A quantum molecular dynamics study of aqueous solvation dynamics
Videla, Pablo E.; Rossky, Peter J.; Laria, D.
2013-10-01
Ring polymer molecular dynamics experiments have been carried out to examine effects derived from nuclear quantum fluctuations at ambient conditions on equilibrium and non-equilibrium dynamical characteristics of charge solvation by a popular simple, rigid, water model, SPC/E, and for a more recent, and flexible, q-TIP4P/F model, to examine the generality of conclusions. In particular, we have recorded the relaxation of the solvent energy gap following instantaneous, ±e charge jumps in an initially uncharged Lennard-Jones-like solute. In both charge cases, quantum effects are reflected in sharper decays at the initial stages of the relaxation, which produce up to a ˜20% reduction in the characteristic timescales describing the solvation processes. For anionic solvation, the magnitude of polarization fluctuations controlling the extent of the water proton localization in the first solvation shell is somewhat more marked than for cations, bringing the quantum solvation process closer to the classical case. Effects on the solvation response from the explicit incorporation of flexibility in the water Hamiltonian are also examined. Predictions from linear response theories for the overall relaxation profile and for the corresponding characteristic timescales are reasonably accurate for the solvation of cations, whereas we find that they are much less satisfactory for the anionic case.
Computer studies of multiple-quantum spin dynamics
Energy Technology Data Exchange (ETDEWEB)
Murdoch, J.B.
1982-11-01
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
Dynamical quantum phase transitions (Review Article)
Zvyagin, A. A.
2016-11-01
During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many body systems out of equilibrium often manifest behavior, different from the one predicted by standard statistical mechanics and thermodynamics in equilibrium. Since the dynamics of a many-body quantum system typically involve many excited eigenstates, with a non-thermal distribution, the time evolution of such a system provides an unique way for investigation of non-equilibrium quantum statistical mechanics. Last decade such new subjects like quantum quenches, thermalization, pre-thermalization, equilibration, generalized Gibbs ensemble, etc. are among the most attractive topics of investigation in modern quantum physics. One of the most interesting themes in the study of dynamics of quantum many-body systems out of equilibrium is connected with the recently proposed important concept of dynamical quantum phase transitions. During the last few years a great progress has been achieved in studying of those singularities in the time dependence of characteristics of quantum mechanical systems, in particular, in understanding how the quantum critical points of equilibrium thermodynamics affect their dynamical properties. Dynamical quantum phase transitions reveal universality, scaling, connection to the topology, and many other interesting features. Here we review the recent achievements of this quickly developing part of low-temperature quantum physics. The study of dynamical quantum phase transitions is especially important in context of their connection to the problem of the modern theory of quantum information, where namely non-equilibrium dynamics of many-body quantum system plays the major role.
Detailed study of dissipative quantum dynamics of K-2 attached to helium nanodroplets
Schlesinger, Martin
2011-01-01
We thoroughly investigate vibrational quantum dynamics of dimers attached to He droplets motivated by recent measurements with K-2 [1]. For those femtosecond pump-probe experiments, crucial observed features are not reproduced by gas phase calculations but agreement is found using a description based on dissipative quantum dynamics, as briefly shown in [2]. Here we present a detailed study of the influence of possible effects induced by the droplet. The helium droplet causes electronic decoherence, shifts of potential surfaces, and relaxation of wave packets in attached dimers. Moreover, a realistic description of (stochastic) desorption of dimers off the droplet needs to be taken into account. Step by step we include and study the importance of these effects in our full quantum calculation. This allows us to reproduce and explain all major experimental findings. We find that desorption is fast and occurs already within 2-10 ps after electronic excitation. A further finding is that slow vibrational motion in ...
Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics
Sparber, Christof
2010-01-01
We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.
Indian Academy of Sciences (India)
Shubin Liu
2005-09-01
Dynamic behaviors of chemical concepts in density functional theory such as frontier orbitals (HOMO/LUMO), chemical potential, hardness, and electrophilicity index have been investigated in this work in the context of Bohn-Oppenheimer quantum molecular dynamics in association with molecular conformation changes. Exemplary molecular systems like CH$^{+}_{5}$ , Cl- (H2O)30 and Ca2+ (H2O)15 are studied at 300 K in the gas phase, demonstrating that HOMO is more dynamic than LUMO, chemical potential and hardness often fluctuate concurrently. It is argued that DFT concepts and indices may serve as a good framework to understand molecular conformation changes as well as other dynamic phenomena.
Arrighi, Pablo
2016-01-01
Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs---in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. Keywords: Quantum Lattice Gas Automata, Block-representation, Curtis-Hedlund-Lyndon, No-signalling, Localizability, Quantum Gravity, Quantum Graphity, Causal Dynamical Triangula...
Superconducting detector dynamics studied by quantum pump-probe spectroscopy
Heeres, R.W.; Zwiller, V.
2012-01-01
We explore the dynamics of superconducting single-photon detectors (SSPDs) on the picosecond time-scale using a correlated photon-pair source based on spontaneous parametric downconversion (SPDC), corresponding to a pump-probe experiment at the single-photon level. We show that the detector can oper
Dynamical memory effects in correlated quantum channels
Addis, Carole; Karpat, Göktuǧ; Macchiavello, Chiara; Maniscalco, Sabrina
2016-09-01
Memory effects play a fundamental role in the study of the dynamics of open quantum systems. There exist two conceptually distinct notions of memory discussed for quantum channels in the literature. In quantum information theory quantum channels with memory are characterized by the existence of correlations between successive applications of the channel on a sequence of quantum systems. In open quantum systems theory memory effects arise dynamically during the time evolution of quantum systems and define non-Markovian dynamics. Here we relate and combine these two different concepts of memory. In particular, we study the interplay between correlations between multiple uses of quantum channels and non-Markovianity as nondivisibility of the t -parametrized family of channels defining the dynamical map.
Quantum Dynamics Study on D+OD+ Reaction: Competition between Exchange and Abstraction Channels
Institute of Scientific and Technical Information of China (English)
Wen-wu Xu; Pei-yu Zhang; Guo-zhong He
2013-01-01
Quantum dynamics for the D+OD+ reaction at the collision energy range of 0.0-1.0 eV was studied on an accurate ab initio potential energy surface.Both of the endothermic abstraction (D+OD+-O++D2) and thermoneutral exchange (D+OD+-D+OD+) channels were investigated from the same set of time-dependent quantum wave packets method under centrifugal sudden approximation.The reaction probability dependence with collision energy,the integral cross sections,and the thermal rate constant of the both channels are calculated.It is found that there is a convex structure in the reaction path of the exchange reaction.The calculated time evolution of the wave packet distribution at J=0 clearly indicates that the convex structure significantly influences the dynamics of the exchange and abstraction channels of title reaction.
Mixed quantum/semiclassical studies of condensed-phase dynamics and spectroscopy
Cina, Jeffrey A.; Kovac, Philip A.
We report on theoretical and computational studies of molecular-level chemical dynamics and their time-resolved spectroscopic signatures for small molecules embedded in low-temperature crystalline-host environments. Our calculations are based on a mixed quantum mechanical/semiclassical theory, referred to as the variational fixed vibrational basis/Gaussian bath theory (v-FVB/GB), in which certain optically addressed coordinates driven to large-amplitude motion by laser pulses are treated fully quantum mechanically and a larger number of others executing small-amplitude motion are treated semiclassically. Model systems under investigation incorporate a dihalogen molecule isolated in a symmetrical cluster of rare-gas atoms, with the outer layer of host atoms bound together in a harmonic net that preserves the initial equilibrium structure, but emulates an extended medium by preventing dynamical reconstruction and host-atom evaporation. Supported by the US NSF.
Energy Technology Data Exchange (ETDEWEB)
Stehr, D.
2007-12-28
This thesis deals with infrared studies of impurity states, ultrafast carrier dynamics as well as coherent intersubband polarizations in semiconductor quantum structures such as quantum wells and superlattices, based on the GaAs/AlGaAs material system. In the first part it is shown that the 2p{sub z} confined impurity state of a semiconductor quantum well develops into an excited impurity band in the case of a superlattice. This is studied by following theoretically the transition from a single to a multiple quantum well or superlattice by exactly diagonalizing the three-dimensional Hamiltonian for a quantum well system with random impurities. These results also require reinterpretation of previous experimental data. The relaxation dynamics of interminiband transitions in doped GaAs/AlGaAs superlattices in the mid-IR are studied. This involves single-color pump-probe measurements to explore the dynamics at different wavelengths, which is performed with the Rossendorf freeelectron laser (FEL), providing picosecond pulses in a range from 3-200 {mu}m and are used for the first time within this thesis. In these experiments, a fast bleaching of the interminiband transition is observed followed by thermalization and subsequent relaxation, whose time constants are determined to be 1-2 picoseconds. This is followed by an additional component due to carrier cooling in the lower miniband. In the second part, two-color pump-probe measurements are performed, involving the FEL as the pump source and a table-top broad-band tunable THz source for probing the transmission changes. In addition, the dynamics of excited electrons within the minibands is explored and their contribution quantitatively extracted from the measurements. Intersubband absorption experiments of photoexcited carriers in single quantum well structures, measured directly in the time-domain, i.e. probing coherently the polarization between the first and the second subband, are presented. By varying the carrier
A quantum dynamics study of the benzopyran ring opening guided by laser pulses
Energy Technology Data Exchange (ETDEWEB)
Saab, Mohamad, E-mail: mohamad.saab@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Doriol, Loïc Joubert, E-mail: Loic.Joubert-Doriol@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Lasorne, Benjamin, E-mail: lasorne@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Guérin, Stéphane, E-mail: sguerin@u-bourgogne.fr [Département Optique, Interaction Matière-Rayonnement (OMR) (UMR 6303), Université de Bourgogne, F-21078 Dijon (France); Gatti, Fabien, E-mail: gatti@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France)
2014-10-17
Highlights: • We perform quantum mechanical simulations for the ring-opening of benzopyran. • We develop strategies of control with laser pulses. • We focus on the physics involving the conical intersection. - Abstract: The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump–dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.
Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra
2016-09-15
Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example
Krajewski, Florian R.; Müser, Martin H.
2005-03-01
The commensurate Frenkel Kontorova (FK) model is studied using path-integral molecular dynamics (PIMD). We focus on the highly discrete case, in which the embedding potential has a much greater maximum curvature than the harmonic potential connecting two particles in the FK chain. When efficient sampling methods are used, the dynamical interpretation of adiabatic PIMD appears to represent quite accurately the true time correlation functions of this highly correlated many-body system. We have found that the discrete, quantum FK model shows different behavior than its continuum version. The spectral density does not show the characteristic ω-2Θ(ω-ωc) cusp of the continuum solution in the pinned phase (m>mc). We also identify a dynamical quantum hysteresis in addition to the regular classical hysteresis when an external force is applied to the FK chain. In the unpinned phase (m⩽mc), we find a linear response damping coefficient which is finite and only weakly dependent on temperature T at small values of T.
Dynamics of quantum entanglement
Zyczkowski, K; Horodecki, M; Horodecki, R; Zyczkowski, Karol; Horodecki, Pawel; Horodecki, Michal; Horodecki, Ryszard
2002-01-01
A model of discrete dynamics of entanglement of bipartite quantum state is considered. It involves a global unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure states the decay of entanglement is accompanied with an increase of von Neumann entropy of the system. We observe and discuss revivals of entanglement due to unitary interaction of both subsystems. For some mixed states having different marginal entropies of both subsystems (one larger than the global entropy and one smaller) we find an asymmetry in speed of entanglement decay. The entanglement of these states decreases faster, if the depolarizing channel acts on the "classical" subsystem, characterized by smaller marginal entropy.
Energy Technology Data Exchange (ETDEWEB)
Miller, J.; Miaskiewicz, K. [Pacific Northwest Lab., Richland, WA (United States); Osman, R. [Mount Sinai School of Medicine, New York, NY (United States). Dept. of Physiology and Biophysics
1993-12-01
Studies of ring-saturated pyrimidine base lesions are used to illustrate an integrated modeling approach that combines quantum-chemical calculations with molecular dynamics simulation. Electronic-structure calculations on the lesions in Isolation reveal strong conformational preferences due to interactions between equatorial substituents to the pyrimidine ring. Large distortions of DNA should result when these interactions force the methyl group of thymine to assume an axial orientation, as is the case for thymine glycol but not for dihydrothymine. Molecular dynamics simulations of the dodecamer d(CGCGAATTCGCG){sub 2} with and without a ring-saturated thymine lesion at position T7 support this conclusion. Implications of these studies for recognition of thymine lesions by endonuclease III are also discussed.
Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions
Zhang, Song Bin; Wu, Yong; Wang, Jian Guo
2016-12-01
The method of time-dependent quantum wave packet dynamics has been successfully extended to study the charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with the multiconfiguration time-dependent Hartree method and the modulo squares of S-matrix is extracted from the wave packet by the flux operator with complex absorbing potential (FCAP) method. The calculations of the charge transfer process 12Σ+ H-(1s2) +Li(1 s22 s ) →22Σ+ /32 Σ+ /12 Π H(1 s ) +Li-(1s 22 s 2 l ) (l =s ,p ) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows that the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.
Coarse Grained Quantum Dynamics
Agon, Cesar; Kasko, Skyler; Lawrence, Albion
2014-01-01
We consider coarse graining a quantum system divided between short distance and long distance degrees of freedom, which are coupled by the Hamiltonian. Observations using purely long distance observables can be described by the reduced density matrix that arises from tracing out the short-distance observables. The dynamics of this density matrix is that of an open quantum system, and is nonlocal in time, on the order of some short time scale. We describe these dynamics in a model system with a simple hierarchy of energy gaps $\\Delta E_{UV} > \\Delta E_{IR}$, in which the coupling between high-and low-energy degrees of freedom is treated to second order in perturbation theory. We then describe the equations of motion under suitable time averaging, reflecting the limited time resolution of actual experiments, and find an expansion of the master equation in powers of $\\Delta E_{IR}/\\Delta E_{UV}$, in which the failure of the system to be Hamiltonian or even Markovian appears at higher orders in this ratio. We com...
Dynamical fermions in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Szabo, Kalman
2007-07-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Quantum emitters dynamically coupled to a quantum field
Energy Technology Data Exchange (ETDEWEB)
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J. [Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá (Colombia); Johnson, N. F. [Department of Physics, University of Miami, Coral Gables, Miami, FL 33124 (United States)
2013-12-04
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Quantum emitters dynamically coupled to a quantum field
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2013-12-01
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Systematic study of 16O-induced fusions with the improved quantum molecular dynamics model
Wang, Ning; Li, Zhuxia
2014-01-01
The heavy-ion fusion reactions with 16O bombarding on 62Ni, 65Cu, 74Ge, 148Nd, 180Hf, 186W, 208Pb, 238U are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. The fusion cross sections at energies near and above the Coulomb barriers can be reasonably well reproduced by using this semi-classical microscopic transport model with the parameter sets SkP* and IQ3a. The dynamical nucleus-nucleus potentials and the influence of Fermi constraint on the fusion process are also studied simultaneously. In addition to the mean field, the Fermi constraint also plays a key role for the reliable description of fusion process and for improving the stability of fragments in heavy-ion collisions.
Numerical Studies of Quantum Turbulence
Tsubota, Makoto; Fujimoto, Kazuya; Yui, Satoshi
2017-09-01
We review numerical studies of quantum turbulence. Quantum turbulence is currently one of the most important problems in low temperature physics and is actively studied for superfluid helium and atomic Bose-Einstein condensates. A key aspect of quantum turbulence is the dynamics of condensates and quantized vortices. The dynamics of quantized vortices in superfluid helium are described by the vortex filament model, while the dynamics of condensates are described by the Gross-Pitaevskii model. Both of these models are nonlinear, and the quantum turbulent states of interest are far from equilibrium. Hence, numerical studies have been indispensable for studying quantum turbulence. In fact, numerical studies have contributed to revealing the various problems of quantum turbulence. This article reviews the recent developments in numerical studies of quantum turbulence. We start with the motivation and the basics of quantum turbulence and invite readers to the frontier of this research. Though there are many important topics in the quantum turbulence of superfluid helium, this article focuses on inhomogeneous quantum turbulence in a channel, which has been motivated by recent visualization experiments. Atomic Bose-Einstein condensates are a modern issue in quantum turbulence, and this article reviews a variety of topics in the quantum turbulence of condensates, e.g., two-dimensional quantum turbulence, weak wave turbulence, turbulence in a spinor condensate, some of which have not been addressed in superfluid helium and paves the novel way for quantum turbulence researches. Finally, we discuss open problems.
Molecular internal dynamics studied by quantum path interferences in high order harmonic generation
Energy Technology Data Exchange (ETDEWEB)
Zaïr, Amelle, E-mail: azair@imperial.ac.uk [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Siegel, Thomas; Sukiasyan, Suren; Risoud, Francois; Brugnera, Leonardo; Hutchison, Christopher [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Diveki, Zsolt; Auguste, Thierry [Service des Photons, Atomes et Molécules, CEA-Saclay, 91191 Gif-sur-Yvette (France); Tisch, John W.G. [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom); Salières, Pascal [Service des Photons, Atomes et Molécules, CEA-Saclay, 91191 Gif-sur-Yvette (France); Ivanov, Misha Y.; Marangos, Jonathan P. [Imperial College London, Department of Physics, Blackett Laboratory Laser Consortium, London SW7 2AZ (United Kingdom)
2013-03-12
Highlights: ► Electronic trajectories in high order harmonic generation encodes attosecond and femtosecond molecular dynamical information. ► The observation of these quantum paths allows us to follow nuclear motion after ionization. ► Quantum paths interference encodes a signature of superposition of ionization channels. ► Quantum paths interference encodes a signature of transfer of population between channels due to laser coupling. ► Quantum paths interference is a promising technique to resolve ultra-fast dynamical processes after ionization. - Abstract: We investigate how short and long electron trajectory contributions to high harmonic emission and their interferences give access to information about intra-molecular dynamics. In the case of unaligned molecules, we show experimental evidence that the long trajectory contribution is more dependent upon the molecular species than the short one, providing a high sensitivity to cation nuclear dynamics from 100’s of as to a few fs after ionisation. Using theoretical approaches based on the strong field approximation and numerical integration of the time dependent Schrödinger equation, we examine how quantum path interferences encode electronic motion when the molecules are aligned. We show that the interferences are dependent upon which ionisation channels are involved and any superposition between them. In particular, quantum path interferences can encode signatures of electron dynamics if the laser field drives a coupling between the channels. Hence, molecular quantum path interferences are a promising method for attosecond spectroscopy, allowing the resolution of ultra-fast charge migration in molecules after ionisation in a self-referenced manner.
Nandi, Rana
2016-01-01
We study the effect of isospin-dependent nuclear forces on the pasta phase in the inner crust of neutron stars. To this end we model the crust within the framework of quantum molecular dynamics (QMD). For maximizing the numerical performance, the newly developed code has been implemented on GPU processors. As a first application of the crust studies we investigate the dependence of the particular pasta phases on the slope of the symmetry energy slope L. To isolate the effect of different values of L, we adopt an established QMD Hamiltonian and extend it to include non-linear terms in the isospin-dependent interaction. The strengths of the isospin-dependent forces are used to adjust the asymmetry energy and slope of the matter. Our results indicate that in contrast to earlier studies the phase diagram of the pasta phase is not very sensitive to the value of L.
Quantum dynamics in dual spaces
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E.C.G.
1993-12-31
Quantum mechanics gives us information about spectra of dynamical variables and transition rates including scattering cross sections. They can be exhibited as spectral information in analytically continued spaces and their duals. Quantum mechanics formulated in these generalized spaces is used to study scattering and time evolution. It is shown that the usual asymptotic condition is inadequate to deal with scattering of composite or unstable particles. Scattering theory needs amendment when the interacting system is not isospectral with the free Hamiltonian, and the amendment is formulated. Perturbation theory in generalized spaces is developed and used to study the deletion and augmentation of the spectrum of the Hamiltonian. A complete set of algebraically independent constants for an interacting system is obtained. The question of the breaking of time symmetry is discussed.
Saleh, Muhammad; Hofer, Thomas S.
2016-09-01
An investigation of structural and dynamical properties of Ni2+ in liquid ammonia has been carried out via Quantum Mechanical Charge Field Molecular Dynamics. By extending the quantum mechanical region to include first and second solvation shell, a more realistic representation of the system was achieved yielding improved results on present computational facilities. The structural results obtained from the 16 ps trajectory agree well with experimental investigations for various nitrogen-containing Ni2+ systems. Detailed analysis of mean residence time and vibrational properties highlights a rather flexible structure of the first and second shells compared to Ni2+ in aqueous solution.
Energy Technology Data Exchange (ETDEWEB)
Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)
2016-01-07
The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.
Quantum dynamical semigroups and applications
Energy Technology Data Exchange (ETDEWEB)
Alicki, R. [Gdansk Univ. (Poland). Inst. of Theoretical Physics and Astrophysics; Lendi, K. [Zuerich Univ. (Switzerland). Inst. of Physical Chemistry
2007-07-01
Reinvigorated by advances and insights, in particular from the active fields of quantum information and computing, the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. The present book, originally published as Vol. 286 (1987) in Lecture in Physics, has been newly typeset, revised and corrected and also expanded to include a review on recent developments. (orig.)
Hwang, Gyeong S; Stowe, Haley M; Paek, Eunsu; Manogaran, Dhivya
2015-01-14
Aqueous monoethanolamine (MEA) has been extensively studied as a solvent for CO2 capture, yet the underlying reaction mechanisms are still not fully understood. Combined ab initio and classical molecular dynamics simulations were performed to revisit and identify key elementary reactions and intermediates in 25-30 wt% aqueous MEA with CO2, by explicitly taking into account the structural and dynamic effects. Using static quantum chemical calculations, we also analyzed in more detail the fundamental interactions involved in the MEA-CO2 reaction. We find that both the CO2 capture by MEA and solvent regeneration follow a zwitterion-mediated two-step mechanism; from the zwitterionic intermediate, the relative probability between deprotonation (carbamate formation) and CO2 removal (MEA regeneration) tends to be determined largely by the interaction between the zwitterion and neighboring H2O molecules. In addition, our calculations clearly demonstrate that proton transfer in the MEA-CO2-H2O solution primarily occurs through H-bonded water bridges, and thus the availability and arrangement of H2O molecules also directly impacts the protonation and/or deprotonation of MEA and its derivatives. This improved understanding should contribute to developing more comprehensive kinetic models for use in modeling and optimizing the CO2 capture process. Moreover, this work highlights the importance of a detailed atomic-level description of the solution structure and dynamics in order to better understand molecular mechanisms underlying the reaction of CO2 with aqueous amines.
Terahertz study of ultrafast carrier dynamics in InGa/GaN multiple quantum wells
DEFF Research Database (Denmark)
Porte, Henrik; Turchinovich, Dmitry; Cooke, David
2009-01-01
Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay...
Goldstein, Sheldon; Struyve, Ward
2015-01-01
Non-relativistic de Broglie-Bohm theory describes particles moving under the guidance of the wave function. In de Broglie's original formulation, the particle dynamics is given by a first-order differential equation. In Bohm's reformulation, it is given by Newton's law of motion with an extra potential that depends on the wave function—the quantum potential—together with a constraint on the possible velocities. It was recently argued, mainly by numerical simulations, that relaxing this velocity constraint leads to a physically untenable theory. We provide further evidence for this by showing that for various wave functions the particles tend to escape the wave packet. In particular, we show that for a central classical potential and bound energy eigenstates the particle motion is often unbounded. This work seems particularly relevant for ways of simulating wave function evolution based on Bohm's formulation of the de Broglie-Bohm theory. Namely, the simulations may become unstable due to deviations from the velocity constraint.
Dissipative Dynamics of Quantum Fluctuations
Benatti, F; Floreanini, R
2015-01-01
One way to look for complex behaviours in many-body quantum systems is to let the number $N$ of degrees of freedom become large and focus upon collective observables. Mean-field quantities scaling as $1/N$ tend to commute, whence complexity at the quantum level can only be inherited from complexity at the classical level. Instead, fluctuations of microscopic observables scale as $1/\\sqrt{N}$ and exhibit collective Bosonic features, typical of a mesoscopic regime half-way between the quantum one at the microscopic level and the classical one at the level of macroscopic averages. Here, we consider the mesoscopic behaviour emerging from an infinite quantum spin chain undergoing a microscopic dissipative, irreversible dynamics and from global states without long-range correlations and invariant under lattice translations and dynamics. We show that, from the fluctuations of one site spin observables whose linear span is mapped into itself by the dynamics, there emerge bosonic operators obeying a mesoscopic dissipa...
Hydration of the cyanide ion: an ab initio quantum mechanical charge field molecular dynamics study.
Moin, Syed Tarique; Hofer, Thomas S
2014-12-21
This paper presents an ab initio quantum mechanical charge field molecular dynamics simulation study of the cyanide anion (CN(-)) in aqueous solution where hydrogen bond formation plays a dominant role in the hydration process. Preferential orientation of water hydrogens compared to oxygen atoms was quantified in terms of radial, angular as well as coordination number distributions. All structural results indicate that the water hydrogens are attracted towards CN(-) atoms, thus contributing to the formation of the hydration layer. Moreover, a clear picture of the local arrangement of water molecules around the ellipsoidal CN(-) ion is provided via angular-radial distribution and spatial distribution functions. Apart from the structural analysis, the evaluation of water dynamics in terms of ligand mean residence times and H-bond correlation functions indicates the weak structure making capacity of the CN(-) ion. The similar values of H-bond lifetimes obtained for the NHwat and CHwat bonds indicate an isokinetic behaviour of these H-bonds, since there is a very small difference in the magnitude of the lifetimes. On the other hand, the H-bond lifetimes between water molecules of the hydration shell, and between solute and solvent evidence the slightly stable hydration of the CN(-). Overall, the H-bonding dominates in the hydration process of the cyanide anion enabling it to become soluble in the aqueous environment associated to chemical and biological processes.
What is dynamics in quantum gravity?
Małkiewicz, Przemysław
2017-10-01
The appearance of the Hamiltonian constraint in the canonical formalism for general relativity reflects the lack of a fixed external time. The dynamics of general relativistic systems can be expressed with respect to an arbitrarily chosen internal degree of freedom, the so-called internal clock. We investigate the way in which the choice of internal clock determines the quantum dynamics and how much different quantum dynamics induced by different clocks are. We develop our method of comparison by extending the Hamilton–Jacobi theory of contact transformations to include a new type of transformation which transforms both the canonical variables and the internal clock. We employ our method to study the quantum dynamics of the Friedmann–Lemaitre model and obtain semiclassical corrections to the classical dynamics, which depend on the choice of internal clock. For a unique quantisation map we find the abundance of inequivalent semiclassical corrections induced by quantum dynamics taking place in different internal clocks. It follows that the concepts like minimal volume, maximal curvature and the number of quantum bounces, often used to describe quantum effects in cosmological models, depend on the choice of internal clock.
Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya
2016-05-01
At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision
Model dynamics for quantum computing
Tabakin, Frank
2017-08-01
A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.
Dynamical evaporation of quantum horizons
Pranzetti, Daniele
2013-01-01
We describe the black hole evaporation process driven by the dynamical evolution of the quantum gravitational degrees of freedom resident at the horizon, as identified by the Loop Quantum Gravity kinematics. Using a parallel with the Brownian motion, we interpret the first law of quantum dynamical horizon in terms of a fluctuation-dissipation relation applied to this fundamental discrete structure. In this way, the horizon evolution is described in terms of relaxation to an equilibrium state balanced by the excitation of Planck scale constituents of the horizon. We investigate the final stage of the evaporation process and show how, from this setting, the emergence of several conservative scenarios for the information paradox can be microscopically derived. Namely, the leakage of part of the horizon quantum geometry information prior to the Planckian phase and the stabilization of the hole surface shrinkage forming a massive remnant, which can eventually decay, are described.
Camp, Piet
1985-01-01
The 1984 Advanced Study Institute on "Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter" took place at the Corsendonk Conference Center, close to the City of Antwerpen, from July 16 till 27, 1984. This NATO Advanced Study Institute was motivated by the research in my Institute, where, in 1971, a project was started on "ab-initio" phonon calculations in Silicon. I~ is my pleasure to thank several instances and people who made this ASI possible. First of all, the sponsor of the Institute, the NATO Scientific Committee. Next, the co-sponsors: Agfa-Gevaert, Bell Telephone Mfg. Co. N.V., C & A, Esso Belgium·, CDC Belgium, Janssens Pharmaceutica, Kredietbank and the Scientific Office of the U.S. Army. Special thanks are due to Dr. P. Van Camp and Drs. H. Nachtegaele, who, over several months, prepared the practical aspects of the ASI with the secretarial help of Mrs. R.-M. Vandekerkhof. I also like to. thank Mrs. M. Cuyvers who prepared and organized the subject and material ...
Li, Ying; Kalia, Rajiv K; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya
2016-05-14
At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.
Popp, Alexander; Scheerer, David; Heck, Benjamin; Hauser, Karin
2017-06-01
Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-L-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)
2015-02-21
The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.
Symmetry of intramolecular quantum dynamics
Burenin, Alexander V
2012-01-01
The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Study of system- size effects in multi- fragmentation using Quantum Molecular Dynamics model
Singh, J; Aichelin, Jörg; Singh, Jaivir; Puri, Rajeev K.
2001-01-01
We report, for the first time, the dependence of the multiplicity of different fragments on the system size employing a quantum molecular dynamics model. This dependence is extracted from the simulations of symmetric collisions of Ca+Ca, Ni+Ni, Nb+Nb, Xe+Xe, Er+Er, Au+Au and U+U at incident energies between 50 A MeV and 1 A GeV. We find that the multiplicity of different fragments scales with the size of the system which can be parameterized by a simple power law.
Terahertz study of ultrafast carrier dynamics in InGaN/GaN multiple quantum wells
Porte, H. P.; Turchinovich, D.; Cooke, D. G.; Jepsen, P. Uhd
2009-11-01
Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of the built-in piezoelectric field at high excitation fluences. We also observe that the terahertz conductivity spectra differs from simple Drude conductivity, describing the response of free carriers, and are well fitted by the Drude-Smith model.
Terahertz study of ultrafast carrier dynamics in InGaN/GaN multiple quantum wells
Energy Technology Data Exchange (ETDEWEB)
Porte, H P; Turchinovich, D; Cooke, D G; Jepsen, P Uhd, E-mail: hpor@fotonik.dtu.d [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Oersteds Plads 343, DK 2800 Kongens Lyngby (Denmark)
2009-11-15
Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of the built-in piezoelectric field at high excitation fluences. We also observe that the terahertz conductivity spectra differs from simple Drude conductivity, describing the response of free carriers, and are well fitted by the Drude-Smith model.
Dynamical quantum teleportation
Energy Technology Data Exchange (ETDEWEB)
Muschik, Christine [ICFO-Institut de Ciencies Fotoniques (Spain); Polzik, Eugene [Niels Bohr Institute (Denmark); Cirac, Ignacio [Max-Planck-Institute (Germany)
2013-07-01
We introduce two protocols for inducing non-local dynamics between two separate parties. The first scheme allows for the engineering of an interaction between the two remote systems, while the second protocol induces a dynamics in one of the parties, which is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time and are based on instantaneous feedback.
Femtosecond spectroscopy study of the exciton relaxation dynamics in silicon quantum dots
Energy Technology Data Exchange (ETDEWEB)
Kryschi, Carola; Kuntermann, Volker; Cimpean, Carla [Institut fuer Physikalische Chemie I, FAU, Erlangen (Germany); Haarer, Dietrich [BIMF, Universitaet Bayreuth (Germany)
2008-07-01
This contribution is targeted to the development of surface-modified silicon quantum dots (Siqdots) with tailored luminescence properties. The surface modification of Siqdots with sizes between 1 and 5 nm has been successfully achieved via two different synthesis routes, first, by controlled oxidation followed from silanization and second, by thermal hydrosilylation with chromophores. The luminescence properties of ethanolic Siqdots dispersions were characterized using stationary and time-resolved luminescence spectroscopy techniques, whereas the ultrashort exciton relaxation dynamics were examined using femtosecond transient absorption spectroscopy. Silanized Siqdots were observed to exhibit two species of photoluminescence (PL): the blue emission at 380 nm is assigned to localized surface states, whereas radiative recombination of quantum confined excitons gives rise to a broad PL band around 800 nm. Whereas the latter is ascribed to Siqdots with sizes larger than 3 nm, for Siqdots smaller than 1.5 nm exciton relaxation dynamics is understood to occur predominantly by trapping due to lower-lying surface states which may radiatively decay. Siqdots terminated with suited chromophores were observed to exhibit only one PL band in the visible that is ascribed to exciton states involving resonant couplings to the conjugated electron system of the chromophores.
Theory and application of quantum molecular dynamics
Zeng Hui Zhang, John
1999-01-01
This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the appli
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Nonequilibrium quantum dynamics in optomechanical systems
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-01
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
Quantum dynamics of bio-molecular systems in noisy environments
Huelga S.F.; Plenio M.B.
2012-01-01
We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical descripti...
Dynamics of Super Quantum Correlations and Quantum Correlations for a System of Three Qubits
Siyouri, F.; El Baz, M.; Rfifi, S.; Hassouni, Y.
2016-04-01
The dynamics of quantum discord for two qubits independently interacting with dephasing reservoirs have been studied recently. The authors [Phys. Rev. A 88 (2013) 034304] found that for some Bell-diagonal states (BDS) which interact with their environments the calculation of quantum discord could experience a sudden transition in its dynamics, this phenomenon is known as the sudden change. Here in the present paper, we analyze the dynamics of normal quantum discord and super quantum discord for tripartite Bell-diagonal states independently interacting with dephasing reservoirs. Then, we find that basis change does not necessary mean sudden change of quantum correlations.
Geometry from dynamics, classical and quantum
Cariñena, José F; Marmo, Giuseppe; Morandi, Giuseppe
2015-01-01
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'', and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finall...
Quantum dynamical entropies in discrete classical chaos
Energy Technology Data Exchange (ETDEWEB)
Benatti, Fabio [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Cappellini, Valerio [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Zertuche, Federico [Instituto de Matematicas, UNAM, Unidad Cuernavaca, AP 273-3, Admon. 3, 62251 Cuernavaca, Morelos (Mexico)
2004-01-09
We discuss certain analogies between quantization and discretization of classical systems on manifolds. In particular, we will apply the quantum dynamical entropy of Alicki and Fannes to numerically study the footprints of chaos in discretized versions of hyperbolic maps on the torus.
Quantum walk coherences on a dynamical percolation graph
Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine
2015-08-01
Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.
Quantum walk coherences on a dynamical percolation graph.
Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine
2015-08-27
Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.
Moin, Syed Tarique; Lim, Len Herald V; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M
2011-04-18
An ab initio Quantum Mechanical Charge Field Molecular Dynamics Simulation (QMCF MD) was performed to investigate structure and dynamics behavior of hydrated sulfur dioxide (SO(2)) at the Hartree-Fock level of theory employing Dunning DZP basis sets for solute and solvent molecules. The intramolecular structural characteristics of SO(2), such as S═O bond lengths and O═S═O bond angle, are in good agreement with the data available from a number of different experiments. The structural features of the hydrated SO(2) were primarily evaluated in the form of S-O(wat) and O(SO(2))-H(wat) radial distribution functions (RDFs) which gave mean distances of 2.9 and 2.2 Å, respectively. The dynamical behavior characterizes the solute molecule to have structure making properties in aqueous solution or water aerosols, where the hydrated SO(2) can easily get oxidized to form a number of sulfur(VI) species, which are believed to play an important role in the atmospheric processes.
Logical entropy of quantum dynamical systems
Directory of Open Access Journals (Sweden)
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Dynamics of multipartite quantum correlations under decoherence
Ramzan, M
2012-01-01
Quantum discord is an optimal resource for the quantification of classical and non-classical correlations as compared to other related measures. Geometric measure of quantum discord is another measure of quantum correlations. Recently, the geometric quantum discord for multipartite states has been introduced by Jianwei Xu [arxiv:quant/ph.1205.0330]. Motivated from the recent study [Ann. Phys. 327 (2012) 851] for the bipartite systems, I have investigated global quantum discord (QD) and geometric quantum discord (GQD) under the influence of external environments for different multipartite states. Werner-GHZ type three-qubit and six-qubit states are considered in inertial and non-inertial settings. The dynamics of QD and GQD is investigated under amplitude damping, phase damping, depolarizing and flipping channels. It is seen that the quantum discord vanishes for p>0.75 in case of three-qubit GHZ states and for p>0.5 for six qubit GHZ states. This implies that multipartite states are more fragile to decoherence...
Quantum dynamic imaging theoretical and numerical methods
Ivanov, Misha
2011-01-01
Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differ...
Theory of controlled quantum dynamics
De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio
1997-01-01
We introduce a general formalism, based on the stochastic formulation of quantum mechanics, to obtain localized quasi-classical wave packets as dynamically controlled systems, for arbitrary anharmonic potentials. The control is in general linear, and it amounts to introduce additional quadratic and linear time-dependent terms to the given potential. In this way one can construct for general systems either coherent packets moving with constant dispersion, or dynamically squeezed packets whose spreading remains bounded for all times. In the standard operatorial framework our scheme corresponds to a suitable generalization of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator.
Energy Technology Data Exchange (ETDEWEB)
Amaran, Saieswari; Kosloff, Ronnie [Fritz Haber Research Centre and The Department of Physical Chemistry, Hebrew University, Jerusalem 91904 (Israel); Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Rybak, Leonid; Levin, Liat; Amitay, Zohar [The Shirlee Jacobs Femtosecond Laser Research Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel (Germany)
2013-10-28
Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.
Quantum dynamics as a physical resource
Nielsen, M A; Dodd, J L; Gilchrist, A; Mortimer, D; Osborne, T J; Bremner, M J; Harrow, A W; Hines, A; Nielsen, Michael A.; Dawson, Christopher M.; Dodd, Jennifer L.; Gilchrist, Alexei; Mortimer, Duncan; Osborne, Tobias J.; Bremner, Michael J.; Harrow, Aram W.; Hines, Andrew
2003-01-01
How useful is a quantum dynamical operation for quantum information processing? Motivated by this question we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.
Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús
2015-01-01
Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2.
Dynamics of Quantum Entanglement in Reservoir with Memory Effects
Institute of Scientific and Technical Information of China (English)
郝翔; 沙金巧; 孙坚; 朱士群
2012-01-01
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.
Theory of controlled quantum dynamics
Energy Technology Data Exchange (ETDEWEB)
De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Fisica, Universita di Salerno, and INFN, Sezione di Napoli, Gruppo collegato di Salerno, Baronissi (Italy)
1997-06-07
We introduce a general formalism to obtain localized quantum wavepackets as dynamically controlled systems, in the framework of Nelson stochastic quantization. We show that in general the control is linear, and it amounts to introducing additional time-dependent terms in the potential. In this way one can construct for general systems either coherent packets following classical motion with constant dispersion, or coherent packets following classical motion whose time-dependent dispersion remains bounded for all times. We show that in the operatorial language our scheme amounts to introducing a suitable generalization to arbitrary potentials of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator. (author)
Classical Dynamics of Quantum Entanglement
Casati, Giulio; Reslen, Jose
2011-01-01
We numerically analyze the dynamical generation of quantum entanglement in a system of 2 interacting particles, started in a coherent separable state, for decreasing values of $\\hbar$. As $\\hbar\\to 0$ the entanglement entropy, computed at any finite time, converges to a finite nonzero value, that can be reproduced by purely classical computations. The limiting classical law which rules the time dependence of entropy is different in the integrable and in the chaotic case, and its general qualitative and quantitative features may be explained by simple heuristic arguments.
Li, Dafang; Liu, Haitao; Zeng, Siliang; Wang, Cong; Wu, Zeqing; Zhang, Ping; Yan, Jun
2014-07-31
By performing quantum molecular dynamics (QMD) simulations, we investigate the equation of states, electrical and optical properties of the expanded beryllium at densities two to one-hundred lower than the normal solid density, and temperatures ranging from 5000 to 30000 K. With decreasing the density of Be, the optical response evolves from the one characteristic of a simple metal to the one of an atomic fluid. By fitting the optical conductivity spectra with the Drude-Smith model, it is found that the conducting electrons become localized at lower densities. In addition, the negative derivative of the electrical resistivity on temperature at density about eight lower than the normal solid density demonstrates that the metal to nonmetal transition takes place in the expanded Be. To interpret this transition, the electronic density of states is analyzed systematically. Furthermore, a direct comparison of the Rosseland opacity obtained by using QMD and the standard opacity code demonstrates that QMD provides a powerful tool to validate plasma models used in atomic physics approaches in the warm dense matter regime.
Wang, Cong; Long, Yao; Tian, Ming-Feng; He, Xian-Tu; Zhang, Ping
2013-04-01
We have calculated the equations of state, the viscosity and self-diffusion coefficients, and electronic transport coefficients of beryllium in the warm dense regime for densities from 4.0 to 6.0 g/cm(3) and temperatures from 1.0 to 10.0 eV by using quantum molecular dynamics simulations. The principal Hugoniot curve is in agreement with underground nuclear explosive and high-power laser experimental results up to ~20 Mbar. The calculated viscosity and self-diffusion coefficients are compared with the one-component plasma model, using effective charges given by the average-atom model. The Stokes-Einstein relationship, which connects viscosity and self-diffusion coefficients, is found to hold fairly well in the strong coupling regime. The Lorenz number, which is the ratio between thermal and electrical conductivities, is computed via Kubo-Greenwood formula and compared to the well-known Wiedemann-Franz law in the warm dense region.
Quantum coherence in the dynamical Casimir effect
Samos-Sáenz de Buruaga, D. N.; Sabín, Carlos
2017-02-01
We propose to use quantum coherence as the ultimate proof of the quantum nature of the radiation that appears by means of the dynamical Casimir effect in experiments with superconducting microwave waveguides. We show that, unlike previously considered measurements such as entanglement and discord, quantum coherence does not require a threshold value of the external pump amplitude and is highly robust to thermal noise.
Dynamical Response near Quantum Critical Points
Lucas, Andrew; Gazit, Snir; Podolsky, Daniel; Witczak-Krempa, William
2017-02-01
We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O (N ) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high-frequency optical conductivity and the corresponding sum rule.
Quantum Dynamics of the HMF Model
Plestid, Ryan; Mahon, Perry; O'Dell, Duncan
2016-01-01
We study the dynamics of the quantized Hamiltonian Mean Field (HMF) model assuming a gas of bosons in the large N limit. We characterize the full set of stationary states, and study the dynamics of the model numerically focussing on competition between classical and quantum effects. We make contact with the existing literature on the HMF model as a classical system, and stress universal features which can be inferred in the semi-classical limit.In particular we show that the characteristic ch...
Quantum phase transitions with dynamical flavors
Bea, Yago; Ramallo, Alfonso V
2016-01-01
We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.
Quantum phase transitions with dynamical flavors
Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.
2016-07-01
We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.
Strong Analog Classical Simulation of Coherent Quantum Dynamics
Wang, Dong-Sheng
2017-02-01
A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and quantum informational technique of quantum tomography, which applies broadly to cases of mixed states, nonunitary evolution, and infinite dimensional systems. The simulation provides an intriguing classical picture to probe quantum phenomena, namely, a coherent quantum dynamics can be viewed as a globally constrained classical Hamiltonian dynamics of a collection of coupled particles or strings. Efficiency analysis reveals a fundamental difference between the locality in real space and locality in Hilbert space, the latter enables efficient strong analog classical simulations. Examples are also studied to highlight the differences and gaps among various simulation methods. Funding support from NSERC of Canada and a research fellowship at Department of Physics and Astronomy, University of British Columbia are acknowledged
Energy Technology Data Exchange (ETDEWEB)
Reynolds, Joseph [Iowa State Univ., Ames, IA (United States)
1997-10-08
Using high-accuracy numerical methods the author investigates the dynamics of independent electrons in both ideal and realistic superlattices subject to arbitrary ac and/or dc electric fields. For a variety of superlattice potentials, optically excited initial wave packets, and combinations of ac and dc electric fields, he numerically solves the time-dependent Schroedinger equation. In the case of ideal periodic superlattice potentials, he investigates a long list of dynamical phenomena involving multiple miniband transitions and time-dependent electric fields. These include acceleration effects associated with interminiband transitions in strong fields, Zener resonances between minibands, dynamic localization with ac fields, increased single-miniband transport with an auxiliary resonant ac field, and enhanced or suppressed interminiband probability exchange using an auxiliary ac field. For all of the cases studied, the resulting time-dependent wave function is analyzed by projecting the data onto convenient orthonormal bases. This allows a detailed comparison with approximately analytic treatments. In an effort to explain the rapid decay of experimentally measured Bloch oscillation (BO) signals the author incorporates a one-dimensional representation of interface roughness (IR) into their superlattice potential. He shows that as a result of IR, the electron dynamics can be characterized in terms of many discrete, incommensurate frequencies near the Block frequency. Chapters 2, 3, 4 and 5 have been removed from this report and will be processed separately.
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Quantum Dynamics of Magnetic and Electric Dipoles and Berry's Phase
Furtado, C; Furtado, Claudio
2003-01-01
We study the quantum dynamics of neutral particle that posseses a permanent magnetic and electric dipole moments in the presence of an electromagnetic field. The analysis of this dynamics demonstrates the appearance of a quantum phase that combines the Aharonov-Casher effect and the He-Mckellar-Wilkens effect. We demonstrate that this phase is a special case of the Berry's quantum phase. A series of field configurations where this phase would be found are presented. A generalized Casella-type effect is found in one these configurations. A physical scenario for the quantum phase in an interferometric experiment is proposed.
Kawashima, Yukio; Tachikawa, Masanori
2013-05-01
Ab initio path integral molecular dynamics simulation was performed to understand the nuclear quantum effect on the hydrogen bond of hydrogen malonate anion. Static calculation predicted the proton transfer barrier as 0.12 kcal/mol. Conventional ab initio molecular dynamics simulation at 300 K found proton distribution with a double peak on the proton transfer coordinate. Inclusion of thermal effect alone elongates the hydrogen bond length, which increases the barrier height. Inclusion of nuclear quantum effect washes out this barrier, and distributes a single broad peak in the center. H/D isotope effect on the proton transfer is also discussed.
Coherent Dynamics of Complex Quantum Systems
Akulin, Vladimir M
2006-01-01
A large number of modern problems in physics, chemistry, and quantum electronics require a consideration of population dynamics in complex multilevel quantum systems. The purpose of this book is to provide a systematic treatment of these questions and to present a number of exactly solvable problems. It considers the different dynamical problems frequently encountered in different areas of physics from the same perspective, based mainly on the fundamental ideas of group theory and on the idea of ensemble average. Also treated are concepts of complete quantum control and correction of decoherence induced errors that are complementary to the idea of ensemble average. "Coherent Dynamics of Complex Quantum Systems" is aimed at senior-level undergraduate students in the areas of Atomic, Molecular, and Laser Physics, Physical Chemistry, Quantum Optics and Quantum Informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elabora...
The dissociative chemisorption of CO2 on Ni(100): A quantum dynamics study
Farjamnia, Azar; Jackson, Bret
2017-02-01
A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore the dissociative chemisorption of CO2 on Ni(100). The largest barrier to reaction corresponds to the formation of a bent anionic molecular precursor, bound to the surface by about 0.24 eV. The barrier to dissociation from this state is small. Our computed dissociative sticking probabilities on Ni(100) for molecules in the ground state are in very good agreement with available experimental data, reasonably reproducing the variation in reactivity with collision energy. Vibrational excitation of the incident CO2 can enhance reactivity, particularly for incident energies at or below threshold, and there is clear mode specific behavior. Both the vibrational enhancement and the increase in dissociative sticking with surface temperature are much weaker than that found in recent studies of methane and water dissociative chemisorption. The energetics for CO2 adsorption and dissociation on the stepped Ni(711) surface are found to be similar to that on Ni(100), except that the barrier to dissociation from the anionic precursor is even smaller on Ni(711). We predict that the dissociative sticking behavior is similar on the two surfaces.
Cwiklik, Lukasz; Aquino, Adelia J A; Vazdar, Mario; Jurkiewicz, Piotr; Pittner, Jiří; Hof, Martin; Lischka, Hans
2011-10-20
Absorption and fluorescence spectra of PRODAN (6-propionyl-2-dimethylaminonaphthalene) were studied by means of the time-dependent density functional theory and the algebraic diagrammatic construction method. The influence of environment, a phosphatidylcholine lipid bilayer and water, was taken into account employing a combination of quantum chemical calculations with empirical force-field molecular dynamics simulations. Additionally, experimental absorption and emission spectra of PRODAN were measured in cyclohexane, water, and lipid vesicles. Both planar and twisted configurations of the first excited state of PRODAN were taken into account. The twisted structure is stabilized in both water and a lipid bilayer, and should be considered as an emitting state in polar environments. Orientation of the excited dye in the lipid bilayer significantly depends on configuration. In the bilayer, the fluorescence spectrum can be regarded as a combination of emission from both planar and twisted structures.
Wallrapp, Frank H; Voityuk, Alexander A; Guallar, Victor
2010-10-12
We report a quantum chemistry and molecular dynamics study on the temperature dependence of electronic coupling in two short model oligopeptides. Ten nanoseconds replica exchange molecular dynamics was performed on Trp-(Pro)3-Trp and Trp-(Pro)6-Trp peptides in the gas phase in combination with computation of the energy and electronic coupling for thermal hole transfer between Trp residues. The electron transfer parameters were estimated by using the semiempirical INDO/S method together with the charge fragment difference scheme. Conformational analysis of the derived trajectories revealed that the electronic coupling becomes temperature dependent when incorporating structural dynamics of the system. We demonstrate that Trp-(Pro)3-Trp, having only few degrees of freedom, results in relatively weak couplings at low and high temperature and a strong peak at 144 K, whereas the more flexible system Trp-(Pro)6-Trp shows monotonically decreased coupling. Only a few conformations with strong donor-acceptor couplings are shown to be crucial for the overall ET rates. Our results introduce the question whether the T dependence of ET coupling can also be found in large biological systems.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Indian Academy of Sciences (India)
Sanjeev Kumar; Suneel Kumar
2010-05-01
We aim to understand the role of NN cross-sections, equation of state as well as different model ingredients such as width of Gaussian, clusterization range and different clusterization algorithms in multifragmentation using quantum molecular dynamics model. We notice that all model ingredients have sizable effect on the fragment pattern.
Dynamics of a pulsed continuous-variable quantum memory
DEFF Research Database (Denmark)
Dantan, Aurelien Romain; Cviklinski, Jean; Pinard, Michel
2006-01-01
We study the transfer dynamics of nonclassical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show i...
Topological blocking in quantum quench dynamics
Kells, G.; Sen, D.; Slingerland, J. K.; Vishveshwara, S.
2014-06-01
We study the nonequilibrium dynamics of quenching through a quantum critical point in topological systems, focusing on one of their defining features: ground-state degeneracies and associated topological sectors. We present the notion of "topological blocking," experienced by the dynamics due to a mismatch in degeneracies between two phases, and we argue that the dynamic evolution of the quench depends strongly on the topological sector being probed. We demonstrate this interplay between quench and topology in models stemming from two extensively studied systems, the transverse Ising chain and the Kitaev honeycomb model. Through nonlocal maps of each of these systems, we effectively study spinless fermionic p-wave paired topological superconductors. Confining the systems to ring and toroidal geometries, respectively, enables us to cleanly address degeneracies, subtle issues of fermion occupation and parity, and mismatches between topological sectors. We show that various features of the quench, which are related to Kibble-Zurek physics, are sensitive to the topological sector being probed, in particular, the overlap between the time-evolved initial ground state and an appropriate low-energy state of the final Hamiltonian. While most of our study is confined to translationally invariant systems, where momentum is a convenient quantum number, we briefly consider the effect of disorder and illustrate how this can influence the quench in a qualitatively different way depending on the topological sector considered.
Quantum Dynamics of Nonlinear Cavity Systems
Nation, Paul D.
2010-01-01
We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...
Chaos in effective classical and quantum dynamics
Casetti, L; Modugno, M; Casetti, Lapo; Gatto, Raoul; Modugno, Michele
1998-01-01
We investigate the dynamics of classical and quantum N-component phi^4 oscillators in presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behaviour is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg's principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.
Conditional and unconditional Gaussian quantum dynamics
Genoni, Marco G.; Lami, Ludovico; Serafini, Alessio
2016-07-01
This article focuses on the general theory of open quantum systems in the Gaussian regime and explores a number of diverse ramifications and consequences of the theory. We shall first introduce the Gaussian framework in its full generality, including a classification of Gaussian (also known as 'general-dyne') quantum measurements. In doing so, we will give a compact proof for the parametrisation of the most general Gaussian completely positive map, which we believe to be missing in the existing literature. We will then move on to consider the linear coupling with a white noise bath, and derive the diffusion equations that describe the evolution of Gaussian states under such circumstances. Starting from these equations, we outline a constructive method to derive general master equations that apply outside the Gaussian regime. Next, we include the general-dyne monitoring of the environmental degrees of freedom and recover the Riccati equation for the conditional evolution of Gaussian states. Our derivation relies exclusively on the standard quantum mechanical update of the system state, through the evaluation of Gaussian overlaps. The parametrisation of the conditional dynamics we obtain is novel and, at variance with existing alternatives, directly ties in to physical detection schemes. We conclude our study with two examples of conditional dynamics that can be dealt with conveniently through our formalism, demonstrating how monitoring can suppress the noise in optical parametric processes as well as stabilise systems subject to diffusive scattering.
Dynamical response near quantum critical points
Lucas, Andrew; Podolsky, Daniel; Witczak-Krempa, William
2016-01-01
We study high frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from conformal field theory allow us to fix the high frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality, and numerically via Quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high frequency optical conductivity, and the corresponding sum rule.
Post-Markovian dynamics of quantum correlations: entanglement versus discord
Mohammadi, Hamidreza
2017-02-01
Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.
Recombination Dynamics in Quantum Well Semiconductor Structures
Fouquet, Julie Elizabeth
Time-resolved and time-integrated photoluminescence as a function of excitation energy density have been observed in order to study recombination dynamics in GaAs/Al(,x)Ga(,1 -x)As quantum well structures. The study of room temperature photoluminescence from the molecular beam epitaxy (MBE) -grown multiple quantum well structure and photoluminescence peak energy as a function of tem- perature shows that room temperature recombination at excitation densities above the low 10('16) cm('-3) level is due to free carriers, not excitons. This is the first study of time-resolved photoluminescence of impurities in quantum wells; data taken at different emission wave- lengths at low temperatures shows that the impurity-related states at photon energies lower than the free exciton peaks luminesce much more slowly than the free exciton states. Results from a similar structure grown by metal -organic chemical vapor deposition (MOCVD) are explained by saturation of traps. An unusual increase in decay rate observed tens of nanoseconds after excitation is probably due to carriers falling out of the trap states. Since this is the first study of time-resolved photoluminescence of MOCVD-grown quantum well structures, this unusual behavior may be realted to the MOCVD growth process. Further investigations indi- cate that the traps are not active at low temperatures; they become active at approximately 150 K. The traps are probably associated with the (hetero)interfaces rather than the bulk Al(,x)Ga(,1-x)As material. The 34 K photoluminescence spectrum of this sample revealed a peak shifted down by approximately 36 meV from the main peak. Time-resolved and time-integrated photoluminescence results here show that this peak is not a stimulated phonon emission sideband, but rather is an due to an acceptor impurity, probably carbon. Photo- luminescence for excitation above and below the barrier bandgap shows that carriers are efficiently collected in the wells in both single and multiple
Robust dynamical decoupling for quantum computing and quantum memory.
Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter
2011-06-17
Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.
Quantum Dynamics as a Stochastic Process
Figueiredo, J M A
2002-01-01
We study the classical motion of a particle subject to a stochastic force. We then present a perturbative schema for the associated Fokker-Planck equation where, in the limit of a vanishingly small noise source, a consistent dynamical model is obtained. The resulting theory is similar to Quantum Mechanics, having the same field equations for probability measures, the same operator structure and symmetric ordering of operators. The model is valid for general electromagnetic interaction as well as many body systems with mutual interactions of general nature.
The quantum Rabi model: solution and dynamics
Xie, Qiongtao; Zhong, Honghua; Batchelor, Murray T.; Lee, Chaohong
2017-03-01
This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given.
The quantum Rabi model: solution and dynamics
Xie, Qiongtao; Batchelor, Murray T; Lee, Chaohong
2016-01-01
This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given.
Generalized dynamic scaling for quantum critical relaxation in imaginary time.
Zhang, Shuyi; Yin, Shuai; Zhong, Fan
2014-10-01
We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.
Quantum dynamics study of singlet-triplet transitions in s-trans-1,3-butadiene
Nikoobakht, Behnam; Köppel, Horst
2016-05-01
The intersystem crossing dynamics of s-trans-1,3-butadiene in its lowest singlet and triplet states is studied theoretically, employing a fully quantal approach for the first time. The electronic states 21Ag, 11Bu, 13Bu and 13Ag, which interact vibronically and via the spin-orbit coupling are treated in the calculation, thus covering the lowest spin-forbidden electronic transitions. Up to five nuclear degrees of freedom, including out-of-plane dihedral angles are included in our investigation. The calculation of potential energy surfaces relies on the CASPT2 method, and the evaluation of spin-orbit coupling matrix elements using the full two-electron Breit-Pauli Hamiltonian is performed by utilizing the MRCI wavefunction. The latter dependence on the nuclear coordinates is included for the first time. An electronic population transfer on the sub-picosecond time scale due to intersystem crossing is obtained, a mechanism that can contribute to the singlet-triplet transitions in the electron energy loss spectrum of s-trans-1, 3-butadiene. It is found that the dependence of the spin-orbit coupling on the out-of-plane coordinates plays a dominant role in these singlet-triplet transitions. The amount of population transfer to the 13Ag and 13Bu states is roughly of the same order of magnitude.
What is Dynamics in Quantum Gravity?
Malkiewicz, Przemyslaw
2015-01-01
Dynamics of general relativistic systems is given with respect to internal clocks. We investigate the extent to which the choice of internal clock in quantum description of the gravitational field determines the quantum dynamics. We develop our method by making use of the Hamilton-Jacobi theory, which is extended to include time coordinate transformations. Next, we apply our method to a quantum model of the flat Friedmann universe and compute some clock-induced deviations to semiclassical phase space portrait. Within a fixed quantization we find the abundance of possible semiclassical extensions to general relativity by switching between clocks. It follows that quantities like minimal volume, maximal curvature and even a number of quantum bounces, often used to describe quantum effects in gravity, are ill-defined.
Dynamics of electron in a surface quantum well
Institute of Scientific and Technical Information of China (English)
Wang Li-Fei; Yang Guang-Can
2009-01-01
This paper studies the quantum dynamics of electrons in a surface quantum well in the time domain with autocorrelation of wave packet. The evolution of the wave packet for different manifold eigenstates with finite and infinite lifetimes is investigated analytically. It is found that the quantum coherence and evolution of the surface electronic wave packet can be controlled by the laser central energy and electric field. The results show that the finite lifetime of excited states expedites the dephasing of the coherent electronic wave packet significantly. The correspondence between classical and quantum mechanics is shown explicitly in the system.
Wieser, R
2017-05-04
A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S = 1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.
Dynamic optical hysteresis in the quantum regime
Rodriguez, S R K; Storme, F; Sagnes, I; Gratiet, L Le; Galopin, E; Lemaitre, A; Amo, A; Ciuti, C; Bloch, J
2016-01-01
For more than 40 years, optical bistability --- the existence of two stable states with different photon numbers for the same driving conditions --- has been experimentally reported. Surprisingly, the quantum theory of a single-mode nonlinear cavity always predicts a unique steady state, i.e. no bistability. To reconcile this apparent contradiction, a tunneling time for bistability has been introduced. This is a timescale over which quantum fluctuations trigger transitions between classically stable states, and which can be astronomically longer than the measurement. While quantum fluctuations ultimately forbid the static hysteresis associated with bistability, it was recently predicted that optical hysteresis should emerge dynamically for finite sweep rates of the driving intensity. This dynamic hysteresis is expected to exhibit a double power-law behavior defining a classical-to-quantum crossover. Here, by measuring the dynamic optical hysteresis of a semiconductor microcavity for various sweep rates of the...
Collet, P; Métens, S; Neishtadt, A; Zaslavsky, G; Chaotic Dynamics and Transport in Classical and Quantum Systems
2005-01-01
This book offers a modern updated review on the most important activities in today dynamical systems and statistical mechanics by some of the best experts in the domain. It gives a contemporary and pedagogical view on theories of classical and quantum chaos and complexity in hamiltonian and ergodic systems and their applications to anomalous transport in fluids, plasmas, oceans and atom-optic devices and to control of chaotic transport. The book is issued from lecture notes of the International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems" held in Cargèse (Corsica) 18th to the 30th August 2003. It reflects the spirit of the School to provide lectures at the post-doctoral level on basic concepts and tools. The first part concerns ergodicity and mixing, complexity and entropy functions, SRB measures, fractal dimensions and bifurcations in hamiltonian systems. Then, models of dynamical evolutions of transport processes in classical and quantum systems have been largely expla...
Quantum Entanglement Growth Under Random Unitary Dynamics
Nahum, Adam; Vijay, Sagar; Haah, Jeongwan
2016-01-01
Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time--dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the `entanglement tsunami' in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar--Parisi--Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like $(\\text{time})^{1/3}$ and are spatially correlated over a distance $\\propto (\\text{time})^{2/3}$. We derive KPZ universal behaviour in three complementary ways, by mapping random entanglement growth to: (i) a stochastic model of a growing surface; (ii) a `minimal cut' picture, reminisce...
Dynamics of a Quantum Reference Frame
Poulin, D; Poulin, David; Yard, Jon
2006-01-01
We analyze a quantum mechanical gyroscope, which is modeled as a large spin and used as a reference against which to measure the angular momenta of spin-1/2 particles. These measurements induce a back-action on the reference which is the central focus of our study. We begin by deriving explicit expressions for the quantum channel representing the back-action. Then, we analyze the dynamics incurred by the reference when it is used to sequentially measure particles drawn from a fixed ensemble. We prove that the reference thermalizes with the measured particles and find that generically, the thermal state is reached in time which scales linearly with the size of the reference. This contrasts a recent conclusion of Bartlett et al. that this takes a quadratic amount of time when the particles are completely unpolarized. We now understand their result in terms of a simple physical principle based on symmetries and conservation laws. Finally, we initiate the study of the non-equilibrium dynamics of the reference. He...
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities
DEFF Research Database (Denmark)
Madsen, Kristian Høeg
deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...
Quantum dot waveguides: ultrafast dynamics and applications
DEFF Research Database (Denmark)
Chen, Yaohui; Mørk, Jesper
2009-01-01
In this paper we analyze, based on numerical simulations, the dynamics of semiconductor devices incorporating quantum dots (QDs). In particular we emphasize the unique ultrafast carrier dynamics occurring between discrete QD bound states, and its influence on QD semiconductor optical amplifiers...... (SOAs). Also the possibility of realizing an all-optical regenerator by incorporating a QD absorber section in an amplifier structure is discussed....
Quantum Entanglement Growth under Random Unitary Dynamics
Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan
2017-07-01
Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Quantum Entanglement Growth under Random Unitary Dynamics
Directory of Open Access Journals (Sweden)
Adam Nahum
2017-07-01
Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Suzuki, Ai; Selvam, Parasuraman; Kusagaya, Tomonori; Takami, Seiichi; Kubo, Momoji; Imamura, Akira; Miyamoto, Akira
The decomposition reaction dynamics of 2,3,4,4',5-penta-chlorinated biphenyl (2,3,4,4',5-PeCB), 3,3',4,4',5-penta-chlorinated biphenyl (3,3',4,4',5-PeCB), and 2,3,7,8-tetra-chlorinated dibenzo-p-dioxin (2,3,7,8-TCDD) was clarified for the first time at atomic and electronic levels, using our novel tight-binding quantum chemical molecular dynamics method with first-principles parameterization. The calculation speed of our new method is over 5000 times faster than that of the conventional first-principles molecular dynamics method. We confirmed that the structure, energy, and electronic states of the above molecules calculated by our new method are quantitatively consistent with those by first-principles calculations. After the confirmation of our methodology, we investigated the decomposition reaction dynamics of the above molecules and the calculated dynamic behaviors indicate that the oxidation of the 2,3,4,4',5-PeCB, 3,3',4,4',5-PeCB, and 2,3,7,8-TCDD proceeds through an epoxide intermediate, which is in good agreement with the previous experimental reports and consistent with our static density functional theory calculations. These results proved that our new tight-binding quantum chemical molecular dynamics method with first-principles parameterization is an effective tool to clarify the chemical reaction dynamics at reaction temperatures.
Correa-Basurto, J; Bello, M; Rosales-Hernández, M C; Hernández-Rodríguez, M; Nicolás-Vázquez, I; Rojo-Domínguez, A; Trujillo-Ferrara, J G; Miranda, René; Flores-Sandoval, C A
2014-02-25
A set of 84 known N-aryl-monosubstituted derivatives (42 amides: series 1 and 2, and 42 imides: series 3 an 4, from maleic and succinic anhydrides, respectively) that display inhibitory activity toward both acetylcholinesterase and butyrylcholinesterase (ChEs) was considered for Quantitative structure-activity relationship (QSAR) studies. These QSAR studies employed docking data from both ChEs that were previously submitted to molecular dynamics (MD) simulations. Donepezil and galanthamine stereoisomers were included to analyze their quantum mechanics properties and for validating the docking procedure. Quantum parameters such as frontier orbital energies, dipole moment, molecular volume, atomic charges, bond length and reactivity parameters were measured, as well as partition coefficients, molar refractivity and polarizability were also analyzed. In order to evaluate the obtained equations, four compounds: 1a (4-oxo-4-(phenylamino)butanoic acid), 2a ((2Z)-4-oxo-4-(phenylamino)but-2-enoic acid), 3a (2-phenylcyclopentane-1,3-dione) and 4a (2-phenylcyclopent-4-ene-1,3-dione) were employed as independent data set, using only equations with r(m(test))²>0.5. It was observed that residual values gave low value in almost all series, excepting in series 1 for compounds 3a and 4a, and in series 4 for compounds 1a, 2a and 3a, giving a low value for 4a. Consequently, equations seems to be specific according to the structure of the evaluated compound, that means, series 1 fits better for compound 1a, series 3 or 4 fits better for compounds 3a or 4a. Same behavior was observed in the butyrylcholinesterase (BChE). Therefore, obtained equations in this QSAR study could be employed to calculate the inhibition constant (Ki) value for compounds having a similar structure as N-aryl derivatives described here. The QSAR study showed that bond lengths, molecular electrostatic potential and frontier orbital energies are important in both ChE targets. Docking studies revealed that
Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.
Riascos, A P; Mateos, José L
2015-11-01
In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs.
Morphogenesis and dynamics of quantum state
Leifer, Peter
2008-01-01
New construction of 4D dynamical space-time (DST) has been proposed in the framework of unification of relativity and quantum theory. Such unification is based solely on the fundamental notion of generalized coherent state (GCS) of N-level system and the geometry of unitary group SU(N) acting in state space $C^N$. Neither contradictable notion of quantum particle, nor space-time coordinates (that cannot be a priori attached to nothing) are used in this construction. Morphogenesis of the "field shell"-lump of GCS and its dynamics have been studied for N=2 in DST. The main technical problem is to find non-Abelian gauge field arising from conservation law of the local Hailtonian vector field. The last one may be expressed as parallel transport of local Hamiltonian in projective Hilbert space $CP(N-1)$. Co-movable local "Lorentz frame" being attached to GCS is used for qubit encoding result of comparison of the parallel transported local Hamiltonian in infinitesimally close points. This leads to quasi-linear rela...
G., Leonardo Quintanar
2015-01-01
We study the cosmological implications of the Nambu-Jona-Lasinio (NJL model) when the coupling constant is field dependent. The NJL model has a four-fermion interaction describing two different phases due to quantum interaction effects and determined by the strength of the coupling constant g. It describes massless fermions for weak coupling and a massive fermions and strong coupling, where a fermion condensate is formed. In the original NJL model the coupling constant g is indeed constant, and in this work we consider a modified version of the NJL model by introducing a dynamical field dependent coupling motivated by string theory. The effective potential as a function of the varying coupling (aimed to implement a natural phase transition) is seen to develop a negative divergence, i.e. becomes a "bottomless well" in certain limit region. Although we explain how an lower unbounded potential is not necessarily unacceptable in a cosmological context, the divergence can be removed if we consider a mass term for ...
Generated dynamics of Markov and quantum processes
Janßen, Martin
2016-01-01
This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...
Dynamical symmetry breaking in quantum field theories
Miransky, Vladimir A
1993-01-01
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Quantum dynamical study of low-energy photoelectron bands of 2-phenylethyl-,-dimethylamine
Indian Academy of Sciences (India)
Susana Gómez-Carrasco; Horst Köppel
2012-01-01
The first three photoelectron bands of 2-phenylethyl-,-dimethylamine (PENNA) are investigated theoretically, paying particular attention to the vibrational structure and to possible nonadiabatic coupling effects. A substantial vibronic interaction is established between the first and second excited cationic states (corresponding to the second and third photoelectron bands). Their coupling to the cationic ground state is found to be rather weak. This is tentatively attributed to the well-known fact that the latter carries a hole at the amine site, while the former two have the electron removed from benzene-type orbitals. The interaction between the two excited cationic states is characterized by a `hidden’ or local symmetry at the phenyl moiety. Preliminary dynamic calculations with two interacting electronic states and four vibrational modes are reported. The computed spectra are compared to experimental results of Weinkauf et al.
Dynamics of Coupled Quantum-Classical Oscillators
Institute of Scientific and Technical Information of China (English)
HE Wei-Zhong; XU Liu-Su; ZOU Feng-Wu
2004-01-01
@@ The dynamics of systems consisting of coupled quantum-classical oscillators is numerically investigated. It is shown that, under certain conditions, the quantum oscillator exhibits chaos. When the mass of the classical oscillator increases, the chaos will be suppressed; if the energy of the system and/or the coupling strength between the two oscillators increases, chaotic behaviour of the system appears. This result will be helpful to understand the probability of the emergence of quantum chaos and may be applied to explain the spectra of complex atoms qualitatively.
Symmetries, variational principles, and quantum dynamics
Directory of Open Access Journals (Sweden)
A. Sissakian
2004-05-01
Full Text Available We describe the role of symmetries in formation of quantum dynamics. A quantum version of d'Alembert's principle is proposed to take into account the symmetry constrains more exact. It is argued that the time reversibility of quantum process, as the quantum analogy of d'Alembert's principle, makes the measure of the corresponding path integral ÃŽÂ´-like. The argument of this ÃŽÂ´-function is the sum of all classical forces of the problem under consideration plus the random force of quantum excitations. Such measure establishes the one-to-one correspondence with classical mechanics and, for this reason, allows a free choice of the useful dynamical variables. The analysis shows that choosing the action-angle variables, one may get to the free-from-divergences quantum field theory. Moreover, one can try to get an independence from necessity to extract the degrees of freedom constrained by the symmetry. These properties of new quantization scheme are vitally essential for such theories as the non-Abelian Yang-Mills gauge theory and quantum gravity.
Shekaari, Ashkan; Abolhassani, Mohammad Reza
2017-06-01
First-principles molecular dynamics has been applied to inquire into the melting behaviors of n-atom (n = 6, 10) graphene quantum dots (GQD6 and zigzag GQD10) within the temperature range of T = 0-500 K. The temperature dependence of the geometry of each quantum dot is thoroughly evaluated via calculating the related shape deformation parameters and the eigenvalues of the quadrupole tensors. Examining the variations of some phase-transition indicators such as root-mean-square bond length fluctuations and mean square displacements broadly proposes the value of Tm = 70 K for the melting point of GQD6 while a continuous, two-stage phase transition has been concluded for zigzag GQD10.
A study of Quantum Correlations in Open Quantum Systems
Chakrabarty, Indranil; Siddharth, Nana
2010-01-01
In this work, we study quantum correlations in mixed states. The states studied are modelled by a two-qubit system interacting with its environment via a quantum nondemolition (purely dephasing) as well as dissipative type of interaction. The entanglement dynamics of this two qubit system is analyzed and the existence of entangled states which do not violate Bell's inequality, but can still be useful as a potential resource for teleportation are reported. In addition, a comparative study of various measures of quantum correlations, like Concurrence, Bell's inequality, Discord and Teleportation fidelity, is made on these states, generated by the above evolutions. Interestingly, examples are found, of states, where entanglement is vanishing, but discord is non-vanishing, bringing out the fact that entanglement is a subset of quantum correlations.
Origin of Dynamical Quantum Non-locality
Pachon, Cesar E.; Pachon, Leonardo A.
2014-03-01
Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.
Quantum Simulation for Open-System Dynamics
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
Entanglement dynamics in critical random quantum Ising chain with perturbations
Energy Technology Data Exchange (ETDEWEB)
Huang, Yichen, E-mail: ychuang@caltech.edu
2017-05-15
We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.
General linear dynamics - quantum, classical or hybrid
Elze, H-T; Vallone, F
2011-01-01
We describe our recent proposal of a path integral formulation of classical Hamiltonian dynamics. Which leads us here to a new attempt at hybrid dynamics, which concerns the direct coupling of classical and quantum mechanical degrees of freedom. This is of practical as well as of foundational interest and no fully satisfactory solution of this problem has been established to date. Related aspects will be observed in a general linear ensemble theory, which comprises classical and quantum dynamics in the form of Liouville and von Neumann equations, respectively, as special cases. Considering the simplest object characterized by a two-dimensional state-space, we illustrate how quantum mechanics is special in several respects among possible linear generalizations.
Thermalization Using Quantum Field Dynamics?
Salle, M; Vink, Jeroen C
2001-01-01
We describe a Hartree ensemble method to approximately solve the Heisenberg equations for the \\phi^4 model in 1+1 dimensions. We compute the energies and number densities of the quantum particles described by the \\phi field and find that the particles initially thermalize with a Bose-Einstein distribution for the particle density. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.
Reversible part of a quantum dynamical system
2016-01-01
In this work a quantum dynamical system $(\\mathfrak M,\\Phi, \\varphi)$ is constituted by a von Neumann algebra $\\mathfrak M$, by a unital Schwartz map $\\Phi:\\mathfrak{M\\rightarrow M}$ and by a $\\Phi$-invariant normal faithful state $\\varphi$ on $\\mathfrak M$. The ergodic properties of a quantum dynamical system, depends on its reversible part $(\\mathfrak{D}_\\infty,\\Phi_\\infty, \\varphi_\\infty)$. It is constituted by a von Neumann sub-algebra $\\mathfrak{D}_\\infty$ of $\\mathfrak M$ by an automorp...
Quantum dynamics of bio-molecular systems in noisy environments
Plenio, M B
2012-01-01
We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical description of system-environment interaction in the non-perturbative regime and present a promising new method that can overcome some limitations of existing methods. Thirdly, we present an approach towards deciding and quantifying the non-classicality of the action of the environment and the observed system-dynamics. We stress the relevance of these tools for strengthening the interplay between theoretical and experimental research in this field.
Statistical dynamics of a non-Abelian anyonic quantum walk
Lehman, Lauri; Brennen, Gavin K; Pachos, Jiannis K; Wang, Zhenghan
2010-01-01
We study the single particle dynamics of a mobile non-Abelian anyon hopping around many pinned anyons on a surface. The dynamics is modelled by a discrete time quantum walk and the spatial degree of freedom of the mobile anyon becomes entangled with the fusion degrees of freedom of the collective system. Each quantum trajectory makes a closed braid on the world lines of the particles establishing a direct connection between statistical dynamics and quantum link invariants. We find that asymptotically a mobile Ising anyon becomes so entangled with its environment that its statistical dynamics reduces to a classical random walk with linear dispersion in contrast to particles with Abelian statistics which have quadratic dispersion.
Dynamics of genuine multipartite correlations in open quantum systems
Grimsmo, Arne L; Skagerstam, Bo-Sture K
2012-01-01
We propose a measure for genuine multipartite correlations suited for the study of dynamics in open quantum systems. This measure is contextual in the sense that it depends on how information is read from the environment. It is used to study an interacting collective system of atoms undergoing phase transitions as external parameters are varied. We show that the steady state of the system can have a significant degree of genuine multipartite quantum and classical correlations, and that the proposed measure can serve as a witness of critical behavior in quantum systems.
Lo, Rabindranath; Chandar, Nellore Bhanu; Ghosh, Shibaji; Ganguly, Bishwajit
2016-04-01
A highly toxic nerve agent, tabun, can inhibit acetylcholinesterase (AChE) at cholinergic sites, which leads to serious cardiovascular complications, respiratory compromise and death. We have examined the structural features of the tabun-conjugated AChE complex with an oxime reactivator, Ortho-7, to provide a strategy for designing new and efficient reactivators. Mutation of mAChE within the choline binding site by Y337A and F338A and its interaction with Ortho-7 has been investigated using steered molecular dynamics (SMD) and quantum chemical methods. The overall study shows that after mutagenesis (Y337A), the reactivator can approach more freely towards the phosphorylated active site of serine without any significant steric hindrance in the presence of tabun compared to the wild type and double mutant. Furthermore, the poor binding of Ortho-7 with the peripheral residues of mAChE in the case of the single mutant compared to that of the wild-type and double mutant (Y337A/F338A) can contribute to better efficacy in the former case. Ortho-7 has formed a greater number of hydrogen bonds with the active site surrounding residues His447 and Phe295 in the case of the single mutant (Y337A), and that stabilizes the drug molecule for an effective reactivation process. The DFT M05-2X/6-31+G(d) level of theory shows that the binding energy of Ortho-7 with the single mutant (Y337A) is energetically more preferred (-19.8 kcal mol(-1)) than the wild-type (-8.1 kcal mol(-1)) and double mutant (Y337A/F338A) (-16.0 kcal mol(-1)). The study reveals that both the orientation of the oxime reactivator for nucleophilic attack and the stabilization of the reactivator at the active site would be crucial for the design of an efficient reactivator.
Zheng, Guishan; Irle, Stephan; Morokuma, Keiji
2006-05-01
We are presenting the first quantum chemical molecular dynamics (QM/MD) model simulations for iron catalyzed single-walled carbon nanotube (SWNT) growth based on the density functional tight binding (DFTB) quantum chemical potential. As model systems, open-ended (10,10) armchair tube fragments were selected with 0, 10, and 20 Fe atoms attached in 1,4-positions on the open rims, and ensembles of randomly oriented C2 molecules were included to simulate carbon plasma feedstock molecules. Isokinetic trajectories at 1500 K to 3000 K show that divalent Fe increases the number of coordination partners with carbon and/or Fe, depending on the Fe concentration. Fe/C interactions weaken the tube sidewall due to electron transfer from Fe into antibonding carbon orbitals, and C2 addition occurs mainly in an Fe-C2-Fe bridge addition mechanism, while growth of polyyne chains characteristic for high-temperature carbon systems is suppressed in the presence of Fe on the rims of the growing SWNT. Our findings are the first quantum chemical evidence for the importance of intermetallic interactions during SWNT growth.
Energy Technology Data Exchange (ETDEWEB)
Silver, R.N.; Gubernatis, J.E.; Sivia, D.S. (Los Alamos National Lab., NM (USA)); Jarrell, M. (Ohio State Univ., Columbus, OH (USA). Dept. of Physics)
1990-01-01
In this article we describe the results of a new method for calculating the dynamical properties of the Anderson model. QMC generates data about the Matsubara Green's functions in imaginary time. To obtain dynamical properties, one must analytically continue these data to real time. This is an extremely ill-posed inverse problem similar to the inversion of a Laplace transform from incomplete and noisy data. Our method is a general one, applicable to the calculation of dynamical properties from a wide variety of quantum simulations. We use Bayesian methods of statistical inference to determine the dynamical properties based on both the QMC data and any prior information we may have such as sum rules, symmetry, high frequency limits, etc. This provides a natural means of combining perturbation theory and numerical simulations in order to understand dynamical many-body problems. Specifically we use the well-established maximum entropy (ME) method for image reconstruction. We obtain the spectral density and transport coefficients over the entire range of model parameters accessible by QMC, with data having much larger statistical error than required by other proposed analytic continuation methods.
Nussinov, Zohar; Johnson, Patrick; Graf, Matthias J.; Balatsky, Alexander V.
2013-05-01
Many electronic systems (e.g., the cuprate superconductors and heavy fermions) exhibit striking features in their dynamical response over a prominent range of experimental parameters. While there are some empirical suggestions of particular increasing length scales that accompany such transitions in some cases, this identification is not universal and in numerous instances no large correlation length is evident. To better understand, as a matter of principle, such behavior in quantum systems, we extend a known mapping (earlier studied in stochastic or supersymmetric quantum mechanics) between finite temperature classical Fokker-Planck systems and related quantum systems at zero temperature to include general nonequilibrium dynamics. Unlike Feynman mappings or stochastic quantization methods in field theories (as well as more recent holographic type dualities), the classical systems that we consider and their quantum duals reside in the same number of space-time dimensions. The upshot of our very broad and rigorous result is that a Wick rotation exactly relates (i) the dynamics in general finite temperature classical dissipative systems to (ii) zero temperature dynamics in the corresponding dual many-body quantum systems. Using this correspondence, we illustrate that, even in the absence of imposed disorder, many continuum quantum fluid systems (and possible lattice counterparts) may exhibit a zero-point “quantum dynamical heterogeneity” wherein the dynamics, at a given instant, is spatially nonuniform. While the static length scales accompanying this phenomenon do not seem to exhibit a clear divergence in standard correlation functions, the length scale of the dynamical heterogeneities can increase dramatically. We further study “quantum jamming” and illustrate how a hard-core bosonic system can undergo a zero temperature quantum critical metal-to-insulator-type transition with an extremely large effective dynamical exponent z>4 that is consistent with
Quantum chaotic dynamics and random polynomials
Energy Technology Data Exchange (ETDEWEB)
Bogomolny, E.; Bohigas, O.; Leboeuf, P.
1995-11-01
The distribution of roots of polynomials of high degree with random coefficients is investigated which, among others, appear naturally in the context of `quantum chaotic dynamics`. It is shown that under quite general conditions their roots tend to concentrate near the unit circle in the complex plane. In order to further increase this tendency, the particular case of self-inverse random polynomials is studied, and it is shown that for them a finite portion of all roots lies exactly on the unit circle. Correlation functions of these roots are also computed analytically, and compared to the correlations of eigenvalues of random matrices. The problem of ergodicity of chaotic wavefunctions is also considered. Special attention is devoted to the role of symmetries in the distribution of roots of random polynomials. (author). 32 refs.
Wave operator theory of quantum dynamics
Durand, Philippe; Paidarová, Ivana
1998-09-01
An energy-dependent wave operator theory of quantum dynamics is derived for time-independent and time-dependent Hamiltonians. Relationships between Green's functions, wave operators, and effective Hamiltonians are investigated. Analytical properties of these quantities are especially relevant for studying resonances. A derivation of the relationship between the Green's functions and the (t,t') method of Peskin and Moiseyev [J. Chem. Phys. 99, 4590 (1993)] is presented. The observable quantities can be derived from the wave operators determined with the use of efficient iterative procedures. As in the theory of Bloch operators for bound states, the theory is based on a partition of the full Hilbert space into three subspaces: the model space, an intermediate space, and the outer space. On the basis of this partition an alternative definition of active spaces currently considered in large scale calculations is suggested. A numerical illustration is presented for several model systems and for the Stark effect in the hydrogen atom.
Fractal dynamics in chaotic quantum transport.
Kotimäki, V; Räsänen, E; Hennig, H; Heller, E J
2013-08-01
Despite several experiments on chaotic quantum transport in two-dimensional systems such as semiconductor quantum dots, corresponding quantum simulations within a real-space model have been out of reach so far. Here we carry out quantum transport calculations in real space and real time for a two-dimensional stadium cavity that shows chaotic dynamics. By applying a large set of magnetic fields we obtain a complete picture of magnetoconductance that indicates fractal scaling. In the calculations of the fractality we use detrended fluctuation analysis-a widely used method in time-series analysis-and show its usefulness in the interpretation of the conductance curves. Comparison with a standard method to extract the fractal dimension leads to consistent results that in turn qualitatively agree with the previous experimental data.
Dynamics of a pulsed continuous variable quantum memory
Dantan, A; Grangier, P; Pinard, M; Cviklinski, Jean; Dantan, Aurelien; Grangier, Philippe; Pinard, Michel
2005-01-01
We study the transfer dynamics of non-classical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show in particular that the fluctuations stored into the atoms are emitted in temporal modes which are always different than those of the readout pulse, but which can nevertheless be retrieved efficiently using a suitable temporal mode-matching technique. We give a simple toy model - a cavity with variable transmission - which accounts for the behavior of the atomic quantum memory.
Dynamical Suppression of Decoherence in Two-Qubit Quantum Memory
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.
Dynamics of quantum trajectories in chaotic systems
Wisniacki, D A; Benito, R M
2003-01-01
Quantum trajectories defined in the de Broglie--Bohm theory provide a causal way to interpret physical phenomena. In this Letter, we use this formalism to analyze the short time dynamics induced by unstable periodic orbits in a classically chaotic system, a situation in which scars are known to play a very important role. We find that the topologies of the quantum orbits are much more complicated than that of the scarring and associated periodic orbits, since the former have quantum interference built in. Thus scar wave functions are necessary to analyze the corresponding dynamics. Moreover, these topologies imply different return routes to the vicinity of the initial positions, and this reflects in the existence of different contributions in each peak of the survival probability function.
Energy Technology Data Exchange (ETDEWEB)
Weber, Carsten
2008-07-01
This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and
Dynamical Symmetry Breaking in RN Quantum Gravity
Directory of Open Access Journals (Sweden)
A. T. Kotvytskiy
2011-01-01
Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction.
Kamleitner, Ingo
2010-01-01
We employ the theoretical framework of positive operator valued measures, to study Markovian open quantum systems. In particular, we discuss how a quantum system influences its environment. Using the theory of indirect measurements, we then draw conclusions about the information we could hypothetically obtain about the system by observing the environment. Although the environment is not actually observed, we can use these results to describe the change of the quantum system due to its interaction with the environment. We apply this technique to two different problems. In the first part, we study the coherently driven dynamics of a particle on a rail of quantum dots. This tunnelling between adjacent quantum dots can be controlled externally. We employ an adiabatic scheme similar to stimulated Raman adiabatic passage, to transfer the particle between different quantum dots. We compare two fundamentally different sources of decoherence. In the second part, we study the dynamics of a free quantum particle, which ...
A Study of Quantum Algorithms and Quantum Cryptography
小柴, 健史
2007-01-01
This report describes properties of basic cryptographic primitives (quantum public-key cryptosystmes and quantum one-way functions) in the quantum world where quantum computers are available. Some quantum public-key cryptosystems have already proposed. However, the security requirements for quantum public-key cryptosystems are not studied well. We propose several security notions for quantum public-key cryptosystems and discuss relation among them. In the classical setting, the notion of one-...
Nonlinear dynamics and quantum chaos an introduction
Wimberger, Sandro
2014-01-01
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Looking into DNA breathing dynamics via quantum physics.
Wu, Lian-Ao; Wu, Stephen S; Segal, Dvira
2009-06-01
We study generic aspects of bubble dynamics in DNA under time-dependent perturbations, for example, temperature change, by mapping the associated Fokker-Planck equation to a quantum time-dependent Schrödinger equation with imaginary time. In the static case we show that the eigenequation is exactly the same as that of the beta-deformed nuclear liquid drop model, without the issue of noninteger angular momentum. A universal breathing dynamics is demonstrated by using an approximate method in quantum mechanics. The calculated bubble autocorrelation function qualitatively agrees with experimental data. Under time-dependent modulations, utilizing the adiabatic approximation, bubble properties reveal memory effects.
Smooth Quantum Dynamics of Mixmaster Universe
Bergeron, Hervé; Gazeau, Jean Pierre; Małkiewicz, Przemysław; Piechocki, Włodzimierz
2015-01-01
We present a quantum version of the vacuum Bianchi IX model by implementing affine coherent state quantization combined with a Born-Oppenheimer-like adiabatic approximation. The analytical treatment is carried out on both quantum and semiclassical levels. The resolution of the classical singularity occurs by means of a repulsive potential generated by our quantization procedure. The quantization of the oscillatory degrees of freedom produces a radiation energy density term in the semiclassical constraint equation. The Friedmann-like lowest energy eigenstates of the system are found to be dynamically stable.
Dynamic conductance of a ballistic quantum wire
Energy Technology Data Exchange (ETDEWEB)
Quan Jun [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Tian Ying [Center of Liberal Education, Zhanjiang Normal University, Zhanjiang 524048 (China); Zhang, Jun, E-mail: ntu_submit@yahoo.c [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Shenzhen Institute of Advanced Integration Technology, Shenzhen 518055 (China); Shao Lexi [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China)
2011-04-01
Within the framework of exact linear response theory, we derive a general formula, with which the dynamic conductance of mesoscopic system can be determined in the absence of Coulomb interaction. In addition, we present a solution to the problem of current partition in the system. These allow the derivation of dynamic conductance in time-dependent case. As a natural consequence, the current (charge) conservation and gauge invariance conditions are fulfilled. To give an example, we discuss the dynamic conductance of a ballistic quantum wire, and the effect of contacts on the conductance is also discussed.
Ko, Hsin-Yu; Distasio, Robert A., Jr.; Santra, Biswajit; Car, Roberto
Molecular crystal structure prediction has posed a substantial challenge to first-principles methods and requires sophisticated electronic structure methods to determine the stabilities of nearly degenerate polymorphs. In this work, we demonstrate that the anharmonicity from van der Waals interactions is relevant to the finite-temperature structures of pyridine and pyridine-like molecular crystals. Using such an approach, we find that the equilibrium structures are well captured with classical ab initio molecular dynamics (AIMD), despite the presence of light atoms such as hydrogen. Employing path integral AIMD simulations, we demonstrate that the success of classical AIMD results from a separation of nuclear quantum effects between the intermolecular and intramolecular degrees of freedom. In this separation, the quasiclassical and anharmonic intermolecular degrees of freedom determine the equilibrium structure, while the quantum and harmonic intramolecular degrees of freedom are averaging to the correct intramolecular structure. This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.
Energy Technology Data Exchange (ETDEWEB)
Dardi, P.S.
1984-11-01
Within the very broad field of molecular dynamics, we have concentrated on two simple yet important systems. The systems are simple enough so that they are adequately described with a single Born-Oppenheimer potential energy surface and that the dynamics can be calculated accurately. They are important because they give insight into solving more complicated systems. First we discuss H + H/sub 2/ reactive scattering. We present an exact formalism for atom-diatom reactive scattering which avoids the problem of finding a coordinate system appropriate for both reactants and products. We present computational results for collinear H + H/sub 2/ reactive scattering which agree very well with previous calculations. We also present a coupled channel distorted wave Born approximation for atom-diatom reactive scattering which we show is a first order approximation to our exact formalism. We present coupled channel DWBA results for three dimensional H + H/sub 2/ reactive scattering. The second system is an isolated HF molecule in an intense laser field. Using classical trajectories and quantum dynamics, we look at energy absorbed and transition probabilities as a function of the laser pulse time and also averaged over the pulse time. Calculations are performed for both rotating and nonrotating HF. We examine one and two photon absorption about the fundamental frequency, multiphoton absorption, and overtone absorption. 127 references, 31 figures, 12 tables.
Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Lodahl, Peter
2013-01-01
We present detuning-dependent spectral and decay-rate measurements to study the difference between the spectral and dynamical properties of single quantum dots embedded in micropillar and photonic crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes......–Cummings model, whereas systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to the coupling of other exciton lines to the cavity and interference of different propagation paths toward the detector of the fields emitted by the quantum dot. In contrast......, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities, we observe an anti-crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of a strong coupling. However, time...
Quantum dynamical maps and Markovianity
Devi, A R Usha; Sudha,
2011-01-01
It is known that the time evolution of a subsystem from an initial state to two later times, t1, t2 (t2 > t1), are both completely positive (CP) but it is shown here that in the intermediate times between t1 and t2, in general, it need not be CP. This reveals the key to the Markov (if CP) and nonMarkov (if NCP) avataras of the intermediate dynamics. This is brought out based on A and B dynamical maps - without resorting to Master equation approach. The choice of tensor product form for the global initial state points towards the system-environment interaction dynamics as the sole cause for Markovianity/non-Markovianity. A succinct summary of the results is given in the form of a table.
Energy Technology Data Exchange (ETDEWEB)
Colognesi, Daniele; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Powers, Anna; Xu, Minzhong [Department of Chemistry, New York University, New York, New York 10003 (United States); Bačić, Zlatko, E-mail: zlatko.bacic@nyu.edu [Department of Chemistry, New York University, New York, New York 10003 (United States); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)
2014-10-07
We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the HD microscopic dynamics. The sH clathrate sample presents a much greater challenge, due to the uncertainties regarding the crystal structure, which is known only for similar crystals with different promoter, but nor for HD (or H{sub 2}) plus methyl tert-butyl ether (MTBE-d12)
2014-01-01
Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over t...
Wang, Qi; Suzuki, Kimichi; Nagashima, Umpei; Tachikawa, Masanori; Yan, Shiwei
2013-06-01
The nuclear quantum effect, which plays important roles on ionic hydrogen bonded structures of Cl-(H2O)n (n = 1-4) clusters, was explored by carrying out path integral molecular dynamic simulations. An outer shell coordinate rl(Cl⋯O) is selected to display the rearrangement of single and multi hydration shell cluster structures. By incorporating the nuclear quantum effect, it is shown that the probability for single shell structures is decreased while the probability for multi shell structures is increased. On the other hand, the correlations between changing of bonded H∗ atom to Cl- (defined as δ) and other cluster vibration coordinates are studied. We have found that δ strongly correlates with proton transfer motion while it has little correlation with ion-water stretching motion. Contrary to θ(H-O-H∗) coordinate, the correlations between δ and other coordinates are decreased by inclusion of nuclear quantum effect. The results indicate that the water-water hydrogen bond interactions are encouraged by quantum simulations.
Dynamics for a 2-vertex quantum gravity model
Energy Technology Data Exchange (ETDEWEB)
Borja, Enrique F; Garay, Inaki [Institute for Theoretical Physics III, University of Erlangen-Nuernberg, Staudtstrasse 7, D-91058 Erlangen (Germany); Diaz-Polo, Jacobo [Institute for Gravitation and the Cosmos and Physics Department, Penn State University, University Park, PA 16802-6300 (United States); Livine, Etera R, E-mail: etera.livine@ens-lyon.f [Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allee d' Italie, Lyon 69007 (France)
2010-12-07
We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
Dynamics for a 2-vertex Quantum Gravity Model
Borja, Enrique F; Garay, Iñaki; Livine, Etera R
2010-01-01
We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N) invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
Dynamics for a 2-vertex quantum gravity model
Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.
2010-12-01
We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
Composition of quantum states and dynamical subadditivity
Energy Technology Data Exchange (ETDEWEB)
Roga, Wojciech [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Cracow (Poland); Fannes, Mark [Instituut voor Theoretische Fysica, Universiteit Leuven, B-3001 Leuven (Belgium); Zyczkowski, Karol [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, PL-30-059 Cracow (Poland)
2008-01-25
We introduce a composition of quantum states of a bipartite system which is based on the reshuffling of density matrices. This non-Abelian product is associative and stems from the composition of quantum maps acting on a simple quantum system. It induces a semi-group in the subset of states with maximally mixed partial traces. Subadditivity of the von Neumann entropy with respect to this product is proved. It is equivalent to subadditivity of the entropy of bistochastic maps with respect to their composition, where the entropy of a map is the entropy of the corresponding state under the Jamiolkowski isomorphism. Strong dynamical subadditivity of a concatenation of three bistochastic maps is established. Analogous bounds for the entropy of a composition are derived for general stochastic maps. In the classical case they lead to new bounds for the entropy of a product of two stochastic matrices.
Classical and quantum dynamics of the sphere
Lasukov, Vladimir; Moldovanova, Evgeniia; Abdrashitova, Maria; Malik, Hitendra; Gorbacheva, Ekaterina
2016-07-01
In Minkowski space, there has been developed the mathematic quantum model of the real particle located on the sphere evolving owing to the negative pressure inside the sphere. The developed model is analogous to the geometrodynamic model of the Lemaitre-Friedmann primordial atom in superspace-time, whose spatial coordinate is the scale factor functioning as a radial coordinate. There is a formulation of quantum geometrodynamics in which the spatial coordinate is an offset of the scale factor and wave function at the same time. With the help of the Dirac procedure for extracting the root from the Hamiltonian operator we have constructed a Dirac quantum dynamics of the sphere with fractional spin.
Effective evolution equations from quantum dynamics
Benedikter, Niels; Schlein, Benjamin
2016-01-01
These notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of t...
Dynamical Equations for Quantum Information and Application in Information Channel
Institute of Scientific and Technical Information of China (English)
BI Qiao; XING Xiu-San; H. E. Ruda
2005-01-01
@@ We establish several dynamical equations for quantum information density. It is demonstrated that quantum information density shares the same formalism of the Liouville equation, subdynamics kinetic equation and Fokker-Planck equation as the density operator and also possesses the superposition property. These allow one to use quantum information density directly to model quantum information. The kinetic equations for quantum information density reveal that the dynamical process of quantum information may be related to dissipative,Markovian, or diffusional information flows, together causing irreversibility. Finally, we discuss superposition of quantum information density, which allows us to construct a quantum information channel in the coherent state representation using harmonic oscillator based encoded quantum information, and obtain a formula for quantum dynamical mutual information.
Dynamics of quantum wave packets
Energy Technology Data Exchange (ETDEWEB)
Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K{sub 2}), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses.
Ultrafast Terahertz Dynamics and Switching in Quantum Dots
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hoffmann, Matthias C.
2012-01-01
carrier release from the QDs with (sub-)picosecond time resolution, using optical pump–THz probe measurements. In the second part of this chapter we investigate the direct manipulation of the quantum confinement potential of the QDs by an electric field of a strong THz pulse. The resulting THz......-driven quantum-confined Stark effect leads to a strong modulation of a ground-state optical absorption in the QDs. Dynamically, such a THz-induced electro-absorption modulation in QDs (near-)instantaneously follows the absolute value of the electric field of the THz pulse, providing the capability for Tbit......In this Chapter we describe the experimental studies of ultrafast carrier dynamics and all-optical switching in semiconductor quantum dots (QDs) using ultrafast terahertz (THz) techniques. In the first part of this chapter we describe the studies of carrier capture into the QDs, and thermionic...
Decoherence as a Probe of Coherent Quantum Dynamics
D'Arcy, M B; Summy, G S; Guarneri, I; Wimberger, S M; Fishman, S; Buchleitner, A; Arcy, Michael B. d'; Godun, Rachel M.; Summy, Gil S.; Guarneri, Italo; Wimberger, Sandro; Fishman, Shmuel; Buchleitner, Andreas
2004-01-01
The effect of decoherence, induced by spontaneous emission, on the dynamics of periodically kicked cold atoms at quantum resonance is experimentally and theoretically studied. We clarify the nature of the coherent evolution, and the way in which decoherence disrupts it, thereby resolving the puzzle of the observed enhancement of the atomic mean energy growth by decoherence [Phys. Rev. Lett. 87, 074102 (2001)].
A Dynamics for Discrete Quantum Gravity
Gudder, Stan
2013-01-01
This paper is based on the causal set approach to discrete quantum gravity. We first describe a classical sequential growth process (CSGP) in which the universe grows one element at a time in discrete steps. At each step the process has the form of a causal set (causet) and the "completed" universe is given by a path through a discretely growing chain of causets. We then quantize the CSGP by forming a Hilbert space $H$ on the set of paths. The quantum dynamics is governed by a sequence of positive operators $\\rho_n$ on $H$ that satisfy normalization and consistency conditions. The pair $(H,\\brac{\\rho_n})$ is called a quantum sequential growth process (QSGP). We next discuss a concrete realization of a QSGP in terms of a natural quantum action. This gives an amplitude process related to the sum over histories" approach to quantum mechanics. Finally, we briefly discuss a discrete form of Einstein's field equation and speculate how this may be employed to compare the present framework with classical general rela...
Dynamics of quantum cascade lasers: numerics
Van der Sande, Guy; Verschaffelt, Guy
2016-04-01
Since the original demonstration of terahertz quantum-cascade lasers (QCLs), the performance of these devices has shown rapid improvement. QCLs can now deliver milliwatts or more of continuous-wave radiation throughout the terahertz frequency range (300 GHz to 10 THz). Therefore, QCLs have become widely used in various applications such as spectroscopy, metrology or free-space telecommunications. For many of these applications there is a need for compact tuneable quantum cascade lasers. Nowadays most tuneable QCLs are based on a bulky external cavity configuration. We explore the possibility of tuning the operating wavelength through a fully integrated on-chip wavelength selective feedback applied to a dual wavelength QCL. Our numerical and analytical analyses are based on rate equation models describing the dynamics of QCLs extended to include delayed filtered optical feedback. We demonstrate the possibility to tune the operating wavelength by altering the absorption and/or amplification of the signal in the delayed feedback path. The tuning range of a laser is limited by the spectral width of its gain. For inter-band semiconductor lasers this spectral width is typically several tens of nm. Hence, the laser cavity supports the existence of multiple modes and on chip wavelength selective feedback has been demonstrated to be a promising tuning mechanism. We have selected a specific QCL gain structure with four energy levels and with two lasing transitions in the same cascade. In this scheme, the two lasing modes use a common upper level. Hence, the two modes compete in part for the same carriers to account for their optical gain. We have added delayed wavelength specific filtered optical feedback to the rate equation model describing these transitions. We have calculated the steady states and their stability in the absence of delay for the feedback field and studied numerically the case with non-zero delay. We have proven that wavelength tuning of a dual wavelength
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yu, E-mail: zhy@yangtze.hku.hk; Chen, GuanHua, E-mail: ghc@everest.hku.hk [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yam, ChiYung [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Zhang, Yu; Yam, ChiYung; Chen, GuanHua
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Stochastic description of quantum Brownian dynamics
Yan, Yun-An; Shao, Jiushu
2016-08-01
Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems
Quantum Discord Dynamics in Two Different Non-Markovian Reservoirs
Institute of Scientific and Technical Information of China (English)
DING Bang-Fu; WANG Xiao-Yun; LIU Jing-Feng; YAN Lin; ZHAO He-Ping
2011-01-01
The quantum discord dynamics of two non-coupled two-level atoms independently interacting with their reservoir is studied under two kinds of non-Markovian conditions,namely,an off-resonant case with atomic transition frequency and a photonic band gap.In the first case,the phenomenon of the quantum discord loss and the oscillatory behavior of the quantum discord can occur by changing the detuning quantity and reducing the spectral coupling width for any initial Bell state.Under the second condition,the trapping phenomenon of the quantum discord can be presented by adjusting the width of gap,that is,the quantum discord of two atoms keep a nonzero constant for a long time.Entanglement,as a kind of quantum correlation without a classical counterpart,plays an important role in quantum information and communication theory,[1,2] quantum teleportation,[3] quantum cryptography[4,5] and universal quantum computing.[6]%We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection. Compared to conventional nontransparent electrodes, the transparent electrodes allow photons to transmit through to the graphene beneath, providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation. The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd), indicating a significant enhancement in the performance of graphene photo sensors.
Spin dynamics and spin freezing at ferromagnetic quantum phase transitions
Schmakat, P.; Wagner, M.; Ritz, R.; Bauer, A.; Brando, M.; Deppe, M.; Duncan, W.; Duvinage, C.; Franz, C.; Geibel, C.; Grosche, F. M.; Hirschberger, M.; Hradil, K.; Meven, M.; Neubauer, A.; Schulz, M.; Senyshyn, A.; Süllow, S.; Pedersen, B.; Böni, P.; Pfleiderer, C.
2015-07-01
We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1- y Fe2+ y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1- x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.
Effective Dynamics of Disordered Quantum Systems
Kropf, Chahan M.; Gneiting, Clemens; Buchleitner, Andreas
2016-07-01
We derive general evolution equations describing the ensemble-average quantum dynamics generated by disordered Hamiltonians. The disorder average affects the coherence of the evolution and can be accounted for by suitably tailored effective coupling agents and associated rates that encode the specific statistical properties of the Hamiltonian's eigenvectors and eigenvalues, respectively. Spectral disorder and isotropically disordered eigenvector distributions are considered as paradigmatic test cases.
Momentum Dynamics of One Dimensional Quantum Walks
Fuss, I; Sherman, P J; Naguleswaran, S; Fuss, Ian; White, langord B.; Sherman, Peter J.; Naguleswaran, Sanjeev
2006-01-01
We derive the momentum space dynamic equations and state functions for one dimensional quantum walks by using linear systems and Lie group theory. The momentum space provides an analytic capability similar to that contributed by the z transform in discrete systems theory. The state functions at each time step are expressed as a simple sum of three Chebyshev polynomials. The functions provide an analytic expression for the development of the walks with time.
Discrepancies in quantum electro-dynamics
Chantler, C. T.
2004-10-01
Experimental tests of quantum electro-dynamics (QED) have developed dramatically for simple atomic systems such as hydrogen. However, a range of anomalies has been discovered recently. There has also been significant progress for medium- Z hydrogenic and helium-like atoms. In this area tests are often based on X-ray spectroscopic measurements. Future prospects for critical insight into the nature and convergence of QED in multi-electron systems will be discussed.
Discrepancies in quantum electro-dynamics
Energy Technology Data Exchange (ETDEWEB)
Chantler, C.T. E-mail: chantler@ph.unimelb.edu.au
2004-11-01
Experimental tests of quantum electro-dynamics (QED) have developed dramatically for simple atomic systems such as hydrogen. However, a range of anomalies has been discovered recently. There has also been significant progress for medium-Z hydrogenic and helium-like atoms. In this area tests are often based on X-ray spectroscopic measurements. Future prospects for critical insight into the nature and convergence of QED in multi-electron systems will be discussed.
Towards robust dynamical decoupling and high fidelity adiabatic quantum computation
Quiroz, Gregory
Quantum computation (QC) relies on the ability to implement high-fidelity quantum gate operations and successfully preserve quantum state coherence. One of the most challenging obstacles for reliable QC is overcoming the inevitable interaction between a quantum system and its environment. Unwanted interactions result in decoherence processes that cause quantum states to deviate from a desired evolution, consequently leading to computational errors and loss of coherence. Dynamical decoupling (DD) is one such method, which seeks to attenuate the effects of decoherence by applying strong and expeditious control pulses solely to the system. Provided the pulses are applied over a time duration sufficiently shorter than the correlation time associated with the environment dynamics, DD effectively averages out undesirable interactions and preserves quantum states with a low probability of error, or fidelity loss. In this study various aspects of this approach are studied from sequence construction to applications of DD to protecting QC. First, a comprehensive examination of the error suppression properties of a near-optimal DD approach is given to understand the relationship between error suppression capabilities and the number of required DD control pulses in the case of ideal, instantaneous pulses. While such considerations are instructive for examining DD efficiency, i.e., performance vs the number of control pulses, high-fidelity DD in realizable systems is difficult to achieve due to intrinsic pulse imperfections which further contribute to decoherence. As a second consideration, it is shown how one can overcome this hurdle and achieve robustness and recover high-fidelity DD in the presence of faulty control pulses using Genetic Algorithm optimization and sequence symmetrization. Thirdly, to illustrate the implementation of DD in conjunction with QC, the utilization of DD and quantum error correction codes (QECCs) as a protection method for adiabatic quantum
Roy, Dibyendu
2008-06-01
Through an exact analysis using quantum Langevin dynamics, we demonstrate the crossover from ballistic to diffusive thermal transport in a harmonic chain with each site connected to Ohmic heat reservoirs. The temperatures of the two heat baths at the boundaries are specified from the beginning, whereas the temperatures of the interior heat reservoirs are determined self-consistently by demanding that in the steady state, on average, there is no heat current between any such (self-consistent) reservoir and the harmonic chain. The essence of our study is that the effective mean free path separating the ballistic regime of transport from the diffusive one emerges naturally.
Directory of Open Access Journals (Sweden)
Prashant Anil Patil
2012-04-01
Full Text Available This paper gives the detailed information about Quantum computer, and difference between quantum computer and traditional computers, the basis of Quantum computers which are slightly similar but still different from traditional computer. Many research groups are working towards the highly technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. Quantum computer is very much use full for computation purpose in field of Science and Research. Large amount of data and information will be computed, processing, storing, retrieving, transmitting and displaying information in less time with that much of accuracy which is not provided by traditional computers.
Quantum dynamics of simultaneously measured non-commuting observables
Hacohen-Gourgy, Shay; Martin, Leigh S.; Flurin, Emmanuel; Ramasesh, Vinay V.; Whaley, K. Birgitta; Siddiqi, Irfan
2016-10-01
In quantum mechanics, measurements cause wavefunction collapse that yields precise outcomes, whereas for non-commuting observables such as position and momentum Heisenberg’s uncertainty principle limits the intrinsic precision of a state. Although theoretical work has demonstrated that it should be possible to perform simultaneous non-commuting measurements and has revealed the limits on measurement outcomes, only recently has the dynamics of the quantum state been discussed. To realize this unexplored regime, we simultaneously apply two continuous quantum non-demolition probes of non-commuting observables to a superconducting qubit. We implement multiple readout channels by coupling the qubit to multiple modes of a cavity. To control the measurement observables, we implement a ‘single quadrature’ measurement by driving the qubit and applying cavity sidebands with a relative phase that sets the observable. Here, we use this approach to show that the uncertainty principle governs the dynamics of the wavefunction by enforcing a lower bound on the measurement-induced disturbance. Consequently, as we transition from measuring identical to measuring non-commuting observables, the dynamics make a smooth transition from standard wavefunction collapse to localized persistent diffusion and then to isotropic persistent diffusion. Although the evolution of the state differs markedly from that of a conventional measurement, information about both non-commuting observables is extracted by keeping track of the time ordering of the measurement record, enabling quantum state tomography without alternating measurements. Our work creates novel capabilities for quantum control, including rapid state purification, adaptive measurement, measurement-based state steering and continuous quantum error correction. As physical systems often interact continuously with their environment via non-commuting degrees of freedom, our work offers a way to study how notions of contemporary
Quantum Processes and Dynamic Networks in Physical and Biological Systems.
Dudziak, Martin Joseph
Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain
Relativistic quantum metrology in open system dynamics.
Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang
2015-01-22
Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself.
Dynamical mean-field theory from a quantum chemical perspective.
Zgid, Dominika; Chan, Garnet Kin-Lic
2011-03-07
We investigate the dynamical mean-field theory (DMFT) from a quantum chemical perspective. Dynamical mean-field theory offers a formalism to extend quantum chemical methods for finite systems to infinite periodic problems within a local correlation approximation. In addition, quantum chemical techniques can be used to construct new ab initio Hamiltonians and impurity solvers for DMFT. Here, we explore some ways in which these things may be achieved. First, we present an informal overview of dynamical mean-field theory to connect to quantum chemical language. Next, we describe an implementation of dynamical mean-field theory where we start from an ab initio Hartree-Fock Hamiltonian that avoids double counting issues present in many applications of DMFT. We then explore the use of the configuration interaction hierarchy in DMFT as an approximate solver for the impurity problem. We also investigate some numerical issues of convergence within DMFT. Our studies are carried out in the context of the cubic hydrogen model, a simple but challenging test for correlation methods. Finally, we finish with some conclusions for future directions.
Applications of Quantum Probability Theory to Dynamic Decision Making
2015-08-13
quantum learning algorithm for the dynamic environments; and most importantly, (c) To experimentally test whether the quantum reinforcement learning...seeking tasks, which are relevant to Air Force applications. In particular, we developed a new quantum reinforcement learning algorithm for MDP’s. The... quantum reinforcement-learning algorithm does not require a quantum computer, and can be directly used to learn to perform practical sequential
Control of Exciton Dynamics in Nanodots for Quantum Operations
Chen, Pochung; Piermarocchi, C.; Sham, L. J.
2001-08-01
We present a theory to further a new perspective of proactive control of exciton dynamics in the quantum limit. Circularly polarized optical pulses in a semiconductor nanodot are used to control the dynamics of two interacting excitons of opposite polarizations. Shaping of femtosecond laser pulses keeps the quantum operation within the decoherence time. Computation of the fidelity of the operations and application to the complete solution of a minimal quantum computing algorithm demonstrate in theory the feasibility of quantum control.
Yang, Yonggang
2008-01-01
We investigated the effect of deuteration on the vibrational ground state of the hydrated hydroxide anion using a nine-dimensional quantum dynamical model for the case of J=0. The propagation of the nuclear wave function has been performed with the multi-configuration time-dependent Hartree method which yielded zero-point energies for the normal and fully deuterated species in quantitative agreement with previous diffusion Monte Carlo calculations. According to the zero-point energy the isotopomers having the hydrogen atom in the bridging position are more stable by about 1 kJ/mol as compared to the deuterium case. This holds irrespective of the deuteration state of the two OH groups. We also report the secondary geometric H/D isotope effect on the O--O distance which amounts to an elongation of about 0.005 A for the symmetric isotopomers and 0.009 A in the asymmetric case. Finally, we explore the isotopomer sensitivity of the ground state tunneling splitting due to the torsional motion of the two OH groups.
An eight-dimensional quantum dynamics study of the Cl + CH4→ HCl + CH3 reaction
Liu, Na; Yang, Minghui
2015-10-01
In this work, the later-barrier reaction Cl + CH4 → HCl + CH3 is investigated with an eight-dimensional quantum dynamics method [R. Liu et al., J. Chem. Phys. 137, 174113 (2012)] on the ab initio potential energy surface of Czakó and Bowman [J. Chem. Phys. 136, 044307 (2012)]. The reaction probabilities with CH4 initially in its ground and vibrationally excited states are calculated with a time-dependent wavepacket method. The theoretical integral cross sections (ICSs) are extensively compared with the available experimental measurements. For the ground state reaction, the theoretical ICSs excellently agree with the experimental ones. The good agreements are also achieved for ratios between ICSs of excited reactions. For ICS ratios between various states, the theoretical values are also consistent with the experimental observations. The rate constants over 200-2000 K are calculated and the non-Arrhenius effect has been observed which is coincident with the previous experimental observations and theoretical calculations.
Distasio, Robert A., Jr.; Santra, Biswajit; Ko, Hsin-Yu; Car, Roberto
2014-03-01
In this work, we report highly accurate ab initio path-integral molecular dynamics (AI-PIMD) simulations on liquid water at ambient conditions utilizing the recently developed PBE0+vdW(SC) exchange-correlation functional, which accounts for exact exchange and a self-consistent pairwise treatment of van der Waals (vdW) or dispersion interactions, combined with nuclear quantum effects (via the colored-noise generalized Langevin equation). The importance of each of these effects in the theoretical prediction of the structure of liquid water will be demonstrated by a detailed comparative analysis of the predicted and experimental oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and hydrogen-hydrogen (H-H) radial distribution functions as well as other structural properties. In addition, we will discuss the theoretically obtained proton momentum distribution, computed using the recently developed Feynman path formulation, in light of the experimental deep inelastic neutron scattering (DINS) measurements. DOE: DE-SC0008626, DOE: DE-SC0005180.
Time-dependent quantum dynamics study for reaction of D+CH4→CH3+HD
Institute of Scientific and Technical Information of China (English)
Liu Xin-Guo; Zhang Qing-Gang; Zhang Yi-Ci; Wang Ming-Liang; John Zhang Zeng-Hui
2004-01-01
The semirigid vibrating rotor target (SVRT) model has been applied to the study of the reaction of D+CH4 →CH3+HD using a time-dependent wave packet method. The energy dependence of the calculated reaction probability shows oscillatory structures similar to those observed in the abstraction reaction of H+H2, H+CH4 etc. We have also studied the influence of rotational and vibrational excitation of the reacting molecule (CH4) on reaction probability.The excitation of the H-CH3 stretching vibration gives significant enhancement of reaction probability, which rises significantly with the enhancement of rotational quantum number j. Finally, we have compared the cross section and the rate constant of the D+CH4 system with that of the H+CH4 system.
Jones, N
2002-01-01
The wavefunction of a particle extends into the classically forbidden barrier region of the potential energy surface. The consequence of this partial delocalisation is the phenomenon of quantum tunnelling, an effect which enables a particle to penetrate a potential barrier of magnitude greater than the energy of the particle. The tunnelling probability is an exponential function of the particle mass. The effect is therefore an important contribution to the behaviour of light atoms, in particular the proton. The hydrogen bond has long been appreciated to be an essential component of many biological and chemical systems, and the proton transfer reaction in the hydrogen bond is fundamental to many of these processes. The proton behaviour in the hydrogen bonds of benzoic acid, acetylacetone and calix-4-arene has been studied. A variety of techniques, both experimental and computational, were adopted for the study of the three hydrogen bonded systems. The complementary spectroscopic techniques of inelastic neutron...
Coherent spin dynamics in semiconductor quantum dots
Energy Technology Data Exchange (ETDEWEB)
Amand, T.; Senes, M.; Marie, X.; Renucci, P. [Laboratoire de Nanophysique, Magnetisme et Optoelectronique-LPMC, INSA, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Urbaszek, B. [Laboratoire de Nanophysique, Magnetisme et Optoelectronique-LPMC, INSA, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Krebs, O.; Laurent, S.; Voisin, P. [Laboratoire de Photonique et Nanostructures, route de Nozay, 91460 Marcoussis (France); Warburton, R.J. [Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2005-05-01
The anisotropic exchange interaction (AEI) between electrons and holes is shown to play a central role in quantum dots (QDs) spin dynamics. In neutral QDs, AEI is at the origin of spin quantum beats observed under resonant excitation between the lowest energy doublet of linearly dipole-active eigenstates. In negatively charged QDs, AEI is at the origin of QD emission with opposite helicity to the optic al excitation, under non-resonant excitation conditions. Finally, the possibility of leaving a spin information in the system after recombination of the photo-injected electron-hole pair is discussed with respect to the type and the level of the doping. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Signatures of discrete breathers in coherent state quantum dynamics.
Igumenshchev, Kirill; Ovchinnikov, Misha; Maniadis, Panagiotis; Prezhdo, Oleg
2013-02-07
In classical mechanics, discrete breathers (DBs) - a spatial time-periodic localization of energy - are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space - a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes - high order tunneling modes - that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments that
Quantum dynamical entropy and decoherence rate
Energy Technology Data Exchange (ETDEWEB)
Alicki, Robert [Institute of Theoretical Physics and Astrophysics, University of Gdansk, ul. Wita Stwosza 57, PL 80-952 Gdansk (Poland); Lozinski, Artur [Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow (Poland); Pakonski, Prot [Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow (Poland); Zyczkowski, Karol [Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)
2004-05-14
We investigate quantum dynamical systems defined on a finite-dimensional Hilbert space and subjected to an interaction with an environment. The rate of decoherence of initially pure states, measured by the increase of their von Neumann entropy, averaged over an ensemble of random pure states, is proved to be bounded from above by the partial entropy used to define the ALF-dynamical entropy. The rate of decoherence induced by the sequence of the von Neumann projectors measurements is shown to be maximal, if the measurements are performed in a randomly chosen basis. The numerically observed linear increase of entropies is attributed to free independence of the measured observable and the unitary dynamical map.
Quantum dynamical entropy and decoherence rate
Alicki, R; Pakonski, P; Zyczkowski, K; Alicki, Robert; Lozinski, Artur; Pakonski, Prot; Zyczkowski, Karol
2004-01-01
We investigate quantum dynamical systems defined on a finite dimensional Hilbert space and subjected to an interaction with an environment. The rate of decoherence of initially pure states, measured by the increase of their von Neumann entropy, averaged over an ensemble of random pure states, is proved to be bounded from above by the partial entropy used to define the ALF dynamical entropy. The rate of decoherence induced by the sequence of the von Neumann projectors measurements is shown to be maximal, if the measurements are performed in a randomly chosen basis. The numerically observed linear increase of entropies is attributed to free-independence of the measured observable and the unitary dynamical map.
Diffusive limit for a quantum linear Boltzmann dynamics
Clark, Jeremy
2010-01-01
We study the diffusive behavior for a quantum test particle interacting with a dilute background gas. The model we begin with is a reduced picture for the test particle dynamics given by a quantum linear Boltzmann equation in which the scattering with the gas particles is assumed to occur through a hard-sphere interaction. The state of the particle is represented by a density matrix evolving according to a translation-covariant Lindblad equation. Our main result is a proof that the particle diffuses for large times.
Dynamical mean-field theory for quantum chemistry.
Lin, Nan; Marianetti, C A; Millis, Andrew J; Reichman, David R
2011-03-04
The dynamical mean-field concept of approximating an unsolvable many-body problem in terms of the solution of an auxiliary quantum impurity problem, introduced to study bulk materials with a continuous energy spectrum, is here extended to molecules, i.e., finite systems with a discrete energy spectrum. The application to small clusters of hydrogen atoms yields ground state energies which are competitive with leading quantum chemical approaches at intermediate and large interatomic distances as well as good approximations to the excitation spectrum.
Nonlocal memory effects in the dynamics of open quantum systems
Laine, Elsi-Mari; Piilo, Jyrki; Li, Chuan-Feng; Guo, Guang-Can
2011-01-01
We study a model of two entangled photons interacting locally with two dephasing environments. It is shown that initial correlations between the local environments can generate a nonlocal quantum process from a local interaction Hamiltonian. While the global dynamics of the two-photon polarization state exhibits strong memory effects, the induced local dynamics of either of the two photons is found to be Markovian. A direct connection between the degree of memory effects and the amount of correlations in the initial environmental state is derived. The results demonstrate that, contrary to conventional wisdom, enlarging an open system can change the dynamics from Markovian to non-Markovian.
Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton.
Chuntonov, Lev; Ma, Jianqiang
2013-10-31
Quantum coherence has been a subject of great interest in many scientific disciplines. However, detailed characterization of the quantum coherence in molecular systems, especially its transfer and relaxation mechanisms, still remains a major challenge. The difficulties arise in part because the spectroscopic signatures of the coherence transfer are typically overwhelmed by other excitation-relaxation processes. We use quantum process tomography (QPT) via two-dimensional infrared spectroscopy to quantify the rate of the elusive coherence transfer between two vibrational exciton states. QPT retrieves the dynamics of the dissipative quantum system directly from the experimental observables. It thus serves as an experimental alternative to theoretical models of the system-bath interaction and can be used to validate these theories. Our results for coupled carbonyl groups of a diketone molecule in chloroform, used as a benchmark system, reveal the nonsecular nature of the interaction between the exciton and the Markovian bath and open the door for the systematic studies of the dissipative quantum systems dynamics in detail.
Quantum dynamics of two-photon quantum Rabi model
Lü, Zhiguo; Zhao, Chunjian; Zheng, Hang
2017-02-01
We apply a simple analytical method based on a unitary transformation to calculate the ground state, its excitation spectrum and quantum dynamic evolution of physical quantities for the double-photon quantum Rabi Hamiltonian over the wide coupling-strength range. The concise analytical method possesses the same mathematical simplicity as the approach of the rotating wave approximation (RWA). By quantitative comparison with the numerically exact result obtained by matrix diagonalization, we confirm that our calculated results obtained by transformed rotating-wave method are not only accurate in the weak coupling regime but also correct in intermediate strong-coupling case. In the intermediate ultrastrong-coupling regime, the calculated values of the ground state and lower lying excited states are nearly the same as the exact ones. It turns out that our calculation for the energy spectrum is beyond the ordinary-RWA. Meanwhile, we demonstrate the signatures resulting from the counter-rotating wave terms by monitoring the population, the coherence, the squeezing of the photon under the ultra-strong conditions. In particular, we find that when the frequency of the photon is much larger than the transition frequency of the system, the lineshape of the time evolution becomes complicated with the increase of the coupling strength, which may be verified experimentally.
Dynamical spin-spin coupling of quantum dots
Grigoryan, Vahram; Xiao, Jiang; A spintronics Group Team
2014-03-01
We carried out a nested Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the spin-spin coupling between two dynamical quantum dots under the influence of rotating transverse magnetic field. As a result of the rotating field, we predict a novel Ising type spin-spin coupling mechanism between quantum dots, whose strength is tunable via the magnitude of the rotating field. Due to its dynamical origin, this new coupling mechanism is qualitatively different from the all existing static couplings such as RKKY, while the strength could be comparable to the strength of the RKKY coupling. The dynamical coupling with the intristic RKKY coupling enables to construct a four level system of maximally entangled Bell states in a controllable manner. This work was supported by the special funds for the Major State Basic Research Project of China (No. 2011CB925601) and the National Natural Science Foundation of China (Grants No. 11004036 and No. 91121002).
Quantum Dynamics Simulations for Modeling Experimental Pump-Probe Measurements
Pearson, Brett; Nayyar, Sahil; Liss, Kyle; Weinacht, Thomas
2016-05-01
Time-resolved studies of quantum dynamics have benefited greatly from developments in ultrafast table-top and free electron lasers. Advances in computer software and hardware have lowered the barrier for performing calculations such that relatively simple simulations allow for direct comparison with experimental results. We describe here a set of quantum dynamics calculations in low-dimensional molecular systems. The calculations incorporate coupled electronic-nuclear dynamics, including two interactions with an applied field and nuclear wave packet propagation. The simulations were written and carried out by undergraduates as part of a senior research project, with the specific goal of allowing for detailed interpretation of experimental pump-probe data (in additional to the pedagogical value).
Chaos and Nonlinear Dynamics in a Quantum Artificial Economy
Gonçalves, Carlos Pedro
2012-01-01
Chaos and nonlinear economic dynamics are addressed for a quantum coupled map lattice model of an artificial economy, with quantized supply and demand equilibrium conditions. The measure theoretic properties and the patterns that emerge in both the economic business volume dynamics' diagrams as well as in the quantum mean field averages are addressed and conclusions are drawn in regards to the application of quantum chaos theory to address signatures of chaotic dynamics in relevant discrete economic state variables.
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Markovian evolution of quantum coherence under symmetric dynamics
Lostaglio, Matteo; Korzekwa, Kamil; Milne, Antony
2017-09-01
Both conservation laws and practical restrictions impose symmetry constraints on the dynamics of open quantum systems. In the case of time-translation symmetry, which arises naturally in many physically relevant scenarios, the quantum coherence between energy eigenstates becomes a valuable resource for quantum information processing. In this work, we identify the minimum amount of decoherence compatible with this symmetry for a given population dynamics. This yields a generalization to higher-dimensional systems of the relation T2≤2 T1 for qubit decoherence and relaxation times. It also enables us to witness and assess the role of non-Markovianity as a resource for coherence preservation and transfer. Moreover, we discuss the relationship between ergodicity and the ability of Markovian dynamics to indefinitely sustain a superposition of different energy states. Finally, we establish a formal connection between the resource-theoretic and the master equation approaches to thermodynamics, with the former being a non-Markovian generalization of the latter. Our work thus brings the abstract study of quantum coherence as a resource towards the realm of actual physical applications.
The classical and quantum dynamics of molecular spins on graphene
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2015-01-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019
Quantum dynamics of hydrogen atoms on graphene. II. Sticking
Energy Technology Data Exchange (ETDEWEB)
Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)
2015-09-28
Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.
Non-Markovian Dynamics of Quantum Systems
Chruściński, Dariusz; Kossakowski, Andrzej
2011-01-01
We analyze a local approach to the non-Markovian evolution of open quantum systems. It turns out that any dynamical map representing evolution of such a system may be described either by non-local master equation with memory kernel or equivalently by equation which is local in time. The price one pays for the local approach is that the corresponding generator might be highly singular and it keeps the memory about the starting point 't0'. Remarkably, singularities of generator may lead to interesting physical phenomena like revival of coherence or sudden death and revival of entanglement.
Quantum Dynamics of Mesoscopic Driven Duffing Oscillators
Guo, Lingzhen; Li, Xin-Qi
2009-01-01
We investigate the nonlinear dynamics of a mesoscopic driven Duffing oscillator in a quantum regime. In terms of Wigner function, we identify the nature of state near the bifurcation point, and analyze the transient process which reveals two distinct stages of quenching and escape. The rate process in the escape stage allows us to extract the transition rate, which displays perfect scaling behavior with the driving distance to the bifurcation point. We numerically determine the scaling exponent, compare it with existing analytic result, and suggest its possible observation.
Studies in quantum information theory
Menicucci, Nicolas C.
potential for use as generic quantum systems over which the experimenter has exquisite control and which can be used to simulate other quantum systems and also study generic quantum phenomena. This is followed by a proposal for using a trapped ion as a time-dependent harmonic oscillator---a quantum system that is common in theoretical literature but of which few laboratory examples are known. A second project studies the way that quantum fluctuations in the vibrational state of a chain of ions influence correlations in optical measurements made on the ions. The final part looks at quantum information theory in a relativistic setting. An introduction discusses the interface between quantum information theory and relativity in general, including the nonclassical notion of entanglement and the peculiar features of curved-space quantum field theory. An original gedankenexperiment combines these ideas and examines whether entanglement---a quantum information-theoretic concept and physical resource---can be used to distinguish universes of different curvature in a situation where local measurements would show no difference. These three parts are followed by a personal (and possibly controversial) conclusion, which describes my fascination with---and ultimately my reason for pursuing---studies in quantum information theory.
Quantum dynamics of fast chemical reactions
Energy Technology Data Exchange (ETDEWEB)
Light, J.C. [Univ. of Chicago, IL (United States)
1993-12-01
The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.
Classical vs Quantum Games: Continuous-time Evolutionary Strategy Dynamics
Leung, Ming Lam
2011-01-01
This paper unifies the concepts of evolutionary games and quantum strategies. First, we state the formulation and properties of classical evolutionary strategies, with focus on the destinations of evolution in 2-player 2-strategy games. We then introduce a new formalism of quantum evolutionary dynamics, and give an example where an evolving quantum strategy gives reward if played against its classical counterpart.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K.S.; Abulizi, G.; Jong, de M.P.; Wiel, van der W.G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is we
Emergence of coherence and the dynamics of quantum phase transitions
Braun, Simon; Friesdorf, Mathis; Hodgman, Sean S.; Schreiber, Michael; Ronzheimer, Jens Philipp; Riera, Arnau; del Rey, Marco; Bloch, Immanuel; Eisert, Jens
2015-01-01
The dynamics of quantum phase transitions pose one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the 1D Bose–Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We, thereby, perform a largely certified analog quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions, where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behavior of the coherence length, reminiscent of the Kibble–Zurek mechanism. However, we find nonuniversal exponents that cannot be captured by this mechanism or any other known model. PMID:25775515
Quantum dynamics of the damped harmonic oscillator
Philbin, T G
2012-01-01
The quantum theory of the damped harmonic oscillator has been a subject of continual investigation since the 1930s. The obstacle to quantization created by the dissipation of energy is usually dealt with by including a discrete set of additional harmonic oscillators as a reservoir. But a discrete reservoir cannot directly yield dynamics such as Ohmic damping (proportional to velocity) of the oscillator of interest. By using a continuum of oscillators as a reservoir, we canonically quantize the harmonic oscillator with Ohmic damping and also with general damping behaviour. The dynamics of a damped oscillator is determined by an arbitrary effective susceptibility that obeys Kramers-Kronig relations. This approach offers an alternative description of nano-mechanical oscillators and opto-mechanical systems.
Polymer Quantum Dynamics of the Taub Universe
Battisti, Marco Valerio; Montani, Giovanni
2008-01-01
Within the framework of non-standard (Weyl) representations of the canonical commutation relations, we investigate the polymer quantization of the Taub cosmological model. The Taub model is analyzed within the Arnowitt-Deser-Misner reduction of its dynamics, by which a time variable arises. While the energy variable and its conjugate momentum are treated as ordinary Heisenberg operators, the anisotropy variable and its conjugate momentum are represented by the polymer technique. The model is analyzed at both classical and quantum level. As a result, classical trajectories flatten with respect to the potential wall, and the cosmological singularity is not probabilistically removed. In fact, the dynamics of the wave packets is characterized by an interference phenomenon, which, however, is not able to stop the evolution towards the classical singularity.
Quantum mechanics emerging from stochastic dynamics of virtual particles
Tsekov, R
2015-01-01
It is demonstrated how quantum mechanics emerges from the stochastic dynamics of force-carriers. It is shown that the quantum Moyal equation corresponds to some dynamic correlations between the momentum of a real particle and the position of a virtual particle, which are not present in classical mechanics. The new concept throws light on the physical meaning of quantum theory, showing that the Planck constant square is a second-second cross-cumulant. The novel approach to quantum systems is extended to the relativistic case and an expression is derived for the relativistic mass in the Wigner quantum phase-space.
Quantum Computing, $NP$-complete Problems and Chaotic Dynamics
Ohya, M; Ohya, Masanori; Volovich, Igor V.
1999-01-01
An approach to the solution of NP-complete problems based on quantumcomputing and chaotic dynamics is proposed. We consider the satisfiabilityproblem and argue that the problem, in principle, can be solved in polynomialtime if we combine the quantum computer with the chaotic dynamics amplifierbased on the logistic map. We discuss a possible implementation of such achaotic quantum computation by using the atomic quantum computer with quantumgates described by the Hartree-Fock equations. In this case, in principle, onecan build not only standard linear quantum gates but also nonlinear gates andmoreover they obey to Fermi statistics. This new type of entaglement relatedwith Fermi statistics can be interesting also for quantum communication theory.
Hele, Timothy J H
2015-01-01
We obtain thermostatted ring polymer molecular dynamics (TRPMD) from exact quantum dynamics via Matsubara dynamics, a recently-derived form of linearization which conserves the quantum Boltzmann distribution. Performing a contour integral in the complex quantum Boltzmann distribution of Matsubara dynamics, replacement of the imaginary Liouvillian which results with a Fokker-Planck term gives TRPMD. We thereby provide error terms between TRPMD and quantum dynamics and predict the systems in which they are likely to be small. Using a harmonic analysis we show that careful addition of friction causes the correct oscillation frequency of the higher ring-polymer normal modes in a harmonic well, which we illustrate with calculation of the position-squared autocorrelation function. However, no physical friction parameter will produce the correct fluctuation dynamics for a parabolic barrier. The results in this paper are consistent with previous numerical studies and advise the use of TRPMD for the computation of spe...
Topics on the Quantum Dynamics of Chiral Bosons
Abreu, Everton M C; Abreu, Everton M. C.; Wotzasek, Clovis
2004-01-01
Chiral bosons are important building blocks in the study of supergravity, string theory and quantum Hall effect. Along the last two decades many different formulations have appeared trying to describe the dynamics and the quantization of these curious objects. However two of them have gain special attention among people working on this area: the gauge invariant formulation proposed by Siegel and the noninvariant one put forward by Floreanini and Jackiw. We call these distinct analysis as chiral bosonization schemes (CBS). In this report we make a study of the relationships among many of these different chiral bosonization schemes. This is done in the context canonical framework with two different techniques known as soldering formalism and dual projection formalism. The first considers the phenomenon of interference between chiral modes and the second is able to separate dynamics from the symmetry behavior in a quantum field theory. While the soldering formalism discloses phenomena analogous to the double sli...
Complex dynamics in planar two-electron quantum dots
Energy Technology Data Exchange (ETDEWEB)
Schroeter, Sebastian Josef Arthur
2013-06-25
Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-03-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures.
Dynamical phase transitions in quantum mechanics
Directory of Open Access Journals (Sweden)
Rotter Ingrid
2012-02-01
Full Text Available The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points, the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model and those of highly excited nuclear states (described by random ensembles differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J
2016-03-21
We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.
Universal Quantum Gates Based on Both Geometric and Dynamic Phases in Quantum Dots
Institute of Scientific and Technical Information of China (English)
杨开宇; 朱诗亮; 汪子丹
2003-01-01
A large-scalable quantum computer model, whose qubits are represented by the subspace subtended by the ground state and the single exciton state on semiconductor quantum dots, is proposed. A universal set of quantum gates in this system may be achieved by a mixed approach, composed of dynamic evolution and nonadiabatic geometric phase.
Energy Technology Data Exchange (ETDEWEB)
Ghatee, Mohammad Hadi, E-mail: ghatee@susc.ac.ir; Sedghamiz, Tahereh
2014-12-05
Highlights: • Enantiomeric recognition of Propranolol studied by β-Cyclodextrin complexations. • Complexes characterized by PM3 and molecular dynamics (MD) simulation methods. • Results support more stability of R-enantiomer complex in gas and in aqueous solution phases. • Gas phase complexes are unlikely free-energy-wise, though solution phase’s are more likely. • Higher molecular diffusion in aqueous solution phase is inherent to S-enantiomer. - Abstract: Enantiomeric recognition of Propranolol by complexation with β-Cyclodextrin was studied by PM3 method and molecular dynamics (MD) simulation. Gas phase results show that the R-enantiomer complex is more stable than the S-enantiomer complex by 8.54 kJ/mol (Hartree–Fock energy). Using polarized continuum model, solution phase of R-enantiomer complex was found to be more stable than S-enantiomer complex by 25.95 kJ/mol. Both complexes hardly occur at room temperature free-energy-wise, though, complexation with R-enantiomer is more favorable than with S-enantiomer enthalpy-wise. Also, complexes were studied by molecular dynamics simulation in gas and solution phases. More stability of R-enantiomer complex in gas phase is confirmed by MD van der Waals energy (5.04 kJ/mol) and closely by the counterpart PM3 binding energy (8.54 kJ/mol). Simulation in solution phase indicates more stability of R-enantiomer complex. Finally, simulated transport property provides insight into the high anisotropic atoms motion according to which S-Propranolol found possessing significantly higher dynamics.
Single-Particle Quantum Dynamics in a Magnetic Lattice
Energy Technology Data Exchange (ETDEWEB)
Venturini, Marco
2001-02-01
We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.
Quantum Sensing of Noisy and Complex Systems under Dynamical Control
Directory of Open Access Journals (Sweden)
Gershon Kurizki
2016-12-01
Full Text Available We review our unified optimized approach to the dynamical control of quantum-probe interactions with noisy and complex systems viewed as thermal baths. We show that this control, in conjunction with tools of quantum estimation theory, may be used for inferring the spectral and spatial characteristics of such baths with high precision. This approach constitutes a new avenue in quantum sensing, dubbed quantum noise spectroscopy.
Ghatee, Mohammad Hadi; Sedghamiz, Tahereh
2014-12-01
Enantiomeric recognition of Propranolol by complexation with β-Cyclodextrin was studied by PM3 method and molecular dynamics (MD) simulation. Gas phase results show that the R-enantiomer complex is more stable than the S-enantiomer complex by 8.54 kJ/mol (Hartree-Fock energy). Using polarized continuum model, solution phase of R-enantiomer complex was found to be more stable than S-enantiomer complex by 25.95 kJ/mol. Both complexes hardly occur at room temperature free-energy-wise, though, complexation with R-enantiomer is more favorable than with S-enantiomer enthalpy-wise. Also, complexes were studied by molecular dynamics simulation in gas and solution phases. More stability of R-enantiomer complex in gas phase is confirmed by MD van der Waals energy (5.04 kJ/mol) and closely by the counterpart PM3 binding energy (8.54 kJ/mol). Simulation in solution phase indicates more stability of R-enantiomer complex. Finally, simulated transport property provides insight into the high anisotropic atoms motion according to which S-Propranolol found possessing significantly higher dynamics.
Sadhu, Suparna; Patra, Amitava
2013-08-26
This article highlights some physical studies on the relaxation dynamics and Förster resonance energy transfer (FRET) of semiconductor quantum dots (QDs) and the way these phenomena change with size, shape, and composition of the QDs. The understanding of the excited-state dynamics of photoexcited QDs is essential for technological applications such as efficient solar energy conversion, light-emitting diodes, and photovoltaic cells. Here, our emphasis is directed at describing the influence of size, shape, and composition of the QDs on their different relaxation processes, that is, radiative relaxation rate, nonradiative relaxation rate, and number of trap states. A stochastic model of carrier relaxation dynamics in semiconductor QDs was proposed to correlate with the experimental results. Many recent studies reveal that the energy transfer between the QDs and a dye is a FRET process, as established from 1/d(6) distance dependence. QD-based energy-transfer processes have been used in applications such as luminescence tagging, imaging, sensors, and light harvesting. Thus, the understanding of the interaction between the excited state of the QD and the dye molecule and quantitative estimation of the number of dye molecules attached to the surface of the QD by using a kinetic model is important. Here, we highlight the influence of size, shape, and composition of QDs on the kinetics of energy transfer. Interesting findings reveal that QD-based energy-transfer processes offer exciting opportunities for future applications. Finally, a tentative outlook on future developments in this research field is given.
Nonlinear Dynamics and Quantum Transport in Small Systems
2012-02-22
Dynamics and Quantum Transport in Small Systems.” The PI is Ying-Cheng Lai from Arizona State University. The duration of the project was 12/1/2008...military systems may contain some graphene components. To understand various fundamental aspects of quantum transport dynamics is key to developing...conductance fluctuations, not seen previously in any quantum transport systems. This phenomenon has profound implications to the development of graphene
High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling
Quiroz, Gregory
2012-01-01
We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.
Quantum Dynamics of Supergravity on R^3 x S^1
Tong, David
2014-01-01
We study the quantum dynamics of N=1 supergravity in four dimensions with a compact spatial circle. Supersymmetry ensures that the perturbative contributions to the Casimir energy on the circle cancel. However, instanton contributions remain. These render supersymmetric compactification on a circle unstable and the background dynamically decompactifies back to four dimensions. The calculation provides a testing ground for some old ideas in Euclidean quantum gravity. In particular, we show that gravitational instantons are associated to a new, infra-red scale which is naturally exponentially suppressed relative to the Planck scale and arises from the logarithmic running of the Gauss-Bonnet term. There are also some interesting technical details, including the non-cancellation of bosonic and fermionic determinants around the background of a self-dual gravitational instanton, despite the existence of supersymmetry.
Vortex dynamics and their interactions in quantum trajectories
Energy Technology Data Exchange (ETDEWEB)
Wisniacki, D A [Departamento de Fisica ' J. J. Giambiagi' , FCEN, UBA, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Pujals, E R [IMPA-OS, Dona Castorina 110, 22460-320, Rio de Janeiro (Brazil); Borondo, F [Departamento de Quimica C-IX, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
2007-12-30
Vortices are known to play a key role in many important processes in physics and chemistry. Here, we study vortices in connection with the quantum trajectories that can be defined in the framework provided by the de Broglie-Bohm formalism of quantum mechanics. In a previous work, it was shown that the presence of a single moving vortex is enough to induce chaos in these trajectories. Here, this situation is explored in more detail by discussing the relationship between Lyapunov exponents and the parameters characterizing the vortex dynamics. We also consider the issue when more than one vortex exists. In this case, the interaction among them can annihilate or create pairs of vortices with opposite vorticity. This phenomenon is analyzed from a dynamical point of view, showing how the size of the regular regions in phase space grows, as vortices disappear.
Quantum dynamics of the abstraction reaction of H with cyclopropane.
Shan, Xiao; Clary, David C
2014-10-30
The dynamics of the abstraction reaction of H atoms with the cyclopropane molecule is studied using quantum mechanical scattering theory. The quantum scattering calculations are performed in hyperspherical coordinates with a two-dimensional (2D) potential energy surface. The ab initio energy calculations are carried out with CCSD(T)-F12a/cc-pVTZ-F12 level of theory with the geometry and frequency calculations at the MP2/cc-pVTZ level. The contribution to the potential energy surface from the spectator modes is included as the projected zero-point energy correction to the ab initio energy. The 2D surface is fitted with a 29-parameter double Morse potential. An R-matrix propagation scheme is carried out to solve the close-coupled equations. The adiabatic energy barrier and reaction enthalpy are compared with high level computational calculations as well as experimental data. The calculated reaction rate constants shows very good agreement when compared with the experimental data, especially at lower temperature highlighting the importance of quantum tunnelling. The reaction probabilities are also presented and discussed. The special features of performing quantum dynamics calculation on the chemical reaction of a cyclic molecule are discussed.
Molecular dynamics of large systems with quantum corrections for the nuclei
Energy Technology Data Exchange (ETDEWEB)
Gu, Bing; Garashchuk, Sophya, E-mail: garashchuk@sc.edu [Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)
2015-12-31
This paper describes an approximate approach to quantum dynamics based on the quantum trajectory formulation of the Schrödinger equation. The quantum-mechanical effects are incorporated through the quantum potential of the mean-field type, acting on a trajectory ensemble in addition to the classical potential. Efficiency for large systems is achieved by using the quantum corrections for selected degrees of freedom and introduction of empirical friction into the ground-state energy calculations. The classical potential, if needed, can be computed on-the-fly using the Density Functional Tight Binding method of electronic structure merged with the quantum trajectory dynamics code. The approach is practical for a few hundred atoms. Applications include a study of adsorption of quantum hydrogen colliding with the graphene model, C{sub 37}H{sub 15} and a calculation of the ground state of solid {sup 4}He simulated by a cell 180-atoms.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751
Approximation of quantum observables by molecular dynamics simulations
Sandberg, Mattias
2016-01-06
In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.
Average quantum dynamics of closed systems over stochastic Hamiltonians
Yu, Li
2011-01-01
We develop a master equation formalism to describe the evolution of the average density matrix of a closed quantum system driven by a stochastic Hamiltonian. The average over random processes generally results in decoherence effects in closed system dynamics, in addition to the usual unitary evolution. We then show that, for an important class of problems in which the Hamiltonian is proportional to a Gaussian random process, the 2nd-order master equation yields exact dynamics. The general formalism is applied to study the examples of a two-level system, two atoms in a stochastic magnetic field and the heating of a trapped ion.
Exponential rise of dynamical complexity in quantum computing through projections.
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-10-10
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.
Wang, Yuping; Li, Yida; Wang, Dunyou
2017-01-01
A time-dependent, quantum reaction dynamics approach in full dimensional, six degrees of freedom was carried out to study the energy requirement on reactivity for the HBr + OH reaction with an early, negative energy barrier. The calculation shows both the HBr and OH vibrational excitations enhance the reactivity. However, even this reaction has a negative energy barrier, the calculation shows not all forms of energy are equally effective in promoting the reactivity. On the basis of equal amount of total energy, the vibrational energies of both the HBr and OH are more effective in enhancing the reactivity than the translational energy, whereas the rotational excitations of both the HBr and OH hinder the reactivity. The rate constants were also calculated for the temperature range between 5 to 500 K. The quantal rate constants have a better slope agreement with the experimental data than quasi-classical trajectory results.
Izadyar, Mohammad; Khavani, Mohammad; Housaindokht, Mohammad Reza
2015-05-07
Molecular dynamic simulations were performed to investigate the stability of heterocyclic peptide nanotubes composed of 1,4-disubstituted-1,2,3-triazol ε-amino acid. 45 ns MD simulations were conducted on the cyclic peptide nanotube (CPNT) and cyclic peptide dimer in methanol, chloroform, and water and revealed that these structures are more stable in nonpolar solvents. MM-PBSA and MM-GBSA calculations were employed to analyze the solvent effect on the stability and length of the CPNT. These calculations showed that CPNT in chloroform was more stable and longer as compared to other solvents. In addition, the effect of the guest molecule (ethanol) inside the dimer and CPNT was investigated. The obtained results confirmed that guest molecule(s) stabilized the dimer and CPNT in all solvents. Quantum chemistry calculations on the cyclic peptide dimer were performed at the M06-2X/6-31G(d) level in the gas phase and three solvents. The obtained results from the quantum chemistry study were in good agreement with the MD simulation results. DFT calculations showed that the guest molecule stabilized the dimer structure and electrostatically interacted with the cyclic peptide dimer. Finally, for investigation of the solvent effects on the hydrogen bonds of the cyclic peptide dimer, NBO and AIM analysis were performed.
Vikas, Hash(0x125f4490)
2011-02-01
Evolution of the helium atom in a strong time-dependent (TD) magnetic field ( B) of strength up to 1011 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schrödinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >109 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >109 G, the conventional TD-DFT based approach differs "dynamically" from the CDFT based approach under similar computational constraints.
Linear and cubic dynamic susceptibilities in quantum spin glass
Busiello, G; Sushkova, V G
2001-01-01
The low temperature behaviour of the dynamic nonlinear (cubic) susceptibility chi sub 3 sup ' (omega, T) in quantum d-dimensional Ising spin glass with short-range interactions between spins is investigated in terms of the quantum droplet model and the quantum-mechanical nonlinear response theory is employed. We have revealed a glassy like behaviour of droplet dynamics. The frequency dependence of chi sub 3 sup ' (omega, T) is very remarkable, the temperature dependence is found at very low temperatures (quantum regime). The nonlinear response depends on the tunneling rate for a droplet which regulates the strength of quantum fluctuations. This response has a strong dependence on the distribution of droplet free energies and on the droplet length scale average. Implications for experiments in quantum spin glasses like disordered dipolar quantum Ising magnet LiHo sub x Y sub 1 sub - sub x F sub 4 and pseudospin are noted.
Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning
Fujii, Keisuke; Nakajima, Kohei
2017-08-01
The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.
Quantum molecular dynamics simulations of dense matter
Energy Technology Data Exchange (ETDEWEB)
Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I. [Los Alamos National Lab., Albuquerque, NM (United States)
1997-12-31
The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.
Randomized Dynamical Decoupling Techniques for Coherent Quantum Control
Viola, L; Viola, Lorenza; Santos, Lea F.
2006-01-01
The need for strategies able to accurately manipulate quantum dynamics is ubiquitous in quantum control and quantum information processing. We investigate two scenarios where randomized dynamical decoupling techniques become more advantageous with respect to standard deterministic methods in switching off unwanted dynamical evolution in a closed quantum system: when dealing with decoupling cycles which involve a large number of control actions and/or when seeking long-time quantum information storage. Highly effective hybrid decoupling schemes, which combine deterministic and stochastic features are discussed, as well as the benefits of sequentially implementing a concatenated method, applied at short times, followed by a hybrid protocol, employed at longer times. A quantum register consisting of a chain of spin-1/2 particles interacting via the Heisenberg interaction is used as a model for the analysis throughout.
Dynamics and quantumness of excitation energy transfer through a complex quantum network
Qin, M; Zhao, X L; Yi, X X
2015-01-01
Understanding the mechanisms of efficient and robust energy transfer in organic systems provides us with new insights for the optimal design of artificial systems. In this paper, we explore the dynamics of excitation energy transfer (EET) through a complex quantum network by a toy model consisting of three sites coupled to environments. We study how the coherent evolution and the noise-induced decoherence work together to reach efficient EET and illustrate the role of the phase factor attached to the coupling constant in the EET. By comparing the differences between the Markovian and non-Markovian dynamics, we discuss the effect of environment and the spatial structure of system on the dynamics and the efficiency of EET. A intuitive picture is given to show how the exciton is transferred through the system. Employing the simple model, we show the robustness of EET efficiency under the influence of the environment and elucidate the important role of quantum coherence in EET. We go further to study the quantum ...
New methods for quantum mechanical reaction dynamics
Energy Technology Data Exchange (ETDEWEB)
Thompson, Ward Hugh [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
1996-12-01
Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L^{2}) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC^{-} can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC^{-} geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H_{3}O^{-} system, providing information about the potential energy surface for the OH + H_{2} reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the
Energy Technology Data Exchange (ETDEWEB)
Mondelo-Martell, M.; Huarte-Larrañaga, F., E-mail: fermin.huarte@ub.edu [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB),Universitat de Barcelona, C/ Martí i Franqués 1, 08028 Barcelona (Spain)
2015-02-28
The dynamics of the dihydrogen molecule when confined in carbon nanotubes with different chiralities and diameters are studied by using a 5 dimensional model considering the most relevant degrees of freedom of the system. The nuclear eigenstates are calculated for an (8,0) and a (5,0) carbon nanotubes by the State-Average Multiconfigurational Time-dependent Hartree, and then studied using qualitative tools (mapping of the total wave functions onto given subspaces) and more rigorous analysis (different kinds of overlaps with reference functions). The qualitative analysis is seen to fail due to a strong coupling between the internal and translational degrees of freedom. Using more accurate tools allows us to gain a deeper insight into the behaviour of confined species.
Mondelo-Martell, M; Huarte-Larrañaga, F
2015-02-28
The dynamics of the dihydrogen molecule when confined in carbon nanotubes with different chiralities and diameters are studied by using a 5 dimensional model considering the most relevant degrees of freedom of the system. The nuclear eigenstates are calculated for an (8,0) and a (5,0) carbon nanotubes by the State-Average Multiconfigurational Time-dependent Hartree, and then studied using qualitative tools (mapping of the total wave functions onto given subspaces) and more rigorous analysis (different kinds of overlaps with reference functions). The qualitative analysis is seen to fail due to a strong coupling between the internal and translational degrees of freedom. Using more accurate tools allows us to gain a deeper insight into the behaviour of confined species.
Li, Ming-Juan; Liu, Ming-Xia; Zhao, Yan-Ying; Pei, Ke-Mei; Wang, Hui-Gang; Zheng, Xuming; Fang, Wei Hai
2013-10-03
The resonance Raman spectroscopic study of the excited state structural dynamics of 1,3-dimethyluracil (DMU), 5-bromo-1,3-dimethyluracil (5BrDMU), uracil, and thymine in water and acetonitrile were reported. Density functional theory calculations were carried out to help elucidate the ultraviolet electronic transitions associated with the A-, and B-band absorptions and the vibrational assignments of the resonance Raman spectra. The effect of the methylation at N1, N3 and C5 sites of pyrimidine ring on the structural dynamics of uracils in different solvents were explored on the basis of the resonance Raman intensity patterns. The relative resonance Raman intensities of DMU and 5BrDMU are computed at the B3LYP-TD level. Huge discrepancies between the experimental resonance Raman intensities and the B3LYP-TD predicted ones were observed. The underlying mechanism was briefly discussed. The decay channel through the S1((1)nπ*)/S2((1)ππ*) conical intersection and the S1((1)nπ*)/T1((3)ππ*) intersystem crossing were revealed by using the CASSCF(8,7)/6-31G(d) level of theory calculations.
The Quantum Jump Approach to Dissipative Dynamics in Quantum Optics
Plenio, M B
1998-01-01
Dissipation, the irreversible loss of energy and coherence, from a microsystem, is the result of coupling to a much larger macrosystem (or reservoir) which is so large that one has no chance of keeping track of all of its degrees of freedom. The microsystem evolution is then described by tracing over the reservoir states, resulting in an irreversible decay as excitation leaks out of the initially excited microsystems into the outer reservoir environment. Earlier treatments of this dissipation described an ensemble of microsystems using density matrices, either in Schroedinger picture with Master equations, or in Heisenberg picture with Langevin equations. The development of experimental techniques to study single quantum systems (for example single trapped ions, or cavity radiation field modes) has stimulated the construction of theoretical methods to describe individual realizations conditioned on a particular observation record of the decay channel, in the environment. These methods, variously described as ...
Quantum Dynamical Entropies and Gács Algorithmic Entropy
Directory of Open Access Journals (Sweden)
Fabio Benatti
2012-07-01
Full Text Available Several quantum dynamical entropies have been proposed that extend the classical Kolmogorov–Sinai (dynamical entropy. The same scenario appears in relation to the extension of algorithmic complexity theory to the quantum realm. A theorem of Brudno establishes that the complexity per unit time step along typical trajectories of a classical ergodic system equals the KS-entropy. In the following, we establish a similar relation between the Connes–Narnhofer–Thirring quantum dynamical entropy for the shift on quantum spin chains and the Gács algorithmic entropy. We further provide, for the same system, a weaker linkage between the latter algorithmic complexity and a different quantum dynamical entropy proposed by Alicki and Fannes.
Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.
Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter
2014-02-07
Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.
Energy Technology Data Exchange (ETDEWEB)
Grohmann, Thomas
2012-05-31
In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points
Efficient Quantum Private Communication Based on Dynamic Control Code Sequence
Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin
2016-12-01
Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.
Efficient Quantum Private Communication Based on Dynamic Control Code Sequence
Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin
2017-04-01
Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.
Completely positive dynamical semigroups and quantum resonance theory
Könenberg, Martin; Merkli, Marco
2017-07-01
Starting from a microscopic system-environment model, we construct a quantum dynamical semigroup for the reduced evolution of the open system. The difference between the true system dynamics and its approximation by the semigroup has the following two properties: It is (linearly) small in the system-environment coupling constant for all times, and it vanishes exponentially quickly in the large time limit. Our approach is based on the quantum dynamical resonance theory.
Loop quantum cosmology of Bianchi IX: effective dynamics
Corichi, Alejandro; Montoya, Edison
2017-03-01
We study solutions to the effective equations for the Bianchi IX class of spacetimes within loop quantum cosmology (LQC). We consider Bianchi IX models whose matter content is a massless scalar field, by numerically solving the loop quantum cosmology effective equations, with and without inverse triad corrections. The solutions are classified using certain geometrically motivated classical observables. We show that both effective theories—with lapse N = V and N = 1—resolve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the positive spatial curvature, there is an infinite number of bounces and recollapses. We study the limit of large field momentum and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k = 0,1 FLRW as well as Bianchi I, II, and VII0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII0 phases, which had not been studied before. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour.
Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Klimov, V.; McBranch, D.; Schwarz, C.
1998-08-10
Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.
Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H.
2016-05-01
This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.
Conditions for strictly purity-decreasing quantum Markovian dynamics
Energy Technology Data Exchange (ETDEWEB)
Lidar, D.A. [Chemical Physics Theory Group, Chemistry Department and Center for Quantum Information and Quantum Control, University of Toronto, 80 St. George St., Toronto, Ont., M5S 3H6 (Canada)], E-mail: lidar@usc.edu; Shabani, A. [Physics Department and Center for Quantum Information and Quantum Control, University of Toronto, 60 St. George St., Toronto, Ont., M5S 1A7 (Canada); Alicki, R. [Institute of Theoretical Physics and Astrophysics, University of Gdansk (Poland)
2006-03-06
The purity, Tr({rho} {sup 2}), measures how pure or mixed a quantum state {rho} is. It is well known that quantum dynamical semigroups that preserve the identity operator (which we refer to as unital) are strictly purity-decreasing transformations. Here, we provide an almost complete characterization of the class of strictly purity-decreasing quantum dynamical semigroups. We show that in the case of finite-dimensional Hilbert spaces, a dynamical semigroup is strictly purity-decreasing if and only if it is unital, while in the infinite dimensional case, unitality is only sufficient.
Quantum-classical hybrid dynamics - a summary
Elze, Hans-Thomas
2013-01-01
A summary of a recently proposed description of quantum-classical hybrids is presented, which concerns quantum and classical degrees of freedom of a composite object that interact directly with each other. This is based on notions of classical Hamiltonian mechanics suitably extended to quantum mechanics.
Quantum dynamics of Lorentzian spacetime foam
Redmount, Ian H.; Suen, Wai-Mo
1994-05-01
A simple spacetime wormhole, which evolves classically from zero throat radius to a maximum value and recontracts, can be regarded as one possible mode of fluctuation in the microscopic ``spacetime foam'' first suggested by Wheeler. The dynamics of a particularly simple version of such a wormhole can be reduced to that of a single quantity, its throat radius; this wormhole thus provides a ``minisuperspace model'' for a mode of Lorentzian-signature foam. The classical equation of motion for the wormhole throat is obtained from the Einstein field equations and a suitable equation of state for the matter at the throat. Analysis of the quantum behavior of the hole then proceeds from an action corresponding to that equation of motion. The action obtained simply by calculating the scalar curvature of the hole spacetime yields a model with features like those of the relativistic free particle. In particular the Hamiltonian is nonlocal, and for the wormhole cannot even be given as a differential operator in closed form. Nonetheless the general solution of the Schrödinger equation for wormhole wave functions, i.e., the wave-function propagator, can be expressed as a path integral. Too complicated to perform exactly, this can yet be evaluated via a WKB approximation. The result indicates that the wormhole, classically stable, is quantum-mechanically unstable: A Feynman-Kac decomposition of the WKB propagator yields no spectrum of bound states. Although an initially localized wormhole wave function may oscillate for many classical expansion and recontraction periods, it must eventually leak to large radius values. The possibility of such a mode unstable against growth, combined with the observed absence of macroscopic wormholes, suggests that stability considerations may place constraints on the nature or even the existence of Planck-scale foamlike structure, at least of Lorentzian signature.
DEFF Research Database (Denmark)
Wang, Jiao; Mouritzen, Anders Sørrig; Gong, Jiangbin
2009-01-01
.e. the kicked rotor model and the kicked Harper model, is established. In particular, it is shown that Hofstadter's butterfly quasi-energy spectrum in periodically driven quantum systems may soon be realized experimentally, with the effective Planck constant tunable by varying the time delay between two...... sequences of control fields. Extensions of this study are also discussed. The results are intended to open up a new generation of cold-atom experiments of quantum nonlinear dynamics....
Generating quantum states through spin chain dynamics
Kay, Alastair
2017-04-01
The spin chain is a theoretical work-horse of the physicist, providing a convenient, tractable model that yields insight into a host of physical phenomena including conduction, frustration, superconductivity, topological phases, localisation, phase transitions, quantum chaos and even string theory. Our ultimate aim, however, is not just to understand the properties of a physical system, but to harness it for our own ends. We therefore study the possibilities for engineering a special class of spin chain, envisaging the potential for this to feedback into the original physical systems. We pay particular attention to the generation of multipartite entangled states such as the W (Dicke) state, superposed over multiple sites of the chain.
Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit
Institute of Scientific and Technical Information of China (English)
CAO Gang; WANG Li; TU Tao; LI Hai-Ou; XIAO Ming; GUO Guo-Ping
2012-01-01
We propose an effective method to design the working parameters of a pulse-driven charge qubit implemented with double quantum dot.It is shown that intrinsic qubit population leakage to undesired states in the control and measurement process can be determined by the simulation of coherent dynamics of the qubit and minimized by choosing proper working parameters such as pulse shape.The result demonstrated here bodes well for future quantum gate operations and quantum computing applications.
On the Dynamical Solution of Quantum Measurement Problem
Belavkin, V P
2005-01-01
The development of quantum measurement theory, initiated by von Neumann, only indicated a possibility for resolution of the interpretational crisis of quantum mechanics. We do this by divorcing the algebra of the dynamical generators and the algebra of the actual observables, or beables. It is shown that within this approach quantum causality can be rehabilitated in the form of a superselection rule for compatibility of the past beables with the potential future. This rule, together with the self-compatibility of the measurements insuring the consistency of the histories, is called the nondemolition, or causality principle in modern quantum theory. The application of this rule in the form of the dynamical commutation relations leads in particular to the derivation of the von Neumann projection postulate. This gives a quantum stochastic solution, in the form of the dynamical filtering equations, of the notorious measurement problem which was tackled unsuccessfully by many famous physicists starting with Schroe...
Electronically coarse-grained molecular dynamics using quantum Drude oscillators
Jones, A. P.; Crain, J.; Cipcigan, F. S.; Sokhan, V. P.; Modani, M.; Martyna, G. J.
2013-12-01
Standard molecular dynamics (MD) simulations generally make use of a basic description of intermolecular forces which consists of fixed, pairwise, atom-centred Coulomb, van der Waals and short-range repulsive terms. Important interactions such as many-body polarisation and many-body dispersion which are sensitive to changes in the environment are usually neglected, and their effects treated effectively within mean-field approximations to reproduce a single thermodynamic state point or physical environment. This leads to difficulties in modelling the complex interfaces of interest today where the behaviour may be quite different from the regime of parameterisation. Here, we describe the construction and properties of a Gaussian coarse-grained electronic structure, which naturally generates many-body polarisation and dispersion interactions. The electronic structure arises from a fully quantum mechanical treatment of a set of distributed quantum Drude oscillators (QDOs), harmonic atoms which interact with each other and other moieties via electrostatic (Coulomb) interactions; this coarse-grained approach is capable of describing many-body polarisation and dispersion but not short-range interactions which must be parametrised. We describe how on-the-fly forces due to this exchange-free Gaussian model may be generated with linear scale in the number of atoms in the system using an adiabatic path integral molecular dynamics for quantum Drude oscillators technique (APIMD-QDO). We demonstrate the applicability of the QDO approach to realistic systems via a study of the liquid-vapour interface of water.
Fu, Bina; Zhang, Dong H.
2015-02-01
We employ the initial state-selected time-dependent wave packet approach to an atom-triatom reaction to study the H + HOD → OH + HD/OD + H2 reaction without the centrifugal sudden approximation, based on an accurate potential energy surface which was recently developed by neural network fitting to high level ab initio energy points. The total reaction probabilities and integral cross sections, which are the exact coupled-channel results, are calculated for the HOD reactant initially in the ground and several vibrationally excited states, including the bending excited state, OD stretching excited states, OH stretching excited states, and combined excitations of them. The reactivity enhancements from different initial states of HOD are presented, which feature strong bond-selective effects of the reaction dynamics. The current results for the product branching ratios, reactivity enhancements, and relative cross sections are largely improved over the previous calculations, in quantitatively good agreement with experiment. The thermal rate constant for the title reaction and the contributions from individual vibrational states of HOD are also obtained.
Quantum tomography meets dynamical systems and bifurcations theory
Energy Technology Data Exchange (ETDEWEB)
Goyeneche, D., E-mail: dardo.goyeneche@cefop.udec.cl [Departamento de Fisíca, Universidad de Concepción, Casilla 160-C, Concepción, Chile and Center for Optics and Photonics, Universidad de Concepción, Casilla 4012, Concepción (Chile); Torre, A. C. de la [Departamento de Física, Universidad Nacional de Mar del Plata, IFIMAR-CONICET, Dean Funes 3350, 7600 Mar del Plata (Argentina)
2014-06-01
A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ⩽ 32.
Dynamically Disordered Quantum Walk as a Maximal Entanglement Generator
Vieira, Rafael; Amorim, Edgard P. M.; Rigolin, Gustavo
2013-11-01
We show that the entanglement between the internal (spin) and external (position) degrees of freedom of a qubit in a random (dynamically disordered) one-dimensional discrete time quantum random walk (QRW) achieves its maximal possible value asymptotically in the number of steps, outperforming the entanglement attained by using ordered QRW. The disorder is modeled by introducing an extra random aspect to QRW, a classical coin that randomly dictates which quantum coin drives the system’s time evolution. We also show that maximal entanglement is achieved independently of the initial state of the walker, study the number of steps the system must move to be within a small fixed neighborhood of its asymptotic limit, and propose two experiments where these ideas can be tested.
A semiclassical hybrid approach to many particle quantum dynamics
Grossmann, Frank
2006-07-01
We analytically derive a correlated approach for a mixed semiclassical many particle dynamics, treating a fraction of the degrees of freedom by the multitrajectory semiclassical initial value method of Herman and Kluk [Chem. Phys. 91, 27 (1984)] while approximately treating the dynamics of the remaining degrees of freedom with fixed initial phase space variables, analogously to the thawed Gaussian wave packet dynamics of Heller [J. Chem. Phys. 62, 1544 (1975)]. A first application of this hybrid approach to the well studied Secrest-Johnson [J. Chem. Phys. 45, 4556 (1966)] model of atom-diatomic collisions is promising. Results close to the quantum ones for correlation functions as well as scattering probabilities could be gained with considerably reduced numerical effort as compared to the full semiclassical Herman-Kluk approach. Furthermore, the harmonic nature of the different degrees of freedom can be determined a posteriori by comparing results with and without the additional approximation.
Intrinsic Dynamics of Quantum-Dash Lasers
Chen, Cheng
2011-10-01
Temperature-dependent intrinsic modulation response of InAs/InAlGaAs quantum-dash lasers was investigated by using pulse optical injection modulation to minimize the effects of parasitics and self-heating. Compared to typical quantum-well lasers, the quantum-dash lasers were found to have comparable differential gain but approximately twice the gain compression factor, probably due to carrier heating by free-carrier absorption, as opposed to stimulated transition. Therefore, the narrower modulation bandwidth of the quantum-dash lasers than that of quantum-well lasers was attributed to their higher gain compression factor. In addition, as expected, quantum-dash lasers with relatively long and uniform dashes exhibit higher temperature stability than quantum-well lasers. However, the lasers with relatively short and nonuniform dashes exhibit stronger temperature dependence, probably due to their higher surface-to-volume ratio and nonuniform dash sizes. © 2011 IEEE.
Dynamic quantum tunneling in mesoscopic driven Duffing oscillators.
Guo, Lingzhen; Zheng, Zhigang; Li, Xin-Qi; Yan, Yijing
2011-07-01
We investigate the dynamic quantum tunneling between two attractors of a mesoscopic driven Duffing oscillator. We find that, in addition to inducing a remarkable quantum shift of the bifurcation point, the mesoscopic nature also results in a perfect linear scaling behavior for the tunneling rate with the driving distance to the shifted bifurcation point.
Energy Technology Data Exchange (ETDEWEB)
Vikas [Quantum Chemistry Group, Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, 160014 Chandigrah (India)
2011-02-15
Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10{sup 11} G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10{sup 9} G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10{sup 9} G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)
Voityuk, Alexander A.
2008-03-01
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15ns MD trajectories for several DNA oligomers, we calculate the average coupling squares ⟨V2⟩ and the energies of basepair triplets XG +Y and XA +Y, where X, Y =G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B-DNA structure and show that in several important cases the couplings calculated for the idealized B-DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ˜0.07eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The XG +Y are by 0.5eV more stable than XA +Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA.
Voityuk, Alexander A
2008-03-21
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the pi stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares V(2) and the energies of basepair triplets XG(+)Y and XA(+)Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15,000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B-DNA structure and show that in several important cases the couplings calculated for the idealized B-DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, approximately 0.07 eV, while the interstrand couplings are quite different. The energies of hole states G(+) and A(+) in the stack depend on the nature of the neighboring pairs. The XG(+)Y are by 0.5 eV more stable than XA(+)Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA.
Analyzing Big Data with Dynamic Quantum Clustering
Weinstein, M; Hume, A; Sciau, Ph; Shaked, G; Hofstetter, R; Persi, E; Mehta, A; Horn, D
2013-01-01
How does one search for a needle in a multi-dimensional haystack without knowing what a needle is and without knowing if there is one in the haystack? This kind of problem requires a paradigm shift - away from hypothesis driven searches of the data - towards a methodology that lets the data speak for itself. Dynamic Quantum Clustering (DQC) is such a methodology. DQC is a powerful visual method that works with big, high-dimensional data. It exploits variations of the density of the data (in feature space) and unearths subsets of the data that exhibit correlations among all the measured variables. The outcome of a DQC analysis is a movie that shows how and why sets of data-points are eventually classified as members of simple clusters or as members of - what we call - extended structures. This allows DQC to be successfully used in a non-conventional exploratory mode where one searches data for unexpected information without the need to model the data. We show how this works for big, complex, real-world dataset...
Quantum Dynamics of Lorentzian Spacetime Foam
Redmount, Ian; 10.1103/PhysRevD.49.5199
2009-01-01
A simple spacetime wormhole, which evolves classically from zero throat radius to a maximum value and recontracts, can be regarded as one possible mode of fluctuation in the microscopic ``spacetime foam'' first suggested by Wheeler. The dynamics of a particularly simple version of such a wormhole can be reduced to that of a single quantity, its throat radius; this wormhole thus provides a ``minisuperspace model'' for a structure in Lorentzian-signature foam. The classical equation of motion for the wormhole throat is obtained from the Einstein field equations and a suitable equation of state for the matter at the throat. Analysis of the quantum behavior of the hole then proceeds from an action corresponding to that equation of motion. The action obtained simply by calculating the scalar curvature of the hole spacetime yields a model with features like those of the relativistic free particle. In particular the Hamiltonian is nonlocal, and for the wormhole cannot even be given as a differential operator in clos...
Dynamical Localization in a Two-Electron Quantum Dot Molecule Biased by a dc Voltage
Institute of Scientific and Technical Information of China (English)
王立民; 段素青; 赵宪庚; 刘承师; 马本堃
2003-01-01
We study the dynamics of two interacting electrons in a coupled-quantum-dot system with a time-dependent external electric field. The numerical results of the two-particle states reveal that the dynamical localization still exists under appropriate dc and ac voltage amplitudes. Such localization is different from the stationary localization phenomenon. Our conclusion is instructive for the field of quantum function devices.
In the crystal structure of cellulose Ibeta, disordered hydrogen (H) bonding can be represented by the average of two mutually exclusive H bonding schemes that have been designated A and B. An unanswered question is whether A and B interconvert dynamically, or whether they are static but present in ...
Local factorisation of the dynamics of quantum spin systems
Bachmann, Sven; Bluhm, Andreas
2017-07-01
Motivated by the study of area laws for the entanglement entropy of gapped ground states of quantum spin systems and their stability, we prove that the unitary cocycle generated by a local time-dependent Hamiltonian can be approximated, for any finite set X, by a tensor product of the corresponding unitaries in X and its complement, multiplied by a dynamics strictly supported in the neighbourhood of the surface ∂ X . The error decays almost exponentially in the size of the neighbourhood and grows with the square of the area |∂ X |2.
Dynamics of Quantum Particles in Perturbed Parabolic 2d Potential
Directory of Open Access Journals (Sweden)
A.S. Mazmanishvili
2016-11-01
Full Text Available 2d quantum-mechanical problem of the time evolution of a particle in a quadratic potential is studied. We suppose that the center of the potential is displaced in arbitrary way in time. An analytical expression for the wave function in arbitrary instant time was built. It is shown the dynamic shift of the center of the potential doesn’t change the variance. Moreover, the system can exhibit the resonance: when the frequency of the potential perturbation approaches to the natural frequency the amplitude of the wave packet of particle is increased.
Noninertial effects on the quantum dynamics of scalar bosons
Energy Technology Data Exchange (ETDEWEB)
Castro, Luis B. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)
2016-02-15
The noninertial effect of rotating frames on the quantum dynamics of scalar bosons embedded in the background of a cosmic string is considered. In this work, scalar bosons are described by the Duffin-Kemmer-Petiau (DKP) formalism. Considering the DKP oscillator in this background the combined effects of a rotating frames and cosmic string on the equation of motion, energy spectrum, and DKP spinor are analyzed and discussed in detail. Additionally, the effect of rotating frames on the scalar bosons' localization is studied. (orig.)
Coherent States, Dynamics and Semiclassical Limit on Quantum Groups
Aref'eva, I Ya; Viswanathan, K S; Volovich, I V
1994-01-01
Coherent states on the quantum group $SU_q(2)$ are defined by using harmonic analysis and representation theory of the algebra of functions on the quantum group. Semiclassical limit $q\\rightarrow 1$ is discussed and the crucial role of special states on the quantum algebra in an investigation of the semiclassical limit is emphasized. An approach to $q$-deformation as a $q$-Weyl quantization and a relavence of contact geometry in this context is pointed out. Dynamics on the quantum group parametrized by a real time variable and corresponding to classical rotations is considered.
Stabilization of Quantum Information A Unified Dynamical-Algebraic Approach
Zanardi, P
2002-01-01
The notion of symmetry is shown to be at the heart of all error correction/avoidance strategies for preserving quantum coherence of an open quantum system S e.g., a quantum computer. The existence of a non-trivial group of symmetries of the dynamical algebra of S provides state-space sectors immune to decoherence. Such noiseless sectors, that can be viewed as a noncommutative version of the pointer basis, are shown to support universal quantum computation and to be robust against perturbations. When the required symmetry is not present one can generate it artificially resorting to active symmetrization procedures.
Associative Yang-Baxter equation for quantum dynamical R-matrices
Sechin, I
2015-01-01
In this paper we propose versions of the associative Yang-Baxter equation which can be applied to quantum dynamical $R$-matrices. As is known quantum non-dynamical $R$-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical $R$-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF-Vertex transformation. An alternative approach to quantum dynamical $R$-matrices and related quantum algebras was suggested by Arutyunov, Chekhov and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF $R$-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we describe a simple relation (of the IRF-Vertex type) bet...
High-field spin dynamics of antiferromagnetic quantum spin chains
DEFF Research Database (Denmark)
Enderle, M.; Regnault, L.P.; Broholm, C.;
2000-01-01
The characteristic internal order of macroscopic quantum ground states in one-dimensional spin systems is usually not directly accessible, but reflected in the spin dynamics and the field dependence of the magnetic excitations. In high magnetic fields quantum phase transitions are expected. We...... present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Dynamical algebra of observables in dissipative quantum systems
Alipour, Sahar; Chruściński, Dariusz; Facchi, Paolo; Marmo, Giuseppe; Pascazio, Saverio; Rezakhani, Ali T.
2017-02-01
Dynamics and features of quantum systems can be drastically different from classical systems. Dissipation is understood as a general mechanism through which quantum systems may lose part or all of their quantum aspects. Here we discuss a method to analyze behaviors of dissipative quantum systems in an algebraic sense. This method employs a time-dependent product between system’s observables which is induced by the underlying dissipative dynamics. We argue that the long-time limit of the algebra of observables defined with this product yields a contractive algebra which reflects the loss of some quantum features of the dissipative system, and it bears relevant information about irreversibility. We illustrate this result through several examples of dissipation in various Markovian and non-Markovian systems.
Quantum processes, space-time representation and brain dynamics
Roy, Sisir; Roy, Sisir; Kafatos, Menas
2003-01-01
The recent controversy of applicability of quantum formalism to brain dynamics has been critically analysed. The prerequisites for any type of quantum formalism or quantum field theory is to investigate whether the anatomical structure of brain permits any kind of smooth geometric notion like Hilbert structure or four dimensional Minkowskian structure for quantum field theory. The present understanding of brain function clearly denies any kind of space-time representation in Minkowskian sense. However, three dimensional space and one time can be assigned to the neuromanifold and the concept of probabilistic geometry is shown to be appropriate framework to understand the brain dynamics. The possibility of quantum structure is also discussed in this framework.
Dynamic Multiscale Quantum Mechanics/Electromagnetics Simulation Method.
Meng, Lingyi; Yam, ChiYung; Koo, SiuKong; Chen, Quan; Wong, Ngai; Chen, GuanHua
2012-04-10
A newly developed hybrid quantum mechanics and electromagnetics (QM/EM) method [Yam et al. Phys. Chem. Chem. Phys.2011, 13, 14365] is generalized to simulate the real time dynamics. Instead of the electric and magnetic fields, the scalar and vector potentials are used to integrate Maxwell's equations in the time domain. The TDDFT-NEGF-EOM method [Zheng et al. Phys. Rev. B2007, 75, 195127] is employed to simulate the electronic dynamics in the quantum mechanical region. By allowing the penetration of a classical electromagnetic wave into the quantum mechanical region, the electromagnetic wave for the entire simulating region can be determined consistently by solving Maxwell's equations. The transient potential distributions and current density at the interface between quantum mechanical and classical regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. Charge distribution, current density, and potentials at different temporal steps and spatial scales are integrated seamlessly within a unified computational framework.
A Dynamical model for non-geometric quantum black holes
Spallucci, Euro
2016-01-01
It has been recently proposed that quantum black holes can be described as N-graviton Bose-Einstein condensates. In this picture the quantum properties of BHs "... can be understood in terms of the single number N". However, so far, the dynamical origin of the occupational number N has not been specified. This description is alternative to the usual one, where black holes are believed to be well described geometrically even at the quantum level. In this paper we pursue the former point of view and develop a non-geometrical dynamical model of quantum black holes (BHs). In our model the occupational number N is proportional to the principal quantum number n of a Planckian harmonic oscillator. The so-called "classicalization" corresponds to the large-n limit, where the Schwarzschild horizon is recovered.
Spada, Lorenzo; Tasinato, Nicola; Vazart, Fanny; Barone, Vincenzo; Caminati, Walther; Puzzarini, Cristina
2017-06-01
The 1:1 complex of ammonia with pyridine has been characterized by using state-of-the-art quantum-chemical computations combined with pulsed-jet Fourier-Transform microwave spectroscopy. The computed potential energy landscape pointed out the formation of a stable σ-type complex, which has been confirmed experimentally: the analysis of the rotational spectrum showed the presence of only one 1:1 pyridine - ammonia adduct. Each rotational transition is split into several components due to the internal rotation of NH_3 around its C_3 axis and to the hyperfine structure of both ^{14}N quadrupolar nuclei, thus providing the unequivocal proof that the two molecules form a σ-type complex involving both a N-H\\cdotsN and a C-H\\cdotsN hydrogen bond. The dissociation energy (BSSE and ZPE corrected) has been estimated to be 11.5 kJ\\cdotmol^{-1}. This work represents the first application of an accurate, yet efficient computational scheme, designed for the investigation of small biomolecules, to a molecular cluster.
Geometrical Description of Quantum Mechanics - Transformations and Dynamics
Marmo, G.; Volkert, G. F.
2010-01-01
In this paper we review a proposed geometrical formulation of quantum mechanics. We argue that this geometrization makes available mathematical methods from classical mechanics to the quantum frame work. We apply this formulation to the study of separability and entanglement for states of composite quantum systems.
Fisher-Shannon product and quantum revivals in wavepacket dynamics
García, T.; de los Santos, F.; Romera, E.
2014-01-01
We show the usefulness of the Fisher-Shannon information product in the study of the sequence of collapses and revivals that take place along the time evolution of quantum wavepackets. This fact is illustrated in two models, a quantum bouncer and a graphene quantum ring.
Dynamics of apparent horizons in quantum gravitational collapse
Tavakoli, Yaser; Dapor, Andrea
2013-01-01
We study the gravitational collapse of a massless scalar field within the effective scenario of loop quantum gravity. Classical singularity is avoided and replaced by a quantum bounce in this model. It is shown that, quantum gravity effects predict a threshold scale below which no horizon can form as the collapse evolves towards the bounce.
Lectures on dynamical models for quantum measurements
Nieuwenhuizen, T.M.; Perarnau-llobet, M.; Balian, R.
2014-01-01
In textbooks, ideal quantum measurements are described in terms of the tested system only by the collapse postulate and Born's rule. This level of description offers a rather flexible position for the interpretation of quantum mechanics. Here we analyse an ideal measurement as a process of interacti
Lectures on dynamical models for quantum measurements
Nieuwenhuizen, T.M.; Perarnau-llobet, M.; Balian, R.
2014-01-01
In textbooks, ideal quantum measurements are described in terms of the tested system only by the collapse postulate and Born's rule. This level of description offers a rather flexible position for the interpretation of quantum mechanics. Here we analyse an ideal measurement as a process of
Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System
Jurcevic, P.; Shen, H.; Hauke, P.; Maier, C.; Brydges, T.; Hempel, C.; Lanyon, B. P.; Heyl, M.; Blatt, R.; Roos, C. F.
2017-08-01
The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.
Indian Academy of Sciences (India)
ALEXANDER M ANDRIANOV; IVAN A KASHYN; VIKTOR M ANDRIANOV; MAKSIM B SHUNDALAU; ANTON V HLINISTY; SERGEY V GAPONENKO; ELENA V SHABUNYA -KLYACHKOVSKAYA; ANNA MATSUKOVICH; ABDUL-MALEK S AL- TAMIMI; ALI A EL- EMAM
2016-12-01
The molecular dynamics simulations of the structure of the N'-(adamantan-2-ylidene)benzohydrazide followed by the quantum chemical calculations at the DFT level of theory have identified four stable conformers of this potential antibacterial agent in solution: one “central” cis- and three (“central”, “left” and “right”) trans-conformers. The UV-Vis absorption spectrum in the 220–320 nm region in the ethanol solution reveals two bands that can be primarily explained based on the ab initio calculations of the spectral characteristics of the “side” trans-conformers at the MRPT level of theory. However, the close energy values for thecalculated cis- S₁ ← S₀ and “side” trans- S₂ ← S₀ transitions cannot exclude the presence of cis-conformer in solution. Therefore, the data obtained show that the coexistence of both trans-conformers and cis-conformer should be taken into consideration when studying the pharmaceutical properties of the title molecule.
Quantum dynamics of a strongly driven Josephson Junction
Energy Technology Data Exchange (ETDEWEB)
Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)
2015-07-01
A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.
New Concept of Dynamic Complexity in Quantum Mechanics and Beyond
Kirilyuk, A P
1996-01-01
The qualitatively new concept of dynamic complexity in quantum mechanics is based on a new paradigm appearing within a nonperturbational analysis of the Schroedinger equation for a generic Hamiltonian system. The unreduced analysis explicitly provides the complete, consistent solution as a set of many incompatible components ('realisations') which should permanently and probabilistically replace one another, since each of them is 'complete' in the ordinary sense. This discovery leads to the universally applicable concept of dynamic complexity and self-consistent, realistic resolution of the stagnating problems of quantum chaos, quantum measurement, indeterminacy and wave reduction. The peculiar, 'mysterious' character of quantum behaviour itself is seen now as a result of a dynamically complex, intrinsically multivalued behaviour of interacting fields at the corresponding lowest levels of the (now completely causal) structure of reality. Incorporating the results of the canonical theories as an over-simplifie...
Nonlinear dynamics and quantum entanglement in optomechanical systems.
Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2014-03-21
To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.
Loop quantum dynamics of the gravitational collapse
Tavakoli, Yaser; Dapor, Andrea
2013-01-01
We consider a quantum description for a spherically symmetric gravitational collapse of a massless scalar field. The effective scenario from loop quantum gravity is applied to a homogeneous interior spacetime. Classical singularity that arises at the final stage of our collapsing system, is resolved and replaced by a quantum bounce. Our main purpose is to investigate the evolution of trapped surfaces during the collapse in semiclassical regime. We show that, in this regime, there exists a threshold scale bellow which no horizon can form as collapse evolves towards the bounce. By employing the matching conditions at the boundary shell, quantum effects are carried out to the exterior region, leading to an improved Vaidya geometry. In addition, the effective mass loss emerging in this model predicts an outward energy flux from the interior quantum geometry regime.
Fu, Chuan-Ji; Zhu, Qin-Sheng; Wu, Shao-Yi
2010-06-01
Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending external held. For this system, the property of the concurrence that is only dependent on the coupling constant J and total values of the external field is proved. Furthermore, we found that the thermal concurrence of the system under a static random external field is a function of the coupling constant J, temperature T, and the magnitude of external held.
DEFF Research Database (Denmark)
Aidas, Kestutis; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2013-01-01
Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores—acridine yellow and proflavin—located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site....... The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted...
Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space
Cui, Jin-Ming; Huang, Yun-Feng; Wang, Zhao; Cao, Dong-Yang; Wang, Jian; Lv, Wei-Min; Luo, Le; del Campo, Adolfo; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the quantum regime in the momentum space and find the measured scaling of excitations is in accordance with the theoretical prediction. PMID:27633087
Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space
Cui, Jin-Ming; Huang, Yun-Feng; Wang, Zhao; Cao, Dong-Yang; Wang, Jian; Lv, Wei-Min; Luo, Le; Del Campo, Adolfo; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-09-01
The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the quantum regime in the momentum space and find the measured scaling of excitations is in accordance with the theoretical prediction.
Dynamical Lamb effect versus dissipation in superconducting quantum circuits
Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.
2016-06-01
Superconducting circuits provide a new platform for study of nonstationary cavity QED phenomena. An example of such a phenomenon is the dynamical Lamb effect, which is the parametric excitation of an atom due to nonadiabatic modulation of its Lamb shift. This effect was initially introduced for a natural atom in a varying cavity, while we suggest its realization in a superconducting qubit-cavity system with dynamically tunable coupling. In the present paper, we study the interplay between the dynamical Lamb effect and the energy dissipation, which is unavoidable in realistic systems. We find that despite naive expectations, this interplay can lead to unexpected dynamical regimes. One of the most striking results is that photon generation from vacuum can be strongly enhanced due to qubit relaxation, which opens another channel for such a process. We also show that dissipation in the cavity can increase the qubit excited-state population. Our results can be used for experimental observation and investigation of the dynamical Lamb effect and accompanying quantum effects.
Godsi, Oded; Collins, Michael A; Peskin, Uri
2010-03-28
A quantum sampling algorithm for the interpolation of diabatic potential energy matrices by the Grow method is introduced. The new procedure benefits from penetration of the wave packet into classically forbidden regions, and the accurate quantum mechanical description of nonadiabatic transitions. The increased complexity associated with running quantum dynamics is reduced by using approximate low order expansions of the nuclear wave function within a Multi-configuration time-dependent Hartree scheme during the Grow process. The sampling algorithm is formulated and applied for three representative test cases, demonstrating the recovery of analytic potentials by the interpolated ones, and the convergence of a dynamic observable.
Loop quantum cosmology of Bianchi IX: Effective dynamics
Corichi, Alejandro
2015-01-01
We study numerically the solutions to the effective equations of Bianchi IX spacetimes within Loop Quantum Cosmology. We consider Bianchi IX models with and without inverse triad corrections whose matter content is a scalar field without mass. The solutions are classified using the classical observables. We show that both effective theories --with lapse N=V and N=1-- solve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the spatial compactness, there is an infinity number of bounces and recollapses. We study the limit of large volume and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k=0,1 FLRW as well as Bianchi I, II, and VII_0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII_0 phases, which had not been studied before, at the quantum nor effective level. W...
Quantum control study of ultrafast optical responses in semiconductor quantum dot devices.
Huang, Jung Y; Lin, Chien Y; Liu, Wei-Sheng; Chyi, Jen-Inn
2014-12-15
Two quantum control spectroscopic techniques were applied to study InAs quantum dot (QD) devices, which contain different strain-reducing layers. By adaptively control light matter interaction, a delayed resonant response from the InAs QDs was found to be encoded into the optimal phase profile of ultrafast optical pulse used. We verified the delayed resonant response to originate from excitons coupled to acoustic phonons of InAs QDs with two-dimensional coherent spectroscopy. Our study yields valuable dynamical information that can deepen our understanding of the coherent coupling process of exciton in the quantum-confined systems.
Sun, Zhaopeng; Yang, Chuanlu; Zheng, Yujun
2015-12-14
We present a detailed theoretical approach to investigate the laser-induced dissociation dynamics of a triatomic molecule on its electronic excited state in full dimensional case. In this method, the time evolution of the time-dependent system is propagated via combined the split operator method and the expansion of Chebyshev polynomials (or short-time Chebyshev propagation) and the system wave functions are expanded in terms of molecular rotational bases. As an example of the application of this formalism, the dissociation dynamics of H3(+)→H2(+)+H induced by ultrashort UV laser pulses are investigated on new Born-Oppenheimer potential energy surfaces. Our numerical results show that the signals of dissociation products will be easier to observe as the increasing of field strength. Driving by a 266 nm laser beam, the calculated central value of kinetic-energy-release is 2.04 eV which shows excellent agreement with the experimental estimation of 2.1 eV. When the H3(+) ion is rotationally excited, the spatial distribution of product fragments will become well converged.
Viola, Lorenza; Tannor, David
2011-08-01
tomography, which is a necessary 'primitive' for inferring the target quantum state and thereby diagnosing the control performance. Next, the impact of realistic control and system imperfections in continuous-time Markovian feedback strategies for rapid state preparation is analyzed by Combes and Wiseman. A prominent role is played in the special issue by optimal control (OC) approaches, reflecting their central importance for quantum control and QIP. The OC contributions have been divided into two separate sections, depending on whether the target dynamics is modeled as Hamiltonian (section 3) or dissipative (section 4), respectively. The contribution by Beltrani et al deals with `control landscapes', which provide a foundation for analyzing the performance of numerical OC algorithms and their robustness against control errors. Specifically, this paper characterizes geometric properties of the control landscape, relevant to the optimal control of state-to-state transitions. Application of OC theory to the problem of population transfer and coherence enhancement in Λ-systems is studied by Kumar et al, whereas Goerz et al report on the OC-design of a high-fidelity controlled phase-gate in atomic qubits. The robustness of an OC solution is specifically addressed by Negretti et al, along with an approach for identifying easily implementable while still 'close-to-optimal' control pulses. Powerful relaxation-optimized OC schemes (based on so-called opengrape algorithms) for generating unitary target gates in the presence of known dissipation parameters are discussed by Schulte-Herbrüggen et al. Next, Lapert et al report on the problem of time-optimal control of spin-1/2 systems undergoing Bloch relaxation dynamics, highlighting the crucial role played by singular extremals in the control synthesis. Alternative approaches for optimized control of qubits exposed to various decoherence processes are developed by Esher et al and Xue et al, based on a perturbative 'bath
Exciton-polariton dynamics in quantum dot-cavity system
Energy Technology Data Exchange (ETDEWEB)
Neto, Antonio F.; Lima, William J.; Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica
2012-07-01
Full text: One of the basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. This imply in know all sources of decoherence and elaborate ways to avoid them. In recent work, A. Laucht et al. [1] presented detailed theoretical and experimental investigations of electrically tunable single quantum dot (QD) - photonic crystal (PhC) nanocavity systems operating in the strong coupling regime of the light matter interaction. Unlike previous studies, where the exciton-cavity spectral detuning was varied by changing the lattice temperature, or by the adsorption of inert gases at low temperatures, they employ the quantum confined Stark-effect to electro-optically control the exciton-cavity detuning. The new built device enabled them to systematically probe the emission spectrum of the strongly coupled system as a function of external control parameters, as for example the incoherent excitation power density or the lattice temperature. Those studies reveal for the first time insights in dephasing mechanisms of 0D exciton polaritons [1]. In another study [2], using a similar device, they investigate the coupling between two different QDs with a single cavity mode. In both works, incoherent pumping was used, but for quantum information, coherent and controlled excitations are necessary. Here, we theoretically investigate the dynamics a single quantum dot inside a cavity under coherent pulse excitation and explore a wide range of parameters, as for example, the exciton-cavity detunings, the excitation power, the spontaneous decay, and pure dephasing. We use density matrix formalism in the Lindblad form, and we solve it numerically. Our results show that coherent excitation can be used to probe strong coupling between exciton and cavity mode by monitoring the exciton Rabi oscillation as function of the cavity detuning. This can give new insights for future experimental measurement focusing on quantum
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Fokker-Planck quantum master equation for mixed quantum-semiclassical dynamics.
Ding, Jin-Jin; Wang, Yao; Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-01-14
We revisit Caldeira-Leggett's quantum master equation representing mixed quantum-classical theory, but with limited applications. Proposed is a Fokker-Planck quantum master equation theory, with a generic bi-exponential correlation function description on semiclassical Brownian oscillators' environments. The new theory has caustic terms that bridge between the quantum description on primary systems and the semiclassical or quasi-classical description on environments. Various parametrization schemes, both analytical and numerical, for the generic bi-exponential environment bath correlation functions are proposed and scrutinized. The Fokker-Planck quantum master equation theory is of the same numerical cost as the original Caldeira-Leggett's approach but acquires a significantly broadened validity and accuracy range, as illustrated against the exact dynamics on model systems in quantum Brownian oscillators' environments, at moderately low temperatures.
Kominis, I. K.
2016-03-01
We recently unraveled a major inconsistency in the traditional description of radical-pair quantum dynamics by studying single-molecule quantum trajectories and comparing their prediction with Haberkorn's master equation. A comment by Jeschke claimed that the inconsistency arises because we did not properly include quantum state projections in the traditional approach. We here show that Jeschke stipulates quantum trajectories involving unphysical quantum states with negative populations. Moreover, the author's Monte Carlo simulation and its agreement with Haberkorn's master equation is a demonstration of an algebraic tautology, establishing the consistency of an unphysical master equation with circularly defined unphysical trajectories.
Kamleitner, Ingo
2010-09-01
We employ the theoretical framework of positive operator valued measures, to study Markovian open quantum systems. In particular, we discuss how a quantum system influences its environment. Using the theory of indirect measurements, we then draw conclusions about the information we could hypothetically obtain about the system by observing the environment. Although the environment is not actually observed, we can use these results to describe the change of the quantum system due to its interaction with the environment. We apply this technique to two different problems. In the first part, we study the coherently driven dynamics of a particle on a rail of quantum dots. This tunnelling between adjacent quantum dots can be controlled externally. We employ an adiabatic scheme similar to stimulated Raman adiabatic passage, to transfer the particle between different quantum dots. We compare two fundamentally different sources of decoherence. In the second part, we study the dynamics of a free quantum particle, which experiences random collisions with gas particles. Previous studies on this topic applied scattering theory to momentum eigenstates. We present a supplementary approach, where we develop a rigorous measurement interpretation of the collision process to derive a master equation. Finally, we study the collisional decoherence process in terms of the Wigner function. We restrict ourselves to one spatial dimension. Nevertheless, we find some interesting new insight, including that the previously celebrated quantum contribution to position diffusion is not real, but a consequence of the Markovian approximation. Further, we discover that the leading decoherence process is due to phase averaging, rather than induced by the information transfer between the colliding particles.
Fault-tolerant quantum computation -- a dynamical systems approach
Fern, J; Simic, S; Sastry, S; Fern, Jesse; Kempe, Julia; Simic, Slobodan; Sastry, Shankar
2004-01-01
We apply a dynamical systems approach to concatenation of quantum error correcting codes, extending and generalizing the results of Rahn et al. [8] to both diagonal and nondiagonal channels. Our point of view is global: instead of focusing on particular types of noise channels, we study the geometry of the coding map as a discrete-time dynamical system on the entire space of noise channels. In the case of diagonal channels, we show that any code with distance at least three corrects (in the infinite concatenation limit) an open set of errors. For CSS codes, we give a more precise characterization of that set. We show how to incorporate noise in the gates, thus completing the framework. We derive some general bounds for noise channels, which allows us to analyze several codes in detail.
Quantum-classical transition in the electron dynamics of thin metal films
Energy Technology Data Exchange (ETDEWEB)
Jasiak, R; Manfredi, G; Hervieux, P-A [Institut de Physique et Chimie des Materiaux, CNRS and Universite de Strasbourg, BP 43, F-67034 Strasbourg (France); Haefele, M [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France)], E-mail: Giovanni.Manfredi@ipcms.u-strasbg.fr
2009-06-15
The quantum electrons dynamics in a thin metal film is studied numerically using the self-consistent Wigner-Poisson equations. The initial equilibrium is computed from the Kohn-Sham equations at finite temperature, and then mapped into the phase-space Wigner function. The time-dependent results are compared systematically with those obtained previously with a classical approach (Vlasov-Poisson equations). It is found that, for large excitations, the quantum and classical dynamics display the same low-frequency oscillations due to ballistic electrons bouncing back and forth on the film surfaces. However, below a certain excitation energy (roughly corresponding to one quantum of plasmon energy {Dirac_h}{omega}{sub p}), the quantum and classical results diverge, and the ballistic oscillations are no longer observed. These results provide an example of a quantum-classical transition that may be observed with current pump-probe experiments on thin metal films.
Quantum molecular dynamics simulations of hydrogen production and solar cells
Mou, Weiwei
The global energy crisis presents two major challenges for scientists around the world: Producing cleaner energy which is sustainable for the environment; And improving the efficiency of energy production as well as consumption. It is crucial and yet elusive to understand the atomistic mechanisms and electronic properties, which are needed in order to tackle those challenges. Quantum molecular dynamics simulations and nonadiabatic quantum molecular dynamics are two of the dominant methods used to address the atomistic and electronic properties in various energy studies. This dissertation is an ensemble of three studies in energy research: (1) Hydrogen production from the reaction of aluminum clusters with water to provide a renewable energy cycle; (2) The photo-excited charge transfer and recombination at a quaterthiophene/zinc oxide interface to improve the power conversion efficiency of hybrid poly(3-hexylthiophene) (P3HT) /ZnO solar cells; and (3) the charge transfer at a rubrene/C60 interface to understand why phenyl groups in rubrene improve the performance of rubrene/C60 solar cells.
Quantum-like Model of Unconscious-Conscious Dynamics
Directory of Open Access Journals (Sweden)
Andrei eKhrennikov
2015-08-01
Full Text Available We present a quantum-like model of sensation-perception dynamics (originated in Helmholtz theory of unconscious inference based on the theory of quantum apparatuses and instruments. We illustrate our approach with the model of bistable perception of a particular ambiguous figure, the Schroder stair. This is a concrete model for unconscious and conscious processing of information and their interaction. The starting point of our quantum-like journey was the observation that perception dynamics is essentially contextual which implies impossibility of (straightforward embedding of experimental statistical data in the classical (Kolmogorov, 1933framework of probability theory. This motivates application of nonclassical probabilistic schemes. And the quantum formalism provides a variety of the well approved and mathematically elegant probabilistic schemes to handle results of measurements. The theory of quantum apparatuses and instruments is the most general quantum scheme describing measurements and it is natural to explore it to model the sensation-perception dynamics. In particular, this theory provides the scheme of indirect quantum measurements which we apply to model unconscious inference leading to transition from sensations to perceptions.
Markovian and non-Markovian dynamics in quantum and classical systems
Vacchini, Bassano; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter
2011-01-01
We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition for non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples is constructed which allow to study the basic features of the classical and the quantum definitions and to evaluate explicitly the me...
Divisible quantum dynamics satisfies temporal Tsirelson’s bound
Le, Thao; Pollock, Felix A.; Paterek, Tomasz; Paternostro, Mauro; Modi, Kavan
2017-02-01
We give strong evidence that divisibility of qubit quantum processes implies temporal Tsirelson’s bound. We also give strong evidence that the classical bound of the temporal Bell’s inequality holds for dynamics that can be described by entanglement-breaking channels—a more general class of dynamics than that allowed by classical physics.
A class of commutative dynamics of open quantum systems
Chruscinski, D; Aniello, P; Marmo, G; Ventriglia, F
2010-01-01
We analyze a class of dynamics of open quantum systems which is governed by the dynamical map mutually commuting at different times. Such evolution may be effectively described via spectral analysis of the corresponding time dependent generators. We consider both Markovian and non-Markovian cases.
Random operators disorder effects on quantum spectra and dynamics
Aizenman, Michael
2015-01-01
This book provides an introduction to the mathematical theory of disorder effects on quantum spectra and dynamics. Topics covered range from the basic theory of spectra and dynamics of self-adjoint operators through Anderson localization-presented here via the fractional moment method, up to recent results on resonant delocalization. The subject's multifaceted presentation is organized into seventeen chapters, each focused on either a specific mathematical topic or on a demonstration of the theory's relevance to physics, e.g., its implications for the quantum Hall effect. The mathematical chapters include general relations of quantum spectra and dynamics, ergodicity and its implications, methods for establishing spectral and dynamical localization regimes, applications and properties of the Green function, its relation to the eigenfunction correlator, fractional moments of Herglotz-Pick functions, the phase diagram for tree graph operators, resonant delocalization, the spectral statistics conjecture, and rela...
Molecular quantum dynamics from theory to applications
Gatti, Fabien
2014-01-01
Emphasizing fundamental educational concepts, this book offers an accessible introduction that covers eigenstates, wave packets, quantum mechanical resonances and more. Examples show that high-level experiments and theory must work closely together.
Garashchuk, Sophya; Jakowski, Jacek; Wang, Lei; Sumpter, Bobby G
2013-12-10
A massively parallel, direct quantum molecular dynamics method is described. The method combines a quantum trajectory (QT) representation of the nuclear wave function discretized into an ensemble of trajectories with an electronic structure (ES) description of electrons, namely using the density functional tight binding (DFTB) theory. Quantum nuclear effects are included into the dynamics of the nuclei via quantum corrections to the classical forces. To reduce computational cost and increase numerical accuracy, the quantum corrections to dynamics resulting from localization of the nuclear wave function are computed approximately and included into selected degrees of freedom representing light particles where the quantum effects are expected to be the most pronounced. A massively parallel implementation, based on the message passing interface allows for efficient simulations of ensembles of thousands of trajectories at once. The QTES-DFTB dynamics approach is employed to study the role of quantum nuclear effects on the interaction of hydrogen with a model graphene sheet, revealing that neglect of nuclear effects can lead to an overestimation of adsorption.
Surface hopping from the perspective of quantum-classical Liouville dynamics
Kapral, Raymond
2016-01-01
Fewest-switches surface hopping is studied in the context of quantum-classical Liouville dynamics. Both approaches are mixed quantum-classical theories that provide a way to describe and simulate the nonadiabatic quantum dynamics of many-body systems. Starting from a surface-hopping solution of the quantum-classical Liouville equation, it is shown how fewest-switches dynamics can be obtained by dropping terms that are responsible for decoherence and restricting the nuclear momentum changes that accompany electronic transitions to those events that occur between population states. The analysis provides information on some of the elements that are essential for the construction of accurate and computationally tractable algorithms for nonadiabatic processes.
Hanson, David E.; Martin, Richard L.
2010-08-01
We investigate the thermodynamic consequences of the distribution of rotational conformations of polyisoprene on the elastic response of a network chain. In contrast to the classical theory of rubber elasticity, which associates the elastic force with the distribution of end-to-end distances, we find that the distribution of chain contour lengths provides a simple mechanism for an elastic force. Entropic force constants were determined for small contour length extensions of chains constructed as a series of localized kinks, with each kink containing between one and five cis-1,4-isoprene units. The probability distributions for the kink end-to-end distances were computed by two methods: (1) by constructing a Boltzmann distribution from the lengths corresponding to the minimum energy dihedral rotational conformations, obtained by optimizing isoprene using first principles density functional theory, and (2) by sampling the trajectories of molecular dynamics simulations of an isolated molecule composed of five isoprene units. Analogous to the well-known tube model of elasticity, we make the assumption that, for small strains, the chain is constrained by its surrounding tube, and can only move, by a process of reptation, along the primitive path of the contour. Assuming that the chain entropy is Boltzmann's constant times the logarithm of the contour length distribution, we compute the tensile force constants for chain contour length extension as the change in entropy times the temperature. For a chain length typical of moderately crosslinked rubber networks (78 isoprene units), the force constants range between 0.004 and 0.033 N/m, depending on the kink size. For a cross-linked network, these force constants predict an initial tensile modulus of between 3 and 8 MPa, which is comparable to the experimental value of 1 MPa. This mechanism is also consistent with other thermodynamic phenomenology.
Institute of Scientific and Technical Information of China (English)
OUYANG BiYao; ZHAO XianGeng; CHEN ShiGang; LIU Jie
2001-01-01
In this paper, we study the dynamic behavior and quasi-energy spectrum of multiband superlattice Bloch electrons in quantum kicked potential. We show analytically and numerically the avoided crossing and band suppression about the quasi-energy spectrum, the dynamic nonlocalization, and the electron oscillation behavior between two bands.
Quantum Dynamics of Cooled Atoms in the Presence of Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
YI Xue-Xi; SU Jun-Chen
2001-01-01
Under the Markov approximation, the quantum dynamics of cooled atoms in the presence of Bose-Einstein condensates is studied. A master equation governing the evolution of such a system is derived. Using this master equation, the distribution of the atoms in the excited states at finite temperature and the dynamics of the excited atom at zero temperature are given and discussed.
Approach to Quantum Kramers' Equation and Barrier Crossing Dynamics
Banerjee, Dhruba; Banik, S K; Ray, D S; Banerjee, Dhruba; Bag, Bidhan Chandra; Banik, Suman Kumar; Ray, Deb Shankar
2002-01-01
We have presented a simple approach to quantum theory of Brownian motion and barrier crossing dynamics. Based on an initial coherent state representation of bath oscillators and an equilibrium canonical distribution of quantum mechanical mean values of their co-ordinates and momenta we have derived a $c$-number generalized quantum Langevin equation. The approach allows us to implement the method of classical non-Markovian Brownian motion to realize an exact generalized non-Markovian quantum Kramers' equation. The equation is valid for arbitrary temperature and friction. We have solved this equation in the spatial diffusion-limited regime to derive quantum Kramers' rate of barrier crossing and analyze its variation as a function of temperature and friction. While almost all the earlier theories rest on quasi-probability distribution functions (like Wigner function) and path integral methods, the present work is based on {\\it true probability distribution functions} and is independent of path integral technique...
Observations of Quantum Dynamics by Solution-State NMR Spectroscopy
Pravia, M A; Weinstein, Yu S; Price, M D; Teklemariam, G; Nelson, R J; Sharf, Y; Somaroo, S S; Tseng, C H; Havel, T F; Cory, D G
1999-01-01
NMR is emerging as a valuable testbed for the investigation of foundational questions in quantum mechanics. The present paper outlines the preparation of a class of mixed states, called pseudo-pure states, that emulate pure quantum states in the highly mixed environment typically used to describe solution-state NMR samples. It also describes the NMR observation of spinor behavior in spin 1/2 nuclei, the simulation of wave function collapse using a magnetic field gradient, the creation of entangled (or Bell) pseudo-pure states, and a brief discussion of quantum computing logic gates, including the Quantum Fourier Transform. These experiments show that liquid-state NMR can be used to demonstrate quantum dynamics at a level suitable for laboratory exercises.
Exploring gravitational statistics not based on quantum dynamical assumptions
Mandrin, P A
2016-01-01
Despite considerable progress in several approaches to quantum gravity, there remain uncertainties on the conceptual level. One issue concerns the different roles played by space and time in the canonical quantum formalism. This issue occurs because the Hamilton-Jacobi dynamics is being quantised. The question then arises whether additional physically relevant states could exist which cannot be represented in the canonical form or as a partition function. For this reason, the author has explored a statistical approach (NDA) which is not based on quantum dynamical assumptions and does not require space-time splitting boundary conditions either. For dimension 3+1 and under thermal equilibrium, NDA simplifies to a path integral model. However, the general case of NDA cannot be written as a partition function. As a test of NDA, one recovers general relativity at low curvature and quantum field theory in the flat space-time approximation. Related paper: arxiv:1505.03719.
Non-Markovian dynamics of quantum coherence of two-level system driven by classical field
Huang, Zhiming; Situ, Haozhen
2017-09-01
In this paper, we study the quantum coherence dynamics of two-level atom system embedded in non-Markovian reservoir in the presence of classical driving field. We analyze the influence of memory effects, classical driving, and detuning on the quantum coherence. It is found that the quantum coherence has different behaviors in resonant case and non-resonant case. In the resonant case, in stark contrast with previous results, the strength of classical driving plays a negative effect on quantum coherence, while detuning parameter has the opposite effect. However, in non-resonant case through a long time, classical driving and detuning parameter have a different influence on quantum coherence compared with resonant case. Due to the memory effect of environment, in comparison with Markovian regime, quantum coherence presents vibrational variations in non-Markovian regime. In the resonant case, all quantum coherence converges to a fixed maximum value; in the non-resonant case, quantum coherence evolves to different stable values. For zero-coherence initial states, quantum coherence can be generated with evolution time. Our discussions and results should be helpful in manipulating and preserving the quantum coherence in dissipative environment with classical driving field.
Fermi-surface collapse and dynamical scaling near a quantum-critical point.
Friedemann, Sven; Oeschler, Niels; Wirth, Steffen; Krellner, Cornelius; Geibel, Christoph; Steglich, Frank; Paschen, Silke; Kirchner, Stefan; Si, Qimiao
2010-08-17
Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh(2)Si(2), a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems.
Zimmermann, Tomas
2011-01-01
We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping (FSSH) or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Sc...
Extension of Isospin Dependent Quantum Molecular Dynamics
Institute of Scientific and Technical Information of China (English)
FengZhaoqing; ZhangFengshou; LiWenfei; JinGenming
2003-01-01
Isospin dependent molecular dynamics (IQMD) has been used with success for studying isospin effects in heavy ion collisions at intermediate energies[1,2]. However, this model meets difficulty to study heavy ion collisions at low energies near Coulomb barrier since unsuitable dealing with the deformation, such as surface term induced by deformation during approaching projectile and target, which is not important at high energies, and it results in the calculated cross sections with IQMD which are much smaller than the experimental data at low energies. In this report, we propose a new method in which the surface term in the mean field is included in a proper way, the switch function method.
Acevedo, Óscar L.; Quiroga, Luis; Rodríguez, Ferney J.; Johnson, Neil F.
2014-03-01
Dynamical quantum phase crossings of spin networks have recently received increased attention thanks to their relation to adiabatic quantum computing, and their feasible realizations using ultra-cold atomic and molecular systems with a highly tunable degree of connectivity. Dynamical scaling of spatially distributed systems like Ising models have been widely studied, and successfully related to well-known theories like the Kibble-Zurek mechanism. The case of totally connected networks such as the Dicke Model and Lipkin-Meshkov-Glick Model, however, is known to exhibit a breakdown of these frameworks. Our analysis overcomes the lack of spatial correlation structure by developing a general approach which (i) is valid regardless the connectivity of the system, (ii) goes beyond critical exponents, and (iii) provides a time-resolved picture of dynamical scaling. By treating these models as a method for macroscopic quantum control of their subsystems, we have found microscopic signatures of the dynamical scaling as well as instances of dynamical enhancement of distinctive quantum properties such as entanglement and coherence. Our results yield novel prescriptions for the fields of quantum simulations and quantum control, and deepen our fundamental understanding of phase transitions.
Quantum Dynamics of Radical-Ion-Pair Reactions
Kominis, I. K.
2010-01-01
Radical-ion-pair reactions were recently shown to represent a rich biophysical laboratory for the application of quantum measurement theory methods and concepts, casting doubt on the validity of the theoretical treatment of these reactions and the results thereof that has been at the core of spin chemistry for several decades now. The ensued scientific debate, although exciting, is plagued with several misconceptions. We will here provide a comprehensive treatment of the quantum dynamics of r...
Quantum Dynamics of Mesoscopic Driven Duffing Oscillators in Rotating Frame
Guo, Lingzhen; Li, Xin-Qi
2010-01-01
We investigate the nonlinear dynamics of a mesoscopic driven Duffing oscillator in a quantum regime. We construct a bifurcation equation applicable in quantum regime. The predictions of our bifurcation equation agree with numerical results perfectly. In terms ofWigner function, we identify the nature of state near the bifurcation point, and extract the transition rate, which displays perfect scaling behavior with the driving distance to the bifurcation point.
Controlling quantum systems by embedded dynamical decoupling schemes
Kern, O; Kern, Oliver; Alber, Gernot
2005-01-01
A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions.
Dynamical symmetries in Kondo tunneling through complex quantum dots.
Kuzmenko, T; Kikoin, K; Avishai, Y
2002-10-07
Kondo tunneling reveals hidden SO(n) dynamical symmetries of evenly occupied quantum dots. As is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible values n=3,4,5,7 can be easily tuned by gate voltages. Following construction of the corresponding o(n) algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group for a magnetic field induced anisotropic Kondo tunneling is SU(2) or SO(4).
Dynamics of quantum correlation and coherence in de Sitter universe
Huang, Zhiming
2017-09-01
In this article, we investigate the dynamics of quantum correlation and coherence for two atoms interacting with massless scalar field in the background de Sitter spacetime. We firstly analyze the solving process of master equation that describes the system evolution with initial Werner state. Then, we discuss the degradation, generation, revival and enhancement of quantum correlation and coherence for three cases of different initial states: zero correlation state, nonzero correlation separable state and maximally entangled state.
Long-time correlated quantum dynamics of phonon cooling
Carlig, Sergiu; Macovei, Mihai A.
2014-01-01
We investigate the steady-state cooling dynamics of vibrational degrees of freedom related to a nanomechanical oscillator coupled with a laser-pumped quantum dot in an optical resonator. Correlations between phonon-cooling and quantum-dot photon emission processes occur respectively when a photon laser absorption together with a vibrational phonon absorption is followed by photon emission in the optical resonator. Therefore, the detection of photons generated in the cavity mode concomitantly ...
Partial dynamical symmetry at critical points of quantum phase transitions.
Leviatan, A
2007-06-15
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.
Quantum Simulation of the Ultrastrong Coupling Dynamics in Circuit QED
Ballester, D; García-Ripoll, J J; Deppe, F; Solano, E
2011-01-01
We propose a method to get experimental access to the physics of the ultrastrong (USC) and deep strong (DSC) coupling regimes of light-matter interaction through the quantum simulation of their dynamics in standard circuit QED. The method makes use of a two-tone driving scheme, using state-of-the-art circuit-QED technology, and can be easily extended to general quantum optical cavity-QED setups. We provide examples of USC/DSC quantum effects that would be otherwise unaccessible.
Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations
Energy Technology Data Exchange (ETDEWEB)
Giorgi, G.L., E-mail: g.giorgi@inrim.it [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy); Roncaglia, M. [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy); Raffa, F.A. [Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Genovese, M. [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy)
2015-10-15
During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.
Wave-packet dynamics in quantum wells
DEFF Research Database (Denmark)
Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.
1995-01-01
It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems......, this polarized pair creation is thought to be the only source of photocurrent at the early stages of photoexcitation since the bulk like transport current is inhibited by the barriers. In this work we perform a full quantum-mechanical analysis of ultrafast optical excitation in a de-biased quantum well. We take...... larger than the well width (for long pulses and/or narrow wells), we recover the polarized pairs behavior of the photocurrent. For shorter pulses, when the coherence length becomes comparable to the well width, the photocurrent exhibits quantum beats. Finally, for very short pulses (around 10 fs) we find...
Operators versus functions: from quantum dynamical semigroups to tomographic semigroups
Aniello, Paolo
2013-11-01
Quantum mechanics can be formulated in terms of phase-space functions, according to Wigner's approach. A generalization of this approach consists in replacing the density operators of the standard formulation with suitable functions, the so-called generalized Wigner functions or (group-covariant) tomograms, obtained by means of group-theoretical methods. A typical problem arising in this context is to express the evolution of a quantum system in terms of tomograms. In the case of a (suitable) open quantum system, the dynamics can be described by means of a quantum dynamical semigroup 'in disguise', namely, by a semigroup of operators acting on tomograms rather than on density operators. We focus on a special class of quantum dynamical semigroups, the twirling semigroups, that have interesting applications, e.g., in quantum information science. The 'disguised counterparts' of the twirling semigroups, i.e., the corresponding semigroups acting on tomograms, form a class of semigroups of operators that we call tomographic semigroups. We show that the twirling semigroups and the tomographic semigroups can be encompassed in a unique theoretical framework, a class of semigroups of operators including also the probability semigroups of classical probability theory, so achieving a deeper insight into both the mathematical and the physical aspects of the problem.
Experimental results on quantum chromo dynamics: what is next?
De Roeck, Albert
2013-01-01
This review gives a flavour of experimental quantum chromo dynamics (QCD) results obtained at the Large Hadron Collider (LHC) during the first run period in the years 2010–2012. The results cover selected aspects of soft low-pT phenomena, typically described by phenomenological models, as well as high-pT processes which can be studied theoretically with perturbative techniques. In general the phenomenological models required tuning to describe the data in the new energy region of 7–8 TeV, while perturbative QCD (pQCD) is found to work generally quite well for most of the phase space currently studied. The strong force will remain a main topic of research at colliders such as the LHC also in future, with the large data samples allowing for more detailed studies and in particular when the next energy level of 13–14 TeV will be reached.
Dynamically self-regular quantum harmonic black holes
Directory of Open Access Journals (Sweden)
Euro Spallucci
2015-04-01
Full Text Available The recently proposed UV self-complete quantum gravity program is a new and very interesting way to envision Planckian/trans-Planckian physics. In this new framework, high energy scattering is dominated by the creation of micro black holes, and it is experimentally impossible to probe distances shorter than the horizon radius. In this letter we present a model which realizes this idea through the creation of self-regular quantum black holes admitting a minimal size extremal configuration. Their radius provides a dynamically generated minimal length acting as a universal short-distance cutoff. We propose a quantization scheme for this new kind of microscopic objects based on a Bohr-like approach, which does not require a detailed knowledge of quantum gravity. The resulting black hole quantum picture resembles the energy spectrum of a quantum harmonic oscillator. The mass of the extremal configuration plays the role of zero-point energy. Large quantum number re-establishes the classical black hole description. Finally, we also formulate a “quantum hoop conjecture” which is satisfied by all the mass eigenstates and sustains the existence of quantum black holes sourced by Gaussian matter distributions.
Dynamics of classical and quantum fields an introduction
Setlur, Girish S
2014-01-01
Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...
Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots
DEFF Research Database (Denmark)
Rudner, Mark Spencer; Levitov, Leonid
2013-01-01
Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce a min......) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods.......Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce...
Scaling and Universality at Dynamical Quantum Phase Transitions.
Heyl, Markus
2015-10-02
Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts such as scaling and universality. In this work, renormalization group transformations in complex parameter space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed point's universality class. An outlook is given on how to explore this dynamical scaling experimentally in systems of trapped ions.
Finite temperature simulations from quantum field dynamics?
Energy Technology Data Exchange (ETDEWEB)
Salle, Mischa; Smit, Jan; Vink, Jeroen C
2001-03-01
We describe a Hartree ensemble method to approximately solve the Heisenberg equations for the phi (cursive,open) Greek{sup 4} model in 1 + 1 dimensions. We compute the energies and number densities of the quantum particles described by the phi (cursive,open) Greek field and find that the particles initially thermalize with a Bose-Einstein distribution for the particle density. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.
Globus, Gordon
2015-12-01
Heideggerian theory is retrieved as a dynamics, the "Godly event" of das Ereignis ("enowning"), which is unexpectedly compatible with a version of quantum brain dynamics. In both the "between" (das Zwischen) has the fundamental role of the dis-closure that is Existenz. Heidegger's harsh critique of technology and science does not apply to revolutionary quantum brain dynamics. The crossing between Heidegger and quantum brain dynamics, as well as one fundamental ontological difference, illuminates both. To our surprise this difference turns out, contra Heidegger, to be monadological. The monadological conception is applied to long-standing problematics of measurement in quantum physics and consciousness in philosophy. Heideggerian Existenz is affirmed as fundamentally non-computational but is reformulated as a dynamical process of monadological dis-closure that radically deconstructs transcendent world. Copyright © 2015. Published by Elsevier Ltd.
Simulation of quantum dynamics based on the quantum stochastic differential equation.
Li, Ming
2013-01-01
The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.
Distributed orbital state quantum cloning with atomic ensembles via quantum Zeno dynamics
Shen, Li-Tuo; Yang, Zhen-Biao
2011-01-01
We propose a scheme for distributed orbital state quantum cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic ensembles which consist of identical three-level atoms are trapped in distant cavities connected by a single-mode integrated optical star coupler. These qubits can be manipulated through appropriate modulation of the coupling constants between atomic ensemble and classical field, and the cavity decay can be largely suppressed as the number of atoms in the ensemble qubits increases. The present scheme provides a new way to construct the quantum communication network.
Takayanagi, Toshiyuki; Shiga, Motoyuki
2003-04-01
The photodissociation dynamics of Cl 2 embedded in helium clusters is studied by numerical simulation with an emphasis on the effect of quantum character of helium motions. The simulation is based on the hybrid model in which Cl-Cl internuclear dynamics is treated in a wavepacket technique, while the helium motions are described by a path integral centroid molecular dynamics approach. It is found that the cage effect largely decreases when the helium motion is treated quantum mechanically. The mechanism is affected not only by the zero-point vibration in the helium solvation structure, but also by the quantum dynamics of helium.
Statics and dynamics of a self-bound matter-wave quantum ball
Adhikari, S. K.
2017-02-01
We study the statics and dynamics of a stable, mobile, three-dimensional matter-wave spherical quantum ball created in the presence of an attractive two-body and a very small repulsive three-body interaction. The quantum ball can propagate with a constant velocity in any direction in free space and its stability under a small perturbation is established numerically and variationally. In frontal head-on and angular collisions at large velocities two quantum balls behave like quantum solitons. Such collision is found to be quasielastic and the quantum balls emerge after collision without any change of direction of motion and velocity and with practically no deformation in shape. When reflected by a hard impenetrable plane, the quantum ball bounces off like a wave obeying the law of reflection without any change of shape or speed. However, in a collision at small velocities two quantum balls coalesce to form a larger ball which we call a quantum-ball breather. We point out the similarity and difference between the collision of two quantum and classical balls. The present study is based on an analytic variational approximation and a full numerical solution of the mean-field Gross-Pitaevskii equation using the parameters of 7Li atoms.
Directory of Open Access Journals (Sweden)
B. Maiti
2002-04-01
Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov Ã¢Â€Â“ Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.
Quantum dynamical entropies for discrete classical systems: a comparison
Energy Technology Data Exchange (ETDEWEB)
Cappellini, Valerio [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy)
2005-08-05
On a family of classical dynamical systems on the 2-torus, we perform a discretization procedure similar to the anti-Wick quantization. Such a discretization is performed by using a particular class of states, fulfilling an appropriate dynamical localization property, typical of quantum coherent states. The same set of states is involved in the construction of a quantum entropy, that we test on the discrete approximants; a correspondence with the classical metric entropy of Kolmogorov-Sinai is found only over time scales that are logarithmic in the discretization parameter.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Dynamical localization effect in a coupled quantum dot array driven by an AC magnetic field
Institute of Scientific and Technical Information of China (English)
Xia Jun-Jie; Nie Yi-Hang
2011-01-01
We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field,which is connected to two leads,and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function,dynamical localization and collapse of quasi-energy occurs and importantly,the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number,and it is weakened on account of the increase of the dots-lead hopping rate.
Low frequency spin dynamics in the quantum magnet copper pyrazine dinitrate
Energy Technology Data Exchange (ETDEWEB)
Kuehne, H.; Klauss, H.H. [Institut fuer Festkoerperphysik, TU Dresden Dresden (Germany); Institut fuer Physik der Kondensierten Materie, TU Braunschweig (Germany); Guenther, M. [Institut fuer Festkoerperphysik, TU Dresden Dresden (Germany); Grossjohann, S.; Brenig, W. [Institut fuer Theoretische Physik, TU Braunschweig (Germany); Litterst, F.J. [Institut fuer Physik der Kondensierten Materie, TU Braunschweig (Germany); Reyes, A.P.; Kuhns, P.L. [National High Magnetic Field Laboratory, Tallahassee, FL (United States); Turnbull, M.M.; Landee, C.P. [Carlson School of Chemistry and Department of Physics, Clark University, Worcester, MA (United States)
2010-03-15
The S = 1/2 antiferromagnetic Heisenberg chain exhibits a magnetic field driven quantum critical point. We study the low frequency spin dynamics in copper pyrazine dinitrate (CuPzN), a realization of this model system of quantum magnetism, by means of {sup 13}C-NMR spectroscopy. Measurements of the nuclear spin-lattice relaxation rate T{sub 1}{sup -} {sup 1} in the vicinity of the saturation field are compared with quantum Monte Carlo calculations of the dynamic structure factor. Both show a strong divergence of low energy excitations at temperatures in the quantum regime. The analysis of the anisotropic T{sub 1}{sup -} {sup 1}-rates and frequency shifts allows one to disentangle the contributions from transverse and longitudinal spin fluctuations for a selective study and to determine the transfer of delocalized spin moments from copper to the neighboring nitrogen atoms. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Energy Technology Data Exchange (ETDEWEB)
Vera, Carlos A; Quesada M, Nicolas; Vinck-Posada, Herbert; Rodriguez, Boris A, E-mail: nquesada@pegasus.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, Medellin, AA 1226 Medellin (Colombia)
2009-09-30
The relation between the dynamical regimes (weak and strong coupling) and entanglement for a dissipative quantum dot microcavity system is studied. In the framework of a phenomenological temperature model an analysis in both temporal (population dynamics) and frequency domain (photoluminescence) is carried out in order to identify the associated dynamical behavior. The Wigner function and concurrence are employed to quantify the entanglement in each regime. We find that sudden death of entanglement is a typical characteristic of the strong coupling regime.
Quantum-like dynamics of decision-making
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu
2012-03-01
In cognitive psychology, some experiments for games were reported, and they demonstrated that real players did not use the “rational strategy” provided by classical game theory and based on the notion of the Nasch equilibrium. This psychological phenomenon was called the disjunction effect. Recently, we proposed a model of decision making which can explain this effect (“irrationality” of players) Asano et al. (2010, 2011) [23,24]. Our model is based on the mathematical formalism of quantum mechanics, because psychological fluctuations inducing the irrationality are formally represented as quantum fluctuations Asano et al. (2011) [55]. In this paper, we reconsider the process of quantum-like decision-making more closely and redefine it as a well-defined quantum dynamics by using the concept of lifting channel, which is an important concept in quantum information theory. We also present numerical simulation for this quantum-like mental dynamics. It is non-Markovian by its nature. Stabilization to the steady state solution (determining subjective probabilities for decision making) is based on the collective effect of mental fluctuations collected in the working memory of a decision maker.
Lu, Dawei; Xu, Nanyang; Xu, Boruo; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng
2012-10-13
Quantum computers have been proved to be able to mimic quantum systems efficiently in polynomial time. Quantum chemistry problems, such as static molecular energy calculations and dynamical chemical reaction simulations, become very intractable on classical computers with scaling up of the system. Therefore, quantum simulation is a feasible and effective approach to tackle quantum chemistry problems. Proof-of-principle experiments have been implemented on the calculation of the hydrogen molecular energies and one-dimensional chemical isomerization reaction dynamics using nuclear magnetic resonance systems. We conclude that quantum simulation will surpass classical computers for quantum chemistry in the near future.
Singularity free gravitational collapse in an effective dynamical quantum spacetime
Energy Technology Data Exchange (ETDEWEB)
Torres, R., E-mail: ramon.torres-herrera@upc.edu; Fayos, F., E-mail: f.fayos@upc.edu
2014-06-02
We model the gravitational collapse of heavy massive shells including its main quantum corrections. Among these corrections, quantum improvements coming from Quantum Einstein Gravity are taken into account, which provides us with an effective quantum spacetime. Likewise, we consider dynamical Hawking radiation by modeling its back-reaction once the horizons have been generated. Our results point towards a picture of gravitational collapse in which the collapsing shell reaches a minimum non-zero radius (whose value depends on the shell initial conditions) with its mass only slightly reduced. Then, there is always a rebound after which most (or all) of the mass evaporates in the form of Hawking radiation. Since the mass never concentrates in a single point, no singularity appears.
Classical and quantum dynamics from classical paths to path integrals
Dittrich, Walter
2017-01-01
Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.
Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation
Energy Technology Data Exchange (ETDEWEB)
Lafuente-Sampietro, A. [Université Grenoble Alpes, Institut Néel, F-38000 Grenoble (France); CNRS, Institut Néel, F-38000 Grenoble (France); Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba (Japan); Utsumi, H.; Kuroda, S. [Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba (Japan); Boukari, H.; Besombes, L., E-mail: lucien.besombes@grenoble.cnrs.fr [Université Grenoble Alpes, Institut Néel, F-38000 Grenoble (France); CNRS, Institut Néel, F-38000 Grenoble (France)
2016-08-01
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.
Optimal diabatic dynamics of Majorana-based quantum gates
Rahmani, Armin; Seradjeh, Babak; Franz, Marcel
2017-08-01
In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.
Associative Yang-Baxter equation for quantum (semi-)dynamical R-matrices
Sechin, Ivan; Zotov, Andrei
2016-05-01
In this paper we propose versions of the associative Yang-Baxter equation and higher order R-matrix identities which can be applied to quantum dynamical R-matrices. As is known quantum non-dynamical R-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical R-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF (interaction-round-a-face)-Vertex transformation. An alternative approach to quantum (semi-)dynamical R-matrices and related quantum algebras was suggested by Arutyunov, Chekhov, and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF elliptic R-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we directly prove a simple relation of the IRF-Vertex type between the Baxter-Belavin and the ACF elliptic R-matrices predicted previously by Avan and Rollet. It provides the higher order R-matrix identities and an explanation of the obtained equations through those for non-dynamical R-matrices. As a by-product we also get an interpretation of the intertwining transformation as matrix extension of scalar theta function likewise R-matrix is interpreted as matrix extension of the Kronecker function. Relations to the Gervais-Neveu-Felder equation and identities for the Felder's elliptic R-matrix are also discussed.
Associative Yang-Baxter equation for quantum (semi-)dynamical R-matrices
Energy Technology Data Exchange (ETDEWEB)
Sechin, Ivan, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru [MIPT, Inststitutskii per. 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); ITEP, B. Cheremushkinskaya Str. 25, Moscow 117218 (Russian Federation); Zotov, Andrei, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru [MIPT, Inststitutskii per. 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); ITEP, B. Cheremushkinskaya Str. 25, Moscow 117218 (Russian Federation); Steklov Mathematical Institute RAS, Gubkina Str. 8, Moscow 119991 (Russian Federation)
2016-05-15
In this paper we propose versions of the associative Yang-Baxter equation and higher order R-matrix identities which can be applied to quantum dynamical R-matrices. As is known quantum non-dynamical R-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical R-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF (interaction-round-a-face)-Vertex transformation. An alternative approach to quantum (semi-)dynamical R-matrices and related quantum algebras was suggested by Arutyunov, Chekhov, and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF elliptic R-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we directly prove a simple relation of the IRF-Vertex type between the Baxter-Belavin and the ACF elliptic R-matrices predicted previously by Avan and Rollet. It provides the higher order R-matrix identities and an explanation of the obtained equations through those for non-dynamical R-matrices. As a by-product we also get an interpretation of the intertwining transformation as matrix extension of scalar theta function likewise R-matrix is interpreted as matrix extension of the Kronecker function. Relations to the Gervais-Neveu-Felder equation and identities for the Felder’s elliptic R-matrix are also discussed.
Spin dynamics and hyperfine interaction in InAs semiconductor quantum dots
Energy Technology Data Exchange (ETDEWEB)
Eble, B.; Krebs, O.; Voisin, P.; Lemaitre, A.; Kudelski, A. [CNRS - Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France); Braun, P.F.; Lombez, L.; Marie, X.; Urbaszek, B.; Amand, T.; Lagarde, D.; Renucci, P. [Laboratoire de Nanophysique Magnetisme et Optoelectronique, INSA, 31077 Toulouse Cedex 4 (France); Kowalik, K. [CNRS - Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France); Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warsaw (Poland); Kalevich, V.K.; Kavokin, K.V. [Ioffe Institute, Politekhnicheskaya 26, St-Petersburg 194021 (Russian Federation)
2006-08-15
We present a detailed study of the hyperfine interaction between carrier and nuclear spins in InAs semiconductor quantum dots. Time resolved measurements on excitons in positively charged quantum dots show the electron spin relaxation due to random fluctuations of the spin orientation of the nuclei in the quantum dot. A complimentary aspect of the hyperfine interaction can be uncovered in single dot continuous wave photoluminescence experiments in a weak magnetic field, namely the Overhauser shift due to the dynamic polarisation of the nuclei following excitation with circularly polarised light. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Coupled electron-phonon transport from molecular dynamics with quantum baths
DEFF Research Database (Denmark)
Lu, Jing Tao; Wang, J. S.
2009-01-01
Based on generalized quantum Langevin equations for the tight-binding wavefunction amplitudes and lattice displacements, electron and phonon quantum transport are obtained exactly using molecular dynamics (MD) in the ballistic regime. The electron-phonon interactions can be handled with a quasi......-classical approximation. Both charge and energy transport and their interplay can be studied. We compare the MD results with those of a fully quantum mechanical nonequilibrium Green's function (NEGF) approach for the electron currents. We find a ballistic to diffusive transition of the electron conduction in one...
Wu, Hui; Duan, Zhi-Xin; Yin, Shu-Hui; Zhao, Guang-Jiu
2016-09-01
The quantum dynamics calculations of the H + HS (v = 0, j = 0) reaction on the 3A' and 3A″ potential energy surfaces (PESs) are performed using the reactant coordinate based time-dependent wave packet method. State-averaged and state-resolved results for both channels of the title reaction are presented in the 0.02-1.0 eV collision energy range and compared with those carried out with quasi-classical trajectory (QCT) method. Total integral cross sections (ICSs) for both channels are in excellent agreement with previous quantum mechanical (QM)-Coriolis coupling results while poorly agree with the QCT ICSs of the exchange channel, particularly near the threshold energy region. The product rotational distributions show that for the abstraction channel, the agreement between our QM and the QCT results improves with increasing collision energy. For the exchange channel, our calculations predict colder rotational distributions as compared to those obtained by QCT calculations. Although the QM total differential cross sections (DCSs) are in qualitatively good agreement with the QCT results, the two sets of the state-to-state DCSs with several peaks exhibit great divergences. The origin of the divergences are traced by analyzing the QM DCS for the H + HS (v = 0, j = 0) → H2 (v' = 0, j' = 0) + S reaction on the 3A″ PES at Ec = 1.0 eV. It is discovered that several groups of J partial waves are involved in the reaction and the shape of the DCS is greatly altered by quantum interferences between them.
Zimmermann, Tomas
2010-01-01
We propose an approximate method for evaluating the importance of non-Born-Oppenheimer effects on the quantum dynamics of nuclei. The method uses a generalization of the dephasing representation (DR) of quantum fidelity to several diabatic potential energy surfaces and its computational cost is the cost of dynamics of a classical phase space distribution. It can be implemented easily into any molecular dynamics program and also can utilize on-the-fly ab initio electronic structure information. We test the methodology on three model problems introduced by Tully and on the photodissociation of NaI. The results show that for dynamics close to the diabatic regime the decay of fidelity due to nondiabatic effects is described accurately by the DR. In the nearly diabatic regime, unlike the mixed quantum-classical methods such as surface hopping or Ehrenfest dynamics, the DR can capture more subtle quantum effects than the population transfer between potential energy surfaces. Hence we propose using the DR to estimat...
Quantum Trajectory Approach to Molecular Dynamics Simulation with Surface Hopping
Feng, Wei; Li, Xin-Qi; Fang, Weihai
2012-01-01
The powerful molecular dynamics (MD) simulation is basically based on a picture that the atoms experience classical-like trajectories under the exertion of classical force field determined by the quantum mechanically solved electronic state. In this work we propose a quantum trajectory approach to the MD simulation with surface hopping, from an insight that an effective "observation" is actually implied in theMDsimulation through tracking the forces experienced, just like checking the meter's result in the quantum measurement process. This treatment can build the nonadiabatic surface hopping on a dynamical foundation, instead of the usual artificial and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.
Quantum correlations dynamics under different non-markovian environmental models
Zhang, Ying-Jie; Shan, Chuan-Jia; Xia, Yun-Jie
2011-01-01
We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lorentzian model, the two-Lorentzian model and band-gap model) are analyzed. First, we note that for the weak coupling regime, the monotonous decay speed of the quantum correlation is mainly determined by the spectral density functions of these different environments. Then, by considering the strong coupling regime we find that, contrary to what is stated in the weak coupling regime, the dynamics of quantum correlation depends on the non-Markovianity of the environmental models, and is independent of the environmental spectrum density functions.
2005-07-31
Kraus, Lindblad and matrix representations of quantum dynamical semigroups ,” J. Math. Phys. 44:534-57 (2003). N. Boulant, T. F. Havel, M. A. Pravia and...Education Research: Quantum Mechanics, Mt. Holyoke College, MA (June, `02). "Quantum dynamical semigroup tomography," talk presented at the AMS...dynamical semigroups ,” J. Math. Phys. 44:534-57 (2003). Abstract. Given a quantum dynamical semigroup expressed as an exponential superoperator acting on
Scale invariance of entanglement dynamics in Grover's quantum search algorithm
Rossi, M; Macchiavello, C
2012-01-01
We calculate the amount of entanglement of the multiqubit quantum states employed in the Grover algorithm, by following its dynamics at each step of the computation. We show that genuine multipartite entanglement is always present. Remarkably, the dynamics of any type of entanglement as well as of genuine multipartite entanglement is independent of the number $n$ of qubits for large $n$, thus exhibiting a scale invariance property. We also investigate criteria for efficient simulatability in the context of Grover's algorithm.
Non-Markovian Dynamics in Chiral Quantum Networks with Spins and Photons
Ramos, Tomás; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-01-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to the familiar photonic networks consisting of driven two-level atoms exchanging photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D XX-spin chains representing a spin waveguide. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bat...
The quantum nature of the hydrogen bond: insight from path-integral molecular dynamics
Walker, Brent; Li, Xin-Zheng; Michaelides, Angelos
2011-03-01
Hydrogen (H) bonds are weak, generally intermolecular bonds, that hold together much of soft matter, the condensed phases of water, network liquids, and many ferroelectric crystals. The small mass of H means H-bonds are inherently quantum mechanical; effects such as zero point motion and tunneling should be considered, although often are not. In particular, a consistent picture of quantum nuclear effects on the strength of H-bonds and consequently the structure of H-bonded systems is still absent. Here, we report ab initio path-integral molecular dynamics studies on the quantum nature of the H-bond. Systematic examination of a range of H-bonded systems shows that quantum nuclei weaken weak H-bonds but strengthen relatively strong ones. This correlation arises from a competition between anharmonic intermolecular bond bending and intramolecular bond stretching. A simple rule of thumb enables predictions to be made for H-bonded bonded materials in general with merely classical knowledge (e.g. H-bond strength or H-bond length). Our work rationalizes the contrasting influence of quantum nuclear dynamics on a wide variety of materials, including liquid water and HF, and highlights the need for flexible molecules in force-field based studies of quantum nuclear dynamics.
Theory of coherent dynamic nuclear polarization in quantum dots
DEFF Research Database (Denmark)
Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand
2014-01-01
We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...
Non-Hermitian Dynamics in the Quantum Zeno Limit
Kozlowski, Wojciech; Mekhov, Igor B
2015-01-01
Measurement is one of the most counter-intuitive aspects of quantum physics. Frequent measurements of a quantum system lead to quantum Zeno dynamics where time evolution becomes confined to a subspace defined by the projections. However, weak measurement performed at a finite rate is also capable of locking the system into such a Zeno subspace in an unconventional way: by Raman-like transitions via virtual intermediate states outside this subspace, which are not forbidden. Here, we extend this concept into the realm of non-Hermitian dynamics by showing that the stochastic competition between measurement and a system's own dynamics can be described by a non-Hermitian Hamiltonian. We obtain an analytic solution for ultracold bosons in a lattice and show that a dark state of the tunnelling operator is a steady state in which the observable's fluctuations are zero and tunnelling is suppressed by destructive matter-wave interference. This opens a new venue of investigation beyond the canonical quantum Zeno dynamic...
Ultrafast gain and index dynamics in quantum dot amplifiers
DEFF Research Database (Denmark)
Borri, Paola; Langbein, Wolfgang; Mørk, Jesper
1999-01-01
The ultrafast dynamics of gain and refractive index in an InAs/GaAs quantum dot amplifier are investigated at room temperature. The gain is observed to recover with a 90 fs time constant, ruling out problems of slow carrier capture into the dots, and making this component promising for high...
Chaotic Dynamics and Transport in Classical and Quantum Systems
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations.
Dynamical maps, quantum detailed balance, and the Petz recovery map
Alhambra, Álvaro M.; Woods, Mischa P.
2017-08-01
Markovian master equations (formally known as quantum dynamical semigroups) can be used to describe the evolution of a quantum state ρ when in contact with a memoryless thermal bath. This approach has had much success in describing the dynamics of real-life open quantum systems in the laboratory. Such dynamics increase the entropy of the state ρ and the bath until both systems reach thermal equilibrium, at which point entropy production stops. Our main result is to show that the entropy production at time t is bounded by the relative entropy between the original state and the state at time 2 t . The bound puts strong constraints on how quickly a state can thermalize, and we prove that the factor of 2 is tight. The proof makes use of a key physically relevant property of these dynamical semigroups, detailed balance, showing that this property is intimately connected with the field of recovery maps from quantum information theory. We envisage that the connections made here between the two fields will have further applications. We also use this connection to show that a similar relation can be derived when the fixed point is not thermal.
Entanglement dynamics in critical random quantum Ising chain with perturbations
Huang, Yichen
2017-05-01
We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique.
Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers
DEFF Research Database (Denmark)
Poel, Mike van der; Hvam, Jørn Märcher
2007-01-01
We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...
Quantum vortex dynamics in two-dimensional neutral superfluids
Wang, C. -C J.; Duine, R.A.; MacDonald, A.H.
2010-01-01
We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and
Quantum Dynamics of Biological Plasma in the External Coulomb Field
Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.
2013-10-01
A quantum solution to the truncated Fisher-Kolmogorov-Petrovskii-Piskunov equation with Coulomb convection and linear diffusion is derived. The quantum radiation of biological systems, individual microorganisms (cells, bacteria), and dust plasma particles in the Coulomb field is studied using the foregoing solution.
Energy Technology Data Exchange (ETDEWEB)
Chiba, Satoshi; Niita, Koji; Fukahori, Tokio; Maruyama, Tomoyuki; Maruyama, Toshiki; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-05-01
Energy dependence of the ratio of the isovector and isoscalar strengths in the imaginary part of the nucleon optical model potential at the medium energy range was extracted from an analysis of proton and neutron induced total reaction cross sections on {sup 11}Li with a theoretical framework called quantum molecular dynamics (QMD). The isovector/isoscalar ratio was found to be about 0.8 at 100 MeV, and decreased almost linearly in log(E) to 0 at several hundred MeV. This result was consistent with an estimate at lower energy, and was also in good accord with the values used by Kozack and Madland for the analysis of nucleon + {sup 208}Pb reactions. (author)
Zheng, Bo-Xiao; Kretchmer, Joshua S.; Shi, Hao; Zhang, Shiwei; Chan, Garnet Kin-Lic
2017-01-01
We investigate the cluster size convergence of the energy and observables using two forms of density matrix embedding theory (DMET): the original cluster form (CDMET) and a new formulation motivated by the dynamical cluster approximation (DCA-DMET). Both methods are applied to the half-filled one- and two-dimensional Hubbard models using a sign-problem free auxiliary-field quantum Monte Carlo impurity solver, which allows for the treatment of large impurity clusters of up to 100 sites. While CDMET is more accurate at smaller impurity cluster sizes, DCA-DMET exhibits faster asymptotic convergence towards the thermodynamic limit. We use our two formulations to produce new accurate estimates for the energy and local moment of the two-dimensional Hubbard model for U /t =2 ,4 ,6 . These results compare favorably with the best data available in the literature, and help resolve earlier uncertainties in the moment for U /t =2 .
Aidas, Kęstutis; Ågren, Hans; Kongsted, Jacob; Laaksonen, Aatto; Mocci, Francesca
2013-02-07
The (23)Na quadrupolar coupling constant of the Na(+) ion in aqueous solution has been predicted using molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics methods for the calculation of electric field gradients. The developed computational approach is generally expected to provide reliable estimates of the quadrupolar coupling constants of monoatomic species in condensed phases, and we show here that intermolecular polarization and non-electrostatic interactions are of crucial importance as they result in a 100% increased quadrupolar coupling constant of the ion as compared to a simpler pure electrostatic picture. These findings question the reliability of the commonly applied classical Sternheimer approximation for the calculations of the electric field gradient. As it can be expected from symmetry considerations, the quadrupolar coupling constants of the 5- and 6-coordinated Na(+) ions in solution are found to differ significantly.
The dynamic turn in quantum logic
Baltag, Alexandru; Smets, Sonja
In this paper we show how ideas coming from two areas of research in logic can reinforce each other. The first such line of inquiry concerns the "dynamic turn" in logic and especially the formalisms inspired by Propositional Dynamic Logic (PDL); while the second line concerns research into the
Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach
Borrelli, Raffaele; Gelin, Maxim F.
2016-12-01
Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.
New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
Acevedo, Oscar L.; Rodriguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.; Rey, Ana M.
2014-05-01
We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic perturbation approximations, are applicable even where excitations have not yet stabilized and, hence, provide a time-resolved understanding of quantum phase transitions encompassing a wide range of adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same universality class, they can have very different adiabatic evolutions. This implies that more stringent conditions need to be imposed than at present, both for quantum simulations where one system is used to simulate the other and for adiabatic quantum computing schemes.
Shkrob, Ilya A; Glover, William J; Larsen, Ross E; Schwartz, Benjamin J
2007-06-21
Adiabatic mixed quantum/classical (MQC) molecular dynamics (MD) simulations were used to generate snapshots of the hydrated electron in liquid water at 300 K. Water cluster anions that include two complete solvation shells centered on the hydrated electron were extracted from the MQC MD simulations and embedded in a roughly 18 Ax18 Ax18 A matrix of fractional point charges designed to represent the rest of the solvent. Density functional theory (DFT) with the Becke-Lee-Yang-Parr functional and single-excitation configuration interaction (CIS) methods were then applied to these embedded clusters. The salient feature of these hybrid DFT(CIS)/MQC MD calculations is significant transfer (approximately 18%) of the excess electron's charge density into the 2p orbitals of oxygen atoms in OH groups forming the solvation cavity. We used the results of these calculations to examine the structure of the singly occupied and the lower unoccupied molecular orbitals, the density of states, the absorption spectra in the visible and ultraviolet, the hyperfine coupling (hfcc) tensors, and the infrared (IR) and Raman spectra of these embedded water cluster anions. The calculated hfcc tensors were used to compute electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectra for the hydrated electron that compared favorably to the experimental spectra of trapped electrons in alkaline ice. The calculated vibrational spectra of the hydrated electron are consistent with the red-shifted bending and stretching frequencies observed in resonance Raman experiments. In addition to reproducing the visible/near IR absorption spectrum, the hybrid DFT model also accounts for the hydrated electron's 190-nm absorption band in the ultraviolet. Thus, our study suggests that to explain several important experimentally observed properties of the hydrated electron, many-electron effects must be accounted for: one-electron models that do not allow for mixing of the excess
Energy Technology Data Exchange (ETDEWEB)
Shkrob, I. A.; Glover, W. J.; Larsen, R. E.; Schwartz, B. J.; Chemistry; Univ. of California at Los Angeles
2007-06-21
Adiabatic mixed quantum/classical (MQC) molecular dynamics (MD) simulations were used to generate snapshots of the hydrated electron in liquid water at 300 K. Water cluster anions that include two complete solvation shells centered on the hydrated electron were extracted from the MQC MD simulations and embedded in a roughly 18 Angstrom x 18 Angstrom x 18 Angstrom matrix of fractional point charges designed to represent the rest of the solvent. Density functional theory (DFT) with the Becke-Lee-Yang-Parr functional and single-excitation configuration interaction (CIS) methods were then applied to these embedded clusters. The salient feature of these hybrid DFT(CIS)/MQC MD calculations is significant transfer ({approx}18%) of the excess electron's charge density into the 2p orbitals of oxygen atoms in OH groups forming the solvation cavity. We used the results of these calculations to examine the structure of the singly occupied and the lower unoccupied molecular orbitals, the density of states, the absorption spectra in the visible and ultraviolet, the hyperfine coupling (hfcc) tensors, and the infrared (IR) and Raman spectra of these embedded water cluster anions. The calculated hfcc tensors were used to compute electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectra for the hydrated electron that compared favorably to the experimental spectra of trapped electrons in alkaline ice. The calculated vibrational spectra of the hydrated electron are consistent with the red-shifted bending and stretching frequencies observed in resonance Raman experiments. In addition to reproducing the visible/near IR absorption spectrum, the hybrid DFT model also accounts for the hydrated electron's 190-nm absorption band in the ultraviolet. Thus, our study suggests that to explain several important experimentally observed properties of the hydrated electron, many-electron effects must be accounted for: one-electron models that do not
Cavity-assisted dynamical quantum phase transition in superconducting quantum simulators
Tian, Lin
Coupling a quantum many-body system to a cavity can create bifurcation points in the phase diagram, where the many-body system switches between different phases. Here I will discuss the dynamical quantum phase transitions at the bifurcation points of a one-dimensional transverse field Ising model coupled to a cavity. The Ising model can be emulated with various types of superconducting qubits connected in a chain. With a time-dependent Bogoliubov method, we show that an infinitesimal quench of the driving field can cause gradual evolution of the transverse field on the Ising spins to pass through the quantum critical point. Our calculation shows that the cavity-induced nonlinearity plays an important role in the dynamics of this system. Quasiparticles can be excited in the Ising chain during this process, which results in the deviation of the system from its adiabatic ground state. This work is supported by the National Science Foundation under Award Number 0956064.
Quantum Dynamics in Noisy Backgrounds: from Sampling to Dissipation and Fluctuations
Oliveira, O.; Paula, W. de; Frederico, T.; Hussein, M. S.
2016-08-01
We investigate the dynamics of a quantum system coupled linearly to Gaussian white noise using functional methods. By performing the integration over the noisy field in the evolution operator, we get an equivalent non-Hermitian Hamiltonian, which evolves the quantum state with a dissipative dynamics. We also show that if the integration over the noisy field is done for the time evolution of the density matrix, a gain contribution from the fluctuations can be accessed in addition to the loss one from the non-hermitian Hamiltonian dynamics. We illustrate our study by computing analytically the effective non-Hermitian Hamiltonian, which we found to be the complex frequency harmonic oscillator, with a known evolution operator. It leads to space and time localisation, a common feature of noisy quantum systems in general applications.
Quantum Dynamics in Noisy Backgrounds: from sampling to dissipation and fluctuations
Oliveira, O; Frederico, T; Hussein, M S
2015-01-01
We investigate the dynamics of a quantum system coupled linearly to Gaussian white noise using functional methods. By performing the integration over the noisy field in the evolution operator, we get an equivalent non-Hermitian Hamiltonian, which evolves the quantum state with a dissipative dynamics. We also show that if the integration over the noisy field is done for the time evolution of the density matrix, a gain contribution from the fluctuations, can be accessed in addition to the loss one from the non-hermitian Hamiltonian dynamics. We illustrate our study by computing analytically the effective non-Hermitian Hamiltonian, which we found to be the complex frequency harmonic oscillator, with a known evolution operator. It leads to space and time localisation, a common feature of noisy quantum systems in general applications.
Dynamics of open quantum spin systems : An assessment of the quantum master equation approach
Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.
2016-01-01
Data of the numerical solution of the time-dependent Schrodinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtainin
Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems
Cazalilla, M. A.; Rigol, M.
2010-05-01
The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and
Ultrafast dynamics in InAs quantum dot and GaInNAs quantum well semiconductor heterostructures
Malins, David B
2007-01-01
The quantum confined Stark effect (QCSE) and ultrafast absorption dynamics near the bandedge have been investigated in p-i-n waveguides comprising quantum confined heterostructures grown on GaAs substrates, for emission at 1.3um. The materials are; isolated InAs/InGaAs dot-in-a-well (DWELL) quantum dots (QD), bilayer InAs quantum dots and GaInNAs multiple quantum wells (MQW). The focus was to investigate these dynamics in a planar waveguide geometry, for the purpose of large scale integ...
Dynamically self-regular quantum harmonic black holes
Spallucci, Euro
2015-01-01
The recently proposed UV self-complete quantum gravity program is a new and very interesting way to envision Planckian/trans-Planckian physics. in this new framework, high energy scattering is dominated by the creation of micro black holes, and it is experimentally impossible to probe distances shorter than the horizon radius. In this letter we present a model which realizes this idea through the creation of self-regular quantum black holes admitting a minimal size extremal configuration. Their radius provides a dynamically generated minimal length acting as a universal short-distance cut-off. We propose a quantisation scheme for this new kind of microscopic objects based on a Bohr-like approach, which does not require a detailed knowledge of quantum gravity. The resulting black hole quantum picture resembles the energy spectrum of a quantum harmonic oscillator. The mass of the extremal configuration plays the role of zero-point energy. Large quantum number re-establish the classical black hole description. F...
Multi-group dynamic quantum secret sharing with single photons
Energy Technology Data Exchange (ETDEWEB)
Liu, Hongwei [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Ma, Haiqiang, E-mail: hqma@bupt.edu.cn [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wei, Kejin [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yang, Xiuqing [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2016-07-15
In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application. - Highlights: • A multi-group dynamic quantum secret sharing with single photons scheme is proposed. • Any one of the groups can be chosen to share secret through controlling the polarization of photons. • Two sets of keys can be shared simultaneously without redistribution.
Kim, Nam-Chol; Ko, Myong-Chol; So, Guang Hyok; Kim, Il-Guang
2015-01-01
We studied theoretically the population dynamics and the absorption spectrum of hybrid nanosystem consisted of a matal nanoparticle (MNP) and a semiconductor quantum dot(SQD). We investigated the exciton-plasmon coupling effects on the population dynamics and the absorption properties of the nanostructure. Our results show that the nonlinear optical response of the hybrid nanosystem can be greatly enhanced or depressed due to the exciton-plasmon couplings. The results obtained here may have the potential applications of nanoscale optical devices such as optical switches and quantum devices such as a single photon transistor.
Institute of Scientific and Technical Information of China (English)
He An-Min; Duan Su-Qing; Zhao Xian-Geng
2005-01-01
The effect of external noise, which is characterized by an Ornstein-Uhlenbeck process, on the dynamical localization of two coupling electrons in a quantum dot array under the action of an ac electric field is studied. A numerical solution of the stochastic equations is obtained by averaging over stochastic trajectories. The results show that the external noise may destroy the dynamical localization, but the anti-noise capacity of the system is stronger when the two electrons are localized at the ends of the quantum dot array.
Quantum Degrees of Freedom, Quantum Integrability and Entanglment Generators
Buric, Nikola
2010-01-01
Dynamical algebra notion of quantum degrees of freedom is utilized to study the relation between quantum dynamical integrability and generalized entanglement. It is argued that a quantum dynamical system generates generalized entanglement by internal dynamics if and only if it is quantum non-integrable. Several examples are used to illustrate the relation.
Interacting bosons in a disordered lattice: Dynamical characterization of the quantum phase diagram
Buonsante, Pierfrancesco; Pezzè, Luca; Smerzi, Augusto
2015-03-01
We study the quantum dynamics of interacting bosons in a three-dimensional disordered lattice. We show that the superfluid current induced by an adiabatic acceleration of the disordered lattice undergoes a dynamical instability signaling the onset of the Bose-glass phase. The dynamical superfluid-Bose-glass phase diagram is found in very good agreement with static superfluid fraction calculation. A different boundary is obtained when the disorder is suddenly quenched in a moving periodic lattice. In this case we do not observe a dynamical instability but rather a depletion of the superfluid density. Our analysis is based on a dynamical Gutzwiller approach which we show to reproduce the quantum Monte Carlo static phase diagram in the strong interaction limit.
Quantum-Gravity Induced Lorentz Violation and Dynamical Mass Generation
Mavromatos, Nick E.
2010-01-01
In Ref. [1] (by J. Alexandre) a minimal extension of (3+1)-dimensional Quantum Electrodynamics has been proposed, which includes Lorentz-Violation (LV) in the form of higher-(spatial)-derivative isotropic terms in the gauge sector, suppressed by a mass scale $M$. The model can lead to dynamical mass generation for charged fermions. In this article I elaborate further on this idea and I attempt to connect it to specific quantum-gravity models, inspired from string/brane theory. Specifically, i...
Classical and quantum dynamics from classical paths to path integrals
Dittrich, Walter
2016-01-01
Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.
Massive Quantum Memories by Periodically Inverted Dynamic Evolutions
Giampaolo, S M; Lisi, A D; Mazzarella, G
2005-01-01
We introduce a general scheme to realize perfect quantum state reconstruction and storage in systems of interacting qubits. This novel approach is based on the idea of controlling the residual interactions by suitable external controls that, acting on the inter-qubit couplings, yield time-periodic inversions in the dynamical evolution, thus cancelling exactly the effects of quantum state diffusion. We illustrate the method for spin systems on closed rings with XY residual interactions, showing that it enables the massive storage of arbitrarily large numbers of local states, and we demonstrate its robustness against several realistic sources of noise and imperfections.
Direct Characterization of Quantum Dynamics with Noisy Ancilla
Dumitrescu, Eugene; Humble, Travis
We present methods for the direct characterization of quantum dynamics (DCQD) in which both the principal and ancilla systems undergo noisy processes. Using a concatenated error detection code, we discriminate between located and unlocated errors on the principal system in what amounts to filtering of ancilla noise. The example of composite noise involving amplitude damping and depolarizing channels is used to demonstrate the method, while we find the rate of noise filtering is more generally dependent on code distance. Our results indicate the accuracy of quantum process characterization can be greatly improved while remaining within reach of current experimental capabilities. We acknowledge support from the IC postdoctoral research program.
Non-Hermitian dynamics in the quantum Zeno limit
Kozlowski, W.; Caballero-Benitez, S. F.; Mekhov, I. B.
2016-07-01
We show that weak measurement leads to unconventional quantum Zeno dynamics with Raman-like transitions via virtual states outside the Zeno subspace. We extend this concept into the realm of non-Hermitian dynamics by showing that the stochastic competition between measurement and a system's own dynamics can be described by a non-Hermitian Hamiltonian. We obtain a solution for ultracold bosons in a lattice and show that a dark state of tunneling is achieved as a steady state in which the observable's fluctuations are zero and tunneling is suppressed by destructive matter-wave interference.
Operational dynamic modeling transcending quantum and classical mechanics.
Bondar, Denys I; Cabrera, Renan; Lompay, Robert R; Ivanov, Misha Yu; Rabitz, Herschel A
2012-11-09
We introduce a general and systematic theoretical framework for operational dynamic modeling (ODM) by combining a kinematic description of a model with the evolution of the dynamical average values. The kinematics includes the algebra of the observables and their defined averages. The evolution of the average values is drawn in the form of Ehrenfest-like theorems. We show that ODM is capable of encompassing wide-ranging dynamics from classical non-relativistic mechanics to quantum field theory. The generality of ODM should provide a basis for formulating novel theories.
Dynamic symmetries and quantum nonadiabatic transitions
Li, Fuxiang; Sinitsyn, Nikolai A.
2016-12-01
Kramers degeneracy theorem is one of the basic results in quantum mechanics. According to it, the time-reversal symmetry makes each energy level of a half-integer spin system at least doubly degenerate, meaning the absence of transitions or scatterings between degenerate states if the Hamiltonian does not depend on time explicitly. We generalize this result to the case of explicitly time-dependent spin Hamiltonians. We prove that for a spin system with the total spin being a half integer, if its Hamiltonian and the evolution time interval are symmetric under a specifically defined time reversal operation, the scattering amplitude between an arbitrary initial state and its time reversed counterpart is exactly zero. We also discuss applications of this result to the multistate Landau-Zener (LZ) theory.
Quantum unitary dynamics in cosmological spacetimes
Energy Technology Data Exchange (ETDEWEB)
Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)
2015-12-15
We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.
Strong Coulomb Coupling in Relativistic Quantum Constraint Dynamics
Bawin, M.; Cugnon, J.; Sazdjian, H.
We study, in the framework of relativistic quantum constraint dynamics, the bound state problem of two oppositely charged spin 1/2 particles, with masses m1 and m2, in mutual electromagnetic interaction. We search for the critical value of the coupling constant α for which the bound state energy reaches the lower continuum, thus indicating the instability of the heavier particle or of the strongly coupled QED vacuum in the equal mass case. Two different choices of the electromagnetic potential are considered, corresponding to different extensions of the substitution rule into the nonperturbative region of α: (i) the Todorov potential, already introduced in the quasipotential approach and used by Crater and Van Alstine in Constraint Dynamics; (ii) a second potential (potential II), characterized by a regular behavior at short distances. For the Todorov potential we find that for m2>m1 there is always a critical value αc of α, depending on m2/m1, for which instability occurs. In the equal mass case, instability is reached at αc=1/2 with a vanishing value of the cutoff radius, generally needed for this potential at short distances. For potential II, on the other hand, we find that instability occurs only for m2>2.16 m1.
Massively Parallel Reactive and Quantum Molecular Dynamics Simulations
Vashishta, Priya
2015-03-01
In this talk I will discuss two simulations: Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near silica surface. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. Quantum molecular dynamics (QMD) simulations are performed on 786,432-processor Blue Gene/Q to study on-demand production of hydrogen gas from water using Al nanoclusters. QMD simulations reveal rapid hydrogen production from water by an Al nanocluster. We find a low activation-barrier mechanism, in which a pair of Lewis acid and base sites on the Aln surface preferentially catalyzes hydrogen production. I will also discuss on-demand production of hydrogen gas from water using and LiAl alloy particles. Research reported in this lecture was carried in collaboration with Rajiv Kalia, Aiichiro Nakano and Ken-ichi Nomura from the University of Southern California, and Fuyuki Shimojo and Kohei Shimamura from Kumamoto University, Japan.
Complex dynamics in diatomic molecules. Part II: Quantum trajectories
Energy Technology Data Exchange (ETDEWEB)
Yang, C.-D. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: cdyang@mail.ncku.edu.tw; Weng, H.-J. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan (China)], E-mail: principlex@yahoo.com.tw
2008-10-15
The second part of this paper deals with quantum trajectories in diatomic molecules, which has not been considered before in the literature. Morse potential serves as a more accurate function than a simple harmonic oscillator for illustrating a realistic picture about the vibration of diatomic molecules. However, if we determine molecular dynamics by integrating the classical force equations derived from a Morse potential, we will find that the resulting trajectories do not consist with the probabilistic prediction of quantum mechanics. On the other hand, the quantum trajectory determined by Bohmian mechanics [Bohm D. A suggested interpretation of the quantum theory in terms of hidden variable. Phys. Rev. 1952;85:166-179] leads to the conclusion that a diatomic molecule is motionless in all its vibrational eigen-states, which also contradicts probabilistic prediction of quantum mechanics. In this paper, we point out that the quantum trajectory of a diatomic molecule completely consistent with quantum mechanics does exist and can be solved from the quantum Hamilton equations of motion derived in Part I, which is based on a complex-space formulation of fractal spacetime [El Naschie MS. A review of E-Infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. E-Infinity theory - some recent results and new interpretations. Chaos, Solitons and Fractals 2006;29:845-853; El Naschie MS. The concepts of E-infinity. An elementary introduction to the cantorian-fractal theory of quantum physics. Chaos, Solitons and Fractals 2004;22:495-511; El Naschie MS. SU(5) grand unification in a transfinite form. Chaos, Solitons and Fractals 2007;32:370-374; Nottale L. Fractal space-time and microphysics: towards a theory of scale relativity. Singapore: World Scientific; 1993; Ord G. Fractal space time and the statistical mechanics of random works. Chaos, Soiltons and Fractals 1996;7:821-843] approach to quantum
Sumner, Isaiah; Iyengar, Srinivasan S
2008-08-07
We discuss hybrid quantum-mechanics/molecular-mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) generalizations to our recently developed quantum wavepacket ab initio molecular dynamics methodology for simultaneous dynamics of electrons and nuclei. The approach is a synergy between a quantum wavepacket dynamics, ab initio molecular dynamics, and the ONIOM scheme. We utilize this method to include nuclear quantum effects arising from a portion of the system along with a simultaneous description of the electronic structure. The generalizations provided here make the approach a potentially viable alternative for large systems. The quantum wavepacket dynamics is performed on a grid using a banded, sparse, and Toeplitz representation of the discrete free propagator, known as the "distributed approximating functional." Grid-based potential surfaces for wavepacket dynamics are constructed using an empirical valence bond generalization of ONIOM and further computational gains are achieved through the use of our recently introduced time-dependent deterministic sampling technique. The ab initio molecular dynamics is achieved using Born-Oppenheimer dynamics. All components of the methodology, namely, quantum dynamics and ONIOM molecular dynamics, are harnessed together using a time-dependent Hartree-like procedure. We benchmark the approach through the study of structural and vibrational properties of molecular, hydrogen bonded clusters inclusive of electronic, dynamical, temperature, and critical quantum nuclear effects. The vibrational properties are constructed through a velocity/flux correlation function formalism introduced by us in an earlier publication.
Emergent topology and dynamical quantum phase transitions in two-dimensional closed quantum systems
Bhattacharya, Utso; Dutta, Amit
2017-07-01
Dynamical quantum phase transitions (DQPTs) manifested in the nonanalyticities in the temporal evolution of a closed quantum system generated by the time-independent final Hamiltonian, following a quench (or ramping) of a parameter of the Hamiltonian, is an emerging frontier of nonequilibrium quantum dynamics. We, here, introduce the notion of a dynamical topological order parameter (DTOP) that characterizes these DQPTs occurring in quenched (or ramped) two-dimensional closed quantum systems; this is quite a nontrivial generalization of the notion of DTOP introduced in Budich and Heyl [Phys. Rev. B 93, 085416 (2016), 10.1103/PhysRevB.93.085416] for one-dimensional situations. This DTOP is obtained from the "gauge-invariant" Pancharatnam phase extracted from the Loschmidt overlap, i.e., the modulus of the overlap between the initially prepared state and its time-evolved counterpart reached following a temporal evolution generated by the time-independent final Hamiltonian. This generic proposal is illustrated considering DQPTs occurring in the subsequent temporal evolution following a sudden quench of the staggered mass of the topological Haldane model on a hexagonal lattice where it stays fixed to zero or unity and makes a discontinuous jump between these two values at critical times at which DQPTs occur. What is remarkable is that while the topology of the equilibrium model is characterized by the Chern number, the emergent topology associated with the DQPTs is characterized by a generalized winding number.
Quantum spin dynamics and entanglement generation with hundreds of trapped ions
Bohnet, Justin G.; Sawyer, Brian C.; Britton, Joseph W.; Wall, Michael L.; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J.
2016-06-01
Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of 9Be+ ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods.
Quantum spin dynamics and entanglement generation with hundreds of trapped ions
Bohnet, Justin G; Britton, Joseph W; Wall, Michael L; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J
2015-01-01
Quantum simulation of spin models can provide insight into complex problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. Here we study non-equilibrium, quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of $^9$Be$^+$ ions in a Penning trap. We verify entanglement in the form of spin-squeezed states for up to 219 ions, directly observing 4.0$\\pm$0.9 dB of spectroscopic enhancement. We also observe evidence of non-Gaussian, over-squeezed states in the full counting statistics. We find good agreement with ab-initio theory that includes competition between entanglement and decoherence, laying the groundwork for simulations of the transverse-field Ising model with variable-range interactions, for which numerical solutions are, in general, classically intractable.
Werbos, P J
2003-01-01
Quantum Field Theory (QFT) makes predictions by combining two sets of assumptions: (1) quantum dynamics, such as a Schrodinger or Liouville equation; (2) quantum measurement, such as stochastic collapse to an eigenfunction of a measurement operator. A previous paper defined a classical density matrix R encoding the statistical moments of an ensemble of states of classical second-order Hamiltonian field theory. It proved Tr(RQ)=E(Q), etc., for the usual field operators as defined by Weinberg, and it proved that those observables of the classical system obey the usual Heisenberg dynamic equation. However, R itself obeys dynamics different from the usual Liouville equation! This paper derives those dynamics, and calculates the discrepancy between CFT and normal form QFT in predicting general observables g(Q,P). There is some preliminary evidence for the conjecture that the discrepancies disappear in equilibrium states (bound states and scattering states) for finite bosonic field theories. Even if not, they appea...
Quantum Gravity and Matter: Counting Graphs on Causal Dynamical Triangulations
Benedetti, D
2006-01-01
An outstanding challenge for models of non-perturbative quantum gravity is the consistent formulation and quantitative evaluation of physical phenomena in a regime where geometry and matter are strongly coupled. After developing appropriate technical tools, one is interested in measuring and classifying how the quantum fluctuations of geometry alter the behaviour of matter, compared with that on a fixed background geometry. In the simplified context of two dimensions, we show how a method invented to analyze the critical behaviour of spin systems on flat lattices can be adapted to the fluctuating ensemble of curved spacetimes underlying the Causal Dynamical Triangulations (CDT) approach to quantum gravity. We develop a systematic counting of embedded graphs to evaluate the thermodynamic functions of the gravity-matter models in a high- and low-temperature expansion. For the case of the Ising model, we compute the series expansions for the magnetic susceptibility on CDT lattices and their duals up to orders 6 ...
Quantum fluctuation dynamics in momentum spread of cold atoms
Institute of Scientific and Technical Information of China (English)
WANG Zhong-jie; WANG Qin-mou; HUANG Wan-xia
2003-01-01
Dynamics of the quantum system that consists of a cold atom in a modulated standing wave of light is analyzed using the time-dependent variational principle formulation based on squeezed coherent states. A group of ordinary differential equations describing evolution of two pairs of canonically conjugate variables (q(t), p(t); G(t), Π(t)) are derived where G(t) and Π(t) describe the quantum fluctuations of the system. It has been shown that a transition from the regular motion to the chaotic motion in G(t), Π(t) phase space. Quantum system seems to be capable to show the classical-like chaotic structure.
Dynamical Horizon Entropy Bound Conjecture in Loop Quantum Cosmology
Institute of Scientific and Technical Information of China (English)
李丽仿; 朱建阳
2012-01-01
The covariant entropy bound conjecture is an important hint for the quantum gravity, with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing ever show the consistence between the loop gravity theory and one version of this conjecture. Recently, He and Zhang [J. High Energy Phys. 10 （2007） 077] proposed a version for the dynamical horizon of the universe, which validates the entropy bound conjecture for the cosmology filled with perfect fluid in the classical scenario when the universe is far away from the big bang singularity. However, their conjecture breaks down near big bang region. We examine this conjecture in the context of the loop quantum cosmology. With the example of photon gas, this conjecture is protected by the quantum geometry effects as expected.
An exact factorization perspective on quantum interferences in nonadiabatic dynamics
Curchod, Basile F. E.; Agostini, Federica; Gross, E. K. U.
2016-07-01
Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrast to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.
An Exact Factorization Perspective on Quantum Interferences in Nonadiabatic Dynamics
Curchod, Basile F E; Gross, E K U
2016-01-01
Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface - the exact surface on which the nuclear dynamics takes place - using an exactly-solvable model to reproduce different conditions for quantum interferences. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrast to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics the one of the exact nuclear probability density.
Loop quantum cosmology: from pre-inflationary dynamics to observations
Ashtekar, Abhay; Barrau, Aurélien
2015-12-01
The Planck collaboration has provided us rich information about the early Universe, and a host of new observational missions will soon shed further light on the ‘anomalies’ that appear to exist on the largest angular scales. From a quantum gravity perspective, it is natural to inquire if one can trace back the origin of such puzzling features to Planck scale physics. Loop quantum cosmology provides a promising avenue to explore this issue because of its natural resolution of the big bang singularity. Thanks to advances over the last decade, the theory has matured sufficiently to allow concrete calculations of the phenomenological consequences of its pre-inflationary dynamics. In this article we summarize the current status of the ensuing two-way dialog between quantum gravity and observations.
Dynamical eigenfunctions and critical density in loop quantum cosmology
Craig, David A
2012-01-01
We offer a new, physically transparent argument for the existence of the critical, universal maximum matter density in loop quantum cosmology for the case of a flat Friedmann-Lemaitre-Robertson-Walker cosmology with scalar matter. The argument is based on the existence of a sharp exponential ultraviolet cutoff in momentum space on the eigenfunctions of the quantum cosmological dynamical evolution operator (the gravitational part of the Hamiltonian constraint), attributable to the fundamental discreteness of spatial volume in loop quantum cosmology. The existence of the cutoff is proved directly from recently found exact solutions for the eigenfunctions for this model. As a consequence, the operators corresponding to the momentum of the scalar field and the spatial volume approximately commute. The ultraviolet cutoff then implies that the scalar momentum, though not a bounded operator, is in effect bounded on subspaces of constant volume, leading to the upper bound on the expectation value of the matter densit...
Controllability of open quantum systems with Kraus-map dynamics
Energy Technology Data Exchange (ETDEWEB)
Wu Rong; Pechen, Alexander; Brif, Constantin; Rabitz, Herschel [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)
2007-05-25
This paper presents a constructive proof of complete kinematic state controllability of finite-dimensional open quantum systems whose dynamics are represented by Kraus maps. For any pair of states (pure or mixed) on the Hilbert space of the system, we explicitly show how to construct a Kraus map that transforms one state into another. Moreover, we prove by construction the existence of a Kraus map that transforms all initial states into a predefined target state (such a process may be used, for example, in quantum information dilution). Thus, in sharp contrast to unitary control, Kraus-map dynamics allows for the design of controls which are robust to variations in the initial state of the system. The capabilities of non-unitary control for population transfer between pure states illustrated for an example of a two-level system by constructing a family of non-unitary Kraus maps to transform one pure state into another. The problem of dynamic state controllability of open quantum systems (i.e., controllability of state-to-state transformations, given a set of available dynamical resources such as coherent controls, incoherent interactions with the environment, and measurements) is also discussed.
Open quantum system parameters from molecular dynamics
Wang, Xiaoqing; Wüster, Sebastian; Eisfeld, Alexander
2015-01-01
We extract the site energies and spectral densities of the Fenna-Matthews-Olson (FMO) pigment protein complex of green sulphur bacteria from simulations of molecular dynamics combined with energy gap calculations. Comparing four different combinations of methods, we investigate the origin of quantitative differences regarding site energies and spectral densities obtained previously in the literature. We find that different forcefields for molecular dynamics and varying local energy minima found by the structure relaxation yield significantly different results. Nevertheless, a picture averaged over these variations is in good agreement with experiments and some other theory results. Throughout, we discuss how vibrations external- or internal to the pigment molecules enter the extracted quantities differently and can be distinguished. Our results offer some guidance to set up more computationally intensive calculations for a precise determination of spectral densities in the future. These are required to determ...
Partial dynamical symmetries in quantum systems
Leviatan, A
2011-01-01
We discuss the the notion of a partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by only a subset of solvable eigenstates, while other eigenstates are strongly mixed. We present an explicit construction of Hamiltonians with this property, including higher-order terms, and portray their significance for spectroscopy and shape-phase transitions in nuclei. The occurrence of both a single PDS, relevant to stable structures, and of several PDSs, relevant to coexistence phenomena, are considered.
Hole confinement and dynamics in delta-doped Ge quantum dots
Halsall, M. P.; Dunbar, A. D. F.; Shiraki, Y.; Miura, M.; Wells, J. P. R.
2004-01-01
We report picosecond pump-probe studies of the dynamics of inter-level transitions in p-type Ge quantum dot structures using a free electron laser as a source of intense mid-infrared pulses. The wavelength-independent lifetime of around 210 ps is much longer than have been recently reported in SiGe/
Carrier dynamics in submonolayer InGaAs/GaAs quantum dots
DEFF Research Database (Denmark)
Xu, Zhangcheng; Zhang, Yating; Hvam, Jørn Märcher
2006-01-01
Carrier dynamics of submonolayer InGaAs/GaAs quantum dots (QDs) were studied by microphotoluminecence (MPL), selectively excited photoluminescence (SEPL), and time-resolved photoluminescence (TRPL). MPL and SEPL show the coexistence of localized and delocalized states, and different local phonon...
Dynamical quantum Hall effect in the parameter space.
Gritsev, V; Polkovnikov, A
2012-04-24
Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect.
Entanglement dynamics in quantum information theory
Energy Technology Data Exchange (ETDEWEB)
Cubitt, T.S.
2007-03-29
This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more
Classical and quantum dynamics of a model for atomic-molecular Bose--Einstein condensates
Santos Filho, Gilberto Nascimento; Tonel, Arlei Prestes; Foerster, Angela; Links, Jon(Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland, 4072, Australia)
2005-01-01
We study a model for a two-mode atomic-molecular Bose--Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.
Bhole, Gaurav; Anjusha, V. S.; Mahesh, T. S.
2016-04-01
A robust control over quantum dynamics is of paramount importance for quantum technologies. Many of the existing control techniques are based on smooth Hamiltonian modulations involving repeated calculations of basic unitaries resulting in time complexities scaling rapidly with the length of the control sequence. Here we show that bang-bang controls need one-time calculation of basic unitaries and hence scale much more efficiently. By employing a global optimization routine such as the genetic algorithm, it is possible to synthesize not only highly intricate unitaries, but also certain nonunitary operations. We demonstrate the unitary control through the implementation of the optimal fixed-point quantum search algorithm in a three-qubit nuclear magnetic resonance (NMR) system. Moreover, by combining the bang-bang pulses with the crusher gradients, we also demonstrate nonunitary transformations of thermal equilibrium states into effective pure states in three- as well as five-qubit NMR systems.
Pfalzgraff, William C; Kelly, Aaron; Markland, Thomas E
2015-12-03
The development of methods that can efficiently and accurately treat nonadiabatic dynamics in quantum systems coupled to arbitrary atomistic environments remains a significant challenge in problems ranging from exciton transport in photovoltaic materials to electron and proton transfer in catalysis. Here we show that our recently introduced MF-GQME approach, which combines Ehrenfest mean field theory with the generalized quantum master equation framework, is able to yield quantitative accuracy over a wide range of charge-transfer regimes in fully atomistic environments. This is accompanied by computational speed-ups of up to 3 orders of magnitude over a direct application of Ehrenfest theory. This development offers the opportunity to efficiently investigate the atomistic details of nonadiabatic quantum relaxation processes in regimes where obtaining accurate results has previously been elusive.
Quantized Hamilton dynamics describes quantum discrete breathers in a simple way.
Igumenshchev, Kirill; Prezhdo, Oleg
2011-08-01
We study the localization of energy in a nonlinear coupled system, exhibiting so-called breather modes, using quantized Hamilton dynamics (QHD). Already at the lowest order, which is only twice as complex as classical mechanics, this simple semiclassical method incorporates quantum-mechanical effects. The transition between the localized and delocalized regimes is instantaneous in classical mechanics, while it is gradual due to tunneling in both quantum mechanics and QHD. In contrast to classical mechanics, which predicts an abrupt appearance of breathers, quantum mechanics and QHD show an alternation of localized and delocalized behavior in the transient region. QHD includes zero-point energy that is reflected in a shifted energy asymptote for the localized states, providing another improvement on the classical perspective. By detailed analysis of the distribution and transfer of energy within classical mechanics, QHD, and quantum dynamics, we conclude that QHD is an efficient approach that accounts for moderate quantum effects and can be used to identify quantum breathers in large nonlinear systems.
Universal short-time quantum critical dynamics in imaginary time
Yin, Shuai; Mai, Peizhi; Zhong, Fan
2014-04-01
We propose a scaling theory for the universal imaginary-time quantum critical dynamics for both short and long times. We discover that there exists a universal critical initial slip related to a small initial order parameter M0. In this stage, the order parameter M increases with the imaginary time τ as M ∝M0τθ with a universal initial-slip exponent θ. For the one-dimensional transverse-field Ising model, we estimate θ to be 0.373, which is markedly distinct from its classical counterpart. Apart from the local order parameter, we also show that the entanglement entropy exhibits universal behavior in the short-time region. As the critical exponents in the early stage and in equilibrium are identical, we apply the short-time dynamics method to determine quantum critical properties. The method is generally applicable in both the Landau-Ginzburg-Wilson paradigm and topological phase transitions.
Recurrence properties of quantum observables in wave packet dynamics
Sudheesh, C; Balakrishnan, V
2009-01-01
We investigate the recurrence properties of the time series of quantum mechanical expectation values, in terms of two representative models for a single-mode radiation field interacting with a nonlinear medium. From recurrence-time distributions, return maps and recurrence plots, we conclude that the dynamics of appropriate observables pertaining to the field can vary from quasiperiodicity to hyperbolicity, depending on the extent of the nonlinearity and of the departure from coherence of the initial state of the field. We establish that, in a simple bipartite model in which the field is effectively an open quantum system, a decaying exponential recurrence-time distribution, characteristic of a hyperbolic dynamical system, is associated with chaotic temporal evolution as characterized by a positive Liapunov exponent.
A computable branching process for the Wigner quantum dynamics
Shao, Sihong
2016-01-01
A branching process treatment for the nonlocal Wigner pseudo-differential operator and its numerical applications in quantum dynamics is proposed and analyzed. We start from the discussion on two typical truncations of the nonlocal term, i.e., the $k$-truncated and $y$-truncated models. After introducing an auxiliary function $\\gamma(\\bm{x})$, the (truncated) Wigner equation is reformulated into the integral formulation as well as its adjoint correspondence, both of which can be regarded as the renewal-type equations and have transparent stochastic interpretation. We prove that the moment of a branching process happens to be the solution for the adjoint equation, which connects rigorously the Wigner quantum dynamics to the stochastic branching process, and thus a sound mathematical framework for the Wigner Monte Carlo methods is established. Within the framework, the branching process for the $y$-truncated model recovers the popular signed particle Monte Carlo method which needs a discretization of the moment...
Dynamical Transport Property through an Interacting Quantum Wire
Institute of Scientific and Technical Information of China (English)
CHENG Fang; ZHOU Guang-Hui
2005-01-01
@@ Using the equation of motion, we investigate theoretically the dynamical ac conductance of a clean Luttingerliquid quantum wire adiabatically coupled to Fermi liquid electron reservoirs in the presence of short-ranged electron-electron interactions. For a perfect single mode quantum wire, in the limit of zero-ranged interaction we conclude that the static dc conductance of ω→ 0 is e2/h, which is independent of the electron interactions. While in the dynamical case of ω≠ 0, the ac conductance oscillates with the amplitude e2/h and the period which depends on the interaction strength and the driving frequency as well as the position in the wire.
Quantum dynamics of impurities coupled to a Fermi sea
Parish, Meera M.; Levinsen, Jesper
2016-11-01
We consider the dynamics of an impurity atom immersed in an ideal Fermi gas at zero temperature. We focus on the coherent quantum evolution of the impurity following a quench to strong impurity-fermion interactions, where the interactions are assumed to be short range like in cold-atom experiments. To approximately model the many-body time evolution, we use a truncated basis method, where at most two particle-hole excitations of the Fermi sea are included. When the system is initially noninteracting, we show that our method exactly captures the short-time dynamics following the quench, and we find that the overlap between initial and final states displays a universal nonanalytic dependence on time in this limit. We further demonstrate how our method can be used to compute the impurity spectral function, as well as describe many-body phenomena involving coupled impurity spin states, such as Rabi oscillations in a medium or highly engineered quantum quenches.
Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties
Torres-Herrera, Eduardo; Karp, Jonathan; Távora, Marco; Santos, Lea
2016-10-01
We study the static and dynamical properties of isolated many-body quantum systems and compare them with the results for full random matrices. In doing so, we link concepts from quantum information theory with those from quantum chaos. In particular, we relate the von Neumann entanglement entropy with the Shannon information entropy and discuss their relevance for the analysis of the degree of complexity of the eigenstates, the behavior of the system at different time scales and the conditions for thermalization. A main advantage of full random matrices is that they enable the derivation of analytical expressions that agree extremely well with the numerics and provide bounds for realistic many-body quantum systems.
Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties
Directory of Open Access Journals (Sweden)
Eduardo Jonathan Torres-Herrera
2016-10-01
Full Text Available We study the static and dynamical properties of isolated many-body quantum systems and compare them with the results for full random matrices. In doing so, we link concepts from quantum information theory with those from quantum chaos. In particular, we relate the von Neumann entanglement entropy with the Shannon information entropy and discuss their relevance for the analysis of the degree of complexity of the eigenstates, the behavior of the system at different time scales and the conditions for thermalization. A main advantage of full random matrices is that they enable the derivation of analytical expressions that agree extremely well with the numerics and provide bounds for realistic many-body quantum systems.
Quantum dynamics of a single dislocation
de Gennes, Pierre-Gilles
We discuss the zero temperature motions of an edge dislocation in a quantum solid (e.g., He4). If the dislocation has one kink (equal in length to its Burgers vector b) the kink has a creation energy U and can move along the line with a certain transfer integral t. When t and U are of comparable magnitude, two opposite kinks can form an extended bound state, with a size l. The overall shape of the dislocation in the ground state is then associated with a random walk of persistence length l (along the line) and hop sizes b. We also discuss the motions of kinks under an applied shear stress σ: the glide velocity is proportional to exp(-σ*/σ), where σ* is a characteristic stress, controlled by tunneling processes. Mouvements quantiques d'une dislocation. On analyse le mouvement à température nulle d'une dislocation coin dans un solide quantique (He4). La dislocation peut avoir un cran (d'énergie U) dans son plan de glissement. Le cran peut avancer ou reculer le long de la dislocation par effet tunnel, avec une certaine intégrale de transfert t. Deux crans de signe opposé peuvent former un état lié. En présence d'une contrainte extérieure σ, la ligne doit avancer avec une vitesse ~exp(-σ*/σ) où σ* est une contrainte seuil, contrôlée par l'effet tunnel.
Discrete-Time Controllability for Feedback Quantum Dynamics
Albertini, Francesca
2010-01-01
Controllability properties for discrete-time, Markovian quantum dynamics are investigated. We find that, while in general the controlled system is not finite-time controllable, feedback control allows for arbitrary asymptotic state-to-state transitions. Under further assumption on the form of the measurement, we show that finite-time controllability can be achieved in a time that scales linearly with the dimension of the system, and we provide an iterative procedure to design the unitary control actions.
Quantum dynamics of scalar bosons in a cosmic string background
Energy Technology Data Exchange (ETDEWEB)
Castro, Luis B. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)
2015-06-15
The quantum dynamics of scalar bosons embedded in the background of a cosmic string is considered. In this work, scalar bosons are described by the Duffin-Kemmer-Petiau (DKP) formalism. In particular, the effects of this topological defect in the equation of motion, energy spectrum, and DKP spinor are analyzed and discussed in detail. The exact solutions for the DKP oscillator in this background are presented in closed form. (orig.)
Scalar Field Dynamics Classical, Quantum and in Between
Salle, M; Vink, Jeroen C
2000-01-01
Using a Hartree ensemble approximation, we investigate the dynamics of the \\phi^4 model in 1+1 dimensions. We find that the fields initially thermalize with a Bose-Einstein distribution for the fields. Gradually, however, the distribution changes towards classical equipartition. Using suitable initial conditions quantum thermalization is achieved much faster than the onset of this undesirable equipartition. We also show how the numerical efficiency of our method can be significantly improved.
Nonlinear laser dynamics from quantum dots to cryptography
Lüdge, Kathy
2012-01-01
A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research.By presenting both experimental and theoretical results, the distinguished authors consider solitary lase
Vershynina, Anna
This dissertation discusses the properties of two open quantum systems with a general class of irreversible quantum dynamics. First we study Lieb-Robinson bounds in a quantum lattice systems. This bound gives an estimate for the speed of growth of the support of an evolved local observable up to an exponentially small error. In a second model we study the properties of a leaking cavity pumped by a random atomic beam. We begin by describing quantum systems on an infinite lattice with associated finite or infinite dimensional Hilbert space. The generator of the dynamics of this system is of the Lindblad-Kossakowski type and consists of two parts: the Hamiltonian interactions and the dissipative terms. We allow both of them to be time-dependent. This generator satisfies some suitable decay condition in space. We show that the dynamics with a such generator on a finite system is a well-defined quantum dynamics in a sense of a norm-continuous cocycle of unit preserving completely positive maps. Lieb-Robinson bounds for irreversible dynamics were first considered in the classical context and in for a class of quantum lattice systems with finite-range interactions. We extend those results by proving a Lieb-Robinson bound for lattice models with a more general class of quantum dynamics. Then we use Lieb-Robinson bounds for a finite lattice systems to prove the existence of the thermodynamic limit of the dynamics. We show that in a strong limit there exits a strongly continuous cocycle of unit preserving completely positive maps. Which means that the dynamics exists in an infinite system, where Lieb-Robinson bounds also holds. In the second part of the dissertation we consider a system that consists of a beam of two-level atoms that pass one by one through the microwave cavity. The atoms are randomly excited and there is exactly one atom present in the cavity at any given moment. We consider both the ideal and leaky cavity and study the time asymptotic behavior of the state
Energy Technology Data Exchange (ETDEWEB)
Musa, Ahmed Y., E-mail: ahmed.musa@ymail.com [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Takriff, Mohd Sobri [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia)
2011-09-15
Highlights: {yields} This work deals with a study of chemical additives for corrosion inhibition of mild steel in acidic conditions. {yields} The effects of the additive 4,4-dimethyl-3-thiosemicarbazide (DTS) on mild steel were studied by means of electrochemical techniques. {yields} Quantum chemical calculations and molecular dynamic model were performed to characterize the inhibition mechanism. {yields} The calculations provided information that helps in the analysis/interpretation of the experimental work. - Abstract: The inhibition of mild steel corrosion in a 2.5 M H{sub 2}SO{sub 4} solution by 4,4-dimethyl-3-thiosemicarbazide (DTS) was studied at 30 deg. C using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Quantum chemical parameters were calculated for DTS using PM3-SCF method. The molecular dynamic method was performed to simulate the adsorption of the DTS molecules on Fe surface. Results showed that DTS performed excellent as inhibitor for mild steel corrosion in a 2.5 M H{sub 2}SO{sub 4} solution and indicated that the inhibition efficiencies increase with the concentration of inhibitor. Theoretical results indicated that DTS could adsorb on the mild steel surface firmly through heteroatoms.
Shkrob, I A; Larsen, R E; Schwartz, B J; Glover, William J.; Larsen, Ross E.; Schwartz, Benjamin J.; Shkrob, Ilya A.
2006-01-01
Adiabatic mixed quantum/classical molecular dynamics simulations were used to generate snapshots of the hydrated electron (e-) in liquid water at 300 K. Water cluster anions that include two complete solvation shells centered on the e- were extracted from these simulations and embedded in a matrix of fractional point charges designed to represent the rest of the solvent. Density functional theory and single-excitation configuration interaction methods were then applied to these embedded clusters. The salient feature of these hybrid calculations is significant transfer (ca. 0.18) of the excess electron's charge density into the O 2p orbitals in OH groups forming the solvation cavity. We used the results of these calculations to examine the structure of the molecular orbitals, the density of states, the absorption spectra in the visible and ultraviolet, the hyperfine coupling (hfc) tensors, and the IR and Raman spectra of the e-. The calculated hfc tensors were used to compute the EPR and ESEEM spectra for the ...
An eight-dimensional quantum dynamics study of the Cl + CH{sub 4}→ HCl + CH{sub 3} reaction
Energy Technology Data Exchange (ETDEWEB)
Liu, Na; Yang, Minghui, E-mail: yangmh@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)
2015-10-07
In this work, the later-barrier reaction Cl + CH{sub 4} → HCl + CH{sub 3} is investigated with an eight-dimensional quantum dynamics method [R. Liu et al., J. Chem. Phys. 137, 174113 (2012)] on the ab initio potential energy surface of Czakó and Bowman [J. Chem. Phys. 136, 044307 (2012)]. The reaction probabilities with CH{sub 4} initially in its ground and vibrationally excited states are calculated with a time-dependent wavepacket method. The theoretical integral cross sections (ICSs) are extensively compared with the available experimental measurements. For the ground state reaction, the theoretical ICSs excellently agree with the experimental ones. The good agreements are also achieved for ratios between ICSs of excited reactions. For ICS ratios between various states, the theoretical values are also consistent with the experimental observations. The rate constants over 200-2000 K are calculated and the non-Arrhenius effect has been observed which is coincident with the previous experimental observations and theoretical calculations.
Directory of Open Access Journals (Sweden)
James W. Gauld
2012-10-01
Full Text Available Ornithine cyclodeaminase (OCD is an NAD+-dependent deaminase that is found in bacterial species such as Pseudomonas putida. Importantly, it catalyzes the direct conversion of the amino acid L-ornithine to L-proline. Using molecular dynamics (MD and a hybrid quantum mechanics/molecular mechanics (QM/MM method in the ONIOM formalism, the catalytic mechanism of OCD has been examined. The rate limiting step is calculated to be the initial step in the overall mechanism: hydride transfer from the L-ornithine’s Cα–H group to the NAD+ cofactor with concomitant formation of a Cα=NH2+ Schiff base with a barrier of 90.6 kJ mol−1. Importantly, no water is observed within the active site during the MD simulations suitably positioned to hydrolyze the Cα=NH2+ intermediate to form the corresponding carbonyl. Instead, the reaction proceeds via a non-hydrolytic mechanism involving direct nucleophilic attack of the δ-amine at the Cα-position. This is then followed by cleavage and loss of the α-NH2 group to give the Δ1-pyrroline-2-carboxylate that is subsequently reduced to L-proline.
2016-01-01
We present a new open-source Python package for exact diagonalization and quantum dynamics of spin(-photon) chains, called QuSpin, supporting the use of various symmetries and (imaginary) time evolution for chains up to 32 sites in length. The package is well-suited to study, among others, quantum quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and other dynamical phase transitions, periodically-driven (Floquet) systems, adiabatic and co...
Richaud, Andrea; Penna, Vittorio
2017-07-01
We study the quantum dynamics of the Bose-Hubbard model on a ladder formed by two rings coupled by the tunneling effect. By implementing the Bogoliubov approximation scheme, we prove that, despite the presence of the inter-ring coupling term, the Hamiltonian decouples in many independent sub-Hamiltonians Ĥk associated with momentum-mode pairs ±k . Each sub-Hamiltonian Ĥk is then shown to be part of a specific dynamical algebra. The properties of the latter allow us to perform the diagonalization process, to find the energy spectrum and the conserved quantities of the model, and to derive the time evolution of important physical observables. We then apply this solution scheme to the simplest possible closed ladder, the double trimer. After observing that the excitations of the system are weakly populated vortices, we explore the corresponding dynamics by varying the initial conditions and the model parameters. Finally, we show that the inter-ring tunneling determines a spectral collapse when approaching the border of the dynamical-stability region.
Quantum dynamic behaviour in a coupled cavities system
Institute of Scientific and Technical Information of China (English)
Peng Jun; Wu Yun-Wen; Li Xiao-Juan
2012-01-01
The dynamic behaviour of the two-site coupled cavities model which is doped with ta wo-level system is investigated.The exact dynamic solutions in the general condition are obtained via Laplace transform.The simple analytical solutions are obtained in several particular cases,which demonstrate the clear and simple physical picture for the quantum state transition of the system.In the large detuning or hoppling case,the quantum states transferring between qubits follow a slow periodic oscillation induced by the very weak excitation of the cavity mode.In the large coupling case,the system can be interpreted as two Jaynes-Cummings model subsystems which interact through photon hop between the two cavities.In the case of λ≈△(》) g,the quantum states transition of qubits is accompanied by the excitation of the cavity,and the cavity modes have the same dynamic behaviours and the amplitude of probability is equal to 0.25 which does not change with the variation of parameter.
Method for discovering relationships in data by dynamic quantum clustering
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin; Horn, David
2014-10-28
Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
Method for discovering relationships in data by dynamic quantum clustering
Weinstein, Marvin; Horn, David
2014-10-28
Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
Multi-group dynamic quantum secret sharing with single photons
Liu, Hongwei; Ma, Haiqiang; Wei, Kejin; Yang, Xiuqing; Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu
2016-07-01
In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application.
Method for discovering relationships in data by dynamic quantum clustering
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin; Horn, David
2017-05-09
Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
Quantum Dynamics of Ultracold Bose Polarons
Shchadilova, Yulia E.; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene
2016-09-01
We analyze the dynamics of Bose polarons in the vicinity of a Feshbach resonance between the impurity and host atoms. We compute the radio-frequency absorption spectra for the case when the initial state of the impurity is noninteracting and the final state is strongly interacting with the host atoms. We compare results of different theoretical approaches including a single excitation expansion, a self-consistent T -matrix method, and a time-dependent coherent state approach. Our analysis reveals sharp spectral features arising from metastable states with several Bogoliubov excitations bound to the impurity atom. This surprising result of the interplay of many-body and few-body Efimov type bound state physics can only be obtained by going beyond the commonly used Fröhlich model and including quasiparticle scattering processes. Close to the resonance we find that strong fluctuations lead to a broad, incoherent absorption spectrum where no quasiparticle peak can be assigned.
Quantum dynamics of the avian compass
Walters, Zachary B.
2014-10-01
The ability of migratory birds to orient relative to the Earth's magnetic field is believed to involve a coherent superposition of two spin states of a radical electron pair. However, the mechanism by which this coherence can be maintained in the face of strong interactions with the cellular environment has remained unclear. This paper addresses the problem of decoherence between two electron spins due to hyperfine interaction with a bath of spin-1/2 nuclei. Dynamics of the radical pair density matrix are derived and shown to yield a simple mechanism for sensing magnetic field orientation. Rates of dephasing and decoherence are calculated ab initio and found to yield millisecond coherence times, consistent with behavioral experiments.
Ridolfo, A.; Stassi, R.; Di Stefano, O.
2017-06-01
We show that it is possible to realize quantum superpositions of switched-on and -off strong light-matter interaction in a single quantum dot- semiconductor microcavity system. Such superpositions enable the observation of counterintuitive quantum conditional dynamics effects. Situations are possible where cavity photons as well as the emitter luminescence display exponential decay but their joint detection probability exhibits vacuum Rabi oscillations. Remarkably, these quantum correlations are also present in the nonequilibrium steady state spectra of such coherently driven dissipative quantum systems.
Mixed quantum-classical dynamics for charge transport in organics.
Wang, Linjun; Prezhdo, Oleg V; Beljonne, David
2015-05-21
Charge transport plays a crucial role in the working principle of most opto-electronic and energy devices. This is especially true for organic materials where the first theoretical models date back to the 1950s and have continuously evolved ever since. Most of these descriptions rely on perturbation theory to treat small interactions in the Hamiltonian. In particular, applying a perturbative treatment to the electron-phonon and electron-electron coupling results in the band and hopping models, respectively, the signature of which is conveyed by a characteristic temperature dependence of mobility. This perspective describes recent progress of studying charge transport in organics using mixed quantum-classical dynamics techniques, including mean field and surface hopping theories. The studies go beyond the perturbation treatments and represent the processes explicitly in the time-domain, as they occur in real life. The challenges, advantages, and disadvantages of both approaches are systematically discussed. Special focus is dedicated to the temperature dependence of mobility, the role of local and nonlocal electron-phonon couplings, as well as the interplay between electronic and electron-phonon interactions.
Quantum dynamics of tight-binding networks coherently controlled by external fields
Institute of Scientific and Technical Information of China (English)
YANG Shuo; SONG Zhi; SUN Chang-pu
2007-01-01
With some reviews on the investigations on the schemes for quantum state transfer based on spin systems,we discuss the quantum dynamics of magnetically-controlled networks for Bloch electrons. The networks are constructed by connecting several tight-binding chains with uniform nearest-neighbor hopping integrals. The external magnetic field and the connecting hopping integrals can be used to control the intrinsic properties of the networks. For several typical networks, rigorous results are shown for some specific values of external magnetic field and the connecting hopping integrals: a complicated network can be reduced into a virtual network, which is a direct sum of some independent chains with uniform nearest-neighbor hopping integrals. These reductions are due to the fermionic statistics and the Aharonov-Bohm effects. In application, we study the quantum dynamics of wave packet motion of Bloch electrons in such networks. For various geometrical configurations, these networks can function as some optical devices,such as beam splitters, switches and interferometers. When the Bloch electrons as Gaussian wave packets input these devices, various quantum coherence phenomena can be observed, e.g., the perfect quantum state transfer without reflection in a Y-shaped beam, the multi-mode entanglers of electron wave by star-shaped network, magnetically controlled switches, and Bloch electron interferometer with the lattice Aharonov-Bohm effects. With these quantum coherent features, the networks are expected to be used as quantum information processors for the fermion system based on the possible engineered solid state systems, such as the array of quantum dots that can be implemented experimentally.
Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces
Heaps, Charles W.; Mazziotti, David A.
2016-04-01
Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.
Energy Technology Data Exchange (ETDEWEB)
Pahlavani, H., E-mail: h-pahlavani@qom.ac.ir; Kolur, E. Rahmanpour
2016-08-15
Based on the electrical charge discreteness, the Hamiltonian operator for the mutual inductance coupled quantum mesoscopic LC circuits has been found. The persistent current on two driven coupled mesoscopic electric pure L circuits (two quantum loops) has been obtained by using algebraic quantum dynamic approach. The influence of the mutual inductance on energy spectrum and quantum fluctuations of the charge and current for two coupled quantum electric mesoscopic LC circuits have been investigated.
Mouhat, Félix; Sorella, Sandro; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Casula, Michele
2017-06-13
We introduce a novel approach for a fully quantum description of coupled electron-ion systems from first principles. It combines the variational quantum Monte Carlo solution of the electronic part with the path integral formalism for the quantum nuclear dynamics. On the one hand, the path integral molecular dynamics includes nuclear quantum effects by adding a set of fictitious classical particles (beads) aimed at reproducing nuclear quantum fluctuations via a harmonic kinetic term. On the other hand, variational quantum Monte Carlo can provide Born-Oppenheimer potential energy surfaces with a precision comparable to the most-advanced post-Hartree-Fock approaches, and with a favorable scaling with the system size. In order to cope with the intrinsic noise due to the stochastic nature of quantum Monte Carlo methods, we generalize the path integral molecular dynamics using a Langevin thermostat correlated according to the covariance matrix of quantum Monte Carlo nuclear forces. The variational parameters of the quantum Monte Carlo wave function are evolved during the nuclear dynamics, such that the Born-Oppenheimer potential energy surface is unbiased. Statistical errors on the wave function parameters are reduced by resorting to bead grouping average, which we show to be accurate and well-controlled. Our general algorithm relies on a Trotter breakup between the dynamics driven by ionic forces and the one set by the harmonic interbead couplings. The latter is exactly integrated, even in the presence of the Langevin thermostat, thanks to the mapping onto an Ornstein-Uhlenbeck process. This framework turns out to be also very efficient in the case of noiseless (deterministic) ionic forces. The new implementation is validated on the Zundel ion (H5O2(+)) by direct comparison with standard path integral Langevin dynamics calculations made with a coupled cluster potential energy surface. Nuclear quantum effects are confirmed to be dominant over thermal effects well beyond
Non-Perturbative Quantum Dynamics of a New Inflation Model
Boyanovsky, D; De Vega, H J; Holman, R; Kumar, S P
1998-01-01
We consider an O(N) model coupled self-consistently to gravity in the semiclassical approximation, where the field is subject to `new inflation' type initial conditions. We study the dynamics self-consistently and non-perturbatively with non-equilibrium field theory methods in the large N limit. We find that spinodal instabilities drive the growth of non-perturbatively large quantum fluctuations which shut off the inflationary growth of the scale factor. We find that a very specific combination of these large fluctuations plus the inflaton zero mode assemble into a new effective field. This new field behaves classically and it is the object which actually rolls down. We show how this reinterpretation saves the standard picture of how metric perturbations are generated during inflation and that the spinodal growth of fluctuations dominates the time dependence of the Bardeen variable for superhorizon modes during inflation. We compute the amplitude and index for the spectrum of scalar density and tensor perturb...
Quantum molecular dynamics simulations of beryllium at high pressures
Desjarlais, Michael; Knudson, Marcus
2008-03-01
The phase boundaries and high pressure melt properties of beryllium have been the subject of several recent experimental and theoretical studies. The interest is motivated in part by the use of beryllium as an ablator material in inertial confinement fusion capsule designs. In this work, the high pressure melt curve, Hugoniot crossings, sound speeds, and phase boundaries of beryllium are explored with DFT based quantum molecular dynamics calculations. The entropy differences between the various phases of beryllium are extracted in the vicinity of the melt curve and agree favorably with earlier theoretical work on normal melting. High velocity flyer plate experiments with beryllium targets on Sandia's Z machine have generated high quality data for the Hugoniot, bulk sound speeds, and longitudinal sound speeds. This data provides a tight constraint on the pressure for the onset of shock melting of beryllium and intriguing information on the solid phase prior to melt. The results of the QMD calculations and the experimental results will be compared, and implications for the HCP and BCC phase boundaries of beryllium will be presented.