Classical and quantum Coulomb crystals
Bonitz, M; Baumgartner, H; Henning, C; Filinov, A; Block, D; Arp, O; Piel, A; Kading, S; Ivanov, Y; Melzer, A; Fehske, H; Filinov, V
2008-01-01
Strong correlation effects in classical and quantum plasmas are discussed. In particular, Coulomb (Wigner) crystallization phenomena are reviewed focusing on one-component non-neutral plasmas in traps and on macroscopic two-component neutral plasmas. The conditions for crystal formation in terms of critical values of the coupling parameters and the distance fluctuations and the phase diagram of Coulomb crystals are discussed.
Quantum crystals and spin chains
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, Robbert [KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam (Netherlands); Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Orlando, Domenico [Institut de Physique, Universite de Neuchatel, Rue Breguet 1, CH-2000 Neuchatel (Switzerland); Reffert, Susanne [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)], E-mail: sreffert@gmail.com
2009-04-21
In this article, we discuss the quantum version of the melting crystal corner in one, two, and three dimensions, generalizing the treatment for the quantum dimer model. Using a mapping to spin chains we find that the two-dimensional case (growth of random partitions) is integrable and leads directly to the Hamiltonian of the Heisenberg XXZ ferromagnet. The three-dimensional case of the melting crystal corner is described in terms of a system of coupled XXZ spin chains. We give a conjecture for its mass gap and analyze the system numerically.
Quantum crystals and spin chains
Dijkgraaf, Robbert; Orlando, Domenico; Reffert, Susanne
2009-04-01
In this article, we discuss the quantum version of the melting crystal corner in one, two, and three dimensions, generalizing the treatment for the quantum dimer model. Using a mapping to spin chains we find that the two-dimensional case (growth of random partitions) is integrable and leads directly to the Hamiltonian of the Heisenberg XXZ ferromagnet. The three-dimensional case of the melting crystal corner is described in terms of a system of coupled XXZ spin chains. We give a conjecture for its mass gap and analyze the system numerically.
Heralded quantum entanglement between two crystals
Usmani, Imam; Bussieres, Felix; Sangouard, Nicolas; Afzelius, Mikael; Gisin, Nicolas
2011-01-01
Quantum networks require the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater which allows overcoming the distance barrier of direct transmission of single photons, provided remote quantum memories can be entangled in a heralded fashion. Here we report the observation of heralded entanglement between two ensembles of rare-earth-ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of rare-earth-ions doped crystals for entangled quantum nodes and bring quantum networks based on solid-state resources one step clos...
Quantum Cascade Photonic Crystal lasers
Capasso, Federico
2004-03-01
QC lasers have emerged in recent years as the dominant laser technology for the mid-to far infrared spectrum in light of their room temperature operation, their tunability, ultrahigh speed operation and broad range of applications to chemical sensing, spectroscopy etc. (Ref. 1-3). After briefly reviewing the latter, I will describe a new class of mid-infrared QC lasers, Quantum Cascade Photonic Crystal Surface Emitting Lasers (QCPCSELS), that combine electronic and photonic band structure engineering to achieve vertical emission from the surface (Ref. 4). Devices operating on bandedge mode and on defect modes will be discussed. Exciting potential uses of these new devices exist in nonlinear optics, microfluidics as well as novel sensors. Finally a bird's eye view of other exciting areas of QC laser research will be given including broadband QCLs and new nonlinear optical sources based on multiwavelength QCLs. 1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Physics Today 55, 34 (May 2002) 2. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho and H. C. Liu, IEEE Journal of Selected Topics in Quantum Electronics, 6, 931 (2000). 3. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, IEEE J. Quantum Electron. 38, 511 (2002) 4. R. Colombelli, K. Srivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho and F. Capasso, Science 302, 1374 (2003)
Simulation and understanding of quantum crystals
Cazorla, Claudio
2016-01-01
Quantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (4He and Ne), molecular solids (H2 and CH4), and some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be only explained in terms of quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical for achieving progress in a number of fundamental and applied scientific fields like, for instance, planetary sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review describes the current physical understanding of quantum crystals and the wide variety of simulation techniques that are used to investigate them. Relevant aspects in these materials such as phase transformations, energy and structural properties, elasticity, and the effects of crystalline defects and dimensionality, are discussed thoroughly. An introduction to quantum Monte Carlo techniques, which in the present context are ...
Quantum Dots in Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Sollner, Immo Nathanael
This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....
Quantum Dots in Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Sollner, Immo Nathanael
This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....
Tuning quantum correlations with intracavity photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Castro, Maria M. de; Gomila, Damia; Zambrini, Roberta [IFISC, Institute for Cross-Disciplinary Physics and Complex Systems (CSIC-UIB), Campus UIB, E-07122 Palma de Mallorca (Spain); Garcia-March, Miguel Angel [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States)
2011-09-15
We show how to tune quantum noise in nonlinear systems by means of periodic spatial modulation. We prove that the introduction of an intracavity photonic crystal in a multimode optical parametric oscillator inhibits and enhances light quantum fluctuations. Furthermore, it leads to a significant noise reduction in field quadratures, robustness of squeezing in a wider angular range, and spatial entanglement. These results have potential benefits for quantum imaging, metrology, and quantum information applications and suggest a control mechanism of fluctuations by spatial modulation of interest also in other nonlinear systems.
Photonic crystal slab quantum well infrared photodetector
Kalchmair, S.; Detz, H.; Cole, G. D.; Andrews, A. M.; Klang, P.; Nobile, M.; Gansch, R.; Ostermaier, C.; Schrenk, W.; Strasser, G.
2011-01-01
In this letter we present a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS). With the PCS it is possible to enhance the absorption efficiency by increasing photon lifetime in the detector active region. To understand the optical properties of the device we simulate the PCS photonic band structure, which differs significantly from a real two-dimensional photonic crystal. By fabricating a PCS-QWIP with 100x less quantum well doping, compared to a standard QWIP, we are able to see strong absorption enhancement and sharp resonance peaks up to temperatures of 170 K.
Absence of Quantum Time Crystals.
Watanabe, Haruki; Oshikawa, Masaki
2015-06-26
In analogy with crystalline solids around us, Wilczek recently proposed the idea of "time crystals" as phases that spontaneously break the continuous time translation into a discrete subgroup. The proposal stimulated further studies and vigorous debates whether it can be realized in a physical system. However, a precise definition of the time crystal is needed to resolve the issue. Here we first present a definition of time crystals based on the time-dependent correlation functions of the order parameter. We then prove a no-go theorem that rules out the possibility of time crystals defined as such, in the ground state or in the canonical ensemble of a general Hamiltonian, which consists of not-too-long-range interactions.
Quantum Electrodynamics in Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Nielsen, Henri Thyrrestrup
In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... probability. The Q-factor distributions of Anderson localized modes have been measured in PhC waveguides with articial induced disorder with embedded emitters. The largest Q-factors are found in the sample with the smallest amount of disorder. From a comparison with the waveguide model the localization length...
Photonic crystal slab quantum cascade detector
Energy Technology Data Exchange (ETDEWEB)
Reininger, Peter, E-mail: peter.reininger@tuwien.ac.at; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, Vienna 1040 (Austria)
2013-12-09
In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.
Coulomb crystallization in classical and quantum systems
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter
Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot
DEFF Research Database (Denmark)
Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal
2016-01-01
unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width...... quantum optical properties for single photon application and quantum optics.......We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer...
The quantum, the geon, and the crystal
Olmo, Gonzalo J
2015-01-01
Effective geometries arising from a hypothetical discrete structure of space-time can play an important role in the understanding of the gravitational physics beyond General Relativity. To discuss this question, we make use of lessons from crystalline systems within solid state physics, where the presence of defects in the discrete microstructure of the crystal determine the kind of effective geometry needed to properly describe the system in the macroscopic continuum limit. In this work we study metric-affine theories with non-metricity and torsion, which are the gravitational analog of crystalline structures with point defects and dislocations. We consider a crystal-motivated gravitational action and show the presence of topologically non-trivial structures (wormholes) supported by an electromagnetic field. Their existence has important implications for the quantum foam picture and the effective gravitational geometries. We discuss how the dialogue between solid state physics systems and modified gravitatio...
Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities
DEFF Research Database (Denmark)
Madsen, Kristian Høeg
deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...
Tailoring quantum structures for active photonic crystals
DEFF Research Database (Denmark)
Kuznetsova, Nadezda
This work is dedicated to the tailoring of quantum structures, with particular attention to the integration of selective area grown (SAG) active material into photonic crystal (PhC) slabs. The platform based on active PhC is vital to the realization of highly efficient elements with low energy...... consumption for on-chip and chip-to-chip optical communication. In order to develop metal-organic vapor phase epitaxial selective area etching and growth, a mask was fabricated in the HSQ e-beam resist including optimization of exposure and development conditions. By use of CBr4 as an etchant, in situ etching...... area and between the structures oriented along the [0-1-1] and [0-11] directions. Strong wavelength dependence with variations of the mask width of a few μm and opening sizes of hundreds of nanometers was observed. Incorporation of an active medium into PhC structures has showed promising results...
Fractional decay of quantum dots in real photonic crystals
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Koenderink, A. Femius; Lodahl, Peter;
2008-01-01
We show that fractional decay may be observable in experiments using quantum dots and photonic crystals with parameters that are currently achievable. We focus on the case of inverse opal photonic crystals and locate the position in the crystal where the effect is most pronounced. Furthermore, we...
Local Quantum Dot Tuning on Photonic Crystal Chips
Faraon, Andrei; Fushman, Ilya; Stoltz, Nick; Petroff, Pierre; Vuckovic, Jelena
2007-01-01
Quantum networks based on InGaAs quantum dots embedded in photonic crystal devices rely on QDs being in resonance with each other and with the cavities they are embedded in. We developed a new technique based on temperature tuning to spectrally align different quantum dots located on the same chip. The technique allows for up to 1.8nm reversible on-chip quantum dot tuning.
Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals
Energy Technology Data Exchange (ETDEWEB)
See, Gloria G. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Xu, Lu; Nuzzo, Ralph G. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Sutanto, Erick; Alleyne, Andrew G. [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 154 Mechanical Engineering Building, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801 (United States)
2015-08-03
Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.
Crystals for neutron scattering studies of quantum magnetism
Energy Technology Data Exchange (ETDEWEB)
Yankova, Tantiana [ETH Zurich, Switzerland; Hüvonen, Dan [ETH Zurich, Switzerland; Mühlbauer, Sebastian [ETH Zurich, Switzerland; Schmidiger, David [ETH Zurich, Switzerland; Wulf, Erik [ETH Zurich, Switzerland; Hong, Tao [ORNL; Garlea, Vasile O [ORNL; Custelcean, Radu [ORNL; Ehlers, Georg [ORNL
2012-01-01
We review a strategy for targeted synthesis of large single crystal samples of prototype quantum magnets for inelastic neutron scattering experiments. Four case studies of organic copper halogenide S = 1/2 systems are presented. They are meant to illustrate that exciting experimental results pertaining to the forefront of many-body quantum physics can be obtained on samples grown using very simple techniques, standard laboratory equipment, and almost no experience in advanced crystal growth techniques.
Coupling of single quantum dots to a photonic crystal waveguide
DEFF Research Database (Denmark)
Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian
. An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...
Simulation and understanding of atomic and molecular quantum crystals
Cazorla, Claudio; Boronat, Jordi
2017-07-01
Quantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (He 4 and Ne), molecular solids (H2 and CH4 ), and some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be explained only in terms of quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical for achieving progress in a number of fundamental and applied scientific fields such as planetary sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review describes the current physical understanding of quantum crystals formed by atoms and small molecules, as well as the wide palette of simulation techniques that are used to investigate them. Relevant aspects in these materials such as phase transformations, structural properties, elasticity, crystalline defects, and the effects of reduced dimensionality are discussed thoroughly. An introduction to quantum Monte Carlo techniques, which in the present context are the simulation methods of choice, and other quantum simulation approaches (e.g., path-integral molecular dynamics and quantum thermal baths) is provided. The overarching objective of this article is twofold: first, to clarify in which crystals and physical situations the disregard of QNE may incur in important bias and erroneous interpretations. And second, to promote the study and appreciation of QNE, a topic that traditionally has been treated in the context of condensed matter physics, within the broad and interdisciplinary areas of materials science.
Coupling of single quantum dots to a photonic crystal waveguide
DEFF Research Database (Denmark)
Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;
. An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...
Quantum effects for particles channeling in a bent crystal
Feranchuk, Ilya; San, Nguyen Quang
2016-09-01
Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.
The Quantum Well of One-Dimensional Photonic Crystals
Directory of Open Access Journals (Sweden)
Xiao-Jing Liu
2015-01-01
Full Text Available We have studied the transmissivity of one-dimensional photonic crystals quantum well (QW with quantum theory approach. By calculation, we find that there are photon bound states in the QW structure (BA6(BBABBn(AB6, and the numbers of the bound states are equal to n+1. We have found that there are some new features in the QW, which can be used to design optic amplifier, attenuator, and optic filter of multiple channel.
Crystal Phase Quantum Well Emission with Digital Control.
Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M
2017-09-18
One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.
Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.
Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun
2014-12-04
Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device.
Spontaneous emission of quantum dots in disordered photonic crystal waveguides
DEFF Research Database (Denmark)
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;
2010-01-01
We report on the enhancement of the spontaneous emission rate of single semiconductor quantum dots embedded in a photonic crystal waveguide with engineered disorder. Random high-Q cavities, that are signature of Anderson localization, are measured in photoluminescence experiments and appear...
Slow light in quantum dot photonic crystal waveguides
DEFF Research Database (Denmark)
Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper
2009-01-01
A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...
Site-controlled quantum dots coupled to photonic crystal waveguides
DEFF Research Database (Denmark)
Rigal, B.; de Lasson, Jakob Rosenkrantz; Jarlov, C.;
2016-01-01
We demonstrate selective optical coupling of multiple, site controlled semiconductor quantum dots (QDs) to photonic crystal waveguide structures. The impact of the exact position and emission spectrum of the QDs on the coupling efficiency is elucidated. The influence of optical disorder and end...
Quantum melting of two-component Rydberg crystals
Lan, Zhihao; Lesanovsky, Igor
2016-01-01
We investigate the quantum melting of one dimensional crystals that are realized in an atomic lattice in which ground state atoms are laser excited to two Rydberg states. We focus on a regime where both, intra- and inter-state density-density interactions as well as coherent exchange interactions contribute. We determine stable crystalline phases in the classical limit and explore their melting under quantum fluctuations introduced by the excitation laser as well as two-body exchange. We find that quantum fluctuations introduced by the laser give rise to a devil's staircase structure which one might associate with transitions in the classical limit. The melting through exchange interactions is shown to also proceed in a step-like fashion, in case of mesoscopic crystals, due to the proliferation of Rydberg spinwaves.
Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents
Yannoni, C S; Vandersypen, L M K; Miller, D C; Kubinec, M G; Chuang, I L; Yannoni, Costantino S.; Sherwood, Mark H.; Vandersypen, Lieven M.K.; Miller, Dolores C.; Kubinec, Mark G.; Chuang, Isaac L.
1999-01-01
Liquid crystals offer several advantages as solvents for molecules used for NMR quantum computing (NMRQC). The dipolar coupling between nuclear spins manifest in the NMR spectra of molecules oriented by a liquid crystal permits a significant increase in clock frequency, while short spin-lattice relaxation times permit fast recycling of algorithms, and save time in calibration and signal-enhancement experiments. Furthermore, the use of liquid crystal solvents offers scalability in the form of an expanded library of spin-bearing molecules suitable for NMRQC. These ideas are demonstrated with the successful execution of a 2-qubit Grover search using a molecule ($^{13}$C$^{1}$HCl$_3$) oriented in a liquid crystal and a clock speed eight times greater than in an isotropic solvent. Perhaps more importantly, five times as many logic operations can be executed within the coherence time using the liquid crystal solvent.
Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices
Directory of Open Access Journals (Sweden)
Andrea L. Rodarte
2015-07-01
Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.
Lukishova, Svetlana G.; Liapis, Andreas C.; Bissell, Luke J.; Gehring, George M.; Winkler, Justin M.; Boyd, Robert W.
2015-03-01
We present here our results on using liquid crystals in experiments with nonclassical light sources: (1) single-photon sources exhibiting antibunching (separation of all photons in time), which are key components for secure quantum communication systems, and (2) entangled photon source with photons exhibiting quantum interference in a Hong-Ou- Mandel interferometer. In the first part, cholesteric liquid crystal hosts were used to create definite circular polarization of antibunched photons emitted by nanocrystal quantum dots. If the photon has unknown polarization, filtering it through a polarizer to produce the desired polarization for quantum key distribution with bits based on polarization states of photons will reduce by half the efficiency of a quantum cryptography system. In the first part, we also provide our results on observation of a circular polarized microcavity resonance in nanocrystal quantum dot fluorescence in a 1-D chiral photonic bandgap cholesteric liquid crystal microcavity. In the second part of this paper with indistinguishable, time-entangled photons, we demonstrate our experimental results on simulating quantum-mechanical barrier tunnelling phenomena. A Hong-Ou-Mandel dip (quantum interference effect) is shifted when a phase change was introduced on the way of one of entangled photons in pair (one arm of the interferometer) by inserting in this arm an electrically controlled planar-aligned nematic liquid crystal layer between two prisms in the conditions close to a frustrated total internal reflection. By applying different AC-voltages to the planar-aligned nematic layer and changing its refractive index, we can obtain various conditions for incident photon propagation - from total reflection to total transmission. Measuring changes of tunnelling times of photon through this structure with femtosecond resolution permitted us to answer some unresolved questions in quantum-mechanical barrier tunnelling phenomena.
Nanobeam photonic crystal cavity quantum dot laser
Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena
2010-01-01
The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.
Dynamics of disordered quantum Hall crystals
2003-01-01
Charge density waves are thought to be common in two-dimensional electron systems in quantizing magnetic fields. Such phases are formed by the quasiparticles of the topmost occupied Landau level when it is partially filled. One class of charge density wave phases can be described as electron solids. In weak magnetic fields (at high Landau levels) solids with many particles per unit cell - bubble phases - predominate. In strong magnetic fields (at the lowest Landau level) only crystals with on...
Quantum Chemistry of Solids LCAO Treatment of Crystals and Nanostructures
Evarestov, Robert A
2012-01-01
Quantum Chemistry of Solids delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of Hartree-Fock(HF), Density Function theory(DFT) and hybrid Hamiltonians. The translation and site symmetry consideration is included to establish connection between k-space solid –state physics and real-space quantum chemistry. The inclusion of electron correlation effects for periodic systems is considered on the basis of localized crystalline orbitals. The possibilities of LCAO methods for chemical bonding analysis in periodic systems are discussed. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties, including magnetic ordering and crystal structure optimization. In the second edition two new chapters are added in the application part II of t...
Distinctive features of a crystal, crystal-like properties of a liquid and atomic quantum effects
Pavlov, V. V.
2008-02-01
It is believed that 'a crystal is similar to the crowd which is tightly compressed within enclosed space' and its structure in the simplest case is similar to the closest ball packing. Based on this assumption the strength of a crystal, long range ordering, the granular structure, capability for polymorphic transformation etc. were deduced. In a liquid such properties are impossible even in feebly marked form. However some of crystal-like features of melts are revealed in experiments and they frequently remain unacknowledged with a theory. From the other hand, computer model of crystal does not give even listed distinctive features of a crystal state. In the classical model the solidification more than to sunflower oil consistence was not obtained. It is possible to reach the real solidification if quantum 'freezing' of a part of atomic degrees of freedom would taken into account and any movement would stopped at zero energy level. There are some reasons to believe that another crystal properties and corresponding crystal-like features of liquids also can be got basing on these atomic quantum effects. In this case the reasons of many discussions on 'heredity', 'memory' of liquid and its microheterogeneity disappear.
Quantum Memory via Wigner Crystals of Polar Molecules
Institute of Scientific and Technical Information of China (English)
薛鹏
2011-01-01
Collective excitations of rotational and spin states of an ensemble of polar molecules as a candidate for a highfidelity quantum memory are studied.The dipolar crystals are formed in the high-density limit of cold clouds of polar molecules under one-dimensional trapping conditions.The lifetime of quantum memory is calculated by identifying the dominant decoherence mechanisms,and we estimate their effects on gate operations,when a molecular ensemble qubit is transferred to a superconducting microwave cavity.%Collective excitations of rotational and spin states of an ensemble of polar molecules as a candidate for a high-fidelity quantum memory are studied. The dipolar crystals are formed in the high-density limit of cold clouds of polar molecules under one-dimensional trapping conditions. The lifetime of quantum memory is calculated by identifying the dominant decoherence mechanisms, and we estimate their effects on gate operations, when a molecular ensemble qubit is transferred to a superconducting microwave cavity.
DEFF Research Database (Denmark)
Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;
2008-01-01
We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements -factors of up to 0.89 ...
Study of Crystals Semiconductors in Superlattices via Quantum Mechanics
Directory of Open Access Journals (Sweden)
*1A. L. C. L. Jamshidi
2013-12-01
Full Text Available This work analyzes, from the effects related to the processes of transportation of carrier and the changes in the electronic structure of semiconductors materials due to the presence of defects and disorders in the crystalline net. These defects are located in specific areas of the material and either interact or remain inert. In general, they are described by local wave functions. The study of superlattices of semiconductor crystal considers important parameters such as disorder effects in crystals and the alternate periodic growth of the layer of two semiconductors with different gaps and minigaps energies. The quantum mechanical calculations are applied for determining the physical properties of the semiconductors crystals. This study encompasses the effects of defects and the crystalline disorders evaluation by quantum mechanics. Further, it is discuss the presence of defects in the periodic, quasiperiodic and disordered arrangements. The theoretical approach use to understand the mechanism and the results of experimental techniques in which are characterized the current and optic transportation of a semiconductor crystal.
Few-quantum-dot lasing in photonic crystal nanocavities
DEFF Research Database (Denmark)
Liu, Jin; Ates, Serkan; Stobbe, Søren;
2011-01-01
Photonic crystal nanolasers have attracted great interest both for fundamental research and applications in the past decade. In photonic crystal cavities, the leakage to optical modes is strongly reduced, which increases the spontaneous emission coupling factor, β. This is a crucial parameter for...... advanced semiconductor models of photonic crystal nanolasers is still missing [2]. The goal of this work is to get a deep understanding of the quantum dots based nanocavity lasers by comparing experiments to theory.......Photonic crystal nanolasers have attracted great interest both for fundamental research and applications in the past decade. In photonic crystal cavities, the leakage to optical modes is strongly reduced, which increases the spontaneous emission coupling factor, β. This is a crucial parameter...... for the threshold characteristics of lasers. With increasing β, the well-known step-like threshold behavior becomes smoother. Although the smooth lasing transitions of photonic crystal nanolasers were observed and fitted by traditional rate equation models [1], a systematic comparison between experiments and more...
Integrated photonic crystals and quantum well infrared photodetector
Zhou, T.; Tsui, D. C.; Choi, K. K.
2004-03-01
GaAs/AlGaAs based quantum well infrared photodetectors (QWIP) are becoming very reliable technologies that are widely used to detect mid-infrared light. Photonic crystals, on the other hand, are very powerful tools to manipulate light and thus are very crucial elements in future optical integration circuits. have fabricated a series of devices that incorporate QWIP and 2d photonic crystals together on a single GaAs based chip. These devices work at the 7-13 μ m range. Compared with the conventional photonic crystals designed for fiber communication, these devices have the advantage that they only require photolithography instead of e-beam lithography. The fabrication of such devices is thus far less costly and time-consuming.
Mixing effects in the crystallization of supercooled quantum binary liquids
Energy Technology Data Exchange (ETDEWEB)
Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)
2015-08-14
By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.
Optimized photonic crystal design for quantum well infrared photodetectors
Reininger, P.; Kalchmair, S.; Gansch, R.; Andrews, A. M.; Detz, H.; Zederbauer, T.; Ahn, S. I.; Schrenk, W.; Strasser, G.
2012-06-01
The performance of quantum well infrared photodetectors (QWIP) can be significantly enhanced combining it with a photonic crystal slab (PCS) resonator. In such a system the chosen PCS mode is designed to coincide with the absorption maximum of the photodetector by adjusting the lattice parameters. However there is a multitude of parameter sets that exhibit the same resonance frequency of the chosen PCS mode. We have investigated how the choice of the PC design can be exploited for a further enhancement of QWIPs. Several sets of lattice parameters that exhibit the chosen PCS mode at the same resonance frequency have been obtained and the finite difference time domain method was used to simulate the absorption spectra of the different PCS. A photonic crystal slab quantum well infrared photodetector with three different photonic crystal lattice designs that exhibit the same resonance frequency of the chosen PCS mode were designed, fabricated and measured. This work shows that the quality factor of a PCS-QWIP and therefore the absorption enhancement can be increased by an optimized PCS design. The improvement is a combined effect of a changed lattice constant, PC normalized radius and normalized slab thickness. An enhancement of the measured photocurrent of more than a factor of two was measured.
Photonic crystal-enhanced quantum dot infrared photodetectors
McKerracher, I. R.; Hattori, H. T.; Fu, L.; Tan, H. H.; Jagadish, C.
2008-08-01
Quantum dot infrared photodetectors (QDIPs) promise improved performance over existing technologies in the form of higher temperature operation and normal-incidence detection. Variation in the size of self-assembled quantum dots leads to a broadened spectral response, which is undesirable for multi-color detection. Photonic crystal slabs can filter the transmission of normally-incident light using Fano resonances, and thus may be integrated with QDIPs to create a narrowband detector. Finite-difference time-domain simulations were used to optimize such a filter for QDIPs grown by metal-organic chemical vapor deposition. The simulations predict that the integrated detector could show up to 76% decrease in the detector linewidth, with a tunable peak location. These devices were then fabricated by standard optical lithography, however the spectral width of the integrated device was similar to that of the unfiltered QDIP. This is attributed to imperfections in the filter, so alternative fabrication methods are discussed for future processing.
Quantum theory of exciton-photon coupling in photonic crystal slabs with embedded quantum wells
Gerace, D
2007-01-01
A theoretical description of radiation-matter coupling for semiconductor-based photonic crystal slabs is presented, in which quantum wells are embedded within the waveguide core layer. A full quantum theory is developed, by quantizing both the electromagnetic field with a spatial modulation of the refractive index and the exciton center of mass field in a periodic piecewise constant potential. The second-quantized hamiltonian of the interacting system is diagonalized with a generalized Hopfield method, thus yielding the complex dispersion of mixed exciton-photon modes including losses. The occurrence of both weak and strong coupling regimes is studied, and it is concluded that the new eigenstates of the system are described by quasi-particles called photonic crystal polaritons, which can occur in two situations: (i) below the light line, when a resonance between exciton and non-radiative photon levels occurs (guided polaritons), (ii) above the light line, provided the exciton-photon coupling is larger than th...
Conductance of a quantum wire in the Wigner crystal regime
Matveev, K. A.
2003-01-01
We study the effect of Coulomb interactions on the conductance of a single-mode quantum wire connecting two bulk leads. When the density of electrons in the wire is very low, they arrange in a finite-length Wigner crystal. In this regime the electron spins form an antiferromagnetic Heisenberg chain with exponentially small coupling J. An electric current in the wire perturbs the spin chain and gives rise to a temperature-dependent contribution of the spin subsystem to the resistance. At low t...
Ordering Quantum Dot Clusters via Nematic Liquid Crystal Defects
Rodarte, Andrea; Pandolfi, R.; Hirst, L. S.; Ghosh, S.
2012-11-01
Nematic liquid crystal (LC) materials can be used to create ordered clusters of CdSe/ZnS core/shell quantum dots (QDs) from a homogeneous isotropic dispersion. At the phase transition, the ordered domains of nematic LC expel the majority of dispersed QDs into the isotropic domains. The final LC phase produces a series of QD clusters that are situated at the defect points of the liquid crystal texture. Lower concentrations of QDs are organized in a network throughout the LC matrix that originates from the LC phase transition. Inside the QD clusters the inter-particle distance enables efficient energy transfer from high energy dots to lower energy dots. Because the QD clusters form at defect sites, the location of the clusters can be preselected by seeding the LC cell with defect nucleation points.
The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots
Directory of Open Access Journals (Sweden)
Hatef Ali
2010-01-01
Full Text Available Abstract In this work, the absorption coefficient of a metallic photonic crystal doped with nanoparticles has been obtained using numerical simulation techniques. The effects of quantum interference and the concentration of doped particles on the absorption coefficient of the system have been investigated. The nanoparticles have been considered as semiconductor quantum dots which behave as a four-level quantum system and are driven by a single coherent laser field. The results show that changing the position of the photonic band gap about the resonant energy of the two lower levels directly affects the decay rate, and the system can be switched between transparent and opaque states if the probe laser field is tuned to the resonance frequency. These results provide an application for metallic nanostructures in the fabrication of new optical switches and photonic devices.
Room Temperature Operation of a Buried Heterostructure Photonic Crystal Quantum Cascade Laser
Peretti, R; Wolf, J M; Bonzon, C; Süess, M J; Lourdudoss, S; Metaferia, W; Beck, M; Faist, J
2015-01-01
We demonstrated room temperature operation of deep etched photonic crystal quantum cascade laser emitting around 8.5 micron. We fabricated buried heterostructure photonic crystals, resulting in single mode laser emission on a high order slow Bloch modes of the photonic crystal, between high symmetry points of the Brillouin.
Quantum and classical theories of scattering of relativistic electrons in ultrathin crystals
Shulga, N F
2016-01-01
Quantum and classical theories are proposed of scattering of high energy electrons in ultrathin crystals. The quantum theory is based upon a special representation of the scattering amplitude in the form of the integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The classical theory is based upon the solution of the equation of motion by numerical methods. The comparison is performed of quantum and classical differential cross-sections of scattering in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is realized. It is shown that in this range of crystal thicknesses substantial difference of quantum and classical scattering cross-sections takes place for the electrons with the energy up to tens of MeV. With the energy increase such difference decreases but some quantum effects in scattering still remain.
Crystal Power: Piezo Coupling to the Quantum Zero Point
November, Laurence J
2011-01-01
We consider electro-optical constructions in which the Casimir force is modulated in opposition to piezo-crystal elasticity, as in a stack of alternating tunably conductive and piezo layers. Adjacent tunably conducting layers tuned to conduct, attract by the Casimir force compressing the intermediate piezo, but when subsequently detuned to insulate, sandwiched piezo layers expand elastically to restore their original dimension. In each cycle some electrical energy is made available from the quantum zero point (zp). We estimate that the maximum power that could be derived at semiconductor THz modulation rates is megawatts/cm3. Similarly a permittivity wave generated by a THz acoustic wave in a single crystal by the acousto-optic effect produces multiple coherent Casimir wave mode overtones and a bulk mode. We model the Casimir effect in a sinusoidally graded medium finding it to be very enhanced over what is found in a multilayer stack for the equivalent permittivity contrast, and more slowly decreasing with s...
Statistics of decay dynamics of quantum emitters in disordered photonic-crystal waveguides
DEFF Research Database (Denmark)
Javadi, Alisa; Garcia-Fernandez, Pedro David; Sapienza, Luca;
2014-01-01
We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24.......We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24....
Spatial mode effects in a cavity EIT-based quantum memory with ion Coulomb crystals
Zangenberg, Kasper R; Drewsen, Michael
2012-01-01
Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency is investigated theoretically. It is found that, when both the control and probe fields are coupled to the same cavity mode, their transverse mode profile affects the quantum memory efficiency in a non-trivial way. Under such conditions the control field parameters and crystal dimensions that maximize the memory efficiency are calculated.
Spatial mode effects in a cavity-EIT based quantum memory with ion Coulomb crystals
DEFF Research Database (Denmark)
Zangenberg, Kasper Rothe; Dantan, Aurelien Romain; Drewsen, Michael
2012-01-01
Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency are investigated theoretically. It is found that when both the control and the probe fields are coupled to the same spatial cavity mode, their transverse mode profile affects the q...... the quantum memory efficiency in a non-trivial way. Under such conditions, the control-field parameters and crystal dimensions that maximize the memory efficiency are calculated....
Enhancement of Tb-Yb quantum cutting emission by inverse opal photonic crystals
Wang, Qi; Qiu, Jianbei; Song, Zhiguo; Yang, Zhengwen; Yin, Zhaoyi; Zhou, Dacheng; Wang, Siqin
2016-04-01
Yb3+, Tb3+ co-doped YPO4 inverse opal photonic crystal was prepared directly by sol-gel technique in combination with self-assembly method. With the influence of the photonic band gap, quantum cutting emission of Tb3+, Yb3+ was investigated in photonic crystals by photoluminescence and fluorescence lifetime. The result clearly shows that, when the spontaneous emission of donor Tb3+ is inhibited by photonic band gap, Tb3+-Yb3+ quantum cutting quantum efficiency from Tb3+ to Yb3+ could be enhanced from 131.2% to 140.5%. The mechanisms for the influence of the photonic band gap on quantum cutting process of Tb3+ and Yb3+ are discussed. We believe that the present work will be valuable for the foundational study of quantum cutting energy transfer process and application of quantum cutting optical devices in spectral modification materials for silicon solar cells.
DEFF Research Database (Denmark)
Duggen, Lars; Willatzen, Morten; Lassen, Benny
2008-01-01
A three-layered zinc-blende quantum-well structure is analyzed subject to both static and dynamic conditions for different crystal growth directions taking into account piezoelectric effects and lattice mismatch. It is found that the strain component Szz in the quantum-well region strongly depend...
Purcell effect of GaAs quantum dots by photonic crystal microcavities
Institute of Scientific and Technical Information of China (English)
Kazuaki Sakoda; Takashi Kuroda; Naoki Ikeda; Takaaki Mano; Yoshimasa Sugimoto; Tetsuyuki Ochiai; Keiji Kuroda; Shunsuke Ohkouchi; Nobuyuki Koguchi; Kiyoshi Asakawa
2009-01-01
We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy.The Purcell effect of exciton emission of the quantum dots is confirmed by the micro photoluminescence measurement.The resonance wavelengths,widths,and polarization are consistent with numerical simulation results.
Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.
Yalla, Ramachandrarao; Sadgrove, Mark; Nayak, Kali P; Hakuta, Kohzo
2014-10-01
We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. By using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.
New quantum tunneling steps in Mn11Cr/Mn12 mixed crystal
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Magnetic properties of Mn11Cr and Mn12 mixed crystal at low temperature are studied.A new set of quantum tunneling steps discovered in magnetization curves suggests that there may exist another kind of single molecular magnet in this mixed crystal.
Quantum electron plasma in one-dimensional metallic-dielectric photonic crystal
Zverev, N. V.; Yushkanov, A. A.
2017-02-01
The interaction of the electromagnetic radiation with one-dimensional photonic crystal consisting of metal and transparent dielectric medium is studied numerically. Dielectric permeabilities of the electron plasma in the metal are considered both in the quantum Mermin and in the classical Drude-Lorentz approaches. It is shown that the reflection, transmission and absorption-frequency zones of electromagnetic radiation appear in the photonic crystal. In addition, the reflectance, transmittance and absorptance optical coefficients for such photonic crystal in the quantum approach differ from those coefficients in the Drude-Lorentz approach.
DEFF Research Database (Denmark)
Julsgaard, Brian; Johansen, Jeppe; Stobbe, Søren
2008-01-01
We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two-...... the bandgap in good agreement with local density of states calculations.......We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two...
Quantum-chemical approach to defect formation processes in non-metallic crystals
Energy Technology Data Exchange (ETDEWEB)
Kotomin, E.A.; Shluger, A.L. (Latvijskij Gosudarstvennyj Univ., Riga (USSR))
1989-01-01
Results of the quantum-chemical simulation of the formation of structural and radiation defects are reviewed, using ice, silicon, and silicon dioxide as examples. The relationship between the structural elements of these crystals and the structural defects is analysed. Models of the main defects, their optical characteristics, and the activation energy of their migration are discussed. The relationship between the characteristics obtained by quantum-chemical calculations and the parameters of the macroscopic kinetics of the processes induced by defects in dielectric crystals is considered. (author).
Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring
Nakatsugawa, K.; Fujii, T.; Tanda, S.
2017-09-01
We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.
Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A
2010-06-07
We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.
Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal
Laplane, Cyril; Jobez, Pierre; Etesse, Jean; Gisin, Nicolas; Afzelius, Mikael
2017-05-01
The realization of quantum networks and quantum repeaters remains an outstanding challenge in quantum communication. These rely on the entanglement of remote matter systems, which in turn requires the creation of quantum correlations between a single photon and a matter system. A practical way to establish such correlations is via spontaneous Raman scattering in atomic ensembles, known as the Duan-Lukin-Cirac-Zoller (DLCZ) scheme. However, time multiplexing is inherently difficult using this method, which leads to low communication rates even in theory. Moreover, it is desirable to find solid-state ensembles where such matter-photon correlations could be generated. Here we demonstrate quantum correlations between a single photon and a spin excitation in up to 12 temporal modes, in a 151Eu3+ -doped Y2 SiO5 crystal, using a novel DLCZ approach that is inherently multimode. After a storage time of 1 ms, the spin excitation is converted into a second photon. The quantum correlation of the generated photon pair is verified by violating a Cauchy-Schwarz inequality. Our results show that solid-state rare-earth-ion-doped crystals could be used to generate remote multimode entanglement, an important resource for future quantum networks.
Molecular morphology and crystallization in the quantum limit
DEFF Research Database (Denmark)
Bohr, Jakob
2002-01-01
The effects of phonons on crystallization and crystal morphology are investigated. It is shown that the commensuration of the lattice vibrations with the lattice will favor certain crystal morphologies. Vibrational effects can also be important for the molecular structure of chain molecules...... protein are estimated to differ by several electron volts. For a biomolecule, such energy is significant and may contribute to cold denaturing as seen for proteins. This is consistent with the empirical observation that cold denaturation is exothermic and hot denaturation endothermic....
Energy Technology Data Exchange (ETDEWEB)
Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)
2016-01-04
Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.
Miyazono, Evan; Craiciu, Ioana; Kindem, Jonathan M; Faraon, Andrei
2016-01-01
Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.
Extraction of the beta-factor for single quantum dots coupled to a photonic crystal waveguide
DEFF Research Database (Denmark)
Nielsen, Henri Thyrrestrup; Sapienza, Luca; Lodahl, Peter
2010-01-01
We present measurements of the β-factor, describing the coupling efficiency of light emitted by single InAs/GaAs semiconductor quantum dots into a photonic crystal waveguide mode. The β-factor is evaluated by means of time resolved frequency-dependent photoluminescence spectroscopy. The emission...
Directory of Open Access Journals (Sweden)
Isabella Natali Sora
2012-01-01
Full Text Available Quantum mechanics density functional calculations provided gas-phase electron distributions and proton affinities for several mono- and diaza[5]helicenes; computational results, together with experimental data concerning crystal structures and propensity to methylation of the nitrogen atom(s, provide a basis for designing azahelicene complexes with transition metal ions.
Mapping the Local Density of Optical States of a Photonic Crystal with Single Quantum Dots
DEFF Research Database (Denmark)
Wang, Qin; Stobbe, Søren; Lodahl, Peter
2011-01-01
We use single self-assembled InGaAs quantum dots as internal probes to map the local density of optical states of photonic crystal membranes. The employed technique separates contributions from nonradiative recombination and spin-flip processes by properly accounting for the role of the exciton...
Energy Technology Data Exchange (ETDEWEB)
Tselikov, G. I., E-mail: gleb@vega.phys.msu.ru; Timoshenko, V. Yu. [Moscow State University, Faculty of Physics (Russian Federation); Plenge, J.; Ruehl, E. [Free University of Berlin, Institute of Chemistry and Biochemistry (Germany); Shatalova, A. M.; Shandryuk, G. A.; Merekalov, A. S.; Tal' roze, R. V. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)
2013-05-15
The photoluminescence properties of cadmium-selenide (CdSe) quantum dots with an average size of {approx}3 nm, embedded in a liquid-crystal polymer matrix are studied. It was found that an increase in the quantum-dot concentration results in modification of the intrinsic (exciton) photoluminescence spectrum in the range 500-600 nm and a nonmonotonic change in its intensity. Time-resolved measurements show the biexponential decay of the photoluminescence intensity with various ratios of fast and slow components depending on the quantum-dot concentration. In this case, the characteristic lifetimes of exciton photoluminescence are 5-10 and 35-50 ns for the fast and slow components, respectively, which is much shorter than the times for colloidal CdSe quantum dots of the same size. The observed features of the photoluminescence spectra and kinetics are explained by the effects of light reabsorption, energy transfer from quantum dots to the liquid-crystal polymer matrix, and the effect of the electronic states at the CdSe/(liquid crystal) interface.
Quantum Dot-Photonic Crystal Cavity QED Based Quantum Information Processing
2012-08-14
Physical Review A, 2012] 3. Study of the off-resonant quantum dot-cavity coupling in solid-state cavity QED system, and the phonon mediated off...resonant interaction between two quantum dots [Majumdar et al., Physical Review B , 2012] 4. Coherent optical spectroscopy of a single quantum dot via an off...Resonant cavity - much simpler than in conventional approaches [Majumdar et al, Physical Review B, 2011; Papageorge et al., New. Journal of Physics
Controlling and measuring quantum transport of heat in trapped-ion crystals.
Bermudez, A; Bruderer, M; Plenio, M B
2013-07-26
Measuring heat flow through nanoscale devices poses formidable practical difficulties as there is no "ampere meter" for heat. We propose to overcome this problem in a chain of trapped ions, where laser cooling the chain edges to different temperatures induces a heat current of local vibrations (vibrons). We show how to efficiently control and measure this current, including fluctuations, by coupling vibrons to internal ion states. This demonstrates that ion crystals provide an ideal platform for studying quantum transport, e.g., through thermal analogues of quantum wires and quantum dots. Notably, ion crystals may give access to measurements of the elusive bosonic fluctuations in heat currents and the onset of Fourier's law. Our results are strongly supported by numerical simulations for a realistic implementation with specific ions and system parameters.
Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals
DEFF Research Database (Denmark)
Lehmann, Tau Bernstorff
In this thesis, the application of semiconductor quantum-dots in photonic crystals is explored as aresource for single-photon technology.Two platforms based on photonic crystals, a cavity and a waveguide, are examined as platformssingle-photon sources. Both platforms demonstrate strong single-photon...... purity under quasi-resonantexcitation. Furthermore the waveguide based platform demonstrates indistinguishable single-photonsat timescales up to 13 ns.A setup for active demultiplexing of single-photons to a three-fold single-photon state is proposed.Using a fast electro-optical modulator, single-photons...... from a quantum-dot are routed on timescalesof the exciton lifetime. Using active demultiplexing a three-fold single-photon state is generated at anextracted rate of 2:03 ±0:49 Hz.An on-chip power divider integrated with a quantum-dot is investigated. Correlation measurementof the photon statistic...
Electronic states in crystals of finite size quantum confinement of bloch waves
Ren, Shang Yuan
2017-01-01
This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...
Multiple Quantum Wells for P T -Symmetric Phononic Crystals
Poshakinskiy, A. V.; Poddubny, A. N.; Fainstein, A.
2016-11-01
We demonstrate that the parity-time symmetry for sound is realized in laser-pumped multiple-quantum-well structures. Breaking of the parity-time symmetry for the phonons with wave vectors corresponding to the Bragg condition makes the structure a highly selective acoustic wave amplifier. Single-mode distributed feedback phonon lasing is predicted for structures with realistic parameters.
Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity
Yoshie, T.; Scherer, A.; Hendrickson, J.; Khitrova, G.; Gibbs, H. M.; Rupper, G.; Ell, C.; Shchekin, O. B.; Deppe, D. G.
2004-11-01
Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity-which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes-has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.
Designing artificial 2D crystals with site and size controlled quantum dots.
Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav
2017-08-30
Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS2), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS2. By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.
Extraction of the beta-factor for single quantum dots coupled to a photonic crystal waveguide
DEFF Research Database (Denmark)
Nielsen, Henri Thyrrestrup; Sapienza, Luca; Lodahl, Peter
2010-01-01
wavelength of single quantum dots is temperature tuned across the band edge of a photonic crystal waveguide and the spontaneous emission rate is recorded. Decay rates up to 5.7 ns−1, corresponding to a Purcell factor of 5.2, are measured and β-factors up to 85% are extracted. These results prove......We present measurements of the β-factor, describing the coupling efficiency of light emitted by single InAs/GaAs semiconductor quantum dots into a photonic crystal waveguide mode. The β-factor is evaluated by means of time resolved frequency-dependent photoluminescence spectroscopy. The emission...... the potential of photonic crystal waveguides in the realization of on-chip single-photon sources....
Quantum Chemistry of Solids The LCAO First Principles Treatment of Crystals
Evarestov, Robert A
2007-01-01
Quantum Chemistry of Solids delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based (Hartree-Fock), density-based (DFT) and hybrid hamiltonians. The translation and site symmetry consideration is included to establish connection between k-space solid-state physics and real-space quantum chemistry methods in the framework of cyclic model of an infinite crystal. The inclusion of electron correlation effects for periodic systems is considered on the basis of localized crystalline orbitals. The possibilities of LCAO methods for chemical bonding analysis in periodic systems are discussed. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties, including magnetic ordering and crystal structure optimization. The discussion o...
Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.
Khankhoje, U K; Kim, S-H; Richards, B C; Hendrickson, J; Sweet, J; Olitzky, J D; Khitrova, G; Gibbs, H M; Scherer, A
2010-02-10
In this paper, we present recent progress in the growth, modelling, fabrication and characterization of gallium arsenide (GaAs) two-dimensional (2D) photonic-crystal slab cavities with embedded indium arsenide (InAs) quantum dots (QDs) that are designed for cavity quantum electrodynamics (cQED) experiments. Photonic-crystal modelling and device fabrication are discussed, followed by a detailed discussion of different failure modes that lead to photon loss. It is found that, along with errors introduced during fabrication, other significant factors such as the presence of a bottom substrate and cavity axis orientation with respect to the crystal axis, can influence the cavity quality factor (Q). A useful diagnostic tool in the form of contour finite-difference time domain (FDTD) is employed to analyse device performance.
Crystal orientation effects on wurtzite quantum well electromechanical fields
DEFF Research Database (Denmark)
Duggen, Lars; Willatzen, Morten
2010-01-01
A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings of ...
Yang, Wanli; An, Jun-Hong; Zhang, Chengjie; Feng, Mang; Oh, C. H.
2014-03-01
We investigate the non-Markovian dynamics of quantum correlation between two initially entangled nitrogen-vacancy centers (NVC) embedded in photonic crystal cavities (PCC). We find that a finite quantum correlation is preserved even asymptotically when the transition frequency ofthe NVC is within the band gap of the PCC, which is quantitatively different from the result of approaching zero under the Born-Markovian approximation. In addition, once the transition frequency of NVC is far beyond the bad gap of the PCC, the quantum correlation initially prepared in NVC will be fully transferred to the reservoirs in the long-time limit. Our result reveals that the interplay between the non-Markovian effect of the structured reservoirs and the existence of emitter-field bound state plays an essential role in such quantum correlation preservation. This feature may open new perspectives for devising active decoherence-immune solid-state optical devices.
Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM.
Ruan, Z; Zeng, R G; Ming, Y; Zhang, M; Da, B; Mao, S F; Ding, Z J
2015-07-21
In this paper, a novel quantum-trajectory Monte Carlo simulation method is developed to study electron beam interaction with a crystalline solid for application to electron microscopy and spectroscopy. The method combines the Bohmian quantum trajectory method, which treats electron elastic scattering and diffraction in a crystal, with a Monte Carlo sampling of electron inelastic scattering events along quantum trajectory paths. We study in this work the electron scattering and secondary electron generation process in crystals for a focused incident electron beam, leading to understanding of the imaging mechanism behind the atomic resolution secondary electron image that has been recently achieved in experiment with a scanning transmission electron microscope. According to this method, the Bohmian quantum trajectories have been calculated at first through a wave function obtained via a numerical solution of the time-dependent Schrödinger equation with a multislice method. The impact parameter-dependent inner-shell excitation cross section then enables the Monte Carlo sampling of ionization events produced by incident electron trajectories travelling along atom columns for excitation of high energy knock-on secondary electrons. Following cascade production, transportation and emission processes of true secondary electrons of very low energies are traced by a conventional Monte Carlo simulation method to present image signals. Comparison of the simulated image for a Si(110) crystal with the experimental image indicates that the dominant mechanism of atomic resolution of secondary electron image is the inner-shell ionization events generated by a high-energy electron beam.
Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals
Vos, W L
2015-01-01
This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.
Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide.
Arcari, M; Söllner, I; Javadi, A; Lindskov Hansen, S; Mahmoodian, S; Liu, J; Thyrrestrup, H; Lee, E H; Song, J D; Stobbe, S; Lodahl, P
2014-08-29
A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the β factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of β=98.43%±0.04% for a quantum dot coupled to a photonic crystal waveguide, corresponding to a single-emitter cooperativity of η=62.7±1.5. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The β factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction.
2016-01-26
performed. 2.0 INTRODUCTION Three dimensional (3D) photonic crystals and their optical properties have attracted a lot of attention in the past decade... physical phenomena. The band gap frequency of this system can be varied to tailor to the electronic transition levels of a gain medium such as InAs...quantum dot or an InGaAs quantum well. The band gap can be varied in addition to include either one or two electronic levels of a multi-level system
Energy Technology Data Exchange (ETDEWEB)
Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr., C.R.; Schmid, A.W.; Marshall, K.L.
2006-08-18
This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time.
Mind the gap: Exact quantum dynamics in photonic crystals
Prior, Javier; Chin, Alex W; Huelga, Susana F; Plenio, Martin B
2012-01-01
Employing a recently developed numerically exact method for the description of arbitrary system-environment interactions, we analyze the full dynamics of an atomic system coupled to an environment with a gapped spectral density. This is a situation encountered for example for the radiation field in a photonic crystal and whose analysis has been so far been confined to limiting cases due to the lack of suitable numerical techniques. We show that both atomic population and coherences' dynamics can drastically deviate from the results predicted when using the rotating wave approximation, particularly in the strong coupling regime. Experimental conditions required to observe these corrections are also discussed.
Mid-infrared quantum dot emitters utilizing planar photonic crystal technology.
Energy Technology Data Exchange (ETDEWEB)
Subramania,Ganapathi Subramanian; Lyo, Sungkwun Kenneth; Cederberg, Jeffrey George; Passmore, Brandon Scott; El-Kady, Ihab Fathy; Shaner, Eric Arthur
2008-09-01
The three-dimensional confinement inherent in InAs self-assembled quantum dots (SAQDs) yields vastly different optical properties compared to one-dimensionally confined quantum well systems. Intersubband transitions in quantum dots can emit light normal to the growth surface, whereas transitions in quantum wells emit only parallel to the surface. This is a key difference that can be exploited to create a variety of quantum dot devices that have no quantum well analog. Two significant problems limit the utilization of the beneficial features of SAQDs as mid-infrared emitters. One is the lack of understanding concerning how to electrically inject carriers into electronic states that allow optical transitions to occur efficiently. Engineering of an injector stage leading into the dot can provide current injection into an upper dot state; however, to increase the likelihood of an optical transition, the lower dot states must be emptied faster than upper states are occupied. The second issue is that SAQDs have significant inhomogeneous broadening due to the random size distribution. While this may not be a problem in the long term, this issue can be circumvented by using planar photonic crystal or plasmonic approaches to provide wavelength selectivity or other useful functionality.
Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line
Sesé, Luis M.
2016-03-01
Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.
Heinzel, T.; Salis, G.; Held, R; Luescher, S.; Ensslin, K; Wegscheider, W.; Bichler, M.
1999-01-01
A quantum wire is spatially displaced by suitable electric fields with respect to the scatterers inside a semiconductor crystal. As a function of the wire position, the low-temperature resistance shows reproducible fluctuations. Their characteristic temperature scale is a few hundred millikelvin, indicating a phase-coherent effect. Each fluctuation corresponds to a single scatterer entering or leaving the wire. This way, scattering centers can be counted one by one.
Processing of Photonic Crystal Nanocavity for Quantum Information in Diamond
Bayn, Igal; Lahav, Alex; Salzman, Joseph; Kalish, Rafi; Fairchild, Barbara A; Prawer, Steven; Barth, Michael; Benson, Oliver; Wolf, Thomas; Siyushev, Petr; Jelezko, Fedor; Wrachtrup, Jorg
2010-01-01
The realization of photonic crystals (PC) in diamond is of major importance for the entire field of spintronics based on fluorescent centers in diamond. The processing steps for the case of diamond differ from those commonly used, due to the extreme chemical and mechanical properties of this material. The present work summarizes the state of the art in the realization of PC's in diamond. It is based on the creation of a free standing diamond membrane into which the desired nano-sized patterns are milled by the use of Focused-Ion-Beam (FIB). The optimal fabrication-oriented structure parameters are predicted by simulations. The milling strategies, the method of formation the diamond membrane, recipes for dielectric material-manipulation in FIB and optical characterization constraints are discussed in conjunction with their implication on PC cavity design. The thus produced structures are characterized via confocal photoluminescence.
Quantum computation in a one-dimensional crystal lattice with NMR force microscopy
Ladd, T D; Dana, A; Yamaguchi, F; Yamamoto, Y
2000-01-01
A proposal for a scalable, solid-state implementation of a quantum computer is presented. Qubits are fluorine nuclear spins in a solid crystal of fluorapatite [Ca_5 F(PO_4)_3] with resonant frequencies separated by a large field gradient. Quantum logic is accomplished using nuclear-nuclear dipolar couplings with decoupling and selective recoupling RF pulse sequences. Magnetic resonance force microscopy is used for readout. This proposal takes advantage of many of the successful aspects of solution NMR quantum computation, including ensemble measurement and long T_1, but it allows for more qubits and the potential for initialization. As many as 300 qubits can be implemented in the realistic laboratory extremes of T=10 mK and B_0=20 T with the existing sensitivity of force microscopy.
Javadi, A.; Maibom, S.; Sapienza, L.; Thyrrestrup Nielsen, H.; Garcia, P.D.; Lodahl, P.
2014-01-01
We present a statistical study of the Purcell enhancement of the light emission from quantum dots coupled to Anderson-localized cavities formed in disordered photonic-crystal waveguides. We measure the time-resolved light emission from both single quantum emitters coupled to Anderson-localized cavit
Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor
2012-12-04
Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Singh, Gautam; Fisch, Michael; Kumar, Satyendra
2016-05-01
Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.
Singh, Gautam; Fisch, Michael; Kumar, Satyendra
2016-05-01
Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.
Diffusion of a probe nanoparticle in a quantum crystal with narrow vacancy band
Levchenko, A A; Trusov, A B
2003-01-01
The vacancy-assisted diffusion of a probe nanoparticle with a diameter d sub p of a few nm drifting through a quantum crystal with a narrow vacancy band Q sub v Tmelt is considered qualitatively. Below the melting point Tmelt the temperature dependence of the diffusion coefficient of the nanoprobe, D sub p (T), changes significantly at temperatures near T sub t r (T sub m elt> d sub p , the diffusion coefficient D sub p falls almost near exponentially, proportionally with x sub v , if the cross-section of inelastic vacancion-probe particle scattering is weakly dependent on temperature. We believe that our model could be applied for the description of the diffusion of positive charges in hcp sup 4 He crystals grown at pressures higher than the minimal pressure of helium solidification and the diffusion of negative charges in hcp crystals grown from pure parahydrogen.
Polisseni, Claudio; Boissier, Sebastien; Grandi, Samuele; Clark, Alex S; Hinds, E A
2016-01-01
Single organic molecules offer great promise as bright, reliable sources of identical single photons on demand, capable of integration into solid-state devices. It has been proposed that such molecules in a crystalline organic matrix might be placed close to an optical waveguide for this purpose, but so far there have been no demonstrations of sufficiently thin crystals, with a controlled concentration of suitable dopant molecules. Here we present a method for growing very thin anthracene crystals from super-saturated vapour, which produces crystals of extreme flatness and controlled thickness. We show how this crystal can be doped with a widely adjustable concentration of dibenzoterrylene (DBT) molecules and we examine the optical properties of these molecules to demonstrate their suitability as quantum emitters in nanophotonic devices. Our measurements show that the molecules are available in the crystal as single quantum emitters, with a well-defined polarisation relative to the crystal axes, making them a...
Tunable Solid-State Quantum Memory Using Rare-Earth-Ion-Doped Crystal, Nd3(+):GaN
2017-04-26
Research Initiative was to work on developing solid-state quantum memory using cryogenically cooled rare- earth -ion-doped crystal, Nd3+:GaN. The samples...Initiative (DRI) was to work on developing solid-state quantum memory using cryogenically cooled rare- earth -ion- doped crystal, Nd3+:GaN. The samples were...Caltech group has been working in the area of quantum information of rare- earth doped solids for a number of years and is well equipped to perform
Evidence of two-dimensional quantum Wigner Crystal in a zero magnetic field
Huang, Jian; Pfeiffer, Loren; West, Ken
2014-03-01
In disorder-dominated cases, Anderson localization occurs as a result of destructive interference effects caused by (short-ranged) random disorders. On the other hand, in interaction-dominated scenarios, striking manifestations of quantum physics emerge in response to strong inter-particle Coulomb energy (EC). The most prominent interaction-driven effect is the Wigner crystallization (WC) of electrons, an electron solid made up with spatially separated charges settling in a form of a lattice. The classical version of the crystallization, with the Debye temperature ΘD
Quantum Magnetism of Spin-Ladder Compounds with Trapped-Ion Crystals
Bermudez, A; Ott, K; Kaufmann, H; Ulm, S; Schmidt-Kaler, F; Retzker, A; Plenio, M B
2012-01-01
The quest for experimental platforms that allow for the exploration, and even control, of the interplay of low dimensionality and frustration is a fundamental challenge in several fields of quantum many-body physics, such as quantum magnetism. Here, we propose the use of cold crystals of trapped ions to study a variety of frustrated quantum spin ladders. By optimizing the trap geometry, we show how to tailor the low dimensionality of the models by changing the number of legs of the ladders. Combined with a method for selectively hiding of ions provided by laser addressing, it becomes possible to synthesize stripes of both triangular and Kagome lattices. Besides, the degree of frustration of the phonon-mediated spin interactions can be controlled by shaping the trap frequencies. We support our theoretical considerations by initial experiments with planar ion crystals, where a high and tunable anisotropy of the radial trap frequencies is demonstrated. We take into account an extensive list of possible error sou...
Smirnov, A. M.; Mantsevich, V. N.; Ezhova, K. V.; Tikhonov, I. V.; Dneprovskii, V. S.
2016-04-01
We investigate a simple way to create dynamic photonic crystals with different lattice symmetry by interference of four non-coplanar laser beams in colloidal solution of CdSe/ZnS quantum dots (QDs). The formation of dynamic photonic crystal was confirmed by the observed diffraction of the beams that have excited photonic crystal at the angles equal to that calculated for the corresponding three-dimensional lattice (self-diffraction regime). Self-diffraction from an induced 3D transient photonic crystal has been discovered in the case of resonant excitation of the excitons (electron - hole transitions) in CdSe/ZnS QDs (highly absorbing colloidal solution) by powerful beams of mode-locked laser with picosecond pulse duration. Self-diffraction arises for four laser beams intersecting in the cell with colloidal CdSe/ZnS QDs due to the induced 3D dynamic photonic crystal. The physical processes that arise in CdSe/ZnS QDs and are responsible for the observed self-action effects are discussed.
Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals
de Bastiani, Michele
2017-08-01
Zero-dimensional perovskite-related structures (0D-PRS) are a new frontier of perovskite-based materials. 0D-PRS, commonly synthesized in powder form, manifest distinctive optical properties such as strong photoluminescence (PL), narrow emission linewidth, and high exciton binding energy. These properties make 0D-PRS compelling for several types of optoelectronic applications, including phosphor screens and electroluminescent devices. However, it would not be possible to rationally design the chemistry and structure of these materials, without revealing the origins of their optical behaviour, which is contradictory to the well-studied APbX3 perovskites. In this work, we synthesize single crystals of Cs4PbBr6 0D-PRS, and investigated the origins of their unique optical and electronic properties. The crystals exhibit a PL quantum yield higher than 40%, the highest reported for perovskite-based single crystals. Time-resolved and temperature dependent PL studies, supported by DFT calculations, and structural analysis, elucidate an emissive behaviour reminiscent of a quantum confined structure rather than a typical bulk perovskite material.
Carvalho, D C; Plascak, J A; Castro, L M
2013-09-01
A variational approach based on Bogoliubov inequality for the free energy is employed in order to treat the quantum spin-1 anisotropic ferromagnetic Heisenberg model in the presence of a crystal field. Within the Bogoliubov scheme an improved pair approximation has been used. The temperature-dependent thermodynamic functions have been obtained and provide much better results than the previous simple mean-field scheme. In one dimension, which is still nonintegrable for quantum spin-1, we get the exact results in the classical limit, or near-exact results in the quantum case, for the free energy, magnetization, and quadrupole moment, as well for the transition temperature. In two and three dimensions the corresponding global phase diagrams have been obtained as a function of the parameters of the Hamiltonian. First-order transition lines, second-order transition lines, tricritical and tetracritical points, and critical endpoints have been located through the analysis of the minimum of the Helmholtz free energy and a Landau-like expansion in the approximated free energy. Only first-order quantum transitions have been found at zero temperature. Limiting cases, such as isotropic Heisenberg, Blume-Capel, and Ising models, have been analyzed and compared to previous results obtained from other analytical approaches as well as from Monte Carlo simulations.
Crystallizing highly-likely subspaces that contain an unknown quantum state of light
Teo, Yong Siah; Mogilevtsev, Dmitri; Mikhalychev, Alexander; Řeháček, Jaroslav; Hradil, Zdeněk
2016-12-01
In continuous-variable tomography, with finite data and limited computation resources, reconstruction of a quantum state of light is performed on a finite-dimensional subspace. In principle, the data themselves encode all information about the relevant subspace that physically contains the state. We provide a straightforward and numerically feasible procedure to uniquely determine the appropriate reconstruction subspace by extracting this information directly from the data for any given unknown quantum state of light and measurement scheme. This procedure makes use of the celebrated statistical principle of maximum likelihood, along with other validation tools, to grow an appropriate seed subspace into the optimal reconstruction subspace, much like the nucleation of a seed into a crystal. Apart from using the available measurement data, no other assumptions about the source or preconceived parametric model subspaces are invoked. This ensures that no spurious reconstruction artifacts are present in state reconstruction as a result of inappropriate choices of the reconstruction subspace. The procedure can be understood as the maximum-likelihood reconstruction for quantum subspaces, which is an analog to, and fully compatible with that for quantum states.
Hughes, Stephen; Yao, P
2009-03-02
We present a rigorous medium-dependent theory for describing the quantum field emitted and detected from a single quantum dot exciton, strongly coupled to a planar photonic crystal nanocavity, from which the exact spectrum is derived. By using simple mode decomposition techniques, this exact spectrum is subsequently reduced to two separate user-friendly forms, in terms of the leaky cavity mode emission and the radiation mode emission. On application to study exciton-cavity coupling in the strong coupling regime, besides a pronounced modification of the usual vacuum Rabi spectral doublet, we predict several new effects associated with the leaky cavity mode emission, including the appearance of an off-resonance cavity mode and a loss-induced on-resonance spectral triplet. The cavity mode emission is shown to completely dominate the emitted spectrum, even for large cavity-exciton detunings, whereby the usual cavity-QED formulas developed for radiation-mode emission drastically fail. These predictions are in qualitative agreement with several "mystery observations" reported in recent experiments, and apply to a wide range of semiconductor cavities.
Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detection.
Song, Xiaohong; Declair, Stefan; Meier, Torsten; Zrenner, Artur; Förstner, Jens
2012-06-18
Using a finite-difference time-domain method, we theoretically investigate the optical spectra of crossing perpendicular photonic crystal waveguides with quantum dots embedded in the central rod. The waveguides are designed so that the light mainly propagates along one direction and the cross talk is greatly reduced in the transverse direction. It is shown that when a quantum dot (QD) is resonant with the cavity, strong coupling can be observed via both the transmission and crosstalk spectrum. If the cavity is far off-resonant from the QD, both the cavity mode and the QD signal can be detected in the transverse direction since the laser field is greatly suppressed in this direction. This structure could have strong implications for resonant excitation and in-plane detection of QD optical spectroscopy.
Lobanov, S V; Gippius, N A; Maksimov, A A; Filatov, E V; Tartakovskii, I I; Kulakovskii, V D; Weiss, T; Schneider, C; Geßler, J; Kamp, M; Höfling, S
2015-01-01
Polarization properties of the emission have been investigated for quantum dots embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the waveguide layer has been shown to result in a high circular polarization degree $\\rho_c$ of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of $|\\rho_c|$ is predicted to exceed 98%. The experimentally achieved value of $|\\rho_c|=81$% is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretic...
Switching in polaritonic-photonic crystal nanofibers doped with quantum dots.
Cox, J D; Singh, M R; Racknor, C; Agarwal, R
2011-12-14
We have studied the acousto-optic effect in polaritonic nanofibers made by embedding a cylindrical polaritonic nanowire within a photonic crystal. Here the nanowire consists of either a phonon-polaritonic or an exciton-polaritonic material. The nanowire is doped with ensemble of noninteracting quantum dots. Quantum dots interact with the nanofiber via the exciton-polariton interaction. It is found that for the certain acoustic strain intensity the nanofiber has a localized-to-delocalized polariton transition similar to the metal-to-insulator transitions in doped semiconductors. It is also found that nanofiber has a transparent state due to the exciton-bound polariton coupling. The transparent state can be switched ON or OFF by the external acoustic strain intensity. These are very useful discoveries that can be used to fabricate new types of polaritonic nanoswitches and nanosensors.
Midolo, L; Hoang, T B; Xia, T; van Otten, F W M; Li, L H; Linfield, E; Lermer, M; Höfling, S; Fiore, A
2012-01-01
We demonstrate the control of the spontaneous emission rate of single InAs quantum dots embedded in a double-membrane photonic crystal cavity by the electromechanical tuning of the cavity resonance. Controlling the separation between the two membranes with an electrostatic field we obtain the real-time spectral alignment of the cavity mode to the excitonic line and we observe an enhancement of the spontaneous emission rate at resonance. The cavity has been tuned over 13 nm without shifting the exciton energies. A spontaneous emission enhancement of 4.5 has been achieved with a coupling efficiency of the dot to the mode 92%.
PbS Quantum Dots Filled Photonic Crystal Fiber for All-fiber Amplifier
Wang, Zhanbing; Shang, Yana; Pang, Fufei; Liu, Huanhuan; Chen, Na; Wu, Yan; Kang, Yanan
2017-06-01
In this paper, we have proposed a novel type of fiber amplifier by filling the PbS semiconductor quantum dots into the holes of photonic crystal fibers (PCFs) for the first time. Based on simulation results, we have found that the loss of PCF filled with PbS is slightly increased compared with the one without PbS at wavelength of 1310 nm. Furthermore, we have successfully fabricated the PbS-filled PCF with selective air-hole cladding by a new perfusion technique that can optimize the overall loss.
Dynamical control and novel quantum phases in impurity doped linear ion crystals
Ivanov, Peter A; Singer, Kilian; Schmidt-Kaler, Ferdinand
2010-01-01
We explore the behavior of the phonon number distribution in an heterogeneous linear ion crystal. The presence of ion species with different masses changes dramatically the transverse energy spectrum, in such a way that two eigenfrequencies become non-analytic functions of the mass ratio in the form of a sharp cusp. This non-analyticity induces a quantum phase transition between condensed and conducting phase of the transverse local phonons. In order to continuously vary the mass ratio we adiabatically modify a locally applied laser field, exerting optical dipole forces which reduces the effective mass.
Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity
Energy Technology Data Exchange (ETDEWEB)
Luk, Ting Shan; Xiong, Shisheng; Chow, Weng W.; Miao, Xiaoyu; Subramania, Ganesh; Resnick, Paul J.; Fischer, Arthur J.; Brinker, Jeffrey C.
2011-05-09
We report up to 75 times enhancement in emission from lithographically produced photonic crystals with postprocessing close-packed colloidal quantum-dot incorporation. In our analysis, we use the emission from a close-packed free-standing film as a reference. After discounting the angular redistribution effect, our analysis shows that the observed enhancement is larger than the combined effects of Purcell enhancement and dielectric enhancement with the microscopic local field. The additional enhancement mechanisms, which are consistent with all our observations, are thought to be spectral diffusion mediated by phonons and local polarization fluctuations that allow off-resonant excitons to emit at the cavity wavelengths.
Liquid-crystal composites with controlled photoluminescence of CdSe/ZnS semiconductor quantum rods
Danilov, V. V.; Artem'ev, M. V.; Baranov, A. V.; Orlova, A. O.; Mukhina, M. V.; Khrebtov, A. I.
2011-06-01
Liquid-crystal (LC) composites based on a combination of different acrylates and pentylcyanobiphenyl and containing CdSe/ZnS semiconductor quantum nanorods have been investigated. Samples of electro-optical cells with planar or homeotropic structures (depending on the acrylate type) have been obtained. The morphology of LC composite formation has been studied using luminescence techniques. It is shown that these composites are gel-like LC media, where the formation of dispersed and network structures in the cells plays a stabilizing role. The role of the electron transfer reactions during polymerization and the features of the kinetics of the Freedericksz effect (reorientation in an electric field) are discussed.
Experimental apparatus for quantum simulation with two-dimensional 9Be + Coulomb crystals
Pyka, Karsten; Ball, Harrison; McRae, Terry; Edmunds, Claire; Lee, Michael W.; Henderson, Samuel; Biercuk, Michael J.; Quantum Control Lab Team
2015-03-01
We report on the development of a new experimental setup designed for Quantum Simulation studies at a computationally relevant scale using laser-cooled 9Be + ion-crystals in a Penning trap. The trap geometry is optimized using numerical calculations for trapping large ion crystals with enhanced optical access and reduced anharmonic perturbations. Separate loading and spectroscopy zones prevent long term drifts of the trapping parameters due to contamination of the trap electrodes with Be deposits. Our customized superconducting magnet provides a homogenous (dB/B telecom wavelength fiber laser systems in the IR via nonlinear conversion. Our new approach employs high-efficiency telecom modulators and mode-selecting cavities to generate multiple beamlines from a single Sum-frequency-Generation step. Ultimately, this newly developed setup will allow for studies of many-body spin systems with tuneable interaction strength from infinite-range to nearest-neighbour type interaction.
Simulation of Quantum Magnetism in Mixed Spin Systems with Impurity Doped Ion Crystal
Ivanov, Peter A
2011-01-01
We propose the realization of linear crystals of cold ions which contain different atomic species for investigating quantum phase transitions and frustration effects in spin system beyond the commonly discussed case of $s=1/2$. Mutual spin-spin interactions between ions can be tailored via the Zeeman effect by applying oscillating magnetic fields with strong gradients. Further, collective vibrational modes in the mixed ion crystal can be used to enhance and to vary the strength of spin-spin interactions and even to switch those forces from a ferro- to an antiferromagnetic character. We consider the behavior of the effective spin-spin couplings in an ion crystal of spin-1/2 ions doped with high magnetic moment ions with spin S=3. We analyze the ground state phase diagram and find regions with different spin orders including ferrimagnetic states. In the most simple non-trivial example we deal with a linear $\\{$Ca$^+$, Mn$^+$, Ca$^+\\}$ crystal with spins of $\\{1/2,3,1/2}$. To show the feasibility with current st...
Ceder, Gerbrand
2007-03-01
The prediction of structure is a key problem in computational materials science that forms the platform on which rational materials design can be performed. Finding structure by traditional optimization methods on quantum mechanical energy models is not possible due to the complexity and high dimensionality of the coordinate space. An unusual, but efficient solution to this problem can be obtained by merging ideas from heuristic and ab initio methods: In the same way that scientist build empirical rules by observation of experimental trends, we have developed machine learning approaches that extract knowledge from a large set of experimental information and a database of over 15,000 first principles computations, and used these to rapidly direct accurate quantum mechanical techniques to the lowest energy crystal structure of a material. Knowledge is captured in a Bayesian probability network that relates the probability to find a particular crystal structure at a given composition to structure and energy information at other compositions. We show that this approach is highly efficient in finding the ground states of binary metallic alloys and can be easily generalized to more complex systems.
DEFF Research Database (Denmark)
Nikolaev, Ivan S.; Lodahl, Peter; van Driel, A. Floris
2007-01-01
We observe experimentally that ensembles of quantum dots in three-dimensional 3D photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays...... parameter. This interpretation qualitatively agrees with the calculations of the 3D projected local density of states. We therefore conclude that fluorescence decay of ensembles of quantum dots is highly nonexponential to an extent that is controlled by photonic crystals....
Slow light enhanced atomic frequency comb quantum memories in photonic crystal waveguides
Yuan, Chenzhi; Zhang, Wei; Huang, Yidong; Peng, Jiangde
2016-09-01
In this paper, we propose a slow light-enhanced quantum memory with high efficiency based on atomic frequency comb (AFC) in ion-doped photonic crystal waveguide (PCW). The performance of the quantum memory is investigated theoretically, considering the impact of the signal bandwidth. Both the forward and backward retrieval schemes are analyzed. In the forward retrieval scheme, the analysis shows that a moderate slow light effect can improve the retrieval efficiency to above 50% with very high fidelity, even when the intrinsic optical depth is very low and the signal bandwidth is comparable with the AFC bandwidth. In the backward retrieval scheme, retrieval efficiency larger than 90% can be obtained and fidelity can remain above 90% for signal with bandwidth much narrower than AFC bandwidth, when moderate slow light is introduced into waveguide with low intrinsic optical depth. Although the phase mismatching effect limits the slow light enhancement on retrieval efficiency and decreases the fidelity for signal with bandwidth approaching AFC bandwidth, we design a modified atomic frequency comb structure (MAFC) based on which a moderate slow light can make the retrieval efficiency larger than 85% and keep the fidelity above 80%. Our calculations show that the proposed scheme provides a promising way to realize high efficiency on-chip quantum memory.
Institute of Scientific and Technical Information of China (English)
ZHANG Jing; YANG Bing-Qin; ZHU Hai-Yan; LI Tao; WEN Zhen-Yi
2006-01-01
A novel benzimidazole derivative, 1,3-dimethyl-2-ferrocenylmethylbenzimidazolium iodide (1) was synthesized and characterized by elemental analysis, MS, 1H NMR and IR spectra. Its crystal structure was determined by X-ray single crystal diffraction, and the title compound belongs to monoclinic system with space group P2(1)/c.According to the crystal structure, the quantum chemistry calculation was performed by Gaussian 03 program, and full geometry optimizations of the title compound were carried out with DFT method at B3LYP/6-31G level. Its structure, stability, frontier molecular orbital components and net charge distribution were discussed.
Nikolaev, I.; Lodahl, P.; van Driel, A. Floris; Koenderink, A.F.; Vos, Willem L.
2007-01-01
We observe experimentally that ensembles of quantum dots in three-dimensional (3D) photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays
Liquid Crystal Phase Transition driven three-dimensional Quantum Dot Organization
Rodarte, Andrea L.; Pandolfi, R. J.; Ghosh, S.; Hirst, L. S.
2013-03-01
We use a nematic liquid crystal (LC) to create organized assemblies of CdSe/ZnS core/shell quantum dots (QDs). At the isotropic-nematic LC phase transition, ordered domains of nematic LC expel the majority of dispersed QDs into the isotropic domains. The final LC phase produces a series of three dimensional columnar QD assemblies that are situated at defect points in the LC volume. Within each assembly the QD emission is spectrally-red-shifted due to resonant energy transfer. We use this spectral shift as a measure of the inter-dot separation and find that the QDs are packed uniformly in these assemblies over distances of microns between the glass plates of a standard LC cell. In addition, because the QD clusters form at defects, we can deterministically control the location of the assemblies by seeding the LC cell with defect nucleation points. Funding provided by NSF, UC MERI and UC MEXUS.
Quantum Frequency Translation of Single-Photon States in Photonic Crystal Fiber
McGuinness, H J; McKinstrie, C J; Radic, S
2010-01-01
We experimentally demonstrate frequency translation of a nonclassical optical field via the Bragg scattering four-wave mixing process in a photonic crystal fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF enable efficient translation between photon channels within the visible to-near-infrared spectral range, useful in quantum networks. Heralded single photons at 683 nm were translated to 659 nm with an efficiency of $28.6 \\pm 2.2$ percent. Second-order correlation measurements on the 683-nm and 659-nm fields yielded $g^{(2)}_{683}(0) = 0.21 \\pm 0.02$ and $g^{(2)}_{659}(0) = 0.19 \\pm 0.05$ respectively, showing the nonclassical nature of both fields.
Quantum frequency translation of single-photon states in a photonic crystal fiber.
McGuinness, H J; Raymer, M G; McKinstrie, C J; Radic, S
2010-08-27
We experimentally demonstrate frequency translation of a nonclassical optical field via four-wave mixing (Bragg-scattering process) in a photonic crystal fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF enable efficient translation between nearby photon channels within the visible to-near-infrared spectral range, useful in quantum networks. Heralded single photons at 683 nm were translated to 659 nm with an efficiency of 28.6±2.2 percent. Second-order correlation measurements on the 683- and 659-nm fields yielded g(683)(2) (0)=0.21±0.02 and g(659)(2) (0)=0.19±0.05, respectively, showing the nonclassical nature of both fields.
Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities
Kors, A.; Fuchs, K.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.
2017-01-01
Here we report on the fabrication and optical characterization of InP-based L3 photonic crystal (PhC) microcavities embedded with a medium density InAs/InP quantum dots (QDs) emitting at telecom wavelengths. The QDs are grown by solid source molecular beam epitaxy using a ripening technique. Micro-photoluminescence (μ-PL) measurements of PhC samples reveal sharp cavity modes with quality factors exceeding 8500. QDs emit highly linear-polarized light at telecom wavelengths with resolution-limited spectral linewidth below 50 μeV. Enhanced PL intensity of QDs in PhC is observed in comparison to the PL intensity of QDs in bulk semiconductors. The combination of excitation power-dependent and polarization-resolved μ-PL measurements reveal the existence of an exciton-biexciton system with a small fine-structure splitting.
Energy Technology Data Exchange (ETDEWEB)
Solookinejad, G.; Panahi, M.; Sangachin, E. A.; Asadpour, S. H., E-mail: s.hosein.asadpour@gmail.com, E-mail: S.Hosein.Asadpour@miau.ac.ir [Islamic Azad University, Department of Physics, Marvdasht Branch (Iran, Islamic Republic of)
2016-12-15
The transmission and reflection properties of incident light in a defect dielectric structure is studied theoretically. The defect structure consists of donor and acceptor quantum dot nanostructures embedded in a photonic crystal. It is shown that the transmission and reflection properties of incident light can be controlled by adjusting the corresponding parameters of the system. The role of dipole–dipole interaction is considered as a new parameter in our calculations. It is noted that the features of transmission and reflection curves can be adjusted in the presence of dipole–dipole interaction. It is found that the absorption of weak probe light can be converted to the probe amplification in the presence of dipole–dipole interaction. Moreover, the group velocity of transmitted and reflected probe light is discussed in detail in the absence and presence of dipole–dipole interaction. Our proposed model can be used as a new all-optical devices based on photonic materials doped with nanoparticles.
Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots
Stumpf, Wolfgang C; Kojima, Takanori; Fujita, Masayuki; Tanaka, Yoshinori; Noda, Susumu
2010-01-01
The spectra of two-dimensional photonic crystal slab nanocavities with embedded InAs quantum dots are measured by photoluminescence and reflectance. In comparing the spectra taken by these two different methods, consistency with the nanocavities' resonant wavelengths is found. Furthermore, it is shown that the reflectance method can measure both active and passive cavities. Q-factors of nanocavities, whose resonant wavelengths range from 1280 to 1620 nm, are measured by the reflectance method in cross polarization. Experimentally, Q-factors decrease for longer wavelengths and the intensity, reflected by the nanocavities on resonance, becomes minimal around 1360 nm. The trend of the Q-factors is explained by the change of the slab thickness relative to the resonant wavelength, showing a good agreement between theory and experiment. The trend of reflected intensity by the nanocavities on resonance can be understood as effects that originate from the PC slab and the underlying air cladding thickness. In addition...
Schatzl, Magdalena; Glaser, Martin; Brehm, Moritz; Simbula, Angelica; Galli, Matteo; Fromherz, Thomas; Schäffler, Friedrich
2016-01-01
We report on mapping of the local density of states in L3 photonic crystal resonators (PCR) via deterministically positioned single Ge quantum dots (QDs). Perfect site-control of Ge QDs on pre-patterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 L3 PCRs containing single QDs in systematically varying positions in the cavities. The alignment precision of the QD emitters was better than 20 nm. This type of parallel processing is essentially based on standard Si device technologies and is therefore scalable to any number and configuration of PCR structures. As a first demonstrator, we probed the coupling efficiency of a single Ge QD to the L3 cavity modes as a function of their spatial overlap. The results are in excellent agreement with finite-difference time-domain simulations.
Quantum oscillations in EuFe2As2 single crystals
Rosa, P. F. S.; Zeng, B.; Adriano, C.; Garitezi, T. M.; Grant, T.; Fisk, Z.; Balicas, L.; Johannes, M. D.; Urbano, R. R.; Pagliuso, P. G.
2014-11-01
Quantum oscillation measurements provide relevant information about the Fermi surface (FS) properties of strongly correlated metals. Here, we report on the Shubnikov-de Haas effect via high-field resistivity measurements of EuFe2As2 (Eu122) and BaFe2As2 (Ba122) single crystals. Although both pnictide compounds are isovalent with similar effective masses and density of states, at the Fermi level, our results reveal subtle changes in their fermiology. Remarkably, although the spin-density-wave (SDW) ordering temperature is higher in the Eu-rich end, Eu122 displays a much more isotropic and three-dimensional-like FS when compared with Ba122, in agreement with band structure calculations. Our experimental results suggest an anisotropic contribution of the Fe 3 d orbitals to the FS in Ba122. We speculate that this orbital differentiation may be responsible for the suppression of the SDW phase in the FeAs-based compounds.
Control of Spin Helix Symmetry in Semiconductor Quantum Wells by Crystal Orientation
Kammermeier, Michael; Wenk, Paul; Schliemann, John
2016-12-01
We investigate the possibility of spin-preserving symmetries due to the interplay of Rashba and Dresselhaus spin-orbit coupling in n -doped zinc-blende semiconductor quantum wells of general crystal orientation. It is shown that a conserved spin operator can be realized if and only if at least two growth direction Miller indices agree in modulus. The according spin-orbit field has in general both in-plane and out-of-plane components and is always perpendicular to the shift vector of the corresponding persistent spin helix. We also analyze higher-order effects arising from the Dresselhaus term, and the impact of our results on weak (anti)localization corrections.
Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors
Schartner, S.; Kalchmair, S.; Andrews, A. M.; Klang, P.; Schrenk, W.; Strasser, G.
2009-06-01
Photonic crystal (PC) devices require high fabrication accuracy for on demand positioning of resonances. We describe post-fabrication fine-tuning of a PC quantum well infrared photodetector (QWIP) by sidewall-deposition of silicon nitride. The PC resonance was shifted over a bandwidth of 43 cm-1. From photoresponse measurements we calculated a tuning coefficient of ∂ν/∂dSiN=-0.06 cm-1/nm. The QWIP responsivity did not suffer from nitride absorption while the PC resonance increased by a factor of 1.6. This shows that post-fabrication tuning by dielectric deposition with, e.g., silicon nitride is a feasible method to achieve precise implementations of PC devices.
Meenehan, Sean M; MacCabe, Gregory S; Marsili, Francesco; Shaw, Matthew D; Painter, Oskar
2015-01-01
Using pulsed optical excitation and read-out along with single phonon counting techniques, we measure the transient back-action, heating, and damping dynamics of a nanoscale silicon optomechanical crystal cavity mounted in a dilution refrigerator at a base temperature of 11mK. In addition to observing a slow (~740ns) turn-on time for the optical-absorption-induced hot phonon bath, we measure for the 5.6GHz `breathing' acoustic mode of the cavity an initial phonon occupancy as low as 0.021 +- 0.007 (mode temperature = 70mK) and an intrinsic mechanical decay rate of 328 +- 14 Hz (mechanical Q-factor = 1.7x10^7). These measurements demonstrate the feasibility of using short pulsed measurements for a variety of quantum optomechanical applications despite the presence of steady-state optical heating.
Polarization control of quantum dot emission by chiral photonic crystal slabs.
Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto
2015-04-01
We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.
Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity
Energy Technology Data Exchange (ETDEWEB)
Jarlov, C., E-mail: clement.jarlov@epfl.ch; Lyasota, A.; Ferrier, L.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E. [Laboratory of Physics of Nanostructures, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
2015-11-09
Exciton and cavity mode (CM) dynamics in site-controlled pyramidal quantum dots (QDs), integrated with linear photonic crystal membrane cavities, are investigated for a range of temperatures and photo-excitation power levels. The absence of spurious multi-excitonic effects, normally observed in similar structures based on self-assembled QDs, permits the observation of effects intrinsic to two-level systems embedded in a solid state matrix and interacting with optical cavity modes. The coupled exciton and CM dynamics follow the same trend, indicating that the CM is fed only by the exciton transition. The Purcell reduction of the QD and CM decay times is reproduced well by a theoretical model that includes exciton linewidth broadening and temperature dependent non-radiative processes, from which we extract a Purcell factor of 17 ± 5. For excitation powers above QD saturation, we show the influence of quantum wire barrier states at short delay time, and demonstrate the absence of multiexcitonic background emission.
Position dependent optical coupling between single quantum dots and photonic crystal nanocavities
Kuruma, K.; Ota, Y.; Kakuda, M.; Takamiya, D.; Iwamoto, S.; Arakawa, Y.
2016-08-01
We demonstrate precise and quick detection of the positions of quantum dots (QDs) embedded in two-dimensional photonic crystal nanocavities. We apply this technique to investigate the QD position dependence of the optical coupling between the QD and the nanocavity. We use a scanning electron microscope (SEM) operating at a low acceleration voltage to detect surface bumps induced by the QDs buried underneath. This enables QD detection with a sub-10 nm precision. We then experimentally measure the vacuum Rabi spectra to extract the optical coupling strengths (gs) between single QDs and cavities, and compare them to the values estimated by a combination of the SEM-measured QD positions and electromagnetic cavity field simulations. We found a highly linear relationship between the local cavity field intensities and the QD-cavity gs, suggesting the validity of the point dipole approximation used in the estimation of the gs. The estimation using SEM has a small standard deviation of ±6.2%, which potentially enables the high accuracy prediction of g prior to optical measurements. Our technique will play a key role for deeply understanding the interaction between QDs and photonic nanostructures and for advancing QD-based cavity quantum electrodynamics.
Composite Fermion Theory for the Fractional Quantum Hall Wigner Crystal State
Narevich, Romanas; Murthy, Ganpathy; Fertig, Herbert
2000-03-01
The low filling fraction Quantum Hall Effect is reexamined using the recent hamiltonian composite fermion theory developed by Shankar and Murthy [SM] (R. Shankar and G. Murthy, Phys. Rev. Lett. 79), 4437, (1997); G. Murthy and R. Shankar, Chapter 4 of "Composite Fermions", O. Heinonen, Ed. (World Scientific, Teaneck, NJ, 1998).. Previous studies have either concentrated on Wigner crystal states of electrons in the Hartree-Fock approximation (D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 47), 394 (1979); D. Yoshioka and P. A. Lee, Phys. Rev. B 27, 4986 (1983); A. H. MacDonald, Phys. Rev. B 30, 4392 (1984); R. Cote and A. H. MacDonald, Phys. Rev. B 44, 8759 (1991). or studied correlated crystal states numerically (P. K. Lam and S. M. Girvin, Phys. Rev. B 30), 473 (1984); H. Yi and H. A. Fertig, Phys. Rev. B, 58, 4019 (1998).. Using the new SM approach we study the correlated states as Hartree-Fock states of composite fermions, which is known to work reasonably well for translationally invariant composite fermion states. We present the calculation of the gaps for the stable states that we found as well as the dispersion relations of the collective modes.
Tuning quantum-dot organization in liquid crystals for robust photonic applications.
Rodarte, Andrea L; Nuno, Zachary S; Cao, Blessing H; Pandolfi, Ronald J; Quint, Makiko T; Ghosh, Sayantani; Hein, Jason E; Hirst, Linda S
2014-05-19
Mesogenic ligands have the potential to provide control over the dispersion and stabilization of nanoparticles in liquid crystal (LC) phases. The creation of such hybrid materials is an important goal for the creation of soft tunable photonic devices, such as the LC laser. Herein, we present a comparison of isotropic and mesogenic ligands attached to the surface of CdSe (core-only) and CdSe/ZnS (core/shell) quantum dots (QDs). The mesogenic ligand's flexible arm structure enhances ligand alignment, with the local LC director promoting QD dispersion in the isotropic and nematic phases. To characterize QD dispersion on different length scales, we apply fluorescence microscopy, X-ray scattering, and scanning confocal photoluminescent imaging. These combined techniques demonstrate that the LC-modified QDs do not aggregate into the dense clusters observed for dots with simple isotropic ligands when dispersed in liquid crystal, but loosely associate in a fluid-like droplet with an average interparticle spacing >10 nm. Embedding the QDs in a cholesteric cavity, we observe comparable coupling effects to those reported for more closely packed isotropic ligands.
Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K.; Kozlova, M.; Stebakova, J. V.; Valchuk, Y. V.
2017-05-01
One-dimensional dynamic photonic crystal was formed by a periodic spatial modulation of dielectric permittivity induced by the two ultrashort laser pulses interference in semiconductor quantum dots CdSe/ZnS (QDs) colloidal solution intersecting at angle θ. The fundamental differences of dynamic photonic crystals from static ones which determine the properties of these transient structures are the following. I. Dynamic photonic crystals lifetimes are determined by the nature of nonlinear changes of dielectric permittivity. II. The refractive index changing is determined by the intensity of the induced standing wave maxima and nonlinear susceptibility of the sample. We use the pump and probe method to create the dynamic one-dimensional photonic crystal and to analyze its features. Two focused laser beams are the pump beams, that form in the colloidal solution of quantum dots dynamic one-dimensional photonic crystal. The picosecond continuum, generated by the first harmonic of laser (1064 nm) passing through a heavy water is used as the probe beam. The self-diffraction of pumping beams on self induced dynamic one-dimensional photonic crystal provides information about spatial combining of laser beams.
DEFF Research Database (Denmark)
Liu, Jin; Ates, Serkan; Lorke, Michael
2013-01-01
We present an experimental and theoretical study on the gain mechanism in a photonic-crystal-cavity nanolaser with embedded quantum dots. From time-resolved measurements at low excitation power we find that four excitons are coupled to the cavity. At high excitation power we observe a smooth low......-threshold transition from spontaneous emission to lasing. Before lasing emission sets in, however, the excitons are observed to saturate, and the gain required for lasing originates rather from multi-excitonic transitions, which give rise to a broad emission background. We compare the experiment to a model of quantum...
Dovzhenko, Dmitriy S.; Martynov, Igor L.; Samokhvalov, Pavel S.; Mochalov, Konstantin E.; Chistyakov, Alexander A.; Nabiev, Igor
2016-04-01
Photonic crystals doped with fluorescent nanoparticles offer a plenty of interesting applications in photonics, laser physics, and biosensing. Understanding of the mechanisms and effects of modulation of the photoluminescent properties of photonic crystals by varying the depth of nanoparticle penetration should promote targeted development of nanocrystal-doped photonic crystals with desired optical and morphological properties. Here, we have investigated the penetration of semiconductor quantum dots (QDs) into porous silicon photonic crystals and performed experimental analysis and theoretical modeling of the effects of the depth of nanoparticle penetration on the photoluminescent properties of this photonic system. For this purpose, we fabricated porous silicon microcavities with an eigenmode width not exceeding 10 nm at a wavelength of 620 nm. CdSe/CdS/ZnS QDs fluorescing at 617 nm with a quantum yield of about 70% and a width at half-height of about 40 nm were used in the study. Confocal microscopy and scanning electron microscopy were used to estimate the depth of penetration of QDs into the porous silicon structure; the photoluminescence spectra, kinetics, and angular fluorescence distribution were also analyzed. Enhancement of QD photoluminescence at the microcavity eigenmode wavelength was observed. Theoretical modeling of porous silicon photonic crystals doped with QDs was performed using the finite-difference time-domain (FDTD) approach. Theoretical modeling has predicted, and the experiments have confirmed, that even a very limited depth of nanoparticle penetration into photonic crystals, not exceeding the first Bragg mirror of the microcavity, leads to significant changes in the QD luminescence spectrum determined by the modulation of the local density of photonic states in the microcavity. At the same time, complete and uniform filling of a photonic crystal with nanoparticles does not enhance this effect, which is as strong as in the case of a very
Segnorile, Héctor H; Zamar, Ricardo C
2011-12-28
Explanation of decoherence and quasi-equilibrium in systems with few degrees of freedom demands a deep theoretical analysis that considers the observed system as an open quantum system. In this work, we study the problem of decoherence of an observed system of quantum interacting particles, coupled to a quantum lattice. Our strategy is based on treating the environment and the system-environment Hamiltonians fully quantum mechanically, which yields a representation of the time evolution operator useful for disentangling the different time scales underlying in the observed system dynamics. To describe the possible different stages of the dynamics of the observed system, we introduce quantum mechanical definitions of essentially isolated, essentially adiabatic, and thermal-contact system-environment interactions. This general approach is then applied to the study of decoherence and quasi-equilibrium in proton nuclear magnetic resonance ((1)H NMR) of nematic liquid crystals. A summary of the original results of this work is as follows. We calculate the decoherence function and apply it to describe the evolution of a coherent spin state, induced by the coupling with the molecular environment, in absence of spin-lattice relaxation. By assuming quantum energy conserving or non-demolition interactions, we identify an intermediate time scale, between those controlled by self-interactions and thermalization, where coherence decays irreversibly. This treatment is also adequate for explaining the buildup of quasi-equilibrium of the proton spin system, via the process we called eigen-selectivity. By analyzing a hypothetical time reversal experiment, we identify two sources of coherence loss which are of a very different nature and give rise to distinct time scales of the spin dynamics: (a) reversible or adiabatic quantum decoherence and (b) irreversible or essentially adiabatic quantum decoherence. Local irreversibility arises as a consequence of the uncertainty introduced by
Rossi, Mariana; Ceriotti, Michele
2016-01-01
Molecular crystals often exist in multiple competing polymorphs, showing significantly different physico-chemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form: A real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenge...
A review on solar cells from Si-single crystals to porous materials and quantum dots.
Badawy, Waheed A
2015-03-01
Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.
A review on solar cells from Si-single crystals to porous materials and quantum dots
Directory of Open Access Journals (Sweden)
Waheed A. Badawy
2015-03-01
Full Text Available Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed.
Photoluminescence from In0.5Ga0.5As/GaP quantum dots coupled to photonic crystal cavities
Rivoire, Kelley; Song, Yuncheng; Lee, Minjoo Larry; Vuckovic, Jelena
2012-01-01
We demonstrate room temperature visible wavelength photoluminescence from In0.5Ga0.5As quantum dots embedded in a GaP membrane. Time-resolved above band photoluminescence measurements of quantum dot emission show a biexpontential decay with lifetimes of ~200 ps. We fabricate photonic crystal cavities which provide enhanced outcoupling of quantum dot emission, allowing the observation of narrow lines indicative of single quantum dot emission. This materials system is compatible with monolithic integration on Si, and is promising for high efficiency detection of single quantum dot emission as well as optoelectronic devices emitting at visible wavelengths.
A quantum-chemical study of oxygen-vacancy defects in PbTiO{sub 3} crystals
Energy Technology Data Exchange (ETDEWEB)
Stashans, Arvids [Laboratorio de Fisica, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Serrano, Sheyla [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador); Escuela de Ingenierias, Universidad Politecnica Salesiana, Campus Sur, Rumichaca s/n y Moran Valverde, Apartado 17-12-536, Quito (Ecuador); Medina, Paul [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador)
2006-05-31
Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO{sub 3} crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results.
A study of the quantum efficiency of multichannel relaxation in LiNbO3:Yb, Er crystals
Stroganova, E. V.; Nalbantov, N. N.; Galutsky, V. V.; Yakovenko, N. A.
2016-12-01
Luminescence spectra of gradient-activated LiNbO3:Yb, Er crystals with predefined concentration profiles of the optical centers are studied in different spectral regions. The process of electronic excitation energy transfer in the Yb3+-Er3+ system inside the LiNbO3 matrix is calculated and dependences of the quantum efficiency of the up-conversion processes for the green and red luminescences of erbium ions on the time of excitation energy deactivation are obtained.
Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots
Bertolotti, Federica; Dirin, Dmitry N.; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H.; Kovalenko, Maksym V.; Guagliardi, Antonietta; Masciocchi, Norberto
2016-09-01
Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.
Directory of Open Access Journals (Sweden)
Mahshid Mokhtarnejad
2017-01-01
Full Text Available This study examined MQWs made of InGaAs/GaAs, InAlAs/InP, and InGaAs/InP in terms of their band structure and reflectivity. We also demonstrated that the reflectivity of MQWs under normal incident was at maximum, while both using a strong pump and changing incident angle reduced it. Reflectivity of the structure for a weak probe pulse depends on polarization, intensity of the pump pulse, and delay between the probe pulse and the pump pulse. So this system can be used as an ultrafast all-optical switch which is inspected by the transfer matrix method. After studying the band structure of the one-dimensional photonic crystal, the optical stark effect (OSE was considered on it. Due to the OSE on virtual exciton levels, the switching time can be in the order of picoseconds. Moreover, it is demonstrated that, by introducing errors in width of barrier and well as well as by inserting defect, the reflectivity is reduced. Thus, by employing the mechanism of stark effect MQWs band-gaps can be easily controlled which is useful in designing MWQ based optical switches and filters. By comparing the results, we observe that the reflectivity of MWQ containing 200 periods of InAlAs/InP quantum wells shows the maximum reflectivity of 96%.
The properties of an asymmetric Gaussian potential quantum well qubit in RbCl crystal
Sun, Yong; Miao, Xiujuan; Ding, Zhaohua; Xiao, Jinglin
2017-04-01
With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type (VMPT), we study the eigenenergies and the eigenfunctions (EE) of the ground and the first excited states (GFES) in a RbCl crystal asymmetric Gaussian potential quantum well (AGPQW). It concludes: (i) Two-energy-level of the AGPQW may be seen as a qubit. (ii) When the electron located in the superposition state of the two-energy-level system, the time evolution and the coordinate changes of the electron probability density oscillated periodically in the AGPQW with every certain period {T}0=22.475 fs. (iii) Due to the confinement that is a two dimensional x-y plane symmetric structure in the AGPQW and the asymmetrical Gaussian potential (AGP) in the AGPQW growth direction, the electron probability density presents only one peak configuration located in the coordinate of z > 0, whereas it is zero in the range of z 0.24 nm and it takes a minimum value in R = 0.24 nm. Project supported by the National Natural Science Foundation of China (No. 11464033) and the Mongolia University for Nationalities Fund (No.NMDYB1445).
Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele
2016-09-01
Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.
Segnorile, H H
2013-01-01
An experimental study of NMR spin decoherence in nematic liquid crystals is presented. The outcome of the experiments are analyzed in the framework of a theory that considers the spins as an open quantum system coupled to a quantum molecular environment, presented by the authors recently. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments and the presence of non-reverted spin interaction terms are analysed in detail and their effects on the observed signal decay are estimated. It is found that, though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results ...
Kliemt, K.; Krellner, C.
2016-09-01
The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.
QUANTUM-MECHANICAL MODELING OF SPATIAL AND BAND STRUCTURE OF Y3AL5O12 SCINTILLATION CRYSTAL
Directory of Open Access Journals (Sweden)
I. I. Vrubel
2016-05-01
Full Text Available Spatial and electronic structures of a unit cell of yttrium-aluminum garnet have been studied. Quantum-mechanical model have been presented. Semi-empirical methods PM6 and PM7 have been used for geometry optimization of the crystal unit cell. Band structure has been calculated within density functional theory with the use of PBE exchange-correlation functional. Histograms of metal-oxygen distances for equilibrium geometry have been constructed. Comparison of the used methods has been carried out and recommendation about their applicability for such problems was given. The single-particle wave functions and energies have been calculated. The bandgap was estimated. The band structure was plotted. It was shown that the method gives reliable results for spatial and band structure of Y3Al5O12 scintillation crystal. The results of this work can be used for improvement of characteristics of garnet scintillation crystals.
Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers
Cartar, William; Mørk, Jesper; Hughes, Stephen
2017-08-01
We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also
Zhang, Wei; Zhang, Xuehua; Wang, Yongjin; Hu, Fangren
2017-10-01
Nanocolumn InGaN/GaN single quantum well crystals were deposited on Si (111) substrate with nitrified Ga dots as buffer layer. Transmission electron microscopy image shows the crystals' diameter of 100-130 nm and length of about 900 nm. Nanoscale spatial phase separation of cubic and hexagonal GaN was observed by selective area electron diffraction on the quantum well layer. Raman spectrum of the quantum well crystals proved that the crystals were fully relaxed. Room temperature photoluminescence from 450 to 750 nm and full width at half maximum of about 420 meV indicate broad color luminescence covering blue, green, yellow and red emission, which is helpful for the fabrication of tunable optoelectronic devices and colorful light emitting diodes.
H2 Adsorption in a Porous Crystal: Accurate First-Principles Quantum Simulation.
D'Arcy, Jordan H; Jordan, Meredith J T; Frankcombe, Terry J; Collins, Michael A
2015-12-17
A general method is presented for constructing, from ab initio quantum chemistry calculations, the potential energy surface (PES) for H2 absorbed in a porous crystalline material. The method is illustrated for the metal-organic framework material MOF-5. Rigid body quantum diffusion Monte Carlo simulations are used in the construction of the PES and to evaluate the quantum ground state of H2 in MOF-5, the zero-point energy, and the enthalpy of adsorption at 0 K.
Directory of Open Access Journals (Sweden)
Isnaeni Isnaeni
2016-09-01
Full Text Available Two-dimensional photonic crystal structures not only confine light and guide waves laterally but also reflect light in the normal direction due to a slow Bloch mode effect. However, evidence of the utilization of this structure as a mirror is required. Therefore, in this work, a simulation was made and experimental results were obtained to prove that there was an increase in the intensity of reflected CdSe colloidal quantum dots emission in the normal direction when a 2D photonic crystal structure was used. A thin TiO2 film was shaped into a two-dimensional photonic crystal structure using a simple sol-gel and polystyrene-mask-etching procedure. This structure was then placed on top of the thin CdSe quantum dots film layer. The emission of quantum dots onto the two-dimensional photonic crystal structure was compared to quantum dots emission onto a flat, thin TiO2 film. An increase in the quantum dots emission of up to 105% was in the presence of the two-dimensional photonic crystal structure. This finding is very useful for photonic device applications, such as light-emitting diodes, laser systems and bio-tagging detection systems.
Panahi, M.; Solookinejad, G.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed
2016-07-01
The impact of the dipole-dipole interaction on the Goo-Hänchen (GH) shifts in reflected and transmitted lights is investigated. A weak probe beam is incident on a cavity containing the donor and acceptor quantum dots embedded in a nonlinear photonic crystal. We deduced that the GH shifts can be easily adjusted via controlling the corresponding parameters of the system in the presence or absence of dipole-dipole interaction. Our proposed model may be useful to developing the all-optical devices based on photonic materials doped with nanoparticles.
Institute of Scientific and Technical Information of China (English)
QIAN Yong; QIAN Jun; WANG Yu-Zhu
2009-01-01
We theoretically investigate controlled tunable all-optical filtering and buffering of optical pulses in a hybrid nano-photonic structure,where a single quantum dot (QD) embedded in a photonic crystal nanocavity is sidecoupled between a bare nanocavity and a photonic crystal waveguide.We demonstrate that there is a sharp low-loss transmission peak in the transmission spectrum under even low QD-nanocavity coupling strength and the input optical pulses can be delayed up to several hundred piceseconds within the dephasing time of the QD.The filtering regime can be shifted readily by manipulating the detuning between the QD excitonic transition frequency and resonant frequency of the nanocavity mode,which can be explored in future for on-clup all-optical logic and signal processing.
Dual-polarization light emission from InAs quantum dots in a annular photonic crystal cavity
Jiang, Liyong; Wu, Hong; Zhang, Wei; Su, Wei; Li, Xiangyin
2014-01-01
The annular photonic crystals have been regarded as a satisfactory candidate to realize dual-polarization photonic device. In this letter, we focus our attention on the study of annular photonic crystal cavity to verify its application in light emission. We proposed a two-dimensional photonic crystal model with annular air units and a point-line defect to construct a cavity for the enhancement of light emission of InAs quantum dots. With the help of global optimization method, we have obtained an annular photonic crystal cavity design which can show a high in-plane quality factor of about 1.3*105 and 2.8*106 for transverse electric and transverse magnetic polarizations, respectively. Based on the Electron Beam Lithography and Reactive Ion Etching techniques, such cavity pattern was transferred into the top of InAs/GaAs active layer. The photoluminescence spectra of sample demonstrated clear light emission at around 1.3 um for both polarizations. Such dual-polarization light emitter has potential applications ...
Cinti, Maria Nerina; Pani, Roberto; Pellegrini, Rosanna; Bennati, Paolo; Orlandi, Chiara; Fabbri, Andrea; Ridolfi, Stefano; Scafè, Raffaele
2013-10-01
High quantum efficiency semiconductor photodetectors have recently drawn the attention of the scientific community for their potential in the realization of a new class of scintillation imagers with very high energy and spatial resolution performance. However, this goal does not seem within easy reach, due to various technological issues such as, for example, the difficulty to scale the characteristics of a single detector to an imager with suitable dimensions. Lately a definite technical improvement in increasing quantum efficiency up to 42% for position sensitive photomultipliers was achieved. The aim of this work is thus to test this new technological progress and to study the possible implications in imaging applications. Four Hamamatsu PMTs were tested: two multi anode photomultipliers, one with a bialkali (27% quantum efficiency) and the other one with a super-bialkali photocathode (38% quantum efficiency), and two 1×1 in. PMTs, both equipped with an ultra bialkali photocathode (42% quantum efficiency). In particular one of the ultra bialkali PMT has also an increased efficiency of first dynode charge collection. The results were compared with the ones obtained with a reference PMT (Hamamatsu R6231), mainly used in spectroscopy. The PMTs were coupled to LaBr3(Ce), NaI(Tl) and LSO(Ce) continuous scintillation crystals. The tests were done using two independent electronic chains: one dedicated for spectroscopic application and a second one, using a multi wire 64 channel readout, for imaging applications. The super-bialkali MA-PMTs have shown high energy resolution, both with spectroscopic and imaging setup, highlighting the appropriateness of these devices for the development of imaging devices with high spectroscopic performance.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide
Daveau, Raphaël S; Pregnolato, Tommaso; Liu, Jin; Lee, Eun H; Song, Jin D; Verma, Varun; Mirin, Richard; Nam, Sae Woo; Midolo, Leonardo; Stobbe, Søren; Srinivasan, Kartik; Lodahl, Peter
2016-01-01
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % $\\pm$ 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, ...
Ko, Hsin-Yu; Distasio, Robert A., Jr.; Santra, Biswajit; Car, Roberto
Molecular crystal structure prediction has posed a substantial challenge to first-principles methods and requires sophisticated electronic structure methods to determine the stabilities of nearly degenerate polymorphs. In this work, we demonstrate that the anharmonicity from van der Waals interactions is relevant to the finite-temperature structures of pyridine and pyridine-like molecular crystals. Using such an approach, we find that the equilibrium structures are well captured with classical ab initio molecular dynamics (AIMD), despite the presence of light atoms such as hydrogen. Employing path integral AIMD simulations, we demonstrate that the success of classical AIMD results from a separation of nuclear quantum effects between the intermolecular and intramolecular degrees of freedom. In this separation, the quasiclassical and anharmonic intermolecular degrees of freedom determine the equilibrium structure, while the quantum and harmonic intramolecular degrees of freedom are averaging to the correct intramolecular structure. This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.
Efficient Modeling of Coulomb Interaction Effect on Exciton in Crystal-Phase Nanowire Quantum Dot
DEFF Research Database (Denmark)
Taherkhani, Masoomeh; Gregersen, Niels; Mørk, Jesper
2016-01-01
The binding energy and oscillation strength of the ground-state exciton in type-II quantum dot (QD) is calculated by using a post Hartree-Fock method known as the configuration interaction (CI) method which is significantly more efficient than conventional methods like ab initio method. We show t...... that the Coulomb interaction between electron and holes in these structures considerably affects the transition dipole moment which is the key parameter of optical quantum gating in STIRAP (stimulated Raman adiabatic passage) process for implementing quantum gates [1], [2]....
Institute of Scientific and Technical Information of China (English)
REN Yong-Gang; CHEN Zhi-Rong; LI Hao-Hong; ZHAO Bin; HUANG Chang-Cang; LI Jun-Qian
2005-01-01
The title compound [Cu(dafone)2(DMF)2](2ClO4 1 (dafone = 4,5-diazafluoren- 9-one, dmf = N,N(A)-dimethyl formamide) was synthesized by the reaction of Cu(ClO4 )2 and dafone in DMF solution at room temperature with pH = 3.0.The single-crystal X-ray analysis has revealed that 1 crystallizes in monoclinic, space group P21/n with a = 8.4853(8), b = 13.1520 (14), c = 14.3866(12) (A), β = 102.629(3)o, V = 1566.7(3) (A)3, C28H26Cl2CuN6O12, Mr = 773.00, Z = 2, Dc = 1.639 g/cm3 , F(000) = 790, μ = 0.942 mm-1, the final R = 0.0438 and wR = 0.1214 for 3165 obser- ved reflections with I > 2σ(I).X-ray analysis shows that compound 1 has unsymmetric chelation of dafone with one Cu-N bond being much longer than the other.Coordination geometry of Cu is a highly distorted octahedron and the whole structure is stabilized by π-π stacking and static attractive forces from [ClO4]- anions.Based on the crystal data, quantum chemistry calculation at the DFT/ B3LPY level was used to reveal the electronic structure of 1.
Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity
2012-12-01
the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Applied Physics...Fundamentals, Applications and New Concepts, Vol. 90. (Springer-Verlag, New York; 2003).
Derivation of Pekar's Polarons from a Microscopic Model of Quantum Crystals
Lewin, Mathieu
2011-01-01
A polaron is an electron interacting with a polar crystal, which is able to form a bound state by using the distortions of the crystal induced by its own density of charge. In this paper we derive Pekar's famous continuous model for polarons (in which the crystal is replaced by a simple effective Coulomb self-attraction) by studying the macroscopic limit of the reduced Hartree-Fock theory of the crystal. The macroscopic density of the polaron converges to that of Pekar's nonlinear model, with a possibly anisotropic dielectric matrix. The polaron also exhibits fast microscopic oscillations which contribute to the energy at the same order, but whose characteristic length is small compared to the scale of the polaron. These oscillations are described by a simple periodic eigenvalue equation. Our approach also covers multi-polarons composed of several electrons, repelling each other by Coulomb forces.
Zeng, Minxiang; Shah, Smit A; Huang, Dali; Parviz, Dorsa; Yu, Yi-Hsien; Wang, Xuezhen; Green, Micah J; Cheng, Zhengdong
2017-09-13
We investigate the π-π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene. The graphene nanosheets prepared showed excellent colloidal stability, indicating great potential for applications in electronics, solar cells, and photonic displays which was demonstrated in this work.
Institute of Scientific and Technical Information of China (English)
YANG Ya-Ping; Chen Hong; ZHU Shi-Yao
2000-01-01
The spontaneous emission from a V-type three-level atom embedded in a two-band photonic crystal is studied.Due to the quantum interference between the two transitions and existence of two bands, the populations in the upper levels display some novel behavior: anti-trapping, population oscillation, and population inversion.
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Ates, Serkan; Liu, J.
2014-01-01
We demonstrate a single-photon collection efficiency of (44.3 ± 2.1)% from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of g(2)(0) = (4 ± 5)% recorded above the saturation power. The high efficiency is directly confirmed by detecting up to 962 ± 46...... kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation...... and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching 0.77 ± 0.19 ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including...
Spin exchange in quantum rings and wires in the Wigner-crystal limit
Fogler, Michael M.; Pivovarov, Eugene
2005-01-01
We present a controlled method for computing the exchange coupling in strongly correlated one-dimensional electron systems. It is based on the asymptotically exact relation between the exchange constant and the pair-correlation function of spinless electrons. Explicit results are obtained for thin quantum rings with realistic Coulomb interactions, by calculating this function via a many-body instanton approach.
Yang, Peng; Yang, Yingshu; Wang, Yinghui; Gao, Jiechao; Sui, Ning; Chi, Xiaochun; Zou, Lu; Zhang, Han-Zhuang
2016-02-01
The photoluminescence (PL) characteristics of CdSe quantum dots (QDs) infiltrated into inverse opal SiO2 photonic crystals (PCs) are systemically studied. The special porous structure of inverse opal PCs enhanced the thermal exchange rate between the CdSe QDs and their surrounding environment. Finally, inverse opal SiO2 PCs suppressed the nonlinear PL enhancement of CdSe QDs in PCs excited by a continuum laser and effectively modulated the PL characteristics of CdSe QDs in PCs at high temperatures in comparison with that of CdSe QDs out of PCs. The final results are of benefit in further understanding the role of inverse opal PCs on the PL characteristics of QDs.
Xing, Enbo; Tong, Cunzhu; Rong, Jiamin; Shu, Shili; Wu, Hao; Wang, Lijie; Tian, Sicong; Wang, Lijun
2016-08-01
A self-consistent all-pathway quantum dot (QD) rate equation model, in which all possible relaxation pathways are considered, is used to investigate the influence of quality (Q) factor on the carrier dynamics of 1.3-μm InAs/GaAs QD photonic crystal (PhC) nanolasers. It is found that Q factor not only affects the photon lifetime, but also modulates the carrier occupation in QDs. About three times increases of carrier injection efficiency in QD ground state can be realized in nanocavity with high Q factor. However, it also reveals that over 90% improvement of threshold current happens when Q factor increases from 2000 to 7000, which means it might be not necessary to pursuit for ultrahigh Q factor for the purpose of low threshold current.
Desbrandes, R; Desbrandes, Robert; Gent, Daniel Van
2006-01-01
The experiments reported in this paper were carried out with space-separated entangled thermoluminescent dosimetry (TLD) crystals in Baton Rouge, Louisiana (USA) and Givarlais (France) at 8,182 km between entangled samples. Samples consisted of doped lithium fluoride TLD's that were simultaneously irradiated in pairs together at one location by Bremsstrahlung radiation generated by a Varian CLINAC unit. One of the paired TLD crystals was then mailed to Baton Rouge and its entangled counterpart remained in Givarlais. The crystal in Baton Rouge (master) was then subjected to thermal stimulation which elicited a measurable light emission response in the counterpart (slave) under a photomultiplier in Givarlais. Highly correlated passive light emissions were observed in the nonheated slave TLD while the master TLD was ramped up in temperature and then allowed to cool to ambient temperature. Maximum correlations in the slave TLD light emissions were observed at the turn around temperature which is the point where t...
Quantum simulating the frustrated Heisenberg model in a molecular dipolar crystal
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yan-Li, E-mail: ylzhou@nudt.edu.cn [College of Science, National University of Defense Technology, 410073 Changsha (China); Ou, Bao-Quan [College of Science, National University of Defense Technology, 410073 Changsha (China); Wu, Wei [College of Science, National University of Defense Technology, 410073 Changsha (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, 410073 Changsha (China)
2015-10-23
We study the simulation of spin models with polar molecules in a dipolar crystal. We employ a master equation approach to describe the dynamics of the system and to research the dissipation of the model. The reduced dynamics of the polar molecules lead to frustrated Heisenberg models with tuneable long-range interactions, via spin-dependent dipole–dipole interactions forces to the lattice vibrations. The influence of the lattice vibrations is calculated and analyzed in detail. - Highlights: • We simulate spin models with polar molecules in a dipolar crystal. • We employ a master equation to describe the dynamics of the system. • The influence of the lattice vibrations is calculated.
Decay dynamics of radiatively coupled quantum dots in photonic crystal slabs
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Mørk, Jesper; Lodahl, Peter
2011-01-01
We theoretically investigate the influence of radiative coupling on light emission in a photonic crystal slab structure. The calculation method is based on a formalism that combines the photon Green's tensor with a self-consistent Dyson equation approach and is applicable to a wide range of probl......We theoretically investigate the influence of radiative coupling on light emission in a photonic crystal slab structure. The calculation method is based on a formalism that combines the photon Green's tensor with a self-consistent Dyson equation approach and is applicable to a wide range...
Becerril, M.; Zelaya-Angel, O.; Medina-Torres, A. C.; Aguilar-Hernández, J. R.; Ramírez-Bon, R.; Espinoza-Beltran, F. J.
2009-02-01
Amorphous cadmium-telluride films were prepared by rf sputtering on Corning 7059 glass substrates at room temperature. The deposition time was 10 and 12 h with a thickness of 400 and 480 (±40 nm), respectively. As-prepared films were amorphous according to X-ray diffraction (XRD) patterns, but a win-fit-software analysis of the main XRD broad band suggests a wurtzite structure at short range. Transmission electron microscopy (TEM) at 200 keV produces crystallization of the amorphous CdTe. The TEM-electron beam induces the formation of CdTe quantum dots with the wurtzite hexagonal structure (the metastable structure of CdTe) and with ˜6 nm of average grain size. As effect of a probable distortion of the CdTe crystalline lattice, the unit cell volume (UCV) shrinks to about 30% with respect to the bulk-UCV of CdTe. Besides, the energy band gap increases as expected, according to literature data on quantum confinement.
Quantum coherence phenomenon in disordered Bi2SeTe2 topological single crystal: effect of annealing.
Amaladass, E P; Devidas, T R; Sharma, Shilpam; Mani, Awadhesh
2017-05-04
We report a comparative magnetotransport study on pristine and annealed Bi2SeTe2 single crystals. The pristine sample shows a metallic trend from 300 to 180 K, and an insulating behavior for T 2.5 T. Further, the quantum MR behaviours seen at low temperature gradually transform to classical B (2) dependent upon increasing the temperatures. In contrast, the annealed sample shows a WAL at small field superimposed on a parabolic feature for B > ±4 T at low temperatures (T 100 K. Hall measurements on both samples exhibit a nonlinear behavior at 4.2 K pointing to the existence of two types of carriers with different mobility. The annealed sample also shows a drastic decrease in mobility by one order of magnitude and a reduction in Ioffe-Regel parameter (k F l) by a factor of ~3. Disorder-induced localization of bulk carriers and its coexistence with localization-immune surface carriers at low T leads to WAL and WL. MR observed in the annealed sample can be attributed to the presence of both quantum-classical contribution and has been analysed using the Hikami-Larkin-Nagaoka (HLN) equation.
XPS Observations of Crystal Field Splitting in TiO2 Thin Films in Quantum Confinement Approach
Sushkova, Natalya
2015-03-01
Transition metal oxides attract increased interest due to amazing electrical and magnetic properties and their outstanding applications designated by relative d-band redistributions that are shifted in such a way that narrow bands arranged by localized electrons are situated in the vicinity of EF. Different kinds of lattice distortions caused by doping and/or quantum size confinement of TM oxides are assigned to remarkable phenomenon Mott metal-insulator transitions, when mutual metal-oxide orbital arrangement changes dramatically. There is a widespread consensus that strong electron correlations are responsible for that change and magnetic excitation is one of manifestations of these correlations. Here we are presenting XPS study of titanium dioxide nanocrystal formations on silicon substrate with native oxide. The dynamic changes in XPS spectra were used for analysis of TiO2 thin films with mass thicknesses up to 2 monolayers formed by redox reactions of sputtered Ti on Si(100) substrate with native oxide implemented in situ under UHV conditions. XPS spectra evolution, as a traditional source of information on phase composition, was complemented by the possibility to estimate the morphology and crystal field splitting of formed precipitates. Intensity fluctuations observed for O1s, Si 2p, Ti2p spectra were accompanied by crystal field splitting in Ti2p and on second derivatives of O1s. These fluctuations were followed by noticeable changes in the vicinity of band gap indicating possible Mott metal-insulator transitions.
Indistinguishable photon generation from a single quantum dot in a photonic crystal nanocavity
DEFF Research Database (Denmark)
Ates, Serkan; Stobbe, Søren; Lodahl, Peter
Detailed experimental investigations of the indistinguishability of the single photons generated from a single QD in photonic crystal nanocavities will be presented. The influence of the higher order cavity mode excitation in comparison to the aboveband excitation on the indistinguishability of t...
Surface enhanced Raman spectroscopy and quantum chemical studies on glycine single crystal
Parameswari, A.; Premkumar, S.; Premkumar, R.; Milton Franklin Benial, A.
2016-07-01
Adsorption characteristics of glycine (Gly) on silver surface were investigated based on density functional theory calculations and surface enhanced Raman spectroscopy (SERS) technique. The single crystals of Gly were grown by slow evaporation method and characterized by single crystal X-ray diffraction (XRD) technique. Silver nanoparticles (Ag NPs) were prepared by solution combustion method using Gly as fuel. The Ag NPs were characterized by XRD, ultraviolet-visible spectroscopy and high-resolution transmission electron microscopy techniques. The calculated structural parameters of Gly molecule were compared with the experimental observed single crystal XRD data. The structural parameters of Gly after adsorption on silver surface show the slight deviation, which indicates the interaction between the Gly and Ag3 cluster. Raman and SERS spectra for Gly single crystal were studied experimentally. Raman frequencies were calculated for Gly and Gly adsorbed on a silver surface. Raman and SERS frequencies were assigned on the basis of potential energy distribution calculation and compared with the experimental values. Frontier molecular orbital analysis was carried out for Gly and Gly adsorbed on a silver surface. The band gap value was significantly reduced for Gly after adsorption on the silver surface. The reduction in band gap indicates the delocalization of electrons, which leads to the higher bioactivity of the title molecule. SERS spectral analysis reveals that the Gly adsorbed as a stand-on orientation on the silver surface. Hence, the present investigation has been developed as a model system to understand the interaction of Ag NPs with amino acids.
Quantum transport properties of the three-dimensional Dirac semimetal Cd3As2 single crystals
He, Lan-Po; Li, Shi-Yan
2016-11-01
The discovery of the three-dimensional Dirac semimetals have expanded the family of topological materials, and attracted massive attentions in recent few years. In this short review, we briefly overview the quantum transport properties of a well-studied three-dimensional Dirac semimetal, Cd3As2. These unusual transport phenomena include the unexpected ultra-high charge mobility, large linear magnetoresistivity, remarkable Shubnikov-de Hass oscillations, and the evolution of the nontrivial Berry’s phase. These quantum transport properties not only reflect the novel electronic structure of Dirac semimetals, but also give the possibilities for their future device applications. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and STCSM of China (Grant No. 15XD1500200).
Anitha, R; Gunasekaran, M; Kumar, S Suresh; Athimoolam, S; Sridhar, B
2015-01-01
The common house hold pharmaceutical drug, paracetamol (PAR), has been synthesized from 4-chloroaniline as a first ever report. After the synthesis, good quality single crystals were obtained for slow evaporation technique under the room temperature. The crystal and molecular structures were re-determined by the single crystal X-ray diffraction. The vibrational spectral measurements were carried out using FT-IR and FT-Raman spectroscopy in the range of 4000-400 cm(-1). The single crystal X-ray studies shows that the drug crystallized in the monoclinic system polymorph (Form-I). The crystal packing is dominated by N-H⋯O and O-H⋯O classical hydrogen bonds. The ac diagonal of the unit cell features two chain C(7) and C(9) motifs running in the opposite directions. These two chain motifs are cross-linked to each other to form a ring R4(4)(22) motif and a chain C2(2)(6) motif which is running along the a-axis of the unit cell. Along with the classical hydrogen bonds, the methyl group forms a weak C-H⋯O interactions in the crystal packing. It offers the support for molecular assembly especially in the hydrophilic regions. Further, the strength of the hydrogen bonds are studied the shifting of vibrational bands. Geometrical optimizations of the drug molecule were done by the Density Functional Theory (DFT) using the B3LYP function and Hartree-Fock (HF) level with 6-311++G(d,p) basis set. The optimized molecular geometry and computed vibrational spectra are compared with experimental results which show significant agreement. The factor group analysis of the molecule was carried out by the various molecular symmetry, site and factor group species using the standard correlation method. The Natural Bond Orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and intramolecular charge transfer (ICT). The chemical softness, chemical hardness, electro-negativity, chemical potential and electrophilicity index of the molecule were found out first
Quasi-equilibrium states in thermotropic liquid crystals studied by multiple quantum NMR
Buljubasich, L; Acosta, R H; Bonin, C J; alez, C E Gonz\\'; Zamar, R C
2010-01-01
We study the nature of the quasiinvariants in nematic 5CB and measure their relaxation times by encoding the multiple quantum coherences of the states following the JB pulse pair on two orthogonal bases, Z and X. The experiments were also performed in powder adamantane at 301 K which is used as a reference compound having only one dipolar quasiinvariant. We show that the evolution of the quantum states during the build up of the quasi-equilibrium state in 5CB prepared under the S condition is similar to the case of adamantane and that their quasi-equilibrium density operators have the same tensor structure. In contrast, the second constant of motion, whose explicit operator form is not known, involves a richer composition of multiple quantum coherences on the X basis of even order, in consistency with the truncation inherent in its definition. We exploited the exclusive presence coherences 4, 6, 8, besides 0 and 2 under the W condition to measure the spin-lattice relaxation time T_{W} accurately, so avoiding ...
On the binding of small polarons in a mean-field quantum crystal
Lewin, Mathieu
2012-01-01
We consider a small multi-polaron model obtained by coupling the many-body Schr\\"odinger equation for N interacting electrons with the energy functional of a mean- field crystal with a localized defect, obtaining a highly non linear many-body problem. The physical picture is that the electrons constitue a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility to form a bound state of electrons via their interaction with the polarizable background. We first prove that a single polaron always binds, i.e. the energy functional has a minimizer for N = 1. Then we discuss the case of multi-polarons containing two electrons or more. We show that their existence is guaranteed when certain quantized binding inequalities of HVZ type are satisfied.
Holon Wigner Crystal in a Lightly Doped Kagome Quantum Spin Liquid
Jiang, Hong-Chen; Devereaux, T.; Kivelson, S. A.
2017-08-01
We address the problem of a lightly doped spin liquid through a large-scale density-matrix renormalization group study of the t -J model on a kagome lattice with a small but nonzero concentration δ of doped holes. It is now widely accepted that the undoped (δ =0 ) spin-1 /2 Heisenberg antiferromagnet has a spin-liquid ground state. Theoretical arguments have been presented that light doping of such a spin liquid could give rise to a high temperature superconductor or an exotic topological Fermi liquid metal. Instead, we infer that the doped holes form an insulating charge-density wave state with one doped hole per unit cell, i.e., a Wigner crystal. Spin correlations remain short ranged, as in the spin-liquid parent state, from which we infer that the state is a crystal of spinless holons, rather than of holes. Our results may be relevant to kagome lattice herbertsmithite upon doping.
A review on solar cells from Si-single crystals to porous materials and quantum dots
Badawy, Waheed A.
2013-01-01
Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. P...
Photonic crystal fibre source of photon pairs for quantum information processing
Fulconis, J; O'Brien, J L; Rarity, J G; Wadsworth, W J; Alibart, Olivier; Brien, Jeremy L. O'; Fulconis, Jeremie; Rarity, John G.; Wadsworth, William J.
2006-01-01
We demonstrate two key components for optical quantum information processing: a bright source of heralded single photons; and a bright source of entangled photon pairs. A pair of pump photons produces a correlated pair of photons at widely spaced wavelengths (583 nm and 900 nm), via a $\\chi^{(3)}$ four-wave mixing process. We demonstrate a non-classical interference between heralded photons from independent sources with a visibility of 95%, and an entangled photon pair source, with a fidelity of 89% with a Bell state.
Institute of Scientific and Technical Information of China (English)
Huang Wei-Qi; Chen Hang-Qiong; Shu Qin; Liu Shi-Rong; Qin Chao-Jian
2012-01-01
A new nanolaser concept using silicon quantum dots (QDs) is proposed.The conduction band opened by the quantum confinement effect gives the pumping levels.Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission.An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser.Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.
Ultralow-Threshold Electrically Pumped Quantum-Dot Photonic-Crystal Nanocavity Laser
2011-05-01
electron- beam lithography and dry-etched 100 nm into the membrane using an Ar/Cl2/BCl3 electron-cyclotron resonance reactive ion etch ( ECR -RIE). A...pattern was defined using electron-beam lithography and etched into the membrane using an Ar/Cl2/BCl3 ECR - RIE. Simultaneously with the photonic crystal...E.H. performed the fabricated laser material characterization. B.E. and G.S. performed electrical and optical measurements. B.E. analysed and modelled
Samant, Sanjiv S; Gopal, Arun
2006-08-01
Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at approximately 3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.
Madsen, K H; Liu, J; Javadi, A; Albrecht, S M; Yeo, I; Stobbe, S; Lodahl, P
2014-01-01
We demonstrate a single-photon collection efficiency of $(44.3\\pm2.1)\\%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4\\pm5)\\%$ and directly detect up to $962\\pm46$ kilocounts per second on a single-photon detector. The high collection efficiency is found to be broadband, as is confirmed by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times of up to $0.77\\pm0.19$ ns. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient outcoupling of the photons from the photonic chip.
Ben Bakir, Badhise; Seassal, Christian; Letartre, Xavier; Regreny, Philippe; Gendry, Michel; Viktorovitch, Pierre; Zussy, Marc; Di Cioccio, Léa; Fedeli, Jean-Marc
2006-10-02
The authors report on the design, fabrication and operation of heterogeneous and compact "2.5 D" Photonic Crystal microlaser with a single plane of InAs quantum dots as gain medium. The high quality factor photonic structures are tailored for vertical emission. The devices consist of a top two-dimensional InP Photonic Crystal Slab, a SiO(2) bonding layer, and a bottom high index contrast Si/SiO(2) Bragg mirror deposited on a Si wafer. Despite the fact that no more than about 5% of the quantum dots distribution effectively contribute to the modal gain, room-temperature lasing operation, around 1.5 microm, was achieved by photopumping. A low effective threshold, on the order of 350 microW, and a spontaneous emission factor, over 0.13, could be deduced from experiments.
Molavian, Hamid R; Gingras, Michel J P; Canals, Benjamin
2007-04-13
The Tb2Ti2O7 pyrochlore magnetic material is attracting much attention for its spin liquid state, failing to develop long-range order down to 50 mK despite a Curie-Weiss temperature thetaCW approximately -14 K. In this Letter we reinvestigate the theoretical description of this material by considering a quantum model of independent tetrahedra to describe its low-temperature properties. The naturally tuned proximity of this system near a Néel to spin ice phase boundary allows for a resurgence of quantum fluctuation effects that lead to an important renormalization of its effective low-energy spin Hamiltonian. As a result, Tb2Ti2O7 is argued to be a quantum spin ice. We put forward an experimental test of this proposal using neutron scattering on a single crystal.
DEFF Research Database (Denmark)
Clausen, Christoph; Sangouard, N.; Drewsen, M.
2013-01-01
The ability to detect single photons with a high efficiency is a crucial requirement for various quantum information applications. By combining the storage process of a quantum memory for photons with fluorescence-based quantum state measurement, it is, in principle, possible to achieve high...... on an ion Coulomb crystal inside a moderately high-finesse optical cavity. The cavity enhancement leads to an effective optical depth of 15 for a finesse of 3000 with only about 1500 ions interacting with the light field. We show that these values allow for essentially noiseless detection with an efficiency......-efficiency photon counting in large ensembles of atoms. The large number of atoms can, however, pose significant problems in terms of noise stemming from imperfect initial state preparation and off-resonant fluorescence. We identify and analyse a concrete implementation of a photon number resolving detector based...
Effect of (1010) crystal orientation on electronic properties of wurtzite GaN/AlGaN quantum-well
Park, S H
2000-01-01
The electronic properties of a (1010)-oriented wurtzite (WZ) GaN/AlGaN quantum well (QW) are investigated using the multiband effective-mass theory. These results are compared with those of a (0001)-oriented WZ GaN/AlGaN QW with the piezoelectric (PZ) effect taken into account. For the (0001)-oriented structure, the optical matrix element is significantly reduced with increasing the well thickness due to the PZ electric field. This means that, in the (0001)-oriented structure, a QW structure with a thinner well thickness is desirable to obtain better laser characteristics. For the (1010)-oriented structure, it is found that the average hole effective masses are largely reduced compared to those for the (0001)-oriented structure. Also, the (1010)-oriented structure shows a much larger optical matrix element for g'-polarization due to the crystal orientation effect. These results suggest that the (1010)-oriented QW structures show improved characteristic compared to the (0001)-oriented QW structure with the PZ ...
Pratap Singh, Dharmendra; Boussoualem, Yahia; Duponchel, Benoit; Sahraoui, Abdelhak Hadj; Kumar, Sandeep; Manohar, Rajiv; Daoudi, Abdelylah
2017-08-01
Octadecylamine capped CdSe quantum dots (QDs) dispersed 4-(1-methyl-heptyloxy)-benzoic acid 4‧-octyloxy-biphenyl-4-yl ester ferroelectric liquid crystal (FLC) were deposited over gold coated quartz substrate using dip-coating. The topographical investigation discloses that the homogeneously dispersed QDs adopt face-on to edge-on assembly in FLC matrix owing to their concentration. Current-voltage (I-V) measurement was performed using conductive atomic force microscopy (CAFM) which yields ohmic to critical diode like I-V curves depending upon the concentration of QDs in FLC. The recorded pico-ampere (pA) current sensitivity in FLC-QDs composites is attributed to micro-second drift time of electron due to weak electronic coupling between the π-electrons on the FLC and s-electrons on the metal surface. The observed pico-ampere sensitivity is the least current sensitivity recorded so far. For FLC-QDs composites, almost 24% faster electro-optic response was observed in comparison to pure FLC. The pico-ampere current sensitivity can be utilized in touch screen displays whereas the change in polarization for low applied electric field ameliorates the increased electrical susceptibility counteracting the internal electric field and its use in electronic data storage and faster electro-optical devices.
Piezo-optic tensor of crystals from quantum-mechanical calculations
Energy Technology Data Exchange (ETDEWEB)
Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R. [Dipartimento di Chimica, Università di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of Excellence, Via Giuria 5, 10125 Torino (Italy); Ruggiero, M. T.; Korter, T. M. [Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244-4100 (United States)
2015-10-14
An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO{sub 4}, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π{sub 61} constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.
Piezo-optic tensor of crystals from quantum-mechanical calculations.
Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R
2015-10-14
An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.
Fillaux, François
2011-01-01
The crystal of benzoic acid is comprised of tautomeric centrosymmetric dimers linked through bistable hydrogen bonds. Statistical disorder of the bonding protons is excluded by neutron diffraction from 6 K to 293 K. In addition to diffraction data, vibrational spectra and relaxation rates measured with solid-state-NMR and quasi-elastic neutron scattering are consistent with wave-like, rather than particle-like protons. We present a macroscopic-scale quantum theory for the bonding protons represented by a periodic lattice of fermions. The adiabatic separation, the exclusion principle, and the antisymmetry postulate yield a static lattice-state immune to decoherence. According to the theory of quantum measurements, vibrational spectroscopy and relaxometry involve realizations of decoherence-free Bloch states for nonlocal symmetry species that did not exist before the measurement. The eigen states are fully determined by three temperature-independent parameters which are effectively measured: the energy differen...
Energy Technology Data Exchange (ETDEWEB)
Hsu, Kung-Shu; Chang, Shu-Wei [Research Center for Applied Sciences (RCAS), Academia Sinica, 128 Academia Rd., Sec. 2 Nankang, Taipei 11529, Taiwan (China); Department of Photonics, National Chiao Tung University (NCTU), 1001 University Road, Hsinchu 300, Taiwan (China); Hung, Wei-Chun; Chang, Chih-Chi; Lin, Wei-Hsun; Lin, Shih-Yen [Research Center for Applied Sciences (RCAS), Academia Sinica, 128 Academia Rd., Sec. 2 Nankang, Taipei 11529, Taiwan (China); Shih, Min-Hsiung, E-mail: mhshih@gate.sinica.edu.tw [Research Center for Applied Sciences (RCAS), Academia Sinica, 128 Academia Rd., Sec. 2 Nankang, Taipei 11529, Taiwan (China); Department of Photonics, National Chiao Tung University (NCTU), 1001 University Road, Hsinchu 300, Taiwan (China); Department of Photonics, National Sun Yat-sen University (NSYSU), 70 Lienhai Rd., Kaohsiung 80424, Taiwan (China); Lee, Po-Tsung [Department of Photonics, National Chiao Tung University (NCTU), 1001 University Road, Hsinchu 300, Taiwan (China); Chang, Yia-Chung [Research Center for Applied Sciences (RCAS), Academia Sinica, 128 Academia Rd., Sec. 2 Nankang, Taipei 11529, Taiwan (China); Department of Photonics, National Chiao Tung University (NCTU), 1001 University Road, Hsinchu 300, Taiwan (China); Department of Physics, National Cheng Kung University (NCKU), No. 1, University Rd., Tainan 701, Taiwan (China)
2015-08-31
We demonstrated the lasing action and remarkable reduction in long radiative lifetimes of type-II GaSb/GaAs quantum dots using a circular photonic-crystal nano-cavity with high Purcell factors. The associated enhancement in carrier recombination was surprisingly high and could even surpass type-I counterparts in similar conditions. These phenomena reveal that the type-II sample exhibited extremely low nonradiative recombination so that weak radiative transitions were more dominant than expected. The results indicate that type-II nanostructures may be advantageous for applications which require controllable radiative transitions but low nonradiative depletions.
Energy Technology Data Exchange (ETDEWEB)
Huang Wendeng, E-mail: wdhuang2005@163.com [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China) and School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); Chen Guangde; Ye Honggang [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Ren Yajie [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)
2013-02-01
Based on the modified random-element isodisplacement model and dielectric continuum model, the dispersions of interface optical phonons, electron-interface phonon interaction and ternary mixed crystal effect on interface optical phonons in In{sub x}Ga{sub 1-x}N/GaN quantum wells are studied in a fully numerical manner. The results indicate that there are two indium concentration intervals that interface optical phonons exist. The indium concentration has important effects on the dispersions and electron-phonon interactions of interface optical phonons. The electron-IO phonon interactions in higher indium concentration are more important than that in lower indium concentration.
Directory of Open Access Journals (Sweden)
H. Oda
2016-06-01
Full Text Available The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.
Kojima, Kazunobu; Ikeda, Hirotaka; Fujito, Kenji; Chichibu, Shigefusa F.
2017-07-01
For rating unambiguous performance of a light-emitting semiconductor material, determination of the absolute quantum efficiency (AQE) of radiation, which is basically a product of internal quantum efficiency (IQE) and light-extraction efficiency, is the most delightful way. Here, we propose the use of omnidirectional photoluminescence (ODPL) spectroscopy for quantifying AQE of the near-band-edge (NBE) emission, in order to evaluate bulk GaN crystals and wafers. When the measurement was carried out in the air, the AQE showed a continuous decrease most likely due to the formation of extrinsic nonradiative recombination channels at the surface by photo-pumping. However, such an influence was suppressed by measuring ODPL in an inert ambient such as nitrogen or in vacuum. Consequently, AQE was revealed to depend on the photo-pumping density. The increase in AQE of the NBE emission caused by the increase in the excess carrier concentration was significant, indicating gradual saturation of nonradiative recombination centers in the bulk of GaN. The highest AQE value (8.22%) ever reported for the NBE emission of GaN at room temperature, which corresponds to IQE of 70.9%, was eventually obtained from the GaN wafer grown by hydride vapor phase epitaxy on a GaN seed crystal manufactured by the acidic ammonothermal method, when the cw photo-pumping density was 66 W/cm2.
Sprague, Michael R; Abdolvand, Amir; Nunn, Joshua; Jin, Xian-Min; Kolthammer, W Steven; Barbieri, Marco; Rigal, Bruno; Michelberger, Patrick S; Champion, Tessa F M; Russell, Philip St J; Walmsley, Ian A
2012-01-01
The generation of large multiphoton quantum states - for applications in computing, metrology, and simulation - requires a network of high-efficiency quantum memories capable of storing broadband pulses. Integrating these memories into a fibre offers a number of advantages towards realising this goal: strong light-matter coupling at low powers, simplified alignment, and compatibility with existing photonic architectures. Here, we introduce a large-core kagome-structured hollow-core fibre as a suitable platform for an integrated fibre-based quantum memory with a warm atomic vapour. We demonstrate, for the first time, efficient optical pumping in a hollow-core photonic-crystal fibre with a warm atomic vapour, where (90 $\\pm$ 1)% of atoms are prepared in the ground state. We measure high optical depths (3$\\times 10^{4}$) and, also, narrow homogeneous linewidths that do not exhibit significant transit-time broadening. Our results establish that kagome fibres are suitable for implementing a broadband, room-tempera...
Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.
2017-02-01
In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.
Singh, Mahi R.; Brzozowski, Marek J.; Apter, Boris
2016-09-01
We investigate the light-matter interaction in a quantum emitter and metallic graphene flake (MGF) hybrid system deposited on a polar material. The coupling of surface plasmons in graphene and optical phonons in the polar material produces phonon-plasmon polaritons (PPPs). Similarly, couplings of photons with surface plasmons of graphene produce surface-plasmon polaritons (SPPs). Using the second quantized formulation for SPPs and PPPs interactions and density matrix method, we have calculated photoluminescence of the quantum emitters. It is found that when the exciton energy of the quantum emitter is in resonant with SPP and PPP energies, the photoluminescence in the quantum emitter are enhanced in the terahertz range. The enhancement is due to the transfer of SPP and PPP energies from the graphene flake to the quantum emitter. The energy transfer from graphene to the quantum emitter can be controlled by applying external pump lasers or stress and strain fields. These are interesting findings which can be used to fabricate switches and sensors.
Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen
2015-08-01
YPO4: Tm, Yb inverse opal photonic crystals were successfully synthesized by the colloidal crystal templates method, and the visible-infrared quantum cutting (QC) photoluminescence properties of YPO4: Tm, Yb inverse opal photonic crystals were investigated. We obtained tetragonal phase YPO4 in all the samples when the samples sintered at 950°C for 5 h. The visible emission intensity of Tm3+ decreased significantly when the photonic bandgap was located at 650 nm under 480 nm excitation. On the contrary, the QC emission intensity of Yb3+ was enhanced as compared with the no photonic bandgap sample. When the photonic bandgap was located at 480 nm, the Yb3+ and Tm3+ light-emitting intensity weakened at the same time. We demonstrated that the energy transfer between Tm3+ and Yb3+ is enhanced by the suppression of the red emission of Tm3+. Additionally, the mechanisms for the influence of the photonic bandgap on the energy transfer process of the Tm3+, Yb3+ codoped YPO4 inverse opal are discussed.
Institute of Scientific and Technical Information of China (English)
XIE Ling; LIU Gang; WANG Yan; WANG Ji-De; CHEN Jun-Feng
2008-01-01
Two new schiff base N,N'-bis((2-phenyl-2H-1,2,3-triazol-4-yl)methylene)-1,3-pro- panediamine (1) and N,N'-bis((2-phenyl-2H-1,2,3-triazol-4-yl)methylene) -1,4-butanediamine (2) were synthesized by condensation of 2-phenyl-1,2,3-triazole-4-carboxaldehyde with diamine, and characterized by elemental analysis, IR, 1H NMR and MS spectra. Their crystal structures were determined by X-ray single crystal diffraction. Both crystals belong to the monoclinic system, space group P21/c. For compound 1(C21H20N8, Mr=384.45): a = 16.314(3), b =5.7168(11), c = 21.316(4)(A),β= 105.3(2)°,Z = 4, V = 1917.6(7)(A)3, Dc =1.332 g/ cm3, F(000) = 808, μ = 0.086 mm- 1, R = 0.0533 and wR = 0.1460; for compound 2 (C22H22N8, Mr =398.48): a = 8.6156(17), b = 5.2964(11), c = 22.665(5) A, β = 100.54(3)°,Z = 2, V = 1016.8(4)(A)3, Dc = 1.302 g/ cm3, F (000) = 420, μ = 0.083 mm-1, R = 0.0373 and wR = 0.1155. Based on the crystal data, quantum chemistry calculation was performed on the two title compounds by means of Gaussian 98 program. The molecular orbital energies and atomic net charges population were obtained. Furthermore, we analyzed their active atoms. The investigation can serve as a theoretical guide to study the synthesis and activity of the title compounds.
Energy Technology Data Exchange (ETDEWEB)
Fu, Houqiang; Lu, Zhijian; Huang, Xuanqi; Chen, Hong; Zhao, Yuji [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)
2016-05-07
The optical properties of intersubband transition in a semipolar AlGaN/GaN single quantum well (SQW) are theoretically studied, and the results are compared with polar c-plane and nonpolar m-plane structures. The intersubband transition frequency, dipole matrix elements, and absorption spectra are calculated for SQW on different semipolar planes. It is found that SQW on a certain group of semipolar planes (55° < θ < 90° tilted from c-plane) exhibits low transition frequency and long wavelength response with high absorption quantum efficiency, which is attributed to the weak polarization-related effects. Furthermore, these semipolar SQWs show tunable transition frequency and absorption wavelength with different quantum well thicknesses, and stable device performance can be achieved with changing barrier thickness and Al compositions. All the results indicate that the semipolar AlGaN/GaN quantum wells are promising candidate for the design and fabrication of high performance low frequency and long wavelength optoelectronic devices.
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, A.P., E-mail: apm9@st-and.ac.uk [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Bruin, J.A.N. [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Borzi, R.A. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas, and Departamento de Fisica, Facultad de Ciencias Exactas, UNLP-CONICET, 1900 La Plata (Argentina); Rost, A.W. [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Laboratory of Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Grigera, S.A. [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, UNLP-CONICET, La Plata 1900 (Argentina)
2012-11-01
We present a brief review of the physical properties of Sr{sub 3}Ru{sub 2}O{sub 7}, in which the approach to a magnetic-field-tuned quantum critical point is cut off by the formation of a novel phase with transport characteristics consistent with those of a nematic electronic liquid crystal. Our goal is to summarise the physics that led to that conclusion being drawn, describing the key experiments and discussing the theoretical approaches that have been adopted. Throughout the review we also attempt to highlight observations that are not yet understood, and to discuss the future challenges that will need to be addressed by both experiment and theory.
Energy Technology Data Exchange (ETDEWEB)
Surrente, Alessandro; Felici, Marco; Gallo, Pascal; Dwir, Benjamin; Rudra, Alok; Kapon, Eli, E-mail: eli.kapon@epfl.ch [Laboratory of Physics of Nanostructures, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Biasiol, Giorgio [Istituto Officina dei Materiali CNR, Laboratorio TASC, I-34149 Trieste (Italy)
2015-07-20
We report on the effects of optical disorder on breaking the symmetry of the cavity modes of H{sub 3} photonic crystal cavities incorporating site-controlled pyramidal quantum dots (QDs) as the internal light source. The high in-plane symmetry of the polarization states of the pyramidal QDs simplifies the analysis of the polarization states of the H{sub 3} cavities. It is shown that the optical disorder induced by fabrication imperfections lifts the degeneracy of the two quadrupole cavity modes and tilts the elongation axes of the cavity mode patterns with respect to the ideal, hexagonal symmetry case. These results are useful for designing QD-cavity structures for polarization-entangled photon sources and few-QD lasers.
Bordas, Frédéric; Seassal, Christian; Dupuy, Emmanuel; Regreny, Philippe; Gendry, Michel; Viktorovitch, Pierre; Steel, M J; Rahmani, Adel
2009-03-30
We have designed, fabricated, and characterized an InP photonic crystal slab structure that supports a cavity-confined slow-light mode, i.e. a bandgap-confined valence band-edge mode. Three dimensional finite difference in time domain calculations predict that this type of structure can support electromagnetic modes with large quality factors and small mode volumes. Moreover these modes are robust with respect to fabrication imperfections. In this paper, we demonstrate room-temperature laser operation at 1.5 mum of a cavity-confined slow-light mode under pulsed excitation. The gain medium is a single layer of InAs/InP quantum dots. An effective peak pump power threshold of 80 microW is reported.
Mertiri, Alket; Hong, M K; Mehta, P; Mertz, J; Ziegler, L D; Erramilli, Shyamsunder
2013-01-01
We report on the mid-infrared nonlinear photothermal spectrum of the neat liquid crystal 4-Octyl-4'-Cyanobiphenyl (8CB) using a tunable Quantum Cascade Laser (QCL). The nonequilibrium steady state characterized by the nonlinear photothermal infrared response undergoes a supercritical pitchfork bifurcation. The bifurcation, observed in heterodyne two-color pump-probe detection, leads to ultrasharp nonlinear infrared spectra similar to those reported in the visible region. A systematic study of the peak splitting as function of absorbed infrared power shows the bifurcation has a critical exponent of 0.5. The surprising observation of an apparently universal critical exponent in a nonequilibrium state is explained using a simple model reminiscent of mean field theory. Apart from the intrinsic interest for nonequilibrium studies, nonlinear photothermal methods lead to a dramatic narrowing of spectral lines, giving rise to a potential new contrast mechanism for the rapidly emerging new field of mid-infrared micros...
Ouksel, Louiza; Chafaa, Salah; Bourzami, Riadh; Hamdouni, Noudjoud; Sebais, Miloud; Chafai, Nadjib
2017-09-01
Single Diethyl [hydroxy (phenyl) methyl] phosphonate (DHPMP) crystal with chemical formula C11H17O4P, was synthesized via the base-catalyzed Pudovik reaction and Lewis acid as catalyst. The results of SXRD analyzes indicate that this compound crystallizes into a mono-clinic system with space group P21/n symmetry and Z = 4. The crystal structure parameters are a = 9.293 Å, b = 8.103 Å, c = 17.542 Å, β = 95.329° and V = 1315.2 Å3, the structure displays one inter-molecular O-H⋯O hydrogen bonding. The UV-Visible absorption spectrum shows that the crystal exhibits a good optical transmission in the visible domain, and strong absorption in middle ultraviolet one. The vibrational frequencies of various functional groups present in DHPMP crystal have been deduced from FT-IR and FT-Raman spectra and then compared with theoretical values performed with DFT (B3LYP) method using 6-31G (p, d) basis sets. Chemical and thermodynamic parameters such as: ionization potential (I), electron affinity (A), hardness (σ), softness (η), electronegativity (χ) and electrophilicity index (ω), are also calculated using the same theoretical method. The thermal decomposition behavior of DHPMP, studied by using thermogravimetric analysis (TDG), shows a thermal stability until to 125 °C.
Hu, Zhenhua; Xiang, Bowen; Xing, Yunsheng
2016-12-01
Transmission optical properties of one-dimensional (1-D) InAs/GaAs quantum-dot photonic crystal (QD-PC), composed of 400 elementary cells, were analyzed by using transfer matrix method. In our calculations, a homogeneous broadening with temperature and other inhomogeneous broadening with quantum dot (QD) size fluctuations are introduced. Our results show that a large optical Stark shift occurs at the high energy edge of the transmission photonic band-gap (TPBG) when, which exhibits the function of light with light, an external laser field acts resonantly on the excitons in the InAs QDs. Utilized this TPBG based on the pump-probe geometry, an all-optical switch can be constructed and the on-off switching extinction ratio (SER) is varied with both the temperature and the inhomogeneity of QDs. Significantly, it still maintains switching behavior and can process the data sequence of return-to-zero codes of 250 Gb/s even if the QD standard deviation of relative size fluctuations (SD-RSF) is up to 3% and the temperature is at 100 K.
Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji
2011-01-01
We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.
Directory of Open Access Journals (Sweden)
Toshiharu Saiki
2011-08-01
Full Text Available We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called Fluorescence Near-field Optics Thermal Nanoscopy (Fluor-NOTN. Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se Quantum Dots (QDs. For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF and a conventional single-mode fiber (SMF. The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.
Barrett, Mark L; Harvey, Ian; Sundararajan, Mahesh; Surendran, Rajeev; Hall, John F; Ellis, Mark J; Hough, Michael A; Strange, Richard W; Hillier, Ian H; Hasnain, S Samar
2006-03-07
Rusticyanin from the extremophile Thiobacillus ferrooxidans is a blue copper protein with unusually high redox potential and acid stability. We present the crystal structures of native rusticyanin and of its Cu site mutant His143Met at 1.27 and 1.10 A, respectively. The very high resolution of these structures allows a direct comparison with EXAFS data and with quantum chemical models of the oxidized and reduced forms of the proteins, based upon both isolated and embedded clusters and density functional theory (DFT) methods. We further predict the structure of the Cu(II) form of the His143Met mutant which has been experimentally inaccessible due to its very high redox potential. We also present metrical EXAFS data and quantum chemical calculations for the oxidized and reduced states of the Met148Gln mutant, this protein having the lowest redox potential of all currently characterized mutants of rusticyanin. These data offer new insights into the structural factors which affect the redox potential in this important class of proteins. Calculations successfully predict the structure and the order of redox potentials for the three proteins. The calculated redox potential of H143M ( approximately 400 mV greater than native rusticyanin) is consistent with the failure of readily available chemical oxidants to restore a Cu(II) species of this mutant. The structural and energetic effects of mutating the equatorial cysteine to serine, yet to be studied experimentally, are predicted to be considerable by our calculations.
Energy Technology Data Exchange (ETDEWEB)
Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J. [Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049 Madrid (Spain); Beljonne, D. [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons (Belgium)
2015-09-21
Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.
Azadegan, B.
2013-03-01
The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion
Quantum spin liquid and electric quadrupolar states of single crystal Tb2+xTi2-xO7+y
Wakita, M.; Taniguchi, T.; Edamoto, H.; Takatsu, H.; Kadowaki, H.
2016-02-01
The ground states of the frustrated pyrochlore oxide Tb2+xTi2-xO7+y, sensitively depending on the small off-stoichiometry parameter x, have been studied by specific heat measurements using well characterized samples. Single crystal Tb2+xTi2-xO7+y boules grown by the standard floating zone technique are shown to exhibit concentration (x) gradient. This off-stoichiometry parameter is determined by precisely measuring the lattice constant of small samples cut from a crystal boule. Specific heat shows that the phase boundary of the electric quadrupolar state has a dome structure in the x-T phase diagram with the highest Tc ≃ 0.5 K at about x = 0.01. This phase diagram suggests that the putative U(1) quantum spin-liquid state of Tb2+xTi2-xO7+y exists in the range x xc ≃ -0.0025, which is separated from the quadrupolar state via a first-order phase-transition line x = xc.
Bueno, Juan
2007-01-01
Due to its rich magnetic phase diagram and its superfluidity, 3He is a very interesting system if magnetic effects on the crystal growth mechanisms want to be studied. Solid 3He orders magnetically into the U2D2 phase (an antiferromagnetic phase with two planes of spins pointing up and two planes o
Razeghi, Manijeh
2010-01-01
Technology of Quantum Devices offers a multi-disciplinary overview of solid state physics, photonics and semiconductor growth and fabrication. Readers will find up-to-date coverage of compound semiconductors, crystal growth techniques, silicon and compound semiconductor device technology, in addition to intersubband and semiconductor lasers. Recent findings in quantum tunneling transport, quantum well intersubband photodetectors (QWIP) and quantum dot photodetectors (QWDIP) are described, along with a thorough set of sample problems.
Quantum tunneling of vortices in single crystal Tl2CaBa2Cu2O8 superconductors
Zuo, F.; Shi, A. C.; Berlinsky, A. J.; Duan, H. M.; Hermann, A. M.
1994-12-01
Data are presented on the temperature-dependent time-logarithmic magnetic relaxation rate S(T) = ¦dM/din t¦ of the high-Tc superconductor Tl2CaBa2 Cu2O8. It is found that at low temperatures the relaxation rate has the form S(T) = A(H) exp[(T/T*)2], which does not extrapolate to zero at T = 0, thus excluding conventional thermally activated flux creep and providing evidence of quantum vortex tunneling. From a quantum flux tunneling theory, it is shown that S(T) ∝ I/ηer{p/2}. The measurements of the relaxation rate thus provide information about the effective viscosity ηe of fluxons.
Institute of Scientific and Technical Information of China (English)
He Qiong-Yi; Wang Tie-Jun; Gao Jin-Yue
2006-01-01
A simple three-level system is proposed to produce high index of refraction with zero absorption in an Er3+-doped yttrium aluminium garnet (YAG) crystal, which is achieved for a probe field between the excited state 4Ⅰ13/2 and ground state 4Ⅰ15/2 by adjusting a strong coherent driving field between the upper excited state 4Ⅰ11/2 and 4Ⅰ15/2· It is found that the changes of the frequency of the coherent driving field and the concentration of Er3+ ions in the YAG crystal can maximize the index of refraction accompanied by vanishing absorption. This result could be useful for the dispersion compensation in fibre communication, laser particle acceleration, high precision magnetometry and so on.
Car, Tihomir; Nekić, Nikolina; Jerčinović, Marko; Salamon, Krešimir; Bogdanović-Radović, Iva; Delač Marion, Ida; Dasović, Jasna; Dražić, Goran; Ivanda, Mile; Bernstorff, Sigrid; Pivac, Branko; Kralj, Marko; Radić, Nikola; Buljan, Maja
2016-06-01
In the present work, a method for the low-temperature production of the material consisting of closely packed Ge QDs embedded in ITO matrix is described. The films are produced by magnetron sputtering deposition followed by thermal annealing. It is shown that the conductivity and optical properties of the films depend on the structure, Ge content in the ITO matrix as well as on the annealing conditions. The conductivity of the films changes up to seven orders of magnitude in dependence on the annealing conditions, and it shows transformation from semiconductor to metallic behavior. The optical properties are also strongly affected by the preparation and annealing conditions, so both conductivity and optical properties can be controllably manipulated. In addition, the crystallization of Ge is found to occur already at 300 °C, which is significantly lower than the crystallization temperature of Ge produced by the same method in silica and alumina matrices.
Quantum melting of the hole crystal in the spin ladder of Sr14-xCaxCu24O41
Rusydi, A.; Abbamonte, P.; Eisaki, H.; Fujimaki, Y.; Blumberg, G.; Uchida, S.; Sawatzky, G. A.
2006-01-01
We have used resonant soft x-ray scattering to study the effects of discommensuration on the hole Wigner crystal (HC) in the spin ladder Sr14-xCaxCu24O41 (SCCO). As the hole density is varied the HC forms only with the commensurate wave vectors L-L=1/5 and L-L=1/3; for incommensurate values it "melt
Li, Ping; Wang, Yuan; Wang, Ai-Jun; Chen, Sheng-Li
2017-02-01
In this work, the enhancement of TiO2 photocatalytic activity was studied through synergistic effect of the photons localization of photonic crystals and the sensitization of CdS quantum dots (CdS QDs). CdS QDs sensitized TiO2 membrane (denoted as CdS QDs/TiO2) was synthesized through doping the TiO2 membrane with CdS QDs by chemical bath deposition method (CBD). After TiO2 was sensitized with CdS QDs, the edge of light absorption of TiO2 was red-shifted to 470 nm and the light absorption in the range of 400 600 nm was higher than that of plain TiO2 membrane. Another type of composite membrane, CdS QDs/TiO2/SiO2 opal composite membrane was prepared by coupling SiO2 opal (a kind of photonic crystal) layer onto the CdS QDs/TiO2 membrane, and the photonic band gap of the SiO2 opal photonic crystal layer was deliberately planned at the electronic band gap of the CdS QDs. The photodegradation of gaseous CH3CHO (acetaldehyde) was used as probe reaction to test the photocatalytic activity of the as-prepared membranes, and the results showed that the CdS QDs sensitization can significantly improve the photocatalytic activity of TiO2 membrane under visible light irradiation, with the acetaldehyde degradation rate constant (k) on CdS QDs/TiO2 membranes being 1.59 times of that on plain TiO2 membranes. The acetaldehyde degradation rate constant on CdS QDs/TiO2/SiO2 opal composite membrane reached 4 times of that on plain TiO2 membrane. The photocatalytic activity of TiO2 membrane can be improved through synergistic effect of the photons localization of photonic crystals and the sensitization of CdS QDs.
Active Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Ek, Sara
This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...
Enhanced Crystal Quality of AlxIn1-xAsySb1-y for Terahertz Quantum Cascade Lasers
Directory of Open Access Journals (Sweden)
Tobias Zederbauer
2016-04-01
Full Text Available This work provides a detailed study on the growth of AlxIn1-xAsySb1-y lattice-matched to InAs by Molecular Beam Epitaxy. In order to find the conditions which lead to high crystal quality deep within the miscibility gap, AlxIn1-xAsySb1-y with x = 0.462 was grown at different growth temperatures as well as As2 and Sb2 beam equivalent pressures. The crystal quality of the grown layers was examined by high-resolution X-ray diffraction and atomic force microscopy. It was found that the incorporation of Sb into Al0.462In0.538AsySb1-y is strongly temperature-dependent and reduced growth temperatures are necessary in order to achieve significant Sb mole fractions in the grown layers. At 480 ∘ C lattice matching to InAs could not be achieved. At 410 ∘ C lattice matching was possible and high quality films of Al0.462In0.538AsySb1-y were obtained.
Directory of Open Access Journals (Sweden)
Konstantin Mochalov
2016-12-01
Full Text Available Unique properties of nanohybrid composites based on different types of porous polymer matrices doped with fluorescent nanoparticles (quantum dots, QDs are determined by the combination of the mechanical properties of the host matrix (flexibility, chemical stability, etc. and a high luminescence intensity and extreme stability of QDs. Here, we report on the preparation, optical and microstructural characterization of a nanoporous stretched polypropylene matrix embedded with CdSe/ZnS QDs as fluorescent dopants at a high concentration. The microstructure and optical properties of two types films based on QD-polymer composites and liquid crystals are described. The distribution of QDs in the composite films and their morphology was determined. The annealing of the nanoporous composite films leads to shrinking of the pores and encapsulation of QDs, which results in a domain-like structure. The resulting flexible, stable and highly luminescent materials may be applied to obtain the highly luminescent diodes, the light converter devices and the display systems.
Energy Technology Data Exchange (ETDEWEB)
Baltisberger, J.H. [Berea College, KY (United States); Xu, Z.; Stebbins, J.F. [Stanford Univ., CA (United States); Wang, S.H.; Pines, A. [Lawrence Berkeley National Lab., CA (United States)
1996-07-31
A new two-dimensional magic-angle spinning NMR experiment using multiple-quantum coherence of half-integer quadrupolar nuclei was used to study {sup 27}Al sites in crystalline samples of leucite (KAlSi{sub 2}O{sub 6}), anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}), and kyanite (Al{sub 2}SiO{sub 5}), as well as CaAl{sub 2}Si{sub 2}O{sub 8} glass and a magnesium aluminoborate glass. In the crystals, multiple sites are partially resolved and new results for isotropic chemical shifts and quadrupolar parameters are derived, using data collected at a single magnetic field. Data for both leucite and anorthite are consistent with previous results that correlate chemical shifts with mean intertetrahedral bond angle. Signal can be obtained from sites with quadrupolar coupling constants as large as 9 MHz, but intensities are reduced. In the aluminoborate glass, peaks for sites with different Al coordination numbers are well seperated. The lack of such features in CaAl{sub 2}Si{sub 2}O{sub 8} glass rules out the presence of significant quantities of AlO{sub 5} and AlO{sub 6} groups. 31 refs., 8 figs., 3 tabs.
Jing, Yu; Ma, Yandong; Li, Yafei; Heine, Thomas
2017-03-08
We propose a two-dimensional crystal that possesses low indirect band gaps of 0.55 eV (monolayer) and 0.43 eV (bilayer) and high carrier mobilities similar to those of phosphorene, GeP3. GeP3 has a stable three-dimensional layered bulk counterpart, which is metallic and known from experiment since 1970. GeP3 monolayer has a calculated cleavage energy of 1.14 J m(-2), which suggests exfoliation of bulk material as viable means for the preparation of mono- and few-layer materials. The material shows strong interlayer quantum confinement effects, resulting in a band gap reduction from mono- to bilayer, and then to a semiconductor-metal transition between bi- and triple layer. Under biaxial strain, the indirect band gap can be turned into a direct one. Pronounced light absorption in the spectral range from ∼600 to 1400 nm is predicted for monolayer and bilayer and promises applications in photovoltaics.
Ok, Jong Min; Kim, Yun Ho; Lee, Tae Yong; Yoo, Hae-Wook; Kwon, Kiok; Jung, Woo-Bin; Kim, Shin-Hyun; Jung, Hee-Tae
2016-12-20
Controlling the organization of self-assembling building blocks over a large area is crucial for lithographic tools based on the bottom-up approach. However, the fabrication of liquid crystal (LC) defect patterns with a particular ordering still remains a challenge because of the limited close-packed morphologies of LC defects. Here, we introduce a multiple-stamping domain separation method for the control of the dimensions and organization of LC defect structures. Prepatterns with various grid shapes on planar polyimide (PI) surfaces were fabricated by pressing a line-shaped stamp into the PI surfaces in two different directions, and then these surfaces were used to prepare LC defect structures confined to these grid domains. The dimensions of the LC defect structures, namely, the equilibrium diameter and the center to center spacing, are controlled by varying the line spacing of the stamps and the film thickness. A variety of arrangements of LC defects, including square, rhombic, hexagonal, and other oblique lattices, can be obtained by simply varying the stamping angle (Ω) between the first and second stamping directions. Furthermore, we demonstrate that the resulting controllable LC defect arrays can be used as templates for generating various patterns of nanoparticle clusters by trapping quantum dots (QDs) within the cores of the LC defects.
Özdemir Tarı, Gonca; Ceylan, Ümit; Aǧar, Erbil; Eserci, Hande
2016-12-01
The Schiff base compound, 5-(diethylamino)-2-((3-nitrophenylimino)methyl)phenol, C17H19O3N3, was synthesized and characterized by IR, UV-Vis and single-crystal X-ray diffraction (XRD) technique. The title compound prefers enol tautomeric form in solid state as to X-ray, IR and UV-Vis spectra results. Also, using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The calculated results support that the enol form is more stable than keto form. The molecular geometry from the X-ray single-crystal determination of the title compound in the ground state was compared at the B3LYP and B3PW91 levels of the density functional method (DFT) with the 6-311 + G(d,p) basis set. The harmonic vibrational frequencies of the title compound were calculated using the B3LYP and B3PW91 methods with the 6-311G+(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. The potential energy surface scans about important torsion angels were performed by B3LYP/6-311 + G(d,p) level of theory for the title compound. The energetic behaviors of the title compound in the solvent media were also examined using the B3LYP and B3PW91 methods with the 6-311 + G(d,p) basis set applying the Onsager and the polarizable continuum model (PCM). Besides, the molecular electrostatic potential map (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties for the title compound were obtained with the same levels of theory. The nonlinear optical properties (NLO) of the title compound were performed in the solvent media using the B3LYP and B3PW91 methods with the 6-311 + G(d,p) level using the PCM model.
Khazaei, Somayeh; Sebastiani, Daniel
2016-12-01
Using a set of first-principles calculations, we have studied the methyl tunnel splitting for molecular crystals of γ-picoline and toluene. The effective rotational potential energy surface of the probe methyl rotor along the tunneling path is evaluated using first-principles electronic structure calculations combined with the nudged elastic band method. The tunnel splitting is calculated by an explicit diagonalization of the one-dimensional time-independent Hamiltonian matrix. The effects of chemical environment and rotor-rotor coupling on the rotational energy barriers were investigated. It is found that more dense packing of the molecules in toluene compared to that in γ-picoline gives rise to a larger rotational barrier which in turn yields a considerably smaller tunnel splitting. Moreover, it turned out that coupled motion of the face-to-face methyl groups in γ-picoline has a significant effect on the reduction of the rotational barrier. Our results are in good agreement with the experimentally observed tunnel splitting.
Bani-Fwaz, Mutasem Z.; Fazary, Ahmed E.; Becker, Gerd
2017-10-01
This work has involved the reaction of kinetically stable 2-tert-buty-lλ3-phospha-alkyne, tBu-Ctbnd P, with dichloro(dialkylamino)arsines, in which the isolated products were characterized by spectroscopic methods; additionally, the results of X-ray structure analyses were confirmed by quantum chemical calculations using Gaussian 98 molecular modeling software. The arsenic component of the starting material is completely lost, probably as a precipitate of insoluble ;arsenic(I) chloride,; and unusual oligocycle 2,4,6-tri-tert-butyl-3-chloro-1-dialkylamino-1λ5σ4,3λ3σ3,5λ3σ2-triphosphabicyclo[2.2.0]hexa-1,5-diene (1) - an ylide with an unusually long P-Cl bond (245.5 p.m.) - could be isolated. From these reactions, compounds 1a to 1d differing by their substituents at nitrogen were isolated as deep red, cuboid-shaped single crystals. X-ray structure analyses reveal molecules which are characterized by an ylidic and a regular P-C double bond of almost equal length [P1⊕-C2⊖av.172.2 p.m., P5-C6av.169.6 p.m.]. In addition to these two characteristic features the average bond length P3-C2 is found to be considerably shortened to a value of 172.7 p.m., whereas the adjacent phosphorus-chlorine bond P3-Cl1 is strongly elongated to 245.5 p.m.
Silicon Germanium Quantum Well Solar Cell Project
National Aeronautics and Space Administration — Quantum-well structures embodied on single crystal silicon germanium drastically enhanced carrier mobilities. The cell-to-cell circuits of quantum-well PV...
Quantum optics with semiconductor nanostructures
Jahnke, Frank
2012-01-01
A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...
Visible Quantum Nanophotonics.
Energy Technology Data Exchange (ETDEWEB)
Subramania, Ganapathi Subramanian; Wang, George T.; Fischer, Arthur J.; Wierer, Jonathan J.; Tsao, Jeffrey Y.; Koleske, Daniel; Coltrin, Michael E.; Agarwal, Sapan; Anderson, P. Duke; Leung, Ben
2017-09-01
The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDs into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.
Institute of Scientific and Technical Information of China (English)
刘启能
2011-01-01
The quantum effect of light wave mode is studied under restriction condition of light wave in 1-D cylindrical anisotropic doped photonic crystal. The defect mode character of TE wave and TM wave are calculated by characteristic matrix method . New defect mode structure of 1-D cylindrical anisotropic doping photonic crystal was obtained. The defect mode frequency and transmission angle increases with increasing quantum number. The defect mode frequency of the same pattern decreases with increasing cylinder radius.%利用光波在一维各向异性圆柱掺杂光子晶体中径向受限的条件,研究了光波在其中出现的模式量子效应,并利用特征矩阵法计算了TE波和TM波各模式的缺陷模的变化规律,得出了一些一维各向异性圆柱光子晶体缺陷模的新结构.缺陷模的频率和透射角都随模式量子数的增加而增大.同一模式缺陷模的频率随圆柱半径的增加而减小.
Quantum effect and the bandgap of anisotropic rectangle photonic crystal%各向异性矩形光子晶体禁带结构及量子效应
Institute of Scientific and Technical Information of China (English)
龙涛; 刘启能
2011-01-01
The quantum effect of light wave mode is studied under a condition that the light wave is restricted in 1-D anisotropic rectangle photonic crystal.The bandgap character of TE wave and TM wave are calculated by characteristic matrix method.New bandgap structure of 1-D anisotropic rectangle photonic crystal is obtained.The bandgap frequency and transmission angle increase with increasing quantum number.The bandgap frequency of the same pattern decreases with increasing rectangle side length.%利用光波在一维各向异性矩形光子晶体中横向受限的条件,研究了光波在其中出现的模式量子效应,并利用特征矩阵法计算了TE波和TM波各模式的禁带的变化规律,得出了一些一维各向异性矩形光子晶体禁带的新结构.禁带的频率和透射角都随模式量子数的增加而增大.同一模式禁带的频率随矩形边长的增加而减小.
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Energy Technology Data Exchange (ETDEWEB)
Dammak, T. [Laboratoire de Physique Appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia)], E-mail: thameurlpa@yahoo.fr; Fourati, N. [Laboratoire de Physique Appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia); Boughzala, H. [Laboratoire de Cristallochimie et des Materiaux, Faculte des Sciences de Tunis (Tunisia); Mlayah, A. [Centre d' Elaboration des Materiaux et d' Etudes Structurales (CEMES), CNRS-Universite Paul Sabatier, 29 rue Jeanne Marvig, 31055 Toulouse, Cedex 4 (France); Abid, Y. [Laboratoire de Physique Appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia)
2007-12-15
We have prepared new semiconductor H{sub 3}N(CH{sub 2}){sub 6}NH{sub 3}PbBr{sub 4} crystals which are self-assembled organic-inorganic hybrid materials. The grown crystals have been studied by X-ray diffraction, infrared absorption and Raman spectroscopy scattering. We found that the title compound, abbreviated 2C{sub 6}PbBr{sub 4}, crystallizes in a two-dimensional (2D) structure with a P2{sub 1}/a space group. In the inorganic semiconductor sub-lattice, the corner sharing PbBr{sub 6} octahedra form infinite 2D chains. The organic C{sub 6}H{sub 18}N{sub 2}{sup +} ions form the insulator barriers between the inorganic semiconductor layers. Such a packing leads to a self-assembled multiple quantum well structure. Raman and infrared spectra of the title compound were recorded in the 50-500 and 400-4000 cm{sup -1} frequency regions, respectively. The assignment of the observed Raman lines was performed by comparison with the homologous compounds. Transmission measurements on thin films of 2C{sub 6}PbBr{sub 4}, obtained by the spin coating method, revealed a strong absorption peak at 380 nm. Luminescence measurements showed an emission line at 402 nm associated with radiative recombinations of excitons confined within the PbBr{sub 6} layers. The electron-hole binding energy is estimated at 180 meV.
Optomechanical Quantum Correlation Thermometry
Purdy, T. P.; Grutter, K. E.; Davanco, M. I.; Srinivasan, K.; Taylor, J. M.
We present an optomechanical approach for producing accurate thermometry over a wide temperature range using quantum Brownian motion. Optical measurements induce quantum correlations in an optomechanical system when quantum-limited intensity fluctuations of a probe laser drive mechanical motion. The size of the correlations in the weak probe limit are dictated by the scale of individual phonons. We have recently measured optomechanical quantum correlations in the cross correlation spectrum between the amplitude and phase fluctuations of a single probe laser interacting with a silicon nitride optomechanical crystal. These correlations are independent of thermally-induced Brownian motion. However, Brownian motion does simultaneously produce much larger correlation signals between other optical quadratures. A comparison of the size of thermally-induced correlations to quantum correlations allows us to absolutely calibrate Brownian motion thermometry to the mechanical energy quantization scale.
Gisin, Nicolas
2009-05-01
The ultimate limit of direct point to point quantum key distribution is around 300-500 km. Longer distances fiber-based quantum communication will require both high-fidelity entanglement swapping and multi-mode quantum memories. A new protocol for an efficient multimode quantum memory based on atomic ensembles has been developed and demonstrated. The rare-earth ions ensemble is ``frozen'' in a crystal inside a cryostat. The protocol, named AFC (Atomic Frequency Comb) is inspired from photon echoes, but avoids any control light pulse after the single-photon(s) is (are) stored in the medium, thus avoiding any noise due to fluorescence. First results on the new protocol for quantum memories in Nd:YVO4 doped crystals demonstrate a quantum light-matter interface at the single-photon level. The coherence of the re-emitted photons is investigated in an interference experiment showing net visibilities above 95%. Further results in Nd:YSO (Geneva), Tm:YAG (Paris) and Pr:YSO (Lund) shall also be presented. Many hundreds of km long quantum communication is a long term objective. Many of the necessary building blocks have been demonstrated, but usually in independent experiments and with insufficient fidelities and specifications to meet the goal. Still, today's the roadmap is relatively clear and a lot of interesting physics shall be found along the journey.
Directory of Open Access Journals (Sweden)
Somsak Panyakeow
2010-10-01
Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.
Li, Shu-Shen; Long, Gui-lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Sprague, Michael R.; England, Duncan G.; Abdolvand, Amir; Nunn, Joshua; Jin, Xian-Min; Kolthammer, W. Steven; Barbieri, Marco; Rigal, Bruno; Michelberger, Patrick S.; Champion, Tessa F. M.; Russell, Philip St. J.; Walmsley, Ian A.
2013-05-01
The generation of large multiphoton quantum states—for applications in computing, metrology and simulation—requires a network of high-efficiency quantum memories capable of storing broadband pulses. Integrating these memories into a fibre offers a number of advantages towards realizing this goal: strong light-matter coupling at low powers, simplified alignment and compatibility with existing photonic architectures. Here, we introduce a large-core kagome-structured hollow-core fibre as a suitable platform for an integrated fibre-based quantum memory with a warm atomic vapour. We demonstrate, for the first time, efficient optical pumping in such a system, where 90 ± 1% of atoms are prepared in the ground state. We measure high optical depths (3 × 104) and narrow homogeneous linewidths (6 ± 2 MHz) that do not exhibit significant transit-time broadening, showing that we can prepare a Λ-level system in a pure state. Our results establish that kagome fibres are suitable for implementing a broadband, room-temperature quantum memory, as well as a range of nonlinear optical effects.
Energy Technology Data Exchange (ETDEWEB)
Joseph, Lynnette [Department of Physics, Bishop Moore College, Mavelikara, Alappuzha 690110, Kerala (India); Department of Physics, C.M.S College, Kottayam 686001, Kerala (India); Sajan, D., E-mail: dsajand@gmail.com [Department of Physics, Bishop Moore College, Mavelikara, Alappuzha 690110, Kerala (India); Shettigar, Venkataraya [Department of Physics, Gokhale Centenary College, Ankola 581 314, Karnataka (India); Chaitanya, K. [Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Misra, Neeraj [Department of Physics, University of Lucknow, Lucknow 22607 (India); Sundius, Tom [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Němec, I. [Charles University in Prague, Faculty of Science, Department of Inorganic Chemistry, Hlavova 8, 128 40 Prague 2 (Czech Republic)
2013-08-15
A new chalcone derivative, 1-(4-aminophenyl)-3-(3,4-dimethoxyphenyl)-prop-2-en-1-one (DMAC) was synthesized and single crystals were grown by slow evaporation technique. The FT-Raman and FT-IR spectra of the sample were recorded in the region 3700–100 cm{sup −1} and 4000–400 cm{sup −1}, respectively. The spectra were interpreted with the aid of normal coordinate analysis following structure optimizations and force field calculations based on density functional theory (DFT) at the B3LYP/6-311+G(d,p) level of theory. Normal coordinate calculations were performed using the DFT force field, corrected by a recommended set of scaling factors, yielding fairly good agreement between the observed and calculated wavenumbers. DMAC is thermally stable up to 220.0 °C and optically transparent in the visible region. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The SHG efficiency of DMAC is observed to be 10 times that of standard urea crystal of identical particle size. - Highlights: • A chalcone derivative, DMAC has been synthesized and crystals are grown. • FT-IR and FT-Raman spectra, thermogravimetric and UV–Vis studies were carried out. • SHG effect from a centrosymmetric crystal has been reported.
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Quantum Imaging with Undetected Photons
Lemos, Gabriela B; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton
2014-01-01
Indistinguishable quantum states interfere, but the mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. We present a novel quantum imaging concept that relies on the indistinguishability of the possible sources of a photon that remains undetected. Our experiment uses pair creation in two separate down-conversion crystals. If a pair is created in the first crystal, the undetected photon passes the sample to be imaged, and its mode is made identical to that of an undetected photon created in the second crystal. Because of the pair correlation, the phase and amplitude information imprinted on the undetected photon is also carried by its brother photon, called the signal. Interference of the two signal beams, one arising from each crystal, then reveals the image. The photons passing through the object are never detected, and the signal photons that are detected never interact with the object. We demonstrate the power of the method by exhibitin...
Anitha, R; Athimoolam, S; Gunasekaran, M
2015-03-05
A needle shaped transparent light brown crystals of 2-nitroanilinium bromide were successfully synthesized and crystallized from an aqueous mixture by slow evaporation technique. Single crystal XRD studies confirm the crystalline phase of this isomorphous compound which contains a positively charge 2-nitroanilinium cation and a negatively charged bromide anion. The solid phase FT-IR and FT-Raman spectra of the compound have been recorded in the range of 4000-400cm(-1). The observed modes are correlated by the factor group theory analysis and different IR and Raman active species were identified. Geometrical optimisations were carried out and harmonic vibrational wave numbers were computed for the minimum energy molecular structure at RHF level invoking 6-311++G(d,p) and SDD basis sets. Optimised molecular geometry was compared with the crystallographic data. The calculated wavenumbers were compared with the experimental values. The NH vibrational bands are shifted from its normal range and the shifting is associated with the influence of the intermolecular hydrogen bonds in the crystal. A strong intensity peak in theoretical and corresponding band in experimental confirms the presence of NH…Br interaction as predicted in crystalline state.
Quantum phase transition of light as a control of the entanglement between interacting quantum dots
Barragan, Angela; Vera-Ciro, Carlos; Mondragon-Shem, Ian
We study coupled quantum dots arranged in a photonic crystal, interacting with light which undergoes a quantum phase transition. At the mean-field level for the infinite lattice, we compute the concurrence of the quantum dots as a measure of their entanglement. We find that this quantity smoothly
DEFF Research Database (Denmark)
Christensen, Claus H.; Schmidt, I.; Carlsson, A.;
2005-01-01
A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Steane, A M
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of quantum information theory. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, the review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory, and, arguably, quantum from classical physics. Basic quantum information ideas are described, including key distribution, teleportation, data compression, quantum error correction, the universal quantum computer and qua...
Quantum mechanics the theoretical minimum
Susskind, Leonard
2014-01-01
From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Gosson, Maurice A. de
2012-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level set...
Drużbicki, Kacper; Mikuli, Edward; Kocot, Antoni; Ossowska-Chruściel, Mirosława Danuta; Chruściel, Janusz; Zalewski, Sławomir
2012-08-02
The experimental and theoretical vibrational spectroscopic study of one of a novel antiferroelectric liquid crystals (AFLC), known under the MHPSBO10 acronym, have been undertaken. The interpretation of both FT-IR and FT-Raman spectra was focused mainly on the solid-state data. To analyze the experimental results along with the molecular properties, density functional theory (DFT) computations were performed using several modern theoretical approaches. The presented calculations were performed within the isolated molecule model, probing the performance of modern exchange-correlations functionals, as well as going beyond, i.e., within hybrid (ONIOM) and periodic boundary conditions (PBC) methodologies. A detailed band assignment was supported by the normal-mode analysis with SQM ab initio force field scaling. The results are supplemented by the noncovalent interactions analysis (NCI). The relatively noticeable spectral differences observed upon Crystal to AFLC phase transition have also been reported. For the most prominent vibrational modes, the geometries of the transition dipole moments along with the main components of vibrational polarizability were analyzed in terms of the molecular frame. One of the goals of the paper was to optimize the procedure of solid-state calculations to obtain the results comparable with the all electron calculations, performed routinely for isolated molecules, and to test their performance. The presented study delivers a complex insight into the vibrational spectrum with a noticeable improvement of the theoretical results obtained for significantly attracting mesogens using modern molecular modeling approaches. The presented modeling conditions are very promising for further description of similar large molecular crystals.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Energy Technology Data Exchange (ETDEWEB)
Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Maul, J. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Laboratório de Combustíveis e Materiais, INCTMN-UFPB, Universidade Federal da Paraíba, CEP 58051-900 João Pessoa, PB (Brazil); De La Pierre, M. [Nanochemistry Research Institute, Curtin Institute for Computation, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)
2015-05-28
We report accurate ab initio theoretical predictions of the elastic, seismic, and structural anisotropy of the orthorhombic Mg{sub 2}SiO{sub 4} forsterite crystal at high pressures (up to 20 GPa) and temperatures (up to its melting point, 2163 K), which constitute earth’s upper mantle conditions. Single-crystal elastic stiffness constants are evaluated up to 20 GPa and their first- and second-order pressure derivatives reported. Christoffel’s equation is solved at several pressures: directional seismic wave velocities and related properties (azimuthal and polarization seismic anisotropies) discussed. Thermal structural and average elastic properties, as computed within the quasi-harmonic approximation of the lattice potential, are predicted at high pressures and temperatures: directional thermal expansion coefficients, first- and second-order pressure derivatives of the isothermal bulk modulus, and P-V-T equation-of-state. The effect on computed properties of five different functionals, belonging to three different classes of approximations, of the density functional theory is explicitly investigated.
Institute of Scientific and Technical Information of China (English)
ZHU Xiao-Ming; FENG Yong-Lan; KUANG Dai-Zhi; ZHANG Fu-Xing; WANG Jian-Qiu; YU Jiang-Xi; JIANG Wu-Jiu
2012-01-01
The tris[（2-methyl-2-phenyl）propyl]（2,4-dinitro-phenolato）tin was synthesized by the reaction of bis[tri（2-methyl-2-phenyl）propyltin] oxide with 2,4-dinitrophenol. The compound was characterized by IR, 1H NMR spectra and elemental analysis. The crystal structure has been determined by X-ray diffraction. The crystal belongs to the monoclinic system, space group P21/n with a = 0.9649（0）, b = 1.0087（8）, c = 3.4867（4） nm, β = 90.965（7） , Z = 4, V = 3.3933（7） nm3, Dc = 1.369 Mg·m-3, （MoKa） = 0.796 mm-1, F（000） = 1440, R = 0.0345 and wR = 0.0821. The tin atom has a distorted tetrahedral geometry. The 2D network structure of the complex is formed by hydrogen bonds and π-π effects. The stabilities, orbital energies and composition characteristics of some frontier molecular orbitals of the complexes have been investigated with the aid of G98W software.
Ramachandran, V.; Halfpenny, PJ; Roberts, KJ
2017-01-01
The fundamentals of crystal science notably crystallography, crystal chemistry, crystal defects, crystal morphology and the surface chemistry of crystals are introduced with particular emphasis on organic crystals.
Bayar, I.; Khedhiri, L.; Jeanneau, E.; Lefebvre, F.; Ben Nasr, C.
2017-06-01
Two new organic-inorganic hybrid compounds, 3-chloroanilinium nitrate (I) and 3-chloanilinium perchlorate (II), have been synthesized by an acid/base reaction at room temperature in the presence of 3-chloroaniline as an organic-structure directing agent and their structures were determined by single crystal X-ray diffraction. Compound I, [C6H7ClN]NO3, crystallizes in the orthorhombic space group Pbca with a = 10.4137(16), b = 9.6232(11), c = 16.059(2) Å, V = 1609.3(4) and z = 8. Full-matrix least-squares refinement converged at R = 0.041 and Rw = 0.121. Compound II, [C6H7ClN]ClO4, belongs to the monoclinic system, space group P21/n with the following parameters: a = 10.684(2), b = 7.2667(12), c = 12.229(2) Å, β = 104.27(2)°, V = 920.1(3) and z = 4. The structure was refined to R = 0.054 and Rw = 0.102. Both salts form anionic parallel layers alternating with thick slabs of [C6H7NCl]+ organic molecules. Charge balance is achieved by the protonated amine which interacts with the inorganic framework through hydrogen bonding. Solid-state 13C CP-MAS NMR spectroscopy is in agreement with the X-ray structures. Ab initio calculations allow the partial attribution of carbon signals to the various atoms of the organic groups. Electronic properties such as HOMO and LUMO energies were studied by Quantum mechanical evaluation by using the B3LYP/6-31+G* method.
Directory of Open Access Journals (Sweden)
Pavel Mader
2014-01-01
Full Text Available Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs. Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.
Rai, Binod K.; Oswald, Iain W. H.; Chan, Julia Y.; Morosan, E.
2016-01-01
Single crystals of Yb3(Rh 1 -xTx )4Ge13 (T =Co ,Ir ) have been grown using the self-flux method. Powder x-ray diffraction data on these compounds are consistent with the cubic structure with space group P m 3 ¯n . Intermediate-valence behavior is observed in Yb3(Rh 1 -xTx )4Ge13 upon T = Co doping, while T = Ir doping drives the system into a heavy-fermion state. Antiferromagnetic order is observed in the Ir-doped samples Yb3(Rh 1 -xTx )4Ge13 for 0.5 xc = 0.5, accompanied by non-Fermi-liquid behavior evidenced by logarithmic divergence of the specific heat and linear temperature dependence of the resistivity. The Fermi-liquid behavior is recovered with the application of large magnetic fields.
Institute of Scientific and Technical Information of China (English)
张志坚; 邝代治; 张复兴; 蒋伍玖
2013-01-01
间苯二甲酸与三苯基氢氧化锡反应，合成了标题化合物，经元素分析、1H NMR 和 IR 表征，通过 X 射线衍射方法测定了化合物的晶体结构。该化合物晶体学参数：单斜晶系，空间群为 P21/n，晶胞参数：a=1.06210(3) nm，b=2.64095(6) nm，c=1.37498(4) nm，α=90°，β=103.1210(10)°，γ=90°，V =3.75606(17) nm3，Z=4，Dc=1.526 g/cm3，µ(MoKα)=1.371 mm-1， F(000)=1716，and R1=0.0257，wR2=0.0601；中心锡原子呈四配位畸变四面体构型。利用量子化学 G98W 软件，在 Lanl2dz 基组对化合物的稳定性、前沿分子轨道组成及能量进行研究。% The title complex, Bis(triphenyltin) m-Phthalate, has been synthesized by the reaction of triphenytin Hydroxide with m-phthalic acid and characterized by IR, 1H NMR spectra and elemental analysis. The crystal structure has been determined by X-ray diffraction. Crystal data for this complex: monoclinic system, space group P21/n with a =1.06210(3) nm, b =2.64095(6) nm, c =1.37498(4) nm, α=90°,β=103.1210(10)°, γ=90°, V=3.75606(17) nm3, Z=4, Dc= 1.526g/cm3, µ(MoKα) = 1.371 mm-1, F(000) =1716, and R1 =0.0257, wR2=0.0601. The crystal structure shows that the central Sn atom is four-coordinated to assume a distorted tetrahedral configuration. The study on title complex has been performed, with quantum chemistry calculation by means of G98W package and taking Lanl2dz basis set. The stabilities of the complex, the orbital energies and composition characteristics some frontier molecular orbital have been investigated.
Preparation and quantum size effect of nano WS2 lubricating crystal%纳米WS2润滑晶体的制备与量子尺寸效应
Institute of Scientific and Technical Information of China (English)
孙克辉; 韦钦; 罗文东; 王皋
2001-01-01
纳米WS2润滑晶体是一种性能优良的新型固体润滑材料.作者介绍了一种用机械-物理固相反应装置制备纳米WS2润滑晶体的新方法；用XRD对WS2纳米晶体进行了物相分析；用ESCALAB-MKⅡ型电子能谱仪分析了不同粒径的试样W44f712，S2p312电子结合能的变化，并对50mm和10mm粒径的S-W-S纳米簇团的S 2P312电子能谱结构进行谱图拟合.分析结果表明：XRD图样显示为WS2相单相；在S-W-S纳米簇团中存在显著的量子尺寸效应，该效应强化了硫原子电子壳层间的轨道杂化，使纳米级的WS2润滑晶体形成了1个没有悬键的、化学性能稳定的中空球体，在润滑过程中，这种结构可使体系保持较强的化学稳定性，能耗降低.%Nano WS2 crystal is a kind of solid lubrication material with excellent lubrication performance. This paper reports a new method of preparing nano WS2 lubricating crystal using equipment of Mechanical-physical Solid State Reaction Methods (MPSSRM). The phase analyses of nano WS2 lubricating crystal were made in the experiment of XRD. The shift of binding energies from W 4f7/2 and S 2p3/2 electrons for specimens of different diameters was investigated with ESCALAB-MK Ⅱ , and the spectra fitting analysis for S 2p3/2 electron in S-W-S cluster of diameters 50 nm and 10 nm were performed. The results show that the diffraction patterns for WS2 single phase were observed; the pronounced quantum size effect exists in S-W-S nano clusters, and it enhances the hybridization of different electronic shell obits and formed a closed hollow spherical structure without any dangling bond. In the lubricating process, such a system can maintain its chemical stability and decrease energy dissipation.
Classical and quantum anisotropic Heisenberg antiferromagnets
Directory of Open Access Journals (Sweden)
W. Selke
2009-01-01
Full Text Available We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and quartic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid and biconical (corresponding, in the quantum lattice gas description, to supersolid phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.
An Introduction to a Realistic Quantum Physics
Preparata, Giuliano
2003-01-01
This book is a remarkable synthesis, a clear and simple introduction to Quantum Physics with a sort of Galilean dialogue on the supreme systems of contemporary Physics. The author, whose research interests and work extended from quarks to liquid systems and from crystals to stars, introduces the common conceptual and mathematical framework of all quantum theories, realistic enough to successfully confront Nature: Quantum Field Theory applied to the study of both dilute and condensed matter. In the dilute limit, quantum mechanics is shown to be a good approximation to Quantum Field Theory. Howe
On quantum corrections to dislocations mass
Kwiatkowski, Grzegorz
2011-01-01
Quasi-classical quantization of crystal dislocations field is considered in terms of functional integral. The generalized zeta-function is used to evaluate the functional integral and quantum corrections to mass in quasi-classical approximation. The quantum corrections to few classical solutions of one-dimensional Sin-Gordon model are evaluated with account of rest $n-1$ dimensions. The results are applied to appropriate crystal dislocation models.
Institute of Scientific and Technical Information of China (English)
LI Chang-Hong; LI Wei; LI Yu-Lin; YANG Ying-Qun
2012-01-01
A three-dimensional framework copper（Ⅱ） coordination polymer with copper carbonate basic and 3-（pyridin-2-yl）-1,2,4-triazole （Hpt） has been hydrothemally synthesized.The complex （2,C14 H10 CuN8 ·3H2 O） crystallizes in tetragonal,space group P4 2 /n,a=2.08581（12）,b=2.08581（12）,c=0.72331（4） nm,M r=761.73,V=3.1468（3） nm 3,Dc=1.608 g/cm 3,Z=4,F（000）=1552,GOOF=1.07,R=0.0515 and wR=0.1689.Every asymmetric unit molecular structure of the complex is composed with one copper ion,one and half water molecules and two Hpt molecules.Each copper ion is coordinated with five nitrogen atoms from four Hpt molecules,forming a distorted square pyramidal geometry.The fluorescence spectrum analysis shows that the title complex at room temperature exhibits intense photoluminescence with maximum emission at 450 nm.The quantum chemistry calculation study on the complex has been performed.The stability,some frontier molecular orbital energies and composition characteristics of some frontier molecular orbitals of the complex have been investigated.
Eryılmaz, Serpil; Gül, Melek; İnkaya, Ersin; İdil, Önder; Özdemir, Namık
2016-10-01
In this paper, 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanobenzo[d]isoxazole was synthesized via 1,3 dipolar cycloaddition, characterized by spectroscopic analysis such as FT-IR, 1H NMR, 13C NMR, UV-Vis, LC-MS/MS, Elemental Analysis, and X-ray Single Crystal diffraction technique. The Density Functional Theory (DFT/B3LYP) method with 6-311G(d,p) basis set in the ground state was applied for quantum chemical calculations and molecular geometric parameters of the compound were compared with the X-ray analysis results. FT-IR, NMR and UV-Vis spectral analysis were analysed to determine the compliance with the vibrational frequencies, 1H NMR and 13C NMR chemical shifts and absorption wavelength values. The frontier molecular orbitals (FMOs), some global reactivity descriptors, molecular electrostatic potential (MEP), thermodynamic properties, non-linear optical (NLO) behaviour of the compound were examined with the same method in gas phase, theoretically. Moreover, antioxidant activity was determined with three different methods - DPPH radical scavenging, reducing and metal chelating, antimicrobial activity were carried out with Gram positive, Gram negative and Eukaryote for the title compound.
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
de Gosson, Maurice A
2011-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level sets defined by Fermi for the purpose of representing geometrically quantum states.
Wu, L A; Wu, Lian-Ao; Lidar, Daniel
2005-01-01
Quantum computation and communication offer unprecedented advantages compared to classical information processing. Currently, quantum communication is moving from laboratory prototypes into real-life applications. When quantum communication networks become more widespread it is likely that they will be subject to attacks by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware.
Quantum optics with quantum dots in photonic nanowires
DEFF Research Database (Denmark)
Claudon, Julien; Munsch, Matthieu; Bleuse, Joel;
2012-01-01
Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....
Directory of Open Access Journals (Sweden)
Mohamed Henini
2002-06-01
These sophisticated technologies for the growth of high quality epitaxial layers of compound semiconductor materials on single crystal semiconductor substrates are becoming increasingly important for the development of the semiconductor electronics industry. This article is intended to convey the flavor of the subject by focusing on the technology and applications of self-assembled quantum dots (QDs and to give an introduction to some of the essential characteristics.
Scarani, Valerio; Iblisdir, Sofyan; Gisin, Nicolas; Acin, Antonio
2005-01-01
The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional an...
Multicolor photonic crystal laser array
Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming
2015-04-28
A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
Quantum CPU and Quantum Algorithm
Wang, An Min
1999-01-01
Making use of an universal quantum network -- QCPU proposed by me\\upcite{My1}, it is obtained that the whole quantum network which can implement some the known quantum algorithms including Deutsch algorithm, quantum Fourier transformation, Shor's algorithm and Grover's algorithm.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Multiple Scattering of Quantum Optical States
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter
2011-01-01
fluctuations [3]. Only recently focus has reached the combination of quantum optics and multiple scattering, see e.g. references [4–7] and references therein. The experimental realization of strongly enhanced light-matter interaction in disordered photonic crystal waveguides, enabling cavity quantum...
Soudani, S.; Jeanneau, E.; Jelsch, C.; Lefebvre, F.; Ben Nasr, C.
2017-10-01
The synthesis and the X-ray structure of the Zn(II) zwitterionic complex:1-ethylpiperaziniumtrichlorozincate (II) are described. In the atomic arrangement, the ZnCl3N entities, grouped in pairs, are deployed along the b-axis to form layers. The organic entities are inserted between these layers through Nsbnd H⋯Cl and Csbnd H⋯Cl hydrogen bonds to form infinite three-dimensional network. The 3D Hirshfeld surfaces were investigated for intermolecular interactions. The optimized geometry, Mulliken charge distribution, molecular electrostatic potential (MEP) maps and thermodynamic properties have been calculated using the Lee-Yang-Parr correlation functional B3LYP with the LanL2DZ basis set. The HOMO and LUMO energy gap and chemical reactivity parameters were made. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray crystal structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.
Quantum dots: Rethinking the electronics
Bishnoi, Dimple
2016-05-01
In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.
Kahr, Bart; Freudenthal, John; Gunn, Erica
2010-05-18
molecules. Luminophores were used as guests in crystals to reveal aspects of growth mechanisms by labeling surface structures such as steps and kinks. New methods were adopted for measuring and imaging the optical rotatory power of crystals. Chiroptical anisotropies can now be compared with the results of quantum chemical calculations that have emerged in the past 10 years. The rapid determination of the optical rotation and circular dichroism tensors of molecules in crystals, and the interpretation of these anisotropies, remains a subject of future research. Polycrystalline patterns that form far from equilibrium challenged the quantitative interpretation of micrographs when heterogeneities along the optical path and obliquely angled interfaces played large roles. Resulting "artifacts" were nevertheless incisive probes of polycrystalline texture and mesoscale chemistry in simple substances grown far from equilibrium or in biopathological crystals such as Alzheimer's amyloid plaques.
Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.
2016-07-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Chattaraj, Pratim Kumar
2010-01-01
The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan
Space-time crystals of trapped ions.
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H T; Yin, Xiaobo; Zhang, Peng; Duan, L-M; Zhang, Xiang
2012-10-19
Spontaneous symmetry breaking can lead to the formation of time crystals, as well as spatial crystals. Here we propose a space-time crystal of trapped ions and a method to realize it experimentally by confining ions in a ring-shaped trapping potential with a static magnetic field. The ions spontaneously form a spatial ring crystal due to Coulomb repulsion. This ion crystal can rotate persistently at the lowest quantum energy state in magnetic fields with fractional fluxes. The persistent rotation of trapped ions produces the temporal order, leading to the formation of a space-time crystal. We show that these space-time crystals are robust for direct experimental observation. We also study the effects of finite temperatures on the persistent rotation. The proposed space-time crystals of trapped ions provide a new dimension for exploring many-body physics and emerging properties of matter.
Gravitational crystal inside the black hole
Nikolic, H
2015-01-01
Crystals, as quantum objects typically much larger than their lattice spacing, are a counterexample to a frequent prejudice that quantum effects should not be pronounced at macroscopic distances. We propose that the Einstein theory of gravity only describes a fluid phase and that a phase transition of crystallization can occur under extreme conditions such as those inside the black hole. Such a crystal phase with lattice spacing of the order of the Planck length offers a natural mechanism for pronounced quantum-gravity effects at distances much larger than the Planck length. A resolution of the black-hole information paradox is proposed, according to which all information is stored in a crystal-phase remnant with size and mass much above the Planck scale.
On-chip generation and guiding of quantum light from a site-controlled quantum dot
Jamil, Ayesha; Kalliakos, Sokratis; Schwagmann, Andre; Ward, Martin B; Brody, Yarden; Ellis, David J P; Farrer, Ian; Griffiths, Jonathan P; Jones, Geb A C; Ritchie, David A; Shields, Andrew J
2014-01-01
We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device scale arrays of quantum dots are formed by a two step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the exit of the waveguide is 12 \\pm 5 % before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.
Quantum temporal imaging: application of a time lens to quantum optics
Patera, G.; Shi, J.; Horoshko, D. B.; Kolobov, M. I.
2017-05-01
We consider application of a temporal imaging system, based on the sum-frequency generation (SFG), to a nonclassical, squeezed optical temporal waveform. We analyze restrictions on the pump and the phase-matching condition in the summing crystal, which are necessary for preserving the quantum features of the initial waveform. We show that modification of the notion of the field of view (FOV) in the quantum case is necessary, and that the quantum FOV is much narrower than the classical one for the same temporal imaging system. These results are important for temporal stretching and compressing of squeezed fields, which are used in quantum-enhanced metrology and quantum communications.
On-chip generation and guiding of quantum light from a site-controlled quantum dot
Energy Technology Data Exchange (ETDEWEB)
Jamil, Ayesha; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Skiba-Szymanska, Joanna; Kalliakos, Sokratis; Ward, Martin B.; Ellis, David J. P.; Shields, Andrew J., E-mail: andrew.shields@crl.toshiba.co.uk [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom); Schwagmann, Andre; Brody, Yarden [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ (United Kingdom)
2014-03-10
We demonstrate the emission and routing of single photons along a semiconductor chip originating from carrier recombination in an actively positioned InAs quantum dot. Device–scale arrays of quantum dots are formed by a two–step regrowth process. We precisely locate the propagating region of a unidirectional photonic crystal waveguide with respect to the quantum dot nucleation site. Under pulsed optical excitation, the multiphoton emission probability from the waveguide's exit is 12% ± 5% before any background correction. Our results are a major step towards the deterministic integration of a quantum emitter with the waveguiding components of photonic quantum circuits.
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Energy Technology Data Exchange (ETDEWEB)
Zurek, Wojciech H [Los Alamos National Laboratory
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
Putz, Volkmar
2015-01-01
We consider ways of conceptualizing, rendering and perceiving quantum music, and quantum art in general. Thereby we give particular emphasis to its non-classical aspects, such as coherent superposition and entanglement.
Cheon, T
2004-01-01
We show that the U(2) family of point interactions on a line can be utilized to provide the U(2) family of qubit operations for quantum information processing. Qubits are realized as localized states in either side of the point interaction which represents a controllable gate. The manipulation of qubits proceeds in a manner analogous to the operation of an abacus. Keywords: quantum computation, quantum contact interaction, quantum wire
Esteban Guevara
2006-01-01
The relationships between game theory and quantum mechanics let us propose certain quantization relationships through which we could describe and understand not only quantum but also classical, evolutionary and the biological systems that were described before through the replicator dynamics. Quantum mechanics could be used to explain more correctly biological and economical processes and even it could encloses theories like games and evolutionary dynamics. This could make quantum mechanics a...
2008-01-01
Quantum Nanomechanics is the emerging field which pertains to the mechanical behavior of nanoscale systems in the quantum domain. Unlike the conventional studies of vibration of molecules and phonons in solids, quantum nanomechanics is defined as the quantum behavior of the entire mechanical structure, including all of its constituents--the atoms, the molecules, the ions, the electrons as well as other excitations. The relevant degrees of freedom of the system are described by macroscopic var...
Quantum electrodynamics near a photonic bandgap
Liu, Yanbing; Houck, Andrew A.
2017-01-01
Photonic crystals are a powerful tool for the manipulation of optical dispersion and density of states, and have thus been used in applications from photon generation to quantum sensing with nitrogen vacancy centres and atoms. The unique control provided by these media makes them a beautiful, if unexplored, playground for strong-coupling quantum electrodynamics, where a single, highly nonlinear emitter hybridizes with the band structure of the crystal. Here we demonstrate that such a hybridization can create localized cavity modes that live within the photonic bandgap, whose localization and spectral properties we explore in detail. We then demonstrate that the coloured vacuum of the photonic crystal can be employed for efficient dissipative state preparation. This work opens exciting prospects for engineering long-range spin models in the circuit quantum electrodynamics architecture, as well as new opportunities for dissipative quantum state engineering.
Fehr, S.
2010-01-01
Quantum cryptography makes use of the quantum-mechanical behavior of nature for the design and analysis of cryptographic schemes. Optimally (but not always), quantum cryptography allows for the design of cryptographic schemes whose security is guaranteed solely by the laws of nature. This is in shar
Quantum Computing for Quantum Chemistry
2010-09-01
This three-year project consisted on the development and application of quantum computer algorithms for chemical applications. In particular, we developed algorithms for chemical reaction dynamics, electronic structure and protein folding. The first quantum computing for
Quantum Operations as Quantum States
Arrighi, P; Arrighi, Pablo; Patricot, Christophe
2004-01-01
In this article we formalize the correspondence between quantum states and quantum operations, and harness its consequences. This correspondence was already implicit in Choi's proof of the operator sum representation of Completely Positive-preserving linear maps; we go further and show that all of the important theorems concerning quantum operations can be derived as simple corollaries of those concerning quantum states. As we do so the discussion first provides an elegant and original review of the main features of quantum operations. Next (in the second half of the paper) we search for more results to arise from the correspondence. Thus we propose a factorizability condition and an extremal trace-preservedness condition for quantum operations, give two novel Schmidt-type decompositions of bipartite pure states and two interesting composition laws for which the set of quantum operations and quantum states remain stable. The latter enables us to define a group structure upon the set of totally entangled state...
Quantum memory in quantum cryptography
Mor, T
1999-01-01
[Shortened abstract:] This thesis investigates the importance of quantum memory in quantum cryptography, concentrating on quantum key distribution schemes. In the hands of an eavesdropper -- a quantum memory is a powerful tool, putting in question the security of quantum cryptography; Classical privacy amplification techniques, used to prove security against less powerful eavesdroppers, might not be effective when the eavesdropper can keep quantum states for a long time. In this work we suggest a possible direction for approaching this problem. We define strong attacks of this type, and show security against them, suggesting that quantum cryptography is secure. We start with a complete analysis regarding the information about a parity bit (since parity bits are used for privacy amplification). We use the results regarding the information on parity bits to prove security against very strong eavesdropping attacks, which uses quantum memories and all classical data (including error correction codes) to attack th...
Coupled quantum dot-ring structures by droplet epitaxy
Energy Technology Data Exchange (ETDEWEB)
Somaschini, C; Bietti, S; Koguchi, N; Sanguinetti, S, E-mail: stefano.sanguinetti@unimib.it [L-NESS and Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy)
2011-05-06
The fabrication, by pure self-assembly, of GaAs/AlGaAs dot-ring quantum nanostructures is presented. The growth is performed via droplet epitaxy, which allows for the fine control, through As flux and substrate temperature, of the crystallization kinetics of nanometer scale metallic Ga reservoirs deposited on the surface. Such a procedure permits the combination of quantum dots and quantum rings into a single, multi-functional, complex quantum nanostructure.
Searching for the Best Protein Crystals: Synchrotron Based Measurements of Protein Crystal Quality
Borgstahl, Gloria; Snell, Edward H.; Bellamy, Henry; Pangborn, Walter; Nelson, Chris; Arvai, Andy; Ohren, Jeff; Pokross, Matt
1999-01-01
We are developing X-ray diffraction methods to quantitatively evaluate the quality of protein crystals. The ultimate use for these crystal quality will be to optimize crystal growth and freezing conditions to obtain the best diffraction data. We have combined super fine-phi slicing with highly monochromatic, low divergence synchrotron radiation and the ADSC Quantum 4 CCD detector at the Stanford Synchrotron Radiation laboratory beamline 1.5 to accurately measure crystal mosaicity. Comparisons of microgravity versus earth-grown insulin crystals using these methods will be presented.
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Ozaki, Sho
2016-01-01
The low-energy effective theories for gapped insulators are classified by three parameters: permittivity $\\epsilon$, permeability $\\mu$, and theta angle $\\theta$. Crystals with periodic $\\epsilon$ are known as photonic crystals. We here study the band structure of photons in a new type of crystals with periodic $\\theta$ (modulo $2\\pi$) in space, which we call the axion crystals. We find that the axion crystals have a number of new properties that the usual photonic crystals do not possess, such as the helicity-dependent photonic band gaps and the nonrelativistic gapless dispersion relation at small momentum. We briefly discuss possible realizations of axion crystals in condensed matter systems as well as high-energy physics.
Quantum entanglement and quantum operation
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.
Horodecki, R; Horodecki, M; Horodecki, K; Horodecki, Ryszard; Horodecki, Pawel; Horodecki, Michal; Horodecki, Karol
2007-01-01
All our former experience with application of quantum theory seems to say: {\\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via ...
Weaver, Nik
2010-01-01
We define a "quantum relation" on a von Neumann algebra M \\subset B(H) to be a weak* closed operator bimodule over its commutant M'. Although this definition is framed in terms of a particular representation of M, it is effectively representation independent. Quantum relations on l^\\infty(X) exactly correspond to subsets of X^2, i.e., relations on X. There is also a good definition of a "measurable relation" on a measure space, to which quantum relations partially reduce in the general abelian case. By analogy with the classical setting, we can identify structures such as quantum equivalence relations, quantum partial orders, and quantum graphs, and we can generalize Arveson's fundamental work on weak* closed operator algebras containing a masa to these cases. We are also able to intrinsically characterize the quantum relations on M in terms of families of projections in M \\otimes B(l^2).
Mossbauer neutrinos in quantum mechanics and quantum field theory
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Mossbauer neutrino oscillations. First, we compute the combined rate $\\Gamma$ of Mossbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for $\\Gamma$ is identical to the one obtained previously (Akhmedov et al., arXiv:0802.2513) for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Mossbauer neutrinos and show that the oscillation, coherence and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detecti...
Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals
DEFF Research Database (Denmark)
Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris;
2006-01-01
We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....
Quantum Games and Quantum Discord
Nawaz, Ahmad
2010-01-01
We quantize prisoners dilemma and chicken game by our generalized quantization scheme to explore the role of quantum discord in quantum games. In order to establish this connection we use Werner-like state as an initial state of the game. In this quantization scheme measurement can be performed in entangled as well as in product basis. For the measurement in entangled basis the dilemma in both the games can be resolved by separable states with non-zero quantum discord. Similarly for product basis measurement the payoffs are quantum mechanical only for nonzero values of quantum discord.
Time and Spacetime: The Crystallizing Block Universe
Ellis, George F R
2009-01-01
The nature of the future is completely different from the nature of the past. When quantum effects are significant, the future shows all the signs of quantum weirdness, including duality, uncertainty, and entanglement. With the passage of time, after the time-irreversible process of state-vector reduction has taken place, the past emerges, with the previous quantum uncertainty replaced by the classical certainty of definite particle identities and states. The present time is where this transition largely takes place, but the process does not take place uniformly: Evidence from delayed choice and related experiments shows that isolated patches of quantum indeterminacy remain, and that their transition from probability to certainty only takes place later. Thus, when quantum effects are significant, the picture of a classical Evolving Block Universe (`EBU') cedes place to one of a Crystallizing Block Universe (`CBU'), which reflects this quantum transition from indeterminacy to certainty, while nevertheless rese...
Golden, Barbara L.; Kundrot, Craig E.
2003-01-01
RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.
Gravitational Effects of a Crystalline Quantum Foam
Crouse, David
2017-01-01
In this work, concepts in quantum mechanics and general relativity are used to derive the quantums of space and time. After showing that space and time, at the Planck scale, must be discrete and not continuous, various anomalous gravitational effects are described. It is discussed how discrete space necessarily imposes order upon Wheeler's quantum foam, changing the foam into a crystal. The forces in this crystal are gravitational forces due to the ordered array of electrically neutral Planck masses, and with a lattice constant on the order of the Planck length. Thus the crystal is a gravity crystal rather than the more common crystals (e.g., silicon) that rely on electromagnetic forces. It is shown that similar solid-state physics techniques can be applied to this universe-wide gravity crystal to calculate particles' dispersion curves. It is shown that the crystal produces typical crystalline effects, namely bandgaps, Brillouin zones, and effective inertial masses that may differ from the gravitational masses with possible values even being near zero or negative. It is shown that the gravity crystal can affect the motion of black holes in dramatic ways, imbuing them with a negative inertial mass such that they are pushed by the pull of gravity.
Chernov, Alexander A.
2005-01-01
Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.
Computational crystallization.
Altan, Irem; Charbonneau, Patrick; Snell, Edward H
2016-07-15
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.
Gilbert, Gerald; Hamrick, Michael
2013-01-01
This book provides a detailed account of the theory and practice of quantum cryptography. Suitable as the basis for a course in the subject at the graduate level, it crosses the disciplines of physics, mathematics, computer science and engineering. The theoretical and experimental aspects of the subject are derived from first principles, and attention is devoted to the practical development of realistic quantum communications systems. The book also includes a comprehensive analysis of practical quantum cryptography systems implemented in actual physical environments via either free-space or fiber-optic cable quantum channels. This book will be a valuable resource for graduate students, as well as professional scientists and engineers, who desire an introduction to the field that will enable them to undertake research in quantum cryptography. It will also be a useful reference for researchers who are already active in the field, and for academic faculty members who are teaching courses in quantum information s...
Arrighi, P
2003-01-01
Alice communicates with words drawn uniformly amongst $\\{\\ket{j}\\}_{j=1..n}$, the canonical orthonormal basis. Sometimes however Alice interleaves quantum decoys $\\{\\frac{\\ket{j}+i\\ket{k}}{\\sqrt{2}}\\}$ between her messages. Such pairwise superpositions of possible words cannot be distinguished from the message words. Thus as malevolent Eve observes the quantum channel, she runs the risk of damaging the superpositions (by causing a collapse). At the receiving end honest Bob, whom we assume is warned of the quantum decoys' distribution, checks upon their integrity with a measurement. The present work establishes, in the case of individual attacks, the tradeoff between Eve's information gain (her chances, if a message word was sent, of guessing which) and the disturbance she induces (Bob's chances, if a quantum decoy was sent, to detect tampering). Besides secure channel protocols, quantum decoys seem a powerful primitive for constructing n-dimensional quantum cryptographic applications. Moreover the methods emp...
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
Energy Technology Data Exchange (ETDEWEB)
Ramírez-Porras, A., E-mail: aramirez@fisica.ucr.ac.cr [Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); García, O. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Vargas, C. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Corrales, A. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Solís, J.D. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica)
2015-08-30
Highlights: • PL spectra of porous silicon samples have been studied using a stochastic model. • This model can deconvolute PL spectra into three components. • Quantum dots, quantum wires and localized states have been identified. • Nanostructure diameters are in the range from 2.2 nm to 4.0 nm. • Contributions from quantum wires are small compared to the others. - Abstract: Nanocrystallites of Silicon have been produced by electrochemical etching of crystal wafers. The obtained samples show photoluminescence in the red band of the visible spectrum when illuminated by ultraviolet light. The photoluminescence spectra can be deconvolved into three components according to a stochastic quantum confinement model: one band coming from Nanocrystalline dots, or quantum dots, one from Nanocrystalline wires, or quantum wires, and one from the presence of localized surface states related to silicon oxide. The results fit well within other published models.
Institute of Scientific and Technical Information of China (English)
崔亮; 李小英; 李璐
2012-01-01
A one-meter-long high nonlinear photonic crystal fiber is pumped by laser pulse train at room temperature, and the generated correlated idler and signal photons are centred at 830 nm and 1411 nm, respectively. The full widths at half maximum of the broad band filters of the two channel are 15 nm and 35 nm, respectively. The fitting results of single channel photon counts reveal that almost all the photons originate from spontaneous four wave mixing and the influence of Raman scattering is eliminated. When the production rate is 0.0085 photon per pulse, the ratio between coincidence rate and accidental coincidence rate is measured to be 102, which not only confirms the low noise property of the photon pair, but also shows that the photon pair are naturally narrow band, and the collecting efficiency in our experiment is high. Moreover, these high purity photon pairs connect different optical bands, and have potential applications in quantum information technologies.%使用脉冲光在室温下抽运一根长1 m的高非线性光子晶体光纤,产生了中心波长分别位于830 nm和1411 nm的具有量子关联性的闲频与信号光子.实验中闲频和信号通道的带宽分别是15 nm和35 nm.对单通道光子计数率的拟合结果显示光子几乎全部来源于光纤中的自发四波混频过程,未受到Raman散射噪声的影响.当闲频和信号通道的光子产生率约为每脉冲0.0085个时,测得符合计数率与随机符合计数率的比值为102,接近理论极限,不仅证明了光子对的低噪声性,而且表明所产生的光子对本身具有窄带频谱特性,因而实验中对其收集效率很高.此外,这种高纯度关联光子对还联接了不同波段,在量子信息技术中有着潜在的应用.
2010-03-04
efficient or less costly than their classical counterparts. A large-scale quantum computer is certainly an extremely ambi- tious goal, appearing to us...outperform the largest classical supercomputers in solving some specific problems important for data encryption. In the long term, another application...which the quantum computer depends, causing the quantum mechanically destructive process known as decoherence . Decoherence comes in several forms
Hughes, R J; Dyer, P L; Luther, G G; Morgan, G L; Schauer, M M; Hughes, Richard J; Dyer, P; Luther, G G; Morgan, G L; Schauer, M
1995-01-01
Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Quantum optical signal processing in diamond
Fisher, Kent A G; Maclean, Jean-Phillipe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J
2015-01-01
Controlling the properties of single photons is essential for a wide array of emerging optical quantum technologies spanning quantum sensing, quantum computing, and quantum communications. Essential components for these technologies include single photon sources, quantum memories, waveguides, and detectors. The ideal spectral operating parameters (wavelength and bandwidth) of these components are rarely similar; thus, frequency conversion and spectral control are key enabling steps for component hybridization. Here we perform signal processing of single photons by coherently manipulating their spectra via a modified quantum memory. We store 723.5 nm photons, with 4.1 nm bandwidth, in a room-temperature diamond crystal; upon retrieval we demonstrate centre frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 to 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, to be an integrated platform for photon storage ...
Quantum Networks for Generating Arbitrary Quantum States
Kaye, Phillip; Mosca, Michele
2004-01-01
Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.
1300-nm gain obtained with dysprosium-doped chloride crystals
Energy Technology Data Exchange (ETDEWEB)
Page, R.H.; Schaffers, K.I.; Beach, R.J.; Payne, S.A.; Krupke, W.F.
1996-03-01
Dy{sup 3+} - doped chloride crystals have high 1300-nm emission quantum yields. Pump - probe experiments on La Cl{sub 3}:Dy{sup 3+} demonstrate optical gain consistent with predictions based on spectroscopic cross sections and lifetimes.
Quantum physics without quantum philosophy
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Mathematisches Inst.; Goldstein, Sheldon [Rutgers State Univ., Piscataway, NJ (United States). Dept. of Mathematics; Zanghi, Nino [Genova Univ. (Italy); Istituto Nazionale Fisica Nucleare, Genova (Italy)
2013-02-01
Integrates and comments on the authors' seminal papers in the field. Emphasizes the natural way in which quantum phenomena emerge from the Bohmian picture. Helps to answer many of the objections raised to Bohmian quantum mechanics. Useful overview and summary for newcomers and students. It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schroedinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
SRD 3 NIST Crystal Data (PC database for purchase) NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.
Quantum entanglement and quantum operation
Institute of Scientific and Technical Information of China (English)
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations.The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations.It includes remote state preparation by using any pure entangled states,nonlocal operation implementation using entangled states,entanglement capacity of two-qubit gates and two-qubit gates construction.
Linewidth broadening of a quantum dot coupled to an off-resonant cavity
Majumdar, Arka; Kim, Erik; Englund, Dirk; Kim, Hyochul; Petroff, Pierre; Vuckovic, Jelena
2010-01-01
We study the coupling between a photonic crystal cavity and an off-resonant quantum dot under resonant excitation of the cavity or the quantum dot. Linewidths of the quantum dot and the cavity as a function of the excitation laser power are measured. We show that the linewidth of the quantum dot, measured by observing the cavity emission, is significantly broadened compared to the theoretical estimate. This indicates additional incoherent coupling between the quantum dot and the cavity.
Quantum Factorization of 143 on a Dipolar-Coupling NMR system
Xu, Nanyang; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng
2011-01-01
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.
Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.
Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng
2012-03-30
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.
Bose, Ranojoy
In this thesis, we study solution-processed lead sulfide quantum dots for near-infrared quantum information and communication applications. Quantum dots processed through synthetic routes and colloidally suspended in solution offer far-reaching device application possibilities that are unparalelled in traditional self-assembled quantum dots. Lead sulfide quantum dots are especially promising for near-infrared quantum optics due to their optical emission at the wavelengths of fiber-optic communications (1.3--1.5 microm). The broad absorption spectrum of these quantum dots can be used for solar light-harvesting applications, to which end the results of Chapter 2---where we study Forster resonance energy transfer in quantum dot solids---provide remarkable insights into photon emission from quantum-dot based solar cells. In subsequent chapters, we explore quantum-dot photonic crystal applications, where exciton-photon interactions in the cavity environment remarkably allow for the emission of indistinguishable single photons that are important for distribution of high-security quantum keys---being highly sensitive to 'eavesdropping'. Particularly, the suggestion of the solution-processed QED system is novel compared to traditional self-assembled systems, and as we will discuss, offer integration and processing capabilities that are unprecedented, and perform well at wavelength ranges where standard QED systems scale poorly. The results of chapters 3--6 are therefore significant in the general field of cavity quantum electrodynamics.
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Optical Magnetometer Incorporating Photonic Crystals
Kulikov, Igor; Florescu, Lucia
2007-01-01
According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.
Abrams, D.; Williams, C.
1999-01-01
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.
Manning, Phillip
2011-01-01
The study of quantum theory allowed twentieth-century scientists to examine the world in a new way, one that was filled with uncertainties and probabilities. Further study also led to the development of lasers, the atomic bomb, and the computer. This exciting new book clearly explains quantum theory and its everyday uses in our world.
Sastry, R R
1999-01-01
The infinite dimensional generalization of the quantum mechanics of extended objects, namely, the quantum field theory of extended objects is employed to address the hitherto nonrenormalizable gravitational interaction following which the cosmological constant problem is addressed. The response of an electron to a weak gravitational field (linear approximation) is studied and the order $\\alpha$ correction to the magnetic gravitational moment is computed.
Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory
Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2017-05-01
The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated photon-pair source and a quantum memory in atomic gases, which has enabled fast progress towards elementary quantum networks. In this Letter, we demonstrate a solid-state source of correlated photon pairs with embedded spin-wave quantum memory, using a rare-earth-ion-doped crystal. We show strong quantum correlations between the photons, high enough for performing quantum communication. Unlike the original DLCZ proposal, our scheme is inherently multimode thanks to a built-in rephasing mechanism, allowing us to demonstrate storage of 11 temporal modes. These results represent an important step towards the realization of complex quantum networks architectures using solid-state resources.
Hadjiivanov, Ludmil
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the "philosophical discussions" between Bohr, Einstein and Schr\\"odinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schr\\"odinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminati...
Richter, Johannes; Farnell, Damian; Bishop, Raymod
2004-01-01
The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
Kiefer, Claus
2012-01-01
The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Macromolecular crystallization and crystal perfection
Chayen, Naomi E; Snell, Edward H
2010-01-01
Structural biology is key to our understanding of the mechanisms of biological processes. This text describes current methods and future frontiers in crystal growth and use of X-ray and neutron crystallography, in the context of automation of crystallization and generation of synchrotron X-ray and neutron beams.
Quantum Computation Toward Quantum Gravity
Zizzi, P. A.
2001-08-01
The aim of this paper is to enlighten the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. From the above arguments, as they stand in the literature, it follows that the edges of spin networks pierce the black hole horizon and excite curvature degrees of freedom on the surface. These excitations are micro-states of Chern-Simons theory and account of the black hole entropy which turns out to be a quarter of the area of the horizon, (in units of Planck area), in accordance with the holographic principle. Moreover, the states which dominate the counting correspond to punctures of spin j = 1/2 and one can in fact visualize each micro-state as a bit of information. The obvious generalization of this result is to consider open spin networks with edges labeled by the spin -1/ 2 representation of SU(2) in a superposed state of spin "on" and spin "down." The micro-state corresponding to such a puncture will be a pixel of area which is "on" and "off" at the same time, and it will encode a qubit of information. This picture, when applied to quantum cosmology, describes an early inflationary universe which is a discrete version of the de Sitter universe.
Liquid crystal tunable photonic crystal dye laser
DEFF Research Database (Denmark)
Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron
2010-01-01
We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....
Realizing Controllable Quantum States
Takayanagi, Hideaki; Nitta, Junsaku
-- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high
Directory of Open Access Journals (Sweden)
Ronald W. Armstrong
2016-01-01
Full Text Available Crystal dislocations were invisible until the mid-20th century although their presence had been inferred; the atomic and molecular scale dimensions had prevented earlier discovery. Now they are normally known to be just about everywhere, for example, in the softest molecularly-bonded crystals as well as within the hardest covalently-bonded diamonds. The advent of advanced techniques of atomic-scale probing has facilitated modern observations of dislocations in every crystal structure-type, particularly by X-ray diffraction topography and transmission electron microscopy. The present Special Issue provides a flavor of their ubiquitous presences, their characterizations and, especially, their influence on mechanical and electrical properties.
Cariolaro, Gianfranco
2015-01-01
This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: · development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; · general formulation of a transmitter–receiver system · particular treatment of the most popular quantum co...
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Gudder, Stanley P
2014-01-01
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism.Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles.The first two chapters survey the ne
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Garrison, J C
2008-01-01
Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor
Lowe, John P
1993-01-01
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
Transport through a Finite One-Dimensional Crystal
Kouwenhoven, L.P.; Hekking, F.W.J.; Wees, B.J. van; Harmans, C.J.P.M.; Timmering, C.E.; Foxon, C.T.
1990-01-01
We have studied the magnetotransport properties of an artificial one-dimensional crystal. The crystal consists of a sequence of fifteen quantum dots, defined in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure by means of a split-gate technique. At a fixed magnetic field of 2 T, two
Buhrman, H; Watrous, J; De Wolf, R; Buhrman, Harry; Cleve, Richard; Watrous, John; Wolf, Ronald de
2001-01-01
Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources. In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability. Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity. We optimize several aspects of our scheme.
Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L
2010-03-04
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
Curran, Stephen
2009-01-01
In arXiv:0807.0677, K\\"ostler and Speicher observed that de Finetti's theorem on exchangeable sequences has a free analogue if one replaces exchangeability by the stronger condition of invariance under quantum permutations. In this paper we study sequences of noncommutative random variables whose joint distribution is invariant under quantum orthogonal transformations. We prove a free analogue of Freedman's characterization of conditionally independent Gaussian families, namely an infinite sequence of self-adjoint random variables is quantum orthogonally invariant if and only if they form an operator-valued free centered equivariant semicircular family. Similarly, we show that an infinite sequence of noncommutative random variables is quantum unitarily invariant if and only if they form an operator-valued free centered equivariant circular family. We provide an example to show that, as in the classical case, these results fail for finite sequences. We then give an approximation to how far the distribution of ...
Mershin, A; Skoulakis, E M C
2000-01-01
In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.
Quantum diffusion of muon and muonium in solids
Energy Technology Data Exchange (ETDEWEB)
Kadono, Ryosuke [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)
1998-10-01
The quantum tunneling diffusion of muon and muonium in crystalline solids is discussed with emphasis on the effects of disorder and superconductivity. The complex effect of disorder on muonium diffusion in inhomogeneous crystal is scrutinized. The enhanced muon diffusion in the superconducting state of high-purity tantalum establishes the predominant influence of conduction electrons on the quantum diffusion in metals. (author)
Absolute measurement of detector quantum efficiency using parametric downconversion.
Rarity, J G; Ridley, K D; Tapster, P R
1987-11-01
We show that a parametric downconversion crystal emitting angle resolved coincident photon pairs can be used to measure the absolute quantum efficiency of a photon counting detection system. We have measured the quantum efficiency of a silicon avalanche photodiode, operated in Geiger mode, as a function of operating voltage and compare this to results obtained using a conventional method.
Quantum numbers and band topology of nanotubes
Damnjanovic, M; Vukovic, T; Maultzsch, J
2003-01-01
Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.
Enhanced Gain in Photonic Crystal Amplifiers
DEFF Research Database (Denmark)
Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;
2012-01-01
study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth......We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...
CERN Bulletin
2013-01-01
On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail... Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".
Haroche, Serge
2013-01-01
Mr Administrator,Dear colleagues,Ladies and gentlemen, “I think I can safely say that nobody understands quantum mechanics”. This statement, made by physicist Richard Feynman, expresses a paradoxical truth about the scientific theory that revolutionised our understanding of Nature and made an extraordinary contribution to our means of acting on and gaining information about the world. In this lecture, I will discuss quantum physics with you by attempting to resolve this paradox. And if I don’...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Diego Martin-Cano, Paloma A. Huidobro, Esteban Moreno; Diego Martin-Cano; Huidobro, Paloma A.; Esteban Moreno; Garcia-Vidal, F.J.
2014-01-01
Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical inve...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Quantum correlations and distinguishability of quantum states
Spehner, Dominique
2014-07-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Fuchs, Christopher A
2009-01-01
This pseudo-paper consists of excerpts drawn from two of my quantum-email samizdats. Section 1 draws a picture of a physical world whose essence is ``Darwinism all the way down.'' Section 2 outlines how quantum theory should be viewed in light of this, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of ``identical'' quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a Jamesian style ``radical pluralism.'' Sections 4 and 5 further detail how quantum theory should not be viewed so much as a ``theory of the world,'' but rather as a theory of decision-making for agents immersed within a world of a particular character--the quantum world. Finally, Sections 6 and 7 attempt to sketch the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I...
Quantum emission from hexagonal boron nitride monolayers
Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor
2016-01-01
Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.
Orbital angular momentum photonic quantum interface
Institute of Scientific and Technical Information of China (English)
Zhi-Yuan Zhou; Yan Li; Dong-Sheng Ding; Wei Zhang; Shuai Shi; Bao-Sen Shi; Guang-Can Guo
2016-01-01
Light-carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Quantum Central Processing Unit and Quantum Algorithm
Institute of Scientific and Technical Information of China (English)
王安民
2002-01-01
Based on a scalable and universal quantum network, quantum central processing unit, proposed in our previous paper [Chin. Phys. Left. 18 (2001)166], the whole quantum network for the known quantum algorithms,including quantum Fourier transformation, Shor's algorithm and Grover's algorithm, is obtained in a unitied way.
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Chaotic behaviour of photonic crystals resonators
Di Falco, A.
2015-02-08
We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Time Crystals from Minimum Time Uncertainty
Faizal, Mir; Das, Saurya
2016-01-01
Motivated by the Generalized Uncertainty Principle, covariance, and a minimum measurable time, we propose a deformation of the Heisenberg algebra, and show that this leads to corrections to all quantum mechanical systems. We also demonstrate that such a deformation implies a discrete spectrum for time. In other words, time behaves like a crystal.
1990-01-01
Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.
NONLINEARLY VIBRATIONAL ENERGY-SPECTRA OF MOLECULAR CRYSTALS
Institute of Scientific and Technical Information of China (English)
PANG XIAO-FENG; CHEN XIANG-RONG
2000-01-01
The nonlinear quantum vibrational energy spectra of amide-I in the molecular crystals acetanilide are calculatedby using the discrete nonlinear Schrodinger equation appropriate to this kind of crystals. The numerical results obtainedby this method are in good agreement with the experimental values. Meanwhile, the energy levels at high excited stateshave also been obtained for the acetanilide, which is helpful in researching the Raman scattering and infrared absorptionproperties of the this kind of crystals.
Realization of collective strong coupling with ion Coulomb crystals in an optical cavity
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
crystal 16 and an optical field. The obtained coherence times are in the millisecond range and indicate that Coulomb crystals positioned inside optical cavities are promising for realizing a variety of quantum-information devices, including quantum repeaters 12 and quantum memories for light 17, 18......Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Quantum Transmemetic Intelligence
Piotrowski, Edward W.; Sładkowski, Jan
The following sections are included: * Introduction * A Quantum Model of Free Will * Quantum Acquisition of Knowledge * Thinking as a Quantum Algorithm * Counterfactual Measurement as a Model of Intuition * Quantum Modification of Freud's Model of Consciousness * Conclusion * Acknowledgements * References
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Mandl, F.
1992-07-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.
Scattering of ultrarelativistic electrons in ultrathin crystals
Shul'ga, N. F.; Shulga, S. N.
2017-06-01
Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is based upon a special representation of the scattering amplitude in the form of an integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The comparison is performed of quantum and classical differential scattering cross-sections in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is established. It is shown that in this thickness range the quantum scattering cross-section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically with the change of the target thickness. We note that this must lead to a new interference effect in radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal thicknesses.
Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut
2006-01-01
The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr
Quantum skyrmions in two-dimensional chiral magnets
Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon
2016-10-01
We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.
Godsi, Oded; Turner, Boaz; Suwinska, Kinga; Peskin, Uri; Eichen, Yoav
2004-10-20
The enolpyridine, OH-ketoenamime, NH equilibrium in crystals of 1,3-bis(pyridin-2-yl)propan-2-one was studied using temperature-dependent single-crystal X-ray diffraction. The relative population of the different tautomers was found to be sensitive to the temperature in the range of 100-300 K, illustrating the small thermodynamic difference between these two tautomers. This energy resemblance is partially attributed to the molecular packing in the crystal, where the molecules are arranged in the form of dimers. Ab initio electronic energy calculations (HF/6-31G** and MP2/6-31G**) reveal the effect of dimerization in the crystal on the electronic energy levels. Several tautomeric states were identified in the dimer of 1,3-bis(pyridin-2-yl)propan-2-one. A model is proposed in which four of these dimer states are populated in the crystal at ambient temperatures. The crystallographic data were treated according to this four-state dimer model, suggesting that the free energy of the OH-NH dimers is higher than that of the OH-OH dimers by 120 +/- 10 cal mol(-1) and that the NH-NH dimers are yet higher in free energy by 50 +/- 10 cal mol(-1).
Holographic preamplifier for a quantum amplifier
Energy Technology Data Exchange (ETDEWEB)
Zemskov, K.I.; Kazarian, M.A.; Orlova, N.G.; Liuksiutov, S.F.; Odulov, S.G.
1988-08-01
Successive amplification of a weak optical signal was realized experimentally in holographic and quantum amplifiers. The signal was a coherent one with an intensity less than the actual noise of the copper-vapor active medium; the technique involved the use of a coherent holographic preamplifier based on a lithium niobate/sodium photorefractive crystal. 8 references.
DEFF Research Database (Denmark)
Bohr, Jakob; Markvorsen, Steen
2013-01-01
A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons...
Bond, Charles S.
2014-01-01
Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…
Mullin, William J
2017-01-01
Quantum mechanics allows a remarkably accurate description of nature and powerful predictive capabilities. The analyses of quantum systems and their interpretation lead to many surprises, for example, the ability to detect the characteristics of an object without ever touching it in any way, via "interaction-free measurement," or the teleportation of an atomic state over large distances. The results can become downright bizarre. Quantum mechanics is a subtle subject that usually involves complicated mathematics -- calculus, partial differential equations, etc., for complete understanding. Most texts for general audiences avoid all mathematics. The result is that the reader misses almost all deep understanding of the subject, much of which can be probed with just high-school level algebra and trigonometry. Thus, readers with that level of mathematics can learn so much more about this fundamental science. The book starts with a discussion of the basic physics of waves (an appendix reviews some necessary class...
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Yoshida, Z
2016-01-01
Quantum systems often exhibit fundamental incapability to entertain vortex. The Meissner effect, a complete expulsion of the magnetic field (the electromagnetic vorticity), for instance, is taken to be the defining attribute of the superconducting state. Superfluidity is another, close-parallel example; fluid vorticity can reside only on topological defects with a limited (quantized) amount. Recent developments in the Bose-Einstein condensates produced by particle traps further emphasize this characteristic. We show that the challenge of imparting vorticity to a quantum fluid can be met through a nonlinear mechanism operating in a hot fluid corresponding to a thermally modified Pauli-Schroedinger spinor field. In a simple field-free model, we show that the thermal effect, represented by a nonlinear, non-Hermitian Hamiltonian, in conjunction with spin vorticity, leads to new interesting quantum states; a spiral solution is explicitly worked out.
Exner, Pavel
2015-01-01
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
Feng, Chao-Jun; Li, Xin-Zhou
In this paper, we will give a short review on quantum spring, which is a Casimir effect from the helix boundary condition that proposed in our earlier works. The Casimir force parallel to the axis of the helix behaves very much like the force on a spring that obeys the Hooke's law when the ratio r of the pitch to the circumference of the helix is small, but in this case, the force comes from a quantum effect, so we would like to call it quantum spring. On the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the ratio r. Both forces are attractive and their behaviors are the same in two and three dimensions.
Ranchin, André
2016-01-01
We introduce a new board game based on the ancient Chinese game of Go (Weiqi, Igo, Baduk). The key difference from the original game is that players no longer alternatively play single stones on the board but instead they take turns placing pairs of entangled go stones. A phenomenon of quantum-like collapse occurs when a stone is placed in an intersection directly adjacent to one or more other stones. For each neighboring stone in an entangled pair, each player then chooses which stone of the pair is kept on the board and which stone is removed. The aim of the game is still to surround more territory than the opponent and as the number of stones increases, all the entangled pairs of stones eventually reduce to single stones. Quantum Go provides an interesting and tangible illustration of quantum concepts such as superposition, entanglement and collapse.
Barbara, Bernard; Sawatzky, G; Stamp, P. C. E
2008-01-01
This book is based on some of the lectures during the Pacific Institute of Theoretical Physics (PITP) summer school on "Quantum Magnetism", held during June 2006 in Les Houches, in the French Alps. The school was funded jointly by NATO, the CNRS, and PITP, and entirely organized by PITP. Magnetism is a somewhat peculiar research field. It clearly has a quantum-mechanical basis – the microsopic exchange interactions arise entirely from the exclusion principle, in conjunction with respulsive interactions between electrons. And yet until recently the vast majority of magnetism researchers and users of magnetic phenomena around the world paid no attention to these quantum-mechanical roots. Thus, eg., the huge ($400 billion per annum) industry which manufactures hard discs, and other components in the information technology sector, depends entirely on room-temperature properties of magnets - yet at the macroscopic or mesoscopic scales of interest to this industry, room-temperature magnets behave entirely classic...
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Cabrera-Baez, M.; Magnavita, E. Thizay; Ribeiro, Raquel A.; Avila, Marcos A.
2014-06-01
FeGa3 and related compounds have been subjects of recent investigation for their interesting thermoelectric, electronic, and magnetic behaviors. Here, single crystals of FeGa3- y Ge y were grown by the self-flux technique with effective y = 0, 0.09(1), 0.11(1), and 0.17(1) in order to investigate the evolution of the diamagnetic semiconducting compound FeGa3 into a ferromagnetic metal, which occurs through the electron doping and band structure modifications that result from substitution of Ge for Ga. Heat capacity and magnetization measurements reveal non-Fermi liquid behavior in the vicinity of the transition from a paramagnetic to ferromagnetic ground state, suggesting the presence of a ferromagnetic quantum critical point (FMQCP). We also present the first results of hole doping in this system by the growth of FeGa3- y Zn y single crystals, and electron- and hole doping of the related compound CoGa3 by CoGa3- y Ge y and CoGa3- y Zn y crystal growths, aiming to search for further routes to band structure and charge carrier tuning, thermoelectric optimization, and quantum criticality in this family of compounds. The ability to tune the charge carrier type warrants further investigation of the MGa3 system's thermoelectric properties above room temperature.
Strong coupling of an Er3+-doped YAlO3 crystal to a superconducting resonator
Tkalčec, A.; Probst, S.; Rieger, D.; Rotzinger, H.; Wünsch, S.; Kukharchyk, N.; Wieck, A. D.; Siegel, M.; Ustinov, A. V.; Bushev, P.
2014-08-01
Quantum memories are integral parts of both quantum computers and quantum communication networks. Naturally, such a memory is embedded into a hybrid quantum architecture, which has to meet the requirements of fast gates, long coherence times, and long distance communication. Erbium-doped crystals are well suited as a microwave quantum memory for superconducting circuits with additional access to the optical telecom C band around 1.55 μm. Here, we report on circuit QED experiments with an Er3+:YAlO3 crystal and demonstrate strong coupling to a superconducting lumped element resonator. The low magnetic anisotropy of the host crystal allows for attaining the strong coupling regime at relatively low magnetic fields, which are compatible with superconducting circuits. In addition, Ce3+ impurities were detected in the crystal, which showed strong coupling as well.
Semiconductor quantum optics with tailored photonic nanostructures
Energy Technology Data Exchange (ETDEWEB)
Laucht, Arne
2011-06-15
This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of
Photonic crystals principles and applications
Gong, Qihuang
2013-01-01
IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors
Demonstration of Light-Matter Micro-Macro Quantum Correlations
Tiranov, Alexey; Lavoie, Jonathan; Strassmann, Peter C.; Sangouard, Nicolas; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas
2016-05-01
Quantum mechanics predicts microscopic phenomena with undeniable success. Nevertheless, current theoretical and experimental efforts still do not yield conclusive evidence that there is or is not a fundamental limitation on the possibility to observe quantum phenomena at the macroscopic scale. This question prompted several experimental efforts producing quantum superpositions of large quantum states in light or matter. We report on the observation of quantum correlations, revealed using an entanglement witness, between a single photon and an atomic ensemble of billions of ions frozen in a crystal. The matter part of the state involves the superposition of two macroscopically distinguishable solid-state components composed of several tens of atomic excitations. Assuming the insignificance of the time ordering our experiment indirectly shows light-matter micro-macro entanglement. Our approach leverages from quantum memory techniques and could be used in other systems to expand the size of quantum superpositions in matter.
Coherence-Driven Topological Transition in Quantum Metamaterials.
Jha, Pankaj K; Mrejen, Michael; Kim, Jeongmin; Wu, Chihhui; Wang, Yuan; Rostovtsev, Yuri V; Zhang, Xiang
2016-04-22
We introduce and theoretically demonstrate a quantum metamaterial made of dense ultracold neutral atoms loaded into an inherently defect-free artificial crystal of light, immune to well-known critical challenges inevitable in conventional solid-state platforms. We demonstrate an all-optical control, on ultrafast time scales, over the photonic topological transition of the isofrequency contour from an open to closed topology at the same frequency. This atomic lattice quantum metamaterial enables a dynamic manipulation of the decay rate branching ratio of a probe quantum emitter by more than an order of magnitude. Our proposal may lead to practically lossless, tunable, and topologically reconfigurable quantum metamaterials, for single or few-photon-level applications as varied as quantum sensing, quantum information processing, and quantum simulations using metamaterials.
Demonstration of Light-Matter Micro-Macro Quantum Correlations.
Tiranov, Alexey; Lavoie, Jonathan; Strassmann, Peter C; Sangouard, Nicolas; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas
2016-05-13
Quantum mechanics predicts microscopic phenomena with undeniable success. Nevertheless, current theoretical and experimental efforts still do not yield conclusive evidence that there is or is not a fundamental limitation on the possibility to observe quantum phenomena at the macroscopic scale. This question prompted several experimental efforts producing quantum superpositions of large quantum states in light or matter. We report on the observation of quantum correlations, revealed using an entanglement witness, between a single photon and an atomic ensemble of billions of ions frozen in a crystal. The matter part of the state involves the superposition of two macroscopically distinguishable solid-state components composed of several tens of atomic excitations. Assuming the insignificance of the time ordering our experiment indirectly shows light-matter micro-macro entanglement. Our approach leverages from quantum memory techniques and could be used in other systems to expand the size of quantum superpositions in matter.
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Zagoskin, Alexandre
2015-01-01
Written by Dr Alexandre Zagoskin, who is a Reader at Loughborough University, Quantum Mechanics: A Complete Introduction is designed to give you everything you need to succeed, all in one place. It covers the key areas that students are expected to be confident in, outlining the basics in clear jargon-free English, and then providing added-value features like summaries of key ideas, and even lists of questions you might be asked in your exam. The book uses a structure that is designed to make quantum physics as accessible as possible - by starting with its similarities to Newtonian physics, ra
de Bianchi, Massimiliano Sassoli
2013-01-01
In a letter to Born, Einstein wrote: "Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the old one. I, at any rate, am convinced that He does not throw dice." In this paper we take seriously Einstein's famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how...
Bojowald, Martin
1999-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Buhrman, Harry
2006-01-01
École thématique; Quantum Information, Computation and Complexity * Programme at the Institut Henri Poincaré, January 4th – April 7th, 2006 * Organizers: Ph.Grangier, M.Santha and D.L.Shepelyansky * Lectures have been filmed by Peter Rapcan and Michal Sedlak from Bratislava with the support of the Marie Curie RTN "CONQUEST" A trimester at the Centre Emile Borel - Institut Henri Poincaré is devoted to modern developments in a rapidly growing field of quantum information and communication, quan...
Baaquie, Belal E.
2007-09-01
Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.
Bernstein, Jeremy
1991-01-01
For the prominent science writer Jeremy Bernstein, the profile is the most congenial way of communicating science. Here, in what he labels a "series of conversations carried on in the reader's behalf and my own," he evokes the tremendous intellectual excitement of the world of modern physics, especially the quantum revolution. Drawing on his well-known talent for explaining the most complex scientific ideas for the layperson, Bernstein gives us a lively sense of what the issues of quantum mechanics are and of various ways in which individual physicists approached them.The author begins this se
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2016-12-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Pandiyan, B Vijaya; Deepa, P; Kolandaivel, P
2017-01-01
Thirteen X-ray crystal structures containing various non-covalent interactions such as halogen bonds, halogen-halogen contacts and hydrogen bonds (I⋯N, I⋯F, I⋯I, F⋯F, I⋯H and F⋯H) were considered and investigated using the DFT-D3 method (B97D/def2-QZVP). The interaction energies were calculated at MO62X/def2-QZVP and MP2/aug-cc-pvDZ level of theories. The higher interaction and dispersion energies (2nd crystal) of -9.58 kcal mol(-1) and -7.10 kcal mol(-1) observed for 1,4-di-iodotetrafluorobenzene bis [bis (2-phenylethyl) sulfoxide] structure indicates the most stable geometrical arrangement in the crystal packing. The electrostatic potential values calculated for all crystal structures have a positive σ-hole, which aids understanding of the nature of σ-hole bonds. The significance of the existence of halogen bonds in crystal packing environments was authenticated by replacing iodine atoms by bromine and chlorine atoms. Nucleus independent chemical shift analysis reported on the resonance contribution to the interaction energies of halogen bonds and halogen-halogen contacts. Hirshfeld surface analysis and topological analysis (atoms in molecules) were carried out to analyze the occurrence and strength of all non-covalent interactions. These analyses revealed that halogen bond interactions were more dominant than hydrogen bonding interactions in these crystal structures. Graphical Abstract Molecluar structure of 1,4-Di-iodotetrafluorobenzene bis(thianthrene 5-oxide) moelcule and its corresponding molecular electrostatic potential map for the view of σ-hole.
Fiber-Coupled Diamond Quantum Nanophotonic Interface
Burek, Michael J.; Meuwly, Charles; Evans, Ruffin E.; Bhaskar, Mihir K.; Sipahigil, Alp; Meesala, Srujan; Machielse, Bartholomeus; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Bielejec, Edward; Lukin, Mikhail D.; Lončar, Marko
2017-08-01
Color centers in diamond provide a promising platform for quantum optics in the solid state, with coherent optical transitions and long-lived electron and nuclear spins. Building upon recent demonstrations of nanophotonic waveguides and optical cavities in single-crystal diamond, we now demonstrate on-chip diamond nanophotonics with a high-efficiency fiber-optical interface achieving >90 % power coupling at visible wavelengths. We use this approach to demonstrate a bright source of narrow-band single photons based on a silicon-vacancy color center embedded within a waveguide-coupled diamond photonic crystal cavity. Our fiber-coupled diamond quantum nanophotonic interface results in a high flux (approximately 38 kHz) of coherent single photons (near Fourier limited at quantum networks that interface multiple emitters, both on chip and separated by long distances.
Quantum and isotope effects in lithium metal
Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti
2017-06-01
The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.
Observation of the Quantum Zeno Effect on a Single Solid State Spin
Wolters, Janik; Schoenfeld, Rolf Simon; Benson, Oliver
2013-01-01
The quantum Zeno effect, i.e. the inhibition of coherent quantum dynamics by projective measurements is one of the most intriguing predictions of quantum mechanics. Here we experimentally demonstrate the quantum Zeno effect by inhibiting the microwave driven coherent spin dynamics between two ground state spin levels of the nitrogen vacancy center in diamond nano-crystals. Our experiments are supported by a detailed analysis of the population dynamics via a semi-classical model.
Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Nielsen, Per Kær; Kreiner-Møller, Asger
2013-01-01
We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from...... longitudinal acoustic phonons, and the analysis explains the difference between nonresonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot in the nanocavity. This quantity determines...
Ashmead, John
2010-01-01
Normally we quantize along the space dimensions but treat time classically. But from relativity we expect a high level of symmetry between time and space. What happens if we quantize time using the same rules we use to quantize space? To do this, we generalize the paths in the Feynman path integral to include paths that vary in time as well as in space. We use Morlet wavelet decomposition to ensure convergence and normalization of the path integrals. We derive the Schr\\"odinger equation in four dimensions from the short time limit of the path integral expression. We verify that we recover standard quantum theory in the non-relativistic, semi-classical, and long time limits. Quantum time is an experiment factory: most foundational experiments in quantum mechanics can be modified in a way that makes them tests of quantum time. We look at single and double slits in time, scattering by time-varying electric and magnetic fields, and the Aharonov-Bohm effect in time.
1993-05-14
Barbara , California, March 1993. I Carrier Dynamics in Quantum Wires Investigators: Wolfgang Porod I I Using the Monte Carlo technique, we have...8217.ubtle correlations between impunty scanenng events tin the "res;ence oft a ma.’neuc fle!dlp which are beyond Fermi’s Golden Rule. In this caper . we
Raedt, Hans De; Binder, K; Ciccotti, G
1996-01-01
The purpose of this set of lectures is to introduce the general concepts that are at the basis of the computer simulation algorithms that are used to study the behavior of condensed matter quantum systems. The emphasis is on the underlying concepts rather than on specific applications. Topics treate
Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.
2003-08-01
In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.
Energy Technology Data Exchange (ETDEWEB)
Sassoli de Bianchi, Massimiliano, E-mail: autoricerca@gmail.com
2013-09-15
In a letter to Born, Einstein wrote [42]: “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the ‘old one.’ I, at any rate, am convinced that He does not throw dice.” In this paper we take seriously Einstein’s famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell’s inequality. -- Highlights: •Rolling a die is a quantum process admitting a Hilbert space representation. •Rolling experiments with a single die can produce interference effects. •Two connected dice can violate Bell’s inequality. •Correlations need to be created by the measurement, to violate Bell’s inequality.
Cheon, Taksu; Tsutsui, Izumi; Fülöp, Tamás
2004-09-01
We show that the point interactions on a line can be utilized to provide U(2) family of qubit operations for quantum information processing. Qubits are realized as states localized in either side of the point interaction which represents a controllable gate. The qubit manipulation proceeds in a manner analogous to the operation of an abacus.
Keimer, Bernhard; Sachdev, Subir
2011-01-01
This is a review of the basic theoretical ideas of quantum criticality, and of their connection to numerous experiments on correlated electron compounds. A shortened, modified, and edited version appeared in Physics Today. This arxiv version has additional citations to the literature.
Peschanski, R
1993-01-01
Phenomenological and theoretical aspects of fragmentation for elementary particles (resp. nuclei) are discussed. It is shown that some concepts of classical fragmentation remain relevant in a microscopic framework, exhibiting non-trivial properties of quantum relativistic field theory (resp. lattice percolation). Email contact: pesch@amoco.saclay.cea.fr
Directory of Open Access Journals (Sweden)
Alessandro Sergi
2009-06-01
Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.
Progress towards a quantum memory with telecom-frequency conversion
Stack, Daniel; Lee, Patricia J.; Quraishi, Qudsia
2014-05-01
Quantum networks provide conduits capable of transmitting quantum information that connect to nodes at remote locations where the quantum information can be stored or processed. Fiber-based transmission of quantum information over long distances may be achieved using quantum memory elements and quantum repeater protocols. However, atombased quantum memories typically involve interactions with light fields outside the telecom window needed to minimize absorption in transmission by optical fibers. We report on progress towards a quantum memory based on the generation of 795 nm spontaneously emitted single photons by a write-laser beam interacting with a cold 87Rb ensemble. The single photons are then frequency-converted into (out of) the telecomm band via difference (sum) frequency generation in a PPLN crystal. Finally, the atomic state is read out via the interaction of a read-pulse with the quantum memory. With such a system, it will be possible to realize a long-lived quantum memory that will allow transmission of quantum information over many kilometers with high fidelity, essential for a scalable, long-distance quantum network.
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
Quantum cryptography beyond quantum key distribution
A. Broadbent (Anne); C. Schaffner (Christian)
2016-01-01
textabstractQuantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness
Quantum cryptography beyond quantum key distribution
Broadbent, A.; Schaffner, C.
2016-01-01
Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation,
Quantum cryptography beyond quantum key distribution
Broadbent, A.; Schaffner, C.
2016-01-01
Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secu
Dündar, M.A.; Christova, C.; Silov, A.Y.; Karouta, F.; Nötzel, R.; Wienk, M.; Salemink, H.; Van der Heijden, R.W.
2010-01-01
Liquid crystal (LC, Merk 5 CB) is infiltrated into active, InAs quantum dots embedded, InGaAsP membrane type nanocavities to investigate the possible effect of the LC orientation on active cavity tuning. The tuning is demonstrated thermally and thermo-optically. The thermal tuning showed that the ca
Dündar, M.A.; Christova, C.; Silov, A.Y.; Karouta, F.; Nötzel, R.; Wienk, M.; Salemink, H.; Van der Heijden, R.
2010-01-01
Liquid crystal (LC, Merk 5 CB) is infiltrated into active, InAs quantum dots embedded, InGaAsP membrane type nanocavities to investigate the possible effect of the LC orientation on active cavity tuning. The tuning is demonstrated thermally and thermo-optically. The thermal tuning showed that the c
Sellner, Bernhard; Kathmann, Shawn M
2014-11-14
Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. The variation of voltages in matter can be measured by experiment, however, modern supercomputers allow the calculation of accurate quantum voltages with spatial resolutions of bulk systems well beyond what can currently be measured provided a sufficient level of theory is employed. Of particular interest is the Mean Inner Potential (V(o))--the spatial average of these quantum voltages referenced to the vacuum. Here we establish a protocol to reliably evaluate V(o) from quantum calculations. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of V(o) for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Certain aspects in this regard are highlighted making use of simple model systems/approximations. Furthermore, we predict V(o) as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms.
Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
Energy Technology Data Exchange (ETDEWEB)
Bussieres, Felix [Group of Applied Physics, University of Geneva (Switzerland)
2014-07-01
Quantum teleportation is a cornerstone of quantum information science due to its essential role in several important tasks such as the long-distance transmission of quantum information using quantum repeaters. In this context, a challenge of paramount importance is the distribution of entanglement between remote nodes, and to use this entanglement as a resource for long-distance light-to-matter quantum teleportation. In this talk I will report on the demonstration of quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying qubit carrying the polarization state to be teleported, which heralds the teleportation. The fidelity of the polarization state of the photon retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. This light-to-matter teleportation channel paves the way towards long-distance implementations of quantum networks with solid-state quantum memories.
Quantum mechanics of materials
Energy Technology Data Exchange (ETDEWEB)
Cohen, M.L.; Heine, V.; Phillips, J.C.
1982-06-01
In the past 25 years, new quantum-mechanical methods have been developed for predicting the configuration of the valence electrons in an atom or an aggregate of many atoms, within the range of energy excitations in which the atoms form interatomic bonds. A theory specifying the configuration of the valence electrons has much to say about the bulk properties of matter that depends on the nature of the interatomic bonds. The new method regards the core electrons and the atomic nucleus as if they constituted a single particle without internal structure. The method is called the pseudopotential theory. A general quantum-mechanical prediction of the properties of a substance in terms of the additive properties of separate chemical bonds is not yet feasible for molecules. However, there is one realm where prediction is now practical: crystalline solids. The regularity of the lattice into which the atoms are organized in a crystal makes it possible to calculate the properties of a macroscopic solid. In other words, many properties of an elemental solid such as lead or a simple binary solid such as gallium arsenide can not be deduced from energy considerations alone. (SC)
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-05-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Quantum Secure Dialogue with Quantum Encryption
Ye, Tian-Yu
2014-09-01
How to solve the information leakage problem has become the research focus of quantum dialogue. In this paper, in order to overcome the information leakage problem in quantum dialogue, a novel approach for sharing the initial quantum state privately between communicators, i.e., quantum encryption sharing, is proposed by utilizing the idea of quantum encryption. The proposed protocol uses EPR pairs as the private quantum key to encrypt and decrypt the traveling photons, which can be repeatedly used after rotation. Due to quantum encryption sharing, the public announcement on the state of the initial quantum state is omitted, thus the information leakage problem is overcome. The information-theoretical efficiency of the proposed protocol is nearly 100%, much higher than previous information leakage resistant quantum dialogue protocols. Moreover, the proposed protocol only needs single-photon measurements and nearly uses single photons as quantum resource so that it is convenient to implement in practice.
Efficient quantum walk on a quantum processor.
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F
2016-05-05
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Institute of Scientific and Technical Information of China (English)
单含; 李梅
2012-01-01
Due to the basic characteristics of InGaAsSb/AlGaAsSb, based on the calculate lattice constant and energy band of quaternary system through the calculation of structure constants of binary system and ternary system, and analyze the MBE growth parameters and process, we design and grow the InGaAsSb/AlGaAsSb multi-quantum-wells epitaxial materials. The characterization of the layers has been carried out by X-ray double crystal diffraction and photo luminescence. There are several satellite peaks in X-ray double crystal diffraction results which indicate that these prepared InGaAsSb/AlGaAsSb multi-quantum-Wells are with high crystallized quality. The results of PL spec tra at the room temperature indicate that the wave length are modulated from 1.6 to 2. 28 u.m, the narrowest PL FWHM is 22 meV.%通过二元系和三元系结构参数计算四元系量子阱结构的晶格常数、禁带宽度等,设计了InGaAsSb/AlGaAsSb结构的MBE生长参数及工艺,利用X射线双晶衍射和PL谱研究了InGaAsSb/AlGaAsSb多量子阱结构特性和光学特性.X射线双晶衍射谱中出现了8条卫星峰,表明制备的InGaAsSb/AlGaAsSb多量子阱结构具有良好的结晶质量.利用光致发光光谱方法对制备的样品的光学性质进行了表征,结果表明,不同组份的InGaAsSb/AlGaAsSb多量子阱的发光峰波长随组份的变化在1.6～2.28 μm范围内可调,样品PL谱的半峰宽最窄可达22 meV.
Moussa, Osama; Ryan, Colm A; Laflamme, Raymond
2011-01-01
We report the implementation of a 3-qubit quantum error correction code (QECC) on a quantum information processor realized by the magnetic resonance of Carbon nuclei in a single crystal of Malonic Acid. The code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian. We also experimentally demonstrate sufficiently high fidelity control to implement two rounds of quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic resonance, a leading test-bed for the implementation of quantum algorithms.
Moussa, Osama; Baugh, Jonathan; Ryan, Colm A; Laflamme, Raymond
2011-10-14
We report the implementation of a 3-qubit quantum error-correction code on a quantum information processor realized by the magnetic resonance of carbon nuclei in a single crystal of malonic acid. The code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian. We also experimentally demonstrate sufficiently high-fidelity control to implement two rounds of quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic resonance, a leading test bed for the implementation of quantum algorithms.
Single photon emission and quantum ring-cavity coupling in InAs/GaAs quantum rings
Energy Technology Data Exchange (ETDEWEB)
Gallardo, E; Nowak, A K; Sanvitto, D; Meulen, H P van der; Calleja, J M [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); MartInez, L J; Prieto, I; Alija, A R; Granados, D; Taboada, A G; GarcIa, J M; Postigo, P A [Instituto de Microelectronica de Madrid, Centro Nacional de MicrotecnologIa, CSIC, Isaac Newton 8, PTM Tres Cantos, E-28760 Madrid (Spain); Sarkar, D, E-mail: eva.gallardo@uam.e [Department of Physics and Astronomy, University of Sheffield, S3 7RH (United Kingdom)
2010-02-01
Different InAs/GaAs quantum rings embedded in a photonic crystal microcavity are studied by quantum correlation measurements. Single photon emission, with g{sup (2)}(0) values around 0.3, is demonstrated for a quantum ring not coupled to the microcavity. Characteristic rise-times are found to be longer for excitons than for biexcitons, resulting in the time asymmetry of the exciton-biexciton cross-correlation. No antibunching is observed in another quantum ring weakly coupled to the microcavity.
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiao-Qi; O'Brien, Jeremy; Wang, Jingbo; Matthews, Jonathan
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise quantum walks have shown much potential as a frame- work for developing new quantum algorithms. In this paper, we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs ef...
Interpreting Quantum Discord in Quantum Metrology
Girolami, Davide
2015-01-01
Multipartite quantum systems show properties which do not admit a classical explanation. In particular, even nonentangled states can enjoy a kind of quantum correlations called quantum discord. I discuss some recent results on the role of quantum discord in metrology. Given an interferometric phase estimation protocol where the Hamiltonian is initially unknown to the experimentalist, the quantum discord of the probe state quantifies the minimum precision of the estimation. This provides a phy...
Quantum Mechanics interpreted in Quantum Real Numbers
Corbett, J V; Corbett, John V; Durt, Thomas
2002-01-01
The concept of number is fundamental to the formulation of any physical theory. We give a heuristic motivation for the reformulation of Quantum Mechanics in terms of non-standard real numbers called Quantum Real Numbers. The standard axioms of quantum mechanics are re-interpreted. Our aim is to show that, when formulated in the language of quantum real numbers, the laws of quantum mechanics appear more natural, less counterintuitive than when they are presented in terms of standard numbers.
Experimental Realization of a Quantum Pentagonal Lattice
Yamaguchi, Hironori; Okubo, Tsuyoshi; Kittaka, Shunichiro; Sakakibara, Toshiro; Araki, Koji; Iwase, Kenji; Amaya, Naoki; Ono, Toshio; Hosokoshi, Yuko
2015-01-01
Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL. PMID:26468930
Towards highly multimode optical quantum memory for quantum repeaters
Jobez, Pierre; Laplane, Cyril; Etesse, Jean; Ferrier, Alban; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael
2015-01-01
Long-distance quantum communication through optical fibers is currently limited to a few hundreds of kilometres due to fiber losses. Quantum repeaters could extend this limit to continental distances. Most approaches to quantum repeaters require highly multimode quantum memories in order to reach high communication rates. The atomic frequency comb memory scheme can in principle achieve high temporal multimode storage, without sacrificing memory efficiency. However, previous demonstrations have been hampered by the difficulty of creating high-resolution atomic combs, which reduces the efficiency for multimode storage. In this article we present a comb preparation method that allows one to increase the multimode capacity for a fixed memory bandwidth. We apply the method to a $^{151}$Eu$^{3+}$-doped Y$_2$SiO$_5$ crystal, in which we demonstrate storage of 100 modes for 51 $\\mu$s using the AFC echo scheme (a delay-line memory), and storage of 50 modes for 0.541 ms using the AFC spin-wave memory (an on-demand memo...
Chang, Chia-Chen; Jeon, Gun Sang; Jain, Jainendra K
2005-01-14
When two-dimensional electrons are subjected to a very strong magnetic field, they are believed to form a triangular crystal. By a direct comparison with the exact wave function, we demonstrate that this crystal is not a simple Hartree-Fock crystal of electrons but an inherently quantum mechanical crystal characterized by a nonperturbative binding of quantized vortices to electrons. It is suggested that this has qualitative consequences for experiment.
Coulomb crystals in the magnetic field
Baiko, D A
2009-01-01
The body-centered cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields $B \\gtrsim 10^{14}$ G). The effect of the magnetic ...
Bojowald, Martin
The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996). gr-qc/0101003 4.Isham C.J.: In: DeWitt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Lectures Given at the 1983 Les Houches Summer School on Relativity, Groups and Topology, Elsevier Science Publishing Company (1986) 5.Klauder, J.: Int. J. Mod. Phys. D 12, 1769 (2003), gr-qc/0305067 6.Klauder, J.: Int. J. Geom. Meth. Mod. Phys. 3, 81 (2006), gr-qc/0507113 7.DGiulini1995Phys. Rev. D5110563013381161995PhRvD..51.5630G10.1103/PhysRevD.51.5630Giulini, D.: Phys. Rev. D 51(10), 5630 (1995) 8.Kiefer, C., Zeh, H.D.: Phys. Rev. D 51, 4145 (1995), gr-qc/9402036 9.WFBlythCJIsham1975Phys. Rev. D117684086991975PhRvD..11..768B10.1103/PhysRevD.11.768Blyth, W
Spin network quantum simulator
Energy Technology Data Exchange (ETDEWEB)
Marzuoli, Annalisa; Rasetti, Mario
2002-12-30
We propose a general setting for a universal representation of the quantum structure on which quantum information stands, whose dynamical evolution (information manipulation) is based on angular momentum recoupling theory. Such scheme complies with the notion of 'quantum simulator' in the sense of Feynman, and is shown to be related with the topological quantum field theoretical approach to quantum computation.
Advancements in the Field of Quantum Dots
Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.
2012-08-01
Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.
Shaw, Bilal A
2010-01-01
Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement the sender (Alice) disguises her information as errors in the channel. The receiver (Bob) can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols.
Energy Technology Data Exchange (ETDEWEB)
Goernitz, T.; Weizsaecker, C.F.V.
1987-10-01
Four interpretations of quantum theory are compared: the Copenhagen interpretation (C.I.) with the additional assumption that the quantum description also applies to the mental states of the observer, and three recent ones, by Kochen, Deutsch, and Cramer. Since they interpret the same mathematical structure with the same empirical predictions, it is assumed that they formulate only different linguistic expressions of one identical theory. C.I. as a theory on human knowledge rests on a phenomenological description of time. It can be reconstructed from simple assumptions on predictions. Kochen shows that mathematically every composite system can be split into an object and an observer. Deutsch, with the same decomposition, describes futuric possibilities under the Everett term worlds. Cramer, using four-dimensional action at a distance (Wheeler-Feynman), describes all future events like past facts. All three can be described in the C.I. frame. The role of abstract nonlocality is discussed.
Häring, Reto Andreas
1993-01-01
The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.
Baaquie, Belal E; Demongeot, J; Galli-Carminati, Giuliana; Martin, F; Teodorani, Massimo
2015-01-01
At the end of the 19th century Sigmund Freud discovered that our acts and choices are not only decisions of our consciousness, but that they are also deeply determined by our unconscious (the so-called "Freudian unconscious"). During a long correspondence between them (1932-1958) Wolfgang Pauli and Carl Gustav Jung speculated that the unconscious could be a quantum system. This book is addressed both to all those interested in the new developments of the age-old enquiry in the relations between mind and matter, and also to the experts in quantum physics that are interested in a formalisation of this new approach. The description of the "Bilbao experiment" adds a very interesting experimental inquiry into the synchronicity effect in a group situation, linking theory to a quantifiable verification of these subtle effects. Cover design: "Entangled Minds". Riccardo Carminati Galli, 2014.
Mould, Richard A
1999-01-01
In a previous paper, the author proposed a quantum mechanical interaction that would insure that the evolution of subjective states would parallel the evolution of biological states, as required by von Neumann's theory of measurement. The particular model for this interaction suggested an experiment that the author has now performed wih negative results. A modified model is outlined in this paper that preserves the desirable features of the original model, and is consistent with the experimen...
Ecker, Gerhard
2005-01-01
After a brief historical review of the emergence of QCD as the quantum field theory of strong interactions, the basic notions of colour and gauge invariance are introduced leading to the QCD Lagrangian. The second lecture is devoted to perturbative QCD, from tree-level processes to higher-order corrections in renormalized perturbation theory, including jet production in e+ e- annihilation, hadronic tau decays and deep inelastic scattering. The final two lectures treat various aspects of QCD b...
Quantum nonlinear optics without photons
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Experimental quantum forgery of quantum optical money
Bartkiewicz, Karol; Černoch, Antonín; Chimczak, Grzegorz; Lemr, Karel; Miranowicz, Adam; Nori, Franco
2017-03-01
Unknown quantum information cannot be perfectly copied (cloned). This statement is the bedrock of quantum technologies and quantum cryptography, including the seminal scheme of Wiesner's quantum money, which was the first quantum-cryptographic proposal. Surprisingly, to our knowledge, quantum money has not been tested experimentally yet. Here, we experimentally revisit the Wiesner idea, assuming a banknote to be an image encoded in the polarization states of single photons. We demonstrate that it is possible to use quantum states to prepare a banknote that cannot be ideally copied without making the owner aware of only unauthorized actions. We provide the security conditions for quantum money by investigating the physically-achievable limits on the fidelity of 1-to-2 copying of arbitrary sequences of qubits. These results can be applied as a security measure in quantum digital right management.
Quantum Secure Direct Communication with Quantum Memory
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-01
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Quantum Secure Direct Communication with Quantum Memory.
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-02
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Optimization of a Quantum Memory with Telecom-Wavelength Conversion
Stack, Daniel; Grissom, Ian; Tang, Priscilla; Lee, Patricia; Quraishi, Qudsia
2014-05-01
Quantum networks provide conduits capable of transmitting quantum information that connect to nodes at remote locations where the quantum information can be stored or processed. Fiber-based transmission of quantum information over long distances may be achieved using quantum memory elements and quantum repeater protocols. We report on progress towards a quantum memory based on the generation of off-axis, spontaneously emitted single photons by a 795 nm write-laser beam interacting with a cold 87Rb ensemble. The detection of a single photon heralds the creation of a spin wave in the atomic cloud. Single photons associated with undesirable optical transitions are filtered out by an 85Rb vapor cell filled with a buffer gas whose optical density is augmented with light induced atom desorption (LIAD) and heating. The photons are converted into the telecom band by difference frequency generation in a PPLN crystal and sent down a long optical fiber. The atomic state is read out via the interaction of a read-pulse with the quantum memory. With such a system, it will be possible to realize a long-lived quantum memory that will allow transmission of quantum information over many kilometers with high fidelity, essential for a scalable, long-distance quantum network.
Energy Technology Data Exchange (ETDEWEB)
Stapp, Henry
2011-11-10
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Vanshpal, R., E-mail: ravivanshpal@gmail.com; Sharma, Uttam [Shri Vaishnav Institute of Technology and Science, Indore (India); Dubey, Swati [School of Studies in Physics, Vikram University, Ujjain (M.P.) (India)
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal.
Pilar, Frank L
2003-01-01
Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.
Homomorphisms of quantum groups
Meyer, Ralf; Woronowicz, Stanisław Lech
2010-01-01
We introduce some equivalent notions of homomorphisms between quantum groups that behave well with respect to duality of quantum groups. Our equivalent definitions are based on bicharacters, coactions, and universal quantum groups, respectively.
Quantum probability and quantum decision-making.
Yukalov, V I; Sornette, D
2016-01-13
A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary.
Quantum conductance in silicon quantum wires
Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A
2002-01-01
The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Lodahl, Peter
2013-01-01
We present detuning-dependent spectral and decay-rate measurements to study the difference between the spectral and dynamical properties of single quantum dots embedded in micropillar and photonic crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes......–Cummings model, whereas systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to the coupling of other exciton lines to the cavity and interference of different propagation paths toward the detector of the fields emitted by the quantum dot. In contrast......, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities, we observe an anti-crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of a strong coupling. However, time...
Practical experimental certification of computational quantum gates via twirling
Moussa, Osama; Ryan, Colm A; Laflamme, Raymond
2011-01-01
Due to the technical difficulty of building large quantum computers, it is important to be able to estimate how faithful a given implementation is to an ideal quantum computer. The common approach of completely characterizing the computation process via quantum process tomography requires an exponential amount of resources, and thus is not practical even for relatively small devices. We solve this problem by demonstrating that twirling experiments previously used to characterize the average fidelity of quantum memories efficiently can be easily adapted to estimate the average fidelity of the experimental implementation of important quantum computation processes, such as unitaries in the Clifford group, in a practical and efficient manner with applicability in current quantum devices. Using this procedure, we demonstrate state-of-the-art coherent control of an ensemble of magnetic moments of nuclear spins in a single crystal solid by implementing the encoding operation for a 3 qubit code with only a 1% degrada...
Quantum Computation Based on Photons with Three Degrees of Freedom
Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun
2016-05-01
Quantum systems are important resources for quantum computer. Different from previous encoding forms using quantum systems with one degree of freedom (DoF) or two DoFs, we investigate the possibility of photon systems encoding with three DoFs consisting of the polarization DoF and two spatial DoFs. By exploring the optical circular birefringence induced by an NV center in a diamond embedded in the photonic crystal cavity, we propose several hybrid controlled-NOT (hybrid CNOT) gates operating on the two-photon or one-photon system. These hybrid CNOT gates show that three DoFs may be encoded as independent qubits without auxiliary DoFs. Our result provides a useful way to reduce quantum simulation resources by exploring complex quantum systems for quantum applications requiring large qubit systems.