WorldWideScience

Sample records for quantum coherent origin

  1. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  2. A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation.

    Science.gov (United States)

    Hameroff, Stuart R

    2004-11-01

    Malignant cells are characterized by abnormal segregation of chromosomes during mitosis ("aneuploidy"), generally considered a result of malignancy originating in genetic mutations. However, recent evidence supports a century-old concept that maldistribution of chromosomes (and resultant genomic instability) due to abnormalities in mitosis itself is the primary cause of malignancy rather than a mere byproduct. In normal mitosis chromosomes replicate into sister chromatids which are then precisely separated and transported into mirror-like sets by structural protein assemblies called mitotic spindles and centrioles, both composed of microtubules. The elegant yet poorly understood ballet-like movements and geometric organization occurring in mitosis have suggested guidance by some type of organizing field, however neither electromagnetic nor chemical gradient fields have been demonstrated or shown to be sufficient. It is proposed here that normal mirror-like mitosis is organized by quantum coherence and quantum entanglement among microtubule-based centrioles and mitotic spindles which ensure precise, complementary duplication of daughter cell genomes and recognition of daughter cell boundaries. Evidence and theory supporting organized quantum states in cytoplasm/nucleoplasm (and quantum optical properties of centrioles in particular) at physiological temperature are presented. Impairment of quantum coherence and/or entanglement among microtubule-based mitotic spindles and centrioles can result in abnormal distribution of chromosomes, abnormal differentiation and uncontrolled growth, and account for all aspects of malignancy. New approaches to cancer therapy and stem cell production are suggested via non-thermal laser-mediated effects aimed at quantum optical states of centrioles.

  3. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  4. Coherent quantum logic

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1987-01-01

    The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex

  5. Quantum information and coherence

    CERN Document Server

    Öhberg, Patrik

    2014-01-01

    This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum cont...

  6. Coherence in quantum estimation

    Science.gov (United States)

    Giorda, Paolo; Allegra, Michele

    2018-01-01

    The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.

  7. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  8. From quantum coherence to quantum correlations

    Science.gov (United States)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  9. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  10. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  11. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  12. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  13. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...

  14. Quantifying quantum coherence with quantum Fisher information.

    Science.gov (United States)

    Feng, X N; Wei, L F

    2017-11-14

    Quantum coherence is one of the old but always important concepts in quantum mechanics, and now it has been regarded as a necessary resource for quantum information processing and quantum metrology. However, the question of how to quantify the quantum coherence has just been paid the attention recently (see, e.g., Baumgratz et al. PRL, 113. 140401 (2014)). In this paper we verify that the well-known quantum Fisher information (QFI) can be utilized to quantify the quantum coherence, as it satisfies the monotonicity under the typical incoherent operations and the convexity under the mixing of the quantum states. Differing from most of the pure axiomatic methods, quantifying quantum coherence by QFI could be experimentally testable, as the bound of the QFI is practically measurable. The validity of our proposal is specifically demonstrated with the typical phase-damping and depolarizing evolution processes of a generic single-qubit state, and also by comparing it with the other quantifying methods proposed previously.

  15. Some remarks on quantum coherence theory

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)

  16. Entropic cohering power in quantum operations

    Science.gov (United States)

    Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng

    2018-02-01

    Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

  17. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  18. Quantum learning of coherent states

    International Nuclear Information System (INIS)

    Sentis, Gael; Guta, Madalin; Adesso, Gerardo

    2015-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  19. Using nonlocal coherence to quantify quantum correlation

    OpenAIRE

    Pei, Pei; Wang, Wei; Li, Chong; Song, He-Shan

    2010-01-01

    We reexamine quantum correlation from the fundamental perspective of its consanguineous quantum property, the coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. A measure of quantum correlation for arbitrary dimension bipartite states using nonlocal coherence is proposed, and it can be easily generalized to the multipartite case. The quantification of non-entangled component within quantum correlati...

  20. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  1. Coherent communication with continuous quantum variables

    Science.gov (United States)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  2. Effects of quantum coherence on work statistics

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu

    2018-05-01

    In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.

  3. Preparation of freezing quantum state for quantum coherence

    Science.gov (United States)

    Yang, Lian-Wu; Man, Zhong-Xiao; Zhang, Ying-Jie; Han, Feng; Du, Shao-jiang; Xia, Yun-Jie

    2018-06-01

    We provide a method to prepare the freezing quantum state for quantum coherence via unitary operations. The initial product state consists of the control qubit and target qubit; when it satisfies certain conditions, the initial product state converts into the particular Bell diagonal state under the unitary operations, which have the property of freezing of quantum coherence under quantum channels. We calculate the frozen quantum coherence and corresponding quantum correlations, and find that the quantities are determined by the control qubit only when the freezing phenomena occur.

  4. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  5. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  6. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  7. Coherent nonlinear quantum model for composite fermions

    Energy Technology Data Exchange (ETDEWEB)

    Reinisch, Gilbert [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, Vidar, E-mail: vidar@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-04-01

    Originally proposed by Read [1] and Jain [2], the so-called “composite-fermion” is a phenomenological quasi-particle resulting from the attachment of two local flux quanta, seen as nonlocal vortices, to electrons situated on a two-dimensional (2D) surface embedded in a strong orthogonal magnetic field. In this Letter this phenomenon is described as a highly-nonlinear and coherent mean-field quantum process of the soliton type by use of a 2D stationary Schrödinger–Poisson differential model with only two Coulomb-interacting electrons. At filling factor ν=1/3 of the lowest Landau level the solution agrees with both the exact two-electron antisymmetric Schrödinger wavefunction and with Laughlin's Jastrow-type guess for the fractional quantum Hall effect, hence providing this latter with a tentative physical justification deduced from the experimental results and based on first principles.

  8. Coherent states in the quantum multiverse

    International Nuclear Information System (INIS)

    Robles-Perez, S.; Hassouni, Y.; Gonzalez-Diaz, P.F.

    2010-01-01

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  9. Coherent states in the quantum multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)

    2010-01-11

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  10. Operational resource theory of total quantum coherence

    Science.gov (United States)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  11. Coherence in Magnetic Quantum Tunneling

    Science.gov (United States)

    Fernandez, Julio F.

    2001-03-01

    Crystals of single molecule magnets such as Mn_12 and Fe8 behave at low temperatures as a collection of independent spins. Magnetic anisotropy barriers slow down spin-flip processes. Their rate Γ becomes temperature independent at sufficiently low temperature. Quantum tunneling (QT) accounts for this behavior. Currently, spin QT in Mn_12 and Fe8 is assumed to proceed as an incoherent sum of small probability increments that occur whenever a bias field h(t) (arising from hyperfine interactions with nuclear spins) that varies with time t becomes sufficiently small, as in Landau-Zener transitions. Within a two-state model, we study the behavior of a suitably defined coherence time τ_φ and compare it with the correlation time τh for h(t). It turns out that τ_φ >τ_h, when τ_hδ h < hbar, where δ h is the rms deviation of h. We show what effect such coherence has on Γ. Its dependence on a static longitudinal applied field Hz is drastically affected. There is however no effect if the field is swept through resonance.

  12. Design of coherent quantum observers for linear quantum systems

    International Nuclear Information System (INIS)

    Vuglar, Shanon L; Amini, Hadis

    2014-01-01

    Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)

  13. Quantum Processes Which Do Not Use Coherence

    Directory of Open Access Journals (Sweden)

    Benjamin Yadin

    2016-11-01

    Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.

  14. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  15. Quantum Interference and Coherence Theory and Experiments

    CERN Document Server

    Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.

  16. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  17. Loss of quantum coherence from discrete quantum gravity

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-01-01

    We show that a recent proposal for the quantization of gravity based on discrete spacetime implies a modification of standard quantum mechanics that naturally leads to a loss of coherence in quantum states of the type discussed by Milburn. The proposal overcomes the energy conservation problem of previously proposed decoherence mechanisms stemming from quantum gravity. Mesoscopic quantum systems (as Bose-Einstein condensates) appear as the most promising testing grounds for an experimental verification of the mechanism. (letter to the editor)

  18. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  19. Coherence protection in coupled quantum systems

    Science.gov (United States)

    Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.

    2018-02-01

    The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.

  20. Quantum oscillators in the canonical coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  1. Coherent states for quantum compact groups

    International Nuclear Information System (INIS)

    Jurco, B.; Stovicek, P.; CTU, Prague

    1996-01-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l , B l , C l and D l . The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  2. Coherent states for quantum compact groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Stovicek, P. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Dept. of Mathematics]|[CTU, Prague (Czech Republic). Doppler Inst.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A{sub l}, B{sub l}, C{sub l} and D{sub l}. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  3. Coherent states for quantum compact groups

    CERN Document Server

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  4. Communication: Fully coherent quantum state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  5. Coherent control in simple quantum systems

    Science.gov (United States)

    Prants, Sergey V.

    1995-01-01

    Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.

  6. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  7. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  8. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  9. Quantum Coherent Dynamics Enhanced by Synchronization with Nonequilibrium Environments

    Science.gov (United States)

    Ishikawa, Akira; Okada, Ryo; Uchiyama, Kazuharu; Hori, Hirokazu; Kobayashi, Kiyoshi

    2018-05-01

    We report the discovery of the anomalous enhancement of quantum coherent dynamics (CD) due to a non-Markovian mechanism originating from not thermal-equilibrium phonon baths but nonequilibrium coherent phonons. CD is an elementary process for quantum phenomena in nanosystems, such as excitation transfer (ET) in semiconductor nanostructures and light-harvesting systems. CD occurs in homogeneous nanosystems because system inhomogeneity typically destroys coherence. In real systems, however, nanosystems behave as open systems surrounded by environments such as phonon systems. Typically, CD in inhomogeneous nanosystems is enhanced by the absorption and emission of thermal-equilibrium phonons, and the enhancement is described by the conventional master equation. On the other hand, CD is also enhanced by synchronization between population dynamics in nanosystems and coherent phonons; namely, coherent phonons, which are self-consistently induced by phase matching with Rabi oscillation, are fed back to enhance CD. This anomalous enhancement of CD essentially originates from the nonequilibrium and dynamical non-Markovian nature of coherent phonon environments, and the enhancement is firstly predicted by applying time-dependent projection operators to nonequilibrium and dynamical environments. Moreover, CD is discussed by considering ET from a donor to an acceptor. It is found that the enhancement of ET by synchronization with coherent phonons depends on the competition between the output time from a system to an acceptor and the formation time of coherent phonons. These findings in this study will stimulate the design and manipulation of CD via structured environments from the viewpoint of application to nano-photoelectronic devices.

  10. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  11. Quantum coherence generated by interference-induced state selectiveness

    OpenAIRE

    Garreau, Jean Claude

    2001-01-01

    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  12. Quantum Communication Using Coherent Rejection Sampling

    Science.gov (United States)

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-01

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995), 10.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); , 10.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); , 10.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009), 10.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  13. Coherent states in quantum mechanics; Estados coerentes em mecanica quantica

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  14. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  15. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  16. Interpreting quantum coherence through a quantum measurement process

    Science.gov (United States)

    Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.

    2017-11-01

    Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.

  17. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  18. Communication via an entangled coherent quantum network

    Energy Technology Data Exchange (ETDEWEB)

    El Allati, A; Hassouni, Y [Faculte des Sciences, Departement de Physique, Laboratoire de Physique Theorique URAC 13, Universite Mohammed V Agdal Rabat, Avenue Ibn Battouta, B.P. 1014, Rabat (Morocco); Metwally, N, E-mail: Nmetwally@gmail.com [Mathematics Department, College of Science, University of Bahrain, PO Box 32038 (Bahrain)

    2011-06-01

    A quantum network (QN) is constructed via maximum entangled coherent states. The possibility of using this network to achieve quantum communication between multi-participants is investigated. We showed that the probability of the successful teleportation of an unknown state depends on the size of the used network. As the number of participants increases, the success probability does not depend on the intensity of the field. Implementing a quantum teleportation protocol via a noisy QN is discussed. The unknown state can be teleported perfectly with small values of the field intensity and larger values of the noise strength. The success probability of this suggested protocol increases abruptly for larger values of the noise strength and gradually for small values. For small-size QNs, the fidelity of the teleported state decreases smoothly, whereas it decreases abruptly for larger-sized networks.

  19. Symmetric configurations highlighted by collective quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2017-11-15

    Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)

  20. Quantum Communication Using Coherent Rejection Sampling.

    Science.gov (United States)

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-22

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995)PLRAAN1050-294710.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); CMPHAY0010-361610.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); PRLTAO0031-900710.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009)PRLAAZ1364-502110.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  1. Coherent semiclassical states for loop quantum cosmology

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Montoya, Edison

    2011-01-01

    The spatially flat Friedmann-Robertson-Walker cosmological model with a massless scalar field in loop quantum cosmology admits a description in terms of a completely solvable model. This has been used to prove that: (i) the quantum bounce that replaces the big bang singularity is generic; (ii) there is an upper bound on the energy density for all states, and (iii) semiclassical states at late times had to be semiclassical before the bounce. Here we consider a family of exact solutions to the theory, corresponding to generalized coherent Gaussian and squeezed states. We analyze the behavior of basic physical observables and impose restrictions on the states based on physical considerations. These turn out to be enough to select, from all the generalized coherent states, those that behave semiclassical at late times. We study then the properties of such states near the bounce where the most 'quantum behavior' is expected. As it turns out, the states remain sharply peaked and semiclassical at the bounce and the dynamics is very well approximated by the ''effective theory'' throughout the time evolution. We compare the semiclassicality properties of squeezed states to those of the Gaussian semiclassical states and conclude that the Gaussians are better behaved. In particular, the asymmetry in the relative fluctuations before and after the bounce are negligible, thus ruling out claims of so-called 'cosmic forgetfulness'.

  2. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  3. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  4. Quantum coherence and quantum phase transition in the XY model with staggered Dzyaloshinsky-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Ning-Ju [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da, E-mail: huyuanda1112@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China)

    2017-04-01

    We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.

  5. Coherent one-way quantum key distribution

    Science.gov (United States)

    Stucki, Damien; Fasel, Sylvain; Gisin, Nicolas; Thoma, Yann; Zbinden, Hugo

    2007-05-01

    Quantum Key Distribution (QKD) consists in the exchange of a secrete key between two distant points [1]. Even if quantum key distribution systems exist and commercial systems are reaching the market [2], there are still improvements to be made: simplify the construction of the system; increase the secret key rate. To this end, we present a new protocol for QKD tailored to work with weak coherent pulses and at high bit rates [3]. The advantages of this system are that the setup is experimentally simple and it is tolerant to reduced interference visibility and to photon number splitting attacks, thus resulting in a high efficiency in terms of distilled secret bits per qubit. After having successfully tested the feasibility of the system [3], we are currently developing a fully integrated and automated prototype within the SECOQC project [4]. We present the latest results using the prototype. We also discuss the issue of the photon detection, which still remains the bottleneck for QKD.

  6. Non-classical Correlations and Quantum Coherence in Mixed Environments

    Science.gov (United States)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  7. Blind quantum computing with weak coherent pulses.

    Science.gov (United States)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-18

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.

  8. Blind Quantum Computing with Weak Coherent Pulses

    Science.gov (United States)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-01

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.

  9. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Matteo Lostaglio

    2015-04-01

    Full Text Available The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  10. Quantum nonlinear lattices and coherent state vectors

    DEFF Research Database (Denmark)

    Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth

    1999-01-01

    for the state vectors invokes the study of the Riemannian and symplectic geometry of the CSV manifolds as generalized phase spaces. Next, we investigate analytically and numerically the behavior of mean values and uncertainties of some physically interesting observables as well as the modifications...... (FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...... state vectors, and accounts for the quantum correlations of the lattice sites that develop during the time evolution of the systems. (C) 1999 Elsevier Science B.V. All rights reserved....

  11. Coherence and spin effects in quantum dots

    International Nuclear Information System (INIS)

    Katsumoto, S

    2007-01-01

    This review focuses on experiments on coherent transport through quantum dot systems. The most important quantity obtained in coherent transport is the phase shift through the dots, which gives complementary information to the scattering amplitude (i.e. the conductance). However, two-terminal devices have a particular difficulty, called 'phase rigidity', in obtaining the phase shift. There are two representative ways to avoid this problem: one is to adopt a multi-terminal configuration and another is to use resonance in the interferometer. This review mainly reviews the latter approaches. Such resonance in the whole interferometer often joins with local resonance inside the interferometer and appears as the Fano effect, which is a powerful tool for investigating the phase shift problem with the aid of theories. In addition to such resonances of single-electron states, electron spin causes a kind of many-body resonance, that is, the Kondo effect. Combination of these resonances is the Fano-Kondo effect. Experiments on the Fano-Kondo effect, which unveil the nature of the Kondo resonance, are also reviewed. (topical review)

  12. Quantum mechanics in coherent algebras on phase space

    International Nuclear Information System (INIS)

    Lesche, B.; Seligman, T.H.

    1986-01-01

    Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)

  13. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  14. International Conference on Coherence and Quantum Optics

    CERN Document Server

    RECENT DEVELOPMENTS IN QUANTUM OPTICS

    1993-01-01

    This volume is composed of papers (invited and contributed) presented at the International Conference on Coherence and Quantum Optics held at the University of Hyderabad January 5-January 10, 1991. It has been organized by Professor Girish Agarwal and his colleagues at the School of Physics, University of Hyderabad, Hyder­ abad, India under partial support from the Department of Science and Technology, Government of India, International Center for Theoretical Physics, Trieste, Italy and the National Science Foundation, USA. Without the untiring efforts of Prof. Girish Agarwal and the members of his quantum office group, the Conference and the present volume would not have been possible. Some extraordinary circumstances resulted in a delay of the publication of the present volume. Our sincere apologies to all the authors. We deeply regret the inconvenience caused due to the delay. A debt of gratitude is due to Ms. Kim Bella for the excellent typing job of the different versions and the final version of the ma...

  15. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  16. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela

    2010-01-01

    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  17. Coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires

    International Nuclear Information System (INIS)

    Petrosyan, Lyudvig S

    2016-01-01

    We study coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires. We show that the resonant-tunneling conductance between the wires exhibits a Rabi splitting of the resonance peak as a function of Fermi energy in the wires. This effect is an electron transport analogue of the Rabi splitting in optical spectra of two interacting systems. The conductance peak splitting originates from the anticrossing of Bloch bands in a periodic system that is caused by a strong coupling between the electron states in the quantum dot chain and quantum wires. (paper)

  18. Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2017-01-30

    We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.

  19. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    Science.gov (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  20. Critical components for diamond-based quantum coherent devices

    International Nuclear Information System (INIS)

    Greentree, Andrew D; Olivero, Paolo; Draganski, Martin; Trajkov, Elizabeth; Rabeau, James R; Reichart, Patrick; Gibson, Brant C; Rubanov, Sergey; Huntington, Shane T; Jamieson, David N; Prawer, Steven

    2006-01-01

    The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided

  1. Quantum superchemistry in an output coupler of coherent matter waves

    International Nuclear Information System (INIS)

    Jing, H.; Cheng, J.

    2006-01-01

    We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam

  2. Entanglement diversion and quantum teleportation of entangled coherent states

    Institute of Scientific and Technical Information of China (English)

    Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping

    2006-01-01

    The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.

  3. Exciton coherence in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu; Sasaki, Masahide; Kujiraoka, Mamiko; Ema, Kazuhiro

    2009-01-01

    The coherent dynamics of excitons in InAs quantum dots (QDs) was investigated in the telecommunication wavelength range using a transient four-wave mixing technique. The sample was fabricated on an InP(311)B substrate using strain compensation to control the emission wavelength. This technique also enabled us to fabricate a 150-layer stacked QD structure for obtaining a high S/N in the four-wave mixing measurements, although no high-sensitive heterodyne detection was carried out. The dephasing time and transition dipole moment were precisely estimated from the polarization dependence of signals, taking into account their anisotropic properties. The population lifetimes of the excitons were also measured by using a polarization-dependent pumpprobe technique. A quantitative comparison of these anisotropies demonstrates that in our QDs, non-radiative population relaxation, polarization relaxation and pure dephasing are considerably smaller than the radiative relaxation. A comparison of the results of the four-wave mixing and pump-probe measurements revealed that the pure dephasing could be directly estimated with an accuracy of greater than 0.1 meV by comparing the results of four-wave mixing and pump-probe measurements. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...

  5. Silicon nanophotonics for scalable quantum coherent feedback networks

    Energy Technology Data Exchange (ETDEWEB)

    Sarovar, Mohan; Brif, Constantin [Sandia National Laboratories, Livermore, CA (United States); Soh, Daniel B.S. [Sandia National Laboratories, Livermore, CA (United States); Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul [Sandia National Laboratories, Albuquerque, NM (United States)

    2016-12-15

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  6. Silicon nanophotonics for scalable quantum coherent feedback networks

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Brif, Constantin; Soh, Daniel B.S.; Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul

    2016-01-01

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  7. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  8. Quantum coherence in the time-resolved Auger measurement

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Olga; Yakovlev, Vladislav S; Scrinzi, Armin

    2003-12-19

    We present a quantum mechanical model of the attosecond-XUV (extreme ultraviolet) pump and laser probe measurement of an Auger decay [Drescher et al., Nature (London) 419, 803 (2002)10.1038/nature01143] and investigate effects of quantum coherence. The time-dependent Schroedinger equation is solved by numerical integration and in analytic form. We explain the transition from a quasiclassical energy shift of the spectrum to the formation of sidebands and the enhancement of high- and low-energy tails of the Auger spectrum due to quantum coherence between photoionization and Auger decay.

  9. Coherent states in quaternionic quantum mechanics

    Science.gov (United States)

    Adler, Stephen L.; Millard, Andrew C.

    1997-05-01

    We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.

  10. Coherent Quantum Control of Multidimensional Vibrational Spectroscopy

    National Research Council Canada - National Science Library

    Mukamel, Shaul; Sanda, Frantisek; Harbola, Upendra; Venkatramani, Ravi; Varonine, Dmitri

    2006-01-01

    .... Factorial moments of photon counting statistics from a single molecule coupled to a quantum bath were expressed in terms of multipoint quantum correlation functions and represented by double-sided Feynman diagrams...

  11. Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence

    Science.gov (United States)

    Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  12. Coherent radiation by quantum dots and magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V. I.; Yukalova, E. P.

    2014-01-01

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins

  13. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  14. Coherent states in quaternionic quantum mechanics

    International Nuclear Information System (INIS)

    Adler, S.L.; Millard, A.C.

    1997-01-01

    We develop Perelomov close-quote s coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states. copyright 1997 American Institute of Physics

  15. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    Science.gov (United States)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  16. arXiv Quantum coherence of cosmological perturbations

    CERN Document Server

    Giovannini, Massimo

    2017-10-26

    In this paper, the degrees of quantum coherence of cosmological perturbations of different spins are computed in the large-scale limit and compared with the standard results holding for a single mode of the electromagnetic field in an optical cavity. The degree of second-order coherence of curvature inhomogeneities (and, more generally, of the scalar modes of the geometry) reproduces faithfully the optical limit. For the vector and tensor fluctuations, the numerical values of the normalized degrees of second-order coherence in the zero time-delay limit are always larger than unity (which is the Poisson benchmark value) but differ from the corresponding expressions obtainable in the framework of the single-mode approximation. General lessons are drawn on the quantum coherence of large-scale cosmological fluctuations.

  17. Particle creation and destruction of quantum coherence by topological change

    International Nuclear Information System (INIS)

    Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.

    1988-01-01

    The possibility is considered that changes of spatial topology occur as tunneling events in quantum gravity. Creation of scalar and spinor particles during these tunneling transitions is studied. The relevant formalism based on the euclidean Schroedinger equation and coherent state representation is developed. This formalism is illustrated in a two-dimensional example. It is argued that the particle creation during the topological changes induces the loss of quantum coherence. The particle creation is calculated in the case of O(4)-invariant background euclidean four-dimensional metrics. This calculation is used for estimating the loss of quantum coherence. An upper limit on the rate of the topological changes, A -17 M 4 Pl , is derived from the observation of K 0 -anti K 0 oscillations. (orig.)

  18. From atomic to mesoscale the role of quantum coherence in systems of various complexities

    CERN Document Server

    Novikova, Irina

    2015-01-01

    This volume presents the latest advancements and future developments of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to studies of a wide range of quantum systems, with an emphasis on understanding of quantum coherence and other quantum phenomena originated from light-matter interactions. The book intends to survey the current research landscape and to highlight major scientific trends in AMO physics as well as those interfacing with interdisciplinary sciences. The volume may be particularly useful for young researchers working on establishing their scientific interests and goals.

  19. Experimental quantum fingerprinting with weak coherent pulses

    Science.gov (United States)

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  20. Experimental quantum fingerprinting with weak coherent pulses

    Science.gov (United States)

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586

  1. A Numerical Approach to Optimal Coherent Quantum LQG Controller Design Using Gradient Descent

    OpenAIRE

    Sichani, Arash Kh.; Vladimirov, Igor G.; Petersen, Ian R.

    2016-01-01

    This paper is concerned with coherent quantum linear quadratic Gaussian (CQLQG) control. The problem is to find a stabilizing measurement-free quantum controller for a quantum plant so as to minimize a mean square cost for the fully quantum closed-loop system. The plant and controller are open quantum systems interconnected through bosonic quantum fields. In comparison with the observation-actuation structure of classical controllers, coherent quantum feedback is less invasive to the quantum ...

  2. Hilbert-Schmidt quantum coherence in multi-qudit systems

    Science.gov (United States)

    Maziero, Jonas

    2017-11-01

    Using Bloch's parametrization for qudits ( d-level quantum systems), we write the Hilbert-Schmidt distance (HSD) between two generic n-qudit states as an Euclidean distance between two vectors of observables mean values in R^{Π_{s=1}nds2-1}, where ds is the dimension for qudit s. Then, applying the generalized Gell-Mann's matrices to generate SU(ds), we use that result to obtain the Hilbert-Schmidt quantum coherence (HSC) of n-qudit systems. As examples, we consider in detail one-qubit, one-qutrit, two-qubit, and two copies of one-qubit states. In this last case, the possibility for controlling local and non-local coherences by tuning local populations is studied, and the contrasting behaviors of HSC, l1-norm coherence, and relative entropy of coherence in this regard are noticed. We also investigate the decoherent dynamics of these coherence functions under the action of qutrit dephasing and dissipation channels. At last, we analyze the non-monotonicity of HSD under tensor products and report the first instance of a consequence (for coherence quantification) of this kind of property of a quantum distance measure.

  3. Signatures of discrete breathers in coherent state quantum dynamics

    International Nuclear Information System (INIS)

    Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis

    2013-01-01

    In classical mechanics, discrete breathers (DBs) – a spatial time-periodic localization of energy – are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space – a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes – high order tunneling modes – that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments

  4. Advantages of coherent feedback for cooling quantum oscillators.

    Science.gov (United States)

    Hamerly, Ryan; Mabuchi, Hideo

    2012-10-26

    We model the cooling of open optical and optomechanical resonators via optical feedback in the linear quadratic Gaussian setting of stochastic control theory. We show that coherent feedback control schemes, in which the resonator is embedded in an interferometer to achieve all-optical feedback, can outperform the best possible linear quadratic Gaussian measurement-based schemes in the quantum regime of low steady-state excitation number. Such performance gains are attributed to the coherent controller's ability to process noncommuting output field quadratures simultaneously without loss of fidelity, and may provide important clues for the design of coherent feedback schemes for more general problems of nonlinear and robust control.

  5. Coherent pulse position modulation quantum cipher

    Energy Technology Data Exchange (ETDEWEB)

    Sohma, Masaki; Hirota, Osamu [Quantum ICT Research Institute, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610 (Japan)

    2014-12-04

    On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.

  6. Phase-controlled coherent population trapping in superconducting quantum circuits

    International Nuclear Information System (INIS)

    Cheng Guang-Ling; Wang Yi-Ping; Chen Ai-Xi

    2015-01-01

    We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. (paper)

  7. Quantum mechanical signature in exclusive coherent pion production

    Science.gov (United States)

    Deutchman, P. A.; Buvel, R. L.; Maung, K. M.; Norbury, J. W.; Townsend, L. W.

    1986-01-01

    We calculate the coherent production of pions from subthreshold to relativistic energies in heavy-ion collisions using a quantum, microscopic, many-body model. For the first time, in this approach, we use harmonic oscillator wave functions to describe shell-model information. The theoretical quantum mechanical results obtained for the pion spectra represent an important improvement over our previous microscopic, many-body calculations.

  8. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  9. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  10. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan; Hao, Kai; Dass, Chandriker Kavir; Singh, Akshay; Xu, Lixiang; Tran, Kha; Chen, Chang-Hsiao; Li, Ming-yang; Li, Lain-Jong; Clark, Genevieve; Bergh ä user, Gunnar; Malic, Ermin; Knorr, Andreas; Xu, Xiaodong; Li, Xiaoqin

    2016-01-01

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  11. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  12. On coherent states for the simplest quantum groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. (Palackeho Univ., Olomouc (Czechoslovakia). Dept. of Optics)

    1991-01-01

    The coherent states for the simplest quantum groups (q-Heisenberg-Weyl, SU{sub q}(2) and the discrete series of representations of SU{sub q}(1, 1)) are introduced and their properties investigated. The corresponding analytic representations, path integrals, and q-deformation of Berezin's quantization on C, a sphere, and the Lobatchevsky plane are discussed. (orig.).

  13. On coherent states for the simplest quantum groups

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    The coherent states for the simplest quantum groups (q-Heisenberg-Weyl, SU q (2) and the discrete series of representations of SU q (1, 1)) are introduced and their properties investigated. The corresponding analytic representations, path integrals, and q-deformation of Berezin's quantization on C, a sphere, and the Lobatchevsky plane are discussed. (orig.)

  14. Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher

    1998-01-01

    The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms...

  15. Extended SUSY quantum mechanics, intertwining operators and coherent states

    International Nuclear Information System (INIS)

    Bagarello, F.

    2008-01-01

    We propose an extension of supersymmetric quantum mechanics which produces a family of isospectral Hamiltonians. Our procedure slightly extends the idea of intertwining operators. Several examples of the construction are given. Further, we show how to build up vector coherent states of the Gazeau-Klauder type associated to our Hamiltonians

  16. Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

    Science.gov (United States)

    Harrison, Neil [Santa Fe, NM; Singleton, John [Los Alamos, NM; Migliori, Albert [Santa Fe, NM

    2008-08-05

    A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

  17. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single...

  18. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    Science.gov (United States)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  19. Quantum electron transfer processes induced by thermo-coherent ...

    Indian Academy of Sciences (India)

    WINTEC

    Thermo-coherent state; electron transfer; quantum rate. 1. Introduction. The study ... two surfaces,16 namely, one electron two-centered exchange problem,7–10 many ... temperature classical regime for the single and the two-mode cases have ...

  20. Towards deterministic optical quantum computation with coherently driven atomic ensembles

    International Nuclear Information System (INIS)

    Petrosyan, David

    2005-01-01

    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage device. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons

  1. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    Science.gov (United States)

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  2. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.

    2017-10-01

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  3. Quantum coherence and entanglement control for atom-cavity systems

    Science.gov (United States)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  4. EDITORIAL: Quantum control theory for coherence and information dynamics Quantum control theory for coherence and information dynamics

    Science.gov (United States)

    Viola, Lorenza; Tannor, David

    2011-08-01

    Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance

  5. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    Science.gov (United States)

    Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2018-04-01

    Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  6. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    Directory of Open Access Journals (Sweden)

    S. Touzard

    2018-04-01

    Full Text Available Manipulating the state of a logical quantum bit (qubit usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  7. Quantum mechanical coherence, resonance, and mind

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1995-01-01

    Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species

  8. Quantum mechanical coherence, resonance, and mind

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1995-03-26

    Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.

  9. Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution

    Science.gov (United States)

    Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng

    2018-05-01

    In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.

  10. Coherent and conventional gravidynamic quantum 1/f noise

    Science.gov (United States)

    Handel, Peter H.; George, Thomas F.

    2008-04-01

    Quantum 1/f noise is a fundamental fluctuation of currents, physical cross sections or process rates, caused by infrared coupling of the current carriers to very low frequency (soft) quanta, also known as infraquanta. The latter are soft gravitons in the gravidynamic case with the coupling constant g= pGM2/Nch considered here -- soft photons in the electrodynamic case and soft transversal piezo-phonons in the lattice-dynamical case. Here p=3.14 and F=psi. Quantum 1/f noise is a new aspect of quantum mechanics expressed mainly through the coherent quantum 1/f effect 2g/pf derived here for large systems, and mainly through the conventional quantum 1/f effect for small systems or individual particles. Both effects are present in general, and their effects are superposed in a first approximation with the help of a coherence (weight) parameter s" that will be derived elsewhere for the gravitational case. The spectral density of fractional fluctuations S(dj/j,f) for j=e(hk/2pm)|F|2 is S(F2,f)/ = S(j,f)/2 = [4ps"/(1+s")]GM2/pfNch = 4.4 10E9 M2/(pfNgram2). Here s" = 2N'GM/c2=N'rs, where N' is the number of particles of mass M per unit length of the current, rs their Schwarzschild radius, and s" is our coherence (weight) parameter giving the ratio of coherent to conventional quantum 1/f contributions.

  11. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    Science.gov (United States)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  12. Quantum logic gates based on coherent electron transport in quantum wires.

    Science.gov (United States)

    Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S

    2000-06-19

    It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.

  13. Time evolution of multiple quantum coherences in NMR

    International Nuclear Information System (INIS)

    Sanchez, Claudia M.; Pastawski, Horacio M.; Levstein, Patricia R.

    2007-01-01

    In multiple quantum NMR, individual spins become correlated with one another over time through their dipolar couplings. In this way, the usual Zeeman selection rule can be overcome and forbidden transitions can be excited. Experimentally, these multiple quantum coherences (MQC) are formed by the application of appropriate sequences of radio frequency pulses that force the spins to act collectively. 1 H spin coherences of even order up to 16 were excited in a polycrystalline sample of ferrocene (C 5 H 5 ) 2 Fe and up to 32 in adamantane (C 10 H 16 ) and their evolutions studied in different conditions: (a) under the natural dipolar Hamiltonian, H ZZ (free evolution) and with H ZZ canceled out by (b) time reversion or (c) with the MREV8 sequence. The results show that when canceling H ZZ the coherences decay with characteristic times (τ c ∼200 μs), which are more than one order of magnitude longer than those under free evolution (τ c ∼10 μs). In addition, it is observed that with both MREV8 and time reversion sequences, the higher the order of the coherence (larger number of correlated spins) the faster the speed of degradation, as it happens during the evolution with H ZZ . In both systems, it is observed that the sequence of time reversion of the dipolar Hamiltonian preserves coherences for longer times than MREV8

  14. Quantum coherence in photo-ionisation with tailored XUV pulses

    Science.gov (United States)

    Carlström, Stefanos; Mauritsson, Johan; Schafer, Kenneth J.; L'Huillier, Anne; Gisselbrecht, Mathieu

    2018-01-01

    Ionisation with ultrashort pulses in the extreme ultraviolet (XUV) regime can be used to prepare an ion in a superposition of spin-orbit substates. In this work, we study the coherence properties of such a superposition, created by ionising xenon atoms using two phase-locked XUV pulses at different frequencies. In general, if the duration of the driving pulse exceeds the quantum beat period, dephasing will occur. If however, the frequency difference of the two pulses matches the spin-orbit splitting, the coherence can be efficiently increased and dephasing does not occur.

  15. Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2014-11-01

    Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

  16. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    International Nuclear Information System (INIS)

    Daoud, M.; Ahl Laamara, R.

    2012-01-01

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states

  17. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, M., E-mail: m_daoud@hotmail.com [Department of Physics, Faculty of Sciences, University Ibnou Zohr, Agadir (Morocco); Ahl Laamara, R., E-mail: ahllaamara@gmail.com [LPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V, Rabat (Morocco); Centre of Physics and Mathematics, CPM, CNESTEN, Rabat (Morocco)

    2012-07-16

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states.

  18. Unconditional quantum cloning of coherent states with linear optics

    International Nuclear Information System (INIS)

    Leuchs, G.; Andersen, U.L.; Josse, V.

    2005-01-01

    Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)

  19. Glauber theory and the quantum coherence of curvature inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2017-01-12

    The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.

  20. Coherent states and parasupersymmetric quantum mechanics

    Science.gov (United States)

    Debergh, Nathalie

    1992-01-01

    It is well known that Parafermi and Parabose statistics are natural extensions of the usual Fermi and Bose ones, enhancing trilinear (anti)commutation relations instead of bilinear ones. Due to this generalization, positive parameters appear: the so-called orders of paraquantization p (= 1, 2, 3, ...) and h sub 0 (= 1/2, 1, 3/2, ...), respectively, the first value leading in each case to the usual statistics. The superpostion of the parabosonic and parafermionic operators gives rise to parasupermultiplets for which mixed trilinear relations have already been studied leading to two (nonequivalent) sets: the relative Parabose and the relative Parafermi ones. For the specific values p = 1 = 2h sub 0, these sets reduce to the well known supersymmetry. Coherent states associated with this last model have been recently put in evidence through the annihilation operator point of view and the group theoretical approach or displacement operator context. We propose to realize the corresponding studies within the new context p = 2 = 2h sub 0, being then directly extended to any order of paraquantization.

  1. Vacuum-induced coherence in quantum dot systems

    Science.gov (United States)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  2. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  3. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  4. Can quantum coherent solar cells break detailed balance?

    International Nuclear Information System (INIS)

    Kirk, Alexander P.

    2015-01-01

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells

  5. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  6. LDRD final report on theory and exploration of quantum-dot optical nonlinearities and coherences

    International Nuclear Information System (INIS)

    Chow, Weng Wah

    2008-01-01

    A microscopic theory for investigating quantum-dot optical properties was developed. The theory incorporated advances on various aspects of quantum-dot physics developed at Sandia and elsewhere. Important components are a non-Markovian treatment of polarization dephasing due to carrier-carrier scattering (developed at Sandia) and a nonperturbative treatment within a polaron picture of the scattering of carriers by longitudinal-optical phonons (developed at Bremen University). A computer code was also developed that provides a detailed accounting of electronic structure influences and a consistent treatment of many-body effects, the latter via the incorporation of results from the microscopic theory. This code was used to explore quantum coherence physics in a quantum-dot system. The investigation furthers the understanding of the underlying differences between atomic quantum coherence and semiconductor quantum coherence, and helps improve the potential of using quantum coherences in quantum computing, coherent control and high-resolution spectroscopy

  7. Coherent inflation for large quantum superpositions of levitated microspheres

    Science.gov (United States)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  8. Quantum measurement of coherent tunneling between quantum dots

    International Nuclear Information System (INIS)

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  9. Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics

    Science.gov (United States)

    Wei, Yang-hua; Gu, Wen-ju; Yang, Guoqing; Zhu, Yifu; Li, Gao-xiang

    2018-05-01

    Coherent perfect absorption (CPA) is investigated in the quantum nonlinear regime of cavity quantum electrodynamics (CQED), in which a single two-level atom couples to a single-mode cavity weakly driven by two identical laser fields. In the strong-coupling regime and due to the photon blockade effect, the weakly driven CQED system can be described as a quantum system with three polariton states. CPA is achieved at a critical input field strength when the frequency of the input fields matches the polariton transition frequency. In the quantum nonlinear regime, the incoherent dissipation processes such as atomic and photon decays place a lower bound for the purity of the intracavity quantum field. Our results show that under the CPA condition, the intracavity field always exhibits the quadrature squeezing property manifested by the quantum nonlinearity, and the outgoing photon flux displays the super-Poissonian distribution.

  10. Coherent control of diamond defects for quantum information science and quantum sensing

    Science.gov (United States)

    Maurer, Peter

    Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells

  11. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  12. Quantum coherence behaviors of fermionic system in non-inertial frame

    Science.gov (United States)

    Huang, Zhiming; Situ, Haozhen

    2018-04-01

    In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.

  13. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  14. Macroscopic quantum interference in the conventional and coherent quantum 1/F effect with negative quantum entropy states

    International Nuclear Information System (INIS)

    Handel, P.H.

    1998-01-01

    The author's recent application of the new Quantum Information Theory Approach (QIT) to Infra Quantum Physics (IQP) explains for the first time the apparent lack of unitarity caused by the entropy increase in the Quantum 1/f Effect (Q1/fE). This allows for a better understanding of the quantum 1/f effect in this paper, showing no resultant entropy increase and therefore no violation of unitarity. This new interpretation involves the concept of von Neumann Quantum Entropy, including the new negative conditional entropy concept for quantum entangled states introduced by QIT. The Q1/fE was applied to many high-tech systems, in particular to ultra small electronic devices. The present paper explains how the additional entropy implied by the Q1/fE arises in spite of the entropy-conserving evolution of the system. On this basis, a general derivation of the conventional and coherent quantum 1/f effect is given. (author)

  15. Coherence properties and quantum state transportation in an optical conveyor belt.

    Science.gov (United States)

    Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D

    2003-11-21

    We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

  16. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    International Nuclear Information System (INIS)

    Mendonca, Fabio Alencar; Ramos, Rubens Viana

    2008-01-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed

  17. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    Science.gov (United States)

    Mendonça, Fábio Alencar; Ramos, Rubens Viana

    2008-02-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.

  18. Quantum coherence phenomena in semiconductor quantum dots: quantum interference, decoherence and Rabi oscillation

    International Nuclear Information System (INIS)

    Htoon, H.; Shih, C.K.; Takagahara, T.

    2003-01-01

    We performed extensive studies on quantum decoherence processes of excitons trapped in the various excited states of SAQDs. Energy level structure and dephasing times of excited states were first determined by conducting photoluminescence excitation spectroscopy and wave-packet interferometry on a large number of individual SAQDs. This large statistical basis allows us to extract the correlation between the energy level structure and dephasing times. The major decoherence mechanisms and their active regime were identified from this correlation. A significant suppression of decoherence was also observed in some of the energetically isolated excited states, providing an experimental evidence for the theoretical prediction, known as 'phonon bottleneck effect'. Furthermore, we observed the direct experimental evidence of Rabi oscillation in these excited states with long decoherence times. In addition, a new type of quantum interference (QI) phenomenon was discovered in the wave-packet interferometry experiments performed in the strong excitation regime where the non-linear effects of Rabi oscillation become important. Detailed theoretical investigations attribute this phenomenon to the coherent dynamics resulting from the interplay of Rabi oscillation and QI

  19. Coherent quantum cascade laser micro-stripe arrays

    Directory of Open Access Journals (Sweden)

    G. M. de Naurois

    2011-09-01

    Full Text Available We have fabricated InP-based coherent quantum cascade laser micro-stripe arrays. Phase-locking is provided by evanescent coupling between adjacent stripes. Stripes are buried into semi-insulating iron doped InP. Lasing at room temperature is obtained at 8.4μm for stripe arrays comprising up to 16 emitters. Pure supermode emission is demonstrated via farfield measurements and simulations. The farfield pattern shows a dual-lobe emission, corroborating the predicted phase-locked antisymmetric supermode emission.

  20. Differential-phase-shift quantum key distribution using coherent light

    International Nuclear Information System (INIS)

    Inoue, K.; Waks, E.; Yamamoto, Y.

    2003-01-01

    Differential-phase-shift quantum key distribution based on two nonorthogonal states is described. A weak coherent pulse train is sent from Alice to Bob, in which the phase of each pulse is randomly modulated by {0,π}. Bob measures the differential phase by a one-bit delay circuit. The system has a simple configuration without the need for an interferometer and a bright reference pulse in Alice's site, unlike the conventional QKD system based on two nonorthogonal states, and has an advantage of improved communication efficiency. The principle of the operation is successfully demonstrated in experiments

  1. Quantum theory of optical coherence selected papers and lectures

    CERN Document Server

    Glauber, Roy J

    2007-01-01

    A summary of the pioneering work of Glauber in the field of optical coherence phenomena and photon statistics, this book describes the fundamental ideas of modern quantum optics and photonics in a tutorial style. It is thus not only intended as a reference for researchers in the field, but also to give graduate students an insight into the basic theories of the field. Written by the Nobel Laureate himself, the concepts described in this book have formed the basis for three further Nobel Prizes in Physics within the last decade

  2. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  3. Coherent eavesdropping attacks in tomographic quantum cryptography: Nonequivalence of quantum and classical key distillation

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Lim, J.Y.; Englert, Berthold-Georg; Kwek, L.C.

    2005-01-01

    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. We show that - for protocols that use quantum channels of any dimension and completely characterize them by state tomography - the noise threshold for classical advantage distillation of a specific kind is substantially lower than the threshold for quantum entanglement distillation if the eavesdropper can perform powerful coherent attacks. In marked contrast, earlier investigations had shown that the thresholds are identical for incoherent attacks on the same classical distillation scheme. It remains an open question whether other schemes for classical advantage distillation have higher thresholds for coherent eavesdropping attacks

  4. 8th Rochester Conference on Coherence and Quantum Optics

    CERN Document Server

    2001-01-01

    The Eighth Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the period June 13-16,2001. This volume contains the proceedings of the meeting. The meeting was preceded by an affiliated conference, the International Conference on Quantum Information, with some overlapping sessions on June 13. The proceedings of the affiliated conference will be published separately by the Optical Society of America. A few papers that were presented in common plenary sessions of the two conferences will be published in both proceedings volumes. More than 268 scientists from 28 countries participated in the week long discussions and presentations. This Conference differed from the previous seven in the CQO series in several ways, the most important of which was the absence of Leonard Mandel. Professor Mandel died a few months before the conference. A special memorial symposium in his honor was held at the end of the conference. The presentations from that sym...

  5. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    Science.gov (United States)

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  6. Quantum cryptography using coherent states: Randomized encryption and key generation

    Science.gov (United States)

    Corndorf, Eric

    objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.

  7. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  8. Quantum coherence in the reflection of above barrier wavepackets

    Science.gov (United States)

    Petersen, Jakob; Pollak, Eli

    2018-02-01

    The quantum phenomenon of above barrier reflection is investigated from a time-dependent perspective using Gaussian wavepackets. The transition path time distribution, which in principle is experimentally measurable, is used to study the mean flight times ⟨t⟩R and ⟨t⟩T associated with the reflection and the transmission over the barrier paying special attention to their dependence on the width of the barrier. Both flight times, and their difference Δt, exhibit two distinct regimes depending on the ratio of the spatial width of the incident wavepacket and the length of the barrier. When the ratio is larger than unity, the reflection and transmission dynamics are coherent and dominated by the resonances above the barrier. The flight times ⟨t⟩R/T and the flight time difference Δt oscillate as a function of the barrier width (almost in phase with the transmission probability). These oscillations reflect a momentum filtering effect related to the coherent superposition of the reflected and transmitted waves. For a ratio less than unity, the barrier reflection and transmission dynamics are incoherent and the oscillations are absent. The barrier width which separates the coherent and incoherent regimes is identified analytically. The oscillatory structure of the time difference Δt as a function of the barrier width in the coherent regime is absent when considered in terms of the Wigner phase time delays for reflection and transmission. We conclude that the Wigner phase time does not correctly describe the temporal properties of above barrier reflection. We also find that the structure of the reflected and transmitted wavepackets depends on the coherence of the process. In the coherent regime, the wavepackets can have an overlapping peak structure, but the peaks are not fully resolved. In the incoherent regime, the wavepackets split in time into distinct separated Gaussian like waves, each one reflecting the number of times the wavepacket crosses the barrier

  9. Quantum interference and coherent control in dissipative atomic systems

    International Nuclear Information System (INIS)

    Paspalakis, E.

    1999-01-01

    In this thesis we study the effects of quantum interference arising from dissipative processes in atomic systems. First, we identify quantum interference phenomena arising from decay mechanisms. Second, we use dynamical methods (the properties of laser fields) to obtain a tailored response of systems in which such interferences are present. We are mainly concerned with two dissipative processes: spontaneous emission and ionization. First, we study the effects of quantum interference arising from spontaneous emission on the population dynamics and the spontaneous emission spectrum of several multi-level systems. Coherent 'phase' control methods for manipulating the response of systems involving spontaneous emission interference are also proposed. Several interesting phenomena are identified such as partial and total quenching of spontaneous emission, phase dependent population dynamics and coherent population trapping. Next, we consider the process of laser-induced continuum structure, where an atom is coupled by two laser fields to the same electronic continuum. An {it ab initio}, non-perturbative study of this process in helium using the R-Matrix Floquet theory is presented. The results of our numerical calculations are compared with those obtained by simple perturbative models and with recent experimental results. The possibility of coherent population transfer via a continuum of states is then analyzed. We study two distinct atomic systems. A laser-induced continuum structure scheme (unstructured continuum) and a bichromatically driven autoionizing scheme (structured continuum). We find that the same conditions which lead to 'dark' states in these systems lead to efficient population transfer. We also identify parameters detrimental to the transfer efficiency and propose methods to overcome them. Finally, we study short pulse propagation in systems involving interfering dissipation mechanisms. We show that the existence of dark states can lead to loss-free and

  10. Comment on Kirk's “Analysis of quantum coherent solar photovoltaic cells”

    International Nuclear Information System (INIS)

    Chapin, K.R.; Cohen, D.; Das, S.; Dorfman, K.; Jha, P.K.; Kim, M.; Svidzinsky, A.; Vetter, P.; Voronine, D.V.

    2013-01-01

    We present our scientific and philosophical analysis of the comments made in the recent paper of A.P. Kirk, “An Analysis of Quantum Coherent Solar Photovoltaic Cells” Physica B 407 (2012) 544. We highlight the key role of quantum coherence in the enhancement of the photocell power without violating the laws of thermodynamics

  11. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    Science.gov (United States)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  12. Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output

    Directory of Open Access Journals (Sweden)

    Robert S. Whitney

    2016-05-01

    Full Text Available This work considers the nonlinear scattering theory for three-terminal thermoelectric devices used for power generation or refrigeration. Such systems are quantum phase-coherent versions of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. It considers an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. It is shown that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot’s bound. The bound is exactly the same as previously found for two-terminal devices and can be achieved by three-terminal systems with or without broken time-reversal symmetry, i.e., chiral and non-chiral thermoelectrics.

  13. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    International Nuclear Information System (INIS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-01-01

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  14. Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

    International Nuclear Information System (INIS)

    Mauritsson, J.; Johnsson, P.; Mansten, E.; Swoboda, M.; Ruchon, T.; L'Huillier, A.; Schafer, K. J.

    2008-01-01

    We demonstrate a quantum stroboscope based on a sequence of identical attosecond pulses that are used to release electrons into a strong infrared (IR) laser field exactly once per laser cycle. The resulting electron momentum distributions are recorded as a function of time delay between the IR laser and the attosecond pulse train using a velocity map imaging spectrometer. Because our train of attosecond pulses creates a train of identical electron wave packets, a single ionization event can be studied stroboscopically. This technique has enabled us to image the coherent electron scattering that takes place when the IR field is sufficiently strong to reverse the initial direction of the electron motion causing it to rescatter from its parent ion

  15. The size effect of the quantum coherence in the transverse-field XY chain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Yang, Cui-hong; Wang, Jun-feng [Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Lei, Shu-guo, E-mail: sglei@njtech.edu.cn [College of Science, Nanjing Tech University, Nanjing, 211816 (China)

    2016-12-15

    Based on the Wigner–Yanase skew information, the size effect of the quantum coherence in the ground state of the finite transverse-field spin-1/2 XY chain is explored. It is found that the first-order derivatives of the single-spin coherence and the two-spin local coherence both have scaling behaviors in the vicinity of the critical point. A simplified version of coherence is also studied and the same characteristics with its counterpart are found.

  16. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    Science.gov (United States)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  17. Security improvement by using a modified coherent state for quantum cryptography

    International Nuclear Information System (INIS)

    Lu, Y.J.; Zhu, Luobei; Ou, Z.Y.

    2005-01-01

    Weak coherent states as a photon source for quantum cryptography have a limit in secure data rate and transmission distance because of the presence of multiphoton events and loss in transmission line. Two-photon events in a coherent state can be taken out by a two-photon interference scheme. We investigate the security issue of utilizing this modified coherent state in quantum cryptography. A 4-dB improvement in the secure data rate or a nearly twofold increase in transmission distance over the coherent state are found. With a recently proposed and improved encoding strategy, further improvement is possible

  18. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama; Pal, Suparna [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M. [Semiconductor Physics and Devices Lab., Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-08-18

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  19. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    International Nuclear Information System (INIS)

    Khan, Salahuddin; Jayabalan, J.; Chari, Rama; Pal, Suparna; Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M.

    2014-01-01

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  20. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  1. Substantially Enhancing Quantum Coherence of Electrons in Graphene via Electron-Plasmon Coupling.

    Science.gov (United States)

    Cheng, Guanghui; Qin, Wei; Lin, Meng-Hsien; Wei, Laiming; Fan, Xiaodong; Zhang, Huayang; Gwo, Shangjr; Zeng, Changgan; Hou, J G; Zhang, Zhenyu

    2017-10-13

    The interplays between different quasiparticles in solids lay the foundation for a wide spectrum of intriguing quantum effects, yet how the collective plasmon excitations affect the quantum transport of electrons remains largely unexplored. Here we provide the first demonstration that when the electron-plasmon coupling is introduced, the quantum coherence of electrons in graphene is substantially enhanced with the quantum coherence length almost tripled. We further develop a microscopic model to interpret the striking observations, emphasizing the vital role of the graphene plasmons in suppressing electron-electron dephasing. The novel and transformative concept of plasmon-enhanced quantum coherence sheds new insight into interquasiparticle interactions, and further extends a new dimension to exploit nontrivial quantum phenomena and devices in solid systems.

  2. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  3. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  4. Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics.

    Science.gov (United States)

    Ćwikliński, Piotr; Studziński, Michał; Horodecki, Michał; Oppenheim, Jonathan

    2015-11-20

    The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve. Here, we consider additional restrictions on how the coherences between energy levels can evolve. Coherences can only go down, and we provide a set of restrictions which limit the extent to which they can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted to the transition rates between energy levels. We show that the limitations are matched in the case of a single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher dimensions, we conjecture that more severe constraints exist. We also introduce a new class of thermodynamical operations which allow for greater manipulation of coherences and study its power with respect to a class of operations known as thermal operations.

  5. Robust quantum state engineering through coherent localization in biased-coin quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Majury, Helena [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Boutari, Joelle [University of Oxford, Clarendon Laboratory, Oxford (United Kingdom); O' Sullivan, Elizabeth [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom)

    2018-12-15

    We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of coherent localization in the position space - resulting from the choice of small values of the coin parameter and assisted by post-selection - to engineer large-size coherent superpositions of position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms. (orig.)

  6. A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED, the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.

  7. Continuous-variable quantum teleportation of even and odd coherent states through varied gain channels

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhang Jing; Zhang Jun-Xiang; Zhang Tian-Cai

    2006-01-01

    This paper has investigated quantum teleportation of even and odd coherent states in terms of the EPR entanglement states for continuous variables. It discusses the relationship between the fidelity and the entanglement of EPR states, which is characterized by the degree of squeezing and the gain of classical channels. It shows that the quality of teleporting quantum states also depends on the characteristics of the states themselves. The properties of teleporting even and odd coherent states at different intensities are investigated. The difference of teleporting two such kinds of quantum states are analysed based on the quantum distance function.

  8. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.

    Science.gov (United States)

    Sadeghi, S M; Hatef, A; Fortin-Deschenes, Simon; Meunier, Michel

    2013-05-24

    Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.

  9. Quantum Fisher information on its own is not a valid measure of the coherence

    Science.gov (United States)

    Kwon, Hyukjoon; Tan, Kok Chuan; Choi, Seongjeon; Jeong, Hyunseok

    2018-06-01

    We show that contrary to the claim in Feng and Wei (2017), the quantum Fisher information itself is not a valid measure of the coherence based on the resource theory because it can increase via an incoherent operation.

  10. 7th Rochester Conference on Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard; Wolf, Emil

    1996-01-01

    The Seventh Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the four-day period June 7 - 10, 1996. More than 280 scientists from 33 countries participated. This book contains the Proceedings of the meeting. This Conference differed from the previous six in the series in having only a limited number of oral presentations, in order to avoid too many parallel sessions. Another new feature was the introduction of tutorial lectures. Most contributed papers were presented in poster sessions. The Conference was sponsored by the American Physical Society, by the Optical Society of America, by the International Union of Pure and Applied Physics and by the University of Rochester. We wish to express our appreciation to these organizations for their support and we especially extend our thanks to the International Union of Pure and Applied Physics for providing financial assistance to a number of speakers from Third World countries, to enable them to take ...

  11. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-01-01

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells

  12. Localized excitons in quantum wells show spin relaxation without coherence loss

    DEFF Research Database (Denmark)

    Zimmermann, R.; Langbein, W.; Runge, E.

    2001-01-01

    The coherence in the secondary emission from quantum well excitons is studied using the speckle method. Analysing the different polarization channels allows to conclude that (i) no coherence loss occurs in the cross-polarized emission, favouring spin beating instead of spin dephasing, and that (i...

  13. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    Science.gov (United States)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  14. Quantum dot-micropillars: a bright source of coherent single photons

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; He, Yu-Ming; Maier, Sebastian

    2016-01-01

    We present the efficient generation of coherent single photons based on quantum dots in micropillars. We utilize a scalable lithography scheme leading to quantum dot-micropillar devices with 74% extraction efficiency. Via pulsed strict resonant pumping, we show an indistinguishability of consecut...

  15. Quantum control and coherence of interacting spins in diamond

    NARCIS (Netherlands)

    De Lange, G.

    2012-01-01

    The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum

  16. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    Science.gov (United States)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  17. Quantum key distribution with a single photon from a squeezed coherent state

    International Nuclear Information System (INIS)

    Matsuoka, Masahiro; Hirano, Takuya

    2003-01-01

    Squeezing of the coherent state by optical parametric amplifier is shown to efficiently produce single-photon states with reduced multiphoton probabilities compared with the weak coherent light. It can be a better source for a longer-distance quantum key distribution and also for other quantum optical experiments. The necessary condition for a secure quantum key distribution given by Brassard et al. is analyzed as functions of the coherent-state amplitude and squeeze parameter. Similarly, the rate of the gained secure bits G after error correction and privacy amplification given by Luetkenhaus is calculated. Compared with the weak coherent light, it is found that G is about ten times larger and its high level continues on about two times longer distance. By improvement of the detector efficiency it is shown that the distance extends further. Measurement of the intensity correlation function and the relation to photon antibunching are discussed for the experimental verification of the single-photon generation

  18. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    Science.gov (United States)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  19. Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States

    Science.gov (United States)

    Hirota, Osamu

    2017-12-01

    Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.

  20. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.

    Science.gov (United States)

    Lund, A P; Ralph, T C; Haselgrove, H L

    2008-01-25

    Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.

  1. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  2. The quantum coherence of disordered dipolar bosonic gas

    International Nuclear Information System (INIS)

    Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui

    2013-01-01

    We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)

  3. Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits

    Science.gov (United States)

    Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas

    2018-04-01

    Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.

  4. Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex

    Science.gov (United States)

    Chin, A. W.; Mangaud, E.; Atabek, O.; Desouter-Lecomte, M.

    2018-06-01

    Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the dissipative system-environment models underlying these proposals is presently very challenging in supramolecular materials. A promising alternative is to use simpler and highly tunable "quantum simulators" built from programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al., Nat. Commun. 9, 904 (2018), 10.1038/s41467-018-03312-x]. We simulate the real-time dynamics of an exciton coupled to a quantum bath as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but completely incoherent relaxation from a high-lying "bright" exciton into a doublet of closely spaced "dark" excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network (quantum beats). Importantly, we show that this behavior also survives when the environmental noise is classically stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities of designing matched electronic and spectral noise structures for robust coherence generation that do not require coherent excitation or cold environments.

  5. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    Science.gov (United States)

    Lee, Kenneth William, III

    A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no

  6. Quantum coherent control of the vibrational dynamics of a ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... c Indian Academy of Sciences. Vol. 82, No ... Abstract. We simulate adaptive feedback control to coherently shape a femtosecond infrared laser ... it was shown that different coherent control schemes are unified on a fundamental level. ... A 150 fs pulse with a fluence of 600 J/m2 was used as an initial pulse.

  7. The Origin of Inertia and Matter as a Superradiant Phase Transition of Quantum Vacuum

    Science.gov (United States)

    Maxmilian Caligiuri, Luigi

    Mass is one of the most important concepts in physics and its real understanding represents the key for the formulation of any consistent physical theory. During the past years, a very interesting model of inertial and gravitational mass as the result of the reaction interaction between the charged particles (electrons and quarks) contained in a given body and a suitable "fraction" of QED Zero Point Fields confined within an ideal resonant cavity, associated to the same body, has been proposed by Haish, Rueda and Puthoff. More recently, the author showed that this interpretation is consistent with a picture of mass (both inertial and gravitational) as the seat of ZPF standing waves whose presence reduces quantum vacuum energy density inside the resonant cavity ideally associated to the body volume. Nevertheless so far, the ultimate physical origin of such resonant cavity as well as the mechanism able to "select" the fraction of ZPF electromagnetic modes interacting within it, remained unrevealed. In this paper, basing on the framework of QED coherence in condensed matter, we'll show mass can be viewed as the result of a spontaneous superradiant phase transition of quantum vacuum giving rise to a more stable, energetically favored, oscopic quantum state characterized by an ensemble of coherence domains, "trapping" the coherent ZPF fluctuations inside a given volume just acting as a resonant cavity. Our model is then able to explain the "natural" emergence of the ideal resonant cavity speculated by Haish, Rueda and Puthoff and its defining parameters as well as the physical mechanism selecting the fraction of ZPF interacting with the body particles. Finally, a generalization of the model to explain the origin of mass of elementary particles is proposed also suggesting a new understanding of Compton's frequency and De Broglie's wavelength. Our results indicates both inertia and matter could truly originate from coherent interaction between quantum matter-wave and

  8. A discussion on the origin of quantum probabilities

    International Nuclear Information System (INIS)

    Holik, Federico; Sáenz, Manuel; Plastino, Angel

    2014-01-01

    We study the origin of quantum probabilities as arising from non-Boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorovian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case). -- Highlights: •Several recent works use a derivation similar to that of R.T. Cox to obtain quantum probabilities. •We apply Cox’s method to the lattice of subspaces of the Hilbert space. •We obtain a derivation of quantum probabilities which includes mixed states. •The method presented in this work is susceptible to generalization. •It includes quantum mechanics and classical mechanics as particular cases

  9. Is string interaction the origin of quantum mechanics?

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak, E-mail: bars@usc.edu; Rychkov, Dmitry

    2014-12-12

    String theory was developed by demanding consistency with quantum mechanics. In this paper we wish to reverse the reasoning. We pretend that open string field theory is a fully consistent definition of the theory – it is at least a self-consistent sector. Then we find in its structure that the rules of quantum mechanics emerge from the non-commutative nature of the basic string joining/splitting interactions. Thus, rather than assuming the quantum commutation rules among the usual canonical variables we derive them from the physical process of string interactions. Morally we could apply such an argument to M-theory to cover quantum mechanics for all physics. If string or M-theory really underlies all physics, it seems that the door has been opened to an explanation of the origins of quantum mechanics from the physical processes point of view.

  10. Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging

    Science.gov (United States)

    Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2011-01-01

    The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

  11. Slow Light Using Electromagnetically Induced Transparency from Spin Coherence in [110] Strained Quantum Wells

    Science.gov (United States)

    Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin

    2005-03-01

    The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).

  12. Mode locking of electron spin coherences in singly charged quantum dots.

    Science.gov (United States)

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

  13. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    Science.gov (United States)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  14. Quantum mechanical effects of topological origin

    Science.gov (United States)

    Duru, I. H.

    1993-01-01

    Following a brief review of the original Casimir and Aharonov-Bohm effects, some other effects of similar natures are mentioned. A Casimir interaction between AB fluxes is presented. Possible realizations of the Casimir effects for massive charged fields in solid state structures and a new AB effect for photons are suggested.

  15. Quantum coherence dynamics of a three-level atom in a two-mode field

    International Nuclear Information System (INIS)

    Solovarov, N. K.

    2008-01-01

    The correlated dynamics of a three-level atom resonantly coupled to an electromagnetic cavity field is calculated (Λ, V, and L models). A diagrammatic representation of quantum dynamics is proposed for these models. As an example, Λ-atom dynamics is examined to demonstrate how the use of conventional von Neumann's reduction leads to internal decoherence (disentanglement-induced decoherence) and to the absence of atomic coherence under multiphoton excitation. The predicted absence of atomic coherence is inconsistent with characteristics of an experimentally observed atom-photon entangled state. It is shown that the correlated reduction of a composite quantum system proposed in [18] qualitatively predicts the occurrence and evolution of atomic coherence under multiphoton excitation if a seed coherence is introduced into any subsystem (the atom or a cavity mode)

  16. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    Science.gov (United States)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  17. Thermal quantum coherence and correlation in the extended XY spin chain

    Science.gov (United States)

    Sha, Ya-Ting; Wang, Yue; Sun, Zheng-Hang; Hou, Xi-Wen

    2018-05-01

    Quantum coherence and correlation of thermal states in the extended XY spin chain are studied in terms of the recently proposed l1 norm, skew information, and Bures distance of geometry discord (BGD), respectively. The entanglement measured via concurrence is calculated for reference. A two-dimensional susceptibility is introduced to explore their capability in highlighting the critical lines associated with quantum phase transitions in the model. It is shown that the susceptibility of the skew information and BGD is a genuine indicator of quantum phase transitions, and characterizes the factorization. However, the l1 norm is trivial for the factorization. An explicit scaling law of BGD is captured at low temperature in the XY model. In contrast to the entanglement, quantum coherence reveals a kind of long-range nonclassical correlation. Moreover, the obvious relation among model parameters is extracted for the factorized line in the extended model. Those are instructive for the understanding of quantum coherence and correlation in the theory of quantum information, and quantum phase transitions and factorization in condensed-matter physics.

  18. Self-induced coherence in a single pair of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Anna; Machnikowski, Pawel [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2011-04-15

    We study self-induced coherence (SIC) in a system composed of two coupled quantum dots (QDs). SIC consists in a coherent transfer of excitation between two systems (atoms or QDs) resulting from their collective interaction with the quantum electromagnetic vacuum. This leads to population trapping in a delocalized, optically inactive state. We focus on the effect of a difference in transition energies and coupling between the two emitters on the evolution of exciton occupation in the two QD system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  20. Monogamy relations of quantum entanglement for partially coherently superposed states

    Science.gov (United States)

    Shi, Xian

    2017-12-01

    Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.

  1. Fundamental limits to single-photon detection determined by quantum coherence and backaction

    Science.gov (United States)

    Young, Steve M.; Sarovar, Mohan; Léonard, François

    2018-03-01

    Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.

  2. Coherent light from E-field induced quantum coupling of exciton states in superlattice-like quantum wells

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Østergaard, John Erland; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we investig......Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we...... investigate a MBE-grown GaAs sample with a sequence of 15 single quantum wells having a successive increase of 1 monolayer in width ranging from 62 A to 102 A and with AlGaAs barriers of 17 Å....

  3. Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, D A

    1975-01-01

    Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.

  4. Geometric origin of dynamically induced freezing of quantum evolution

    International Nuclear Information System (INIS)

    Matos-Abiague, A.; Berakdar, J.

    2006-01-01

    The phenomenon of dynamical, field-induced freezing of quantum evolution is discussed. It occurs when a time-dependent state is dynamically driven in such a way that the evolution of the corresponding wave function is effectively localized within a small region in the projective Hilbert space. As a consequence, the dynamics of the system is frozen and the expectation values of all physical observables hardly change with time. Necessary and sufficient conditions for inducing dynamical freezing are inferred from a general analysis of the geometry of quantum evolution. The relevance of the dynamical freezing for a sustainable in time, dynamical control is discussed and exemplified by a study of the coherent control of the kicked rotor motion

  5. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    Science.gov (United States)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-03-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  6. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    Science.gov (United States)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-06-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  7. Coherence time of over a second in a telecom-compatible quantum memory storage material

    Science.gov (United States)

    Rančić, Miloš; Hedges, Morgan P.; Ahlefeldt, Rose L.; Sellars, Matthew J.

    2018-01-01

    Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm-1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.

  8. Delineating incoherent non-Markovian dynamics using quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chanda, Titas, E-mail: titaschanda@hri.res.in; Bhattacharya, Samyadeb, E-mail: samyadebbhattacharya@hri.res.in

    2016-03-15

    We introduce a method of characterization of non-Markovianity using coherence of a system interacting with the environment. We show that under the allowed incoherent operations, monotonicity of a valid coherence measure is affected due to non-Markovian features of the system–environment evolution. We also define a measure to quantify non-Markovianity of the underlying dynamics based on the non-monotonic behavior of the coherence measure. We investigate our proposed non-Markovianity marker in the behavior of dephasing and dissipative dynamics for one and two qubit cases. We also show that our proposed measure captures the back-flow of information from the environment to the system and compatible with well known distinguishability criteria of non-Markovianity.

  9. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  10. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    Science.gov (United States)

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  11. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    Science.gov (United States)

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  12. The Origin of our Universe: From Quantum to Cosmos

    Science.gov (United States)

    Hertog, Thomas

    2016-03-01

    The discovery in the late 1920s that our universe expands fundamentally changed the discussion about its origin. I first review the scientific, historical and philosophical background behind this discovery. A key player in this was Georges Lemaitre who was also a Catholic priest. Respecting meticulously the differences in methodology and language between science and religion he was first to conceive of a physical origin of our universe, based on quantum theory. Today Lemaitre's vision is realised concretely in inflationary cosmology where a phase of rapid expansion generates the seeds for a complex universe starting from a simple natural beginning. A fuzzy quantum origin however gives rise to a multiverse of possible universes. I discuss some of the challenges associated with the development of a truly predictive multiverse cosmology that is falsifiable to observers within one of its histories.

  13. A localized in vivo detection method for lactate using zero quantum coherence techniques

    NARCIS (Netherlands)

    van Dijk, J. E.; Bosman, D. K.; Chamuleau, R. A.; Bovee, W. M.

    1991-01-01

    A method is described to selectively measure lactate in vivo using proton zero quantum coherence techniques. The signal from lipids is eliminated. A surface coil and additionally slice selective localization are used. The resulting spectra demonstrate the good performance of the method

  14. Bound states in quantum field theory and coherent states: A fresh look

    International Nuclear Information System (INIS)

    Misra, S.P.

    1986-09-01

    We consider here bound state equations in quantum field theory where the state explicitly includes radiation quanta as constituents with the number of such quanta not fixed. The fully interacting system is dealt with through equal time commutators/anticommutators of field operators. The multiparticle channel for the radiation field is approximated through coherent state representations. (author)

  15. Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography.

    Science.gov (United States)

    Pirandola, Stefano; Braunstein, Samuel L; Lloyd, Seth

    2008-11-14

    We provide a simple description of the most general collective Gaussian attack in continuous-variable quantum cryptography. In the scenario of such general attacks, we analyze the asymptotic secret-key rates which are achievable with coherent states, joint measurements of the quadratures and one-way classical communication.

  16. Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement

    Science.gov (United States)

    Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor

    2018-01-01

    We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.

  17. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    Science.gov (United States)

    Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne

    2017-08-01

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  18. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    Science.gov (United States)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  19. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences.

    Science.gov (United States)

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-26

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  20. The quantum potential and ''causal'' trajectories for stationary states and for coherent states

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1988-07-01

    We show for stationary states in a central potential that the quantum action S is only a part of the classical action W and derive an expression for the ''quantum potential'' U Q in terms of the other part. The association of momenta of some ''particles'' in the causal interpretation of quantum mechanics by p-vector=∇S and by dp-vector'/dt=-∇(V+U Q ) gives for stationary states very different orbits which have no relation to classical orbits but express some flow properties of the quantum mechanical current. For coherent states, on the other hand, p-vector and p-vector' as well as the quantum mechanical average p-vector and classical momenta, all four, lead to essentially the same trajectories except for different integration constants. The spinning particle is also considered. (author). 27 refs, 2 figs

  1. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.

    Science.gov (United States)

    Naghiloo, M; Jordan, A N; Murch, K W

    2017-11-03

    Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

  2. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences

    Science.gov (United States)

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-01

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  3. Coherence and fluctuations in the interaction between moving atoms and a quantum field

    International Nuclear Information System (INIS)

    Hu, B.L.; Raval, A.

    1998-01-01

    Mesoscopic physics deals with three fundamental issues: quantum coherence, fluctuations and correlations. Here we analyze these issues for atom optics, using a simplified model of an assembly of atoms (or detectors, which are particles with some internal degree of freedom) moving in arbitrary trajectories in a quantum field. Employing the influence functional formalism, we study the self-consistent effect of the field on the atoms, and their mutual interactions via coupling to the field. We derive the coupled Langevin equations for the atom assemblage and analyze the relation of dissipative dynamics of the atoms (detectors) with the correlation and fluctuations of the quantum field. This provides a useful theoretical framework for analysing the coherent properties of atom-field systems. (author)

  4. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    Science.gov (United States)

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  5. Quantum cosmological origin of large scale structures of the universe

    International Nuclear Information System (INIS)

    Anini, Y.

    1989-07-01

    In this paper, the initial quantum state of matter perturbations about de Sitter minisuperspace model is found. For a large class of boundary conditions (bcs), including those of Hartle-Hawking and Vilenkin, the resulting quantum state is the de Sitter invariant vacuum. This result is found to depend only on the regularity requirement at the euclidean origin of spacetime which is common to all reasonable (bcs). The initial value of the density perturbations implied by these quantum fluctuations are found and evaluated at the initial horizon crossing. The perturbations are found to have an almost scale independent spectrum, and an amplitude which depends on the scale at which inflation took place. The amplitude would have the right value if the scale of inflation is H ≤ 10 15 Gev. (author). 9 refs

  6. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences

    Science.gov (United States)

    Bao, Jianfeng; Cui, Xiaohong; Huang, Yuqing; Zhong, Jianhui; Chen, Zhong

    2015-08-01

    High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia.

  7. Quantum Coherent Multielectron Processes in an Atomic Scale Contact

    DEFF Research Database (Denmark)

    Peters, Peter-Jan; Xu, Fei; Kaasbjerg, Kristen

    2017-01-01

    The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hv > 2eV. A model of electrons interacting...

  8. Laser coherent control of quantum dynamics at the CSIR: NLC

    CSIR Research Space (South Africa)

    Botha, L

    2010-09-01

    Full Text Available reaction channels. The principle used is controlled interference of the quantum wave functions via time domain shaped ultra-short pulses. The time/frequency product of a pulse is a constant, determined by Heisenberg’s uncertainty principle, therefore, a...

  9. Fractional revivals of coherence in quantum mechanical oscillators

    NARCIS (Netherlands)

    Ross, J.C.; Capel, H.W.

    2000-01-01

    A case study is made of the delocalisation and revival dynamics of a continuously driven quantum pendulum in integrable and near integrable regimes, utilising the Husimi phase-space distribution function, and an entropy function which measures the degree of localisation. The numerical results can be

  10. Theory of coherent dynamic nuclear polarization in quantum dots

    DEFF Research Database (Denmark)

    Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand

    2014-01-01

    We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...

  11. Optical coherence tomography in otolaryngology: original results and review of the literature

    Science.gov (United States)

    Bibas, Athanasios G.; Podoleanu, Adrian Gh.; Cucu, Radu G.; Dobre, George M.; Odell, Edward; Boxer, Aaron B.; O'Connors, Alec F.; Gleeson, Michael J.

    2004-07-01

    Optical coherence tomography is a diagnostic imaging technique allowing two dimensional tomographic imaging of tissue architecture. This is a review article on the use of optical coherence tomography in Otolaryngology including original images from human laryngeal tissue and temporal bones (cochlea) in our laboratory. Tissue specimens from normal larynges were imaged with an 850 nm OCT system. Our results showed good correlation between OCT image s and the corresponding haematoxylin-eosin stained histology sections in the normal larynx. Human temporal bones were also imaged using an 1300 nm OCT system. Limited morphological details were obtained due to the high scattering properties of the bony labyrinth.

  12. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds.

    Science.gov (United States)

    Ryan, Robert G; Stacey, Alastair; O'Donnell, Kane M; Ohshima, Takeshi; Johnson, Brett C; Hollenberg, Lloyd C L; Mulvaney, Paul; Simpson, David A

    2018-04-18

    Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp 2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.

  13. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    Science.gov (United States)

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  14. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  15. Coherent exciton transport in dendrimers and continuous-time quantum walks

    Science.gov (United States)

    Mülken, Oliver; Bierbaum, Veronika; Blumen, Alexander

    2006-03-01

    We model coherent exciton transport in dendrimers by continuous-time quantum walks. For dendrimers up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For larger dendrimers, the recurrence ceases to be perfect, a fact which resembles results for discrete quantum carpets. Moreover, depending on the initial excitation site, we find that the coherent transport to certain nodes of the dendrimer has a very low probability. When the initial excitation starts from the central node, the problem can be mapped onto a line which simplifies the computational effort. Furthermore, the long time average of the quantum mechanical transition probabilities between pairs of nodes shows characteristic patterns and allows us to classify the nodes into clusters with identical limiting probabilities. For the (space) average of the quantum mechanical probability to be still or to be again at the initial site, we obtain, based on the Cauchy-Schwarz inequality, a simple lower bound which depends only on the eigenvalue spectrum of the Hamiltonian.

  16. Coherent states and classical limit of algebraic quantum models

    International Nuclear Information System (INIS)

    Scutaru, H.

    1983-01-01

    The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines

  17. Quantum correlations between each two-level system in a pair of atoms and general coherent fields

    Directory of Open Access Journals (Sweden)

    S. Abdel-Khalek

    Full Text Available The quantitative description of the quantum correlations between each two-level system in a two-atom system and the coherent fields initially defined in a coherent state in the framework of power-law potentials (PLPCSs is considered. Specifically, we consider two atoms locally interacting with PLPCSs and take into account the different terms of interactions, the entanglement and quantum discord are studied including the time-dependent coupling and photon transition effects. Using the monogamic relation between the entanglement of formation and quantum discord in tripartite systems, we show that the control and preservation of the different kinds of quantum correlations greatly benefit from the combination of the choice of the physical quantities. Finally, we explore the link between the dynamical behavior of quantum correlations and nonclassicality of the fields with and without atomic motion effect. Keywords: Quantum correlations, Monogamic relation, Coherent states, Power-law potentials, Wehrl entropy

  18. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    International Nuclear Information System (INIS)

    Shen Yong; Yang Jian; Guo Hong

    2009-01-01

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  19. A simple coherent attack and practical security of differential phase shift quantum cryptography

    International Nuclear Information System (INIS)

    Kronberg, D A

    2014-01-01

    The differential phase shift quantum key distribution protocol reveals good security against such powerful attacks as unambiguous state discrimination and beam splitting attacks. Its complete security analysis is complex due to high dimensions of the supposed spaces and density operators. In this paper, we consider a particular and conceptually simple coherent attack, available in practical implementations. The main condition for this attack is the length of used coherent state tuples of order 8–12. We show that under this condition, no high level of practical distance between legitimate users can be achieved. (paper)

  20. Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics

    International Nuclear Information System (INIS)

    Axt, V M; Kuhn, T

    2004-01-01

    The application of femtosecond spectroscopy to the study of ultrafast dynamics in semiconductor materials and nanostructures is reviewed with particular emphasis on the physics that can be learned from it. Excitation with ultrashort optical pulses in general results in the creation of coherent superpositions and correlated many-particle states. The review comprises a discussion of the dynamics of this correlated many-body system during and after pulsed excitation as well as its analysis by means of refined measurements and advanced theories. After an introduction of basic concepts-such as coherence, correlation and quantum kinetics-a brief overview of the most important experimental techniques and theoretical approaches is given. The remainder of this paper is devoted to specific results selected in order to highlight how femtosecond spectroscopy gives access to the physics of coherences, correlations and quantum kinetics involving charge, spin and lattice degrees of freedom. First examples deal with the dynamics of basic laser-induced coherences that can be observed, e.g. in quantum beat spectroscopy, in coherent control measurements or in experiments using few-cycle pulses. The phenomena discussed here are basic in the sense that they can be understood to a large extent on the mean-field level of the theory. Nevertheless, already on this level it is found that semiconductors behave substantially differently from atomic systems. Subsequent sections report on the occurrence of coherences and correlations beyond the mean-field level that are mediated either by carrier-phonon or carrier-carrier interactions. The corresponding analysis gives deep insight into fundamental issues such as the energy-time uncertainty, pure dephasing in quantum dot structures, the role of two-pair or even higher correlations and the build-up of screening. Finally results are presented concerning the ultrafast dynamics of resonantly coupled excitations, where a combination of different

  1. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2009-12-14

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  2. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  3. Quantum quench in one dimension: coherent inhomogeneity amplification and "supersolitons".

    Science.gov (United States)

    Foster, Matthew S; Yuzbashyan, Emil A; Altshuler, Boris L

    2010-09-24

    We study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating ground states before and after the quench, respectively. We show that the quench induces power law amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator. As an illustration, we consider the traveling density waves launched from an initial localized density bump. While these waves exhibit a particular rigid shape, their amplitudes grow without bound.

  4. Quantum dual signature scheme based on coherent states with entanglement swapping

    International Nuclear Information System (INIS)

    Liu Jia-Li; Shi Rong-Hua; Shi Jin-Jing; Lv Ge-Li; Guo Ying

    2016-01-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. (paper)

  5. Quantum dual signature scheme based on coherent states with entanglement swapping

    Science.gov (United States)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  6. Computing Coherence Vectors and Correlation Matrices with Application to Quantum Discord Quantification

    Directory of Open Access Journals (Sweden)

    Jonas Maziero

    2016-01-01

    Full Text Available Coherence vectors and correlation matrices are important functions frequently used in physics. The numerical calculation of these functions directly from their definitions, which involves Kronecker products and matrix multiplications, may seem to be a reasonable option. Notwithstanding, as we demonstrate in this paper, some algebraic manipulations before programming can reduce considerably their computational complexity. Besides, we provide Fortran code to generate generalized Gell-Mann matrices and to compute the optimized and unoptimized versions of associated Bloch’s vectors and correlation matrix in the case of bipartite quantum systems. As a code test and application example, we consider the calculation of Hilbert-Schmidt quantum discords.

  7. Coherent versus incoherent dynamics in InAs quantum-dot active wave guides

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    Coherent dynamics measured by time-resolved four-wave mixing is compared to incoherent population dynamics measured by differential transmission spectroscopy on the ground-state transition at room temperature of two types of InAs-based quantum dots with different confinement energies. The measure....... The measurements are performed with heterodyne detection on quantum-dot active wave guides to enhance the light-matter interaction length. An elastic nature of the measured dephasing is revealed which is independent of the dot energy level scheme....

  8. Subwavelength atom localization via quantum coherence in a three-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ghafoor, Fazal [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-12-15

    We propose a three-level atomic system where quantum coherence is generated by a classical standing-wave field coupled to the two upper excited decaying levels. Quantum coherence results in cancellation of the spontaneously emitted spectral lines depending on the choice of the phase of the standing wave. We exploit this phenomenon for precision measurement of the atomic position in the standing wave. Measurement of the conditional position probability distribution shows one to eight peaks per unit wavelength of the standing wave. Only one controllable parameter, that is, the phase of the driving standing wave, is enough to control these atomic positions. Along with the other results, the result of obtaining a single peak is remarkable as it enhances the efficiency of our system by a factor of 8.

  9. Subwavelength atom localization via quantum coherence in a three-level atomic system

    International Nuclear Information System (INIS)

    Ghafoor, Fazal

    2011-01-01

    We propose a three-level atomic system where quantum coherence is generated by a classical standing-wave field coupled to the two upper excited decaying levels. Quantum coherence results in cancellation of the spontaneously emitted spectral lines depending on the choice of the phase of the standing wave. We exploit this phenomenon for precision measurement of the atomic position in the standing wave. Measurement of the conditional position probability distribution shows one to eight peaks per unit wavelength of the standing wave. Only one controllable parameter, that is, the phase of the driving standing wave, is enough to control these atomic positions. Along with the other results, the result of obtaining a single peak is remarkable as it enhances the efficiency of our system by a factor of 8.

  10. Quantum mechanical noise in coherent-state and squeezed-state Michelson interferometers

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob

    2002-01-01

    In the present study we extend and generalize previous results for coherent-state and squeezed-state Michelson interferometer quantum mechanical uncertainties (or fluctuations), which are commonly referred to as 'quantum noise'. The calculation of photon counting (PC) fluctuations in the squeezed-state interferometer is extended to fourth-order correlation functions used as the measured signal. We also generalize a 'unified model' for treating both PC and radiation pressure fluctuations in the coherent-state interferometer, by using mathematical methods which apply to Kerr-type interactions. The results are more general than those reported previously in two ways. First, we obtain exact expressions, which lead to previous results under certain approximations. Second, we deal with cases in which the responses of the two mirrors to radiation pressure are not equal

  11. Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Kim, Ho-Joon [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Ji, Se-Wan [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Nha, Hyunchul [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Institute fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2011-07-15

    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.

  12. Security proof of continuous-variable quantum key distribution using three coherent states

    Science.gov (United States)

    Brádler, Kamil; Weedbrook, Christian

    2018-02-01

    We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.

  13. Coherent quantum phase slip in two-component bosonic atomtronic circuits

    International Nuclear Information System (INIS)

    Gallemí, A; Mateo, A Muñoz; Mayol, R; Guilleumas, M

    2016-01-01

    Coherent quantum phase slip consists in the coherent transfer of vortices in superfluids. We investigate this phenomenon in two miscible coherently coupled components of a spinor Bose gas confined in a toroidal trap. After imprinting different vortex states, i.e. states with quantized circulation, on each component, we demonstrate that during the whole dynamics the system remains in a linear superposition of two current states in spite of the nonlinearity, and can be mapped onto a linear Josephson problem. We propose this system as a good candidate for the realization of a Mooij–Harmans qubit and remark its feasibility for implementation in current experiments with 87 Rb, since we have used values for the physical parameters currently available in laboratories. (paper)

  14. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Scheme of 2-dimensional atom localization for a three-level atom via quantum coherence

    OpenAIRE

    Zafar, Sajjad; Ahmed, Rizwan; Khan, M. Khalid

    2013-01-01

    We present a scheme for two-dimensional (2D) atom localization in a three-level atomic system. The scheme is based on quantum coherence via classical standing wave fields between the two excited levels. Our results show that conditional position probability is significantly phase dependent of the applied field and frequency detuning of spontaneously emitted photons. We obtain a single localization peak having probability close to unity by manipulating the control parameters. The effect of ato...

  16. Security of continuous-variable quantum cryptography using coherent states: Decline of postselection advantage

    International Nuclear Information System (INIS)

    Namiki, Ryo; Hirano, Takuya

    2005-01-01

    We investigate the security of continuous-variable (CV) quantum key distribution (QKD) using coherent states in the presence of quadrature excess noise. We consider an eavesdropping attack that uses a linear amplifier and a beam splitter. This attack makes a link between the beam-splitting attack and the intercept-resend attack (classical teleportation attack). We also show how postselection loses its efficiency in a realistic channel

  17. Pseudo-Hermitian coherent states under the generalized quantum condition with position-dependent mass

    International Nuclear Information System (INIS)

    Yahiaoui, S A; Bentaiba, M

    2012-01-01

    In the context of the factorization method, we investigate the pseudo-Hermitian coherent states and their Hermitian counterpart coherent states under the generalized quantum condition in the framework of a position-dependent mass. By considering a specific modification in the superpotential, suitable annihilation and creation operators are constructed in order to reproduce the Hermitian counterpart Hamiltonian in the factorized form. We show that by means of these ladder operators, we can construct a wide range of exactly solvable potentials as well as their accompanying coherent states. Alternatively, we explore the relationship between the pseudo-Hermitian Hamiltonian and its Hermitian counterparts, obtained from a similarity transformation, to construct the associated pseudo-Hermitian coherent states. These latter preserve the structure of Perelomov’s states and minimize the generalized position–momentum uncertainty principle. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  18. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    Science.gov (United States)

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  19. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiming, E-mail: 465609785@qq.com [School of Economics and Management, Wuyi University, Jiangmen 529020 (China); Situ, Haozhen, E-mail: situhaozhen@gmail.com [College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642 (China)

    2017-02-15

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  20. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    International Nuclear Information System (INIS)

    Huang, Zhiming; Situ, Haozhen

    2017-01-01

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  1. The origin of the algebra of quantum operators in the stochastic formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Davidson, M.

    1979-01-01

    The origin of the algebra of the non-commuting operators of quantum mechanics is explained in the general Fenyes-Nelson stochastic models in which the diffusion constant is a free parameter. This is achieved by continuing the diffusion constant to imaginary values, a continuation which destroys the physical interpretation, but does not affect experimental predictions. This continuation leads to great mathematical simplification in the stochastic theory, and to an understanding of the entire mathematical formalism of quantum mechanics. It is more than a formal construction because the diffusion parameter is not an observable in these theories. (Auth.)

  2. Efficient one-out-of-two quantum oblivious transfer based on four-coherent-state postselection protocol

    International Nuclear Information System (INIS)

    Chen, I-C; Hwang Tzonelih; Li C-M

    2008-01-01

    On the basis of the modified four-coherent-state post-selection quantum key distribution protocol (Namiki and Hirano 2006 Preprint quant-ph/0608144v1), two 1-out-of-2 quantum oblivious transfer (QOT 2 1 ) protocols are proposed. The first proposed protocol (called the receiver-based QOT 2 1 protocol) requires the coherent states to be prepared by the receiver, whereas the second protocol (called the sender-based QOT 2 1 protocol) allows the coherent states to be generated by the sender. The main advantages of the proposed protocols are that (i) no quantum bit commitment schemes and the assumption of quantum memory are needed; (ii) less communication cost between participants is required, i.e. the receiver-based QOT 2 1 protocol requires only one quantum communication and one classical communication and the sender-based QOT 2 1 protocol requires only one quantum communication between participants during protocol execution; and (iii) the utilization of quantum states is very efficient, wherein the receiver-based and the sender-based QOT 2 1 protocols use only two coherent pulses and one coherent pulse respectively for sending the sender's two messages

  3. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    Science.gov (United States)

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  4. Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point

    Science.gov (United States)

    Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng

    2018-03-01

    Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.

  5. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    Science.gov (United States)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2018-06-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  6. QUANTUM INFORMATION. Coherent coupling between a ferromagnetic magnon and a superconducting qubit.

    Science.gov (United States)

    Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2015-07-24

    Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending to macroscopic dimensions. A magnon is a quantum of such collective excitation modes in ordered spin systems. Here, we demonstrate the coherent coupling between a single-magnon excitation in a millimeter-sized ferromagnetic sphere and a superconducting qubit, with the interaction mediated by the virtual photon excitation in a microwave cavity. We obtain the coupling strength far exceeding the damping rates, thus bringing the hybrid system into the strong coupling regime. Furthermore, we use a parametric drive to realize a tunable magnon-qubit coupling scheme. Our approach provides a versatile tool for quantum control and measurement of the magnon excitations and may lead to advances in quantum information processing. Copyright © 2015, American Association for the Advancement of Science.

  7. Electron Spin Coherence Times in Si/SiGe Quantum Dots

    Science.gov (United States)

    Jock, R. M.; He, Jianhua; Tyryshkin, A. M.; Lyon, S. A.; Lee, C.-H.; Huang, S.-H.; Liu, C. W.

    2014-03-01

    Single electron spin states in silicon have shown a great deal of promise as qubits due to their long spin relaxation (T1) and coherence (T2) times. Recent results exhibit a T2 of 250 us for electrons confined in Si/SiGe quantum dots at 350 mK. These experiments used conventional X-band (10 GHz) pulsed Electron Spin Resonance on a large area (3.5 mm x 20 mm), dual-gated, undoped Si/SiGe heterostructure quantum dots. These dots are induced in a natural Si quantum well by e-beam defined gates having a lithographic radius of 150 nm and pitch of 700 nm. The relatively large size of these dots led to closely spaced energy levels and long T2's could only be measured at sub-Kelvin temperatures. At 2K confined electrons displayed a 3 us T2, which is comparable to that of 2D electrons at that temperature. Decreasing the quantum dot size increases the electron confinement and reduces the effects of valley-splitting and spin-orbit coupling on the electron spin coherence times. We will report results on dots with 80 nm lithographic radii and a 375 nm pitch. This device displays an extended electron coherence time of 30 us at 2K, suggesting tighter confinement of electrons. Further measurements at lower temperatures are in progress. This work was supported in part by NSF through the Materials World Network program (DMR-1107606) and the Princeton MRSEC (DMR-0819860), and in part by the U.S. Army Research Office (W911NF-13-1-0179).

  8. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  9. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  10. Preparation and coherent manipulation of pure quantum states of a single molecular ion

    Science.gov (United States)

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich

    2017-05-01

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  11. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne; Villas-Boas, Jose M.; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nanocavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nanocavity mode. Photoluminescence measurements show a characteristic triple peak during the double anticrossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced.

  12. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Laucht, Arne; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Technische Universitaet Muenchen, Garching (Germany). Walter Schottky Inst.

    2011-07-01

    Full text. We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nano cavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nano cavity mode. Photoluminescence measurements show a characteristic triple peak during the double anti crossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced

  13. Propagation of superconducting coherence via chiral quantum-Hall edge channels.

    Science.gov (United States)

    Park, Geon-Hyoung; Kim, Minsoo; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong

    2017-09-08

    Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.

  14. Enhancement of coherent acoustic phonons in InGaN multiple quantum wells

    Science.gov (United States)

    Hafiz, Shopan D.; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    Enhancement of coherent zone folded longitudinal acoustic phonon (ZFLAP) oscillations at terahertz frequencies was demonstrated in InGaN multiple quantum wells (MQWs) by using wavelength degenerate time resolved differential transmission spectroscopy. Screening of the piezoelectric field in InGaN MQWs by photogenerated carriers upon femtosecond pulse excitation gave rise to terahertz ZFLAPs, which were monitored at the Brillouin zone center in the transmission geometry. MQWs composed of 10 pairs InxGa1-xN wells and In0.03Ga0.97N barriers provided coherent phonon frequencies of 0.69-0.80 THz depending on the period of MQWs. Dependences of ZFLAP amplitude on excitation density and wavelength were also investigated. Possibility of achieving phonon cavity, incorporating a MQW placed between two AlN/GaN phonon mirrors designed to exhibit large acoustic gaps at the zone center, was also explored.

  15. Quantum coherence due to Bose-Einstein condensation of parametrically driven magnons

    International Nuclear Information System (INIS)

    Demokritov, S O; Demidov, V E; Dzyapko, O; Melkov, G A; Slavin, A N

    2008-01-01

    The room-temperature kinetics and thermodynamics of the magnon gas driven by microwave pumping has been investigated by means of the Brillouin light scattering (BLS) technique. We show that for high enough pumping powers the quantum relaxation of the driven gas results in a quasi-equilibrium state described by the Bose-Einstein statistics with a nonzero chemical potential. Further increase of the pumping power causes a Bose-Einstein condensation in the magnon gas documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the BLS to the coherence degree of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, if their density exceeds a critical value

  16. Quantum coherent transport in SnTe topological crystalline insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Assaf, B. A.; Heiman, D. [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Katmis, F.; Moodera, J. S. [Francis Bitter Magnet Laboratory, MIT, Cambridge, Massachusetts 02139 (United States); Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Wei, P. [Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Zhang, Z. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bennett, S. P.; Harris, V. G. [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-09-08

    Topological crystalline insulators (TCI) are unique systems where a band inversion that is protected by crystalline mirror symmetry leads to a multiplicity of topological surface states. Binary SnTe is an attractive lead-free TCI compound; the present work on high-quality thin films provides a route for increasing the mobility and reducing the carrier density of SnTe without chemical doping. Results of quantum coherent magnetotransport measurements reveal a multiplicity of Dirac surface states that are unique to TCI. Modeling of the weak antilocalization shows variations in the extracted number of carrier valleys that reflect the role of coherent intervalley scattering in coupling different Dirac states on the degenerate TCI surface.

  17. Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures.

    Science.gov (United States)

    Chen, Aixi

    2014-11-03

    In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.

  18. Spectrally tunable mollow triplet emission from a coherently excited quantum dot in a microcavity

    DEFF Research Database (Denmark)

    Ulrich, Sven M.; Ates, Serkan; Reitzenstein, Stephan

    2010-01-01

    Resonance fluorescence of excitonic s-shell emission from a coherently pumped single InGaAs/GaAs quantum dot inside a micropillar cavity has been investigated in dependence on optical pump power and laser detuning, respectively. For strong purely resonant excitation, Mollow triplet spectra with l...... with large Rabi splittings of j~­j » 60¹eV have been observed. Laser detuning-dependent series revealed the pronounced asymmetry of the emission triplet as predicted by theory. From our data, an electrical dipole moment of ¹ » 17:8§0:5 Debye could be derived for the excitonic state....

  19. The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele, E-mail: raffaele.borrelli@unito.it [DISAFA, Università di Torino, I-10095 Grugliasco (Italy); Gelin, Maxim F. [Departement of Chemistry, Technische Universität München, D-85747 Garching (Germany)

    2016-12-20

    A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac–Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.

  20. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  1. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    International Nuclear Information System (INIS)

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-01-01

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device

  2. Quantum electronics and Moscow State University's Khokhlov-Akhmanov school of coherent and nonlinear optics

    International Nuclear Information System (INIS)

    Makarov, V.A.

    2004-01-01

    The aim of the report is to describe the history of the Moscow University Coherent and Nonlinear Optics School headed by R.V. Khokhlov and S.A. Akhmanov being a part of the history of the Russian efforts to investigate into quantum electronics. The reports describes briefly the most significant results of the mentioned School activity, in particular, thermonuclear reactions initiated by laser pulses in plasma; the procedure to accelerate electrons up to 1 GeV using the present-day lasers; the nonlinear-optical analogues of the Faraday and the Kerr effects [ru

  3. Coherent dynamics and terahertz emission in an asymmetric quantum well coupled to broadband infrared pulses

    International Nuclear Information System (INIS)

    Wu, B H; Cao, J C

    2004-01-01

    A selected intersubband transition in the asymmetric quantum well is theoretically proposed by using the superposition of two identical time delayed and phase shifted broadband pulses. Three conduction subbands in the semiconductor quantum well structure are optically coupled with the ultrafast infrared pulses. By adjusting the delay between these two pulses, the carriers at ground level can be selectively pumped to one of the upper levels, while the other upper level remains unoccupied. Thus selective transitions in the three level model can be manipulated by optical interference. At the same time, terahertz radiation will be emitted by coherent controlled charge oscillations. The phase and amplitude of THz radiation is found to be sensitive to the optical interference of the coupling pulses

  4. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  5. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent

    Science.gov (United States)

    Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.

    2017-09-01

    Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.

  6. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  7. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    International Nuclear Information System (INIS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-01-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  8. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier

    International Nuclear Information System (INIS)

    Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong

    2014-01-01

    By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced

  9. Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation.

    Science.gov (United States)

    Martin, Eamonn; Watts, Regan; Bramerie, Laurent; Shen, Alexandre; Gariah, Harry; Blache, Fabrice; Lelarge, Francois; Barry, Liam

    2012-12-01

    This research carries out coherence measurements of a 42.7 GHz quantum dash (QDash) semiconductor laser when passively, electrically, and optically mode-locked. Coherence of the spectral lines from the mode-locked laser is determined by examining the radio frequency beat-tone linewidth as the mode spacing is increased up to 1.1 THz. Electric-field measurements of the QDash laser are also presented, from which a comparison between experimental results and accepted theory for coherence in passively mode-locked lasers has been performed.

  10. EDITORIAL: Theory of Quantum Gases and Quantum Coherence: The Cortona BEC Workshop, 29 October-2 November 2005

    Science.gov (United States)

    Capuzzi, Pablo; Chitra, R.; Menotti, Chiara; Minguzz, Anna; Vignolo, Patrizia

    2006-05-01

    Nonlinear, or multiphoton, interaction of intense laser radiation with matter has been a key research subject for about four decades. Every three years, the International Conference on Multiphoton Processes (ICOMP) covers the latest advances in the field. Intense-field physics has seen phenomenal progress over the last decade. What looked like dreams in the mid-nineties have become routine today. Major theoretical, experimental and technological advances in fundamental science and applications of multiphoton processes cover such diverse areas as precision measurements, femtosecond and now attosecond metrology, quantum control of atomic and molecular dynamics, laser machining of solid state materials, laser acceleration of electrons and protons, and medical applications. This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics (J. Phys. B) contains a collection of articles originating from the Tenth International Conference on Multiphoton Processes (ICOMP 2005) held on 9-14 October 2005 in Orford, Quebec, Canada (general chair Lou DiMauro, Ohio State University, program co-chairs Paul Corkum and Misha Ivanov, National Research Council of Canada). The conference focused on atoms and molecules in strong fields, femtosecond and attosecond processes, propagation of intense pulses, and of course multiphoton processes which lie at the foundation of all these subjects. Articles presented in this issue cover several key areas of intense-field physics. These include strong field ionization of atoms, molecules and inside transparent dielectric materials, methods of generation and characterization of attosecond XUV pulses and pulse trains, and new approaches to using intense laser fields and/or attosecond pulses for studying entangled systems and imaging electronic and nuclear dynamics with sub-Ångstrom spatial and sub-femtosecond temporal resolution. We have tried to group the papers according to these general areas. We would like to use this

  11. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    DEFF Research Database (Denmark)

    Gehring, Tobias; Haendchen, Vitus; Duhme, Joerg

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State......-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our...... with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components....

  12. Quantum origin of the primordial fluctuation spectrum and its statistics

    Science.gov (United States)

    Landau, Susana; León, Gabriel; Sudarsky, Daniel

    2013-07-01

    The usual account for the origin of cosmic structure during inflation is not fully satisfactory, as it lacks a physical mechanism capable of generating the inhomogeneity and anisotropy of our Universe, from an exactly homogeneous and isotropic initial state associated with the early inflationary regime. The proposal in [A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006)] considers the spontaneous dynamical collapse of the wave function as a possible answer to that problem. In this work, we review briefly the difficulties facing the standard approach, as well as the answers provided by the above proposal and explore their relevance to the investigations concerning the characterization of the primordial spectrum and other statistical aspects of the cosmic microwave background and large-scale matter distribution. We will see that the new approach leads to novel ways of considering some of the relevant questions, and, in particular, to distinct characterizations of the non-Gaussianities that might have left imprints on the available data.

  13. Sonoluminescence Explained by the Standpoint of Coherent Quantum Vacuum Dynamics and its Prospects for Energy Production

    Science.gov (United States)

    Maxmilian Caligiuri, Luigi; Musha, Takaaki

    Sonoluminescence, or its more frequently studied version known as Single Bubble Sonoluminescence, consisting in the emission of light by a collapsing bubble in water under ultrasounds, represents one of the most challenging and interesting phenomenon in theoretical physics. In fact, despite its relatively easy reproducibility in a simple laboratory, its understanding within the commonly accepted picture of condensed matter remained so far unsatisfactory. On the other hand, the possibility to control the physical process involved in sonoluminescence, representing a sort of nuclear fusion on small scale, could open unthinkable prospects of free energy production from water. Different explanations has been proposed during the past years considering, in various way, the photoemission to be related to electromagnetic Zero Point Field energy dynamics, by considering the bubble surface as a Casimir force boundary. More recently a model invoking Cherenkov radiation emission from superluminal photons generated in quantum vacuum has been successfully proposed. In this paper it will be shown that the same results can be more generally explained and quantitative obtained within a QED coherent dynamics of quantum vacuum, according to which the electromagnetic energy of the emitted photons would be related to the latent heat involved in the phase transition from water's vapor to liquid phase during the bubble collapse. The proposed approach could also suggest an explanation of a possible mechanism of generation of faster than light (FTL) photons required to start Cherenkov radiation as well as possible applications to energy production from quantum vacuum.

  14. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  15. The quantum mechanical measuring process as a scattering phenomenon inducing a collective coherent motion

    International Nuclear Information System (INIS)

    Requardt, M.

    1984-01-01

    In this paper we want to discuss the quantum mechanical measuring process within the realm of many body quantum theory. Our starting point is to consider this process as a special scattering phenomenon where within one of the partners, i.e. the many body measuring device, a collective coherent motion is induced by the interaction with the microobject. We start our investigation with the many body system having a large but finite number N of degrees of freedom which is the real situation. We then study in detail what will happen in the limit N->infinite, however emphasizing that this transition is actually only performed in the mind of the observer. This implies that certain tail events together with their phase correlations have to be truncated. We show that the dichotomy 'pure state' versus 'mixture' as outgoing scattering states will vanish in this limit in so far as it has no observable consequences provided one is only interested in the state of the microobject. Furthermore, we discuss the role of the observer, the notion of 'event', the relation between single preparation and ensemble picture, and the so-called 'reduction of the wave function' in the light of our approach, i.e. explaining the phenomena accompanying the measuring process in terms of many body quantum theory. (orig.)

  16. Coherent dynamics of exciton and biexciton resonances in InGaAs/GaAs single quantum wells

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    The coherent dynamics of both exciton and biexciton resonances have been investigated in In0.18Ga0.82As/GaAs single quantum wells with thicknesses ranging from 1 to 4 nm, using time-integrated and spectrally-resolved transient four-wave mixing. From the temperature dependence of the exciton...

  17. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  18. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  19. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Feng; Zhang, Chun-Hui; Liu, Ai-Ping [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Wang, Qin, E-mail: qinw@njupt.edu.cn [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-01

    In this paper, we propose to implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. By comparing its performance with other existing schemes, we demonstrate that our new scheme can overcome many shortcomings existing in current schemes, and show excellent behavior in the quantum key distribution. Moreover, even when taking the statistical fluctuation into account, we can still obtain quite high key generation rate at very long transmission distance by using our new scheme. - Highlights: • Implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. • Overcome many shortcomings existing in current schemes and show excellent behavior. • Obtain quite high key generation rate even when taking statistical fluctuation into account.

  20. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve...... the coherent field associated with Rayleigh component using ultrafast spectral interferometry or Tadpole, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our observation demonstrates that Rayleigh scattering from static disorder is inherently a non-ergodic process...... invalidating the use of current theories using ensemble averages to describe our observations. Furthermore, we report here a new and hitherto unknown coherent scattering mechanism involving the two-photon coherence associated with the biexciton transition. The process leaves an exciton behind taking up...

  1. Coherent chemical kinetics as quantum walks. II. Radical-pair reactions in Arabidopsis thaliana

    Science.gov (United States)

    Chia, A.; Górecka, A.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.

    2016-03-01

    We apply the quantum-walk approach proposed in the preceding paper [A. Chia et al., preceding paper, Phys. Rev. E 93, 032407 (2016), 10.1103/PhysRevE.93.032407] to a radical-pair reaction where realistic estimates for the intermediate transition rates are available. The well-known average hitting time from quantum walks can be adopted as a measure of how quickly the reaction occurs and we calculate this for varying degrees of dephasing in the radical pair. The time for the radical pair to react to a product is found to be independent of the amount of dephasing introduced, even in the limit of no dephasing where the transient population dynamics exhibits strong coherent oscillations. This can be seen to arise from the existence of a rate-limiting step in the reaction and we argue that in such examples, a purely classical model based on rate equations can be used for estimating the time scale of the reaction but not necessarily its population dynamics.

  2. Semiclassical description of quantum rotator in terms of SU(2) coherent states

    International Nuclear Information System (INIS)

    Gitman, D M; Petrusevich, D A; Shelepin, A L

    2013-01-01

    We introduce coordinates of the rigid body (rotator) using mutual positions between body-fixed and space-fixed reference frames. Wave functions that depend on such coordinates can be treated as scalar functions of the group SU(2). Irreducible representations of the group SU(2) × SU(2) in the space of such functions describe their possible transformations under independent rotations of the both reference frames. We construct sets of the corresponding group SU(2) × SU(2) Perelomov coherent states (CS) with a fixed angular momentum j of the rotator as special orbits of the latter group. Minimization of different uncertainty relations is discussed. The classical limit corresponds to the limit j → ∞. Considering Hamiltonians of rotators with different characteristics, we study the time evolution of the constructed CS. In some cases, the CS time evolution is completely or partially reduced to their parameter time evolution. If these parameters are chosen as Euler angles, then they obey the Euler equations in the classical limit. Quantum corrections to the motion of the quantum rotator can be found from exact equations on the CS parameters. (paper)

  3. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR.

    Science.gov (United States)

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2014-08-07

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".

  4. Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport

    Science.gov (United States)

    Seward, Kenton; Lin, Zhibin; Lusk, Mark

    2012-02-01

    The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.

  5. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.

    Science.gov (United States)

    Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

    2013-07-19

    Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    DEFF Research Database (Denmark)

    Shirazi, Roza; Kovacs, Andras; Corell, Dennis Dan

    2013-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude...

  7. Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.

    Science.gov (United States)

    Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q

    2017-07-12

    A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.

  8. Femtosecond coherent control of absorption and free induction decay in a GaAs multiple quantum well

    CERN Document Server

    Yee, D S

    2000-01-01

    Excitonic polarizations are coherently excited using two phase-locked pulses. By probing the linear propagation of the pulses through a GaAs/AlGaAs multiple quantum well sample, we directly demonstrate the intriguing interaction between the coherent exciton polarizations and the controlling pulses. It is shown that the second pulse can be either strongly amplified by taking up energy gained from the destruction of the exciton polarization or drastically decreased by giving up all its energy to excitons. The temporal signatures of the transmitted pulse shapes agree well with model calculations.

  9. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

    Science.gov (United States)

    Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel

    2013-03-11

    It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

  10. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    International Nuclear Information System (INIS)

    Motazedifard, Ali; Bemani, F; Naderi, M H; Roknizadeh, R; Vitali, D

    2016-01-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers. (paper)

  11. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    Science.gov (United States)

    Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.

    2016-07-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.

  12. Coherent pions as the origin of excessive soft photons in hadron collisions

    International Nuclear Information System (INIS)

    Lo, S.Y.; Schreiber, A.

    1986-01-01

    The published inclusive photon spectrum from 70 GeV/c K + p interactions can be fitted by using a simple model of semi-coherent π 0 -production. The model relies on the fact that the size of the production region is of the order of fermis and hence the uncertainty relation plays a dominant role in the production of coherent pions. (orig.)

  13. Propagator formalism and computer simulation of restricted diffusion behaviors of inter-molecular multiple-quantum coherences

    International Nuclear Information System (INIS)

    Cai Congbo; Chen Zhong; Cai Shuhui; Zhong Jianhui

    2005-01-01

    In this paper, behaviors of single-quantum coherences and inter-molecular multiple-quantum coherences under restricted diffusion in nuclear magnetic resonance experiments were investigated. The propagator formalism based on the loss of spin phase memory during random motion was applied to describe the diffusion-induced signal attenuation. The exact expression of the signal attenuation under the short gradient pulse approximation for restricted diffusion between two parallel plates was obtained using this propagator method. For long gradient pulses, a modified formalism was proposed. The simulated signal attenuation under the effects of gradient pulses of different width based on the Monte Carlo method agrees with the theoretical predictions. The propagator formalism and computer simulation can provide convenient, intuitive and precise methods for the study of the diffusion behaviors

  14. A quantum chaotic clock and damping of the coherent nuclear rotation in the 28Si+64Ni dissipative collision

    International Nuclear Information System (INIS)

    Kun, S.Y.; Vagov, A.V.

    1997-01-01

    We employ the statistical reactions with memory approach to study oscillating excitation functions in the 28 Si(E lab =120-126.75 MeV)+ 64 Ni strongly dissipative reaction and the time evolution of the collision process. The nonself-averaging of the oscillations in the excitation functions is interpreted as indication of quantum chaos and damping of the coherent nuclear rotation in dissipative heavy-ion collisions. (orig.)

  15. Intercept-resend attacks in the Bennett-Brassard 1984 quantum-key-distribution protocol with weak coherent pulses

    International Nuclear Information System (INIS)

    Curty, Marcos; Luetkenhaus, Norbert

    2005-01-01

    Unconditional security proofs of the Bennett-Brassard 1984 protocol of quantum key distribution have been obtained recently. These proofs cover also practical implementations that utilize weak coherent pulses in the four signal polarizations. Proven secure rates leave open the possibility that new proofs or new public discussion protocols will obtain larger rates over increased distance. In this paper we investigate limits to the error rate and signal losses that can be tolerated by future protocols and proofs

  16. Freestanding silicon quantum dots: origin of red and blue luminescence.

    Science.gov (United States)

    Gupta, Anoop; Wiggers, Hartmut

    2011-02-04

    In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.

  17. Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer

    International Nuclear Information System (INIS)

    Khaneja, Navin; Brockett, Roger; Glaser, Steffen J.

    2002-01-01

    Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experiments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for coherence-transfer experiments in three-spin systems and implementation of indirect swap and Λ 2 (U) gates in the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, explicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of coherence, and implementation of indirect swap gates, in a three-spin network are derived (Theorems 1 and 2). It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with considerable time savings (e.g., 42.3% for constructing indirect swap gates)

  18. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

    Science.gov (United States)

    Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo

    2018-02-01

    The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  19. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    Science.gov (United States)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  20. Coherence versus incoherence: Collapse and revival in a simple quantum model

    International Nuclear Information System (INIS)

    Narozhny, N.B.; Sanchez-Mondragon, J.J.; Eberly, J.H.

    1981-01-01

    We describe the temporal behavior of the dynamic elements of an exactly soluble quantum model. The model consists of a single two-level atom or spin interacting with a single mode of the quantized radiation field in the dipole approximation, the mode being initially in an arbitrary coherent state of excitation. We give new long-time numerical and closed-form approximate analytic solutions for the expectation values of the atomic dipole moment and the difference in population of the two atomic levels in the rotating wave approximation. The atomic dipole-dipole correlation function is calculated. All of the results are obtained without semiclassical or decorrelation approximations. Unusual features found in the temporal behavior of this lossless model problem are ''collapse,'' i.e., episodic nonexponential damping of both the atomic inversion and dipole moment, and two kinds of ''revival'' or partial recorrelation, in the dynamic evolution, during which the initial state is nearly recovered. We give analytic formulas for the collapse function, for both of the revival times, and for the envelope of the revival maxima. Some remarks are made about the nature of irreversibility in this exactly soluble and loss-free model

  1. Quantum Properties of the Superposition of Two Nearly Identical Coherent States

    Science.gov (United States)

    Othman, Anas; Yevick, David

    2018-04-01

    In this paper, we examine the properties of the state obtained when two nearly identical coherent states are superimposed. We found that this state exhibits many nonclassical properties such as sub-Poissonian statistics, squeezing and a partially negative Wigner function. These and other properties indicate that such states, here termed near coherent states, are significantly closer to coherent states more than the generalized Schrördinger cat states. We finally provide an experimental procedure for generating the near coherent states.

  2. Geometry-based approach to studying the semi-classical limit in quantum dynamics by the coherent states and quantum mechanics on the torus

    International Nuclear Information System (INIS)

    Faure, F.

    1993-01-01

    This thesis deals with problems linked to the study of the semi-classical limit in quantum dynamics. The first part presents a geometrical formulation which is tantamount to the time dependent variational principle. The classical dynamics is considered as an orthogonal projection of the quantum dynamics on the family of coherent states. The angle of projection provides an information on the validity of the approximation. This angle is studied in an illustrating example. In the second part, we study quantum mechanics on the torus as a phase space, and particularly degeneracies in the spectrum of Harper like models or kicked Harper like models which manifest chaotic dynamics. These models find direct applications in solid state physics, especially with the quantum Hall effect. In this study, we use the Chern index, which is a topological characterization of the localization of the eigenfunctions as some periodicity conditions are changed. The use of the Husimi distribution provides a phase space representation of the quantum states. We discuss the role played by separatrix-states, by the effects of quantum tunneling, and by a classically chaotic dynamics. (orig.)

  3. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    Science.gov (United States)

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  4. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    Science.gov (United States)

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-10-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  5. Ferromagnetic Spin Coupling as the Origin of 0.7 Anomaly in Quantum Point Contacts

    OpenAIRE

    Aryanpour, K.; Han, J. E.

    2008-01-01

    We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that $0.7(2e^{2}/h)$ anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incohe...

  6. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  7. Local hidden variable modelling, classicality, quantum separability and the original Bell inequality

    International Nuclear Information System (INIS)

    Loubenets, Elena R

    2011-01-01

    We introduce a general condition sufficient for the validity of the original Bell inequality (1964) in a local hidden variable (LHV) frame. This condition can be checked experimentally and incorporates only as a particular case the assumption on perfect correlations or anticorrelations usually argued for this inequality in the literature. Specifying this general condition for a quantum bipartite case, we introduce the whole class of bipartite quantum states, separable and nonseparable, that (i) admit an LHV description under any bipartite measurements with two settings per site; (ii) do not necessarily exhibit perfect correlations and may even have a negative correlation function if the same quantum observable is measured at both sites, but (iii) satisfy the 'perfect correlation' version of the original Bell inequality for any three bounded quantum observables A 1 , A 2 = B 1 , B 2 at sites 'A' and 'B', respectively. Analysing the validity of this general LHV condition under classical and quantum correlation scenarios with the same physical context, we stress that, unlike the Clauser-Horne-Shimony-Holt inequality, the original Bell inequality distinguishes between classicality and quantum separability.

  8. The foundational origin of integrability in quantum field theory

    International Nuclear Information System (INIS)

    Schroer, Bert; FU-Berlin

    2012-02-01

    There are two foundational model-independent concepts of integrability in QFT. One is 'dynamical' and generalizes the solvability in closed analytic form of the dynamical aspects as known from the Kepler two-body problem and its quantum mechanical counterpart. The other, referred to as 'kinematical' integrability, has no classical nor even quantum mechanical counterpart; it describes the relation between so called eld algebra and its local observable subalgebras and their discrete inequivalent representation classes (the DHR theory of superselection sectors). In the standard case of QFTs with mass gaps it contains the information about the representation of the (necessary compact) internal symmetry group and statistics in form of a tracial state on a 'dual group'. In Lagrangian or functional quantization one deals with the eld algebra and the division into observable /eld algebras does presently not play a role in constructive approaches to QFT. 'Kinematical' integrability is however of particular interest in conformal theories where the observable algebra fulfils the Huygens principle (light like propagation) and lives on the compactified Minkowski spacetime whereas the eld algebra, whose spacetime symmetry group is the universal covering of the conformal group lives on the universal covering of the compactified Minkowski spacetime. Since the (anomalous) dimensions of fields show up in the spectrum of the unitary representative of the center of this group , the kinematical structure contained in the relation fields/Huygens observables valuable information which in the usual terminology would be called 'dynamical'. The dynamical integrability is defined in terms of properties of 'wedge localization' and uses the fact that modular localization theory allows to 'emulate' interaction-free wedge-localized operators in a objective manner with the wedge localized interacting algebra. Emulation can be viewed as a generalization of the functorial relation between localized

  9. Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Sabuncu, Metin; Huck, Alexander

    2010-01-01

    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information...... technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based...... on linear optics, and it protects a four-mode entangled mesoscopic state of light against erasures. We investigate two approaches for circumventing in-line losses, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means. Because in-line attenuation...

  10. The origins of cosmic rays and quantum effects on gravity

    Science.gov (United States)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  11. Origin of chaos near critical points of quantum flow.

    Science.gov (United States)

    Efthymiopoulos, C; Kalapotharakos, C; Contopoulos, G

    2009-03-01

    The general theory of motion in the vicinity of a moving quantum nodal point (vortex) is studied in the framework of the de Broglie-Bohm trajectory method of quantum mechanics. Using an adiabatic approximation, we find that near any nodal point of an arbitrary wave function psi there is an unstable point (called the X point) in a frame of reference moving with the nodal point. The local phase portrait forms always a characteristic pattern called the "nodal-point- X -point complex." We find general formulas for this complex as well as necessary and sufficient conditions of validity of the adiabatic approximation. We demonstrate that chaos emerges from the consecutive scattering events of the orbits with nodal-point- X -point complexes. The scattering events are of two types (called type I and type II). A theoretical model is constructed yielding the local value of the Lyapunov characteristic numbers in scattering events of both types. The local Lyapunov characteristic number scales as an inverse power of the speed of the nodal point in the rest frame, implying that it scales proportionally to the size of the nodal-point- X -point complex. It is also an inverse power of the distance of a trajectory from the X point's stable manifold far from the complex. This distance plays the role of an effective "impact parameter." The results of detailed numerical experiments with different wave functions, possessing one, two, or three moving nodal points, are reported. Examples are given of regular and chaotic trajectories, and the statistics of the Lyapunov characteristic numbers of the orbits are found and compared to the number of encounter events of each orbit with the nodal-point- X -point complexes. The numerical results are in agreement with the theory, and various phenomena appearing at first as counterintuitive find a straightforward explanation.

  12. Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations

    International Nuclear Information System (INIS)

    Rabitz, Herschel

    2002-01-01

    The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving expectation value of an observable operator. A relationship is shown to exist between the system dynamics and the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The consequences of this inherent robustness are discussed in the light of recent experiments and numerical simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field fluctuations

  13. Temperature-dependent properties of semiconductor quantum dots in coherent regime; Temperaturabhaengige Eigenschaften einzelner Halbleiter-Quantenpunkte im Kohaerenten Regime

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Marc C.

    2009-10-15

    Recently, the public has become aware of keywords like ''Quantum computer'' or ''Quantum cryptography''. Regarding their potential application in solid state based quantum information processing and their overall benefit in fundamental research quantum dots have gained more and more public interest. In this context, quantum dots are often referred to as ''artificial atoms'', a term subsuming their physical properties quite nicely and emphasizing the huge potential for further investigations. The basic mechanism to be considered is the theoretical model of a two-level system. A quantum dot itself represents this kind of system quite nicely, provided that only the presence or absence of a single exciton in the ground state of that structure is regarded. This concept can also be expanded to the presence of two excitons (bi-exciton). Transitions between the relevant levels can be induced by optical stimulation. When integrating quantum dots in diode like structures measurements of this phenomena can be accomplished regarding photo currents. This means of detection is highly sensitive and allows for tuning of the energy levels with respect to the energy of an exciting laser utilizing the Stark effect (via an external electric field). The photo current then shows narrow resonances representing those transitions. By this, the system can be used as a highly sensitive nano-spectrometer. The examination of coherent interactions between quantum dots and an electromagnetic field uses laser pulses that are much shorter than the dephasing time of the system (2 ps). The basic study to be done on two level systems is the measurement of Rabi oscillations allowing for the selection of an arbitrary superposition of states. In this work, the existing setup was improved regarding the possibility to control the temperature of the sample. Up to now, only investigations at 4,2 K have been possible. Even at 70 K Rabi oscillations

  14. Quantum origins of molecular recognition and olfaction in Drosophila.

    Science.gov (United States)

    Bittner, Eric R; Madalan, Adrian; Czader, Arkadiusz; Roman, Gregg

    2012-12-14

    The standard model for molecular recognition of an odorant is that receptor sites discriminate by molecular geometry as evidenced that two chiral molecules may smell very differently. However, recent studies of isotopically labeled olfactants indicate that there may be a molecular vibration-sensing component to olfactory reception, specifically in the spectral region around 2300 cm(-1). Here, we present a donor-bridge-acceptor model for olfaction which attempts to explain this effect. Our model, based upon accurate quantum chemical calculations of the olfactant (bridge) in its neutral and ionized states, posits that internal modes of the olfactant are excited impulsively during hole transfer from a donor to acceptor site on the receptor, specifically those modes that are resonant with the tunneling gap. By projecting the impulsive force onto the internal modes, we can determine which modes are excited at a given value of the donor-acceptor tunneling gap. Only those modes resonant with the tunneling gap and are impulsively excited will give a significant contribution to the inelastic transfer rate. Using acetophenone as a test case, our model and experiments on D. melanogaster suggest that isotopomers of a given olfactant give rise to different odorant qualities. These results support the notion that inelastic scattering effects may play a role in discriminating between isotopomers but that this is not a general spectroscopic effect.

  15. Optical Implementation of Non-locality with Coherent Light Fields for Quantum Communication

    OpenAIRE

    Lee, Kim Fook

    2008-01-01

    Polarization correlations of two distant observers are observed by using coherent light fields based on Stapp's formulation of nonlocality. Using a 50/50 beam splitter transformation, a vertically polarized coherent light field is found to be entangled with a horizontally polarized coherent noise field. The superposed light fields at each output port of the beam splitter are sent to two distant observers, where the fields are interfered and manipulated at each observer by using a quarter wave...

  16. Security of quantum key distribution with a laser reference coherent state, resistant to loss in the communication channel

    International Nuclear Information System (INIS)

    Molotkov, S N; Potapova, T A

    2015-01-01

    The problem of quantum key distribution security in channels with large losses is still open. Quasi-single-photon sources of quantum states with losses in the quantum communication channel open up the possibility of attacking with unambiguous state discrimination (USD) measurements, resulting in a loss of privacy. In this letter, the problem is solved by counting the classic reference pulses. Conservation of the number of counts of intense coherent pulses makes it impossible to conduct USD measurements. Moreover, the losses in the communication channel are considered to be unknown in advance and are subject to change throughout the series parcels. Unlike other protocols, differential phase shift (Inoue et al 2002 Phys. Rev. Lett. 89 037902, Inoue et al 2003 Phys. Rev. A 68 022317, Takesue et al 2007 Nat. Photon. 1 343, Wen et al 2009 Phys. Rev. Lett. 103 170503) and coherent one way (Stucki et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 2008 New J. Phys. 10 013031, Stucki et al 2008 Opt. Express 17 13326), the simplicity of the protocol makes it possible to carry out a complete analysis of its security. (letter)

  17. Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom

    International Nuclear Information System (INIS)

    Yang, C.-D.

    2006-01-01

    This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schroedinger equation. Using complex canonical variables, a formal proof of the quantization axiom p → p = -ih∇, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov-Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion

  18. Coherent detectors

    International Nuclear Information System (INIS)

    Lawrence, C R; Church, S; Gaier, T; Lai, R; Ruf, C; Wollack, E

    2009-01-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  19. Coherent detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  20. Proof-of-principle test of coherent-state continuous variable quantum key distribution through turbulent atmosphere (Conference Presentation)

    Science.gov (United States)

    Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd

    2016-10-01

    Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a

  1. Indirect control of quantum systems via an accessor: pure coherent control without system excitation

    International Nuclear Information System (INIS)

    Fu, H C; Dong Hui; Sun, C P; Liu, X F

    2009-01-01

    A pure indirect control of quantum systems via a quantum accessor is investigated. In this control scheme, we do not apply any external classical excitation fields on the controlled system and we control a quantum system via a quantum accessor and classical control fields control the accessor only. Complete controllability is investigated for arbitrary finite-dimensional quantum systems and exemplified by two- and three-dimensional systems. The scheme exhibits some advantages; it uses less qubits in the accessor and does not depend on the energy-level structure of the controlled system

  2. A discrete phase-space calculus for quantum spins based on a reconstruction method using coherent states

    International Nuclear Information System (INIS)

    Weigert, S.

    1999-01-01

    To reconstruct a mixed or pure quantum state of a spin s is possible through coherent states: its density matrix is fixed by the probabilities to measure the value s along 4s(s+1) appropriately chosen directions in space. Thus, after inverting the experimental data, the statistical operator is parametrized entirely by expectation values. On this basis, a symbolic calculus for quantum spins is developed, the e xpectation-value representation . It resembles the Moyal representation for SU(2) but two important differences exist. On the one hand, the symbols take values on a discrete set of points in phase space only. On the other hand, no quasi-probabilities - that is, phase-space distributions with negative values - are encountered in this approach. (Author)

  3. Long-lived nanosecond spin coherence in high-mobility 2DEGs confined in double and triple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, S.; Gusev, G. M.; Hernandez, F. G. G., E-mail: felixggh@if.usp.br [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, SP (Brazil); Bakarov, A. K. [Institute of Semiconductor Physics and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-06-07

    We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.

  4. Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Schubert, Roman

    2012-01-01

    The complex geometry underlying the Schrödinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular, two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular, a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  5. Ferromagnetic spin coupling as the origin of 0.7 anomaly in quantum point contacts.

    Science.gov (United States)

    Aryanpour, K; Han, J E

    2009-02-06

    We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of the 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that 0.7(2e;{2}/h) anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incoherent scattering at high temperature when the electron traversal time matches the time scale of dynamic ferromagnetic excitations.

  6. Quantum origin of pre-big-bang collapse from induced matter theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, Mauricio, E-mail: mbellini@conicet.gov.ar [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2012-03-23

    We revisit a collapsing pre-big-bang model of the universe to study with detail the non-perturbative quantum dynamics of the dispersal scalar field whose dynamics becomes from the dynamical foliation of test massless scalar field {phi} on a 5D Riemann-flat metric, such that the extra space-like coordinate is noncompact. The important result here obtained is that the evolution of the system, which is described thorough the equation of state has the unique origin in the quantum contributions of the effective 4D scalar field {phi}{sup Macron }.

  7. Quantum origin of pre-big-bang collapse from induced matter theory of gravity

    Science.gov (United States)

    Bellini, Mauricio

    2012-03-01

    We revisit a collapsing pre-big-bang model of the universe to study with detail the non-perturbative quantum dynamics of the dispersal scalar field whose dynamics becomes from the dynamical foliation of test massless scalar field φ on a 5D Riemann-flat metric, such that the extra space-like coordinate is noncompact. The important result here obtained is that the evolution of the system, which is described thorough the equation of state has the unique origin in the quantum contributions of the effective 4D scalar field φ¯.

  8. Destruction of coherence in nondemolition monitoring: quantum 'watchdog effect' in gravity wave detectors

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1984-01-01

    The author shows that nondemolition monitoring of a Weber bar may prevent changes of the number of phonons, and thus influence the sensitivity of quantum-counting gravity wave detectors. This effect is similar to the Watchdog Effect which is predicted to delay decays of the monitored, unstable quantum system. Relations between watchdog effect and Environment-Induced Superselection Rules as well as its connections to the fundamental questions of the quantum theory of measurement are briefly considered. (Auth.)

  9. Multidimensional Quantum Mechanical Modeling of Electron Transfer and Electronic Coherence in Plant Cryptochromes: The Role of Initial Bath Conditions.

    Science.gov (United States)

    Mendive-Tapia, David; Mangaud, Etienne; Firmino, Thiago; de la Lande, Aurélien; Desouter-Lecomte, Michèle; Meyer, Hans-Dieter; Gatti, Fabien

    2018-01-11

    A multidimensional quantum mechanical protocol is used to describe the photoinduced electron transfer and electronic coherence in plant cryptochromes without any semiempirical, e.g., experimentally obtained, parameters. Starting from a two-level spin-boson Hamiltonian we look at the effect that the initial photoinduced nuclear bath distribution has on an intermediate step of this biological electron transfer cascade for two idealized cases. The first assumes a slow equilibration of the nuclear bath with respect to the previous electron transfer step that leads to an ultrafast decay with little temperature dependence; while the second assumes a prior fast bath equilibration on the donor potential energy surface leading to a much slower decay, which contrarily displays a high temperature dependence and a better agreement with previous theoretical and experimental results. Beyond Marcus and semiclassical pictures these results unravel the strong impact that the presence or not of equilibrium initial conditions has on the electronic population and coherence dynamics at the quantum dynamics level in this and conceivably in other biological electron transfer cascades.

  10. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  11. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-01-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory

  12. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    Science.gov (United States)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  13. Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects

    NARCIS (Netherlands)

    García-Pablos, D.; García, N.; Raedt, H. De

    1997-01-01

    We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spin-½ particles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated

  14. Resonant coherent quantum tunneling of the magnetization of spin-systems: Spin-parity effects

    NARCIS (Netherlands)

    Garcia-Pablos, D; Garcia, N; de Raedt, H.A.

    1997-01-01

    We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated to occur only for some specific resonant values of

  15. Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations

    International Nuclear Information System (INIS)

    Stottmeister, Alexander; Thiemann, Thomas

    2016-01-01

    This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems, which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).

  16. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    Science.gov (United States)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  17. Entangled states that cannot reproduce original classical games in their quantum version

    International Nuclear Information System (INIS)

    Shimamura, Junichi; Oezdemir, S.K.; Morikoshi, Fumiaki; Imoto, Nobuyuki

    2004-01-01

    A model of a quantum version of classical games should reproduce the original classical games in order to be able to make a comparative analysis of quantum and classical effects. We analyze a class of symmetric multipartite entangled states and their effect on the reproducibility of the classical games. We present the necessary and sufficient condition for the reproducibility of the original classical games. Satisfying this condition means that complete orthogonal bases can be constructed from a given multipartite entangled state provided that each party is restricted to two local unitary operators. We prove that most of the states belonging to the class of symmetric states with respect to permutations, including the N-qubit W state, do not satisfy this condition

  18. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Roza, E-mail: rozas@fotonik.dtu.dk [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Kovacs, Andras [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grunberg Institute, Forschungszentrum Julich, 52425 Julich (Germany); Dan Corell, Dennis [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Gritti, Claudia [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Kardynal, Beata [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); PGI-9, Forschungszentrum Julich, JARA FIT, 52425 Julich (Germany)

    2014-01-15

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active.

  19. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Shirazi, Roza; Kovacs, Andras; Dan Corell, Dennis; Gritti, Claudia; Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul; Kardynal, Beata

    2014-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active

  20. Quantum Coherent States and Path Integral Method to Stochastically Determine the Anisotropic Volume Expansion in Lithiated Silicon Nanowires

    Directory of Open Access Journals (Sweden)

    Donald C. Boone

    2017-10-01

    Full Text Available This computational research study will analyze the multi-physics of lithium ion insertion into a silicon nanowire in an attempt to explain the electrochemical kinetics at the nanoscale and quantum level. The electron coherent states and a quantum field version of photon density waves will be the joining theories that will explain the electron-photon interaction within the lithium-silicon lattice structure. These two quantum particles will be responsible for the photon absorption rate of silicon atoms that are hypothesized to be the leading cause of breaking diatomic silicon covalent bonds that ultimately leads to volume expansion. It will be demonstrated through the combination of Maxwell stress tensor, optical amplification and path integrals that a stochastic analyze using a variety of Poisson distributions that the anisotropic expansion rates in the <110>, <111> and <112> orthogonal directions confirms the findings ascertained in previous works made by other research groups. The computational findings presented in this work are similar to those which were discovered experimentally using transmission electron microscopy (TEM and simulation models that used density functional theory (DFT and molecular dynamics (MD. The refractive index and electric susceptibility parameters of lithiated silicon are interwoven in the first principle theoretical equations and appears frequently throughout this research presentation, which should serve to demonstrate the importance of these parameters in the understanding of this component in lithium ion batteries.

  1. A T-shaped double quantum dot system as a Fano interferometer: Interplay of coherence and correlation upon spin currents

    Science.gov (United States)

    Fernandes, I. L.; Cabrera, G. G.

    2018-05-01

    Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the central dot and handled within a mean field approximation. Its interplay with the Fano effect is analyzed in the strong coupling regime. Non-vanishing spin currents are only obtained when the leads are ferromagnetic, the current being strongly dependent on the relative orientation of the lead polarizations. We calculate the conductance (spin and charge) by numerically differentiating the current, and a rich structure is obtained as a manifestation of quantum coherence and correlation effects. Increase of the Coulomb interaction produces localization of states at the side dot, largely suppressing Fano resonances. The interaction is also responsible for the negative values of the spin conductance in some regions of the voltage near resonances, effect which is the spin analog of the Esaki tunnel diode. We also analyze control of the currents via gate voltages applied to the dots, possibility which is interesting for practical operations.

  2. Study of quantum hadronic states using new optimum principles and new coherent production mechanisms

    International Nuclear Information System (INIS)

    Ion, D. B.; Ion, M. L.; Ion-Mihai, R.

    2002-01-01

    We introduced a new kind of quantum entropy for quantum scattering: conjugated nonextensivity entropy S Jθ bar (p,q). Using this new kind of nonextensive entropy we studied the nonextensive quantum scattering states of the hadronic interactions. We proved that probability distributions produced at quantum equilibrium coincide with optimal distributions given by the principle of minimum distance in the space of quantum scattering states. Using optimal states we proved new uncertainty relations and new entropic bands: For experimental tests we used the available phase shifts for the pion-nucleus scatterings and also for the pion-nucleon scatterings. Experimental tests of entropic bands and principle of maximum entropy for conjugated nonextensivity entropy are compared with entropic bands for usual entropy of joint probability S Jθ bar (p) and for pion-nucleus scatterings. Also given are the experimental tests of entropic bands and principle of maximum entropy for conjugated nonextensivity entropy compared with entropic bands for usual entropy of joint probability S Jθ bar (p) and for pion-nucleon scatterings.Our experimental tests proved the existence of the principle of limited entropic uncertainty in hadronic scattering. The experimental tests showed clearly that quantum elastic scattering is well described by the principle of minimum distance in the space of quantum states. By these results we obtained strong evidence for the nonextensivity of the hadronic scattering statistics. (authors)

  3. Coherent states for FLRW space-times in loop quantum gravity

    International Nuclear Information System (INIS)

    Magliaro, Elena; Perini, Claudio; Marciano, Antonino

    2011-01-01

    We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.

  4. Influence on electron coherence from quantum electromagnetic fields in the presence of conducting plates

    International Nuclear Information System (INIS)

    Hsiang, J.-T.; Lee, D.-S.

    2006-01-01

    The influence of electromagnetic vacuum fluctuations in the presence of the perfectly conducting plate on electrons is studied with an interference experiment. The evolution of the reduced density matrix of the electron is derived by the method of influence functional. We find that the plate boundary anisotropically modifies vacuum fluctuations that in turn affect the electron coherence. The path plane of the interference is chosen either parallel or normal to the plate. In the vicinity of the plate, we show that the coherence between electrons due to the boundary is enhanced in the parallel configuration, but reduced in the normal case. The presence of the second parallel plate is found to boost these effects. The potential relation between the amplitude change and phase shift of interference fringes is pointed out. The finite conductivity effect on electron coherence is discussed

  5. Original article Sense of coherence: big five correlates, spirituality, and incremental validity

    Directory of Open Access Journals (Sweden)

    Ralph L. Piedmont

    2014-05-01

    Full Text Available Background Antonovsky (1987 developed the Sense of Coherence (SOC scale to measure the “life orientation” that promotes an individual’s ability to recognize life stressors and then effectively utilize coping resources to adjust and maintain health. Although theoretically appealing, little empirical work has been conducted to isolate the qualities of the scale that facilitate health. Participants and procedure The present study examined the factor structure of the SOC scale, as well as its incremental validity over measures of personality, spirituality, and psychological meaning in the prediction of psychosocial outcomes (e.g., hope death anxiety, life satisfaction, well-being, social support, world view. Participants consisted of 298 adults living in the United States; 98 men and 195 women (5 individuals did not disclose their gender ages 18 to 72 (mean: 36.77 years. Results Principal components analysis indicated that a single factor best represented the structure of the 13-item SOC scale, although this one factor explained only 31% of the total variance. The scale contained a diverse item content that was challenging to interpret personologically. The SOC scale added little explanatory variance over and above the selected covariates in the prediction of psychosocial outcomes. Conclusions It appears that the SOC scale represents one aspect of a larger dimension that already has other valid indicators.

  6. Decoherence of quantum excitation of even/odd coherent states in ...

    Indian Academy of Sciences (India)

    2The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran. ∗ .... approach to obtain the decoherence time (by evaluating the time-dependent .... Recall that, while Fokker–Planck equation deals with the evolution of the ...

  7. Quantum key distribution using basis encoding of Gaussian-modulated coherent states

    Science.gov (United States)

    Huang, Peng; Huang, Jingzheng; Zhang, Zheshen; Zeng, Guihua

    2018-04-01

    The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate much higher excess noise and enables us to reach a much longer secure transmission distance even at lower reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography with continuous variables.

  8. Molecular Imaging of the Brain Using Multi-Quantum Coherence and Diagnostics of Brain Disorders

    CERN Document Server

    Kaila, M M

    2013-01-01

    This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical pra...

  9. Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots

    National Research Council Canada - National Science Library

    Steel, Duncan

    2002-01-01

    .... These features include optically induced and detected quantum entanglement of two exciton states as well as a demonstration of a classical Bell state, a Rabi oscillations corresponding to full...

  10. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings

    Science.gov (United States)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-01

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  11. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.

    Science.gov (United States)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-15

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  12. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Science.gov (United States)

    Milan, S. E.; Jones, T. B.; Robinson, T. R.; Thomas, E. C.; Yeoman, T. K.

    1997-01-01

    Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north) of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter. Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.-> Correspondence to :P. Francia->

  13. On coherent-state representations of quantum mechanics: Wave mechanics in phase space

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Torres-Vega, Gabino

    1997-01-01

    In this article we argue that the state-vector phase-space representation recently proposed by Torres-Vega and co-workers [introduced in J. Chem. Phys. 98, 3103 (1993)] coincides with the totality of coherent-state representations for the Heisenberg-Weyl group. This fact leads to ambiguities when...

  14. Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; Maier, Sebastian; McCutcheon, Dara

    2015-01-01

    -controlled semiconductor quantum dot to an external resonant laser field. For strong continuous-wave driving we observe the characteristic Mollow triplet and analyze the Rabi splitting and sideband widths as a function of driving strength and temperature. The sideband widths increase linearly with temperature...... and the square of the driving strength, which we explain via coupling of the exciton to longitudinal acoustic phonons. We also find an increase of the Rabi splitting with temperature, which indicates a temperature induced delocalization of the excitonic wave function resulting in an increase of the oscillator...... strength. Finally, we demonstrate coherent control of the exciton excited state population via pulsed resonant excitation and observe a damping of the Rabi oscillations with increasing pulse area, which is consistent with our exciton-photon coupling model. We believe that our work outlines the possibility...

  15. The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing-Tao; He Guang-Qiang; Ren Li-Jie; Zeng Gui-Hua

    2011-01-01

    This paper investigates an analytical expression of teleportation fidelity in the teleportation scheme of a single mode of electromagnetic field. The fidelity between the original squeezed coherent state and the teleported one is expressed in terms of the squeezing parameter r and the quantum channel parameter (two-mode squeezed state) p. The results of analysis show that the fidelity increases with the increase of the quantum channel parameter p, while the fidelity decreases with the increase of the squeezing parameter r of the squeezed state. Thus the coherent state (r = 0)is the best quantum signal for continuous variable quantum teleportation once the quantum channel is built.

  16. New View on Quantum Gravity:. Micro-Structure of Spacetime and Origin of the Universe

    Science.gov (United States)

    Hu, B. L.

    2008-04-01

    It is generally agreed that the primary goal of quantum gravity is to find the microscopic structure of spacetime. However, for the last half a century the cardinal principle upheld by most general relativists has been to find ways to quantize Einstein's general theory of relativity, a theory which has proven to be highly successful in describing the macroscopic structure of spacetime we live in today. A tacit assumption in this existing paradigm is that doing so will yield the micro-structures of spacetime. We challenge this supposition and present a different view. If general relativity is an effective theory valid only at the long wavelength and low energy limits, and the metric and connection forms are collective variables, then quantizing a classical theory such as general relativity valid in the macroscopic domain is unlikely to yield a theory of the microscopic structures of spacetime. To uncover the microscopic structures one needs to find ways to unravel the underlying microscopic structures from observed macroscopic phenomena rather than naively quantizing the macroscopic variables, two very different paradigms. This task is similar to deducing the molecular constituents or even their quantum features from hydrodynamics or universalities of microscopic theories from critical phenomena. The macro to micro road poses a new and perhaps more difficult challenge to the next generation of theorists, phenomenologists and experimentalists in quantum gravity. Here we need to address issues at the quantum-classical and micro-macro interfaces familiar in mesoscopic physics, focusing on quantum fluctuations and correlations, coarse-graining and backreaction, and adopt ideas of nonequilibrium statistical mechanics and techniques from quantum field theory to explore theories built upon general relativity in a `bottom-up' approach or a `grass-root' road to quantum gravity. This view also provides us with a natural resolution towards the `Origin of the Universe' issue

  17. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy

    International Nuclear Information System (INIS)

    Sun Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali

    2012-01-01

    Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1 H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1 H– 13 C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [ 13 CH 3 ]-methyl-labeled, highly deuterated protein systems up to ∼100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.

  18. Coherent tunneling of Bose-Einstein condensates: Exact solutions for Josephson effects and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.

    1997-07-01

    We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates (BEC) at T = 0 in (possibly asymmetric) double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. The evolution of the inter-well fractional population imbalance (related to the condensate phase difference) is obtained in terms of elliptic functions, generalizing well-known Josephson effects such as the 'ac' effect, the 'plasma oscillations', and the resonant Shapiro effect, to the nonsiusoidal regimes. We also present exact solutions for a novel 'macroscopic quantum self-trapping' effect arising from nonlinear atomic self-interaction in the GPE. The coherent BEC tunneling signatures are obtained in terms of the oscillations periods and the Fourier spectrum of the imbalance oscillations, as a function of the initial values of GPE parameters. Experimental procedures are suggested to make contact with theoretical predictions. (author). 44 refs, 8 figs

  19. Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds

    Science.gov (United States)

    Zhu, Zheng; Sheng, D. N.; Weng, Zheng-Yu

    2018-03-01

    We examine the pairing structure of holes injected into two distinct spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, phase fluctuations can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.

  20. Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements

    International Nuclear Information System (INIS)

    Ho Ngoc Phien; Nguyen Ba An

    2008-01-01

    We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful

  1. Macroscopic quantum coherence in a magnetic nanoparticle above the surface of a superconductor

    Science.gov (United States)

    Chudnovsky; Friedman

    2000-12-11

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.

  2. Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M.; Friedman, Jonathan R.

    2000-12-11

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.

  3. Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Friedman, Jonathan R.

    2000-01-01

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed

  4. Interaction-induced effects in the nonlinear coherent response of quantum-well excitons

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner

    1999-01-01

    Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...

  5. Blinking in quantum dots: The origin of the grey state and power law statistics

    Science.gov (United States)

    Ye, Mao; Searson, Peter C.

    2011-09-01

    Quantum dot (QD) blinking is characterized by switching between an “on” state and an “off” state, and a power-law distribution of on and off times with exponents from 1.0 to 2.0. The origin of blinking behavior in QDs, however, has remained a mystery. Here we describe an energy-band model for QDs that captures the full range of blinking behavior reported in the literature and provides new insight into features such as the gray state, the power-law distribution of on and off times, and the power-law exponents.

  6. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    Science.gov (United States)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  7. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    International Nuclear Information System (INIS)

    Blencowe, M P; Armour, A D

    2008-01-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  8. Effect of the depolarization field on coherent optical properties in semiconductor quantum dots

    Science.gov (United States)

    Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2018-06-01

    We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.

  9. Spectral quantum fluctuations in a stimulated Raman generator: a description in terms of temporally coherent modes.

    Science.gov (United States)

    Walmsley, I A

    1992-03-15

    The probability density of the single-shot mean Stokes frequency from a linear Raman generator is calculated. It is shown that the fluctuations in the Stokes pulse energy spectrum that arise from the quantum initiation of the Stokes light are reduced in the transient regime of amplification. Also, it appears that saturation of the Raman gain does not reduce the phase fluctuations of the Stokes light below those present in the unsaturated gain (linear) regime.

  10. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    Science.gov (United States)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  12. Coherent properties of single quantum dot transitions and single photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Ester, Patrick

    2008-04-23

    In this work, the properties and the different dephasing mechanisms of single QD transitions are analyzed. In addition, some applications are presented which arise due to the properties of the confined exciton. The isolation of a single QD out of the ensemble is achieved via near field shadow masks, which restricts excitation and QD luminescence to a single QD. The integration of a QD-layer into a diode structure allows for an analysis of various dephasing mechanisms of a confined electron hole pair. The single QD is characterized regarding the energy of nearly all possible transitions, e.g. the ground state, excited states, charged states, multiple occupations, and phonon assisted absorptions. A very important issue in this content is the voltage dependence of the transition energy and thereby the ability of tunneling processes of charge carriers in and out of the QD. The QD-states, which are subject of investigation here, are the single exciton ground state, the first excited state (p-shell), and the (GaAs-) LO (longitudinal optical) phonon assisted absorption. By applying a suitable voltage, the resonantly excited ground state exciton is able to decay by a tunneling process, which reflects the transition energy in the photocurrent spectra. The p-shell transition decays by a relaxation process into the ground state, followed by an optical recombination process. The phonon assisted absorption differs from the p-shell transition. The resonant excitation energy fits to the exciton ground state energy plus the energy of a GaAs LO phonon. In this case, the single exciton (ground state) is generated as well as a GaAs LO phonon. These three states are investigated in different respects, such as different applied voltages, excitation polarizations, excitation intensities, and coherent properties. The LO-assisted absorption shows also a saturation behavior. The exciton in the QD is able to interfere with the second laser pulse due to the storage of the phase information

  13. Coherent properties of single quantum dot transitions and single photon emission

    International Nuclear Information System (INIS)

    Ester, Patrick

    2008-01-01

    In this work, the properties and the different dephasing mechanisms of single QD transitions are analyzed. In addition, some applications are presented which arise due to the properties of the confined exciton. The isolation of a single QD out of the ensemble is achieved via near field shadow masks, which restricts excitation and QD luminescence to a single QD. The integration of a QD-layer into a diode structure allows for an analysis of various dephasing mechanisms of a confined electron hole pair. The single QD is characterized regarding the energy of nearly all possible transitions, e.g. the ground state, excited states, charged states, multiple occupations, and phonon assisted absorptions. A very important issue in this content is the voltage dependence of the transition energy and thereby the ability of tunneling processes of charge carriers in and out of the QD. The QD-states, which are subject of investigation here, are the single exciton ground state, the first excited state (p-shell), and the (GaAs-) LO (longitudinal optical) phonon assisted absorption. By applying a suitable voltage, the resonantly excited ground state exciton is able to decay by a tunneling process, which reflects the transition energy in the photocurrent spectra. The p-shell transition decays by a relaxation process into the ground state, followed by an optical recombination process. The phonon assisted absorption differs from the p-shell transition. The resonant excitation energy fits to the exciton ground state energy plus the energy of a GaAs LO phonon. In this case, the single exciton (ground state) is generated as well as a GaAs LO phonon. These three states are investigated in different respects, such as different applied voltages, excitation polarizations, excitation intensities, and coherent properties. The LO-assisted absorption shows also a saturation behavior. The exciton in the QD is able to interfere with the second laser pulse due to the storage of the phase information

  14. Full-Wave Techniques for the Analysis of Electrodynamics and Coherent Quantum Transport in Graphene Nanodevices.

    Directory of Open Access Journals (Sweden)

    Luca Pierantoni

    2012-11-01

    Full Text Available We report on full-wave techniques in the frequency (energy-domain and the time-domain, aimed at the investigation of the combined electromagnetic-coherent transport problem in carbon based nanostructured materials and devices viz. graphene nanoribbons. The frequency-domain approach is introduced in order to describe a Poisson-Schrödinger / Dirac system in a quasi static framework. Thetime-domain approach deals with the full-wave solution of the combined Maxwell-Schrödinger / Dirac system of equations. From the above theoretical platforms, home-made solvers are provided, aimed atdealing with challenging problems in realistic devices / systems environments, typical of the area of radio-frequency nanoelectronics.

  15. Causal signal transmission by quantum fields. III: Coherent response of fermions

    International Nuclear Information System (INIS)

    Plimak, L.I.; Stenholm, S.

    2009-01-01

    Structural response properties of fermionic fields are investigated. In the presence of fermions the key technical concept becomes response combination, or R-normal product, of field operators. It generalises the notion of time-normal operator product to response problems. Time-normal products are a special case of R-normal products without inputs; this paper thus also generalises the concept of time-normal ordering to fermions. Explicit causality of R-normal products of arbitrary (bosonic and/or fermionic) field operators is proven, and explicit relations expressing them by conventional Green's functions of quantum field theory are derived

  16. Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices

    International Nuclear Information System (INIS)

    McKague, Matthew

    2009-01-01

    Device independent quantum key distribution (QKD) aims to provide a higher degree of security than traditional QKD schemes by reducing the number of assumptions that need to be made about the physical devices used. The previous proof of security by Pironio et al (2009 New J. Phys. 11 045021) applies only to collective attacks where the state is identical and independent and the measurement devices operate identically for each trial in the protocol. We extend this result to a more general class of attacks where the state is arbitrary and the measurement devices have no memory. We accomplish this by a reduction of arbitrary adversary strategies to qubit strategies and a proof of security for qubit strategies based on the previous proof by Pironio et al and techniques adapted from Renner.

  17. Quantum-chemical studies of quasi-one-dimensional electron systems. Part 2. Cumulenes and origin of the forbidden zone

    Directory of Open Access Journals (Sweden)

    Yuriy Kruglyak

    2015-06-01

    Full Text Available This review is devoted to the basic problem in quantum theory of quasi-one-dimensional electron systems like polyenes (Part 1 and cumulenes (Part 2 – physical origin of the forbidden zone in these and analogous 1D electron systems due to two possible effects – Peierls instability (bond alternation and Mott instability (electron correlation. Both possible contradiction and coexistence of the Mott and Peierls instabilities are summerized on the basis of the Kiev quantum chemistry team research projects.

  18. Multiple Quantum Coherences (MQ) NMR and Entanglement Dynamics in the Mixed-Three-Spin XXX Heisenberg Model with Single-Ion Anisotropy

    Science.gov (United States)

    Hamid, Arian Zad

    2016-12-01

    We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.

  19. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.

    2001-03-01

    We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)

  20. Analysis of the Origin of Atypical Scanning Laser Polarimetry Patterns by Polarization-Sensitive Optical Coherence Tomography

    Science.gov (United States)

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Hirn, Cornelia; Vass, Clemens; Hitzenberger, Christoph K.

    2010-01-01

    Purpose To analyze the physical origin of atypical scanning laser polarimetry (SLP) patterns. To compare polarization-sensitive optical coherence tomography (PS-OCT) scans to SLP images. To present a method to obtain pseudo-SLP images by PS-OCT that are free of atypical artifacts. Methods Forty-one eyes of healthy subjects, subjects with suspected glaucoma, and patients with glaucoma were imaged by SLP (GDx VCC) and a prototype spectral domain PS-OCT system. The PS-OCT system acquires three-dimensional (3D) datasets of intensity, retardation, and optic axis orientation simultaneously within 3 seconds. B-scans of intensity and retardation and en face maps of retinal nerve fiber layer (RNFL) retardation were derived from the 3D PS-OCT datasets. Results were compared with those obtained by SLP. Results Twenty-two eyes showed atypical retardation patterns, and 19 eyes showed normal patterns. From the 22 atypical eyes, 15 showed atypical patterns in both imaging modalities, five were atypical only in SLP images, and two were atypical only in PS-OCT images. In most (15 of 22) atypical cases, an increased penetration of the probing beam into the birefringent sclera was identified as the source of atypical patterns. In such cases, the artifacts could be eliminated in PS-OCT images by depth segmentation and exclusion of scleral signals. Conclusions PS-OCT provides deeper insight into the contribution of different fundus layers to SLP images. Increased light penetration into the sclera can distort SLP retardation patterns of the RNFL. PMID:19036999

  1. Zweideutigkeit about "Zweideutigkeit": Sommerfeld, Pauli, and the methodological origins of quantum mechanics

    Science.gov (United States)

    Seth, Suman

    In early 1925, Wolfgang Pauli (1900-1958) published the paper for which he is now most famous and for which he received the Nobel Prize in 1945. The paper detailed what we now know as his "exclusion principle." This essay situates the work leading up to Pauli's principle within the traditions of the "Sommerfeld School," led by Munich University's renowned theorist and teacher, Arnold Sommerfeld (1868-1951). Offering a substantial corrective to previous accounts of the birth of quantum mechanics, which have tended to sideline Sommerfeld's work, it is suggested here that both the method and the content of Pauli's paper drew substantially on the work of the Sommerfeld School in the early 1920s. Part One describes Sommerfeld's turn away from a faith in the power of model-based (modellmässig) methods in his early career towards the use of a more phenomenological emphasis on empirical regularities (Gesetzmässigkeiten) during precisely the period that both Pauli and Werner Heisenberg (1901-1976), among others, were his students. Part two delineates the importance of Sommerfeld's phenomenology to Pauli's methods in the exclusion principle paper, a paper that also eschewed modellmässig approaches in favour of a stress on Gesetzmässigkeiten. In terms of content, a focus on Sommerfeld's work reveals the roots of Pauli's understanding of the fundamental Zweideutigkeit (ambiguity) involving the quantum number of electrons within the atom. The conclusion points to the significance of these results to an improved historical understanding of the origin of aspects of Heisenberg's 1925 paper on the "Quantum-theoretical Reformulation (Umdeutung) of Kinematical and Mechanical Relations."

  2. Origin of quantum criticality in Yb-Al-Au approximant crystal and quasicrystal

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-01-01

    To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb 15 Al 34 Au 51 , the approximant crystal Yb 14 Al 35 Au 51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ∼ T -0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size. (author)

  3. Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence.

    Science.gov (United States)

    Majumdar, Sarangam; Pal, Sukla

    2017-09-01

    Bacteria are far more intelligent than we can think of. They adopt different survival strategies to make their life comfortable. Researches on bacterial communication to date suggest that bacteria can communicate with each other using chemical signaling molecules as well as using ion channel mediated electrical signaling. Though in past few decades the scopes of chemical signaling have been investigated extensively, those of electrical signaling have received less attention. In this article, we present a novel perspective on time-sharing behavior, which maintains the biofilm growth under reduced nutrient supply between two distant biofilms through electrical signaling based on the experimental evidence reported by Liu et al., in 2017. In addition, following the recent work by Humphries et al. Cell 168(1):200-209, in 2017, we highlight the consequences of long range electrical signaling within biofilm communities through spatially propagating waves of potassium. Furthermore, we address the possibility of two-way cellular communication between artificial and natural cells through chemical signaling being inspired by recent experimental observation (Lentini et al. 2017) where the efficiency of artificial cells in imitating the natural cells is estimated through cellular Turing test. These three spectacular observations lead us to envisage and devise new classical and quantum views of these complex biochemical networks that have never been realized previously.

  4. Quantum physics meets biology.

    Science.gov (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  5. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  6. Quantum interference vs. quantum chaos in the nuclear shell model

    International Nuclear Information System (INIS)

    Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E

    2015-01-01

    In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%

  7. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots

    NARCIS (Netherlands)

    Dohnalova, K.; Fucikova, A.; Umesh, C.P.; Humpolickova, J.; Paulusse, Jos Marie Johannes; Valenta, J.; Zuilhof, H.

    2012-01-01

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL

  8. Microscopic Origin of the Fast Blue-Green Luminescence from Chemically Synthesized Non-Oxidized Silicon Quantum Dots

    NARCIS (Netherlands)

    Dohnalová, K.; Gregorkiewicz, T.; Fucíková, A.; Valenta, J.; Umesh, C.; Paulusse, J.M.J.; Zuilhof, H.; Humpolícková, J.; Hof, van M.

    2012-01-01

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL

  9. I, Quantum Robot: Quantum Mind control on a Quantum Computer

    OpenAIRE

    Zizzi, Paola

    2008-01-01

    The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.

  10. Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory

    Science.gov (United States)

    Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George

    2018-04-01

    We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.

  11. Postquench prethermalization in a disordered quantum fluid of light

    Science.gov (United States)

    Larré, Pierre-Élie; Delande, Dominique; Cherroret, Nicolas

    2018-04-01

    We study the coherence of a disordered and interacting quantum light field after propagation along a nonlinear optical fiber. Disorder is generated by a cross-phase modulation with a randomized auxiliary classical light field, while interactions are induced by self-phase modulation. When penetrating the fiber from free space, the incoming quantum light undergoes a disorder and interaction quench. By calculating the coherence function of the transmitted quantum light, we show that the decoherence induced by the quench spreads in a light-cone fashion in the nonequilibrium many-body quantum system, leaving the latter prethermalize with peculiar features originating from disorder.

  12. Superradiance from an ultrathin film of three-level V-type atoms: interplay between splitting, quantum coherence and local-field effects

    International Nuclear Information System (INIS)

    Malyshev, V A; Carreno, F; Anton, M A; Calderon, Oscar G; Dominguez-Adame, F

    2003-01-01

    We carry out a theoretical study of the collective spontaneous emission (superradiance) from an ultrathin film comprised of three-level atoms with V configuration of the operating transitions. As the thickness of the system is small compared to the emission wavelength inside the film, the local-field correction to the averaged Maxwell field is relevant. We show that the interplay between the low-frequency quantum coherence within the subspace of the upper doublet states and the local-field correction may drastically affect the branching ratio of the operating transitions. This effect may be used for controlling the emission process by varying the doublet splitting and the amount of low-frequency coherence

  13. Thermodynamic limit for coherence-limited solar power conversion

    Science.gov (United States)

    Mashaal, Heylal; Gordon, Jeffrey M.

    2014-09-01

    The spatial coherence of solar beam radiation is a key constraint in solar rectenna conversion. Here, we present a derivation of the thermodynamic limit for coherence-limited solar power conversion - an expansion of Landsberg's elegant basic bound, originally limited to incoherent converters at maximum flux concentration. First, we generalize Landsberg's work to arbitrary concentration and angular confinement. Then we derive how the values are further lowered for coherence-limited converters. The results do not depend on a particular conversion strategy. As such, they pertain to systems that span geometric to physical optics, as well as classical to quantum physics. Our findings indicate promising potential for solar rectenna conversion.

  14. New progress of fundamental aspects in quantum mechanics

    International Nuclear Information System (INIS)

    Sun Changpu

    2001-01-01

    The review recalls the conceptual origins of various interpretations of quantum mechanics. With the focus on quantum measurement problems, new developments of fundamental quantum theory are described in association with recent experiments such as the decoherence process in cavity quantum electrodynamics 'which-way' detection using the Bragg scattering of cold atoms, and quantum interference using the small quantum system of molecular C 60 . The fundamental problems include the quantum coherence of a macroscopic object, the von Neumann chain in quantum measurement, the Schroedinger cat paradox, et al. Many land math experiments have been accomplished with possible important applications in quantum information. The most recent research on the new quantum theory by G.'t Hooft is reviewed, as well as future prospects of quantum mechanics

  15. Electron quantum optics as quantum signal processing

    OpenAIRE

    Roussel, B.; Cabart, C.; Fève, G.; Thibierge, E.; Degiovanni, P.

    2016-01-01

    The recent developments of electron quantum optics in quantum Hall edge channels have given us new ways to probe the behavior of electrons in quantum conductors. It has brought new quantities called electronic coherences under the spotlight. In this paper, we explore the relations between electron quantum optics and signal processing through a global review of the various methods for accessing single- and two-electron coherences in electron quantum optics. We interpret electron quantum optics...

  16. Quantum gravity and taoist cosmology: Exploring the ancient origins of phenomenological string theory.

    Science.gov (United States)

    Rosen, Steven M

    2017-12-01

    This paper carries forward the author's contribution to PBMP's previous special issue on Integral Biomathics (Rosen 2015). In the earlier paper, the crisis in contemporary theoretical physics was described and it was demonstrated that the problem can be addressed effectively only by shifting the foundations of physics from objectivist Cartesian philosophy to phenomenological philosophy. To that end, a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current presentation takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a deep connection between the Klein bottle, which is crucial to the theory, and the Ho-t'u, an old Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the curious psychophysical (phenomenological) action pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature's fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory is guided by the dialectical interplay between symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper

  17. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    Science.gov (United States)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  18. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    Science.gov (United States)

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  19. Origin,

    Directory of Open Access Journals (Sweden)

    Artur de Vargas Giorgi

    2011-02-01

    Full Text Available This essay tightens the “origin” concept, its manifestation through puzzles and their relationship to techniques of reproduction. Contrary to the hegemonic critique of aesthetic and cultural objects – critique that, settled on the appearance and notions of identity, tradition, canon, etc., undervalues the reproductions of "originals" –, the aim is to deliver these objects from formal hierarchization dispositives, that is, release them of what is ideal and positively imposed, so that the reproducibility is potentiated as producer of singularities, of apparitions. The effort is to keep the undecided character of puzzles (bodies, texts, images in which the origin is manifest, so that the logic of the spectacle is reverted into sense opening, instance in which the aesthetic becomes a “performance” before contemporary complexity. With the reproducibility, an origin survives in passage: continually restored, but incomplete, present in trace, in absence.

  20. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  1. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups

  2. Cosmological perturbations of quantum-mechanical origin and anisotropy of the microwave background

    Science.gov (United States)

    Grishchuk, L. P.

    1993-01-01

    Cosmological perturbations generated quantum mechanically (as a particular case, during inflation) possess statistical properties of squeezed quantum states. The power spectra of the perturbations are modulated and the angular distribution of the produced temperature fluctuations of the cosmic microwave background radiation is quite specific. An exact formula is derived for the angular correlation function of the temperature fluctuations caused by squeezed gravitational waves. The predicted angular pattern can, in principle, be revealed by observations like those by the Cosmic Background Explorer.

  3. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    International Nuclear Information System (INIS)

    Colavita, E.; Hacyan, S.

    2014-01-01

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle

  4. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

    Directory of Open Access Journals (Sweden)

    Edoardo Baldini

    2016-11-01

    Full Text Available A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.

  5. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution.

    Science.gov (United States)

    Melkikh, Alexey V; Khrennikov, Andrei

    2017-11-01

    A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Spinorial space-time and the origin of Quantum Mechanics. The dynamical role of the physical vacuum

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, Luis

    2016-01-01

    Is Quantum Mechanics really and ultimate principle of Physics described by a set of intrinsic exact laws? Are standard particles the ultimate constituents of matter? The two questions appear to be closely related, as a preonic structure of the physical vacuum would have an influence on the properties of quantum particles. Although the first preon models were just « quark-like » and assumed preons to be direct constituents of the conventional « elementary » particles, we suggested in 1995 that preons could instead be constituents of the physical vacuum (the superbradyon hypothesis). Standard particles would then be excitations of the preonic vacuum and have substantially different properties from those of preons themselves (critical speed…). The standard laws of Particle Physics would be approximate expressions generated from basic preon dynamics. In parallel, the mathematical properties of space-time structures such as the spinoral space-time (SST) we introduced in 1996-97 can have strong implications for Quantum Mechanics and even be its real origin. We complete here our recent discussion of the subject by pointing out that: i) Quantum Mechanics corresponds to a natural set of properties of vacuum excitations in the presence of a SST geometry ; ii) the recently observed entanglement at long distances would be a logical property if preons are superluminal (superbradyons), so that superluminal signals and correlations can propagate in vacuum ; iii) in a specific description, the function of space-time associated to the extended internal structure of a spin-1/2 particle at very small distances may be incompatible with a continuous motion at space and time scales where the internal structure of vacuum can be felt. In the dynamics associated to iii), and using the SST approach to space-time, a contradiction can appear between macroscopic and microscopic space-times due to an overlap in the time variable directly related to the fact that a spinorial function takes

  7. Reconstruction of original indium distribution in InGaAs quantum wells from experimental SIMS depth profiles

    Energy Technology Data Exchange (ETDEWEB)

    Kudriavtsev, Yu., E-mail: yuriyk@cinvestav.mx [Departamento Ingeniería Eléctrica – SEES, CINVESTAV-IPN, Av. IPN #2508, D.F., México (Mexico); Asomoza, R. [Departamento Ingeniería Eléctrica – SEES, CINVESTAV-IPN, Av. IPN #2508, D.F., México (Mexico); Gallardo-Hernandez, S.; Ramirez-Lopez, M.; Lopez-Lopez, M. [Departamento de Física, CINVESTAV-IPN, México (Mexico); Nevedomsky, V.; Moiseev, K. [Ioffe Physical Technical Institute, S-Petersburg (Russian Federation)

    2014-11-15

    Depth profiling analysis of InGaAs/GaAs hetero-structures grown by MBE on GaAs (0 0 1) substrates is reported. A novel two-step procedure for de-convolving experimental SIMS depth distribution is employed and the original In distribution in InGaAs quantum wells (QW) is estimated. The QW thickness calculated from the de-convolved profiles is shown to be in good agreement with the cross-sectional TEM images. The experimental In depth profile is shifted from the original In distribution due to the ion mixing process during depth profiling analysis. It is shown that the de-convolution procedure is suitable for reconstruction of the original QW width and depth by SIMS even for relatively high primary ion energies.

  8. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  9. Instantaneous coherent destruction of tunneling and fast quantum state preparation for strongly pulsed spin qubits in diamond

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2010-01-01

    Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....

  10. Quantum key distribution with two-segment quantum repeaters

    Energy Technology Data Exchange (ETDEWEB)

    Kampermann, Hermann; Abruzzo, Silvestre; Bruss, Dagmar [Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2014-07-01

    Quantum repeaters represent one possible way to achieve long-distance quantum key distribution. One way of improving the repeater rate and decreasing the memory coherence time is the usage of multiplexing. Motivated by the experimental fact that long-range connections are practically demanding, we extend the analysis of the quantum repeater multiplexing protocol to the case of short-range connections. We derive formulas for the repeater rate and we show that short-range connections lead to most of the benefits of a full-range multiplexing protocol. A less demanding QKD-protocol without quantum memories was recently introduced by Lo et al. We generalize this measurement-device-independent quantum key Distribution protocol to the scenario where the repeater Station contains also heralded quantum memories. We assume either single-photon sources or weak coherent pulse sources plus decay states. We show that it is possible to significantly outperform the original proposal, even in presence of decoherence of the quantum memory. We give formulas in terms of device imperfections i.e., the quantum bit error rate and the repeater rate.

  11. Origins of efficient green light emission in phase-separated InGaN quantum wells

    International Nuclear Information System (INIS)

    Lai, Y-L; Liu, C-P; Lin, Y-H; Hsueh, T-H; Lin, R-M; Lyu, D-Y; Peng, Z-X; Lin, T-Y

    2006-01-01

    Green-light-emitting InGaN/GaN multiple quantum wells (MQWs) with high luminescent efficiency were grown by metalorganic chemical vapour deposition (MOCVD). The microstructure of the sample was studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution x-ray diffraction, while its optical behaviour was analysed in great detail by a variety of photoluminescence methods. Two InGaN-related peaks that were clearly found in the photoluminescence (PL) spectrum are assigned to quasi-quantum dots (516 nm) and the InGaN matrix (450 nm), respectively, due to a strong phase separation observed by HRTEM. Except for the strong indium aggregation regions (511 meV of Stokes shift), slight composition fluctuations were also observed in the InGaN matrix, which were speculated from an 'S-shaped' transition and a Stokes shift of 341 meV. Stronger carrier localization and an internal quantum efficiency of the dot-related emission (21.5%), higher than the InGaN-matrix related emission (7.5%), was demonstrated. Additionally, a shorter lifetime and 'two-component' PL decay were found for the low-indium-content regions (matrix). Thus, the carrier transport process within quantum wells is suggested to drift from the low-In-content matrix to the high-In-content dots, resulting in the enhanced luminescence efficiency of the green light emission

  12. A Genuine Jahn-Teller System with Compressed Geometry and Quantum Effects Originating from Zero-Point Motion

    DEFF Research Database (Denmark)

    Aramburu, José Antonio; García-Fernández, Pablo; García Lastra, Juan Maria

    2016-01-01

    that the anomalous positive g∥ shift (g∥−g0=0.065) measured at T=20 K obeys the superposition of the |3 z2−r2⟩ and |x2−y2⟩ states driven by quantum effects associated with the zero-point motion, a mechanism first put forward by O'Brien for static Jahn–Teller systems and later extended by Ham to the dynamic Jahn...... of the calculated energy barriers for different Jahn–Teller systems allowed us to explain the origin of the compressed geometry observed for CaO:Ni+....

  13. Efficiency of coherent-state quantum cryptography in the presence of loss: Influence of realistic error correction

    International Nuclear Information System (INIS)

    Heid, Matthias; Luetkenhaus, Norbert

    2006-01-01

    We investigate the performance of a continuous-variable quantum key distribution scheme in a practical setting. More specifically, we take a nonideal error reconciliation procedure into account. The quantum channel connecting the two honest parties is assumed to be lossy but noiseless. Secret key rates are given for the case that the measurement outcomes are postselected or a reverse reconciliation scheme is applied. The reverse reconciliation scheme loses its initial advantage in the practical setting. If one combines postselection with reverse reconciliation, however, much of this advantage can be recovered

  14. Coherent spin dynamics of an interwell excitonic gas in GaAs/AlGaAs coupled quantum wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bisti, V. E.; Bayer, M.

    2006-01-01

    The spin dynamics of an interwell exciton gas has been investigated in n-i-n GaAs/AlGaAs coupled quantum wells. The time evolution kinetics of the interwell exciton photoluminescence has been measured under resonant excitation of the 1s heavy-hole intrawell exciton, using a pulsed tunable laser...

  15. Elucidation of the origins of transport behaviour and quantum oscillations in high temperature superconducting cuprates

    International Nuclear Information System (INIS)

    Wilson, John A

    2009-01-01

    A detailed exposition is given of recent transport and 'quantum oscillation' results from high temperature superconducting (HTSC) systems covering the full carrier range from overdoped to underdoped material. This now very extensive and high quality data set is here interpreted within the framework developed by the author of local pairs and boson-fermion resonance, arising in the context of negative- U behaviour within an inhomogeneous electronic environment. The strong inhomogeneity comes with the mixed-valence condition of these materials, which when underdoped lie in close proximity to the Mott-Anderson transition. The observed intense scattering is presented as resulting from pair formation and from electron-boson collisions in the resonant crossover circumstance. The high level of scattering carries the systems to incoherence in the pseudogapped state, p c (= 0.183). In a high magnetic field the striped partition of the inhomogeneous charge distribution becomes much strengthened and regularized. Magnetization and resistance oscillations, of period dictated by the favoured positioning of the fluxon array within the real space environment of the diagonal 2D charge striping array, are demonstrated to be responsible for the recently reported behaviour hitherto widely attributed to the quantum oscillation response of a much more standard Fermi liquid condition. A detailed analysis embracing all the experimental data serves to reveal that in the given conditions of very high field, low temperature, 2D-striped, underdoped, d-wave superconducting, HTSC material the flux quantum becomes doubled to h/e.

  16. Development and application of multiple-quantum coherence techniques for in vivo sodium MRI at high and ultra-high field strengths

    International Nuclear Information System (INIS)

    Fiege, Daniel Pascal

    2014-01-01

    Sodium magnetic resonance imaging (MRI) can quantify directly and non-invasively tissue sodium concentration levels in vivo. Tissue sodium concentration levels are tightly regulated and have been shown to be directly linked to cell viability. The intracellular sodium concentration is an even more specific parameter. The triple-quantum filtering (TQF) technique for sodium MRI has been suggested to detect the intracellular sodium only. Despite their huge potential, only few studies with sodium MRI have been carried out because of the long acquisition times of sodium MRI techniques, their susceptibility to static field inhomogeneities and their limited signal-to-noise ratio compared to proton MRI. Three novel techniques that address these limitations are presented in this thesis: (a) a sodium MRI sequence that acquires simultaneously both tissue sodium concentration maps and TQF images, (b) a phase-rotation scheme that allows for the acquisition of static field inhomogeneity insensitive TQF images, and (c) the combination of the two aforementioned techniques with optimised parameters at the ultra-high fi eld strength of 9.4 T in vivo. The SISTINA sequence - simultaneous single-quantum and triple-quantum filtered imaging of 23 Na - is presented. The sequence is based on a TQF acquisition with a Cartesian readout and a three-pulse preparation. The delay between the first two pulses is used for an additional ultra-short echo time 3D radial readout. The method was implemented on a 4T scanner. It is validated in phantoms and in healthy volunteers that this additional readout does not interfere with the TQ preparation. The method is applied to three cases of brain tumours. The tissue sodium concentration maps and TQF images are presented and compared to 1 H MR and positron emission tomography images. The three-pulse TQF preparation is sensitive to static field inhomogeneities. This problem is caused by destructive interference of different coherence pathways. To address

  17. Influences of the family of origin on the timing and quantum of fertility in the Netherlands

    NARCIS (Netherlands)

    Rijken, A.J.; Liefbroer, A.C.

    2009-01-01

    This study examined to what extent family of origin influences age at first birth and final number of children. We took into account direct intergenerational transmission of fertility behaviour, family-life experiences around age 15, and the wider social context of the family of origin. Hazard

  18. Influences of the family of origin on the timing and quantum of fertility in The Netherlands

    NARCIS (Netherlands)

    Rijken, A.J.; Liefbroer, A.C.

    2009-01-01

    This study examined to what extent family of origin influences age at first birth and final number of children. We took into account direct intergenerational transmission of fertility behaviour, family-life experiences around age 15, and the wider social context of the family of origin. Hazard

  19. On the origin of blue emission from ZnO quantum dots synthesized by a sol–gel route

    International Nuclear Information System (INIS)

    Han, Li-Li; Cui, Lan; Du, Xi-Wen; Wang, Wei-Hua; Wang, Jiang-Long

    2012-01-01

    ZnO quantum dots (QDs) with blue emission were synthesized by a sol–gel method. A series of control experiments were conducted to explore the origin of the blue emission. It is found that the blue emission arises from neither the quantum confinement nor intermediate products, and it can be achieved only in the presence of Li + cations and excessive OH − anions. Moreover, the long decay time of the blue emission suggests a defect-related de-excitation process. On the basis of the experimental and calculation results, possible de-excitation paths for light emission were discussed, and the origin of the blue emission was determined as the electron transition from the conduction band to interstitial oxygen defects. Excessive OH − anions are responsible for the formation of interstitial oxygen defects, and Li + ions can stabilize the defects by substituting for Zn atoms. Besides, Li + ions can block the growth of ZnO QDs, broaden their band gap and cause a blue shift of the blue emission. (paper)

  20. Coherent defects in superconducting circuits

    International Nuclear Information System (INIS)

    Mueller, Clemens

    2011-01-01

    The interaction of superconducting circuits with additional quantum systems is a topic that has found extensive study in the recent past. In the limit where the added system are incoherent, this is the standard field of decoherence and the system dynamics can be described by a simple master equation. In the other limit however, when the additional parts are coherent, the resulting time-evolution can become more complicated. In this thesis we have investigated the interaction of superconducting circuits with coherent and incoherent two-level defects. We have shown theoretical calculations characterizing this interaction for all relevant parameter regimes. In the weak coupling limit, the interaction can be described in an effective bath picture, where the TLS act as parts of a large, decohering environment. For strong coupling, however, the coherent dynamics of the full coupled system has to be considered. We show the calculations of the coupled time-evolution and again characterize the interaction by an effective decoherence rate. We also used experimental data to characterize the microscopic origin of the defects and the details of their interaction with the circuits. The results obtained by analyzing spectroscopic data allow us to place strong constraint on several microscopic models for the observed TLS. However, these calculations are not yet fully conclusive as to the physical nature of the TLS. We propose additional experiments to fully characterize the interaction part of the Hamiltonian, thus providing the answer to the question of the physical origin of the coupling. Additionally we have developed a method to directly drive individual defect states via virtual excitation of the qubit. This method allows one to directly probe the properties of single TLS and possibly make use of their superior coherence times for quantum information purposes. The last part of this thesis provided a way for a possible implementation of geometric quantum computation in

  1. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  2. Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability

    KAUST Repository

    Tang, Jiang

    2010-02-23

    We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this ordersof-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots. © 2010 American Chemical Society.

  3. Fundamental Limits to Coherent Scattering and Photon Coalescence from Solid-State Quantum Emitters [arXiv

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; McCutcheon, Dara; Mørk, Jesper

    2016-01-01

    a substantial suppression of detrimental interactions between the source and its phonon environment. Nevertheless, we demonstrate here that this reasoning is incomplete, and phonon interactions continue to play a crucial role in determining solid-state emission characteristics even for very weak excitation. We...... find that the sideband resulting from non-Markovian relaxation of the phonon environment leads to a fundamental limit to the fraction of coherently scattered light and to the visibility of two-photon coalescence at weak driving, both of which are absent for atomic systems or within simpler Markovian...

  4. On the origin of the gauche effect. A quantum chemical study of 1,2-difluoroethane

    Science.gov (United States)

    Engkvist, O.; Karlström, G.; Widmark, P.-O.

    1997-01-01

    The conformational equilibrium of 1,2-difluoroethane has been investigated using ab initio quantum chemical calculations at the SCF, MP2 and CCSD(T) levels, with ANO basis sets. The relative stability of the gauche-conformation of 1,2-difluoroethane is found to be a consequence of the nodal structure of the singly occupied orbital in the CFH 2 radical. It is also shown that the nodal structure of the singly occupied orbitals in the CFH biradical can explain the stability of the cis conformation of 1,2-difluoroethene.

  5. Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts

    OpenAIRE

    Wan, J.; Cahay, M.; Debray, P.; Newrock, R.

    2009-01-01

    A non-equilibrium Green function formalism (NEGF) is used to study the conductance of a side-gated quantum point contact (QPC) in the presence of lateral spin-orbit coupling (LSOC). A small difference of bias voltage between the two side gates (SGs) leads to an inversion asymmetry in the LSOC between the opposite edges of the channel. In single electron modeling of transport, this triggers a spontaneous but insignificant spin polarization in the QPC. However, the spin polarization of the QPC ...

  6. On coherent states

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1975-01-01

    A definition of the coherent state representation is given in this paper. In the representation quantum theory equations take the form of classical field theory equations (with causality inherent to the latter) not only in simple cases (free field and interactions with an external current or field), but also in the general case of closed systems of interacting fields. And, conversely, a classical field theory can be transformed into a form of a quantum one

  7. Biological activity is the likely origin of the intersection between the photoreceptor inner and outer segments of the rat retina as determined by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Yamauchi Y

    2011-11-01

    Full Text Available Yasuyuki Yamauchi, Hiromichi Yagi, Yoshihiko Usui, Keisuke Kimura, Tsuyoshi Agawa, Rintaro Tsukahara, Naoyuki Yamakawa, Hiroshi GotoDepartment of Ophthalmology, Tokyo Medical University Hospital, Tokyo, JapanBackground: Recent research on macular diseases has prompted investigations into the condition of the intersection between the photoreceptor inner and outer segments (IS/OS and the relationship with retinal photoreceptor abnormalities. Although the origin of the IS/OS in optical coherence tomography (OCT images is unclear, it may be related to either the cellular activity of the photoreceptors or the structure of the OS disks. To address this question, we compared the IS/OS status in OCT images of rat retinas before and after euthanasia.Methods: OCT images were taken before and after euthanasia in four eyes of two Brown Norway rats. After the OCT images were taken, the rats were used for histopathological studies to confirm that retinal structures were intact.Results: Before euthanasia, the IS/OS and external limiting membrane (ELM line were clearly identifiable on the OCT images. However, after euthanasia, neither the IS/OS nor the ELM line was evident in three out of four eyes, and a faint IS/OS and an ELM line were identified in one eye. Histopathological analysis did not show any abnormalities in the retina in any of the four eyes.Conclusion: The origin of the IS/OS identified in OCT images is likely related to the biological activities of the photoreceptor cells.Keywords: IS/OS, OCT, histopathology, biological activity

  8. C8-structured carbon quantum dots: Synthesis, blue and green double luminescence, and origins of surface defects

    Science.gov (United States)

    Xifang, Chen; Wenxia, Zhang; Qianjin, Wang; Jiyang, Fan

    Carbon quantum dots (CQDs) have attracted great attention in the past few years due to their low cytotoxicity, exploited various synthesis methods, unexampled abundance of raw materials on earth, and robust near-infrared to near-UV luminescence. Carbon nanoparticles have applications in biological labeling, delivery of drugs and biological molecules into cells, and light emitting diodes and lasing. CQDs generally exist as nanodiamonds or graphite quantum dots according to previous research reports. In this study, we report the first synthesis of the third-allotrope CQDs through carbonization of sucrose and study their luminescence properties. These CQDs have a body-centered cubic structure and each lattice point is composed of eight atoms which form a sub-cube (so called C8 crystal structure). High-resolution transmission electron microscopy and X-ray diffraction confirm the C8 structure of the synthesized carbon nanocrystallites with an average size of 2 nm. The C8 CQDs exhibit double-band luminescence with two peaks centered at around 432 and 520 nm. The study based on the photoluminescence, UV-Vis absorption, Fourier-transform infrared, and X-ray photoelectron spectroscopies reveals that the green emission originates from the C=O related surface defect.

  9. Saturn Rings Origin: Quantum Trapping of Superconducting Iced Particles and Meissner Effect Lead to the Stable Rings System

    Science.gov (United States)

    Viktorovich Tchernyi, Vladimir

    2018-06-01

    Saturn Rings Origin: Quantum Trapping of Superconducting Iced Particles and Meissner Effect Lead to the Stable Rings System Vladimir V. Tchernyi (Cherny), Andrew Yu. Pospelov Modern Science Institute, SAIBR, Moscow, Russia. E-mail: chernyv@bk.ruAbstractIt is demonstrated how superconducting iced particles of the protoplanetary cloud of Saturn are coming to magnetic equator plane and create the stable enough rings disk. There are two steps. First, after appearance of the Saturn magnetic field due to Meissner phenomenon all particles orbits are moving to the magnetic equator plane. Finally they become distributed as rings and gaps like iron particles around magnet on laboratory table. And they are separated from each other by the magnetic field expelled from them. It takes up to few tens of thousands years with ten meters rings disk thickness. Second, due to their quantum trapping all particles become to be trapped within magnetic well at the magnetic equator plane due to Abrikosov vortex for superconductor. It works even when particles have small fraction of superconductor. During the rings evolution some contribution to the disk also could come from the collision-generated debris of the current moon and from the geysers like it happened due to magnetic coupling of Saturn and Enceladus. The rings are relict of the early days of the magnetic field of Saturn system.

  10. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots.

    Science.gov (United States)

    Dohnalová, Kateřina; Fučíková, Anna; Umesh, Chinnaswamy P; Humpolíčková, Jana; Paulusse, Jos M J; Valenta, Jan; Zuilhof, Han; Hof, Martin; Gregorkiewicz, Tom

    2012-10-22

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl-terminated Si-QDs of 2-3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano-object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron-hole pairs confined in the Si-QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si-QDs with tunable sizes and bandgaps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optical pulse shaping approaches to coherent control

    International Nuclear Information System (INIS)

    Goswami, Debabrata

    2003-01-01

    The last part of the twentieth century has experienced a huge resurge of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions. Birth of coherent control was originally spurred by the theoretical understanding of the quantum interferences that lead to energy randomization and experimental developments in ultrafast laser spectroscopy. The theoretical predictions on control of reaction channels or energy randomization processes are still more dramatic than the experimental demonstrations, though this gap between the two is consistently reducing over the recent years with realistic theoretical models and technological developments. Experimental demonstrations of arbitrary optical pulse shaping have made some of the previously impracticable theoretical predictions possible to implement. Starting with the simple laser modulation schemes to provide proof-of-the-principle demonstrations, feedback loop pulse shaping systems have been developed that can actively manipulate some atomic and molecular processes. This tremendous experimental boost of optical pulse shaping developments has prospects and implications into many more new directions, such as quantum computing and terabit/sec data communications. This review captures certain aspects and impacts of optical pulse shaping into the fast developing areas of coherent control and other related fields. Currently available reviews focus on one or the other detailed aspects of coherent control, and the reader will be referred to such details as and when necessary for issues that are dealt in brief here. We will focus on the current issues including control of intramolecular dynamics and make connections to the future concepts, such as, quantum computation, biomedical applications, etc

  12. Coherent states: a contemporary panorama Coherent states: a contemporary panorama

    Science.gov (United States)

    Twareque Ali, S.; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre

    2012-06-01

    Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schrödinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably the 1985 reprint volume of Klauder and Skagerstam [1], the 1990 review paper by Zhang et al [2], the 1993 Oak Ridge Conference [3] and the 1995 review paper by Ali et al [4]. Textbooks also have been published, among which one might mention the ground breaking text of Perelomov [5] focusing on the group-theoretical aspects, that of Ali et al [6]1 analyzing systematically the mathematical structure beyond the group-theoretical approach and also the relation to wavelet analysis, that of Dodonov and Man'ko [7] mostly devoted to quantum optics, that of Gazeau [8] more oriented towards the physical, probabilistic and quantization aspects, and finally the very recent one by Combescure and Robert [9]. In retrospect, one can see that the development of CS has gone through a two-phase transition. First, the (simultaneous) discovery in 1972 by Gilmore and Perelomov that CS were rooted in group theory, then the realization that CS can be defined in a purely algebraic way, as an eigenvalue problem or by a series expansion (Malkin and Man'ko 1969, Barut and Girardello 1971, Gazeau and Klauder 1999; references to the original articles may be found in the textbooks quoted above). Both facts resulted in an explosive expansion of the CS literature. We thought, therefore, that the time was ripe

  13. Does the Berry phase in a quantum optical system originate from the rotating wave approximation?

    International Nuclear Information System (INIS)

    Wang, Minghao; Wei, L.F.; Liang, J.Q.

    2015-01-01

    The Berry phase (BP) in a quantized light field demonstrated more than a decade ago (Fuentes-Guridi et al., 2002 [9]) has attracted considerable attention, since it plays an important role in the cavity quantum electrodynamics. However, it is argued in Larson (2012) [15] that such a BP is just due to the rotating wave approximation (RWA) and the relevant BP should vanish beyond this approximation. Based on a consistent analysis we conclude in this letter that the BP in a generic Rabi model actually exists, no matter whether the RWA is applied. The existence of BP is also generalized to a three-level atom in the quantized cavity field. - Highlights: • Non-zero Berry phases for the Rabi model (without rotating wave approximation) are verified. • A general formulation of Berry phases for both the JC model and the Rabi model is presented. • The claim of vanishing Berry phase in the Rabi model is a result of improper semiclassical approximation. • Analytic solutions for the Rabi model is presented in the semiclassical approximation

  14. Origin of non-quantum noise and time dependent thermo field dynamics

    International Nuclear Information System (INIS)

    Umezawa, H.

    1991-01-01

    Common features and physically profound differences are summarized between various kinds of noise in pure states caused by the Bogoliubov transformation in such diverse phenomena as the squeezed state in quantum optics, Hawking radiation around the eternal black hole, and thermal physics.All the thermal vacua form a set of states degenerate in eigenvalues of the Hamiltonian H-circumflex, i.e., the zero-hat energy states. The presence of these degenerate energy states exhibits the spontaneous breakdown of weak Bogoliubov symmetry. The thermal freedom is the freedom of moving through the states in this degenerate set. Considering a time-dependent movement of a thermal vacuum through the degenerate set, the time-dependent thermal field dynamics are obtained. With this formalism the authors set up a quasi-particle picture and analyze the spectral representation of the Heisenberg two point Green's function and the diagonalization of the quasi-particle Hamiltonian. The formalism will be used in discussion of the appearance of short time intermediate high-temperature states when the initial state is at practically zero temperature. (author). 28 refs

  15. High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Tsubaki, Ippei; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2012-12-15

    Recently, there has been an increasing interest in broadband light sources to develop a biomolecular imaging technique called optical coherence tomography (OCT). We fabricated superluminescent diodes (SLDs) using three kinds of quantum dot (QD) layers with different emission wavelength in the active region. The emission wavelength was controlled by reducing the strain in QDs by using In{sub 0.1}Ga{sub 0.9}As strain-reducing layer. The SLD device showed a broad electroluminescence spectrum with the center wavelength of 1104 nm and the spectral linewidth of 122 nm at the injection of 40 mA, which corresponds to the theoretical axial resolution of 4.4 {mu}m. To estimate the actual resolution of the OCT system using fabricated SLD, we measured the interference signal in the Michelson interferometer. An axial resolution of 5.4 {mu}m, which is close to the theoretical limit, was obtained (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Coherence of light. 2. ed.

    International Nuclear Information System (INIS)

    Perina, J.

    1985-01-01

    This book puts the theory of coherence of light on a rigorous mathematical footing. It deals with the classical and quantum theories and with their inter-relationships, including many results from the author's own research. Particular attention is paid to the detection of optical fields, using the correlation functions, photocount statistics and coherent state. Radiometry with light fields of arbitrary states of coherence is discussed and the coherent state methods are demonstrated by photon statistics of radiation in random and nonlinear media, using the Heisenberg-Langevin and Fokker-Planck approaches to the interaction of radiation with matter. Many experimental and theoretical results are compared. A full list of references to theoretical and experimental literature is provided. The book is intended for researchers and postgraduate students in the fields of quantum optics, quantum electronics, statistical optics, nonlinear optics, optical communication and optoelectronics. (Auth.)

  17. Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement

    Science.gov (United States)

    Jana, Subrata; Samal, Prasanjit

    2018-01-01

    The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.

  18. Coherent control of two individual electron spins and influence of hyperfine coupling in a double quantum dot

    International Nuclear Information System (INIS)

    Tarucha, S; Obata, T; Pioro-Ladriere, M; Brunner, R; Shin, Y-S; Kubo, T; Tokura, Y

    2011-01-01

    Electric dipole spin resonance of two individual electrons and the influence of hyperfine coupling on the spin resonance are studied for a double quantum dot equipped with a micro-magnet. The spin resonance occurs by oscillating the electron in each dot at microwave (MW) frequencies in the presence of a micro-magnet induced stray field. The observed continuous wave (CW) and time-resolved spin resonances are consistent with calculations in which the MW induced AC electric field and micro-magnet induced stray field are taken into account. The influence of hyperfine coupling causes an increase and broadening of the respective CW spin resonance peaks through dynamical nuclear polarization when sweeping up the magnetic field. This behaviour appears stronger for the larger of the two spin resonance peaks and in general becomes more pronounced as the MW power increases, both reflecting that the electron-nuclei interaction is more efficient for the stronger spin resonance. In addition the hyperfine coupling effect only becomes pronounced when the MW induced AC magnetic field exceeds the fluctuating nuclear field.

  19. Tight Binding methods in quantum transport through molecules and small devices: from the coherent to the incoherent description

    Energy Technology Data Exchange (ETDEWEB)

    Pastawaski, Horacio M. [Universidad Nacional de Cordoba, Cordoba (Argentina); Medina, Ernesto [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    We discuss the steady-state electronic transport in solid-state and molecular devices in the quantum regime. The decimation technique allows a comprehensive description of the electronic structure. Such a method is used, in conjunction with the generalizations of Landauer's tunneling formalism, to describe a wide range of transport regimes. We analyze mesoscopic and semiclassical metallic transport, the metal-insulator transition, and the resonant tunneling regime. The effects of decoherence on transport is discussed in terms of the D' Amato-Pastawski model. A brief presentation of the time dependent phenomena is also included. [Spanish] Se discuten el transporte, en el estado estacionario, en dispositivos moleculares y de estado solido en el regimen cuantico. La tecnica de decimacion permite una descripcion completa de la estructura electronica. Tal metodo, en conjunto con la generalizacion del formalismo de Landauer, puede ser usado para describir un rango amplio de regimenes de transporte. Se analizan el transporte mesoscopico y semiclasico en el regimen metalico, la transicion metal-aislante, y el regimen de tunel resonante. Los efectos de decoherencia en el transporte son tratados en terminos de modelos de D'amato-Pastawski. Finalmente se incluye una breve presentacion de fenomenos dependientes del tiempo.

  20. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking

    Science.gov (United States)

    Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.

    2018-02-01

    The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions

  1. Decoherence in open quantum systems

    International Nuclear Information System (INIS)

    Isar, A.

    2005-01-01

    In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes

  2. Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts

    KAUST Repository

    Tu, Xingchen

    2014-11-21

    © 2014 AIP Publishing LLC. Besides the peak at one conductance quantum, G0, two additional features at ∼0.4 G0 and ∼1.3 G0 have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions. In order to understand such feature, here we investigate the electronic transport and mechanical properties of clean and oxygen-doped silver atomic contacts by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that, unlike clean Ag single-atom contacts showing a conductance of 1 G0, the low-bias conductance of oxygen-doped Ag atomic contacts depends on the number of oxygen impurities and their binding configuration. When one oxygen atom binds to an Ag monatomic chain sandwiched between two Ag electrodes, the low-bias conductance of the junction always decreases. In contrast, when the number of oxygen impurities is two and the O-O axis is perpendicular to the Ag-Ag axis, the transmission coefficients at the Fermi level are, respectively, calculated to be 1.44 for the junction with Ag(111) electrodes and 1.24 for that with Ag(100) electrodes, both in good agreement with the measured value of ∼1.3 G0. The calculated rupture force (1.60 nN for the junction with Ag(111) electrodes) is also consistent with the experimental value (1.66 ± 0.09 nN), confirming that the measured ∼1.3 G0 conductance should originate from Ag single-atom contacts doped with two oxygen atoms in a perpendicular configuration.

  3. Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots

    International Nuclear Information System (INIS)

    Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.

    2010-01-01

    The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The 1 Π u singlet state and the 3 Π u triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.

  4. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  5. High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence.

    Directory of Open Access Journals (Sweden)

    Honghao Cai

    Full Text Available BACKGROUND AND PURPOSE: Nuclear magnetic resonance (NMR spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC technique is explored using fish muscle, fish eggs, and a whole fish as examples. MATERIALS AND METHODS: Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. RESULTS: When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. CONCLUSION: Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.

  6. Quantumness beyond quantum mechanics

    International Nuclear Information System (INIS)

    Sanz, Ángel S

    2012-01-01

    Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).

  7. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    International Nuclear Information System (INIS)

    Sarfatti, Jack; Levit, Creon

    2009-01-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the 'zero point' (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual 'condensate' (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter ΩM DM ∼ 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  8. Generalized hypergeometric coherent states

    International Nuclear Information System (INIS)

    Appl, Thomas; Schiller, Diethard H

    2004-01-01

    We introduce a large class of holomorphic quantum states by choosing their normalization functions to be given by generalized hypergeometric functions. We call them generalized hypergeometric states in general, and generalized hypergeometric coherent states in particular, if they allow a resolution of unity. Depending on the domain of convergence of the generalized hypergeometric functions, we distinguish generalized hypergeometric states on the plane, the open unit disc and the unit circle. All states are eigenstates of suitably defined lowering operators. We then study their photon number statistics and phase properties as revealed by the Husimi and Pegg-Barnett phase distributions. On the basis of the generalized hypergeometric coherent states we introduce new analytic representations of arbitrary quantum states in Bargmann and Hardy spaces as well as generalized hypergeometric Husimi distributions and corresponding phase distributions

  9. Quantum Hilbert Hotel.

    Science.gov (United States)

    Potoček, Václav; Miatto, Filippo M; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Liapis, Andreas C; Oi, Daniel K L; Boyd, Robert W; Jeffers, John

    2015-10-16

    In 1924 David Hilbert conceived a paradoxical tale involving a hotel with an infinite number of rooms to illustrate some aspects of the mathematical notion of "infinity." In continuous-variable quantum mechanics we routinely make use of infinite state spaces: here we show that such a theoretical apparatus can accommodate an analog of Hilbert's hotel paradox. We devise a protocol that, mimicking what happens to the guests of the hotel, maps the amplitudes of an infinite eigenbasis to twice their original quantum number in a coherent and deterministic manner, producing infinitely many unoccupied levels in the process. We demonstrate the feasibility of the protocol by experimentally realizing it on the orbital angular momentum of a paraxial field. This new non-Gaussian operation may be exploited, for example, for enhancing the sensitivity of NOON states, for increasing the capacity of a channel, or for multiplexing multiple channels into a single one.

  10. Generalization of fewest-switches surface hopping for coherences

    Science.gov (United States)

    Tempelaar, Roel; Reichman, David R.

    2018-03-01

    Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.

  11. Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts

    KAUST Repository

    Tu, Xingchen; Wang, Minglang; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    © 2014 AIP Publishing LLC. Besides the peak at one conductance quantum, G0, two additional features at ∼0.4 G0 and ∼1.3 G0 have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions

  12. The interaction of a nanoscale coherent helium-ion probe with a crystal

    International Nuclear Information System (INIS)

    D'Alfonso, A.J.; Forbes, B.D.; Allen, L.J.

    2013-01-01

    Thickness fringing was recently observed in helium ion microscopy (HIM) when imaging magnesium oxide cubes using a 40 keV convergent probe in scanning transmission mode. Thickness fringing is also observed in electron microscopy and is due to quantum mechanical, coherent, multiple elastic scattering attenuated by inelastic phonon excitation (thermal scattering). A quantum mechanical model for elastic scattering and phonon excitation correctly models the thickness fringes formed by the helium ions. However, unlike the electron case, the signal in the diffraction plane is due mainly to the channeling of ions which have first undergone inelastic thermal scattering in the first few atomic layers so that the origin of the thickness fringes is not due to coherent interference effects. This quantum mechanical model affords insight into the interaction of a nanoscale, focused coherent ion probe with the specimen and allows us to elucidate precisely what is needed to achieve atomic resolution HIM. - Highlights: • Thickness fringing has recently been observed imaging MgO cubes using helium ion microscopy. • A quantum mechanical model for elastic scattering and phonon excitation models the fringes. • The signal is due mainly to the coherent scattering of ions after inelastic thermal scattering. • We elucidate precisely what is needed to achieve atomic resolution HIM

  13. Can Excited State Electronic Coherence Be Tuned via Molecular Structural Modification? A First-Principles Quantum Electronic Dynamics Study of Pyrazolate-Bridged Pt(II) Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.; Brown-Xu, Samantha E.; Kim, Pyosang; Castellano, Felix N.; Chen, Lin X.; Li, Xiaosong

    2017-02-24

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.

  14. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  15. Algorithmic complexity of quantum capacity

    Science.gov (United States)

    Oskouei, Samad Khabbazi; Mancini, Stefano

    2018-04-01

    We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.

  16. Elementary quantum chemistry

    CERN Document Server

    Pilar, Frank L

    2003-01-01

    Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.

  17. Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability

    KAUST Repository

    Tang, Jiang; Brzozowski, Lukasz; Barkhouse, D. Aaron R.; Wang, Xihua; Debnath, Ratan; Wolowiec, Remigiusz; Palmiano, Elenita; Levina, Larissa; Pattantyus-Abraham, Andras G.; Jamakosmanovic, Damir; Sargent, Edward H.

    2010-01-01

    We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without

  18. On phase-space representations of quantum mechanics using

    Indian Academy of Sciences (India)

    space representations of quantum mechanics using Glauber coherent states. DIÓGENES CAMPOS. Research Article Volume 87 Issue 2 August ... Keywords. Phase-space quantum mechanics, coherent states, Husimi function, Wigner function ...

  19. Quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Adler, S.L.

    1986-01-01

    In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics

  20. Engineering quantum dynamics

    International Nuclear Information System (INIS)

    Lloyd, Seth; Viola, Lorenza

    2002-01-01

    The ability to perform measurements on a quantum system, combined with the ability to feed back the measurement results via coherent control, allows one to control the system to follow any desired coherent or incoherent quantum dynamics. Such universal dynamical control can be achieved, in principle, through the repeated application of only two coherent control operations and a simple 'Yes-No' measurement. As a consequence, a quantum computer can simulate an arbitrary open-system dynamics using just one qubit more than required to simulate closed-system dynamics