. We find that the short-run discrepancy may have strong influence on the estimation of the parameter associated with the error-correction model. It is the error-correction variable that the short-run discrepancies can be incorporated through the error-correction mechanism.``

  20. On Employing the Appropriate Error Correction Strategies to Promote Students' English learning in TEFL

    Institute of Scientific and Technical Information of China (English)

    王雪珍

    2009-01-01

    Learning English as a foreign language is a step-by-step process,during which Chinese students will inevitably make some errors.It is important for teachers to know when and how to correct students' errors.By employing error conection skillfully and appropriately,we can develop the students' self-confidence and self-esteem.This paper mainly discusses the interaction and collaboration learning in task-based learning,which has been proved to be scientific and effective,is advocated in English learning and teaching.Accordingly,the self-correction with teacher's help and the peer correction arethemost effective waysfor students' error correction.

  1. A temperature error correction method for a naturally ventilated radiation shield

    Science.gov (United States)

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Rrenhui

    2016-11-01

    Due to solar radiation exposure, air flowing inside a naturally ventilated radiation shield may produce a measurement error of 0.8 °C or higher. To improve the air temperature observation accuracy, a temperature error correction method is proposed. The correction method is based on a Computational Fluid Dynamics (CFD) method and a Genetic Algorithm (GA) method. The CFD method is implemented to analyze and calculate the temperature errors of a naturally ventilated radiation shield under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean temperature error given by measurements is 0.36 °C, and the mean temperature error given by correction equation is 0.34 °C. This correction equation allows the temperature error to be reduced by approximately 95%. The mean absolute error (MAE) and the root mean square error (RMSE) between the temperature errors given by the correction equation and the temperature errors given by the measurements are 0.07 °C and 0.08 °C, respectively.

  2. Iterative error correction of long sequencing reads maximizes accuracy and improves contig assembly.

    Science.gov (United States)

    Sameith, Katrin; Roscito, Juliana G; Hiller, Michael

    2017-01-01

    Next-generation sequencers such as Illumina can now produce reads up to 300 bp with high throughput, which is attractive for genome assembly. A first step in genome assembly is to computationally correct sequencing errors. However, correcting all errors in these longer reads is challenging. Here, we show that reads with remaining errors after correction often overlap repeats, where short erroneous k-mers occur in other copies of the repeat. We developed an iterative error correction pipeline that runs the previously published String Graph Assembler (SGA) in multiple rounds of k-mer-based correction with an increasing k-mer size, followed by a final round of overlap-based correction. By combining the advantages of small and large k-mers, this approach corrects more errors in repeats and minimizes the total amount of erroneous reads. We show that higher read accuracy increases contig lengths two to three times. We provide SGA-Iteratively Correcting Errors (https://github.com/hillerlab/IterativeErrorCorrection/) that implements iterative error correction by using modules from SGA.

  3. Iterative error correction of long sequencing reads maximizes accuracy and improves contig assembly

    Science.gov (United States)

    Sameith, Katrin; Roscito, Juliana G.

    2017-01-01

    Next-generation sequencers such as Illumina can now produce reads up to 300 bp with high throughput, which is attractive for genome assembly. A first step in genome assembly is to computationally correct sequencing errors. However, correcting all errors in these longer reads is challenging. Here, we show that reads with remaining errors after correction often overlap repeats, where short erroneous k-mers occur in other copies of the repeat. We developed an iterative error correction pipeline that runs the previously published String Graph Assembler (SGA) in multiple rounds of k-mer-based correction with an increasing k-mer size, followed by a final round of overlap-based correction. By combining the advantages of small and large k-mers, this approach corrects more errors in repeats and minimizes the total amount of erroneous reads. We show that higher read accuracy increases contig lengths two to three times. We provide SGA-Iteratively Correcting Errors (https://github.com/hillerlab/IterativeErrorCorrection/) that implements iterative error correction by using modules from SGA. PMID:26868358

  4. Scalar and tensor perturbations in loop quantum cosmology: High-order corrections

    CERN Document Server

    Zhu, Tao; Cleaver, Gerald; Kirsten, Klaus; Sheng, Qin; Wu, Qiang

    2015-01-01

    Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using {\\em the third-order uniform asymptotic approximations}, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratio is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are $\\lesssim 0.15\\%$, these results represent the most accurate results obtained...

  5. Hamiltonian cosmological perturbation theory with loop quantum gravity corrections

    CERN Document Server

    Bojowald, M; Kagan, M; Singh, P; Skirzewski, A; Bojowald, Martin; Hern\\'andez, Hector H.; Kagan, Mikhail; Singh, Parampreet; Skirzewski, Aureliano

    2006-01-01

    Cosmological perturbation equations are derived systematically in a canonical scheme based on Ashtekar variables. A comparison with the covariant derivation and various subtleties in the calculation and choice of gauges are pointed out. Nevertheless, the treatment is more systematic when correction terms of canonical quantum gravity are to be included. This is done throughout the paper for one characteristic modification expected from loop quantum gravity.

  6. Higher order corrections in perturbative quantum chromodynamics

    Indian Academy of Sciences (India)

    W L Van Neerven

    2000-07-01

    We present some techniques which have been developed recently or in the recent past to compute Feynman graphs beyond one-loop order. These techniques are useful to compute the three-loop splitting functions in QCD and to obtain the complete second order QED corrections to Bhabha scattering.

  7. Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting

    Science.gov (United States)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1987-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  8. Quantum gravity corrections in Chandrasekhar limits

    Science.gov (United States)

    Moussa, Mohamed

    2017-01-01

    It is agreed that Chandrasekhar mass and central density of white dwarfs are independent, which means that there is a whole series of stars having radius and central density as parameters that all have the same Chandrasekhar mass. In this article the influence of a quantum gravity is shown so the Chandrasekhar limits (mass and radius) depend explicitly on the central density and gravity parameters. A new polytropic relation between degenerate pressure of the star and its density is investigated. This leads to a modification in Lane-Emden equation and mass and radius formulas of the star. A modified Lane-Emden equation is solved numerically with consideration to the mass density of the star depends on its radius. The solution was used in calculating the mass and radius limit of the white dwarf. It was found that mass and radius limits decrease due to increase in central density and gravity parameters in a comparison with the original values. We can say that central density and quantum gravity constitute a new tool that can help to make the theoretical values corresponding to experimental observations apply in a better manner.

  9. Quantum corrections to the Larmor radiation formula in scalar electrodynamics

    CERN Document Server

    Higuchi, A

    2009-01-01

    We use the semi-classical approximation in perturbative scalar quantum electrodynamics to calculate the quantum correction to the Larmor radiation formula to first order in Planck's constant in the non-relativistic approximation, choosing the initial state of the charged particle to be a momentum eigenstate. We calculate this correction in two cases: in the first case the charged particle is accelerated by a time-dependent but space-independent vector potential whereas in the second case it is accelerated by a time-independent vector potential which is a function of one spatial coordinate. We find that the corrections in these two cases are different even for a charged particle with the same classical motion. The correction in each case turns out to be non-local in time in contrast to the classical approximation.

  10. Supporting Dictation Speech Recognition Error Correction: The Impact of External Information

    Science.gov (United States)

    Shi, Yongmei; Zhou, Lina

    2011-01-01

    Although speech recognition technology has made remarkable progress, its wide adoption is still restricted by notable effort made and frustration experienced by users while correcting speech recognition errors. One of the promising ways to improve error correction is by providing user support. Although support mechanisms have been proposed for…

  11. Students' Preferences and Attitude toward Oral Error Correction Techniques at Yanbu University College, Saudi Arabia

    Science.gov (United States)

    Alamri, Bushra; Fawzi, Hala Hassan

    2016-01-01

    Error correction has been one of the core areas in the field of English language teaching. It is "seen as a form of feedback given to learners on their language use" (Amara, 2015). Many studies investigated the use of different techniques to correct students' oral errors. However, only a few focused on students' preferences and attitude…

  12. An Analysis of College Students' Attitudes towards Error Correction in EFL Context

    Science.gov (United States)

    Zhu, Honglin

    2010-01-01

    This article is based on a survey on the attitudes towards the error correction by their teachers in the process of teaching and learning and it is intended to improve the language teachers' understanding of the nature of error correction. Based on the analysis, the article expounds some principles and techniques that can be applied in the process…

  13. A Comparison of Error-Correction Procedures on Skill Acquisition during Discrete-Trial Instruction

    Science.gov (United States)

    Carroll, Regina A.; Joachim, Brad T.; St. Peter, Claire C.; Robinson, Nicole

    2015-01-01

    Previous research supports the use of a variety of error-correction procedures to facilitate skill acquisition during discrete-trial instruction. We used an adapted alternating treatments design to compare the effects of 4 commonly used error-correction procedures on skill acquisition for 2 children with attention deficit hyperactivity disorder…

  14. Supporting Dictation Speech Recognition Error Correction: The Impact of External Information

    Science.gov (United States)

    Shi, Yongmei; Zhou, Lina

    2011-01-01

    Although speech recognition technology has made remarkable progress, its wide adoption is still restricted by notable effort made and frustration experienced by users while correcting speech recognition errors. One of the promising ways to improve error correction is by providing user support. Although support mechanisms have been proposed for…

  15. Error Correction and Feedback in the EFL Writing Classroom: Comparing Instructor and Student Preferences

    Science.gov (United States)

    Diab, Rula L.

    2006-01-01

    This article discusses what EFL instructors and their students like and dislike about error correction and paper marking and discusses what this means for classroom teaching. The article lists the benefits and drawbacks of error correction for students' writing and argues for the need to look at preferred methods for both teachers and students. It…

  16. 76 FR 4601 - Determinations Concerning Need for Error Correction, Partial Approval and Partial Disapproval...

    Science.gov (United States)

    2011-01-26

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 RIN 2060-AQ66 Determinations Concerning Need for Error Correction, Partial Approval... Determination Concerning the Need for Error Correction, Partial Approval and Partial Disapproval, and...

  17. An upper bound on the number of errors corrected by a convolutional code

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2000-01-01

    The number of errors that a convolutional codes can correct in a segment of the encoded sequence is upper bounded by the number of distinct syndrome sequences of the relevant length.......The number of errors that a convolutional codes can correct in a segment of the encoded sequence is upper bounded by the number of distinct syndrome sequences of the relevant length....

  18. Opportunistic error correction for mimo-ofdm: from theory to practice

    NARCIS (Netherlands)

    Shao, Xiaoying; Slump, Cornelis H.

    2013-01-01

    Opportunistic error correction based on fountain codes is especially designed for the MIMOOFDM system. The key point of this new method is the tradeoff between the code rate of error correcting codes and the number of sub-carriers in the channel vector to be discarded. By transmitting one fountain-e

  19. The Differential Effect of Two Types of Direct Written Corrective Feedback on Noticing and Uptake: Reformulation vs. Error Correction

    Science.gov (United States)

    Santos, Maria; Lopez-Serrano, Sonia; Manchon, Rosa M.

    2010-01-01

    Framed in a cognitively-oriented strand of research on corrective feedback (CF) in SLA, the controlled three-stage (composition/comparison-noticing/revision) study reported in this paper investigated the effects of two forms of direct CF (error correction and reformulation) on noticing and uptake, as evidenced in the written output produced by a…

  20. Transfer Error and Correction Approach in Mobile Network

    Science.gov (United States)

    Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou

    With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.

  1. Quantum corrections for spinning particles in de Sitter

    Science.gov (United States)

    Fröb, Markus B.; Verdaguer, Enric

    2017-04-01

    We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalar Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.

  2. BayesHammer: Bayesian clustering for error correction in single-cell sequencing.

    Science.gov (United States)

    Nikolenko, Sergey I; Korobeynikov, Anton I; Alekseyev, Max A

    2013-01-01

    Error correction of sequenced reads remains a difficult task, especially in single-cell sequencing projects with extremely non-uniform coverage. While existing error correction tools designed for standard (multi-cell) sequencing data usually come up short in single-cell sequencing projects, algorithms actually used for single-cell error correction have been so far very simplistic.We introduce several novel algorithms based on Hamming graphs and Bayesian subclustering in our new error correction tool BAYESHAMMER. While BAYESHAMMER was designed for single-cell sequencing, we demonstrate that it also improves on existing error correction tools for multi-cell sequencing data while working much faster on real-life datasets. We benchmark BAYESHAMMER on both k-mer counts and actual assembly results with the SPADES genome assembler.

  3. Combining Trigram and Automatic Weight Distribution in Chinese Spelling Error Correction

    Institute of Scientific and Technical Information of China (English)

    李建华; 王晓龙

    2002-01-01

    The researches on spelling correction aiming at detecting errors in texts tendto focus on context-sensitive spelling error correction, which is more difficult than traditionalisolated-word error correction. A novel and efficient algorithm for the system of Chinese spellingerror correction, CInsunSpell, is presented. In this system, the work of correction includes twoparts: checking phase and correcting phase. At the first phase, a Trigram algorithm within onefixed-size window is designed to locate potential errors in local area. The second phase employsa new method of automatically and dynamically distributing weights among the characters inthe confusion set as well as in the Bayesian language model. The tactics used above exhibitsgood performances.

  4. Single-event upset (SEU) in a DRAM with on-chip error correction

    Science.gov (United States)

    Zoutendyk, J. A.; Schwartz, H. R.; Watson, R. K.; Hasnain, Z.; Nevile, L. R.

    1987-01-01

    Results are given of SEU measurements on 256K dynamic RAMs with on-chip error correction. They are claimed to be the first ever reported. A (12/8) Hamming error-correcting code was incorporated in the layout. Physical separation of the bits in each code word was used to guard against multiple bits being disrupted in any given word. Significant reduction in observed errors is reported.

  5. Upper bounds on the number of errors corrected by a convolutional code

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2004-01-01

    We derive upper bounds on the weights of error patterns that can be corrected by a convolutional code with given parameters, or equivalently we give bounds on the code rate for a given set of error patterns. The bounds parallel the Hamming bound for block codes by relating the number of error pat...

  6. Quantum Corrections to Scattering Amplitude in Conical Space-time

    CERN Document Server

    Shiraishi, Kiyoshi

    2015-01-01

    It is known that the vacuum polarization of zero-point field arises around a conical singularity generated by an infinite, straight cosmic string. In this paper we study quantum electromagnetic corrections to the gravitational Aharonov-Bohm effect around a cosmic string. We find the scattering amplitude from a conical defect for charged Klein-Gordon field.

  7. GUP parameter from quantum corrections to the Newtonian potential

    CERN Document Server

    Scardigli, Fabio; Vagenas, Elias

    2016-01-01

    We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. The calculation gives, to first order, an unambiguous numerical result. The physical meaning of this value is discussed, and compared with analogous previous results, as well as with known bounds on the generalized uncertainty principle deformation parameter.

  8. Quantum Corrections on Relativistic Mean Field Theory for Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-Ren; GAO Chun-Yuan

    2011-01-01

    We propose a quantization procedure for the nucleon-scalar meson system, in which an arbitrary mean scalar meson field Φ is introduced.The equivalence of this procedure with the usual one is proven for any given value of Φ.By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field.Its corrections on these theories are considered by perturbation up to the second order.The arbitrariness of Φ makes us free to fix it at any stage in the calculation.When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge.When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent.It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not.We suggest to fix the parameter Φ at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.

  9. Quantum-corrected transient analysis of plasmonic nanostructures

    KAUST Repository

    Uysal, Ismail E.

    2017-03-08

    A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary tunnel to support the current path that is generated by electrons tunneled between the nanostructures. The permittivity of the auxiliary tunnel and the nanostructures is obtained from density functional theory (DFT) computations. Electromagnetic field interactions on the combined structure (nanostructures plus auxiliary tunnel connecting them) are computed using a TD-SIE solver. Time domain samples of the permittivity and the Green function required by this solver are obtained from their frequency domain samples (generated from DFT computations) using a semi-analytical method. Accuracy and applicability of the resulting quantum-corrected solver scheme are demonstrated via numerical examples.

  10. Quantum-corrected finite entropy of noncommutative acoustic black holes

    CERN Document Server

    Anacleto, M A; Luna, G C; Passos, E; Spinelly, J

    2015-01-01

    In this paper we consider the generalized uncertainty principle in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for 2+1-dimensional noncommutative acoustic black holes. In our results we obtain an area entropy, a correction logarithmic in leading order, a correction term in subleading order proportional to the radiation temperature associated with the noncommutative acoustic black holes and an extra term that depends on a conserved charge. Thus, as in the gravitational case, there is no need to introduce the ultraviolet cut-off and divergences are eliminated.

  11. One-loop quantum corrections to cosmological scalar field potentials

    CERN Document Server

    Arbey, A; Arbey, Alexandre; Mahmoudi, Farvah

    2007-01-01

    We study the loop corrections to potentials of complex or coupled real scalar fields used in cosmology to account for dark energy, dark matter or dark fluid. We show that the SUGRA quintessence and dark matter scalar field potentials are stable against the quantum fluctuations, and we propose solutions to the instability of the potentials of coupled quintessence and dark fluid scalar fields. We also find that a coupling to fermions is very restricted, unless this coupling has a structure which already exists in the scalar field potential or which can be compensated by higher order corrections. Finally, we study the influence of the curvature and kinetic term corrections.

  12. Quantum Errors and Disturbances: Response to Busch, Lahti and Werner

    Directory of Open Access Journals (Sweden)

    David Marcus Appleby

    2016-05-01

    Full Text Available Busch, Lahti and Werner (BLW have recently criticized the operator approach to the description of quantum errors and disturbances. Their criticisms are justified to the extent that the physical meaning of the operator definitions has not hitherto been adequately explained. We rectify that omission. We then examine BLW’s criticisms in the light of our analysis. We argue that, although the BLW approach favour (based on the Wasserstein two-deviation has its uses, there are important physical situations where an operator approach is preferable. We also discuss the reason why the error-disturbance relation is still giving rise to controversies almost a century after Heisenberg first stated his microscope argument. We argue that the source of the difficulties is the problem of interpretation, which is not so wholly disconnected from experimental practicalities as is sometimes supposed.

  13. Quantum Errors and Disturbances: Response to Busch, Lahti and Werner

    Science.gov (United States)

    Appleby, David

    2016-05-01

    Busch, Lahti and Werner (BLW) have recently criticized the operator approach to the description of quantum errors and disturbances. Their criticisms are justified to the extent that the physical meaning of the operator definitions has not hitherto been adequately explained. We rectify that omission. We then examine BLW's criticisms in the light of our analysis. We argue that, although the approach BLW favour (based on the Wasserstein 2-deviation) has its uses, there are important physical situations where an operator approach is preferable. We also discuss the reason why the error-disturbance relation is still giving rise to controversies almost a century after Heisenberg first stated his microscope argument. We argue that the source of the difficulties is the problem of interpretation, which is not so wholly disconnected from experimental practicalities as is sometimes supposed.

  14. Forward error correction based on algebraic-geometric theory

    CERN Document Server

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  15. The Limits of Error Correction with lp Decoding

    CERN Document Server

    Wang, Meng; Tang, Ao

    2010-01-01

    An unknown vector f in R^n can be recovered from corrupted measurements y = Af + e where A^(m*n)(m>n) is the coding matrix if the unknown error vector e is sparse. We investigate the relationship of the fraction of errors and the recovering ability of lp-minimization (0 < p <= 1) which returns a vector x minimizing the "lp-norm" of y - Ax. We give sharp thresholds of the fraction of errors that determine the successful recovery of f. If e is an arbitrary unknown vector, the threshold strictly decreases from 0.5 to 0.239 as p increases from 0 to 1. If e has fixed support and fixed signs on the support, the threshold is 2/3 for all p in (0, 1), while the threshold is 1 for l1-minimization.

  16. AXAF Alignment Test System Autocollimating Flat Error Correction

    Science.gov (United States)

    Lewis, Timothy S.

    1995-01-01

    The alignment test system for the advanced x ray astrophysics facility (AXAF) high-resolution mirror assembly (HRMA) determines the misalignment of the HRMA by measuring the displacement of a beam of light reflected by the HRMA mirrors and an autocollimating flat (ACF). This report shows how to calibrate the system to compensate for errors introduced by the ACF, using measurements taken with the ACF in different positions. It also shows what information can be obtained from alignment test data regarding errors in the shapes of the HRMA mirrors. Simulated results based on measured ACF surface data are presented.

  17. Correction of Errors in Time of Flight Cameras

    OpenAIRE

    Jiménez Cabello, David

    2015-01-01

    En esta tesis se aborda la corrección de errores en cámaras de profundidad basadas en tiempo de vuelo (Time of Flight - ToF). De entre las más recientes tecnologías, las cámaras ToF de modulación continua (Continuous Wave Modulation - CWM) son una alternativa prometedora para la creación de sensores compactos y rápidos. Sin embargo, existen gran variedad de errores que afectan notablemente la medida de profundidad, poniendo en compromiso posibles aplicaciones. La...

  18. The role of extensive recasts in error detection and correction by adult ESL students

    Directory of Open Access Journals (Sweden)

    Laura Hawkes

    2016-03-01

    Full Text Available Most of the laboratory studies on recasts have examined the role of intensive recasts provided repeatedly on the same target structure. This is different from the original definition of recasts as the reformulation of learner errors as they occur naturally and spontaneously in the course of communicative interaction. Using a within-group research design and a new testing methodology (video-based stimulated correction posttest, this laboratory study examined whether extensive and spontaneous recasts provided during small-group work were beneficial to adult L2 learners. Participants were 26 ESL learners, who were divided into seven small groups (3-5 students per group, and each group participated in an oral activity with a teacher. During the activity, the students received incidental and extensive recasts to half of their errors; the other half of their errors received no feedback. Students’ ability to detect and correct their errors in the three types of episodes was assessed using two types of tests: a stimulated correction test (a video-based computer test and a written test. Students’ reaction time on the error detection portion of the stimulated correction task was also measured. The results showed that students were able to detect more errors in error+recast (error followed by the provision of a recast episodes than in error-recast (error and no recast provided episodes (though this difference did not reach statistical significance. They were also able to successfully and partially successfully correct more errors in error+recast episodes than in error-recast episodes, and this difference was statistically significant on the written test. The reaction time results also point towards a benefit from recasts, as students were able to complete the task (slightly more quickly for error+recast episodes than for error-recast episodes.

  19. DEVELOPMENT AND TESTING OF ERRORS CORRECTION ALGORITHM IN ELECTRONIC DESIGN AUTOMATION

    Directory of Open Access Journals (Sweden)

    E. B. Romanova

    2016-03-01

    Full Text Available Subject of Research. We have developed and presented a method of design errors correction for printed circuit boards (PCB in electronic design automation (EDA. Control of process parameters of PCB in EDA is carried out by means of Design Rule Check (DRC program. The DRC program monitors compliance with the design rules (minimum width of the conductors and gaps, the parameters of pads and via-holes, the parameters of polygons, etc. and also checks the route tracing, short circuits, the presence of objects outside PCB edge and other design errors. The result of the DRC program running is the generated error report. For quality production of circuit boards DRC-errors should be corrected, that is ensured by the creation of error-free DRC report. Method. A problem of correction repeatability of DRC-errors was identified as a result of trial operation of P-CAD, Altium Designer and KiCAD programs. For its solution the analysis of DRC-errors was carried out; the methods of their correction were studied. DRC-errors were proposed to be clustered. Groups of errors include the types of errors, which correction sequence has no impact on the correction time. The algorithm for correction of DRC-errors is proposed. Main Results. The best correction sequence of DRC-errors has been determined. The algorithm has been tested in the following EDA: P-CAD, Altium Designer and KiCAD. Testing has been carried out on two and four-layer test PCB (digital and analog. Comparison of DRC-errors correction time with the algorithm application to the same time without it has been done. It has been shown that time saved for the DRC-errors correction increases with the number of error types up to 3.7 times. Practical Relevance. The proposed algorithm application will reduce PCB design time and improve the quality of the PCB design. We recommend using the developed algorithm when the number of error types is equal to four or more. The proposed algorithm can be used in different

  20. "Ser" and "Estar": Corrective Input to Children's Errors of the Spanish Copula Verbs

    Science.gov (United States)

    Holtheuer, Carolina; Rendle-Short, Johanna

    2013-01-01

    Evidence for the role of corrective input as a facilitator of language acquisition is inconclusive. Studies show links between corrective input and grammatical use of some, but not other, language structures. The present study examined relationships between corrective parental input and children's errors in the acquisition of the Spanish copula…

  1. ACE: accurate correction of errors using K-mer tries

    NARCIS (Netherlands)

    Sheikhizadeh Anari, S.; Ridder, de D.

    2015-01-01

    The quality of high-throughput next-generation sequencing data significantly influences the performance and memory consumption of assembly and mapping algorithms. The most ubiquitous platform, Illumina, mainly suffers from substitution errors. We have developed a tool, ACE, based on K-mer tries to c

  2. Balancing the Lifetime and Storage Overhead on Error Correction for Phase Change Memory.

    Science.gov (United States)

    An, Ning; Wang, Rui; Gao, Yuan; Yang, Hailong; Qian, Depei

    2015-01-01

    As DRAM is facing the scaling difficulty in terms of energy cost and reliability, some nonvolatile storage materials were proposed to be the substitute or supplement of main memory. Phase Change Memory (PCM) is one of the most promising nonvolatile memory that could be put into use in the near future. However, before becoming a qualified main memory technology, PCM should be designed reliably so that it can ensure the computer system's stable running even when errors occur. The typical wear-out errors in PCM have been well studied, but the transient errors, that caused by high-energy particles striking on the complementary metal-oxide semiconductor (CMOS) circuit of PCM chips or by resistance drifting in multi-level cell PCM, have attracted little focus. In this paper, we propose an innovative mechanism, Local-ECC-Global-ECPs (LEGE), which addresses both soft errors and hard errors (wear-out errors) in PCM memory systems. Our idea is to deploy a local error correction code (ECC) section to every data line, which can detect and correct one-bit errors immediately, and a global error correction pointers (ECPs) buffer for the whole memory chip, which can be reloaded to correct more hard error bits. The local ECC is used to detect and correct the unknown one-bit errors, and the global ECPs buffer is used to store the corrected value of hard errors. In comparison to ECP-6, our method provides almost identical lifetimes, but reduces approximately 50% storage overhead. Moreover, our structure reduces approximately 3.55% access latency overhead by increasing 1.61% storage overhead compared to PAYG, a hard error only solution.

  3. An Analysis to English Learners Errors at Vocational Colleges And How to Correct Them

    Institute of Scientific and Technical Information of China (English)

    李梅; 余莲君

    2012-01-01

    College students make errors in their English learning even though they have learned this language for more than six years.How do students make errors and what kind of errors do they make? It is very important to know about them in order that teachers can take appropriate methods according to different kind of errors.Thus can we stimulate students to learn the English language better and apply it correctly in daily life.

  4. [A phase error correction method for the new Fourier transforms spectrometer].

    Science.gov (United States)

    Wang, Ning; Gong, Tian-Cheng; Chen, Jian-Jun; Li, Yang; Yang, Yi-Ning; Zhu, Yong; Zhang, Jie; Chen, Wei-Min

    2014-11-01

    To decrease the distortion of the recovered spectrum, improve the quantity of the recovered spectrum and decrease the influence of the phase error of the new spectrum detection system based on MEMS (micro-electro-mechanical systems) micro-mirrors, a new phase error correction method for this system is proposed in the present paper. The source of phase error of the spectrum detection system based on MEMS micro-mirrors is analyzed firstly. The analyzed result indicated that the phase error of the new spectral Fourier transform detection system is the zero drift of the optical path difference, and the phase error can be corrected by Zero-crossing sampling which is realized by improving the structure of the interferometer system and Mertz product The spectrum detection system is set up and the phase error correction method is verified by this system. The experiment result is show that the quantity of the recovered spectrum of the spectrum detection is improved obviously by using the improved interferometer system and Mertz product, and the recovered spectrum has no negative peaks and the side lobes is suppressed markedly. This correction method can reduce the influence caused by phase error to the system performance well and improve the spectral detection performance effectively. In this paper, the origin of the system phase error based on the new MEMS micromirror Fourier transform spectroscopy detection system is analyzed, and the phase error correction method is proposed. This method can improve the performance of the spectrum detection system.

  5. Quantum rms error and Heisenberg’s error-disturbance relation

    Directory of Open Access Journals (Sweden)

    Busch Paul

    2014-01-01

    Full Text Available Reports on experiments recently performed in Vienna [Erhard et al, Nature Phys. 8, 185 (2012] and Toronto [Rozema et al, Phys. Rev. Lett. 109, 100404 (2012] include claims of a violation of Heisenberg’s error-disturbance relation. In contrast, a Heisenberg-type tradeoff relation for joint measurements of position and momentum has been formulated and proven in [Phys. Rev. Lett. 111, 160405 (2013]. Here I show how the apparent conflict is resolved by a careful consideration of the quantum generalization of the notion of root-mean-square error. The claim of a violation of Heisenberg’s principle is untenable as it is based on a historically wrong attribution of an incorrect relation to Heisenberg, which is in fact trivially violated. We review a new general trade-off relation for the necessary errors in approximate joint measurements of incompatible qubit observables that is in the spirit of Heisenberg’s intuitions. The experiments mentioned may directly be used to test this new error inequality.

  6. Efficient optimal minimum error discrimination of symmetric quantum states

    Science.gov (United States)

    Assalini, Antonio; Cariolaro, Gianfranco; Pierobon, Gianfranco

    2010-01-01

    This article deals with the quantum optimal discrimination among mixed quantum states enjoying geometrical uniform symmetry with respect to a reference density operator ρ0. It is well known that the minimal error probability is given by the positive operator-valued measure obtained as a solution of a convex optimization problem, namely a set of operators satisfying geometrical symmetry, with respect to a reference operator Π0 and maximizing Tr(ρ0Π0). In this article, by resolving the dual problem, we show that the same result is obtained by minimizing the trace of a semidefinite positive operator X commuting with the symmetry operator and such that X⩾ρ0. The new formulation gives a deeper insight into the optimization problem and allows to obtain closed-form analytical solutions, as shown by a simple but not trivial explanatory example. In addition to the theoretical interest, the result leads to semidefinite programming solutions of reduced complexity, allowing to extend the numerical performance evaluation to quantum communication systems modeled in Hilbert spaces of large dimension.

  7. LDPC code optimization techniques to improve the error correction threshold

    Directory of Open Access Journals (Sweden)

    Роман Сергійович Новиков

    2015-11-01

    Full Text Available Non-empty stopping sets, which are the main reason for achieving a threshold of errors in data transmission channels, are studied. New algorithm of transfer smallest stopping sets and stop distance of any LDPC code is proposed. More functional and flexible technique of splitting-and-filling is proposed. Time for which will be transferred the smallest stopping sets and founded stop distance of any LDPC code is calculated

  8. Finite quantum corrections to the tribimaximal neutrino mixing

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Takeshi, E-mail: araki@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Geng, Chao-Qiang, E-mail: geng@phys.nthu.edu.t [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Xing Zhizhong, E-mail: xingzz@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2011-05-16

    We calculate finite quantum corrections to the tribimaximal neutrino mixing pattern V{sub TB} in three generic classes of neutrino mass models. We show that three flavor mixing angles can all depart from their tree-level results described by V{sub TB}, among which {theta}{sub 12} is most sensitive to such quantum effects, and the Dirac CP-violating phase can radiatively arise from two Majorana CP-violating phases. This theoretical scheme offers a new way to understand why {theta}{sub 13} is naturally small and how three CP-violating phases are presumably correlated.

  9. Isotopic quantum correction to liquid methanol at -30 C

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, C.J. [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tomberli, B.; Egelstaff, P.A. [Department of Physics, Univertsity of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Neuefeind, J. [Hamburger Synchrotronstrahlungslaboratorium HASYLAB at Deutsches Elektronensynchrotron DESY, Notkestrasse 85, 22603 Hamburg (Germany)

    2002-07-01

    Hydrogen/deuterium (H/D) substitution of molecular liquids in neutron diffraction is a powerful tool for structure determination. However, recent high-energy X-ray studies have found observable differences in the structures of many H and D liquids at the same temperature. In some cases this isotopic quantum effect can be corrected for by measuring the D sample at a slightly different temperature to the H sample. The example of hydroxyl isotopic substitution in liquid methanol at -30 C is presented. The magnitude of the quantum effect is shown to be significant when compared to the size of the first-order isotopic neutron-difference function. (orig.)

  10. Isotopic quantum correction to liquid methanol at -30 C

    CERN Document Server

    Benmore, C J; Egelstaff, P A; Neuefeind, J

    2002-01-01

    Hydrogen/deuterium (H/D) substitution of molecular liquids in neutron diffraction is a powerful tool for structure determination. However, recent high-energy X-ray studies have found observable differences in the structures of many H and D liquids at the same temperature. In some cases this isotopic quantum effect can be corrected for by measuring the D sample at a slightly different temperature to the H sample. The example of hydroxyl isotopic substitution in liquid methanol at -30 C is presented. The magnitude of the quantum effect is shown to be significant when compared to the size of the first-order isotopic neutron-difference function. (orig.)

  11. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    Science.gov (United States)

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2008-06-24

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  12. Quantum-annealing correction at finite temperature: Ferromagnetic p -spin models

    Science.gov (United States)

    Matsuura, Shunji; Nishimori, Hidetoshi; Vinci, Walter; Albash, Tameem; Lidar, Daniel A.

    2017-02-01

    The performance of open-system quantum annealing is adversely affected by thermal excitations out of the ground state. While the presence of energy gaps between the ground and excited states suppresses such excitations, error correction techniques are required to ensure full scalability of quantum annealing. Quantum annealing correction (QAC) is a method that aims to improve the performance of quantum annealers when control over only the problem (final) Hamiltonian is possible, along with decoding. Building on our earlier work [S. Matsuura et al., Phys. Rev. Lett. 116, 220501 (2016), 10.1103/PhysRevLett.116.220501], we study QAC using analytical tools of statistical physics by considering the effects of temperature and a transverse field on the penalty qubits in the ferromagnetic p -body infinite-range transverse-field Ising model. We analyze the effect of QAC on second (p =2 ) and first (p ≥3 ) order phase transitions, and construct the phase diagram as a function of temperature and penalty strength. Our analysis reveals that for sufficiently low temperatures and in the absence of a transverse field on the penalty qubit, QAC breaks up a single, large free-energy barrier into multiple smaller ones. We find theoretical evidence for an optimal penalty strength in the case of a transverse field on the penalty qubit, a feature observed in QAC experiments. Our results provide further compelling evidence that QAC provides an advantage over unencoded quantum annealing.

  13. Using ridge regression in systematic pointing error corrections

    Science.gov (United States)

    Guiar, C. N.

    1988-01-01

    A pointing error model is used in the antenna calibration process. Data from spacecraft or radio star observations are used to determine the parameters in the model. However, the regression variables are not truly independent, displaying a condition known as multicollinearity. Ridge regression, a biased estimation technique, is used to combat the multicollinearity problem. Two data sets pertaining to Voyager 1 spacecraft tracking (days 105 and 106 of 1987) were analyzed using both linear least squares and ridge regression methods. The advantages and limitations of employing the technique are presented. The problem is not yet fully resolved.

  14. Nonadiabatic corrections to a quantum dot quantum computer working in adiabatic limit

    Indian Academy of Sciences (India)

    M Ávila

    2014-07-01

    The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic corrections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the particular case of a quantum-dot-confined electron spin qubit working adiabatically in the nanoscale regime (e.g., in the MeV range of energies) and include nonadiabatic corrections in it. If the decoherence times of a quantum dot computer are ∼100 ns [J M Kikkawa and D D Awschalom, Phys. Rev. Lett. 80, 4313 (1998)] then the predicted number of one qubit gate (primitive) operations of the Loss–DiVincenzo quantum computer in such an interval of time must be > 1010. However, if the quantum-dot-confined electron spin qubit is very excited (i.e., the semiclassical limit) the number of operations of such a computer would be approximately the same as that of a classical computer. Our results suggest that for an adiabatic quantum computer to operate successfully within the decoherence times, it is necessary to take into account nonadiabatic corrections.

  15. GUP parameter from quantum corrections to the Newtonian potential

    Directory of Open Access Journals (Sweden)

    Fabio Scardigli

    2017-04-01

    Full Text Available We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical meaning of this value is discussed, and compared with the previously obtained bounds on the generalized uncertainty principle deformation parameter.

  16. Quantum Corrections to Solitons Composed of Interacting Fermions and Bosons.

    Science.gov (United States)

    Li, Ming

    To understand quark-confinment and hadron physics, many models have been proposed in attempts to describe hadrons as bound states of quarks through using solitons in an effective theory. Here we utilize a method of Green's function to study the quantum corrections to solitons at the one-loop level. We apply it first to investigate several two dimensional non-linear theories. We then generalize it to study in detail the one loop quantum corrections to nontopological solitons in the four dimensional Friedberg -Lee soliton model, which reduces to either the MIT or the SLAC bag model for appropriate limits of parameters in the theory. The derivative and inverse mass expansions to the non-local one loop energy are studied in detail. The behaviors of the model at finite temperature and baryon density are also studied.

  17. An Empirical Study of End-User Behaviour in Spreadsheet Error Detection & Correction

    CERN Document Server

    Bishop, Brian

    2008-01-01

    Very little is known about the process by which end-user developers detect and correct spreadsheet errors. Any research pertaining to the development of spreadsheet testing methodologies or auditing tools would benefit from information on how end-users perform the debugging process in practice. Thirteen industry-based professionals and thirty-four accounting & finance students took part in a current ongoing experiment designed to record and analyse end-user behaviour in spreadsheet error detection and correction. Professionals significantly outperformed students in correcting certain error types. Time-based cell activity analysis showed that a strong correlation exists between the percentage of cells inspected and the number of errors corrected. The cell activity data was gathered through a purpose written VBA Excel plug-in that records the time and detail of all cell selection and cell change actions of individuals.

  18. UNICON Laser Memory: Interlaced Codes for Multi-burst-Error Correction

    Science.gov (United States)

    Lim, R. S.; Korpi, J. E.

    1977-01-01

    Interlaced binary BCH codes are described for multiple-burst-error correction for the UNICON 690 laser memory. Other multiple-burst-error-correcting codes, such as Reed-Solomon codes and Product codes, are also briefly mentioned. In particular, an interlaced (31, 21) t = 2 BCH code is selected as an outer code for UNICON double-burst-error correction. This code is shortened to (26,16) and interlaced to degree X = 16. Decoding is implemented by table lookup. This method not only avoids all computations in GF(2(exp 5)), it also offers a decoding time of less than 1 ps. The inner code is an existing (80,64) Fire code capable of correcting a single-burst error of length b less than or equal to 6.

  19. Error-tolerant Finite State Recognition with Applications to Morphological Analysis and Spelling Correction

    CERN Document Server

    Oflazer, K

    1995-01-01

    Error-tolerant recognition enables the recognition of strings that deviate mildly from any string in the regular set recognized by the underlying finite state recognizer. Such recognition has applications in error-tolerant morphological processing, spelling correction, and approximate string matching in information retrieval. After a description of the concepts and algorithms involved, we give examples from two applications: In the context of morphological analysis, error-tolerant recognition allows misspelled input word forms to be corrected, and morphologically analyzed concurrently. We present an application of this to error-tolerant analysis of agglutinative morphology of Turkish words. The algorithm can be applied to morphological analysis of any language whose morphology is fully captured by a single (and possibly very large) finite state transducer, regardless of the word formation processes and morphographemic phenomena involved. In the context of spelling correction, error-tolerant recognition can be...

  20. CRC Look-up Table Optimization for Single-Bit Error Correction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Many communication systems use the cyclic redundancy code (CRC) technique for protecting key data fields from transmission errors by enabling both single-bit error correction and multi-bit error detection. The look-up table design is very important for the error-correction implementation. This paper presents a CRC look-up table optimization method for single-bit error correction. The optimization method minimizes the address length of the pre-designed look-up table while satisfying certain restrictions. The circuit implementation is also presented to show the feasibility of the method in the application specific integrated circuit design. An application of the optimization method in the generic framing procedure protocol is implemented using field programmable gate arrays. The result shows that the memory address length has been minimized, while keeping a very simple circuit implementation.

  1. XTile: An Error-Correction Package for DNA Self-Assembly

    CERN Document Server

    Chaurasia, Anshul; Jain, Prateek; Gupta, Manish K

    2009-01-01

    Self assembly is a process by which supramolecular species form spontaneously from their components. This process is ubiquitous throughout the life chemistry and is central to biological information processing. It has been predicted that in future self assembly will become an important engineering discipline by combining the fields of bio molecular computation, nano technology and medicine. However error control is a key challenge in realizing the potential of self assembly. Recently many authors have proposed several combinatorial error correction schemes to control errors which have a close analogy with the coding theory such as Winfree s proofreading scheme and its generalizations by Chen and Goel and compact scheme of Reif, Sahu and Yin. In this work, we present an error correction computational tool XTile that can be used to create input files to the Xgrow simulator of Winfree by providing the design logic of the tiles and it also allows the user to apply proofreading, snake and compact error correction ...

  2. Model based correction of placement error in EBL and its verification

    Science.gov (United States)

    Babin, Sergey; Borisov, Sergey; Militsin, Vladimir; Komagata, Tadashi; Wakatsuki, Tetsuro

    2016-05-01

    In maskmaking, the main source of error contributing to placement error is charging. DISPLACE software corrects the placement error for any layout, based on a physical model. The charge of a photomask and multiple discharge mechanisms are simulated to find the charge distribution over the mask. The beam deflection is calculated for each location on the mask, creating data for the placement correction. The software considers the mask layout, EBL system setup, resist, and writing order, as well as other factors such as fogging and proximity effects correction. The output of the software is the data for placement correction. One important step is the calibration of physical model. A test layout on a single calibration mask was used for calibration. The extracted model parameters were used to verify the correction. As an ultimate test for the correction, a sophisticated layout was used for the verification that was very different from the calibration mask. The placement correction results were predicted by DISPLACE. A good correlation of the measured and predicted values of the correction confirmed the high accuracy of the charging placement error correction.

  3. Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction

    OpenAIRE

    Santaguida, Stefano; Vernieri, Claudio; Villa, Fabrizio; Ciliberto, Andrea; Musacchio, Andrea

    2011-01-01

    Fidelity of chromosome segregation is ensured by a tension-dependent error correction system that prevents stabilization of incorrect chromosome–microtubule attachments. Unattached or incorrectly attached chromosomes also activate the spindle assembly checkpoint, thus delaying mitotic exit until all chromosomes are bioriented. The Aurora B kinase is widely recognized as a component of error correction. Conversely, its role in the checkpoint is controversial. Here, we report an analysis of the...

  4. High-speed parallel forward error correction for optical transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert;

    2010-01-01

    This paper presents a highly parallelized hardware implementation of the standard OTN Reed-Solomon Forward Error Correction algorithm. The proposed circuit is designed to meet the immense throughput required by OTN4, using commercially available FPGA technology.......This paper presents a highly parallelized hardware implementation of the standard OTN Reed-Solomon Forward Error Correction algorithm. The proposed circuit is designed to meet the immense throughput required by OTN4, using commercially available FPGA technology....

  5. Error Correction in Latent Inhibition and its Disruption by Opioid Receptor Blockade with Naloxone

    OpenAIRE

    Leung, Hiu T; Killcross, A S; Westbrook, R. Frederick

    2013-01-01

    Latent inhibition refers to the retardation in the development of conditioned responding when a pre-exposed stimulus is used to signal an unconditioned stimulus. This effect is described by error-correction models as an attentional deficit and is commonly used as an animal model of schizophrenia. A series of experiments studied the role of error-correction mechanism in latent inhibition and its interaction with the endogenous opioid system. Systemic administration of the competitive opioid re...

  6. Pluribus - Exploring the Limits of Error Correction Using a Suffix Tree.

    Science.gov (United States)

    Savel, Daniel; LaFramboise, Thomas; Grama, Ananth; Koyuturk, Mehmet

    2016-06-29

    Next generation sequencing technologies enable efficient and cost-effective genome sequencing. However, sequencing errors increase the complexity of the de novo assembly process, and reduce the quality of the assembled sequences. Many error correction techniques utilizing substring frequencies have been developed to mitigate this effect. In this paper, we present a novel and effective method called PLURIBUS, for correcting sequencing errors using a generalized suffix trie. PLURIBUS utilizes multiple manifestations of an error in the trie to accurately identify errors and suggest corrections. We show that PLURIBUS produces the least number of false positives across a diverse set of real sequencing datasets when compared to other methods. Furthermore, PLURIBUS can be used in conjunction with other contemporary error correction methods to achieve higher levels of accuracy than either tool alone. These increases in error correction accuracy are also realized in the quality of the contigs that are generated during assembly. We explore, in-depth, the behavior of PLURIBUS, to explain the observed improvement in accuracy and assembly performance. PLURIBUS is freely available at http://compbio.

  7. THE USE OF GROUP ERROR CORRECTION IN ENGLISH TEACHING TO INCREASE LEARNER INVOLVEMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In view of the major defect of the traditionalteacher correction,this paper introduces a new ap-proach to error correction—group error correction,inwhich learners’ role in learning language is greatly in-creased.Group error correction can be used to correcterrors in students’ oral work,group work and writtenwork,both in class and after class.Half a year’spractice of group error correction shows that it helpsincrease learner involvement in the teaching and learn-ing process,stimulate learner motivation in learningthe foreign language,raise the learners’ awareness oferrors,facilitate learners’ learning of the foreign lan-guage,relieve the teacher’s burden,and helps theteacher make better teaching plans.Error correction is an enormously complex pro-cess(Ellis,1994,p585).As for which is the most ef-fective method to correct errors,researchers havenot reached an agreement.Therefore more effortsneed to be made in this field.

  8. Gold price effect on stock market: A Markov switching vector error correction approach

    Science.gov (United States)

    Wai, Phoong Seuk; Ismail, Mohd Tahir; Kun, Sek Siok

    2014-06-01

    Gold is a popular precious metal where the demand is driven not only for practical use but also as a popular investments commodity. While stock market represents a country growth, thus gold price effect on stock market behavior as interest in the study. Markov Switching Vector Error Correction Models are applied to analysis the relationship between gold price and stock market changes since real financial data always exhibit regime switching, jumps or missing data through time. Besides, there are numerous specifications of Markov Switching Vector Error Correction Models and this paper will compare the intercept adjusted Markov Switching Vector Error Correction Model and intercept adjusted heteroskedasticity Markov Switching Vector Error Correction Model to determine the best model representation in capturing the transition of the time series. Results have shown that gold price has a positive relationship with Malaysia, Thailand and Indonesia stock market and a two regime intercept adjusted heteroskedasticity Markov Switching Vector Error Correction Model is able to provide the more significance and reliable result compare to intercept adjusted Markov Switching Vector Error Correction Models.

  9. CORRECTING ACCOUNTING ERRORS AND ACKNOWLEDGING THEM IN THE EARNINGS TO THE PERIOD

    Directory of Open Access Journals (Sweden)

    BUSUIOCEANU STELIANA

    2013-08-01

    Full Text Available The accounting information is reliable when it does not contain significant errors, is not biasedand accurately represents the transactions and events. In the light of the regulations complying with Europeandirectives, the information is significant if its omission or wrong presentation may influence the decisions users makebased on annual financial statements. Given that the professional practice sees errors in registering or interpretinginformation, as well as omissions and wrong calculations, the Romanian accounting regulations stipulate treatmentsfor correcting errors in compliance with international references. Thus, the correction of the errors corresponding tothe current period is accomplished based on the retained earnings in the case of significant errors or on the currentearnings when the errors are insignificant. The different situations in the professional practice triggered by errorsrequire both knowledge of regulations and professional rationale to be addressed.

  10. 75 FR 33708 - Ocean Dumping; Correction of Typographical Error in 2006 Federal Register Final Rule for...

    Science.gov (United States)

    2010-06-15

    ... AGENCY 40 CFR Part 228 Ocean Dumping; Correction of Typographical Error in 2006 Federal Register Final... typographical error in the Final Rule for the Ocean Dumping; De-designation of Ocean Dredged Material Disposal... amended by revising paragraphs (n)(3) and (n)(4) to read as follows: Sec. 228.15 Dumping sites...

  11. Righting Writing: What the Social Accomplishment of Error Correction Tells about School Literacy

    Science.gov (United States)

    Davidson, Christina

    2009-01-01

    School literacy has been identified with specific ways of talking about texts, especially during teacher-led lessons. This paper considers school literacy through a focus on talk about error correction during a time of individual writing activity in an early years classroom. Conversation Analysis is used to develop descriptions of error correction…

  12. On the Benefit of Forward Error Correction at IEEE 802.11 Link Layer Level

    NARCIS (Netherlands)

    Nee, van Floris; Boer, de Pieter-Tjerk

    2011-01-01

    This study examines the error distribution of aggregated MPDUs in 802.11n networks and whether or not forward error correction like raptor coding at the link layer would be useful in these networks. Several experiments with Qualcomm 4x4 802.11n hardware were performed. Two devices were used in a dat

  13. Correcting temporal sampling error in radar-rainfall: Effect of advection parameters and rain storm characteristics on the correction accuracy

    Science.gov (United States)

    Seo, Bong-Chul; Krajewski, Witold F.

    2015-12-01

    This study offers a method to correct for the radar temporal sampling error when determining radar-rainfall accumulations. The authors evaluate the correction effect with respect to multiple factors associated with storm advection, rainfall characteristics, and different rainfall accumulation time scales. The advection method presented in this study uses linear interpolation of static rain storm locations observed at two intermittent radar sampling times to correct for the missed rainfall accumulations. The advection correction is applied to the high space (0.5 km) and time (5-min) resolution radar-rainfall products provided by the Iowa Flood Center. We use the ground reference data from a high quality and high density rain gauge network distributed over the Turkey River basin in Iowa to evaluate the advection corrected rain fields. We base our evaluation on six rain events and examine the correction performance/improvement with respect to the advection discretization, spatial grid aggregation, rainfall basin coverage, and conditional average rainfall intensity. The results show that the 1-min advection discretization is sufficient to represent the observed distribution of storm velocities for the presented cases. Grid aggregation that is motivated by the need to expedite the computation may induce errors in estimating advection vectors. The authors found that while the advection correction tends to enhance the QPE accuracy for intense rain storms over small or isolated areas, it has little impact on the improvement of light rain estimation.

  14. [Errors Analysis and Correction in Atmospheric Methane Retrieval Based on Greenhouse Gases Observing Satellite Data].

    Science.gov (United States)

    Bu, Ting-ting; Wang, Xian-hua; Ye, Han-han; Jiang, Xin-hua

    2016-01-01

    High precision retrieval of atmospheric CH4 is influenced by a variety of factors. The uncertainties of ground properties and atmospheric conditions are important factors, such as surface reflectance, temperature profile, humidity profile and pressure profile. Surface reflectance is affected by many factors so that it is difficult to get the precise value. The uncertainty of surface reflectance will cause large error to retrieval result. The uncertainties of temperature profile, humidity profile and pressure profile are also important sources of retrieval error and they will cause unavoidable systematic error. This error is hard to eliminate only using CH4 band. In this paper, ratio spectrometry method and CO2 band correction method are proposed to reduce the error caused by these factors. Ratio spectrometry method can decrease the effect of surface reflectance in CH4 retrieval by converting absolute radiance spectrometry into ratio spectrometry. CO2 band correction method converts column amounts of CH4 into column averaged mixing ratio by using CO2 1.61 μm band and it can correct the systematic error caused by temperature profile, humidity profile and pressure profile. The combination of these two correction methods will decrease the effect caused by surface reflectance, temperature profile, humidity profile and pressure profile at the same time and reduce the retrieval error. GOSAT data were used to retrieve atmospheric CH4 to test and validate the two correction methods. The results showed that CH4 column averaged mixing ratio retrieved after correction was close to GOSAT Level2 product and the retrieval precision was up to -0.24%. The studies suggest that the error of CH4 retrieval caused by the uncertainties of ground properties and atmospheric conditions can be significantly reduced and the retrieval precision can be highly improved by using ratio spectrometry method and CO2 hand correction method.

  15. Preferences of ELT Learners in the Correction of Oral Vocabulary and Pronunciation Errors

    Science.gov (United States)

    Ustaci, Hale Yayla; Ok, Selami

    2014-01-01

    Vocabulary is an essential component of language teaching and learning process, and correct pronunciation of lexical items is an ultimate goal for language instructors in ELT programs. Apart from how lexical items should be taught, the way teachers correct oral vocabulary errors as well as those of pronunciation in line with the preferences of…

  16. Did I say dog or cat? A study of semantic error detection and correction in children.

    Science.gov (United States)

    Hanley, J Richard; Cortis, Cathleen; Budd, Mary-Jane; Nozari, Nazbanou

    2016-02-01

    Although naturalistic studies of spontaneous speech suggest that young children can monitor their speech, the mechanisms for detection and correction of speech errors in children are not well understood. In particular, there is little research on monitoring semantic errors in this population. This study provides a systematic investigation of detection and correction of semantic errors in children between the ages of 5 and 8years as they produced sentences to describe simple visual events involving nine highly familiar animals (the moving animals task). Results showed that older children made fewer errors and corrected a larger proportion of the errors that they made than younger children. We then tested the prediction of a production-based account of error monitoring that the strength of the language production system, and specifically its semantic-lexical component, should be correlated with the ability to detect and repair semantic errors. Strength of semantic-lexical mapping, as well as lexical-phonological mapping, was estimated individually for children by fitting their error patterns, obtained from an independent picture-naming task, to a computational model of language production. Children's picture-naming performance was predictive of their ability to monitor their semantic errors above and beyond age. This relationship was specific to the strength of the semantic-lexical part of the system, as predicted by the production-based monitor.

  17. Quantum electrodynamical corrections to a magnetic dipole in general relativity

    CERN Document Server

    Pétri, J

    2015-01-01

    Magnetized neutron stars are privileged places where strong electromagnetic fields as high as $\\BQ=4.4\\times10^9$~T exist, giving rise to non-linear corrections to Maxwell equations described by quantum electrodynamics (QED). These corrections need to be included to the general relativistic (GR) description of a magnetic dipole supposed to be anchored in the neutron star. In this paper, these QED and GR perturbations to the standard flat space-time dipole are calculated to the lowest order in the fine structure constant~$\\alpha_{\\rm sf}$ and to any order in the ratio $\\Rs/R$ where $R$ is the neutron star radius and $\\Rs$ its Schwarzschild radius. Following our new 3+1~formalism developed in a previous work, we compute the multipolar non-linear corrections to this dipole and demonstrate the presence of a small dipolar~$\\ell=1$ and hexapolar~$\\ell=3$ component.

  18. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    DEFF Research Database (Denmark)

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc

    2012-01-01

    and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon...... emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy....

  19. Effects of Error Correction during Assessment Probes on the Acquisition of Sight Words for Students with Moderate Intellectual Disabilities

    Science.gov (United States)

    Waugh, Rebecca E.; Alberto, Paul A.; Fredrick, Laura D.

    2011-01-01

    Simultaneous prompting is an errorless learning strategy designed to reduce the number of errors students make; however, research has shown a disparity in the number of errors students make during instructional versus probe trials. This study directly examined the effects of error correction versus no error correction during probe trials on the…

  20. NxRepair: error correction in de novo sequence assembly using Nextera mate pairs.

    Science.gov (United States)

    Murphy, Rebecca R; O'Connell, Jared; Cox, Anthony J; Schulz-Trieglaff, Ole

    2015-01-01

    Scaffolding errors and incorrect repeat disambiguation during de novo assembly can result in large scale misassemblies in draft genomes. Nextera mate pair sequencing data provide additional information to resolve assembly ambiguities during scaffolding. Here, we introduce NxRepair, an open source toolkit for error correction in de novo assemblies that uses Nextera mate pair libraries to identify and correct large-scale errors. We show that NxRepair can identify and correct large scaffolding errors, without use of a reference sequence, resulting in quantitative improvements in the assembly quality. NxRepair can be downloaded from GitHub or PyPI, the Python Package Index; a tutorial and user documentation are also available.

  1. Local concurrent error detection and correction in data structures using virtual backpointers

    Science.gov (United States)

    Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent

    1989-01-01

    A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.

  2. NxRepair: error correction in de novo sequence assembly using Nextera mate pairs

    Directory of Open Access Journals (Sweden)

    Rebecca R. Murphy

    2015-06-01

    Full Text Available Scaffolding errors and incorrect repeat disambiguation during de novo assembly can result in large scale misassemblies in draft genomes. Nextera mate pair sequencing data provide additional information to resolve assembly ambiguities during scaffolding. Here, we introduce NxRepair, an open source toolkit for error correction in de novo assemblies that uses Nextera mate pair libraries to identify and correct large-scale errors. We show that NxRepair can identify and correct large scaffolding errors, without use of a reference sequence, resulting in quantitative improvements in the assembly quality. NxRepair can be downloaded from GitHub or PyPI, the Python Package Index; a tutorial and user documentation are also available.

  3. Error Field Correction in DIII-D Ohmic Plasmas With Either Handedness

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Kyu; Schaffer, Micahel J.; La Haye, Robert J.; Scoville, Timothy J.; Menard, Jonathon E.

    2011-05-16

    Error field correction results in DIII-D plasmas are presented in various configurations. In both left-handed and right-handed plasma configurations, where the intrinsic error fields become different due to the opposite helical twist (handedness) of the magnetic field, the optimal error correction currents and the toroidal phases of internal(I)-coils are empirically established. Applications of the Ideal Perturbed Equilibrium Code to these results demonstrate that the field component to be minimized is not the resonant component of the external field, but the total field including ideal plasma responses. Consistency between experiment and theory has been greatly improved along with the understanding of ideal plasma responses, but non-ideal plasma responses still need to be understood to achieve the reliable predictability in tokamak error field correction.

  4. Error-correction coding and decoding bounds, codes, decoders, analysis and applications

    CERN Document Server

    Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak

    2017-01-01

    This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...

  5. Forward error correction supported 150 Gbit/s error-free wavelength conversion based on cross phase modulation in silicon

    DEFF Research Database (Denmark)

    Hu, Hao; Andersen, Jakob Dahl; Rasmussen, Anders

    2013-01-01

    We build a forward error correction (FEC) module and implement it in an optical signal processing experiment. The experiment consists of two cascaded nonlinear optical signal processes, 160 Gbit/s all optical wavelength conversion based on the cross phase modulation (XPM) in a silicon nanowire...... and subsequent 160 Gbit/s-to-10 Gbit/s demultiplexing in a highly nonlinear fiber (HNLF). The XPM based all optical wavelength conversion in silicon is achieved by off-center filtering the red shifted sideband on the CW probe. We thoroughly demonstrate and verify that the FEC code operates correctly after...... the optical signal processing, yielding truly error-free 150 Gbit/s (excl. overhead) optically signal processed data after the two cascaded nonlinear processes. © 2013 Optical Society of America....

  6. Error Detection And Correction Systems For Optical Disk: Issues Of Media Defect Distribution, Defect Growth, Error Management, And Disk Longevity

    Science.gov (United States)

    Nugent, William R.

    1987-01-01

    We examine the principal systems of Error Detection and Correction (EDAC) which have been recently proposed as U.S. standards for optical disks and discuss the the two principal methodologies employed: Reed-Solomon Codes and Product Codes, and describe the variations in their operating characteristics and their overhead in disk space. We then present current knowledge of the nature of defect distributions on optical media including bit error rates, the incidence and extents of clustered errors and burst errors, and the controversial aspects of correlation between these forms of error. We show that if such forms are correlated then stronger EDAC systems are needed than if they are not. We discuss the nature of defect growth over time and its likely causes, and present the differing views on the growth of burst errors including nucleation and incubation effects which are not detectable in new media. We exhibit a mathematical model of a currently proposed end-of-life defect distribution for write once media and discuss its implications in EDAC selection. We show that standardization of an EDAC system unifies the data recording process and is permissive to data interchange, but that enhancements in EDAC computation during reading can achieve higher than normal EDAC performance, though sometimes at the expense of decoding time. Finally we examine vendor estimates of disk longevity and possible means of life extension where archival recording is desired.

  7. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    Science.gov (United States)

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  8. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    Directory of Open Access Journals (Sweden)

    Yingxian Zhang

    2014-01-01

    Full Text Available We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length.

  9. A sparsity-driven approach for joint SAR imaging and phase error correction.

    Science.gov (United States)

    Önhon, N Özben; Cetin, Müjdat

    2012-04-01

    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data, which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm, where each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements that it provides over existing techniques for model error compensation in SAR.

  10. Phase Error Correction for Approximated Observation-Based Compressed Sensing Radar Imaging.

    Science.gov (United States)

    Li, Bo; Liu, Falin; Zhou, Chongbin; Lv, Yuanhao; Hu, Jingqiu

    2017-03-17

    Defocus of the reconstructed image of synthetic aperture radar (SAR) occurs in the presence of the phase error. In this work, a phase error correction method is proposed for compressed sensing (CS) radar imaging based on approximated observation. The proposed method has better image focusing ability with much less memory cost, compared to the conventional approaches, due to the inherent low memory requirement of the approximated observation operator. The one-dimensional (1D) phase error correction for approximated observation-based CS-SAR imaging is first carried out and it can be conveniently applied to the cases of random-frequency waveform and linear frequency modulated (LFM) waveform without any a priori knowledge. The approximated observation operators are obtained by calculating the inverse of Omega-K and chirp scaling algorithms for random-frequency and LFM waveforms, respectively. Furthermore, the 1D phase error model is modified by incorporating a priori knowledge and then a weighted 1D phase error model is proposed, which is capable of correcting two-dimensional (2D) phase error in some cases, where the estimation can be simplified to a 1D problem. Simulation and experimental results validate the effectiveness of the proposed method in the presence of 1D phase error or weighted 1D phase error.

  11. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo

    2016-01-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo...... than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p = 0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients....... This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel...

  12. A measuring and correcting method about locus errors in robot welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    When tubules regularly arranged are welded onto a bobbin by robot, the position and orientation of some tubules may be changed by such factors as thermal deformations and positioning errors etc. Which make it very difficult to weld automatically and continuously by the method of teaching and playing. In this paper, a kind of error measuring system is presented. By which the position and orientation errors of tubules relative to the teaching one can be measured. And, a method to correct the locus errors is also proposed, by which the moving locus planned via teaching points can be corrected in real time according to measured error parameters. So that, just by teaching one, all tubules on a bobbin could be welded automatically.

  13. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

    Directory of Open Access Journals (Sweden)

    Huiliang Cao

    2016-01-01

    Full Text Available This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC, Quadrature Force Correction (QFC and Coupling Stiffness Correction (CSC methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  14. Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.

    Science.gov (United States)

    Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun

    2016-01-07

    This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

  15. Quantum Mechanical Corrections to Simulated Shock Hugoniot Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Reed, E; Fried, L E

    2009-07-17

    The authors present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a grueneisen equation of state and a quasi-harmonic approximation to the vibrational energies, they derive a simple, post-processing method for calculation of the quantum corrected Hugoniot temperatures. They have used our novel technique on ab initio simulations of both shock compressed water and methane. Our results indicate significantly closer agreement with all available experimental temperature data for these two systems. Our formalism and technique can be easily applied to a number of different shock compressed molecular liquids or covalent solids, and has the potential to decrease the large uncertainties inherent in many experimental Hugoniot temperature measurements of these systems.

  16. Separation of attractors in 1-modulus quantum corrected special geometry

    CERN Document Server

    Bellucci, S; Marrani, A; Shcherbakov, A

    2008-01-01

    We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...

  17. Quantum corrections for the cubic Galileon in the covariant language

    Science.gov (United States)

    Saltas, Ippocratis D.; Vitagliano, Vincenzo

    2017-05-01

    We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach in this context is discussed, while all calculations are explicitly presented.

  18. Quantum corrections in nanoplasmonics: shape, scale, and material

    CERN Document Server

    Christensen, Thomas; Jauho, Antti-Pekka; Soljačić, Marin; Mortensen, N Asger

    2016-01-01

    The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension to the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions - the Feibelman d-parameters - in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum-rule for complementary structures, a rigorous reformulation of Kreibig's phenomenological damping prescription, and an account of the small-scale resonance-shifting of simple and noble metal nanostructures. These insights open the technological design space and deepen our fundamental understanding of nanoplasmonics beyond the classical regime.

  19. Quantum entanglement in non-local games, graph parameters and zero-error information theory

    NARCIS (Netherlands)

    Scarpa, G.

    2013-01-01

    We study quantum entanglement and some of its applications in graph theory and zero-error information theory. In Chapter 1 we introduce entanglement and other fundamental concepts of quantum theory. In Chapter 2 we address the question of how much quantum correlations generated by entanglement can d

  20. Detection and correct handling of prescribing errors in Dutch hospital pharmacies using test patients.

    Science.gov (United States)

    Beex-Oosterhuis, Marieke M; de Vogel, Ed M; van der Sijs, Heleen; Dieleman, Hetty G; van den Bemt, Patricia M L A

    2013-12-01

    Hospital pharmacists and pharmacy technicians play a major role in detecting prescribing errors by medication surveillance. At present the frequency of detected and correctly handled prescribing errors is unclear, as are factors associated with correct handling. To examine the frequency of detection of prescribing errors and the frequency of correct handling, as well as factors associated with correct handling of prescribing errors by hospital pharmacists and pharmacy technicians. This study was conducted in 57 Dutch hospital pharmacies. Prospective observational study with test patients, using a case-control design to identify factors associated with correct handling. A questionnaire was used to collect the potential factors. Test patients containing prescribing errors were developed by an expert panel of hospital pharmacists (a total of 40 errors in nine medication records divided among three test patients; each test patient was used in 3 rounds; on average 4.5 prescribing error per patient per round). Prescribing errors were defined as dosing errors or therapeutic errors (contra-indication, drug-drug interaction, (pseudo)duplicate medication). The errors were selected on relevance and unequivocalness. The panel also defined how the errors should be handled in practice using national guidelines and this was defined as 'correct handling'. The test patients had to be treated as real patients while conducting medication surveillance. The pharmacists and technicians were asked to report detected errors to the investigator. The percentages of detected and correctly handled prescribing errors were the main outcome measures. Factors associated with correct handling were determined, using multivariate logistic regression analysis. Fifty-nine percent of the total number of intentionally added prescribing errors were detected and 57 % were handled correctly by the hospital pharmacists and technicians. The use of a computer system for medication surveillance compared to no

  1. Precision Quantum Control and Error-Suppressing Quantum Firmware for Robust Quantum Computing

    Science.gov (United States)

    2014-09-24

    Dynamical decoupling sequence construction as a filter-design problem, Journal of Physics B: Atomic, Molecular and Optical Physics, (08 2011... Hamiltonian quantum simulation with bounded-strength controls,”, New Journal of Physics, (04 2014): 0. doi: 3 Number of Papers published in peer...Programmable quantum simulation by dynamic Hamiltonian engineering,”, New Journal of Physics, (08 2014): 0. doi: K.Khodjasteh, J.Sastrawan, D

  2. A variational method for correcting non-systematic errors in numerical weather prediction

    Institute of Scientific and Technical Information of China (English)

    SHAO AiMei; XI Shuang; QIU ChongJian

    2009-01-01

    A variational method based on previous numerical forecasts is developed to estimate and correct non-systematic component of numerical weather forecast error. In the method, it is assumed that the error is linearly dependent on some combination of the forecast fields, and three types of forecast combination are applied to identifying the forecasting error: 1) the forecasts at the ending time, 2) the combination of initial fields and the forecasts at the ending time, and 3) the combination of the fore-casts at the ending time and the tendency of the forecast. The Single Value Decomposition (SVD) of the covariance matrix between the forecast and forecasting error is used to obtain the inverse mapping from flow space to the error space during the training period. The background covariance matrix is hereby reduced to a simple diagonal matrix. The method is tested with a shallow-water equation model by introducing two different model errors. The results of error correction for 6, 24 and 48 h forecasts show that the method is effective for improving the quality of the forecast when the forecasting error obviously exceeds the analysis error and it is optimal when the third type of forecast combinations is applied.

  3. A variational method for correcting non-systematic errors in numerical weather prediction

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A variational method based on previous numerical forecasts is developed to estimate and correct non-systematic component of numerical weather forecast error. In the method, it is assumed that the error is linearly dependent on some combination of the forecast fields, and three types of forecast combination are applied to identifying the forecasting error: 1) the forecasts at the ending time, 2) the combination of initial fields and the forecasts at the ending time, and 3) the combination of the forecasts at the ending time and the tendency of the forecast. The Single Value Decomposition (SVD) of the covariance matrix between the forecast and forecasting error is used to obtain the inverse mapping from flow space to the error space during the training period. The background covariance matrix is hereby reduced to a simple diagonal matrix. The method is tested with a shallow-water equation model by introducing two different model errors. The results of error correction for 6, 24 and 48 h forecasts show that the method is effective for improving the quality of the forecast when the forecasting error obviously exceeds the analysis error and it is optimal when the third type of forecast combinations is applied.

  4. On corrected formula for irradiated graphene quantum conductivity

    Science.gov (United States)

    Firsova, N. E.

    2017-09-01

    Graphene membrane irradiated by weak activating periodic electric field in terahertz range is considered. The corrected formula for the graphene quantum conductivity is found. The obtained formula gives complex conjugate results when radiation polarization direction is clockwise or it is opposite clockwise. The found formula allows us to see that the graphene membrane is an oscillating contour. Its eigen frequency coincides with a singularity point of the conductivity and depends on the electrons concentration. So the graphene membrane could be used as an antenna or a transistor and its eigen frequency could be tuned by doping in a large terahertz-infrared frequency range. The obtained formula allows us also to calculate the graphene membrane quantum inductivity and capacitance. The found dependence on electrons concentration is consistent with experiments. The method of the proof is based on study of the time-dependent density matrix. The exact solution of von Neumann equation for density matrix is found for our case in linear approximation on the external field. On this basis the induced current is studied and then the formula for quantum conductivity as a function of external field frequency and temperature is obtained. The method of the proof suggested in this paper could be used to study other problems. The found formula for quantum conductivity can be used to correct the SPPs Dispersion Relation and for the description of radiation process. It would be useful to take the obtained results into account when constructing devices containing graphene membrane nanoantenna. Such project could make it possible to create wireless communications among nanosystems. This would be promising research area of energy harvesting applications.

  5. SimCommSys: taking the errors out of error-correcting code simulations

    Directory of Open Access Journals (Sweden)

    Johann A. Briffa

    2014-06-01

    Full Text Available In this study, we present SimCommSys, a simulator of communication systems that we are releasing under an open source license. The core of the project is a set of C + + libraries defining communication system components and a distributed Monte Carlo simulator. Of principal interest is the error-control coding component, where various kinds of binary and non-binary codes are implemented, including turbo, LDPC, repeat-accumulate and Reed–Solomon. The project also contains a number of ready-to-build binaries implementing various stages of the communication system (such as the encoder and decoder, a complete simulator and a system benchmark. Finally, SimCommSys also provides a number of shell and python scripts to encapsulate routine use cases. As long as the required components are already available in SimCommSys, the user may simulate complete communication systems of their own design without any additional programming. The strict separation of development (needed only to implement new components and use (to simulate specific constructions encourages reproducibility of experimental work and reduces the likelihood of error. Following an overview of the framework, we provide some examples of how to use the framework, including the implementation of a simple codec, the specification of communication systems and their simulation.

  6. Improving transcriptome assembly through error correction of high-throughput sequence reads.

    Science.gov (United States)

    Macmanes, Matthew D; Eisen, Michael B

    2013-01-01

    The study of functional genomics, particularly in non-model organisms, has been dramatically improved over the last few years by the use of transcriptomes and RNAseq. While these studies are potentially extremely powerful, a computationally intensive procedure, the de novo construction of a reference transcriptome must be completed as a prerequisite to further analyses. The accurate reference is critically important as all downstream steps, including estimating transcript abundance are critically dependent on the construction of an accurate reference. Though a substantial amount of research has been done on assembly, only recently have the pre-assembly procedures been studied in detail. Specifically, several stand-alone error correction modules have been reported on and, while they have shown to be effective in reducing errors at the level of sequencing reads, how error correction impacts assembly accuracy is largely unknown. Here, we show via use of a simulated and empiric dataset, that applying error correction to sequencing reads has significant positive effects on assembly accuracy, and should be applied to all datasets. A complete collection of commands which will allow for the production of Reptile corrected reads is available at https://github.com/macmanes/error_correction/tree/master/scripts and as File S1.

  7. Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction.

    Science.gov (United States)

    Santaguida, Stefano; Vernieri, Claudio; Villa, Fabrizio; Ciliberto, Andrea; Musacchio, Andrea

    2011-04-20

    Fidelity of chromosome segregation is ensured by a tension-dependent error correction system that prevents stabilization of incorrect chromosome-microtubule attachments. Unattached or incorrectly attached chromosomes also activate the spindle assembly checkpoint, thus delaying mitotic exit until all chromosomes are bioriented. The Aurora B kinase is widely recognized as a component of error correction. Conversely, its role in the checkpoint is controversial. Here, we report an analysis of the role of Aurora B in the spindle checkpoint under conditions believed to uncouple the effects of Aurora B inhibition on the checkpoint from those on error correction. Partial inhibition of several checkpoint and kinetochore components, including Mps1 and Ndc80, strongly synergizes with inhibition of Aurora B activity and dramatically affects the ability of cells to arrest in mitosis in the presence of spindle poisons. Thus, Aurora B might contribute to spindle checkpoint signalling independently of error correction. Our results support a model in which Aurora B is at the apex of a signalling pyramid whose sensory apparatus promotes the concomitant activation of error correction and checkpoint signalling pathways.

  8. A Study of Students’ and Teachers’ Preferences and Attitudes towards Correction of Classroom Written Errors in Iranian EFL Context

    Directory of Open Access Journals (Sweden)

    Leila Hajian

    2014-09-01

    Full Text Available Written error correction may be the most widely used method for responding to student writing. Although there are various studies investigating error correction, there are little researches considering teachers’ and students’ preferences towards written error correction. The present study investigates students’ and teachers’ preferences and attitudes towards correction of classroom written errors in Iranian EFL context by using questionnaire. In this study, 80 students and 12 teachers were asked to answer the questionnaire. Then data were collected and analyzed by descriptive method. The findings from teachers and students show positive attitudes towards written error correction. Although the results of this study demonstrate teachers and students have some common preferences related to written error correction, there are some important discrepancies. For example; students prefer all error be corrected, but teachers prefer selecting some. However, students prefer teachers’ correction rather than peer or self-correction. This study considers a number of difficulties regarding students and teachers in written error correction processes with some suggestions. This study shows many teachers might believe written error correction takes a lot of time and effort to give comments. This study indicates many students does not have any problems in rewriting their paper after getting feedback. It might be one main positive point to improve their writing and it might give them self-confidence. Keywords: Error correction, teacher feedback, preferences.

  9. Finite quantum corrections to the tribimaximal neutrino mixing

    CERN Document Server

    Araki, Takeshi; Xing, Zhi-zhong

    2010-01-01

    We calculate finite quantum corrections to the tribimaximal neutrino mixing pattern V_TB in three generic classes of neutrino mass models. We show that three flavor mixing angles can all depart from their tree-level results described by V_TB, and the Dirac CP-violating phase can radiatively arise from two Majorana CP-violating phases. This theoretical scheme offers a new way to understand why one neutrino mixing angle is naturally small and how three CP-violating phases are presumably correlated.

  10. Failure of random matrix theory to correctly describe quantum dynamics.

    Science.gov (United States)

    Kottos, T; Cohen, D

    2001-12-01

    Consider a classically chaotic system that is described by a Hamiltonian H(0). At t=0 the Hamiltonian undergoes a sudden change (H)0-->H. We consider the quantum-mechanical spreading of the evolving energy distribution, and argue that it cannot be analyzed using a conventional random-matrix theory (RMT) approach. Conventional RMT can be trusted only to the extent that it gives trivial results that are implied by first-order perturbation theory. Nonperturbative effects are sensitive to the underlying classical dynamics, and therefore the Planck's over 2 pi-->0 behavior for effective RMT models is strikingly different from the correct semiclassical limit.

  11. Constructing quantum codes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Quantum error correcting codes are indispensable for quantum information processing and quantum computation.In 1995 and 1996,Shor and Steane gave first several examples of quantum codes from classical error correcting codes.The construction of efficient quantum codes is now an active multi-discipline research field.In this paper we review the known several constructions of quantum codes and present some examples.

  12. Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes

    Science.gov (United States)

    Costello, D. J., Jr.; Deng, H.; Lin, S.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.

  13. Unification and limitations of error suppression techniques for adiabatic quantum computing

    OpenAIRE

    Young, Kevin C.; Sarovar, Mohan

    2012-01-01

    While adiabatic quantum computation (AQC) possesses some intrinsic robustness to noise, it is expected that a form of error control will be necessary for large scale computations. Error control ideas developed for circuit-model quantum computation do not transfer easily to the AQC model and to date there have been two main proposals to suppress errors during an AQC implementation: energy gap protection and dynamical decoupling. Here we show that these two methods are fundamentally related and...

  14. Universal corrections to entanglement entropy of local quantum quenches

    CERN Document Server

    David, Justin R; Kumar, S Prem

    2016-01-01

    We study the time evolution of single interval Renyi and entanglement entropies following local quantum quenches in two dimensional conformal field theories at finite temperature for which the locally excited states have a finite temporal width, \\epsilon. We show that, for local quenches produced by the action of a conformal primary field, the time dependence of Renyi and entanglement entropies at order \\epsilon^2 is universal. It is determined by the expectation value of the stress tensor in the replica geometry and proportional to the conformal dimension of the primary field generating the local excitation. We also show that in CFTs with a gravity dual, the \\epsilon^2 correction to the holographic entanglement entropy following a local quench precisely agrees with the CFT prediction. We then consider CFTs admitting a higher spin symmetry and turn on a higher spin chemical potential \\mu. We calculate the time dependence of the order \\epsilon^2 correction to the entanglement entropy for small \\mu, and show th...

  15. Quantum Corrections to Classical Kinetics: the Weight of Rotation

    CERN Document Server

    Chafin, Clifford

    2016-01-01

    Hydrodynamics of gases in the classical domain are examined from the perspective that the gas has a well-defined wavefunction description at all times. Specifically, the internal energy and volume exclusion of decorrelated vortex structures are included so that quantum corrections and modifications to Navier-Stokes behavior can be derived. This leads to a small deviation in rigid body rotation for a cylindrically bound gas and the internal energy changes associated with vorticity give deviations in the Reynolds' transport theorem. Some macroscopic observable features arising from this include variations in the specific heat, an anisotropic correction to thermal conductivity and a variation in optical scattering as a function of the declination from the axis of local vorticity. The improvements in magneto-optical traps suggests some interesting experiments to be done in higher temperature regimes where they are not usually employed. It is argued that the finite lifetime of observed vortices in ultracold bosoni...

  16. Quantum electrodynamic corrections for valence electrons in Eka-Hg

    Science.gov (United States)

    Golovko, O. A.; Goidenko, I. A.; Tupitsyn, I. I.

    2008-05-01

    The quantum electrodynamic (QED) corrections to the coupling energy of valence electrons in heavy and superheavy nuclei are calculated in the effective local-potential approximation, as well as by the Hartree-Fock-Dirac self-consistent method. It is clearly shown that the contribution from the QED corrections is within the accuracy of modern calculations, which do not take into account QED effects. It is shown that, in certain cases, to exactly calculate the coupling energy of electrons in heavy and superheavy atoms, it is necessary to take into account the self-consistency, which shows that the inaccuracy of the use of the method of the effective local potential in calculations of QED effects can exceed 10%, which is also within the limits of calculations of the coupling energy without taking into account QED effects.

  17. Corrective Feedback (CF) and English-Major EFL Learners' Ability in Grammatical Error Detection and Correction

    Science.gov (United States)

    Asassfeh, Sahail M.

    2013-01-01

    Corrective feedback (CF), the implicit or explicit information learners receive indicating a gap between their current, compared to the desired, performance, has been an area of interest for EFL researchers during the last few decades. This study, conducted on 139 English-major prospective EFL teachers, assessed the impact of two CF types…

  18. Is a genome a codeword of an error-correcting code?

    Directory of Open Access Journals (Sweden)

    Luzinete C B Faria

    Full Text Available Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction.

  19. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    Genotyping-by-sequencing (GBSeq) is becoming a cost-effective genotyping platform for species without available SNP arrays. GBSeq considers to sequence short reads from restriction sites covering a limited part of the genome (e.g., 5-10%) with low sequencing depth per individual (e.g., 5-10X per....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  20. Full-Diversity Space-Time Error Correcting Codes with Low-Complexity Receivers

    Directory of Open Access Journals (Sweden)

    Hassan MohamadSayed

    2011-01-01

    Full Text Available We propose an explicit construction of full-diversity space-time block codes, under the constraint of an error correction capability. Furthermore, these codes are constructed in order to be suitable for a serial concatenation with an outer linear forward error correcting (FEC code. We apply the binary rank criterion, and we use the threaded layering technique and an inner linear FEC code to define a space-time error-correcting code. When serially concatenated with an outer linear FEC code, a product code can be built at the receiver, and adapted iterative receiver structures can be applied. An optimized hybrid structure mixing MMSE turbo equalization and turbo product code decoding is proposed. It yields reduced complexity and enhanced performance compared to previous existing structures.

  1. Novel multipath routing protocol integrated with forward error correction in MANET

    Institute of Scientific and Technical Information of China (English)

    AN Hui-yao; LU Xi-cheng; PENG Wei; WANG Yang-yuan

    2006-01-01

    In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows:adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node.When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 300%.

  2. Correcting students’ written grammatical errors: The effects of negotiated versus nonnegotiated feedback

    Directory of Open Access Journals (Sweden)

    Hossein Nassaji

    2011-10-01

    Full Text Available A substantial number of studies have examined the effects of grammar correction on second language (L2 written errors. However, most of the existing research has involved unidirectional written feedback. This classroom-based study examined the effects of oral negotiation in addressing L2 written errors. Data were collected in two intermediate adult English as a second language classes. Three types of feedback were compared: nonnegotiated direct reformulation, feedback with limited negotiation (i.e., prompt + reformulation and feedback with negotiation. The linguistic targets chosen were the two most common grammatical errors in English: articles and prepositions. The effects of feedback were measured by means of learner-specific error identification/correction tasks administered three days, and again ten days, after the treatment. The results showed an overall advantage for feedback that involved negotiation. However, a comparison of data per error types showed that the differential effects of feedback types were mainly apparent for article errors rather than preposition errors. These results suggest that while negotiated feedback may play an important role in addressing L2 written errors, the degree of its effects may differ for different linguistic targets.

  3. A Case for Soft Error Detection and Correction in Computational Chemistry.

    Science.gov (United States)

    van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A

    2013-09-10

    High performance computing platforms are expected to deliver 10(18) floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of them will mean that the mean time between failures will become so short that most application runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost.

  4. Linear Correction Of The Influence Of Thickness Errors During The Evaporation Process

    Science.gov (United States)

    van der Laan, C. J.; Frankena, H. J.

    1983-11-01

    During the production of dielectric thin film stacks for optical use, small thickness errors are unavoidable. These can be detrimental for the reflectance curve R as a function of the wavelength λ. If the thickness error for a certain layer is known, however, its influence on the reflectance can be reduced by correcting the thicknesses of the following layers. Starting from the matrix of derivatives ∂Rj/∂tk, where Rj is the reflectance of the j-th extremum and tk the thickness of the k-th layer, a method is developed which calculates these corrections during the production process of the stack. Examples will be given, using a quartz crystal monitoring system by which an error is easy detectable. Using this method, the deviations in the reflectance curve can be reduced by a factor of about five. This resulting reduction is strongly dependent on the error in the last layer of the stack for which no compensation is possible.

  5. Errors in Thermographic Camera Measurement Caused by Known Heat Sources and Depth Based Correction

    Directory of Open Access Journals (Sweden)

    Mark Christian E. Manuel

    2016-03-01

    Full Text Available Thermal imaging has shown to be a better tool for the quantitative measurement of temperature than single spot infrared thermometers. However, thermographic cameras can encounter errors in acquiring accurate temperature measurements in the presence of other environmental heat sources. Some of these errors arise due to the inability of the thermal camera to detect objects and features in the infrared domain. In this paper, the thermal image is registered as a stereo image from a Kinect system prior to depth-based correction. Experiments demonstrating the error are presented together with the determination of the measurement errors under prior knowledge of the thermographed scene. The proposed correction scheme improves the accuracy of the thermal image through augmentation using the Kinect system.

  6. Ciliates learn to diagnose and correct classical error syndromes in mating strategies

    Directory of Open Access Journals (Sweden)

    Kevin Bradley Clark

    2013-08-01

    Full Text Available Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by rivals and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell-cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via power or refrigeration cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and nonmodal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in

  7. Practice and Effect of Appropriate Error-correction in English Teaching

    Institute of Scientific and Technical Information of China (English)

    REN Jing-ming; HU Rong

    2002-01-01

    This paper points out that with interference from their native language and culture, Chinese students will inevitably make some errors in the process of learning English. It is important for teachers to know when and how to correct the students' errors. By employing errorcorrection skillfully and appropriately, one can expect to improve the present English teaching and learning, to develop the self-confidence and self-esteem in students themselves.

  8. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas.

    Science.gov (United States)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-08-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice.

  9. Post-error Correction in Automatic Speech Recognition Using Discourse Information

    OpenAIRE

    Kang,S.; Kim, J. -H.; Seo, J.

    2014-01-01

    Overcoming speech recognition errors in the field of human�computer interaction is important in ensuring a consistent user experience. This paper proposes a semantic-oriented post-processing approach for the correction of errors in speech recognition. The novelty of the model proposed here is that it re-ranks the n-best hypothesis of speech recognition based on the user's intention, which is analyzed from previous discourse information, while conventional automatic speech reco...

  10. Orbit error correction on the high energy beam transport line at the KHIMA accelerator system

    Science.gov (United States)

    Park, Chawon; Yim, Heejoong; Hahn, Garam; An, Dong Hyun

    2016-09-01

    For the purpose of treatment of various cancers and medical research, a synchrotron based medical machine has been developed under the Korea Heavy Ion Medical Accelerator (KHIMA) project and is scheduled for use to treat patient at the beginning of 2018. The KHIMA synchrotron is designed to accelerate and extract carbon ion (proton) beams with various energies from 110 to 430 MeV/u (60 to 230 MeV). Studies on the lattice design and beam optics for the High Energy Beam Transport (HEBT) line at the KHIMA accelerator system have been carried out using the WinAgile and the MAD-X codes. Because magnetic field errors and misalignments introduce deviations from the design parameters, these error sources should be treated explicitly, and the sensitivity of the machine's lattice to different individual error sources should be considered. Various types of errors, both static and dynamic, have been taken into account and have been consequentially corrected with a dedicated correction algorithm by using the MAD-X program. Based on the error analysis, the optimized correction setup is decided, and the specifications for the correcting magnets of the HEBT lines are determined.

  11. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

     This paper presents a model of employment, distribution and inflation in which a modern error correction specification of the nominal wage and price dynamics (referring to claims on income by workers and firms) occupies a prominent role. It is brought out, explicitly, how this rather typical error......-correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably...

  12. A Phillips curve interpretation of error-correction models of the wage and price dynamics

    DEFF Research Database (Denmark)

    Harck, Søren H.

    2009-01-01

    This paper presents a model of employment, distribution and inflation in which a modern error correction specification of the nominal wage and price dynamics (referring to claims on income by workers and firms) occupies a prominent role. It is brought out, explicitly, how this rather typical error......-correction setting, which actually seems to capture the wage and price dynamics of many large- scale econometric models quite well, is fully compatible with the notion of an old-fashioned Phillips curve with finite slope. It is shown how the steady-state impact of various shocks to the model can be profitably...

  13. Quantum coding demonstrated feasible to overcome qubit loss error

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Inspired by quantum mechanics,people have been dreaming of a new type of computers to revolutionize computing technique-quantum computers.Such dream machines take advantage of the fact that the quantum bit (qubit),the fundamental unit of quantum information,can be in a superposition state and thus is able to store massive data and solve complicated problems at an incredible speed beyond the capacity of classical computers.

  14. Analogue correction method of errors and its applicatim to numerical weather prediction

    Institute of Scientific and Technical Information of China (English)

    Gao Li; Ren Hong-Li; Li Jian-Ping; Chou Ji-Fan

    2006-01-01

    In this paper,an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP).The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model.Furthermore.in the ACE.the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors.The results of daily,decad and monthly prediction experiments On a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction,but is also better than that of the T63 model.

  15. Detection and correction of inconsistency-based errors in non-rigid registration

    Science.gov (United States)

    Gass, Tobias; Szekely, Gabor; Goksel, Orcun

    2014-03-01

    In this paper we present a novel post-processing technique to detect and correct inconsistency-based errors in non-rigid registration. While deformable registration is ubiquitous in medical image computing, assessing its quality has yet been an open problem. We propose a method that predicts local registration errors of existing pairwise registrations between a set of images, while simultaneously estimating corrected registrations. In the solution the error is constrained to be small in areas of high post-registration image similarity, while local registrations are constrained to be consistent between direct and indirect registration paths. The latter is a critical property of an ideal registration process, and has been frequently used to asses the performance of registration algorithms. In our work, the consistency is used as a target criterion, for which we efficiently find a solution using a linear least-squares model on a coarse grid of registration control points. We show experimentally that the local errors estimated by our algorithm correlate strongly with true registration errors in experiments with known, dense ground-truth deformations. Additionally, the estimated corrected registrations consistently improve over the initial registrations in terms of average deformation error or TRE for different registration algorithms on both simulated and clinical data, independent of modality (MRI/CT), dimensionality (2D/3D) and employed primary registration method (demons/Markov-randomfield).

  16. A power supply error correction method for single-ended digital audio class D amplifiers

    Science.gov (United States)

    Yu, Zeqi; Wang, Fengqin; Fan, Yangyu

    2016-12-01

    In single-ended digital audio class D amplifiers (CDAs), the errors caused by power supply noise in the power stages degrade the output performance seriously. In this article, a novel power supply error correction method is proposed. This method introduces the power supply noise of the power stage into the digital signal processing block and builds a power supply error corrector between the interpolation filter and the uniform-sampling pulse width modulation (UPWM) lineariser to pre-correct the power supply error in the single-ended digital audio CDA. The theoretical analysis and implementation of the method are also presented. To verify the effectiveness of the method, a two-channel single-ended digital audio CDA with different power supply error correction methods is designed, simulated, implemented and tested. The simulation and test results obtained show that the method can greatly reduce the error caused by the power supply noise with low hardware cost, and that the CDA with the proposed method can achieve a total harmonic distortion + noise (THD + N) of 0.058% for a -3 dBFS, 1 kHz input when a 55 V linear unregulated direct current (DC) power supply (with the -51 dBFS, 100 Hz power supply noise) is used in the power stages.

  17. An Introduction to Topological Quantum Codes

    OpenAIRE

    Bombin, H.

    2013-01-01

    This is the chapter \\emph{Topological Codes} of the book \\emph{Quantum Error Correction}, edited by Daniel A. Lidar and Todd A. Brun, Cambridge University Press, New York, 2013. http://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-error-correction

  18. Parsing error correction of medical phrases for semantic annotation of clinical radiology reports.

    Science.gov (United States)

    Nishimoto, Naoki; Terae, Satoshi; Uesugi, Masahito; Tanikawa, Takumi; Endou, Akira; Endoh, Akira; Ogasawara, Katsuhiko; Sakurai, Tsunetaro

    2008-11-06

    The purpose of this study is to develop a module for correcting errors in the product of a natural language parser. When tested with 300 CT reports, a total of 604 patterns were generated. The recall and precision was improved to 90.7% and 74.1% after processed by the module from initial 80.5% and 42.8% respectively. This rule-based module will help health care personnel reduce the cost of manual tagging correction for corpus building.

  19. Position error correction in absolute surface measurement based on a multi-angle averaging method

    Science.gov (United States)

    Wang, Weibo; Wu, Biwei; Liu, Pengfei; Liu, Jian; Tan, Jiubin

    2017-04-01

    We present a method for position error correction in absolute surface measurement based on a multi-angle averaging method. Differences in shear rotation measurements at overlapping areas can be used to estimate the unknown relative position errors of the measurements. The model and the solving of the estimation algorithm have been discussed in detail. The estimation algorithm adopts a least-squares technique to eliminate azimuthal errors caused by rotation inaccuracy. The cost functions can be minimized to determine the true values of the unknowns of Zernike polynomial coefficients and rotation angle. Experimental results show the validity of the method proposed.

  20. Diagnosis of weaknesses in modern error correction codes: a physics approach.

    Science.gov (United States)

    Stepanov, M G; Chernyak, V; Chertkov, M; Vasic, B

    2005-11-25

    One of the main obstacles to the wider use of the modern error-correction codes is that, due to the complex behavior of their decoding algorithms, no systematic method which would allow characterization of the bit-error-rate (BER) is known. This is especially true at the weak noise where many systems operate and where coding performance is difficult to estimate because of the diminishingly small number of errors. We show how the instanton method of physics allows one to solve the problem of BER analysis in the weak noise range by recasting it as a computationally tractable minimization problem.