WorldWideScience

Sample records for quantitative spect preclinical

  1. [Studies of biologic activation associated with molecular receptor increase and tumor response in ChL6/L6 protocol patients; Studies in phantoms; Quantitative SPECT; Preclinical studies; and Clinical studies]. DOE annual report, 1994-95

    International Nuclear Information System (INIS)

    DeNardo, S.J.

    1995-01-01

    The authors describe results which have not yet been published from their associated studies listed in the title. For the first, they discuss Lym-1 single chain genetically engineered molecules, analysis of molecular genetic coded messages to enhance tumor response, and human dosimetry and therapeutic human use radiopharmaceuticals. Studies in phantoms includes a discussion of planar image quantitation, counts coincidence correction, organ studies, tumor studies, and 90 Y quantitation with Bremsstrahlung imaging. The study on SPECT discusses attenuation correction and scatter correction. Preclinical studies investigated uptake of 90 Y-BrE-3 in mice using autoradiography. Clinical studies discuss image quantitation verses counts from biopsy samples, S factors for radiation dose calculation, 67 Cu imaging studies for lymphoma cancer, and 111 In MoAb imaging studies for breast cancer to predict 90 Y MoAb therapy

  2. Quantitative Analysis of cardiac SPECT

    International Nuclear Information System (INIS)

    Nekolla, S.G.; Bengel, F.M.

    2004-01-01

    The quantitative analysis of myocardial SPECT images is a powerful tool to extract the highly specific radio tracer uptake in these studies. If compared to normal data bases, the uptake values can be calibrated on an individual basis. Doing so increases the reproducibility of the analysis substantially. Based on the development over the last three decades starting from planar scinitigraphy, this paper discusses the methods used today incorporating the changes due to tomographic image acquisitions. Finally, the limitations of these approaches as well as consequences from most recent hardware developments, commercial analysis packages and a wider view of the description of the left ventricle are discussed. (orig.)

  3. Preclinical imaging characteristics and quantification of Platinum-195m SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Aalbersberg, E.A.; Wit-van der Veen, B.J. de; Vegt, E.; Vogel, Wouter V. [The Netherlands Cancer Institute (NKI-AVL), Department of Nuclear Medicine, Amsterdam (Netherlands); Zwaagstra, O.; Codee-van der Schilden, K. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2017-08-15

    In vivo biodistribution imaging of platinum-based compounds may allow better patient selection for treatment with chemo(radio)therapy. Radiolabeling with Platinum-195m ({sup 195m}Pt) allows SPECT imaging, without altering the chemical structure or biological activity of the compound. We have assessed the feasibility of {sup 195m}Pt SPECT imaging in mice, with the aim to determine the image quality and accuracy of quantification for current preclinical imaging equipment. Enriched (>96%) {sup 194}Pt was irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands (NRG). A 0.05 M HCl {sup 195m}Pt-solution with a specific activity of 33 MBq/mg was obtained. Image quality was assessed for the NanoSPECT/CT (Bioscan Inc., Washington DC, USA) and U-SPECT{sup +}/CT (MILabs BV, Utrecht, the Netherlands) scanners. A radioactivity-filled rod phantom (rod diameter 0.85-1.7 mm) filled with 1 MBq {sup 195m}Pt was scanned with different acquisition durations (10-120 min). Four healthy mice were injected intravenously with 3-4 MBq {sup 195m}Pt. Mouse images were acquired with the NanoSPECT for 120 min at 0, 2, 4, or 24 h after injection. Organs were delineated to quantify {sup 195m}Pt concentrations. Immediately after scanning, the mice were sacrificed, and the platinum concentration was determined in organs using a gamma counter and graphite furnace - atomic absorption spectroscopy (GF-AAS) as reference standards. A 30-min acquisition of the phantom provided visually adequate image quality for both scanners. The smallest visible rods were 0.95 mm in diameter on the NanoSPECT and 0.85 mm in diameter on the U-SPECT{sup +}. The image quality in mice was visually adequate. Uptake was seen in the kidneys with excretion to the bladder, and in the liver, blood, and intestine. No uptake was seen in the brain. The Spearman correlation between SPECT and gamma counter was 0.92, between SPECT and GF-AAS it was 0.84, and between GF-AAS and gamma counter it was0.97 (all p < 0

  4. Quantitative organ visualization using SPECT

    International Nuclear Information System (INIS)

    Kircos, L.T.; Carey, J.E. Jr.; Keyes, J.W. Jr.

    1987-01-01

    Quantitative organ visualization (QOV) was performed using single photon emission computed tomography (SPECT). Organ size was calculated from serial, contiguous ECT images taken through the organ of interest with image boundaries determined using a maximum directional gradient edge finding technique. Organ activity was calculated using ECT counts bounded by the directional gradient, imaging system efficiency, and imaging time. The technique used to perform QOV was evaluated using phantom studies, in vivo canine liver, spleen, bladder, and kidney studies, and in vivo human bladder studies. It was demonstrated that absolute organ activity and organ size could be determined with this system and total imaging time restricted to less than 45 min to an accuracy of about +/- 10% providing the minimum dimensions of the organ are greater than the FWHM of the imaging system and the total radioactivity within the organ of interest exceeds 15 nCi/cc for dog-sized torsos. In addition, effective half-lives of approximately 1.5 hr or greater could be determined

  5. Individual patient dosimetry using quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Gonzalez, J.; Oliva, J.; Baum, R.; Fisher, S.

    2002-01-01

    An approach is described to provide individual patient dosimetry for routine clinical use. Accurate quantitative SPECT imaging was achieved using appropriate methods. The volume of interest (VOI) was defined semi-automatically using a fixed threshold value obtained from phantom studies. The calibration factor to convert the voxel counts from SPECT images into activity values was determine from calibrated point source using the same threshold value as in phantom studies. From selected radionuclide the dose within and outside a sphere of voxel dimension at different distances was computed through dose point-kernels to obtain a discrete absorbed dose kernel representation around the volume source with uniform activity distribution. The spatial activity distribution from SPECT imaging was convolved with this kernel representation using the discrete Fourier transform method to yield three-dimensional absorbed dose rate distribution. The accuracy of dose rates calculation was validated by software phantoms. The absorbed dose was determined by integration of the dose rate distribution for each volume of interest (VOI). Parameters for treatment optimization such as dose rate volume histograms and dose rate statistic are provided. A patient example was used to illustrate our dosimetric calculations

  6. Initial Investigation of preclinical integrated SPECT and MR imaging.

    Science.gov (United States)

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  7. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  8. Quantitative SPECT reconstruction of iodine-123 data

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.

    1991-01-01

    Many clinical and research studies in nuclear medicine require quantitation of iodine-123 ( 123 I) distribution for the determination of kinetics or localization. The objective of this study was to implement several reconstruction methods designed for single-photon emission computed tomography (SPECT) using 123 I and to evaluate their performance in terms of quantitative accuracy, image artifacts, and noise. The methods consisted of four attenuation and scatter compensation schemes incorporated into both the filtered backprojection/Chang (FBP) and maximum likelihood-expectation maximization (ML-EM) reconstruction algorithms. The methods were evaluated on data acquired of a phantom containing a hot sphere of 123 I activity in a lower level background 123 I distribution and nonuniform density media. For both reconstruction algorithms, nonuniform attenuation compensation combined with either scatter subtraction or Metz filtering produced images that were quantitatively accurate to within 15% of the true value. The ML-EM algorithm demonstrated quantitative accuracy comparable to FBP and smaller relative noise magnitude for all compensation schemes

  9. Quantitative assessment of 201TlCl myocardial SPECT

    International Nuclear Information System (INIS)

    Uehara, Toshiisa

    1987-01-01

    Clinical evaluation of the quantitative analysis of Tl-201 myocardial tomography by SPECT (Single Photon Emission Computed Tomography) was performed in comparison with visual evaluation. The method of quantitative analysis has been already reported in our previous paper. In this study, the program of re-standardization in the case of lateral myocardial infarction was added. This program was useful mainly for the evaluation of lesions in the left circumflex coronary artery. Regarding the degree of diagnostic accuracy of myocardial infarction in general, quantitative evaluation of myocardial SPECT images was highest followed by visual evaluation of myocardial SPECT images, and visual evaluation of myocardial planar images. However, in the case of anterior myocardial infarction, visual evaluation of myocardial SPECT images has almost the same detectability as quantitative evaluation of myocardial SPECT images. In the case of infero-posterior myocardial infarction, quantitative evaluation was superior to visual evaluation. As for specificity, quantitative evaluation of SPECT images was slightly inferior to visual evaluation of SPECT images. An infarction map was made by quantitative analysis and this enabled us to determine the infarction site, extent and degree according to easily recognizable patterns. As a result, the responsible coronary artery lesion could be inferred correctly and the calculated infarction score could be correlated with the residual left ventricular function after myocardial infarction. (author)

  10. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  11. Quantitative spectral K-edge imaging in preclinical photon-counting x-ray computed tomography.

    Science.gov (United States)

    de Vries, Anke; Roessl, Ewald; Kneepkens, Esther; Thran, Axel; Brendel, Bernhard; Martens, Gerhard; Proska, Roland; Nicolay, Klaas; Grüll, Holger

    2015-04-01

    The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared

  12. A CT-based method for fully quantitative TI SPECT

    International Nuclear Information System (INIS)

    Willowson, Kathy; Bailey, Dale; Baldock, Clive

    2009-01-01

    Full text: Objectives: To develop and validate a method for quantitative 2 0 l TI SPECT data based on corrections derived from X-ray CT data, and to apply the method in the clinic for quantitative determination of recurrence of brain tumours. Method: A previously developed method for achieving quantitative SPECT with 9 9 m Tc based on corrections derived from xray CT data was extended to apply to 2 0 l Tl. Experimental validation was performed on a cylindrical phantom by comparing known injected activity and measured concentration to quantitative calculations. Further evaluation was performed on a RSI Striatal Brain Phantom containing three 'lesions' with activity to background ratios of 1: 1, 1.5: I and 2: I. The method was subsequently applied to a series of scans from patients with suspected recurrence of brain tumours (principally glioma) to determine an SUV-like measure (Standardised Uptake Value). Results: The total activity and concentration in the phantom were calculated to within 3% and I % of the true values, respectively. The calculated values for the concentration of activity in the background and corresponding lesions of the brain phantom (in increasing ratios) were found to be within 2%,10%,1% and 2%, respectively, of the true concentrations. Patient studies showed that an initial SUV greater than 1.5 corresponded to a 56% mortality rate in the first 12 months, as opposed to a 14% mortality rate for those with a SUV less than 1.5. Conclusion: The quantitative technique produces accurate results for the radionuclide 2 0 l Tl. Initial investigation in clinical brain SPECT suggests correlation between quantitative uptake and survival.

  13. Pharmacologic stress-induced stunning: evaluation with quantitative gated SPECT

    International Nuclear Information System (INIS)

    Chun, K. A.; Cho, I. H.; Won, K. J.; Lee, H. W.

    2000-01-01

    The after-effect of pharmacologic stress (adenosine) on left ventricular (LV) function, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were evaluated after pharmacologic stress with Tl-201 and 99m Tc-MIBI SPECT using an automated program in 153 subjects. The subjects were grouped as follows: 1) Tl-201 group (n=35, male 18, female 17, mean age: 58 years); normal scan (n=24), ischemia (n=8) and infarction (n=3). 2) 99m Tc-MIBI group (n=118, male 60, female 58, mean age: 62 years); normal scan (n=73), ischemia (n=20) and infarction (n=25) based on the interpretation of perfusion images. All patients were in sinus rhythm during the study. 1)Tl-201 group; In patients with ischemia (the mean time interval between injection and acquisition is 12.3 min), post-stress LVEF was significantly depressed after adenosine infusion (51.2 ± 6.3% vs 59.8± 8.2%, p 99m Tc-MIBI group; In patients with ischemia (the mean time interval between injection and acquisition is 80 min), post-stress LVEF was significantly depressed after adenosine infusion (p<0.001) and ΔLVEF was 5.1%. Eight patients (40%) showed an increase in LVEF greater than 5% from poststress to rest. Poststress ESV (37.1±17.3 ml) was significantly higher than ESV (31.3±15.5 ml, p<0.001) at rest, but no significant difference in EDV. These results showed that pharmacologic stress induced stunning is well noted in the early quantitative gated SPECT in ischemic patients and also observed in the delayed gated SPECT, even though the rate of stunning is less than the early SPECT

  14. Distributed 3-D iterative reconstruction for quantitative SPECT

    International Nuclear Information System (INIS)

    Ju, Z.W.; Frey, E.C.; Tsui, B.M.W.

    1995-01-01

    The authors describe a distributed three dimensional (3-D) iterative reconstruction library for quantitative single-photon emission computed tomography (SPECT). This library includes 3-D projector-backprojector pairs (PBPs) and distributed 3-D iterative reconstruction algorithms. The 3-D PBPs accurately and efficiently model various combinations of the image degrading factors including attenuation, detector response and scatter response. These PBPs were validated by comparing projection data computed using the projectors with that from direct Monte Carlo (MC) simulations. The distributed 3-D iterative algorithms spread the projection-backprojection operations for all the projection angles over a heterogeneous network of single or multi-processor computers to reduce the reconstruction time. Based on a master/slave paradigm, these distributed algorithms provide dynamic load balancing and fault tolerance. The distributed algorithms were verified by comparing images reconstructed using both the distributed and non-distributed algorithms. Computation times for distributed 3-D reconstructions running on up to 4 identical processors were reduced by a factor approximately 80--90% times the number of the processors participating, compared to those for non-distributed 3-D reconstructions running on a single processor. When combined with faster affordable computers, this library provides an efficient means for implementing accurate reconstruction and compensation methods to improve quality and quantitative accuracy in SPECT images

  15. The additive prognostic value of perfusion and functional data assessed by quantitative gated SPECT in women

    NARCIS (Netherlands)

    Y.G.C.J. America (Yves); J.J. Bax (Jeroen); H. Boersma (Eric); M. Stokkel (Marcel); E.E. van der Wall (Ernst)

    2009-01-01

    textabstractBackground: The aim of this study was to assess the prognostic value of technetium-99m tetrofosmin gated SPECT imaging in women using quantitative gated single photon emission computed tomography (SPECT) imaging. Methods: We followed 453 consecutive female patients. Average follow-up was

  16. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  17. Absolute quantitative total-body small-animal SPECT with focusing pinholes

    NARCIS (Netherlands)

    Wu, C.; Van der Have, F.; Vastenhouw, B.; Dierckx, R.A.J.O.; Paans, A.M.J.; Beekman, F.J.

    2010-01-01

    Purpose: In pinhole SPECT, attenuation of the photon flux on trajectories between source and pinholes affects quantitative accuracy of reconstructed images. Previously we introduced iterative methods that compensate for image degrading effects of detector and pinhole blurring, pinhole sensitivity

  18. Preclinical quantitative MicroPET imaging in evaluation of neuroprotective drug candidates

    International Nuclear Information System (INIS)

    Son, Ji Yeon; Kim, Yu Kyeong; Kim, Ji Sun; Lee, Byung Chul; Kim, Kyeong Min; Choi, Tae Hyun; Cheon, Gi Jeong; Lee, Won Woo; Kim, Sang Eun

    2007-01-01

    Using in vivo molecular imaging with microPET/SPECT has been expected to facilitate drug discovery and development. In this study, we applied quantitative microPET to the preclinical evaluation of the effects of two neuroprotective drug candidates to the nigrostriatal dopaminergic neuronal damage. Fifteen SD rats were divided into three groups. The rats of each group were orally administrated one of neuroprotective candidate; NeuProtec (100mg/kg bid) and SureCero (10mg/kg, qd) or normal saline (0.1ml, qd) for 3 weeks. 6-OHDA was sterotactically placed to the right striatum on eighth day after starting while continuing the medication for additional 14 days. [ 124 I]FP-ClT PET scans were obtained using microPET R4 scanner. The behavioral test by amphetamine-induced rotation and the histological examination after thyrosine hydroxylase (TH) immunohistochemical staining were performed. Different uptake in the lesioned striatum among the groups were demonstrated on [ 124 I]FP-CIT PET images. The rats with NeuProtec showed higher binding in the lesion than controls. No differences were observed in SureCere groups. The FP-CIT uptake in the lesioned striatum was well correlated with the % reduction of TH(+) cells (rho =0.73, p=0.025), and also correlated with rotation test (rho =0.79, p=0.001) [ 124 I]FP-CIT animal PET depicted the neuroprotective effects of NeuProtec to the 6-OHDA neurotoxicity in the rat striatum. No demonstrable effect of SureCero might indicate that inadequate dosage was used in this study. MicroPET imaging with small animal could be a great tool in preclinical evaluation of drug efficacy

  19. Quantitative pre-surgical lung function estimation with SPECT/CT

    International Nuclear Information System (INIS)

    Bailey, D. L.; Willowson, K. P.; Timmins, S.; Harris, B. E.; Bailey, E. A.; Roach, P. J.

    2009-01-01

    Full text:Objectives: To develop methodology to predict lobar lung function based on SPECT/CT ventilation and perfusion (V/Q) scanning in candidates for lobectomy for lung cancer. Methods: This combines two development areas from our group: quantitative SPECT based on CT-derived corrections for scattering and attenuation of photons, and SPECT V/Q scanning with lobar segmentation from CT. Eight patients underwent baseline pulmonary function testing (PFT) including spirometry, measure of DLCO and cario-pulmonary exercise testing. A SPECT/CT V/Q scan was acquired at baseline. Using in-house software each lobe was anatomically defined using CT to provide lobar ROIs which could be applied to the SPECT data. From these, individual lobar contribution to overall function was calculated from counts within the lobe and post-operative FEV1, DLCO and VO2 peak were predicted. This was compared with the quantitative planar scan method using 3 rectangular ROIs over each lung. Results: Post-operative FEV1 most closely matched that predicted by the planar quantification method, with SPECT V/Q over-estimating the loss of function by 8% (range - 7 - +23%). However, post-operative DLCO and VO2 peak were both accurately predicted by SPECT V/Q (average error of 0 and 2% respectively) compared with planar. Conclusions: More accurate anatomical definition of lobar anatomy provides better estimates of post-operative loss of function for DLCO and VO2 peak than traditional planar methods. SPECT/CT provides the tools for accurate anatomical defintions of the surgical target as well as being useful in producing quantitative 3D functional images for ventilation and perfusion.

  20. Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms

    Directory of Open Access Journals (Sweden)

    Yvonne Höller

    2017-09-01

    Full Text Available Single photon emission computed tomography (SPECT and Electroencephalography (EEG have become established tools in routine diagnostics of dementia. We aimed to increase the diagnostic power by combining quantitative markers from SPECT and EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that the combination of SPECT with measures of interaction (connectivity in the EEG yields higher diagnostic accuracy than the single modalities. We examined 39 patients with Alzheimer's dementia (AD, 69 patients with depressive cognitive impairment (DCI, 71 patients with amnestic mild cognitive impairment (aMCI, and 41 patients with amnestic subjective cognitive complaints (aSCC. We calculated 14 measures of interaction from a standard clinical EEG-recording and derived graph-theoretic network measures. From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime (HMPAO-SPECT in 46 regions, we calculated relative cerebral perfusion in these patients. Patient groups were classified pairwise with a linear support vector machine. Classification was conducted separately for each biomarker, and then again for each EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%, aMCI vs. AD (70%, and AD vs. DCI (100%, while a selection of EEG measures performed best when classifying aSCC vs. aMCI (82% and aMCI vs. DCI (90%. Only the contrast between aSCC and DCI did not result in above-chance classification accuracy (60%. In general, accuracies were higher when measures of interaction (i.e., connectivity measures were applied directly than when graph-theoretical measures were derived. We suggest that quantitative analysis of EEG and machine-learning techniques can support differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging methods such as SPECT. Quantitative analysis of EEG connectivity could become

  1. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging

    International Nuclear Information System (INIS)

    Hulme, K. W.; Kappadath, S. C.

    2014-01-01

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI vol = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in 99m Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI vol = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ 140 keV on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed 99m Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect

  2. Practical reconstruction protocol for quantitative 90Y bremsstrahlung SPECT/CT

    International Nuclear Information System (INIS)

    Siman, W.; Mikell, J. K.; Kappadath, S. C.

    2016-01-01

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative 90 Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a 90 Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar 90 Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical 90 Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for 90 Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity

  3. Practical reconstruction protocol for quantitative {sup 90}Y bremsstrahlung SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Siman, W.; Mikell, J. K.; Kappadath, S. C., E-mail: skappadath@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative {sup 90}Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a {sup 90}Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar {sup 90}Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical {sup 90}Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for {sup 90}Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion

  4. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    Science.gov (United States)

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  5. In vivo regional quantitation of intrathoracic /sup 99m/Tc using SPECT: concise communication

    International Nuclear Information System (INIS)

    Osborne, D.; Jaszczak, R.; Coleman, R.E.; Greer, K.; Lischko, M.

    1982-01-01

    A whole-body single-photon emission computed tomographic system (SPECT) was used to quantitate the activities of a series of /sup 99m/Tc point sources in the dog's thorax and to evaluate attenuation of a uniform esophageal line source containing a known concentration of /sup 99m/Tc. A first-order attenuation correction and an empirically derived attenuation coefficient of 0.09 cm-1 were used in the SPECT analyses of the intrathoracic point sources. The relationship between SPECT measurements of multiple point-source activities and the same sources measured in air was linear over a range of 100 to 1000 muCi (slope 1.08; R2 coefficient of determination 0.97). These data are sufficiently accurate to allow an estimate of the regional activity of radiopharmaceutical in the dog's thorax and justify their use in experimental quantitation of regional pulmonary perfusion

  6. Absolute quantitative total-body small-animal SPECT with focusing pinholes

    International Nuclear Information System (INIS)

    Wu, Chao; Have, Frans van der; Vastenhouw, Brendan; Beekman, Freek J.; Dierckx, Rudi A.J.O.; Paans, Anne M.J.

    2010-01-01

    In pinhole SPECT, attenuation of the photon flux on trajectories between source and pinholes affects quantitative accuracy of reconstructed images. Previously we introduced iterative methods that compensate for image degrading effects of detector and pinhole blurring, pinhole sensitivity and scatter for multi-pinhole SPECT. The aim of this paper is (1) to investigate the accuracy of the Chang algorithm in rodents and (2) to present a practical Chang-based method using body outline contours obtained with optical cameras. Here we develop and experimentally validate a practical method for attenuation correction based on a Chang first-order method. This approach has the advantage that it is employed after, and therefore independently from, iterative reconstruction. Therefore, no new system matrix has to be calculated for each specific animal. Experiments with phantoms and animals were performed with a high-resolution focusing multi-pinhole SPECT system (U-SPECT-II, MILabs, The Netherlands). This SPECT system provides three additional optical camera images of the animal for each SPECT scan from which the animal contour can be estimated. Phantom experiments demonstrated that an average quantification error of -18.7% was reduced to -1.7% when both window-based scatter correction and Chang correction based on the body outline from optical images were applied. Without scatter and attenuation correction, quantification errors in a sacrificed rat containing sources with known activity ranged from -23.6 to -9.3%. These errors were reduced to values between -6.3 and +4.3% (with an average magnitude of 2.1%) after applying scatter and Chang attenuation correction. We conclude that the modified Chang correction based on body contour combined with window-based scatter correction is a practical method for obtaining small-animal SPECT images with high quantitative accuracy. (orig.)

  7. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    Science.gov (United States)

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  8. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    Science.gov (United States)

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  9. Usefulness of quantitative SPECT in unilateral temporomandibular joint disorder: correlation with signs and symptoms

    International Nuclear Information System (INIS)

    Kim, Ho Sung; Jeong, Jong Cheol; Kim, Keon Jung; Choi, Jae Sun; Sung, Dae Kyung; Lee, Gye Huyk; Kim, Jong Ho

    1998-01-01

    The aims of this study was to compare the diagnostic accuracy of Conventional Radiography (CR). Radionuclide Angiography (RNA). Planar Scintigraphy (PS) and Single Photon Emission Computed Tomography (SPECT) for the evaluation of temporomandibular joint (TMJ) disorder; and to show whether technetium-99m-MDP uptake on quantitative SPECT correlated with the symptom and/or signs. Three Phase Bone Scintigraphy (TPBS) and SPECT of both TMJ were performed in 51 patients (M : F = 10 : 41 mean age= 30.4 :28.6, respectively) with unilateral TMJ disorder after an intravenous injection of 25 mCi (925 MBq) of 99mTc-MDP. Data were analyzed by creating three regions of interest (ROIs) over designated areas both on the PS and SPECT: Lesion (L). Non-lesion(NL) which is contralateral to L and Background (BG). L/ NL and L/BG (=[(L-BG)/500,000] x 100 (%)] ratios were calculated for each patients. L/NL ratios on SPECT were compared according to the symptom/signs or not. There was a fair correlation of L/N values between three slice-and seven slice-added SPECT images (r=0.5124, p=0.006, y=0.5588 + 0.5414X). The percentages of symptoms or signs were: pain (76.5%), mouth opening limitation (49.0%), joint sound (39.2%), discomfort (43.1%), headache(27.5%), neck stiffness (21.6%), closed lock (5.9%) / tenderness (47.1%), joint click (54.9%) and limitation of maximum mouth opening (45.1%). The Sensitive of SPECT(86.3%) was better than PS(66.7%), RNA(27.5%), and CR(26.3%). According to the presence of symptom/sign or not, comparative analysis of L/NL ratios on SPECT showed a fair correlation in pain (1.16 : 1.11) mouth opening limitation (1.21 : 1.09), joint sound (1.19 : 1.08), discomfort (1.22 : 1.09), headache (1.19: 1.13), tenderness (1.16 : 1.14) and limitation of maximum mouth opening (1.16 : 1.13), but little correlation in neck stiffness (1.12 : 1.15), closed lock (1.06 : 1.15), dislocation (1.08 : 1.15) joint click (1.12 : 1.18). In conclusion, quantitative SPECT is the noninvasive

  10. Relationship between coronary contrast-flow quantitative flow ratio and myocardial ischemia assessed by SPECT MPI

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Jeff M.; Rosendael, Alexander R. van; Jukema, J.W.; Delgado, Victoria; Bax, Jeroen J.; Scholte, Arthur J. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Koning, Gerhard [Medis Medical Imaging Systems B.V., Leiden (Netherlands); Dibbets-Schneider, Petra [Leiden University Medical Center, Department of Nuclear Medicine, Leiden (Netherlands); Mertens, Bart J. [Leiden University Medical Center, Department of Medical Statistics, Leiden (Netherlands); Reiber, Johan H.C. [Medis Medical Imaging Systems B.V., Leiden (Netherlands); Leiden University Medical Center, Department of Radiology, Leiden (Netherlands)

    2017-10-15

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called ''contrast-flow quantitative flow ratio (cQFR)''. Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters. (orig.)

  11. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    Science.gov (United States)

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  12. Bone SPECT with quantitation for the diagnosis of periodontitis

    International Nuclear Information System (INIS)

    Mlatchkov, N.; Dgemileva, T.; Mlatchkova, A.

    1998-01-01

    Methods: A radionuclide method based on single photon emission computed tomography (SPECT) for the diagnosis of periodontitis is presented. Nineteen consecutive patients, 13 with periodontitis and a control group of 6 healthy subjects, were studied. Technetium-99m methylene diphosphonate was used as a bone-seeking radiopharmaceutical. The tomographic slices corresponding to the alveolar crest of the mandible and the maxilla were used for reconstruction. The upper and the lower jaws were divided into segments and the mineral metabolism was assessed semiquantitatively. Results: Our preliminary results suggest that the method may play a role in detecting the regions of the alveolar bone affected by the periodontal disease and in the assessment of the activity of the pathological process. (author)

  13. Semi-quantitative SPECT for anterior dislocation of the disc in the temporo-mandibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Oesterreich, F.U.; Jend-Rossmann, I.; Jend, H.H.; Triebel, H.J.

    1987-01-01

    SPECT-examination of the TMJ using 99m-Tc-MDP was performed in 43 patients with arthrographically proven anterior dislocation of the disc and in 30 normals. The results were evaluated visually and also in a semi-quantitative manner that took account of relative 99m Tc activity in the TMJ and of the age of the patient. In the presence of arthrographically proven anterior, but reversible, disc dislocation, the semi-quantitative method proved positive in 75% of cases (28 cases). In joints with fixed anterior dislocation (29 cases), bone changes were demonstrated in 26%. Visual evaluation was positive in 50% of reversible, and in 72% of non-reversible dislocations. Semi-quantitative SPECT of the TMJ is excellent for demonstrating bone reaction resulting from TMJ dysfunction and for indicating the severity of the joint abnormality.

  14. Quantitative study on lung volume and lung perfusion using SPECT and CT in thoracal tumors

    International Nuclear Information System (INIS)

    Beyer-Enke, S.A.; Goerich, J.; Strauss, L.G.

    1988-01-01

    22 patients with space occupying lesions in the thoracal region were investigated by computer tomography and by perfusion scintigraphy using SPECT. In order to evaluate the CT images quantitatively, the lung volume was determined using approximation method and compared with the perfusion in the SPECT study. For this, anatomically equivalent transaxial SPECT slices had been coordinated to the CT slices. Between the determined lung volumes and the activity in the ocrresponding layers, a statistically significant correlation was found. It could be shown that the stronger perfusion, frequently observed at the right side of the healthy lung, may be explained by an higher volume of the right pulmonary lobe. Whereas in benign displacing processes the relation activity to volume was similar to the one of the healthy lung, a strongly reduced perfusion together with inconspicuous lung volumes became apparent with malignant tumors. In addition to the great morphological evidence of CT and SPECT studies, additional informations regarding the dignity of displacing processes may be derived from the quantitative evaluation of both methods. (orig.) [de

  15. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  16. Quantitation of cerebral blood volume by 99mTc-DTPA-HSA SPECT

    International Nuclear Information System (INIS)

    Inoue, Yusuke; Machida, Kikuo; Momose, Toshimitsu

    1992-01-01

    The characteristics of technetium-99m diethylenetriaminepentaacetic acid human serum albumin ( 99m Tc-DTPA-HSA) as an agent for quantitation of cerebral blood volume (CBV) were examined. The radioactivity after decay correction as a percentage of the activity at 10 minutes was 84.3±1.3% at 120 minutes after the injection of 99m Tc-DTPA-HSA. Radioactivity was found exclusively in plasma, with little in blood cells. The blood retention of 99m Tc-DTPA-HSA is sufficient, and its use in the quantitation of CBV omits the need for centrifugation of the blood sample. CBV quantified using the tracer and a SPECT system with a single-head rotating gamma camera was 4.09±0.60 ml/100g brain, similar to values reported previously. Two serial SPECT scans provided similar images, and the CBV values determined by the two scans were closely correlated (p 99m Tc-DTPA-HSA has useful properties for quantitative CBV measurement and that quantitation of CBV by 99m Tc-DTPA-HSA SPECT is feasible using a system with a single-head rotating gamma camera. (author)

  17. A new dynamic myocardial phantom for evaluation of SPECT and PET quantitation in systolic and diastolic conditions

    International Nuclear Information System (INIS)

    Dreuille, O. de; Bendriem, B.; Riddell, C.

    1996-01-01

    We present a new dynamic myocardial phantom designed to evaluate SPECT and PET imaging in systolic and diastolic conditions. The phantom includes a thoracic attenuating media and the myocardial wall thickness varying during the scan can be performed. In this study the phantom was used with three different wall thickness characteristic of a systolic, end-diastolic and pathologic end-diastolic condition. The myocardium was filled with 99m Tc, 18 F and Gd and imaged by SPECT, PET and MRI. SPECT attenuation correction was performed using a modified PET transmission. A bull's eyes image was obtained for all data and wall ROI were then drawn for analysis. Using MRI as a reference, error from PET, SPECT and attenuation corrected SPECT were calculated. Systolic PET performances agree with MRI. Quantitation loss due to wall thickness reduction compared to the systole. Attenuation correction in SPECT leads to significant decrease of the error both in systole (from 29% to 14%) and diastole (35% to 22%). This is particularly sensitive for septum and inferior walls. SPECT residual errors (14% in systole and 22% in pathologic end-diastole) are likely caused by scatter, noise and depth dependent resolution effect. The results obtained with this dynamical phantom demonstrate the quantitation improvement achieved in SPECT with attenuation correction and also reinforce the need for variable resolution correction in addition to attenuation correction

  18. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging

    International Nuclear Information System (INIS)

    Magota, Keiichi; Kubo, Naoki; Kuge, Yuji; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara

    2011-01-01

    We investigated the performance of the Inveon small-animal PET/SPECT/CT system and compared the imaging capabilities of the SPECT and PET components. For SPECT, the energy resolution, tomographic spatial resolution and system sensitivity were evaluated with a 99m Tc solution using a single pinhole collimator. For PET, the spatial resolution, absolute sensitivity, scatter fraction and peak noise equivalent count were evaluated. Phantoms and a normal rat were scanned to compare the imaging capabilities of SPECT and PET. The SPECT spatial resolution was 0.84 mm full-width at half-maximum (FWHM) at a radius of rotation of 25 mm using a 0.5-mm pinhole aperture collimator, while the PET spatial resolution was 1.63 mm FWHM at the centre. The SPECT system sensitivity at a radius of rotation of 25 mm was 35.3 cps/MBq (4 x 10 -3 %) using the 0.5-mm pinhole aperture, while the PET absolute sensitivity was 3.2% for 350-650 keV and 3.432 ns. Accordingly, the volume sensitivity of PET was three orders of magnitude higher than that of SPECT. This integrated PET/SPECT/CT system showed high performance with excellent spatial resolution for SPECT and sensitivity for PET. Based on the tracer availability and system performance, SPECT and PET have complementary roles in multimodality small-animal imaging. (orig.)

  19. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Van Audenhaege, Karen, E-mail: karen.vanaudenhaege@ugent.be; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian [Department of Electronics and Information Systems, MEDISIP-IBiTech, Ghent University–iMinds Medical IT, De Pintelaan 185 block B/5, Ghent B-9000 (Belgium); Metzler, Scott D. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Moore, Stephen C. [Division of Nuclear Medicine, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115 (United States)

    2015-08-15

    In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.

  20. The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health

    Science.gov (United States)

    2017-10-01

    of secondary health ef- fects following traumatic extremity injuries places a significant physical and psychosocial burden on SMs with LL and LS...been reported as the most important health -related physical condition con- tributing to a reduced QoL among veterans who had sustained a traumatic...AWARD NUMBER: W81XWH-15-1-0669 TITLE: The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health PRINCIPAL INVESTIGATOR

  1. Extraosseous accumulation of bone scanning agents in malignant brain tumors. Comparison to semi-quantitative evaluation with 99mTc SPECT/201Tl SPECT and histological findings

    International Nuclear Information System (INIS)

    Suzuki, Aya

    2003-01-01

    Although 201 Tl chloride (Tl) SPECT has been used in the differential diagnosis between recurrence of malignant brain tumor and necrosis after treatment, it is not generally recognized as a definite modality to distinguish them. We conducted a preliminary study using Tl SPECT and 99m Tc-MDP or 99m Tc-HMDP (Tc) SPECT because it has been said that extraosseous accumulation was caused by calcium deposits in necrotic tissues. In our study, for the purposes of clarifying the mechanism of extraosseous uptake and the correlation between extraosseous accumulation of bone-scanning agent and tumor viability in malignant brain tumors, we compared whether Tc uptake was correlated with the histopathological findings and further performed semi-quantitative evaluation between Tc SPECT and Tl SPECT. The correlation coefficients between the ratio of tumor to normal skull count obtained from Tc SPECT (Tc-T/N) and those of tumor to normal brain count (T/N) and to normal scalp count (T/S) both obtained from Tl SPECT were calculated. Using contrast enhanced CT (CE-CT) or contrast enhanced MRI (CE-MRI), 8 of 10 cases showed intensely ring-enhanced tumor with necrotic lesion. Histopathologically, 7 of 8 cases whose tumor had been resected before treatment had necrosis with increased vascularity or bleeding. Of the remaining 2 cases one case, malignant lymphoma had only hypervascularity by biopsy, while the other one was excluded for resection after treatment. Three of these 8 cases whose CE-CT or CE-MRI showed necrotic lesions exhibited Tc and Tl accumulations in the area corresponding to necrosis. In contrast, 2 showed no Tc nor Tl uptake. Tc-T/N had no significant correlation with any of early-, delayed-T/N or T/S. In conclusion, there was no significant correlation between Tc and Tl uptakes by malignant brain tumors in semi-quantitative evaluation. (author)

  2. Quantitative SPECT reconstruction for brain distribution with a non-uniform attenuation using a regularizing method

    International Nuclear Information System (INIS)

    Soussaline, F.; Bidaut, L.; Raynaud, C.; Le Coq, G.

    1983-06-01

    An analytical solution to the SPECT reconstruction problem, where the actual attenuation effect can be included, was developped using a regularizing iterative method (RIM). The potential of this approach in quantitative brain studies when using a tracer for cerebrovascular disorders is now under evaluation. Mathematical simulations for a distributed activity in the brain surrounded by the skull and physical phantom studies were performed, using a rotating camera based SPECT system, allowing the calibration of the system and the evaluation of the adapted method to be used. On the simulation studies, the contrast obtained along a profile, was less than 5%, the standard deviation 8% and the quantitative accuracy 13%, for a uniform emission distribution of mean = 100 per pixel and a double attenuation coefficient of μ = 0.115 cm -1 and 0.5 cm -1 . Clinical data obtained after injection of 123 I (AMPI) were reconstructed using the RIM without and with cerebrovascular diseases or lesion defects. Contour finding techniques were used for the delineation of the brain and the skull, and measured attenuation coefficients were assumed within these two regions. Using volumes of interest, selected on homogeneous regions on an hemisphere and reported symetrically, the statistical uncertainty for 300 K events in the tomogram was found to be 12%, the index of symetry was of 4% for normal distribution. These results suggest that quantitative SPECT reconstruction for brain distribution is feasible, and that combined with an adapted tracer and an adequate model physiopathological parameters could be extracted

  3. Improvement of quantitation in SPECT: Attenuation and scatter correction using non-uniform attenuation data

    International Nuclear Information System (INIS)

    Mukai, T.; Torizuka, K.; Douglass, K.H.; Wagner, H.N.

    1985-01-01

    Quantitative assessment of tracer distribution with single photon emission computed tomography (SPECT) is difficult because of attenuation and scattering of gamma rays within the object. A method considering the source geometry was developed, and effects of attenuation and scatter on SPECT quantitation were studied using phantoms with non-uniform attenuation. The distribution of attenuation coefficients (μ) within the source were obtained by transmission CT. The attenuation correction was performed by an iterative reprojection technique. The scatter correction was done by convolution of the attenuation corrected image and an appropriate filter made by line source studies. The filter characteristics depended on μ and SPEC measurement at each pixel. The SPECT obtained by this method showed the most reasonable results than the images reconstructed by other methods. The scatter correction could compensate completely for a 28% scatter components from a long line source, and a 61% component for thick and extended source. Consideration of source geometries was necessary for effective corrections. The present method is expected to be valuable for the quantitative assessment of regional tracer activity

  4. Preclinical Magnetic Resonance Fingerprinting (MRF) at 7 T: Effective Quantitative Imaging for Rodent Disease Models

    Science.gov (United States)

    Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A.; Vincent, Jason A.; Dell, Katherine M.; Drumm, Mitchell L.; Brady-Kalnay, Susann M.; Griswold, Mark A.; Flask, Chris A.; Lu, Lan

    2015-01-01

    High field, preclinical magnetic resonance imaging (MRI) scanners are now commonly used to quantitatively assess disease status and efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical, 7.0 T MRI implementation of the highly novel Magnetic Resonance Fingerprinting (MRF) methodology that has been previously described for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a Fast Imaging with Steady-state Free Precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 minutes. This initial high field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for quantification of numerous MRI parameters for a wide variety of preclinical imaging applications. PMID:25639694

  5. SPECT and 3D display quantitative evaluation in renal DMSA scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Lyra, M; Skouroliakou, K; Emmanouilides, I; Stratis, I [Univerisity of Athens, Department of Radiology and Department of Mathematics, Athens (Greece)

    1999-12-31

    The evaluation of cortical damage to the kidneys, especially in children, is currently performed by means of Tc99m-DMSA renal scan. The routine involves the acquisition of planar images and their qualitative and quantitative evaluation. Many studies have dealt with the possible advantage that SPECT could possess on qualitative criteria. This study attempts to quantitatively deal with the issue by the calculation of an index. The results exhibit a clear advantage of tomographic and 3D reconstructed images over the conventional planar ones. (authors) 14 refs., 3 figs., 1 tabs.

  6. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections

    DEFF Research Database (Denmark)

    de Nijs, Robin; Lagerburg, Vera; Klausen, Thomas L

    2014-01-01

    and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. MATERIALS AND METHODS: (177)Lu SPECT images of a phantom...... technique, the measured ratio was close to the real ratio, and the differences between spheres were small. CONCLUSION: For quantitative (177)Lu imaging MEGP collimators are advised. Both energy peaks can be utilized when the ESSE correction technique is applied. The difference between the calculated...

  7. Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Graaf, Michiel A. de; Boogers, Mark J.; Veltman, Caroline E.; El-Naggar, Heba M.; Bax, Jeroen J.; Delgado, Victoria; Broersen, Alexander; Kitslaar, Pieter H.; Dijkstra, Jouke; Kroft, Lucia J.; Younis, Imad Al; Reiber, Johan H.; Scholte, Arthur J.

    2013-01-01

    Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT). Included in the study were 40 patients (mean age 58.2 ± 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS ≥2) on gated myocardial perfusion SPECT. Myocardial ischaemia was seen in 25 patients (62.5 %) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95 % CI 2.41-24.7, p 2 = 20.7) and lesion length (χ 2 = 26.0) to the clinical variables and the visual assessment (χ 2 = 5.9) had incremental value in the association with myocardial ischaemia. Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have incremental value over baseline variables and visually assessed significant stenosis. Potentially, QCT can refine assessment of CAD, which may be of potential use for identification of patients with myocardial ischaemia. (orig.)

  8. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.

    Science.gov (United States)

    Rong, Xing; Frey, Eric C

    2013-08-01

    Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more

  9. Reference Range of Functional Data of Gated Myocardial Perfusion SPECT by Quantitative Gated SPECT of Cedars-Sinai and 4D-MSPECT of Michigan University

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Kim, Moo Hyun; Kim, Young Dae [College of Medicine, Univ. of Donga, Pusan (Korea, Republic of)

    2003-07-01

    Various programs have been developed for gating of myocardial perfusion SPECT. Among the those program, the most popular program is the Quantitative Gated SPECT (QGS)? developed by Cedars-Sinai hospital and most recently released program is 4D-MSPECT? developed by university of Michigan. It is important to know the reference range of the functional data of gated myocardial perfusion SPECT because it is necessary to determine abnormality of individual patient and echocardiographic data is different from those of gated SPECT. Tc-99m MIBI gated myocardial perfusion SPECT image was reconstructed by dual head gamma camera (Siemens, BCAM, esoft) as routine procedure and analyzed using QGS? and 4D-MSPECT? program. All patients (M: F=9: 18, Age 69{+-}9 yrs) showed normal myocardial perfusion. The patients with following characteristics were excluded: previous angina or MI history, ECG change with Q wave or ST-T change, diabetes melitius, hypercholesterolemia, typical chest pain, hypertension and cardiomyopathy. Pre-test likelihood of all patients was low. (1) In stress gated SPECT by QGS?, EDV was 73{+-}25 ml, ESV 25{+-}14 ml, EF 67{+-}11 % and area of first frame of gating 106.4{+-}21cm{sup 2}. In rest gated SPECT, EDV was 76{+-}26 ml, ESV 27{+-}15 ml, EF 66{+-}12 and area of first frame of gating 108{+-}20cm{sup 2}. (2) In stress gated SPECT by 4D-MSPECT?, EDV was 76{+-}28 ml, ESV 23{+-}16 ml, EF 72{+-}11 %, mass 115{+-}24 g and ungated volume 42{+-}15 ml. In rest gated SPECT, EDV was 75{+-}27 ml, ESV 23{+-}12 ml, EF 71{+-}9%, mass 113{+-}25g and ungate dvolume 42{+-}15 ml, (3) s-EDV, s-EF, r-ESV and r-EF were significantly different between QGS? and 4D-MSPECT? (each p=0.016, p<0.001. p=0.003 and p=0.001). We determined the normal reference range of functional parameters by QGS? and 4D-MSPECT? program to diagnose individually the abnormality of patients. And the reference ranges have to adopted to be patients by each specific gating program.

  10. Sci—Thur PM: Imaging — 05: Calibration of a SPECT/CT camera for quantitative SPECT with 99mTc

    International Nuclear Information System (INIS)

    Gaudin, Émilie; Montégiani, Jean-François; Després, Philippe; Beauregard, Jean-Mathieu

    2014-01-01

    While quantitation is the norm in PET, it is not widely available yet in SPECT. This work's aim was to calibrate a commercially available SPECT/CT system to perform quantitative SPECT. Counting sensitivity, dead-time (DT) constant and partial volume effect (PVE) of the system were assessed. A dual-head Siemens SymbiaT6 SPECT/CT camera equipped with low energy high-resolution collimators was studied. 99m Tc was the radioisotope of interest because of its wide usage in nuclear medicine. First, point source acquisitions were performed (activity: 30–990MBq). Further acquisitions were then performed with a uniform Jaszczak phantom filled with water at high activity (25–5000MBq). PVE was studied using 6 hot spheres (diameters: 9.9–31.2 mm) filled with 99m Tc (2.8MBq/cc) in the Jaszczak phantom, which was: (1) empty, (2) water-filled and (3) water-filled with low activity (0.1MBq/cc). The data was reconstructed with the Siemens's Flash3D iterative algorithm with 4 subsets and 8 iterations, attenuation-correction (AC) and scatter-correction (SC). DT modelling was based on the total spectrum counting rate. Sensitivity was assessed using AC-SC reconstructed SPECT data. Sensitivity and DT for the sources were 99.51±1.46cps/MBq and 0.60±0.04µs. For the phantom, sensitivity and DT were 109.9±2.3cps/MBq and 0.62±0.13µs. The recovery-coefficient varied from 5% for the 9.9mm, to 80% for the 31.2mm spheres. With our calibration methods, both sensitivity and DT constant of the SPECT camera had little dependence on the object geometry and attenuation. For small objects of known size, recovery-coefficient can be applied to correct PVE. Clinical quantitative SPECT appears to be possible and has many potential applications

  11. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    International Nuclear Information System (INIS)

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.; Hoffmann, R.G.; Palmer, D.W.; Glatt, S.L.; Antuono, P.G.; Isitman, A.T.; Papke, R.A.

    1989-01-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determined from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake

  12. Quantitative estimation of myocardial thickness by the wall thickness map with Tl-201 myocardial SPECT and its clinical use

    International Nuclear Information System (INIS)

    Sekiai, Yasuhiro; Sawai, Michihiko; Murayama, Susumu

    1988-01-01

    To estimate the wall thickness of left ventricular myocardium objectively and quantitatively, we adopted the device of wall thickness map (WTM) with Tl-201 myocardial SPECT. For validation on measuring left ventricular wall thickness with SPECT, fundamental studies were carried out with phantom models, and clinical studies were performed in 10 cases comparing the results from SPECT with those in echocardiography. To draw the WTM, left ventricular wall thickness was measured using the cut off method from SPECT images obtained at 5.6 mm intervals from the base and middle of left ventricle: short-axis image for the base and middle of left ventricle and vertical and horizontal long-axis images for the apical region. Wall thickness was defined from the number of pixel above the cut off level. Results of fundamental studies disclosed that it is impossible to evaluate the thickness of less than 10 mm by Tl-201 myocardial SPECT but possible to discriminate wall thickness of 10 mm, 15 mm, and 20 mm by Tl-201 myocardial SPECT. Echocardiographic results supported the validity of WTM, showing a good linear correlation (r = 0.96) between two methods on measuring wall thickness of left ventricle. We conclude that the WTM applied in this report may be useful for objective and quantitative estimation of myocardial hypertrophy. (author)

  13. Quantitative evaluation of right ventricular overload in cor pulmonale using sup 201 Tl myocardial SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hiroshi; Misawa, Toshihiro; Kutsumi, Yasunori [Fukui Medical School, Matsuoka (Japan); and others

    1991-01-01

    To determine quantitatively the discriminant and characteristics of cor pulmonale, {sup 201}Tl myocardial perfusion SPECT was performed in 16 patients with chronic obstructive pulmonary disease (COPD) and 7 with restrictive pulmonary disease (RPD). One section of the short-axis SPECT image in which the right ventricle was most clearly visualized was selected. Tl-score was defined as the ratio of the sum of counts in the region of interest (ROI) at the anterior, mid, and posterior regions of the right ventricular free wall to the sum of counts in ROI at the posterior, lateral, and anterior walls of the left ventricle, and the anterior and posterior regions of the interventricular septum. In the group of COPD patients, Tl-score was positively correlated with mean pulmonary arterial pressure (mPAP), total pulmonary vascular resistance (TPR), and arterial carbon dioxide tension (PaCO{sub 2}), while it was inversely correlated with arterial oxygen tension (PaO{sub 2}). However, there was no significant correlation between Tl-score and mPAP, TPR, PaCO{sub 2}, and PaO{sub 2} in the group of RPD patients. In assessing pulmonary hypertension as defined by mPAP over 20 mmHg, a Tl-score greater than 0.25 was useful with a sensitivity of 69% and a specificity of 90%. The occurrence of cor pulmonale is a major factor in determining the prognosis of COPD patients. It was concluded that {sup 201}Tl myocardial SPECT is useful for evaluating right ventricular overload quantitatively, as well as for assessing core pulmonale, especially in COPD patients, since the ratio of Tl counts in the right and left ventricles was significantly correlated with right cardiopulmonary hemodynamic parameters. (N.K.).

  14. Quantitative evaluation of right ventricular overload in cor pulmonale using 201Tl myocardial SPECT

    International Nuclear Information System (INIS)

    Kato, Hiroshi; Misawa, Toshihiro; Kutsumi, Yasunori

    1991-01-01

    To determine quantitatively the discriminant and characteristics of cor pulmonale, 201 Tl myocardial perfusion SPECT was performed in 16 patients with chronic obstructive pulmonary disease (COPD) and 7 with restrictive pulmonary disease (RPD). One section of the short-axis SPECT image in which the right ventricle was most clearly visualized was selected. Tl-score was defined as the ratio of the sum of counts in the region of interest (ROI) at the anterior, mid, and posterior regions of the right ventricular free wall to the sum of counts in ROI at the posterior, lateral, and anterior walls of the left ventricle, and the anterior and posterior regions of the interventricular septum. In the group of COPD patients, Tl-score was positively correlated with mean pulmonary arterial pressure (mPAP), total pulmonary vascular resistance (TPR), and arterial carbon dioxide tension (PaCO 2 ), while it was inversely correlated with arterial oxygen tension (PaO 2 ). However, there was no significant correlation between Tl-score and mPAP, TPR, PaCO 2 , and PaO 2 in the group of RPD patients. In assessing pulmonary hypertension as defined by mPAP over 20 mmHg, a Tl-score greater than 0.25 was useful with a sensitivity of 69% and a specificity of 90%. The occurrence of cor pulmonale is a major factor in determining the prognosis of COPD patients. It was concluded that 201 Tl myocardial SPECT is useful for evaluating right ventricular overload quantitatively, as well as for assessing core pulmonale, especially in COPD patients, since the ratio of Tl counts in the right and left ventricles was significantly correlated with right cardiopulmonary hemodynamic parameters. (N.K.)

  15. Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Michiel A. de; Boogers, Mark J.; Veltman, Caroline E. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); The Interuniversity Cardiology Institute of The Netherlands, Utrecht (Netherlands); El-Naggar, Heba M.; Bax, Jeroen J.; Delgado, Victoria [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Broersen, Alexander; Kitslaar, Pieter H.; Dijkstra, Jouke [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Kroft, Lucia J. [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Younis, Imad Al [Leiden University Medical Center, Department of Nuclear Medicine, Leiden (Netherlands); Reiber, Johan H. [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Medis medical imaging systems B.V., Leiden (Netherlands); Scholte, Arthur J. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands)

    2013-08-15

    Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT). Included in the study were 40 patients (mean age 58.2 {+-} 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS {>=}2) on gated myocardial perfusion SPECT. Myocardial ischaemia was seen in 25 patients (62.5 %) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95 % CI 2.41-24.7, p < 0.001, and OR 1.07, 95 % CI 1.00-1.45, p = 0.032, respectively) after correcting for clinical variables and visually assessed significant stenosis. The addition of quantitatively assessed significant stenosis ({chi} {sup 2} = 20.7) and lesion length ({chi} {sup 2} = 26.0) to the clinical variables and the visual assessment ({chi} {sup 2} = 5.9) had incremental value in the association with myocardial ischaemia. Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have

  16. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with {sup 13}N-Ammonia PET myocardial blood flow quantitation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Bailing [University of Missouri-Columbia, Nuclear Science and Engineering Institute, Columbia, Missouri (United States); Hu, Lien-Hsin; Yang, Bang-Hung; Ting, Chien-Hsin; Huang, Wen-Sheng [Taipei Veterans General Hospital, Department of Nuclear Medicine, Taipei (China); Chen, Lung-Ching [Shin Kong Wu-Ho Su Memorial Hospital, Division of Cardiology, Taipei (China); Chen, Yen-Kung [Shin Kong Wu-Ho Su Memorial Hospital, Department of Nuclear Medicine, Taipei (China); Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Changhua (China); Wu, Tao-Cheng [National Yang-Ming University, Cardiovascular Research Center, Taipei (China)

    2017-01-15

    The aim of this study was to evaluate the accuracy of myocardial blood flow (MBF) quantitation of {sup 99m}Tc-Sestamibi (MIBI) single photon emission computed tomography (SPECT) compared with {sup 13}N-Ammonia (NH3) position emission tomography (PET) on the same cohorts. Recent advances of SPECT technologies have been applied to develop MBF quantitation as a promising tool to diagnose coronary artery disease (CAD) for areas where PET MBF quantitation is not available. However, whether the SPECT approach can achieve the same level of accuracy as the PET approach for clinical use still needs further investigations. Twelve healthy volunteers (HVT) and 16 clinical patients with CAD received both MIBI SPECT and NH3 PET flow scans. Dynamic SPECT images acquired with high temporary resolution were fully corrected for physical factors and processed to quantify K1 using the standard compartmental modeling. Human MIBI tracer extraction fraction (EF) was determined by comparing MIBI K1 and NH3 flow on the HVT group and then used to convert flow values from K1 for all subjects. MIBI and NH3 flow values were systematically compared to validate the SPECT approach. The human MIBI EF was determined as [1.0-0.816*exp(-0.267/MBF)]. Global and regional MBF and myocardial flow reserve (MFR) of MIBI SPECT and NH3 PET were highly correlated for all subjects (global R{sup 2}: MBF = 0.92, MFR = 0.78; regional R{sup 2}: MBF ≥ 0.88, MFR ≥ 0.71). No significant differences for rest flow, stress flow, and MFR between these two approaches were observed (All p ≥ 0.088). Bland-Altman plots overall revealed small bias between MIBI SPECT and NH3 PET (global: ΔMBF = -0.03Lml/min/g, ΔMFR = 0.07; regional: ΔMBF = -0.07 - 0.06, ΔMFR = -0.02 - 0.22). Quantitation with SPECT technologies can be accurate to measure myocardial blood flow as PET quantitation while comprehensive imaging factors of SPECT to derive the variability between these two approaches were fully addressed and corrected

  17. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with "1"3N-Ammonia PET myocardial blood flow quantitation

    International Nuclear Information System (INIS)

    Hsu, Bailing; Hu, Lien-Hsin; Yang, Bang-Hung; Ting, Chien-Hsin; Huang, Wen-Sheng; Chen, Lung-Ching; Chen, Yen-Kung; Hung, Guang-Uei; Wu, Tao-Cheng

    2017-01-01

    The aim of this study was to evaluate the accuracy of myocardial blood flow (MBF) quantitation of "9"9"mTc-Sestamibi (MIBI) single photon emission computed tomography (SPECT) compared with "1"3N-Ammonia (NH3) position emission tomography (PET) on the same cohorts. Recent advances of SPECT technologies have been applied to develop MBF quantitation as a promising tool to diagnose coronary artery disease (CAD) for areas where PET MBF quantitation is not available. However, whether the SPECT approach can achieve the same level of accuracy as the PET approach for clinical use still needs further investigations. Twelve healthy volunteers (HVT) and 16 clinical patients with CAD received both MIBI SPECT and NH3 PET flow scans. Dynamic SPECT images acquired with high temporary resolution were fully corrected for physical factors and processed to quantify K1 using the standard compartmental modeling. Human MIBI tracer extraction fraction (EF) was determined by comparing MIBI K1 and NH3 flow on the HVT group and then used to convert flow values from K1 for all subjects. MIBI and NH3 flow values were systematically compared to validate the SPECT approach. The human MIBI EF was determined as [1.0-0.816*exp(-0.267/MBF)]. Global and regional MBF and myocardial flow reserve (MFR) of MIBI SPECT and NH3 PET were highly correlated for all subjects (global R"2: MBF = 0.92, MFR = 0.78; regional R"2: MBF ≥ 0.88, MFR ≥ 0.71). No significant differences for rest flow, stress flow, and MFR between these two approaches were observed (All p ≥ 0.088). Bland-Altman plots overall revealed small bias between MIBI SPECT and NH3 PET (global: ΔMBF = -0.03Lml/min/g, ΔMFR = 0.07; regional: ΔMBF = -0.07 - 0.06, ΔMFR = -0.02 - 0.22). Quantitation with SPECT technologies can be accurate to measure myocardial blood flow as PET quantitation while comprehensive imaging factors of SPECT to derive the variability between these two approaches were fully addressed and corrected. (orig.)

  18. Assessment of left ventricular function by thallium-201 quantitative gated cardiac SPECT

    International Nuclear Information System (INIS)

    Baba, Akira; Hano, Takuzo; Ohmori, Hisashi; Ibata, Masayo; Kawabe, Tetsuya; Kubo, Takashi; Kimura, Keizo; Nishio, Ichiro

    2002-01-01

    Present study was designed to evaluate the accuracy of the measurement of left ventricular volume by quantitative gated SPECT (QGS) software using 201 Tl and the effect of cutoff frequency of Butterworth prereconstruction filter on the calculation of volume. The RH-2 type cardiac phantom and 20 patients with ischemic heart disease were studied. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated by the QGS software using the various frequency of Butterworth filter. These parameters were evaluated by Simpson's method using left ventriculography (LVG). The volume of the phantom calculated by QGS was under-estimated by 14%. In the clinical study, EDV and ESV measured by QGS were smaller than those obtained from LVG by 10%. When the cutoff frequency of Butterworth filter was 0.43 cycles/cm, the values measured by QGS were best correlated with those by LVG (EDV: r=0.80, p 201 Tl quantitative gated cardiac SPECT can estimate myocardial ischemia and left ventricular function simultaneously. (author)

  19. Assessment of left ventricular function by thallium-201 quantitative gated cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Akira; Hano, Takuzo; Ohmori, Hisashi; Ibata, Masayo; Kawabe, Tetsuya; Kubo, Takashi; Kimura, Keizo; Nishio, Ichiro [Wakayama Medical Coll. (Japan)

    2002-02-01

    Present study was designed to evaluate the accuracy of the measurement of left ventricular volume by quantitative gated SPECT (QGS) software using {sup 201}Tl and the effect of cutoff frequency of Butterworth prereconstruction filter on the calculation of volume. The RH-2 type cardiac phantom and 20 patients with ischemic heart disease were studied. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated by the QGS software using the various frequency of Butterworth filter. These parameters were evaluated by Simpson's method using left ventriculography (LVG). The volume of the phantom calculated by QGS was under-estimated by 14%. In the clinical study, EDV and ESV measured by QGS were smaller than those obtained from LVG by 10%. When the cutoff frequency of Butterworth filter was 0.43 cycles/cm, the values measured by QGS were best correlated with those by LVG (EDV: r=0.80, p<0.001; ESV: r=0.86, p<0.001; EF: r=0.80, p<0.001). These data suggest that {sup 201}Tl quantitative gated cardiac SPECT can estimate myocardial ischemia and left ventricular function simultaneously. (author)

  20. Absolute quantitation of myocardial blood flow with 201Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling

    International Nuclear Information System (INIS)

    Iida, Hidehiro; Kim, Kyeong-Min; Nakazawa, Mayumi; Sohlberg, Antti; Zeniya, Tsutomu; Hayashi, Takuya; Watabe, Hiroshi; Eberl, Stefan; Tamura, Yoshikazu; Ono, Yukihiko

    2008-01-01

    201 Tl has been extensively used for myocardial perfusion and viability assessment. Unlike 99m Tc-labelled agents, such as 99m Tc-sestamibi and 99m Tc-tetrofosmine, the regional concentration of 201 Tl varies with time. This study is intended to validate a kinetic modelling approach for in vivo quantitative estimation of regional myocardial blood flow (MBF) and volume of distribution of 201 Tl using dynamic SPECT. Dynamic SPECT was carried out on 20 normal canines after the intravenous administration of 201 Tl using a commercial SPECT system. Seven animals were studied at rest, nine during adenosine infusion, and four after beta-blocker administration. Quantitative images were reconstructed with a previously validated technique, employing OS-EM with attenuation-correction, and transmission-dependent convolution subtraction scatter correction. Measured regional time-activity curves in myocardial segments were fitted to two- and three-compartment models. Regional MBF was defined as the influx rate constant (K 1 ) with corrections for the partial volume effect, haematocrit and limited first-pass extraction fraction, and was compared with that determined from radio-labelled microspheres experiments. Regional time-activity curves responded well to pharmacological stress. Quantitative MBF values were higher with adenosine and decreased after beta-blocker compared to a resting condition. MBFs obtained with SPECT (MBF SPECT ) correlated well with the MBF values obtained by the radio-labelled microspheres (MBF MS ) (MBF SPECT = -0.067 + 1.042 x MBF MS , p 201 Tl and dynamic SPECT. (orig.)

  1. Weighted backprojection implemented with a non-uniform attenuation map for improved SPECT quantitation

    International Nuclear Information System (INIS)

    Manglos, S.H.; Jaszczak, R.J.; Floyd, C.E.

    1988-01-01

    A method is developed to improve quantitation in SPECT imaging by using an attenuation compensation method which includes the correct non-uniform attenuation spatial distribution (''map''). The method is based on the technique of weighted back projection, previously developed for uniform attenuation. The method is tested by imaging a non-uniform phantom, reconstructing with the known attenuation map, and quantitatively comparing the resultant image with the known activity distribution. Reconstructed image profiles are dramatically improved in comparison to reconstructions without compensation or with an assumed uniform attenuation map. Contrast measurements further quantify the improvement. Line spread function distortions seen previously in non-uniform geometries are essentially eliminated by the method. Therefore, the method appears to be appropriate for these geometries, if the non-uniform map can be determined. Some additional image distortions introduced by the compensation method are noted and will require further study

  2. Improved quantitative 90 Y bremsstrahlung SPECT/CT reconstruction with Monte Carlo scatter modeling.

    Science.gov (United States)

    Dewaraja, Yuni K; Chun, Se Young; Srinivasa, Ravi N; Kaza, Ravi K; Cuneo, Kyle C; Majdalany, Bill S; Novelli, Paula M; Ljungberg, Michael; Fessler, Jeffrey A

    2017-12-01

    In 90 Y microsphere radioembolization (RE), accurate post-therapy imaging-based dosimetry is important for establishing absorbed dose versus outcome relationships for developing future treatment planning strategies. Additionally, accurately assessing microsphere distributions is important because of concerns for unexpected activity deposition outside the liver. Quantitative 90 Y imaging by either SPECT or PET is challenging. In 90 Y SPECT model based methods are necessary for scatter correction because energy window-based methods are not feasible with the continuous bremsstrahlung energy spectrum. The objective of this work was to implement and evaluate a scatter estimation method for accurate 90 Y bremsstrahlung SPECT/CT imaging. Since a fully Monte Carlo (MC) approach to 90 Y SPECT reconstruction is computationally very demanding, in the present study the scatter estimate generated by a MC simulator was combined with an analytical projector in the 3D OS-EM reconstruction model. A single window (105 to 195-keV) was used for both the acquisition and the projector modeling. A liver/lung torso phantom with intrahepatic lesions and low-uptake extrahepatic objects was imaged to evaluate SPECT/CT reconstruction without and with scatter correction. Clinical application was demonstrated by applying the reconstruction approach to five patients treated with RE to determine lesion and normal liver activity concentrations using a (liver) relative calibration. There was convergence of the scatter estimate after just two updates, greatly reducing computational requirements. In the phantom study, compared with reconstruction without scatter correction, with MC scatter modeling there was substantial improvement in activity recovery in intrahepatic lesions (from > 55% to > 86%), normal liver (from 113% to 104%), and lungs (from 227% to 104%) with only a small degradation in noise (13% vs. 17%). Similarly, with scatter modeling contrast improved substantially both visually and in

  3. Quantitative 177Lu-SPECT/CT imaging and validation of a commercial dosimetry software

    International Nuclear Information System (INIS)

    D'Ambrosio, L.; Aloj, L.; Morisco, A.; Aurilio, M.; Prisco, A.; Di Gennaro, F.; Lastoria, S.; Madesani, D.

    2015-01-01

    Full text of publication follows. Aim: 3D dosimetry is an appealing yet complex application of SPECT/CT in patients undergoing radionuclide therapy. In this study we have developed a quantitative imaging protocol and we have validated commercially available dosimetry software (Dosimetry Tool-kit Package, GE Heathcare) in patients undergoing 177 Lu-DOTATATE therapy. Materials and methods: dosimetry tool-kit uses multi SPECT/CT and/or WB planar datasets for quantifying changes in radiopharmaceutical uptake over time to determine residence times. This software includes tools for performing reconstruction of SPECT/CT data, registration of all scans to a common reference, segmentation of the different organs, creating time activity curves, curve fitting and calculation of residence times. All acquisitions were performed using a hybrid dual-head SPECT-CT camera (Discovery 670, GE Heathcare) equipped with medium energy collimator using a triple-energy window. SPECT images were reconstructed using an iterative reconstruction algorithm with attenuation, scatter and collimator depth-dependent three-dimensional resolution recovery correction. Camera sensitivity and dead time were evaluated. Accuracy of activity quantification was performed on a large homogeneous source with addition of attenuating/scattering medium. A NEMA/IEC body phantom was utilized to measure the recovery coefficient that the software does not take into account. The residence times for organs at risk were calculated in five patients. OLINDA-EXM software was used to calculate absorbed doses. Results: 177 Lu-sensitivity factor was 13 counts/MBq/s. Dead time was <3% with 1.11 GBq in the field of view. The measured activity was consistent with the decay-corrected calibrated activity for large volumes (>100 cc). The recovery coefficient varied from 0.71 (26.5 ml) to 0.16 (2.5 ml) in the absence of background activity and from 0.58 to 0.13 with a source to background activity concentration ratio 20:1. The

  4. Utility of Quantitative Tc-MAA SPECT/CT for yttrium-Labelled Microsphere Treatment Planning: Calculating Vascularized Hepatic Volume and Dosimetric Approach.

    Science.gov (United States)

    Garin, Etienne; Rolland, Yan; Lenoir, Laurence; Pracht, Marc; Mesbah, Habiba; Porée, Philippe; Laffont, Sophie; Clement, Bruno; Raoul, Jean-Luc; Boucher, Eveline

    2011-01-01

    Objectives. The aim of this study was to assess the effectiveness of SPECT/CT for volume measurements and to report a case illustrating the major impact of SPECT/CT in calculating the vascularized liver volume and dosimetry prior to injecting radiolabelled yttrium-90 microspheres (Therasphere). Materials and Methods. This was a phantom study, involving volume measurements carried out by two operators using SPECT and SPECT/CT images. The percentage of error for each method was calculated, and interobserver reproducibility was evaluated. A treatment using Therasphere was planned in a patient with three hepatic arteries, and the quantitative analysis of SPECT/CT for this patient is provided. Results. SPECT/CT volume measurements proved to be accurate (mean error Therasphere used. Conclusions. MAA SPECT/CT is accurate for vascularized liver volume measurements, providing a valuable contribution to the therapeutic planning of patients with complex hepatic vascularization.

  5. Utility of Quantitative 99mTc-MAA SPECT/CT for 90yttrium-Labelled Microsphere Treatment Planning: Calculating Vascularized Hepatic Volume and Dosimetric Approach

    Science.gov (United States)

    Garin, Etienne; Rolland, Yan; Lenoir, Laurence; Pracht, Marc; Mesbah, Habiba; Porée, Philippe; Laffont, Sophie; Clement, Bruno; Raoul, Jean-Luc; Boucher, Eveline

    2011-01-01

    Objectives. The aim of this study was to assess the effectiveness of SPECT/CT for volume measurements and to report a case illustrating the major impact of SPECT/CT in calculating the vascularized liver volume and dosimetry prior to injecting radiolabelled yttrium-90 microspheres (Therasphere). Materials and Methods. This was a phantom study, involving volume measurements carried out by two operators using SPECT and SPECT/CT images. The percentage of error for each method was calculated, and interobserver reproducibility was evaluated. A treatment using Therasphere was planned in a patient with three hepatic arteries, and the quantitative analysis of SPECT/CT for this patient is provided. Results. SPECT/CT volume measurements proved to be accurate (mean error Therasphere used. Conclusions. MAA SPECT/CT is accurate for vascularized liver volume measurements, providing a valuable contribution to the therapeutic planning of patients with complex hepatic vascularization. PMID:21822489

  6. Optimisation of quantitative lung SPECT applied to mild COPD: a software phantom simulation study.

    Science.gov (United States)

    Norberg, Pernilla; Olsson, Anna; Alm Carlsson, Gudrun; Sandborg, Michael; Gustafsson, Agnetha

    2015-01-01

    The amount of inhomogeneities in a (99m)Tc Technegas single-photon emission computed tomography (SPECT) lung image, caused by reduced ventilation in lung regions affected by chronic obstructive pulmonary disease (COPD), is correlated to disease advancement. A quantitative analysis method, the CVT method, measuring these inhomogeneities was proposed in earlier work. To detect mild COPD, which is a difficult task, optimised parameter values are needed. In this work, the CVT method was optimised with respect to the parameter values of acquisition, reconstruction and analysis. The ordered subset expectation maximisation (OSEM) algorithm was used for reconstructing the lung SPECT images. As a first step towards clinical application of the CVT method in detecting mild COPD, this study was based on simulated SPECT images of an advanced anthropomorphic lung software phantom including respiratory and cardiac motion, where the mild COPD lung had an overall ventilation reduction of 5%. The best separation between healthy and mild COPD lung images as determined using the CVT measure of ventilation inhomogeneity and 125 MBq (99m)Tc was obtained using a low-energy high-resolution collimator (LEHR) and a power 6 Butterworth post-filter with a cutoff frequency of 0.6 to 0.7 cm(-1). Sixty-four reconstruction updates and a small kernel size should be used when the whole lung is analysed, and for the reduced lung a greater number of updates and a larger kernel size are needed. A LEHR collimator and 125 (99m)Tc MBq together with an optimal combination of cutoff frequency, number of updates and kernel size, gave the best result. Suboptimal selections of either cutoff frequency, number of updates and kernel size will reduce the imaging system's ability to detect mild COPD in the lung phantom.

  7. SU-F-J-08: Quantitative SPECT Imaging of Ra-223 in a Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yue, J; Hobbs, R; Sgouros, G; Frey, E [Johns Hopkins University Baltimore, MD (United States)

    2016-06-15

    Purpose: Ra-223 therapy of prostate cancer bone metastases is being used to treat patients routinely. However, the absorbed dose distribution at the macroscopic and microscopic scales remains elusive, due to the inability to image the small activities injected. Accurate activity quantification through imaging is essential to calculate the absorbed dose in organs and sub-units in radiopharmaceutical therapy, enabling personalized absorbed dose-based treatment planning methodologies and more effective and optimal treatments. Methods: A 22 cm diameter by 20 cm long cylindrical phantom, containing a 3.52 cm diameter sphere, was used. A total of 2.01 MBq of Ra-223 was placed in the phantom with 177.6 kBq in the sphere. Images were acquired on a dual-head Siemens Symbia T16 gamma camera using three 20% full-width energy windows and centered at 84, 154, and 269 keV (120 projections, 360° rotation, 45 s per view). We have implemented reconstruction of Ra-223 SPECT projections using OS-EM (up to 20 iterations of 10 subsets) with compensation for attenuation using CT-based attenuation maps, collimator-detector response (CDR) (including septal penetration, scatter and Pb x-ray modeling), and scatter in the patient using the effective source scatter estimation (ESSE) method. The CDR functions and scatter kernels required for ESSE were computed using the SIMIND MC simulation code. All Ra-223 photon emissions as well as gamma rays from the daughters Rn-219 and Bi-211 were modeled. Results: The sensitivity of the camera in the three combined windows was 107.3 cps/MBq. The visual quality of the SPECT images was reasonably good and the activity in the sphere was 27% smaller than the true activity. This underestimation is likely due to partial volume effect. Conclusion: Absolute quantitative Ra-223 SPECT imaging is achievable with careful attention to compensate for image degrading factors and system calibration.

  8. Use of quantitative SPECT/CT reconstruction in 99mTc-sestamibi imaging of patients with renal masses.

    Science.gov (United States)

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust

  9. Simultaneous acquisition of (99m)Tc- and (123)I-labeled radiotracers using a preclinical SPECT scanner with CZT detectors.

    Science.gov (United States)

    Kobayashi, Masato; Matsunari, Ichiro; Nishi, Kodai; Mizutani, Asuka; Miyazaki, Yoshiharu; Ogai, Kazuhiro; Sugama, Jyunko; Shiba, Kazuhiro; Kawai, Keiichi; Kinuya, Seigo

    2016-05-01

    Simultaneous acquisition of (99m)Tc and (123)I was evaluated using a preclinical SPECT scanner with cadmium zinc telluride (CZT)-based detectors. 10-ml cylindrical syringes contained about 37 MBq (99m)Tc-tetrofosmin ((99m)Tc-TF) or 37 MBq (123)I-15-(p-iodophenyl)-3R,S-methyl pentadecanoic acid ((123)I-BMIPP) were used to assess the relationship between these SPECT radioactive counts and radioactivity. Two 10-ml syringes contained 100 or 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP to assess the influence of (99m)Tc upscatter and (123)I downscatter, respectively. A rat-sized cylindrical phantom also contained both 100 or 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP. The two 10-ml syringes and phantom were scanned using a pinhole collimator for rats. Myocardial infarction model rats were examined using 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP. Two 1-ml syringes contained 105 MBq (99m)Tc-labeled hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) and 35 MBq (123)I-labeled N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ((123)I-FP-CIT). The two 1-ml syringes were scanned using a pinhole collimator for mice. Normal mice were examined using 105 MBq (99m)Tc-HMPAO and 35 MBq (123)I-FP-CIT. The relationship between SPECT radioactive counts and radioactivity was excellent. Downscatter contamination of (123)I-BMIPP exhibited fewer radioactive counts for 300 MBq (99m)Tc-TF without scatter correction (SC) in 125-150 keV. There was no upscatter contamination of (99m)Tc-TF in 150-175 keV. In the rat-sized phantom, the radioactive count ratio decreased to 4.0 % for 300 MBq (99m)Tc-TF without SC in 125-150 keV. In the rats, myocardial images and radioactive counts of (99m)Tc-TF with the dual tracer were identical to those of the (99m)Tc-TF single injection. Downscatter contamination of (123)I-FP-CIT was 4.2 % without SC in 125-150 keV. In the first injection of (99m)Tc-HMPAO and second injection of (123)I-FP-CIT, brain images and radioactive counts

  10. Quantitative accuracy of serotonergic neurotransmission imaging with high-resolution 123I SPECT

    International Nuclear Information System (INIS)

    Kuikka, J.T.

    2004-01-01

    Aim: Serotonin transporter (SERT) imaging can be used to study the role of regional abnormalities of neurotransmitter release in various mental disorders and to study the mechanism of action of therapeutic drugs or drugs' abuse. We examine the quantitative accuracy and reproducibility that can be achieved with high-resolution SPECT of serotonergic neurotransmission. Method: Binding potential (BP) of 123 I labeled tracer specific for midbrain SERT was assessed in 20 healthy persons. The effects of scatter, attenuation, partial volume, misregistration and statistical noise were estimated using phantom and human studies. Results: Without any correction, BP was underestimated by 73%. The partial volume error was the major component in this underestimation whereas the most critical error for the reproducibility was misplacement of region of interest (ROI). Conclusion: The proper ROI registration, the use of the multiple head gamma camera with transmission based scatter correction introduce more relevant results. However, due to the small dimensions of the midbrain SERT structures and poor spatial resolution of SPECT, the improvement without the partial volume correction is not great enough to restore the estimate of BP to that of the true one. (orig.) [de

  11. Left ventricular ejection fraction determined by gated Tl-201 perfusion SPECT and quantitative software

    International Nuclear Information System (INIS)

    Hyun, In Young; Kim, Sung Eun; Seo, Jeong Kee; Hong, Eui Soo; Kwan, Jun; Park, Keum Soo; Lee, Woo Hyung

    2000-01-01

    We compared estimates of ejection fraction (EF) determined by gated Tl-201 perfusion SPECT (g-Tl-SPECT) with those by gated blood pool (GBP) scan. Eighteen subjects underwent g-Tl-SPECT and GBP scan. After reconstruction of g-Tl-SPECT, we measured EF with Cedars software. The comparison of the EF with g-Tl-SPECT and GBP scan was assessed by correlation analysis and Bland Altman plot. The estimates of EF were significantly different (p<0.05) with g-Tl-SPECT (40%±14%) and GBP scan (43%±14%). There was an excellent correlation of EF between g-Tl-SPECT and GBP scan (r=3D0.94, p<0.001). The mean difference of EF between GBP scan and g-Tl-SPECT was +3.2%. Ninety-five percent limits of agreement were ±9.8%. EF between g-Tl-SPECT and GBP scan were in poor agreement. The estimates of EF by g-Tl-SPECT was well correlated with those by GBP scan. However, EF of g-Tl-SPECT doesn't agree with EF of GBP scan. EF of g-Tl-SPECT can't be used interchangeably with EF of GBP scan.=20

  12. Critical myocardial perfusion in hypertrophic cardiomyopathy demonstrated with thallium-201 SPECT with a quantitative bullseye map

    International Nuclear Information System (INIS)

    Hunter, G.J.

    1990-01-01

    PURPOSE: A particular problem in hypertrophic cardiomyopathy (HCM) is the need to distinguish between true and apparent ischemia in otherwise normal areas of muscle when these are compared with adjacent hypertrophic muscle. The authors of this paper studied patients with proved HCM to define patterns of perfusion. T1-201 single photon emission CT (SPECT) was performed in 83 HCM patients immediately after stress (dipyridamole, 0.5 mg/kg) and 3 hours later for the redistribution image. The data were analyzed by a normalized quantitative analysis using a local bulls-eye technique. In all patients, the pattern of tracer distribution was different from expected uptake in a normal population. By virtue of the increased microcirculation to hypertrophied muscle, adjacent normal muscle appeared relatively ischemic

  13. Quantitative evaluation in tumor SPECT and the effect of tumor size. Fundamental study with phantom

    International Nuclear Information System (INIS)

    Togawa, Takashi; Yui, Nobuharu; Kinoshita, Fujimi; Yanagisawa, Masamichi

    1997-01-01

    An experimental study with phantoms was performed in order to evaluate the effect of the tumor volume on the quantitative estimation in tumor SPECT. The ratio of mean count/pixel in the phantom to that of the background (T/N ratio) was well correlated with the size of the phantom; even when the concentration of the Tc-99m O 4 - solution of globular phantoms with diameters of 29, 37 and 46 mm was constant, the greater the size of the phantom, the higher was the T/N ratio. This study showed that we should understand that the T/N ratio was certainly affected by the reduction of the tumor size itself whenever we evaluate treatment response or assess tumor viability after treatment by reference to the T/N ratio. (author)

  14. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson Svärd, Staffan, E-mail: staffan.jacobsson_svard@physics.uu.se; Holcombe, Scott; Grape, Sophie

    2015-05-21

    A fuel assembly operated in a nuclear power plant typically contains 100–300 fuel rods, depending on fuel type, which become strongly radioactive during irradiation in the reactor core. For operational and security reasons, it is of interest to experimentally deduce rod-wise information from the fuel, preferably by means of non-destructive measurements. The tomographic SPECT technique offers such possibilities through its two-step application; (1) recording the gamma-ray flux distribution around the fuel assembly, and (2) reconstructing the assembly's internal source distribution, based on the recorded radiation field. In this paper, algorithms for performing the latter step and extracting quantitative relative rod-by-rod data are accounted for. As compared to application of SPECT in nuclear medicine, nuclear fuel assemblies present a much more heterogeneous distribution of internal attenuation to gamma radiation than the human body, typically with rods containing pellets of heavy uranium dioxide surrounded by cladding of a zirconium alloy placed in water or air. This inhomogeneity severely complicates the tomographic quantification of the rod-wise relative source content, and the deduction of conclusive data requires detailed modelling of the attenuation to be introduced in the reconstructions. However, as shown in this paper, simplified models may still produce valuable information about the fuel. Here, a set of reconstruction algorithms for SPECT on nuclear fuel assemblies are described and discussed in terms of their quantitative performance for two applications; verification of fuel assemblies' completeness in nuclear safeguards, and rod-wise fuel characterization. It is argued that a request not to base the former assessment on any a priori information brings constraints to which reconstruction methods that may be used in that case, whereas the use of a priori information on geometry and material content enables highly accurate quantitative

  15. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pourmoghaddas, Amir, E-mail: apour@ottawaheart.ca; Wells, R. Glenn [Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada and Cardiology, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada)

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  16. Qualitative and quantitative evaluation of renal parenchymal damage by 99mTc-DMSA planar and SPECT scintigraphy

    International Nuclear Information System (INIS)

    Itoh, Kazuo; Yamashita, Tetsufumi; Tsukamoto, Eriko; Nonomura, Katsuya; Furudate, Masayori; Koyanagi, Tomohiko

    1995-01-01

    The initial 99m Tc-DMSA studies carried out over a four year period in 229 patients with various heterogenic causes of lower urinary tract abnormalities were reviewed. Anatomical damage to the renal parenchyma was graded by means of planar and SPECT studies into a six group classification proposed by Monsour et al.: grade 0 (normal), I (equivocal), II (single defect), III (more than 2 defects), IV (contracted or small) and V (no visualization). Parenchymal uptake of 99m Tc-DMSA was quantitated from planar images at 2 hours postinjection by a computer assisted gamma camera method. SPECT studies could enhance the pick-up rate for parenchymal uptake defects by a factor of 1.5 in comparison with planar imaging. The incidence of anatomical damage to the renal parenchyma increased with a high radiological grade for VUR, and renal uptake per injection dose of 99m Tc-DMSA by the individual kidney significantly decreased in grades III and IV of the anatomical classification. These data revealed that 99m Tc-DMSA planar is still useful for evaluating gross structural damage and for quantitative evaluation of the kidney with computer assistance. SPECT scintigraphy is more effective in disclosing anatomical damage to the renal parenchyma than planar, although it needs further discussion as to whether SPECT may increase sensitivity with minimal or no adverse affect on specificity. (author)

  17. Computed-tomography-guided anatomic standardization for quantitative assessment of dopamine transporter SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kota [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Imabayashi, Etsuko; Matsuda, Hiroshi [National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Sumida, Kaoru; Sone, Daichi; Kimura, Yukio; Sato, Noriko [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); Mukai, Youhei; Murata, Miho [National Center of Neurology and Psychiatry, Department of Neurology, Tokyo (Japan)

    2017-03-15

    For the quantitative assessment of dopamine transporter (DAT) using [{sup 123}I]FP-CIT single-photon emission computed tomography (SPECT) (DaTscan), anatomic standardization is preferable for achieving objective and user-independent quantification of striatal binding using a volume-of-interest (VOI) template. However, low accumulation of DAT in Parkinson's disease (PD) would lead to a deformation error when using a DaTscan-specific template without any structural information. To avoid this deformation error, we applied computed tomography (CT) data obtained using SPECT/CT equipment to anatomic standardization. We retrospectively analyzed DaTscan images of 130 patients with parkinsonian syndromes (PS), including 80 PD and 50 non-PD patients. First we segmented gray matter from CT images using statistical parametric mapping 12 (SPM12). These gray-matter images were then anatomically standardized using the diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) algorithm. Next, DaTscan images were warped with the same parameters used in the CT anatomic standardization. The target striatal VOIs for decreased DAT in PD were generated from the SPM12 group comparison of 20 DaTscan images from each group. We applied these VOIs to DaTscan images of the remaining patients in both groups and calculated the specific binding ratios (SBRs) using nonspecific counts in a reference area. In terms of the differential diagnosis of PD and non-PD groups using SBR, we compared the present method with two other methods, DaTQUANT and DaTView, which have already been released as software programs for the quantitative assessment of DaTscan images. The SPM12 group comparison showed a significant DAT decrease in PD patients in the bilateral whole striatum. Of the three methods assessed, the present CT-guided method showed the greatest power for discriminating PD and non-PD groups, as it completely separated the two groups. CT-guided anatomic standardization using

  18. Reproducibility of the assessment of myocardial function using gated Tc-99m-MIBI SPECT and quantitative software

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Cheon, Gi Jeong; Ahn, Ji Young; Jeong, Joon Ki; Lee, Myung Chul

    1998-01-01

    We investigated reproducibility of the quantification of left ventricular volume and ejection fraction, and grading of myocardial wall motion and systolic thickening when we used gated myocardial SPECT and Cedars quantification software. We performed gated myocardial SPECT in 33 consecutive patients twice in the same position after Tc-99m-MIBI SPECT. We used 16 frames per cycle for the gating of sequential Tc-99m-MIBI SPECT. After reconstruction, we used Cedars quantitative gated SPECT and calculated ventricular volume and ejection fraction (EF). Wall motion was graded using 5 point score. Wall thickening was graded using 4 point score. Coefficient of variation for re-examination of volume and fraction were calculated. Kappa values (k-value) for assessing reproducibility of wall motion or wall thickening were calculated. Enddiastolic volumes (EDV) ranged from 58 ml to 248 ml (122 ml +/-42 ml), endsystolic volumes (ESV) from 20 ml to 174 ml (65 ml+/-39 ml), and EF from 20% to 68% (51%+/-14%). Geometric mean of standard deviations of 33 patients was 5.0 ml for EDV, 3.9 ml for ESV and 1.9% for EF. Their average differences were not different from zero (p>0.05). k-value for wall motion using 2 consecutive images was 0.76 (confidence interval: 0.71-0.81). k-value was 0.87 (confidence interval: 0.83-0.90) for assessment of wall thickening. We concluded that quantification of functional indices, assessment of wall motion and wall thickening using gated Tc-99m MIBI SPECT was reproducible and we could use this method for the evaluation of short-acting drug effect

  19. Quantitative study of 99mTc-Technegas SPECT for ventilatory impairment in pulmonary emphysema. Regional distribution. Correlation of SPECT with pulmonary function test

    International Nuclear Information System (INIS)

    Satoh, Katashi; Mitani, Masahiro; Yamamoto, Yuka; Nishiyama, Yoshihiro; Ohkawa, Motoomi

    2003-01-01

    99m Tc-Technegas scintigraphy is used for evaluation of abnormality of ventilation in pulmonary emphysema. Although the abnormality of ventilation distribution is very easy to find, there is not an objective index. The evaluation is subjective and different by each radiologist. It was also difficult to compare each cases and the clinical course in the same case. The present study for quantitative evaluation has proved that excellent correlations is obtained between the mean voxel values of the lung and stage classification. Furthermore, a correlation is observed between the mean and forced expiratory volume in 1 second (FEV 1.0 )%. These data indicate that quantitative analysis of SPECT seem to be useful to classify the clinical stage and compare the each cases. And respiratory function decreases as much as chronic pulmonary emphysema exists in the lower lung field. (author)

  20. SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Hendrikx, Geert [Maastricht University Medical Centre MUMC+, Department of Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Voeoe, Stefan [Maastricht University Medical Centre MUMC+, Department of Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); Bauwens, Matthias [Maastricht University Medical Centre MUMC+, Department of Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); Maastricht University, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht (Netherlands); Post, Mark J. [Maastricht University, Department of Physiology, Maastricht (Netherlands); Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Mottaghy, Felix M. [Maastricht University Medical Centre MUMC+, Department of Nuclear Medicine, Postbox 5800, Maastricht (Netherlands); University Hospital, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany)

    2016-12-15

    The extent of neovascularization determines the clinical outcome of coronary artery disease and other occlusive cardiovascular disorders. Monitoring of neovascularization is therefore highly important. This review article will elaborately discuss preclinical studies aimed at validating new nuclear angiogenesis and arteriogenesis tracers. Additionally, we will briefly address possible obstacles that should be considered when designing an arteriogenesis radiotracer. A structured medline search was the base of this review, which gives an overview on different radiopharmaceuticals that have been evaluated in preclinical models. Neovascularization is a collective term used to indicate different processes such as angiogenesis and arteriogenesis. However, while it is assumed that sensitive detection through nuclear imaging will facilitate translation of successful therapeutic interventions in preclinical models to the bedside, we still lack specific tracers for neovascularization imaging. Most nuclear imaging research to date has focused on angiogenesis, leaving nuclear arteriogenesis imaging largely overlooked. Although angiogenesis is the process which is best understood, there is no scarcity in theoretical targets for arteriogenesis imaging. (orig.)

  1. Improved dose–volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    International Nuclear Information System (INIS)

    Cheng Lishui; Hobbs, Robert F; Sgouros, George; Frey, Eric C; Segars, Paul W

    2013-01-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose–volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator–detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  2. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  3. Prognostic Value of Normal Perfusion but Impaired Left Ventricular Function in the Diabetic Heart on Quantitative Gated Myocardial Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwanjeong; Choi, Sehun; Han, Yeonhee [Research Institute of Chonbuk National Univ. Medical School and Hospitial, Jeonju (Korea, Republic of); Lee, Dong Soo; Lee, Hoyoung; Chung, Junekey [Seoul National Univ., Seoul (Korea, Republic of)

    2013-09-15

    This study aimed at identifying the predictive parameters on quantitative gated myocardial perfusion single-photon emission computed tomography (QG-SPECT) in diabetic patients with normal perfusion but impaired function. Methods Among the 533 consecutive diabetic patients, 379 patients with normal perfusion on rest Tl-201/dipyridamole-stress Tc-{sup 99m} sestamibi Gated SPECT were enrolled. Patients were grouped into those with normal post-stress left ventricular function (Group I) and those with impaired function (EF <50 or impaired regional wall motion, Group II). We investigated cardiac events and cause of death by chart review and telephone interview. Survival analysis and Cox proportional hazard model analysis were performed. Between the Group I and II, cardiac events as well as chest pain symptoms, smoking, diabetic complications were significantly different (P<0.05). On survival analysis, event free survival rate in Group II was significantly lower than in Group I (P=0.016). In univariate Cox proportional hazard analysis on overall cardiac event, Group (II over I), diabetic nephropathy, summed motion score (SMS), summed systolic thickening score (STS), numbers of abnormal segmental wall motion and systolic thickening predicted more cardiac events (P<0.05). Multivariate analysis showed that STS was the only independent predictor cardiac event. The functional parameter, especially summed systolic thickening score on QG-SPECT had prognostic values, despite normal perfusion, in predicting cardiac events in diabetic patients, and QG-SPECT provides clinically useful risk stratification in diabetic patients with normal perfusion.

  4. Quantitative gated SPECT- a comparative study of two algorithms for parameters of perfusion and LV function

    International Nuclear Information System (INIS)

    Ali, A.Z.

    2007-01-01

    Full text: Aim: To compare the perfusion and LV function parameters as quantified by 4D-MSPECT and ECT in the same patient group and a qualitative comparison of the reconstructed slices by two different experts. Materials and methods: Thirty-one consecutive patients underwent gated myocardial perfusion SPECT using a two-day protocol. The gated and ungated data were reconstructed by back projection method. Quantitative analysis was performed on the same set of reconstructed slices by 4D-MSPECT and Emory Cardiac Tool Box. The reconstructed slices were read qualitatively by two different experts on their respective systems. Polar map and functional analysis was performed in both softwares and the results were compared. Results: The concordance between the two experts qualitatively was seen in 78/93(84%) coronary territories. The polar map defects were comparable in LAD (r-value of 0.87) and LCX (r-value of 0.76) territories whereas RCA defects (r-value of 0.04) were not at all correlating. The defect severity showed concordance in 68/93 (73%) coronary territories. There was concordance between 4DMSPECT and the qualitative interpretation in 84/93 (90%) coronary territories whereas ECT showed concordance in only 70/93(75%) coronary territories. The overall sensitivity is marginally higher for ECT (100% vs. 96%) but the overall specificity is much higher with 4 DMSPECT (88% vs. 65%). ESV showed good correlation(r=0.94) of the two softwares with no significant difference in means. EDV and LVEF although had good correlation(r = 0.96 and 0.89) showed high difference in means (p<0.01). Conclusion: Between 4D-MSPECT and ECT, 4D-MSPECT is marginally superior to ECT with reference to qualitative interpretation in view of better specificity. The LVEF values between the two softwares should also not be used interchangeably. (author)

  5. Quantitation of myocardial blood flow and myocardial flow reserve with {sup 99m}Tc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Bailing [University of Missouri-Columbia, Nuclear Science and Engineering Institute, Columbia, MO (United States); Chen, Fu-Chung; Chen, Chien-Cheng [Show Chwan Memorial Hospital, Section of Cardiology, Department of Internal Medicine, Changhua (China); Wu, Tao-Cheng [Taipei Veterans General Hospital, Section of Cardiology, Department of Internal Medicine, Taipei (China); Huang, Wen-Sheng [Changhua Christian Hospital, Department of Medical Research and Department of Nuclear Medicine, Changhua (China); Hou, Po-Nien [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Lukong Town, Changhua Shien (China); Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Lukong Town, Changhua Shien (China); Central Taiwan University of Science and Technology, Department of Medical Imaging and Radiological Science, Taichung (China); China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China)

    2014-12-15

    Conventional dual-head single photon emission computed tomography (SPECT)/CT systems capable of fast dynamic SPECT (DySPECT) imaging have a potential for flow quantitation. This study introduced a new method to quantify myocardial blood flow (MBF) and myocardial flow reserve (MFR) with DySPECT scan and evaluated the diagnostic performance of detecting coronary artery disease (CAD) compared with perfusion using invasive coronary angiography (CAG) as the reference standard. This study included 21 patients with suspected or known CAD who had received DySPECT, ECG-gated SPECT (GSPECT), and CAG (13 with ≥50 % stenosis in any vessel; non-CAD group: 8 with patent arteries or <50 % stenosis). DySPECT and GSPECT scans were performed on a widely used dual-head SPECT/CT scanner. The DySPECT imaging protocol utilized 12-min multiple back-and-forth gantry rotations during injections of {sup 99m}Tc-sestamibi (MIBI) tracer at rest or dipyridamole-stress stages. DySPECT images were reconstructed with full physical corrections and converted to the physical unit of becquerels per milliliter. Stress MBF (SMBF), rest MBF (RMBF), and MFR were quantified by a one-tissue compartment flow model using time-activity curves derived from DySPECT images. Perfusion images were processed for GSPECT scan and interpreted to obtain summed stress score (SSS) and summed difference score (SDS). Receiver-operating characteristic (ROC) analyses were conducted to evaluate the diagnostic performance of flow and perfusion. Using the criteria of ≥50 % stenosis as positive CAD, areas under the ROC curve (AUCs) of flow assessment were overall significantly greater than those of perfusion. For patient-based analysis, AUCs for MFR, SMBF, SSS, and SDS were 0.91 ± 0.07, 0.86 ± 0.09, 0.64 ± 0.12, and 0.59 ± 0.13. For vessel-based analysis, AUCs for MFR, SMBF, SSS, and SDS were 0.81 ± 0.05, 0.76 ± 0.06, 0.62 ± 0.07, and 0.56 ± 0.08, respectively. The preliminary data suggest that MBF quantitation with a

  6. Benefits of quantitative gated SPECT in evaluation of perioperative cardiac risk in noncardiac surgery

    International Nuclear Information System (INIS)

    Watanabe, Koji; Ohsumi, Yukio; Abe, Hirohiko; Hattori, Masahito; Minatoguchi, Shinya; Fujiwara, Hisayoshi

    2007-01-01

    Gated single-photon emission computed tomography (G-SPECT) was used to evaluate cardiac risk associated with noncardiac surgery and determine the benefits and indications of this technique for this type of surgery. Patients scheduled to undergo noncardiac surgery under the supervision of anesthesiologists and subjected to preoperative cardiac evaluation using G-SPECT during the 26-month period between June 2000 and August 2002 were followed for the presence/absence of cardiac events (id est (i.e.), cardiac death, myocardial infarction, unstable angina, congestive heart failure, or fatal arrhythmia) during surgery and the postoperative period until discharged. Relationships between the occurrence of cardiac events and preoperative G-SPECT findings were evaluated. A total of 39 patients underwent G-SPECT; 6 of the 39 exhibited abnormal ejection fraction (left ventricular ejection fraction, left ventricular ejection fraction (LVEF)≤50%) and end-systolic volume (end-systolic volume (ESV)≥50 ml). Surgery was suspended for three of these six patients and cardiac events developed in the remaining three patients. Both abnormal perfusion images (PI) and abnormal wall thickening (WT) were observed in all six patients. All six patients exhibited abnormal LVEF and/or ESV. Three patients had either abnormal PI or WT, and a cardiac event occurred in one of them. Of the five patients who experienced cardiac events during or after surgery, two exhibited a short run of ventricular tachycardia requiring a continuous administering of antiarrhythmic drugs, whereas the remaining three patients exhibited cardiac failure requiring inotropic support following surgery. The results of this study indicate that the occurrence of perioperative cardiac events can be predicted by considering the severity of expected surgical stress and preoperative G-SPECT findings for LVEF, PI, and WT. We conclude that G-SPECT is quite useful for cardiac risk assessment in patients undergoing noncardiac

  7. [Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].

    Science.gov (United States)

    Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi

    123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .

  8. Prediction of functional recovery after revascularization using quantitative gated myocardial perfusion SPECT: a multi-center cohort study in Japan

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Tamaki, Nagara; Kuwabara, Yoichi; Kawano, Masaya; Matsunari, Ichiro; Taki, Junichi; Nishimura, Shigeyuki; Yamashina, Akira; Ishida, Yoshio; Tomoike, Hitonobu

    2008-01-01

    Prediction of left ventricular functional recovery is important after myocardial infarction. The impact of quantitative perfusion and motion analyses with gated single-photon emission computed tomography (SPECT) on predictive ability has not been clearly defined in multi-center studies. A total of 252 patients with recent myocardial infarction (n = 74) and old myocardial infarction (n = 175) were registered from 25 institutions. All patients underwent resting gated SPECT using 99m Tc-hexakis-2-methoxy-isobutyl isonitrile (MIBI) and repeated the study after revascularization after an average follow-up period of 132 ± 81 days. Visual and quantitative assessment of perfusion and wall motion were performed in 5,040 segments. Non-gated segmental percent uptake and end-systolic (ES) percent uptake were good predictors of wall motion recovery and significantly differed between improved and non-improved groups (66 ± 17% and 55 ± 18%, p 99m Tc-MIBI uptake provided a useful predictor of wall motion improvement. Application of quantitative approach with non-gated and ES percent uptake enhanced predictive accuracy over visual analysis particularly in a multi-center study. (orig.)

  9. Combined visual and semi-quantitative assessment of 123I-FP-CIT SPECT for the diagnosis of dopaminergic neurodegenerative diseases.

    Science.gov (United States)

    Ueda, Jun; Yoshimura, Hajime; Shimizu, Keiji; Hino, Megumu; Kohara, Nobuo

    2017-07-01

    Visual and semi-quantitative assessments of 123 I-FP-CIT single-photon emission computed tomography (SPECT) are useful for the diagnosis of dopaminergic neurodegenerative diseases (dNDD), including Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. However, the diagnostic value of combined visual and semi-quantitative assessment in dNDD remains unclear. Among 239 consecutive patients with a newly diagnosed possible parkinsonian syndrome who underwent 123 I-FP-CIT SPECT in our medical center, 114 patients with a disease duration less than 7 years were diagnosed as dNDD with the established criteria or as non-dNDD according to clinical judgment. We retrospectively examined their clinical characteristics and visual and semi-quantitative assessments of 123 I-FP-CIT SPECT. The striatal binding ratio (SBR) was used as a semi-quantitative measure of 123 I-FP-CIT SPECT. We calculated the sensitivity and specificity of visual assessment alone, semi-quantitative assessment alone, and combined visual and semi-quantitative assessment for the diagnosis of dNDD. SBR was correlated with visual assessment. Some dNDD patients with a normal visual assessment had an abnormal SBR, and vice versa. There was no statistically significant difference between sensitivity of the diagnosis with visual assessment alone and semi-quantitative assessment alone (91.2 vs. 86.8%, respectively, p = 0.29). Combined visual and semi-quantitative assessment demonstrated superior sensitivity (96.7%) to visual assessment (p = 0.03) or semi-quantitative assessment (p = 0.003) alone with equal specificity. Visual and semi-quantitative assessments of 123 I-FP-CIT SPECT are helpful for the diagnosis of dNDD, and combined visual and semi-quantitative assessment shows superior sensitivity with equal specificity.

  10. Comparison of 99mTc-MDP SPECT qualitative vs quantitative results in patients with suspected condylar hyperplasia.

    Science.gov (United States)

    López Buitrago, D F; Ruiz Botero, J; Corral, C M; Carmona, A R; Sabogal, A

    To compare qualitative vs quantitative results of Single Photon Emission Computerised Tomography (SPECT), calculated from percentage of 99m Tc-MDP (methylene diphosphonate) uptake, in condyles of patients with a presumptive clinical diagnosis of condylar hyperplasia. A retrospective, descriptive study was conducted on the 99m Tc-MDP SPECT bone scintigraphy reports from 51 patients, with clinical impression of facial asymmetry related to condylar hyperplasia referred by their specialist in orthodontics or maxillofacial surgery, to a nuclear medicine department in order to take this type of test. Quantitative data from 99m Tc-MDP condylar uptake of each were obtained and compared with qualitative image interpretation reported by a nuclear medicine expert. The concordances between the 51 qualitative and quantitative reports results was established. The total sample included 32 women (63%) and 19 men (37%). The patient age range was 13-45 years (21±8 years). According to qualitative reports, 19 patients were positive for right side condylar hyperplasia, 12 for left side condylar hyperplasia, with 8 bilateral, and 12 negative. The quantitative reports diagnosed 16 positives for right side condylar hyperplasia, 10 for left side condylar hyperplasia, and 25 negatives. Nuclear medicine images are an important diagnostic tool, but the qualitative interpretation of the images is not as reliable as the quantitative calculation. The agreement between the two types of report is low (39.2%, Kappa=0.13; P>.2). The main limitation of quantitative reports is that they do not register bilateral condylar hyperplasia cases. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  11. Absolute quantitation of myocardial blood flow with {sup 201}Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Hidehiro; Kim, Kyeong-Min; Nakazawa, Mayumi; Sohlberg, Antti; Zeniya, Tsutomu; Hayashi, Takuya; Watabe, Hiroshi [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita City, Osaka (Japan); Eberl, Stefan [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita City, Osaka (Japan); Royal Prince Alfred Hospital, PET and Nuclear Medicine Department, Camperdown, NSW (Australia); Tamura, Yoshikazu [Akita Kumiai General Hospital, Department of Cardiology, Akita City (Japan); Ono, Yukihiko [Akita Research Institute of Brain, Akita City (Japan)

    2008-05-15

    {sup 201}Tl has been extensively used for myocardial perfusion and viability assessment. Unlike {sup 99m}Tc-labelled agents, such as {sup 99m}Tc-sestamibi and {sup 99m}Tc-tetrofosmine, the regional concentration of {sup 201}Tl varies with time. This study is intended to validate a kinetic modelling approach for in vivo quantitative estimation of regional myocardial blood flow (MBF) and volume of distribution of {sup 201}Tl using dynamic SPECT. Dynamic SPECT was carried out on 20 normal canines after the intravenous administration of {sup 201}Tl using a commercial SPECT system. Seven animals were studied at rest, nine during adenosine infusion, and four after beta-blocker administration. Quantitative images were reconstructed with a previously validated technique, employing OS-EM with attenuation-correction, and transmission-dependent convolution subtraction scatter correction. Measured regional time-activity curves in myocardial segments were fitted to two- and three-compartment models. Regional MBF was defined as the influx rate constant (K{sub 1}) with corrections for the partial volume effect, haematocrit and limited first-pass extraction fraction, and was compared with that determined from radio-labelled microspheres experiments. Regional time-activity curves responded well to pharmacological stress. Quantitative MBF values were higher with adenosine and decreased after beta-blocker compared to a resting condition. MBFs obtained with SPECT (MBF{sub SPECT}) correlated well with the MBF values obtained by the radio-labelled microspheres (MBF{sub MS}) (MBF{sub SPECT} = -0.067 + 1.042 x MBF{sub MS}, p < 0.001). The three-compartment model provided better fit than the two-compartment model, but the difference in MBF values between the two methods was small and could be accounted for with a simple linear regression. Absolute quantitation of regional MBF, for a wide physiological flow range, appears to be feasible using {sup 201}Tl and dynamic SPECT. (orig.)

  12. Quantitative assessment of cerebral blood flow by 123I-IMP SPECT

    International Nuclear Information System (INIS)

    Moriwaki, Hiroshi; Matsumoto, Masayasu; Hashikawa, Kazuo

    1993-01-01

    To establish a noninvasive, quantitative method for measuring regional cerebral blood flow (rCBF) by N-isopropyl-p-[ 123 I]iodoamphetamine ( 123 I-IMP) SPECT, we attempted to employ continuous venous sampling instead of arterial sampling. Forty two patients with cerebrovascular disease were classified into two groups, with (group II: n=35) and without (group I: n=7) hand warming. In group II, either hand was warmed, wrapping in a hot blanket (group IIA) or immersed in a 44degC water bath (group IIB). Immediately after intravenous bolus injection of 222 MBq IMP, arterial and venous blood samples were collected continuously for 5 min from the radial artery and the cubital vein, respectively. By octanol extraction, IMP was divided into the unmetabolized and metabolized fractions. The ratio of 123 I-IMP of venous blood to arterial blood (pass ratio, referred to as %PR) was calculated in the whole blood, unmetabolized, and metabolized fractions. Using these parameters, we assessed the possibility to estimate the amount of unmetabolized IMP fraction of arterial blood, usually used as an input function, from venous samples. In group I, %PR demonstrated a considerable variation between individuals (whole IMP, 47.5±24.6%; unmetabolized IMP, 46.0±24.5%; metabolized IMP, 51.8±27.4%). In group II, especially in group IIB, both increase of %PR value and the decrease in variation (whole, 77.9±5.6%; unmetabolized, 75.7±5.7%; metabolized, 86.7±8.7%) were observed, permitting the further calculation based on the assumption that %PR value was constant in each IMP fraction. The coefficient of variation of the difference between estimated arterial IMP radioactivity from venous samples and actual arterial IMP was 9.0% and 7.5%. The use of venous sampling coupled with a hand warming technique allowed the estimation of the arterial unmetabolized IMP radioactivity from venous samples with a reliability of 90% or more. (author)

  13. Effect of attenuation by the cranium on quantitative SPECT measurements of cerebral blood flow and a correction method

    International Nuclear Information System (INIS)

    Iwase, Mikio; Kurono, Kenji; Iida, Akihiko.

    1998-01-01

    Attenuation correction for cerebral blood flow SPECT image reconstruction is usually performed by considering the head as a whole to be equivalent to water, and the effects of differences in attenuation between subjects produced by the cranium have not been taken into account. We determined the differences in attenuation between subjects and assessed a method of correcting quantitative cerebral blood flow values. Attenuations by head on the right and left sides were measured before intravenous injection of 123 I-IMP, and water-converted diameters of both sides (Ta) were calculated from the measurements obtained. After acquiring SPECT images, attenuation correction was conducted according to the method of Sorenson, and images were reconstructed. The diameters of the right and left sides in the same position as the Ta (Tt) were calculated from the contours determined by threshold values. Using Ts given by 2 Ts=Ta-Tt, the correction factor λ=exp(μ 1 Ts) was calculated and multiplied as the correction factor when rCBF was determined. The results revealed significant differences between Tt and Ta. Although no gender differences were observed in Tt, they were seen in both Ta and Ts. Thus, interindividual differences in attenuation by the cranium were found to have an influence that cannot be ignored. Inter-subject correlation is needed to obtain accurate quantitative values. (author)

  14. Evaluation of left ventricular ejection fraction using quantitative gated SPECT (QGS)

    International Nuclear Information System (INIS)

    Musa, M. A. A.

    2010-07-01

    Electrocardiographic ally gated myocardial perfusion SPECT (G SPECT) is a state-of the art technique for the combined evaluation of myocardial perfusion and left ventricular function within a single study. It is currently one of the most commonly performed cardiology procedures in a nuclear medicine department. Automation of the image processing and quantification has made this techniques highly reproducible, practical and user friendly in the clinical setting . In patients with coronary artery disease, gating enhances the diagnostic and prognostic capability of myocardial perfusion imaging provides incremental information over the the perfusion data, and has shown potentials for myocardial viability assessment and sequential follow-up after therapy. Evaluation of the left ventricular (L V) function is important in clinical cardiology. Quantifying the degree and extent of the L V functional abnormalities permits a systematic assessment of the disease process on the myocardial performance. The aim of this thesis is to evaluate left ventricular ejection fraction (LVEF) in patients with no evidence of ischemic response during the stress test. This investigation was carried out in view of the few reports concerning the findings ventricular function with gated SPECT in these situations in the normal population, which is relevant when considering the possibility of myocardial stunning. Method: We prospectively studied 30 selected patients, in difference age and gender. A one-day protocol was used, with injection 555 MBq - 1.11 MBq (15 - 30 mCi) of 99 mTc-M1 B1 at stress and rest. Gated perfusion SPECT was acquired 30 to 60 minutes after radiotracer injection in both condition and processed using QGSPECT software. Difference between stress and rest LVEF was calculated. Result and conclusion: rest LVEF was higher in the stress (exercise) group, A trend line was done in both groups and r-value was (0.9) and p=0.04 in acceptance value. Standard deviation of LVEF also was

  15. Selection of the regions of interest (SRI) in the SPECT semi-quantitative analysis of central dopaminergic receptors

    International Nuclear Information System (INIS)

    Baulieu, J.L.; Prunier-Levilion, C.; Tranquart, F.; Ribeiro, M.J.; Chartier, J.R.; Guilloteau, D.; Autret, A.; Besnard, J.C.; Bekhechi, D.; Chossat, F.

    1997-01-01

    The aim of this work was to compare different types of SRIs used in the SPECT semi-quantitative analysis of central dopaminergic receptors. The SPECT with 123 I iodolisuride (Cis bio international) was carried out in the same center with a Helix - Elscint double head camera with 'fan beam', one hour after injection of 123 I iodolisuride (190 ± 31 MBq). In 8 patients afflicted with Parkinson's disease (group 1) and 9 patients presenting an extra-pyramidal syndrome by striatal stretching (group 2), two approaches of SRI tracing were undertaken: 1. Geometrical and standard (circles, ellipses, rectangles) SRIs; 2. Anatomical and individual SRIs based on TDM and perfusion scintigraphy. The SRIs were placed on the entire striatum, the head of cauda nucleus, putamen, thalamus, frontal, occipital cortex and cerebellum. In total, for each patient, 31 ratios were calculated of the striatal activity and the activity of a references zone. The discriminative value of the ratios was evaluated by the p value of comparison between groups 1 and 2. A correlation has been searched for between the ratios taken 2 by 2. The most discriminative ratios were: cauda/occipital, cauda/frontal, striatum/occipital based on geometrical standard SRIs (p 0.001, p = 0.002, p = 0.003, respectively). A close correlation has been found between the ratios with occipital and cerebellar references (r 2 0.71) but not between the ratios with frontal or occipital reference, or frontal and cerebellum reference. In the employed conditions, the geometrical tracing of the SRIs is preferable as against an anatomic tracing. The occipital cortex is the best reference while the frontal activity can not be retained as reference. The cauda/occipital ratios allow a very good discrimination between the Parkinson's disease and other extra pyramidal syndromes investigated by 123 I iodolisuride SPECT

  16. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    Science.gov (United States)

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  17. Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents

    International Nuclear Information System (INIS)

    He, Bin; Frey, Eric C

    2006-01-01

    Accurate quantification of organ radionuclide uptake is important for patient-specific dosimetry. The quantitative accuracy from conventional conjugate view methods is limited by overlap of projections from different organs and background activity, and attenuation and scatter. In this work, we propose and validate a quantitative planar (QPlanar) processing method based on maximum likelihood (ML) estimation of organ activities using 3D organ VOIs and a projector that models the image degrading effects. Both a physical phantom experiment and Monte Carlo simulation (MCS) studies were used to evaluate the new method. In these studies, the accuracies and precisions of organ activity estimates for the QPlanar method were compared with those from conventional planar (CPlanar) processing methods with various corrections for scatter, attenuation and organ overlap, and a quantitative SPECT (QSPECT) processing method. Experimental planar and SPECT projections and registered CT data from an RSD Torso phantom were obtained using a GE Millenium VH/Hawkeye system. The MCS data were obtained from the 3D NCAT phantom with organ activity distributions that modelled the uptake of 111 In ibritumomab tiuxetan. The simulations were performed using parameters appropriate for the same system used in the RSD torso phantom experiment. The organ activity estimates obtained from the CPlanar, QPlanar and QSPECT methods from both experiments were compared. From the results of the MCS experiment, even with ideal organ overlap correction and background subtraction, CPlanar methods provided limited quantitative accuracy. The QPlanar method with accurate modelling of the physical factors increased the quantitative accuracy at the cost of requiring estimates of the organ VOIs in 3D. The accuracy of QPlanar approached that of QSPECT, but required much less acquisition and computation time. Similar results were obtained from the physical phantom experiment. We conclude that the QPlanar method, based

  18. Quantitative evaluation of regional cerebral blood flow by visual stimulation in {sup 99m}Tc- HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Juh, Ra Hyeong; Suh, Tae Suk; Kwark, Chul Eun; Choe, Bo Young; Lee, Hyoung Koo; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo [College of Medicine, The Catholic Univ. of Seoul, Seoul (Korea, Republic of)

    2002-06-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '9{sup 9m}Tc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and {sup 99m}Tc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50{+-}5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

  19. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc-HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, R. H.; Suh, T. S.; Chung, Y. A.

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  20. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc- HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, Ra Hyeong; Suh, Tae Suk; Kwark, Chul Eun; Choe, Bo Young; Lee, Hyoung Koo; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '9 9m Tc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99m Tc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  1. Quantitative evaluation of regional cerebral blood flow by visual stimulation in {sup 99m}Tc-HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic Univ., of Korea, Seoul (Korea, Republic of)

    2002-07-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50{+-}5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

  2. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease

    International Nuclear Information System (INIS)

    Hsu, Bailing; Chen, Fu-Chung; Chen, Chien-Cheng; Wu, Tao-Cheng; Huang, Wen-Sheng; Hou, Po-Nien; Hung, Guang-Uei

    2014-01-01

    Conventional dual-head single photon emission computed tomography (SPECT)/CT systems capable of fast dynamic SPECT (DySPECT) imaging have a potential for flow quantitation. This study introduced a new method to quantify myocardial blood flow (MBF) and myocardial flow reserve (MFR) with DySPECT scan and evaluated the diagnostic performance of detecting coronary artery disease (CAD) compared with perfusion using invasive coronary angiography (CAG) as the reference standard. This study included 21 patients with suspected or known CAD who had received DySPECT, ECG-gated SPECT (GSPECT), and CAG (13 with ≥50 % stenosis in any vessel; non-CAD group: 8 with patent arteries or 99m Tc-sestamibi (MIBI) tracer at rest or dipyridamole-stress stages. DySPECT images were reconstructed with full physical corrections and converted to the physical unit of becquerels per milliliter. Stress MBF (SMBF), rest MBF (RMBF), and MFR were quantified by a one-tissue compartment flow model using time-activity curves derived from DySPECT images. Perfusion images were processed for GSPECT scan and interpreted to obtain summed stress score (SSS) and summed difference score (SDS). Receiver-operating characteristic (ROC) analyses were conducted to evaluate the diagnostic performance of flow and perfusion. Using the criteria of ≥50 % stenosis as positive CAD, areas under the ROC curve (AUCs) of flow assessment were overall significantly greater than those of perfusion. For patient-based analysis, AUCs for MFR, SMBF, SSS, and SDS were 0.91 ± 0.07, 0.86 ± 0.09, 0.64 ± 0.12, and 0.59 ± 0.13. For vessel-based analysis, AUCs for MFR, SMBF, SSS, and SDS were 0.81 ± 0.05, 0.76 ± 0.06, 0.62 ± 0.07, and 0.56 ± 0.08, respectively. The preliminary data suggest that MBF quantitation with a conventional SPECT/CT system and the flow quantitation method is a clinically effective approach to enhance CAD detection. (orig.)

  3. Usefulness of bone scintigraphic classification and quantitative evaluation of bone mineralization with X-CT and SPECT in renal osteodystrophy

    International Nuclear Information System (INIS)

    Okamura, Terue; Fukuda, Teruo; Inoue, Yuuichi; Koizumi, Yoshiko; Ikeda, Hozumi; Ochi, Hironobu

    1987-01-01

    1. Bone scintigraphy with Tc-99m-MDP was performed on 52 patients with chronic renal failure. These bone scintigrams were classified into 4 groups, each of which was correlated to laboratory data and quantitative data of bone mineralization. Group I (32 patients) showed high accumulation of Tc-99m-MDP in the bone. High level of Alk-Pase and c-PTH, low BMC/BW, low EMI number and high radionuclide activity ratio (RN ratio) were observed. Group II (9 patients) demonstrated nuclear bone images with high background activity. RN ratio was slightly higher than the normal. Group III (11 patients) showed extraosseous accumulation of Tc-99m-MDP in the lung, kidney or soft tissues. One patient belonged to Group I. High level of Ca x P product and slightly high RN ratio were observed. In both Group II and III, BMC/BW and EMI number were normal. Group IV (one patient) showed normal skeletal activity on bone scintigram. The mean duration of hemodialysis was the longest in Group I. Our scintigraphic classification is convenient and might contribute an understanding of patho-physiological bone changes in such patients. 2. Subtotal parathyroidectomy (S-PTX) was employed in 18 of 52 patients on chronic renal failure with secondary hyperparathyroidism. These patients were studied before and after S-PTX using 6 different procedures; conventional radiography, microdensitometry, bone mineral analysis, measurement of EMI number with X-CT (frontal bone), bone scintigraphy, and RN ratio (frontal bone/brain) with SPECT. On the bone scan, the diffuse increased activity in the calvarium became less prominent after S-PTX in all 18 patients. We devised a new method to quantify the bone changes revealed by the bone scan; the RN ratio with SPECT. The ratio decreased markedly after surgery. This method seems to be most useful for detecting dynamic bone changes sensitively and quantitatively. (author)

  4. Consideration of Normal Variation of Perfusion Measurements in the Quantitative Analysis of Myocardial Perfusion SPECT: Usefulness in Assessment of Viable Myocardium

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lim, Il Han; Kim, Ki Bong; Lee, Dong Soo

    2008-01-01

    Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F=28:27) of low-likelihood for coronary artery disease were enrolled and 201 Tl rest / 99m Tc-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. 201 Tl rest / 99m Tc-MIBI stress / 201 Tl 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, Q delay (perfusion measurement), Δ delay (Q delay .m) and Z delay ((Q delay .m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was 51.8±6.5 and the highest segmental perfusion was 87.0±5.9, and they are 58.7±8.1 and 87.3±6.0, respectively in women. In the viability assessment, Q delay showed AUC of 0.633, while those for Δ delay and Z delay were 0.735 and 0.716, respectively. The AUCs of Δ delay and Z delay were significantly higher than that of Q delay (p=0.001 and 0.018, respectively). The diagnostic performance of Δ delay , which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. On automatic

  5. Influence of magnification on the calculated value of left ventricular ejection fraction and volumes using quantitative gated perfusion SPECT

    International Nuclear Information System (INIS)

    Nunez, M.; Beretta, M.; Alonso, O.; Alvarez, B.; Canepa, J.; Mut, F.

    2002-01-01

    Aim: To compare left ventricular ejection fraction (LVEF), end-diastolic volumes (EDV) and end-systolic volumes (ESV) measured by quantitative gated SPECT (QGSPECT) in studies acquired with and without magnification factor (zoom). Material and Methods: We studied 30 consecutive patients (17 men, ages 61±14 years) referred for myocardial perfusion evaluation with a 2-day protocol. Studies were performed after injection of 925 MBq (25 mCi) of 99mTc-MIBI in the resting state. Gated SPECT was first acquired using a x2 zoom factor and immediately repeated with x1 zoom (no magnification), using a 64x64 matrix and 8 frames/cardiac cycle. Patients with arrhythmia were not included in the investigation. According to the median EDV calculated with the x2 zoom acquisition, the population was further divided in two sub-groups regarding the size of the LV cavity. Average LVEF, EDV, ESV and difference between values (delta) were then calculated for the total population and for each sub-group (a and b). Results: For the total population, results are expressed.Pearson correlation showed r=0.954 between LVEF with and without zoom (p<0.0001), but linear regression analysis did not fit a specific model (p=0.18). Median EDV with zoom was 92.5 ml, allowing to separate 15 cases with EDV above (a) and 15 below that value (b). Results for both sub-groups are presented. Conclusion: Calculated LVEF is higher with no zoom, at the expense of decreasing both EDV and ESV. Although differences were very significant for all parameters, ESV changes were specially relevant with no zoom, particularly in patients with smaller hearts. Although good correlation was found between LVEF with and without zoom, no specific correction factor was found to convert one value into the other. Magnification factor should be kept constant in gated SPECT if calculated LVEF values QGSPECT are expected to be reliable, and validation of the method using different zoom factors should be considered

  6. Interpretative intra- and interobserver reproducibility of Stress/Rest 99m Tc-steamboat's myocardial perfusion SPECT using semi quantitative 20-segment model

    International Nuclear Information System (INIS)

    Fazeli, M.; Firoozi, F.

    2002-01-01

    It well established that myocardial perfusion SPECT with 201 T L or 99 mTc-se sta mi bi play an important role diagnosis and risk assessment in patients with known or suspected coronary artery disease. Both quantitative and qualitative methods are available for interpretation of images. The use of a semi quantitative scoring system in which each of 20 segments is scored according to a five-point scheme provides an approach to interpretation that is more systematic and reproducible than simple qualitative evaluation. Only a limited number of studies have dealt with the interpretive observer reproducibility of 99 mTc-steamboat's myocardial perfusion imaging. The aim of this study was to assess the intra-and inter observer variability of semi quantitative SPECT performed with this technique. Among 789 patients that underwent myocardial perfusion SPECT during last year 80 patients finally need to coronary angiography as gold standard. In this group of patients a semi quantitative visual interpretation was carried out using short axis and vertical long-axis myocardial tomograms and a 20-segments model. These segments we reassigned on six evenly spaced regions in the apical, mid-ventricular, and basal short-axis view and two apical segments on the mid-ventricular long-axis slice. Uptake in each segment was graded on a 5-point scale (0=normal, 1=equivocal, 2=moderate, 3=severe, 4=absence of uptake). The steamboat's images was interpreted separately w ice by two observers without knowledge of each other's findings or results of angiography. A SPECT study was judged abnormal if there were two or more segments with a stress score equal or more than 2. We con eluded that semi-quantitative visual analysis is a simple and reproducible method of interpretation

  7. 4D-SPECT/CT in orthopaedics: a new method of combined quantitative volumetric 3D analysis of SPECT/CT tracer uptake and component position measurements in patients after total knee arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, Helmut; Falkowski, Anna L.; Forrer, Flavio [Kantonsspital Baselland, Institute for Radiology and Nuclear Medicine, Bruderholz (Switzerland); Henckel, Johann [Imperial College London, London (United Kingdom); Hirschmann, Michael T. [Kantonsspital Baselland, Department of Orthopaedic Surgery and Traumatology, Bruderholz (Switzerland)

    2013-09-15

    The purpose was to evaluate the intra- and inter-observer reliability of combined quantitative 3D-volumetric single-photon emission computed tomography (SPECT)/CT analysis including size, intensity and localisation of tracer uptake regions and total knee arthroplasty (TKA) position. Tc-99m-HDP-SPECT/CT of 100 knees after TKA were prospectively analysed. The anatomical areas represented by a previously validated localisation scheme were 3D-volumetrically analysed. The maximum intensity was recorded for each anatomical area. Ratios between the respective value and the mid-shaft of the femur as the reference were calculated. Femoral and tibial TKA position (varus-valgus, flexion-extension, internal rotation- external rotation) were determined on 3D-CT. Two consultant radiologists/nuclear medicine physicians interpreted the SPECT/CTs twice with a 2-week interval. The inter- and intra-observer reliability was determined (ICCs). Kappa values were calculated for the area with the highest tracer uptake between the observers. The measurements of tracer uptake intensity showed excellent inter- and intra-observer reliabilities for all regions (tibia, femur and patella). Only the tibial shaft area showed ICCs <0.89. The kappa values were almost perfect (0.856, p < 0.001; 95 % CI 0.778, 0.922). For measurements of the TKA position, there was strong agreement within and between the readings of the two observers; the ICCs for the orientation of TKA components for inter- and intra-observer reliability were nearly perfect (ICCs >0.84). This combined 3D-volumetric standardised method of analysing the location, size and the intensity of SPECT/CT tracer uptake regions (''hotspots'') and the determination of the TKA position was highly reliable and represents a novel promising approach to biomechanics. (orig.)

  8. Quantitative Assessment of Radioisotope Uptake in Condyles by SPECT Bone Scintigraphy

    Directory of Open Access Journals (Sweden)

    Z. Dalili

    2006-03-01

    Full Text Available Statement of problem: Condylar hyperplasia of the mandible is a self limiting abnormality which can cause facial asymmetry, temporomandibular joint (TMJdysfunction and esthetic problems. Treatment planning is based on the results of isotope scanning, clinical findings and patient age. Single photon emission tomography(SPECT is considered to be a sensitive method in the calculation of condylar uptake differences.Purpose: The aim of this study was to determine the growth activity occurring in the mandibular condyles, and to devise an index of side-to-side differences in condylar activity in different individuals.Material and Methods: 38 patients, with an age range of 13 to 34 years, undergoing skeletal scintigraphy for a variety of conditions, were chosen for this study. 25 mci TC-99 was injected to all subjects in order to assess the difference between right (Rt andleft (Lt condylar uptake percentage and to calculate the Lt to Rt condylar uptake ratio.The normal index was determined.Results: The maximum amount of difference between the uptake of Rt and Lt condyles was 6.2 percent (Lt side and Rt side were 53.1 % and 46.9 %, respectively in the male patients and 5.7 percent in the female patients (Lt side and Rt side were 52.85 % and 47.15 %, respectively. The condylar activity difference and ratio of Lt to Rt condylar uptakes did not show a significant difference between the male and female groups.Conclusion: The difference between the growth activity of RT and LT normal TMJs was less than 6.2 percent.

  9. Quantitative measurement of regional cerebral blood flow using {sup 99m}Tc-HM-PAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hisashi; Nakamura, Yusaku; Yagi, Yuji; Miura, Kosuke; Takahashi, Mitsuo [Kinki Univ., Osaka-Sayama, Osaka (Japan)

    1994-10-01

    This study examined a simple method for measuring the regional cerebral blood flow (rCBF) using {sup 99m}Tc-HM-PAO SPECT. The mean CBF (mCBF) was determined by the Patlack plot method and rCBF was calculated with Lassen`s correction algorithm, as reported by Matsuda et al. The cerebral hemisphere was employed as the reference region for Lassen`s correction. The reference RI count rate was calculated from the left cerebral hemisphere at the basal ganglia level and the correction factor {alpha} was fixed at 2.0. As a result, rCBF could be measured more easily than by Matsuda`s method. The contribution of age, laterality and gender to the CBF of normal subjects were studied. The mCBF value of 26 normal subjects was 53.8{+-}6.4 ml/100 g/min and showed a significant correlation with advancing age (R=0.644, p=0.0004, n=26). The mean values for rCBF of the cerebellum, frontal area, temporal area, occipital area and parietal area were 77.3{+-}6.6 ml/100 g/min, 70.2{+-}9.1 ml/100 g/min, 72.3{+-}7.5 ml/100 g/min, 71.8{+-}6.2 ml/100 g/min and 73.8{+-}8.6 ml/100 g/min, respectively. There were no gender or laterality differences in the mCBF or respective rCBF values. Each of the above listed regions, except for the occipital area, demonstrated a significant correlation with advancing age. The most remarkable decrease in rCBF with age was noted in the frontal area (R=0.757, p=0.001, n=26). (author).

  10. Quantitative gated SPECT: the effect of reconstruction filter on calculated left ventricular ejection fractions and volumes

    International Nuclear Information System (INIS)

    Wright, Graham A.; McDade, Mark; Martin, William; Hutton, William

    2002-01-01

    Gated SPECT (GSPECT) offers the possibility of obtaining additional functional information from perfusion studies, including calculation of left ventricular ejection fraction (LVEF). The calculation of LVEF relies upon the identification of the endocardial surface, which will be affected by the spatial resolution and statistical noise in the reconstructed images. The aim of this study was to compare LVEFs and ventricular volumes calculated from GSPECT using six reconstruction filters. GSPECT and radionuclide ventriculography (RNVG) were performed on 40 patients; filtered back projection was used to reconstruct the datasets with each filter. LVEFs and volumes were calculated using the Cedars-Sinai QGS package. The correlation coefficient between RNVG and GSPECT ranged from 0.81 to 0.86 with higher correlations for smoother filters. The narrowest prediction interval was 11±2%. There was a trend towards higher LVEF values with smoother filters, the ramp filter yielding LVEFs 2.55±3.10% (p<0.001) lower than the Hann filter. There was an overall fall in ventricular volumes with smoother filters with a mean difference of 13.98±10.15 ml (p<0.001) in EDV between the Butterworth-0.5 and Butterworth-0.3 filters. In conclusion, smoother reconstruction filters lead to lower volumes and higher ejection fractions with the QGS algorithm, with the Butterworth-0.4 filter giving the highest correlation with LVEFs from RNVG. Even if the optimal filter is chosen the uncertainty in the measured ejection fractions is still too great to be clinically acceptable. (author)

  11. Quantitative measurement of regional cerebral blood flow using 99mTc-HM-PAO SPECT

    International Nuclear Information System (INIS)

    Tanaka, Hisashi; Nakamura, Yusaku; Yagi, Yuji; Miura, Kosuke; Takahashi, Mitsuo

    1994-01-01

    This study examined a simple method for measuring the regional cerebral blood flow (rCBF) using 99m Tc-HM-PAO SPECT. The mean CBF (mCBF) was determined by the Patlack plot method and rCBF was calculated with Lassen's correction algorithm, as reported by Matsuda et al. The cerebral hemisphere was employed as the reference region for Lassen's correction. The reference RI count rate was calculated from the left cerebral hemisphere at the basal ganglia level and the correction factor α was fixed at 2.0. As a result, rCBF could be measured more easily than by Matsuda's method. The contribution of age, laterality and gender to the CBF of normal subjects were studied. The mCBF value of 26 normal subjects was 53.8±6.4 ml/100 g/min and showed a significant correlation with advancing age (R=0.644, p=0.0004, n=26). The mean values for rCBF of the cerebellum, frontal area, temporal area, occipital area and parietal area were 77.3±6.6 ml/100 g/min, 70.2±9.1 ml/100 g/min, 72.3±7.5 ml/100 g/min, 71.8±6.2 ml/100 g/min and 73.8±8.6 ml/100 g/min, respectively. There were no gender or laterality differences in the mCBF or respective rCBF values. Each of the above listed regions, except for the occipital area, demonstrated a significant correlation with advancing age. The most remarkable decrease in rCBF with age was noted in the frontal area (R=0.757, p=0.001, n=26). (author)

  12. Reproducibility of an automatic quantitation of regional myocardial wall motion and systolic thickening on gated Tc-99m-MIBI myocardial SPECT

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lee, Dong Soo; Cheon, Gi Jeong; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul

    2000-01-01

    The aim of this study is to investigate the reproducibility of the quantitative assessment of segmental wall motion and systolic thickening provided by an automatic quantitation algorithm. Tc-99m-MIBI gated myocardial SPECT with dipyridamole stress was performed in 31 patients with known or suspected coronary artery disease (4 with single, 6 with two, 11 with triple vessel disease; ejection fraction 51±14%) twice consecutively in the same position. Myocardium was divided into 20 segments. Segmental wall motion and systolic thickening were calculated and expressed in mm and % increase respectively, using AutoQUANT TM software. The reproducibility of this quantitative measurement of wall motion and thickening was tested. Correlations between repeated measurements on consecutive gated SPECT were excellent for wall motion (r=0.95) and systolic thickening (r=0.88). On Bland-Altman analysis, two standard deviation was 2 mm for repeated measurement of segmental wall motion, and 20% for that of systolic thickening. The weighted kappa values of repeated measurements were 0.807 for wall motion and 0.708 for systolic thickening. Sex, perfusion, or segmental location had no influence on reproducibility. Segmental wall motion and systolic thickening quantified using AutoQUANT TM software on gated myocardial SPECT offers good reproducibility and is significantly different when the change is more than 2 mm for wall motion and more than 20% for systolic thickening

  13. Evaluation of crossed cerebellar diaschisis in 30 patients with major cerebral artery occlusion by means of quantitative I-123 IMP SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Nobuhiko; Toyama, Keiji; Arbab, A.S.; Arai, Takao; Nukui, Hideaki [Yamanashi Medical Univ., Tamaho (Japan); Koizumi, Kiyoshi

    2001-12-01

    Quantitative crossed cerebellar diaschisis (CCD) and the correlation with a reduction in supratentorial regional cerebral blood flow (rCBF) and cerebrovascular reserve capacity (CVR) were investigated in clinically stable patients with major cerebral artery occlusion by the iodine-123-N-isopropyl-p-iodoamphetamine (I-123 IMP) single photon emission computed tomography (SPECT) method. Thirty patients with major cerebral artery occlusion underwent SPECT by the I-123 IMP autoradiographic method. Regional CBF was measured in the cerebral hemisphere, frontal and parietal lobes, temporo-parietal lobe, and cerebellum both at rest and after administration of acetazolamide. Eighteen of 30 patients (60%) had CCD. CCD was significantly related to magnetic resonance imaging evidence of infarction. Quantitative CCD was 17% and the CVR in the cerebellum was preserved in patients with CCD. There was a significant difference in CBF and CVR between the affected and normal sides in all regions of interest in the patients without CCD [CBF (ml/100 g/min): hemisphere (H), normal side (N): 31.4{+-}6.8, affected side (A): 27.5{+-}7.4; p<0.05. CVR: H, N: 0.56{+-}0.38, A: 0.42{+-}0.18; p<0.01]. CCD is common in patients with major cerebral artery occlusion, and quantitative I-123 IMP SPECT is helpful in detecting CCD in clinically stable patients with occlusion of major cerebral arteries. (author)

  14. Quantitative Analysis of Regional Cerebral Blood Flow using 99mTc-HMPAO SPECT in Parkinson's Disease

    International Nuclear Information System (INIS)

    Lee, Myung Chul; Bae, Sang Kyun; Chung, June Key; Koh, Chang Soon; Roh, Jae Kyu; Myung, Ho Jin; Lee, Myung Hae

    1992-01-01

    Regional cerebral blood flow were measured in 10 patients with Parkinson's disease and 12 normal persons using 99m Tc-HMPAO SPECT. Reconstructed images were interpreted qualitatively and were compared with those findings of CT. For the quantitative analysis, six pairs of region of interest matched with the perfusion territories of large cerebral arteries and cerebellar hemisphere were determined. From the count values, indices showing the degree of asymmetry between right and left cerebral or cerebellar hemisphere, cerebral asymmetry index (ASI) and percent index of cerebellar asymmetry (PIA), and an index showing change of each region, region to cerebellum ratio (RCR) were obtained. ASI of normal persons and patients were 0.082 ± 0.033 and 0.108 ± 0.062, respectively and PIA were -0.4 ± 0.7% and -0.7 ± 1.0%, respectively, which showed no statistically significant difference between normal persons and patients. Among 10 RCR's, those of both regions of basal ganglia and both regions of anterior cerebral artery were significantly reduced. We concluded that the most significant reduction of regional cerebral blood flow in patients with Parkinson's disease was observed in the regions of basal ganglia and in the regions of anterior cerebral artery, and the degree of change in hemispheric blood flow was similar in both hemisphere.

  15. Quantitative Analysis of Regional Cerebral Blood Flow using {sup 99m}Tc-HMPAO SPECT in Parkinson's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Chul; Bae, Sang Kyun; Chung, June Key; Koh, Chang Soon; Roh, Jae Kyu; Myung, Ho Jin [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Myung Hae [Asan Medical Center, Seoul (Korea, Republic of)

    1992-07-15

    Regional cerebral blood flow were measured in 10 patients with Parkinson's disease and 12 normal persons using {sup 99m}Tc-HMPAO SPECT. Reconstructed images were interpreted qualitatively and were compared with those findings of CT. For the quantitative analysis, six pairs of region of interest matched with the perfusion territories of large cerebral arteries and cerebellar hemisphere were determined. From the count values, indices showing the degree of asymmetry between right and left cerebral or cerebellar hemisphere, cerebral asymmetry index (ASI) and percent index of cerebellar asymmetry (PIA), and an index showing change of each region, region to cerebellum ratio (RCR) were obtained. ASI of normal persons and patients were 0.082 +- 0.033 and 0.108 +- 0.062, respectively and PIA were -0.4 +- 0.7% and -0.7 +- 1.0%, respectively, which showed no statistically significant difference between normal persons and patients. Among 10 RCR's, those of both regions of basal ganglia and both regions of anterior cerebral artery were significantly reduced. We concluded that the most significant reduction of regional cerebral blood flow in patients with Parkinson's disease was observed in the regions of basal ganglia and in the regions of anterior cerebral artery, and the degree of change in hemispheric blood flow was similar in both hemisphere.

  16. Semi-quantitative approach of tracer uptake abnormalities in myocardial SPECT: application to inferior defects

    International Nuclear Information System (INIS)

    Damien, J.; Bontemps, L.; Gabain, M.; Felecan, R.; Itti, R.

    1997-01-01

    This study was designed in order to evaluate in a more objective manner than visual inspection, the detection of myocardial inferior wall hypo-fixations in perfusion SPECT. We have studied 90 patients, divided into four groups: GO (7 M, 13 F, 55 ± 21 years) and G1 (9 M, 12 F, 49 ± 26 years) are groups of patients considered as normal; G2 (20 M, 3 F, 60 ± 12 years) corresponds to patients with reversible ischaemia, where the stress examination is abnormal but the resting one is close to normality; G3 (21 H, 5 F, 63 ± 8 years) includes infarcts where both examinations are definitely abnormal. Intra and inter-group statistical comparisons were first done using polar maps (Bull's eye) and an iterative method has then been developed for comparing each image of groups 1, 2 and to the mean normal data (GO). Finally, we have built a ROC (receiver operating characteristic) curves network for determining the best confidence interval and the optimal normality / abnormality criterion (number of pixels located without the confidence interval). The results are expressed in terms of sensitivity and specificity using the most favourable situation derived from the ROC curves. For 2.5 standard deviations, we obtain, for G2 (reversible injury) compared to G1, 78.3 % sensibility and 76.2 % for specificity at rest with at maximum 20 abnormal pixels as normality criterion, and at stress 81 % and 82.6 % for pixels. For G3 (permanent injury) compared to G1, the values are respectively : sensitivity = 88.5 % and specificity = 85.2 % at rest for 40 pixels; sensitivity = 92.3 % and specificity = 85.2 % at stress for 80 pixels. The method developed seems to be applicable on a wider scale, not only limited to inferior area abnormalities. It is able to optimise, for each situation, the confidence interval for an abnormal image definition and the most significant criterion, in terms of number of abnormal pixels, to detect a diseased myocardial area. (authors)

  17. Quantitation of stress/rest 201TI SPECT of the legs in the diagnosis of compartment-NT syndromes (CPS)

    International Nuclear Information System (INIS)

    Hayes, A.A.; Bower, G.D.; Pitstock, K.L.; Maguire, K.F.

    1998-01-01

    Full text: Compartment-NT syndrom (CPS) of the legs is considered to have an ischaemic basis related to muscle swelling and pressure increase in a muscle compartment (MC) during isotonic work. We decided to study selected patients where CPS was suspected with exercise 201 TI SPECT of the legs to better define their diagnoses. Eighteen patients with probable CPS reproduced their leg pain(s) during isotonic work, and 100 MBq of 201 TI was given i.v. during continued work and pain. Anterior 300 sec. planar and 360 degree, elliptical SPECT studies were acquired five minutes after stress and again four hours later. Quantitation of whole calf and regional MC uptake was attempted after the first five patients were assessed qualitatively. Ten patients were men and eight were women. The mean age was 30.8 y. Four had localised posterior and three had anterior pain with 11 having mixed and bilateral symptoms. Five patients had had a bone scan in the past and nine had MC pressure studies done within a month of study. Six patients had had previous decompressive surgery and seven patients had surgery after stress/rest studies. Four asymptomatic cardiac patients (''controls'') were imaged after their cardiac 201 TI studies and data used for comparison. Mean age of controls was 33 years. Generally even muscle uptake was seen on stress images with mean washout of 201 TI of 12% (7-23%) being calculated on delayed images of controls. Painful MCs with qualitative reduction in uptake after stress showed a mean increase in 201 TI of 25.7% (6-39%) on delayed imaging. Three patients with dramatic improvement in symptoms after surgery had shown a mean increase of 25.2% in delayed uptake in MCs on pre-operative studies. One patient showed washout of 11 and 15% from posterior MCs and had a poor response to subsequent surgery. Further clinical follow up in a large group of patients will be required to fully identify the place of Stress 201 TI imaging of the legs in this difficult group of

  18. Effectiveness of quantitative MAA SPECT/CT for the definition of vascularized hepatic volume and dosimetric approach: phantom validation and clinical preliminary results in patients with complex hepatic vascularization treated with yttrium-90-labeled microspheres.

    Science.gov (United States)

    Garin, Etienne; Lenoir, Laurence; Rolland, Yan; Laffont, Sophie; Pracht, Marc; Mesbah, Habiba; Porée, Philippe; Ardisson, Valérie; Bourguet, Patrick; Clement, Bruno; Boucher, Eveline

    2011-12-01

    The goal of this study was to assess the use of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) analysis for vascularized volume measurements in the use of the yttrium-90-radiolabeled microspheres (TheraSphere). A phantom study was conducted for the validation of SPECT/CT volume measurement. SPECT/CT quantitative analysis was used for the measurement of the volume of distribution of the albumin macroaggregates (MAA; i.e., the vascularized volume) in the liver and the tumor, and the total activity contained in the liver and the tumor in four consecutive patients presenting with a complex liver vascularization referred for a treatment with TheraSphere. SPECT/CT volume measurement proved to be accurate (mean error <7%) and reproducible (interobserver concordance 0.99). For eight treatments, in cases of complex hepatic vascularization, the hepatic volumes based on angiography and CT led to a relative overestimation or underestimation of the vascularized hepatic volume by 43.2 ± 32.7% (5-87%) compared with SPECT/CT analyses. The vascularized liver volume taken into account calculated from SPECT/CT data, instead of angiography and CT data, results in modifying the activity injected for three treatments of eight. Moreover, quantitative analysis of SPECT/CT allows us to calculate the absorbed dose in the tumor and in the healthy liver, leading to doubling of the injected activity for one treatment of eight. MAA SPECT/CT is accurate for volume measurements. It provides a valuable contribution to the therapeutic planning of patients presenting with complex hepatic vascularization, in particular for calculating the vascularized liver volume, the activity to be injected and the absorbed doses. Studies should be conducted to assess the role of quantitative MAA/SPECT CT in therapeutic planning.

  19. Comparison of two different segmentation methods on planar lung perfusion scan with reference to quantitative value on SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min Seok; Kang, Yeon Koo; Ha, Seung Gyun [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); and others

    2017-06-15

    Until now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients. Fifty-five lung cancer patients (male:female, 37:18; age, 67.8 ± 10.7 years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99 m macroaggregated albumin (Tc-99 m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1 s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted. The % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation. The PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction.

  20. Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer.

    Science.gov (United States)

    Brown, J Quincy; Vishwanath, Karthik; Palmer, Gregory M; Ramanujam, Nirmala

    2009-02-01

    Methods of optical spectroscopy that provide quantitative, physically or physiologically meaningful measures of tissue properties are an attractive tool for the study, diagnosis, prognosis, and treatment of various cancers. Recent development of methodologies to convert measured reflectance and fluorescence spectra from tissue to cancer-relevant parameters such as vascular volume, oxygenation, extracellular matrix extent, metabolic redox states, and cellular proliferation have significantly advanced the field of tissue optical spectroscopy. The number of publications reporting quantitative tissue spectroscopy results in the UV-visible wavelength range has increased sharply in the past three years, and includes new and emerging studies that correlate optically measured parameters with independent measures such as immunohistochemistry, which should aid in increased clinical acceptance of these technologies.

  1. Variability of left ventricular ejection fraction and volumes with quantitative gated SPECT: influence of algorithm, pixel size and reconstruction parameters in small and normal-sized hearts

    International Nuclear Information System (INIS)

    Hambye, Anne-Sophie; Vervaet, Ann; Dobbeleir, Andre

    2004-01-01

    Several software packages are commercially available for quantification of left ventricular ejection fraction (LVEF) and volumes from myocardial gated single-photon emission computed tomography (SPECT), all of which display a high reproducibility. However, their accuracy has been questioned in patients with a small heart. This study aimed to evaluate the performances of different software and the influence of modifications in acquisition or reconstruction parameters on LVEF and volume measurements, depending on the heart size. In 31 patients referred for gated SPECT, 64 2 and 128 2 matrix acquisitions were consecutively obtained. After reconstruction by filtered back-projection (Butterworth, 0.4, 0.5 or 0.6 cycles/cm cut-off, order 6), LVEF and volumes were computed with different software [three versions of Quantitative Gated SPECT (QGS), the Emory Cardiac Toolbox (ECT) and the Stanford University (SU-Segami) Medical School algorithm] and processing workstations. Depending upon their end-systolic volume (ESV), patients were classified into two groups: group I (ESV>30 ml, n=14) and group II (ESV 2 to 128 2 were associated with significantly larger volumes as well as lower LVEF values. Increasing the filter cut-off frequency had the same effect. With SU-Segami, a larger matrix was associated with larger end-diastolic volumes and smaller ESVs, resulting in a highly significant increase in LVEF. Increasing the filter sharpness, on the other hand, had no influence on LVEF though the measured volumes were significantly larger. (orig.)

  2. Evaluation of global and regional left ventricular function obtained by quantitative gated SPECT using {sup 99m}Tc-tetrofosmin for left ventricular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Kazunobu; Nakajima, Tohru; Iseki, Harukazu; Abe, Sumihisa; Handa, Shunnosuke; Suzuki, Yutaka [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    2000-08-01

    The quantitative gated SPECT (QGS) software is able to calculate LV volumes and visualize LV wall motion and perfusion throughout the cardiac cycle using an automatic edge detection algorithm of the left ventricle. We evaluated the reliability of global and regional LV function assessment derived from QGS by comparing it with the results from left ventriculo-cineangiography (LVG). In 20 patients with left ventricular dysfunction who underwent ECG gated {sup 99m}Tc-tetrofosmin SPECT, the end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were calculated. The QGS-assessed regional wall motion was determined using the cinematic display. QGS-derived EDV, ESV and LVEF correlated well with those by LVG (p<0.001 for each). There was a good correlation between wall motion score (WMS) derived from the QGS and the LVG (r=0.40, p<0.05). In some patients with extensive myocardial infarction, there was a discrepancy in the regional wall motion results between QGS and LVG. The ECG-gated SPECT using QGS is useful to evaluate global and regional LV functions in left ventricular dysfunction. (author)

  3. A new approach for quantitative evaluation of reconstruction algorithms in SPECT

    International Nuclear Information System (INIS)

    Raeisi, E.; Rajabi, H.; Aghamiri, S. M. R.

    2006-01-01

    In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems, and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire tomographic and planar image of the same structure. The planar image may be used as the reference image to evaluate the quality of reconstructed slices, using the companion software developed in MATLAB. Materials and Methods: The designed phantom was composed of 4 independent 2D slices that could have been placed juxtapose to the 3D phantom. Each slice was composed of objects of different size and shape (for example: circle, triangle, and rectangle). Each 2D slice was imaged at distances ranging from 0 to 15 cm from the collimator surface. The phantom in 3D configuration was imaged acquiring 128 views of 128*128 matrix size. Reconstruction was performed using different filtering condition and the reconstructed images were compared to the corresponding planar images. The modulation transfer function, scatter fraction and attenuation map were calculated for each reconstructed image. Results: Since all the parameters of the acquisition were identical for the 2D and the 3D imaging, it was assumed that the difference in the quality of the images has exclusively been due to the reconstruction condition. The planar images were assumed to be the most perfect images which could be obtained with the system. The comparison of the reconstructed slices with the corresponding planar images yielded the optimum reconstruction condition. The results clearly showed that Wiener filter yields superior quality image among the entire tested filters. The extent of the improvement has been quantified in terms of universal image quality index. Conclusion : The phantom and the accompanying software were evaluated and found to be quite useful in

  4. Assessment of viability by quantitative evaluation of 24h-redistribution in 201-thallium myocardial scintigraphy (SPECT): A comparative study versus clinical follow-up after revascularisation

    International Nuclear Information System (INIS)

    Stirner, H.; Spreng, M.; Picker, D.; Pfafferott, C.

    1992-01-01

    Results of regional quantitative assessment of 24h-redistribution in routinely performed Thallium myocardial scintigraphy (SPECT) were compared to findings of coronary angiography/ventriculography and/or echocardiography as well as clinical status 6 months after revascularisation in up to now 34 patients. In respect of positive and negative predictive values evaluation of 24h-redistribution behaves best (81/100%) compared to perfusion and 3h-redistribution alone. Performing an additional 24h-study gives a gain of at least 80% of diagnostic information. (orig.) [de

  5. Intravenous streptokinase therapy in acute myocardial infarction: Assessment of therapy effects by quantitative 201Tl myocardial imaging (including SPECT) and radionuclide ventriculography

    International Nuclear Information System (INIS)

    Koehn, H.; Bialonczyk, C.; Mostbeck, A.; Frohner, K.; Unger, G.; Steinbach, K.

    1984-01-01

    To evaluate a potential beneficial effect of systemic streptokinase therapy in acute myocardial infarction, 36 patients treated with streptokinase intravenously were assessed by radionuclide ventriculography and quantitative 201 Tl myocardial imaging (including SPECT) in comparison with 18 conventionally treated patients. Patients after thrombolysis had significantly higher EF, PFR, and PER as well as fewer wall motion abnormalities compared with controls. These differences were also observed in the subset of patients with anterior wall infarction (AMI), but not in patients with inferior wall infarction (IMI). Quantitative 201 Tl imaging demonstrated significantly smaller percent myocardial defects and fewer pathological stress segments in patients with thrombolysis compared with controls. The same differences were also found in both AMI and IMI patients. Our data suggest a favorable effect of intravenous streptokinase on recovery of left ventricular function and myocardial salvage. Radionuclide ventriculography and quantitative 201 Tl myocardial imaging seem to be reliable tools for objective assessment of therapy effects. (orig.)

  6. Quantitative angiographic anatomy of the renal arteries and adjacent aorta in the swine for preclinical studies of intravascular catheterization devices.

    Science.gov (United States)

    Sakaoka, Atsushi; Koshimizu, Masafumi; Nakamura, Shintaro; Matsumura, Kiyoshi

    2018-05-10

    Swine are the most common animal model in preclinical studies of cardiovascular devices. Because of the recent trend for development of new devices for percutaneous catheterization, especially for the renal arteries (RAs), we examined the quantitative anatomical dimensions of the RAs and adjacent aorta in swine. Angiographic images were analyzed in 66 female Yorkshire/Landrace crossbred swine. The diameter of both the right and left main RA was 5.4 ± 0.6 mm. The length of the right main RA was significantly longer than that of the left (29.8 ± 7.5 mm vs. 20.6 ± 5.4 mm, respectively; Pswine are an appropriate animal model for assessing the safety of, and determining optimal design of, catheter devices for RAs in simulated clinical use. However, there were species differences in the branching angle and adjacent aorta diameter, suggesting that swine models alone are inadequate to assess the delivery performance of catheter devices for RAs.

  7. Basic study for the purpose of developing a quantitative "6"7Ga-SPECT measurement method

    International Nuclear Information System (INIS)

    Nakanishi, Kensuke; Sakata, Reiki; Takaki, Akihiro; Ito, Shigeki; Nakasone, Yutaka; Kadota, Masataka

    2017-01-01

    "6"7Ga-single photon emission computed tomography (SPECT) images vary according to the imaging time and image display methods. The calculation of an index, such as the standardized uptake value used in positron emission tomography, from "6"7Ga-SPECT images would enable the accurate evaluation of the region of accumulation. The purpose of this study was to elucidate the conversion formula, the lower detection limit (LDL), and recovery coefficient (RC) for quantifying the radiation concentration in the "6"7Ga accumulation site. After chronologically obtaining SPECT/CT images at a radiation concentration of 1.0-442.4 kBq/mL with 27 bottles (diameter: 48 mm ,100 mL), the radiation concentration conversion formula was calculated using the successive approximation reconstruction method. The conversion coefficient was then calculated from the relationship between the count rate and the radiation concentration, and the LDL was determined. To compensate for the partial volume effect, the recovery curve was calculated using the mean SPECT count for six bottles (diameter: 9 ,18 , 29, 38, 48, and 94 mm). There was a linear relationship between the radiation concentration and the count rate with a good correlation (r=0.99). The LDL was 1.0 kBq/mL. The recovery curve reached a plateau at a diameter of at least 48 mm. The calculation of the absorbed dose index was possible using the radiation concentration conversion formula and the RC. (author)

  8. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    Science.gov (United States)

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results

    Science.gov (United States)

    Elschner, Cindy; Korn, Paula; Hauptstock, Maria; Schulz, Matthias C.; Range, Ursula; Jünger, Diana; Scheler, Ulrich

    2017-01-01

    One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of non-destructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume (biasHisto−MRI:Bone volume=2.40 %, p<0.005) and a clearly significant deviation for the remaining defect width (biasHisto−MRI:Defect width=−6.73 %, p≪0.005). But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally. PMID:28666026

  10. Quantitative cerebral blood flow assessment in senile dementia of Alzheimer type and multi-infarct dementia using sup 123 I-IMP SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Hisayuki; Hanyu, Haruo; Kobayashi, Yasutaka; Uno, Masanobu; Hatano, Nobuyoshi; Shin, Kouichi; Katsunuma, Hideyo; Suzuki, Takanari; Murayama, Hiroyasu [Tokyo Medical Coll. (Japan)

    1990-06-01

    In order to compare senile dementia of Alzheimer type (SDAT) with multi-infarct dementia (MID) from the standpoint of cerebral blood flow, a study was carried out by using single photon emission CT (SPECT) with N-isopropyl-p-({sup 123}I) iodoamphetamine on 14 healthy aged subjects, 12 patients with SDAT, 8 patients with MID and 7 patients with multiple infarction (MI). The diagnosis of SDAT, MID and MI was based on a clinical history, X-ray CT findings and Hachinski's ischemic score. Venous blood sampling method of Matsuda et al. was used as quantitative cerebral blood flow measurements. The mean cerebral blood flow (mCBF) values in controls was 52.1{plus minus}5.5 ml/100 g/min, while the corresponding values in SDAT, MI and MID were 36.9{plus minus}5.0, 41.0{plus minus}6.2, and 37.7{plus minus}4.3 ml/100 g/min. The regional cerebral blood flow (rCBF) was decreased mainly at bilateral frontal lobes in MID and at temporal and parietal lobes in SDAT. Verbal intelligence score (Hasegawa's dementia score) correlated with rCBF at frontal lobes in MID. These findings suggest that quantitative rCBF measurement by {sup 123}I-IMP SPECT is useful to differentiate MID from SDAT. (author).

  11. Brain SPECT

    International Nuclear Information System (INIS)

    Feistel, H.

    1991-01-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG) [de

  12. A quantitative study of brain perfusion patterns of 99mTc-ECD SPECT in children with developmental disabilities

    International Nuclear Information System (INIS)

    Hirano, Keiko; Aiba, Hideo; Oguro, Katsuhiko

    2004-01-01

    The aim of this study was to investigate the relationship between developmental disabilities and brain perfusion patterns. We performed technetium-99m-ethylcysteinate dimer ( 99m Tc-ECD) single photon emission computed tomography (SPECT) in 30 children with neurological disorders using the Patlak plot method. In children without developmental disabilities, the distribution of regional cortical perfusion evolved in relation to brain maturation. At one month of age, there was a predominant uptake in the perirolandic cortex. Radionuclide uptake in both the parietal and occipital cortices became evident by three months. Uptake in the temporal and frontal cortex increased by 6 and 11 months, respectively. Brain perfusion showed a pattern similar to that of adults by two years of age at the latest. In children with developmental disabilities, developmental changes of brain perfusion were delayed compared to normally developing children. Brain SPECT is a useful tool to assess the brain maturation in children with developmental disabilities. (author)

  13. Brain regions associated with cognitive impairment in patients with Parkinson disease: quantitative analysis of cerebral blood flow using 123I iodoamphetamine SPECT.

    Science.gov (United States)

    Hattori, Naoya; Yabe, Ichiro; Hirata, Kenji; Shiga, Tohru; Sakushima, Ken; Tsuji-Akimoto, Sachiko; Sasaki, Hidenao; Tamaki, Nagara

    2013-05-01

    Cognitive impairment is a representative neuropsychiatric presentation that accompanies Parkinson disease (PD). The purpose of this study was to localize the cerebral regions associated with cognitive impairment in patients with PD using quantitative SPECT. Thirty-two patients with PD (mean [SD] age, 75 [8] years; 25 women; Hoehn-Yahr scores from 2 to 5) underwent quantitative brain SPECT using 123I iodoamphetamine. Parametric images of regional cerebral blood flow (rCBF) were spatially normalized to the standard brain atlas. First, voxel-by-voxel comparison between patients with PD with versus without cognitive impairment was performed to visualize overall trend of regional differences. Next, the individual quantitative rCBF values were extracted in representative cortical regions using a standard region-of-interest template to compare the quantitative rCBF values. Patients with cognitive impairment showed trends of lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices in the voxel-by-voxel analyses. Region-of-interest-based analysis demonstrated significantly lower rCBF in the bilateral anterior cingulate cortices (right, 25.8 [5.5] vs 28.9 [5.7] mL per 100 g/min, P left, 25.8 [5.8] vs 29.1 [5.7] mL per 100 g/min, P left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices. The results suggested dysexecutive function as an underlining mechanism of cognitive impairment in patients with PD.

  14. Evaluation and comparison of quantitative and qualitative effects of scattering in air and water media in planar and SPECT imaging

    International Nuclear Information System (INIS)

    Saeed Sarkar; Akram Abehesht

    2004-01-01

    In this research the scatter fraction (%SF) in air and water media in both planar and tomographic imaging was evaluated in order to find the differences and assist the nuclear medicine specialists in interpreting the images.Two small Perspex cylinders of equal dimensions, diameter = 5 cm and height = 5 cm, with an angle of 1200 relative to each other was fixed at the bottom of a 22 cm diameter and 26 cm height Perspex cylinder to make a scattering phantom. One of the cylinders was filled with water representing soft tissue while the other one was left empty (air). The big cylinder was filled with water up to the upper level of small cylinders. 2.5 mCi of 99m Tc was mixed uniformly with the water in the big cylinder. Both planar and tomographic images of the phantom were obtained by a single head SPECT system with %20 energy windows. %SF is defined as %SF = (cold/hot) where, cold and hot are the number of counts in ROIs of each small cold cylinder and big hot cylinder respectively. ROIs selected around the image of each cylinder were equal to the exact size of the objects. In planar image the %SF was found to be %3.24±0.03 and % 3.23±0.03 in air and water respectively. On the other hand the %SF in SPECT images were %6.12±0.05 and %4.47±0.04 in air and water respectively. In planar image no difference is seen in %SF between small cylinders containing air and water whereas in SPECT image the %SF in air cylinder is %27 more than the water cylinder. This has caused more blurred edges for the image of air cylinder. Lower %SF in the small water cylinder may be caused by absorption of scattered events in the water medium. The %SF in SPECT is almost twice the planar imaging for water medium, whereas on the average the %SF in planar imaging is almost %60 of the SPECT. These differences account for better contrast and sharper edges of small cold cylinders in planar imaging. (authors)

  15. Preclinical properties and human in vivo assessment of 123 I-ABC577 as a novel SPECT agent for imaging amyloid-β

    Science.gov (United States)

    Okumura, Yuki; Kobayashi, Ryohei; Onishi, Takako; Shoyama, Yoshinari; Barret, Olivier; Alagille, David; Jennings, Danna; Marek, Kenneth; Seibyl, John; Tamagnan, Gilles; Tanaka, Akihiro; Shirakami, Yoshifumi

    2016-01-01

    Abstract Non-invasive imaging of amyloid-β in the brain, a hallmark of Alzheimer’s disease, may support earlier and more accurate diagnosis of the disease. In this study, we assessed the novel single photon emission computed tomography tracer 123 I-ABC577 as a potential imaging biomarker for amyloid-β in the brain. The radio-iodinated imidazopyridine derivative 123 I-ABC577 was designed as a candidate for a novel amyloid-β imaging agent. The binding affinity of 123 I-ABC577 for amyloid-β was evaluated by saturation binding assay and in vitro autoradiography using post-mortem Alzheimer’s disease brain tissue. Biodistribution experiments using normal rats were performed to evaluate the biokinetics of 123 I-ABC577. Furthermore, to validate 123 I-ABC577 as a biomarker for Alzheimer’s disease, we performed a clinical study to compare the brain uptake of 123 I-ABC577 in three patients with Alzheimer’s disease and three healthy control subjects. 123 I-ABC577 binding was quantified by use of the standardized uptake value ratio, which was calculated for the cortex using the cerebellum as a reference region. Standardized uptake value ratio images were visually scored as positive or negative. As a result, 123 I-ABC577 showed high binding affinity for amyloid-β and desirable pharmacokinetics in the preclinical studies. In the clinical study, 123 I-ABC577 was an effective marker for discriminating patients with Alzheimer’s disease from healthy control subjects based on visual images or the ratio of cortical-to-cerebellar binding. In patients with Alzheimer’s disease, 123 I-ABC577 demonstrated clear retention in cortical regions known to accumulate amyloid, such as the frontal cortex, temporal cortex, and posterior cingulate. In contrast, less, more diffuse, and non-specific uptake without localization to these key regions was observed in healthy controls. At 150 min after injection, the cortical standardized uptake value ratio increased by ∼60% in patients

  16. A newly developed maneuver, field change conversion (FCC), improved evaluation of the left ventricular volume more accurately on quantitative gated SPECT (QGS) analysis

    International Nuclear Information System (INIS)

    Tajima, Osamu; Shibasaki, Masaki; Hoshi, Toshiko; Imai, Kamon

    2002-01-01

    The purpose of this study was to investigate whether a newly developed maneuver that reduces the reconstruction area by a half more accurately evaluates left ventricular (LV) volume on quantitative gated SPECT (QGS) analysis. The subjects were 38 patients who underwent left ventricular angiography (LVG) followed by G-SPECT within 2 weeks. Acquisition was performed with a general purpose collimator and a 64 x 64 matrix. On QGS analysis, the field magnification was 34 cm in original image (Original: ORI), and furthermore it was changed from 34 cm to 17 cm to enlarge the re-constructed image (Field Change Conversion: FCC). End-diastolic volume (EDV) and end-systolic volume (ESV) of the left ventricle were also obtained using LVG. EDV was 71±19 ml, 83±20 ml and 98±23 ml for ORI, FCC and LVG, respectively (p<0.001: ORI versus LVG, p<0.001: ORI versus FCC, p<0.001: FCC versus LVG). ESV was 28±12 ml, 34±13 ml and 41±14 ml for ORI, FCC and LVG, respectively (p<0.001: ORI versus LVG, p<0.001: ORI versus FCC, p<0.001: FCC versus LVG). FCC was better than ORI for calculating LV volume in clinical cases. Furthermore, FCC is a useful method for accurately measuring the LV volume on QGS analysis. (author)

  17. Usefulness of quantitative determination of cerebral blood flow by 123I-IMP SPECT reference sample method in various cerebrovascular disorders

    International Nuclear Information System (INIS)

    Fukuda, Tadaharu; Hasegawa, Kouichi; Yamanaka, Shigehito; Hasue, Masamichi; Ohtubo, Yutaka; Wada, Atsushi; Nakanishi, Hisashi; Nakamura, Tatuya; Itou, Hiroshi.

    1992-01-01

    Cerebral blood flow (CBF) was quantitatively determined by N-isopropyl-p-[ 123 I] iodo-amphetamine (IMP) single photon emission computed tomography (SPECT) with a rotating gamma camera. A ZLC 7500 unit (SIEMENS Inc.) was used for emission CT, and a SCINTIPAK-2400 (Shimadzu Corp. Ltd.) for data processing. For the quantitative determination of CBF, arterial blood samples were collected for 5 minutes during the intravenous injection of 111 MBq of IMP, and a reference sample method corrected by time-activity curve was used. The determination was carried out in 90 patients with various cerebrovascular diseases and 5 normal volunteers. Mean cerebral blood flow (m-CBF) in the normal cases as determined by the above method was 42.4±6.0 (ml/100g/min). In patients with acute phase subarachnoid hemorrhage (SAH), severity on CT was marked in patients with intracerebral hematomas greater than 45 mm in diameter. Patients with non-hemorrhagic arteriovenous malfomation (AVM) whose nidi were 30 mm or more in diameter showed a decrease in CBF on the afferent side. This decrease was caused by a steal phenomenon affecting CBF around the AVM. The size of cerebral infarction on CT was closely correlated with the decrease in CBF, and CBF in patients with stenosis and obstruction of the main trunks was less than that in patients without them. CBF was increased by 10-20% in patients who underwent carotid endarterectomy or superior temporal artery-middle cerebral artery anastomosis for obstruction or stenosis of the internal carotid artery or the middle cerebral artery. The quantitative determination of CBF by IMP SPECT reference sample method was useful for evaluating the morbid condition and estimating the prognosis of cerebrovascular diseases, and evaluating the effects of therapy. (J.P.N.)

  18. A quantitative study of regional cerebral blood flow in childhood using {sup 123}I-IMP-SPECT. With emphasis on age-related changes

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Ayame; Kishi, Kazuko; Sejima, Hitoshi; Haneda, Noriyuki; Uchida, Nobue; Sugimura, Kazuro; Ito, Masatoshi; Shiraishi, Hideyuki [Shimane Medical Univ., Izumo (Japan)

    1996-11-01

    Single photon emission computed tomography (SPECT), using N-isopropyl-p-={sup 123}I= iodoamphetamine ({sup 123}I-IMP) was used for quantitative analysis of regional cerebral blood flow (rCBF) on 26 individuals between 0 and 19 years of age. The rCBF showed age-related changes; it was low in early infancy, increased in late infancy through early childhood, and decreased and remained constant after puberty. The rCBF through cerebral cortex varied more greatly than through thalamus and cerebellum, and seemed to depend more closely on age. In the case of 4 months of age rCBF was very low at the frontal region and was very high at the occipital region. In more older cases, rCBF in the cerebral cortex was higher than in the thalamus. In childhood, rCBF was very inconsistent and showed a great inter-individual variance. (author)

  19. A quantitative study of regional cerebral blood flow in childhood using 123I-IMP-SPECT. With emphasis on age-related changes

    International Nuclear Information System (INIS)

    Kobayashi, Ayame; Kishi, Kazuko; Sejima, Hitoshi; Haneda, Noriyuki; Uchida, Nobue; Sugimura, Kazuro; Ito, Masatoshi; Shiraishi, Hideyuki

    1996-01-01

    Single photon emission computed tomography (SPECT), using N-isopropyl-p-[ 123 I] iodoamphetamine ( 123 I-IMP) was used for quantitative analysis of regional cerebral blood flow (rCBF) on 26 individuals between 0 and 19 years of age. The rCBF showed age-related changes; it was low in early infancy, increased in late infancy through early childhood, and decreased and remained constant after puberty. The rCBF through cerebral cortex varied more greatly than through thalamus and cerebellum, and seemed to depend more closely on age. In the case of 4 months of age rCBF was very low at the frontal region and was very high at the occipital region. In more older cases, rCBF in the cerebral cortex was higher than in the thalamus. In childhood, rCBF was very inconsistent and showed a great inter-individual variance. (author)

  20. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging

    International Nuclear Information System (INIS)

    Rong Xing; Du Yong; Frey, Eric C

    2012-01-01

    Quantitative Yttrium-90 ( 90 Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of 90 Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for 90 Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as 90 Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In 90 Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative 90 Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were derived for

  1. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging.

    Science.gov (United States)

    Rong, Xing; Du, Yong; Frey, Eric C

    2012-06-21

    Quantitative Yttrium-90 ((90)Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of (90)Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for (90)Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as (90)Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In (90)Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative (90)Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were

  2. Assessment of cerebral hemodynamics before and after revascularization in patients with occlusive cerebrovascular disease by means of quantitative IMP-SPECT with double-injection protocol

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Makoto; Nishizawa, Sadahiko; Toyoda, Hiroshi; Shimono, Taro; Miyamoto, Susumu; Hashimoto, Nobuo; Konishi, Junji [Kyoto Univ. (Japan). Graduate School of Medicine

    2001-06-01

    The purpose of this study was to validate a double-injection (DI) method with N-isopropyl-[{sup 123}I]p-iodoamphetamine (IMP) to measure regional cerebral blood flow (rCBF) twice in a single session of dynamic SPECT and to elucidate a possible role of this method to identify patients with occlusive disease of major cerebral arteries, who might benefit from cerebral revascularization procedures (CR). Fourteen patients with occlusion or severe stenosis of the internal carotid or middle cerebral artery were studied before and after CR to assess hemodynamic changes after revascularization treatment. We quantitatively measured rCBF before and after acetazolamide (ACZ) challenge along with cerebrovascular reserve capacity (CVR) with two injections of IMP in a single session of dynamic SPECT scans (DI method). The reliability and reproducibility of the DI method were validated by means of a simulation study and in eight patients who were examined without ACZ challenge to measure baseline rCBF twice. The analysis of simulated noisy data with realistic noise levels showed that the errors of the estimates for the first and the second rCBF and for the increase in rCBF were 2.6%, 8.1% and 10.4%, respectively. In the 8 patients examined by the DI method to measure baseline rCBF twice, the mean and the SD of percentage differences between the two consecutive measurements in rCBF were -1.3% and 5.5%, respectively. Eight out of 14 patients with occlusive disease had at least one region with a CVR less than 10%. They showed a significant increase in resting rCBF after CR, not only in the ipsilateral hemisphere (from 26.1{+-}6.4 to 33.4{+-}4.7) but also in the contralateral one (from 28.3{+-}7.0 to 34.7{+-}4.7) with a recovery of the ipsilateral CVR from 9.3{+-}17.2 to 41.2{+-}20.1%. The remaining six patients with good-moderate CVR did not show an increase in rCBF after CR (from 28.0{+-}2.7 to 28.3{+-}3.4). The three of them with a moderate CVR (10-25%) before CR showed

  3. Noninvasive quantitative assessment of cerebral blood flow (CBF) using Tc-99m ECD SPECT with adjunctive radionuclide angiography in ischemic stroke

    International Nuclear Information System (INIS)

    Yim, Jun Sung; Choi, Yun Young; Kim, Seung Hyun; Kim, Myung Ho; Cho, Suk Shin

    1999-01-01

    Quantitative CBF measurements are essential for diagnosing ischemic lesion, evaluating the therapeutic effects and predicting the prognosis of cerebral ischemia. Even though several methods have been introduced, these techniques are too cumbersome and invasive to be applied to routine studies. In this study, a non-invasive simple method for the quantitative angiography. Fifteen normal controls and 27 patients with unilateral carotid ischemic stoke were selected. Brain perfusion index (BPI) of each hemisphere was measured in each subject by acquisition of serial radionuclide angiography after injection of 20mCi of Tc-99m ECD. With Lassen's correction algorithm of curve-linear relationship between the brain activity and blood flow, rCBF on transaxial SPECT slice corresponding with MRI lesion sites (ischemic core, border zone and contralateral mirror locus) were calculated. BPI values for normal controls showed a significant negative correlation with advantage age (r=-0.64, p=0.021) and hemisphric BPI were 11.02±1.6 and 7.8±1.4 for normal controls and patient, respectively. Significant differences were observed between two groups (p=0.0012). rCBF obtained from core zone (12±2.5 ml/100/min), boneder zone (29.2±8.1) and contralateral mirror locus (52.1±15.1) were clearly defined in each subject of patient group. Measurement of BPI and rCBF using Tc-99m ECD SPECT with adjunctive radionuclide angiography could be an useful, simple and non-invasive method in evaluation of the cerebral flood in the ischemic stroke

  4. Impact of endothelial dysfunction on left ventricular remodeling after successful primary coronary angioplasty for acute myocardial infarction. Analysis by quantitative ECG-gated SPECT

    International Nuclear Information System (INIS)

    Matsuo, Shinro; Nakae, Ichiro; Matsumoto, Tetsuya; Horie, Minoru

    2006-01-01

    We hypothesized that endothelial cell integrity in the risk area would influence left ventricular remodeling after acute myocardial infarction. Twenty patients (61±8 y.o.) with acute myocardial infarction underwent 99m Tc-tetrofosmin imaging in the sub-acute phase and three months after successful primary angioplasty due to myocardial infarction. All patients were administered angiotensin-converting enzyme inhibitor after revascularization. Cardiac scintigraphies with quantitative gated SPECT were performed at the sub-acute stage and again 3 months after revascularization to evaluate left ventricular (LV) remodeling. The left ventricular ejection fraction (EF) and end-systolic and end-diastolic volume (ESV, EDV) were determined using a quantitative gated SPECT (QGS) program. Three months after myocardial infarction, all patients underwent cardiac catheterization examination with coronary endothelial function testing. Bradykinin (BK) (0.2, 0.6, 2.0 μg/min) was administered via the left coronary artery in a stepwise manner. Coronary blood flow was evaluated by Doppler flow velocity measurement. Patients were divided into two groups by BK-response: a preserved endothelial function group (n=10) and endothelial dysfunction group (n=10). At baseline, both global function and LV systolic and diastolic volumes were similar in both groups. However, LV ejection fraction was significantly improved in the preserved-endothelial function group, compared with that in the endothelial dysfunction group (42±10% to 48±9%, versus 41±4% to 42±13%, p<0.05). LV volumes progressively increased in the endothelial dysfunction group compared to the preserved-endothelial function group (123±45 ml to 128±43 ml, versus 111±47 ml to 109±49 ml, p<0.05). In re-perfused acute myocardial infarction, endothelial function within the risk area plays an important role with left ventricular remodeling after myocardial infarction. (author)

  5. Iterative reconstruction or filtered backprojection for semi-quantitative assessment of dopamine D2 receptor SPECT studies?

    International Nuclear Information System (INIS)

    Koch, Walter; Suessmair, Christine; Tatsch, Klaus; Poepperl, Gabriele

    2011-01-01

    In routine clinical practice striatal dopamine D 2 receptor binding is generally assessed using data reconstructed by filtered backprojection (FBP). The aim of this study was to investigate the use of an iterative reconstruction algorithm (ordered subset expectation maximization, OSEM) and to assess whether it may provide comparable or even better results than those obtained by standard FBP. In 56 patients with parkinsonian syndromes, single photon emission computed tomography (SPECT) scans were acquired 2 h after i.v. application of 185 MBq [ 123 I]iodobenzamide (IBZM) using a triple-head gamma camera (Siemens MS 3). The scans were reconstructed both by FBP and OSEM (3 iterations, 8 subsets) and filtered using a Butterworth filter. After attenuation correction the studies were automatically fitted to a mean template with a corresponding 3-D volume of interest (VOI) map covering striatum (S), caudate (C), putamen (P) and several reference VOIs using BRASS software. Visual assessment of the fitted studies suggests a better separation between C and P in studies reconstructed by OSEM than FBP. Unspecific background activity appears more homogeneous after iterative reconstruction. The correlation shows a good accordance of dopamine receptor binding using FBP and OSEM (intra-class correlation coefficients S: 0.87; C: 0.88; P: 0.84). Receiver-operating characteristic (ROC) analyses show comparable diagnostic power of OSEM and FBP in the differentiation between idiopathic parkinsonian syndrome (IPS) and non-IPS. Iterative reconstruction of IBZM SPECT studies for assessment of the D 2 receptors is feasible in routine clinical practice. Close correlations between FBP and OSEM data suggest that iteratively reconstructed IBZM studies allow reliable quantification of dopamine receptor binding even though a gain in diagnostic power could not be demonstrated. (orig.)

  6. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  7. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  8. Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [123I]FP-CIT and a dedicated small animal SPECT

    International Nuclear Information System (INIS)

    Nikolaus, Susanne; Wirrwar, Andreas; Antke, Christina; Arkian, Shahram; Mueller, Hans-Wilhelm; Larisch, Rolf; Schramm, Nils

    2005-01-01

    The aim of this study was to investigate the feasibility of assessing dopamine transporter binding after treatment with methylphenidate in the rat using a recently developed high-resolution small animal single-photon emission computed tomograph (TierSPECT) and [ 123 I]FP-CIT. [ 123 I]FP-CIT was administered intravenously 1 h after intraperitoneal injection of methylphenidate (10 mg/kg) or vehicle. Animals underwent scanning 2 h after radioligand administration. The striatum was identified by superimposition of [ 123 I]FP-CIT scans with bone metabolism and perfusion scans obtained with 99m Tc-DPD and 99m Tc-tetrofosmin, respectively. As these tracers do not pass the blood-brain barrier, their distribution permits the identification of extracerebral anatomical landmarks such as the orbitae and the harderian glands. The cerebellum was identified by superimposing [ 123 I]FP-CIT scans with images of brain perfusion obtained with 99m Tc-HMPAO. Methylphenidate-treated animals and vehicle-treated animals yielded striatal equilibrium ratios (V '' 3 ) of 0.24±0.26 (mean ± SD) and 1.09±0.42, respectively (ttest, two-tailed, p '' 3 values amounted to 0.05±0.28 (methylphenidate) and 0.3±0.39 (saline, p=0.176). This first in vivo study of rat dopamine transporter binding after pre-treatment with methylphenidate showed a mean reduction of 78% in striatal [ 123 I]FP-CIT accumulation. The results can be interpreted in terms of a pharmacological blockade in the rat striatum and show that in vivo quantitation of dopamine transporter binding is feasible with [ 123 I]FP-CIT and the TierSPECT. This may be of future relevance for in vivo investigations on rat models of attention deficit/hyperactivity disorder. Furthermore, our findings suggest that investigations in other animal models, e.g. of Parkinson's and Huntington's disease, may be feasible using SPECT radioligands and small animal imaging systems. (orig.)

  9. Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [{sup 123}I]FP-CIT and a dedicated small animal SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus, Susanne; Wirrwar, Andreas; Antke, Christina; Arkian, Shahram; Mueller, Hans-Wilhelm; Larisch, Rolf [Heinrich-Heine University, Clinic of Nuclear Medicine, Duesseldorf (Germany); Schramm, Nils [Research Center Juelich, Central Laboratory for Electronics, Juelich (Germany)

    2005-03-01

    The aim of this study was to investigate the feasibility of assessing dopamine transporter binding after treatment with methylphenidate in the rat using a recently developed high-resolution small animal single-photon emission computed tomograph (TierSPECT) and [{sup 123}I]FP-CIT. [{sup 123}I]FP-CIT was administered intravenously 1 h after intraperitoneal injection of methylphenidate (10 mg/kg) or vehicle. Animals underwent scanning 2 h after radioligand administration. The striatum was identified by superimposition of [{sup 123}I]FP-CIT scans with bone metabolism and perfusion scans obtained with {sup 99m}Tc-DPD and {sup 99m}Tc-tetrofosmin, respectively. As these tracers do not pass the blood-brain barrier, their distribution permits the identification of extracerebral anatomical landmarks such as the orbitae and the harderian glands. The cerebellum was identified by superimposing [{sup 123}I]FP-CIT scans with images of brain perfusion obtained with {sup 99m}Tc-HMPAO. Methylphenidate-treated animals and vehicle-treated animals yielded striatal equilibrium ratios (V''{sub 3}) of 0.24{+-}0.26 (mean {+-} SD) and 1.09{+-}0.42, respectively (ttest, two-tailed, p<0.0001). Cortical V''{sub 3} values amounted to 0.05{+-}0.28 (methylphenidate) and 0.3{+-}0.39 (saline, p=0.176). This first in vivo study of rat dopamine transporter binding after pre-treatment with methylphenidate showed a mean reduction of 78% in striatal [{sup 123}I]FP-CIT accumulation. The results can be interpreted in terms of a pharmacological blockade in the rat striatum and show that in vivo quantitation of dopamine transporter binding is feasible with [{sup 123}I]FP-CIT and the TierSPECT. This may be of future relevance for in vivo investigations on rat models of attention deficit/hyperactivity disorder. Furthermore, our findings suggest that investigations in other animal models, e.g. of Parkinson's and Huntington's disease, may be feasible using SPECT radioligands and

  10. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Energy Technology Data Exchange (ETDEWEB)

    Golestani, Reza; Dierckx, Rudi A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Wu, Chao [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Tio, Rene A. [University Medical Center Groningen, Thorax Center, Department of Cardiology, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Zeebregts, Clark J. [University Medical Center Groningen, Department of Surgery, Division of Vascular Surgery, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Petrov, Artiom D. [University of California, Irvine, Division of Cardiology, School of Medicine, Irvine, California (United States); Beekman, Freek J. [University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Section Radiation Detection and Medical Imaging, Delft (Netherlands); MILabs, Utrecht (Netherlands); Boersma, Hendrikus H. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Department of Clinical and Hospital Pharmacy, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands)

    2010-09-15

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  11. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    International Nuclear Information System (INIS)

    Golestani, Reza; Dierckx, Rudi A.J.O.; Wu, Chao; Tio, Rene A.; Zeebregts, Clark J.; Petrov, Artiom D.; Beekman, Freek J.; Boersma, Hendrikus H.; Slart, Riemer H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  12. In vivo characteristics of IBZM in rat brains: an agent for quantitative SPECT imaging of dopamine D[sub 2] receptors; Preparation of [sup 125]I-IBZM and its biodistribution and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Kaname; Nakashima, Hiromichi; Nakagawa, Tsuyoshi [Mie Univ., Tsu (Japan). School of Medicine; Toyama, Hiroshi; Ichise, Masanori; Kurami, Miki; Maeda, Hisato; Takeuchi, Akira; Koga, Sukehiko

    1994-05-01

    [sup 123]I-(S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl) methyl]-benzamide (IBZM) is a CNS dopamine D[sub 2] receptor imaging agent for SPECT and has already been used clinically in the United States, Canada and Europe. However, methods of quantitative SPECT measurement of the D[sub 2] receptor density have not been well established. We performed in vivo biodistribution studies of [sup 125]I-IBZM in rat brains as the first step toward establishment of a basis for quantitative SPECT imaging of D[sub 2] receptors in humans. [sup 125]I-IBZM was prepared by the chloramine-T method. Radiochemical yields were 80 to 90% and radiochemical purity was 94.7% on day 81 after labeling. At 10, 30, 60 and 120 min after injection of the radiopharmaceutical, the percent uptakes (% dose/g) in the rat striatum were 2.9, 1.9, 1.7 and 1.0, respectively. These kinetic data were considered suitable for SPECT imagings. Pretreatment with haloperidol (1 mg/kg) blocked specific striatal uptake and there was a significant reduction in the uptake to 40.9% of the unblocked uptake at 60 min after injection (p=0.006). The regional IBZM uptake ratio of striatum-to-cerebellum increased steadily from 1.7 at 10 min to 5.7 at 120 min. This suggests that SPECT imaging must be done during fixed time after tracer injection for the semiquantitative ratio to be meaningful. (author).

  13. Clinical evaluation of SPECT in cerebrovascular disease

    International Nuclear Information System (INIS)

    Oshibuchi, Masao; Satoh, Mitsutaka; Kanda, Tetsuro; Nishi, Fumiaki; Yamane, Kanji; Fujimatsu, Masahiko; Edamitsu, Satoshi; Anno, Yasuro; Ohtake, Hisashi.

    1989-01-01

    In 131 patients with cerebrovascular disease, regional cerebral blood flow were determined by 123 I-IMP (N-isopropyl ( 123 I)-iodoamphetamine) or 99m Tc-HM-PAO ( 99m Tc (d, 1)-hexamethyl propyleneamine oxime) SPECT and findings were compared with those of X-CT or MRI. The perfusion deficit detected by SPECT was larger than the deficit by X-CT or MRI in every case. The perfusion deficit area was more clearly demonstrated by SPECT than by X-CT or MRI in patients with acute cerebral infarction. The hypoperfusion area determined by 123 I-IMP SPECT was wider than that by 99m Tc-HM-PAO SPECT. The crossed cerebellar diaschisis was observed in 56 out of 131 cases (43%). The results of operation were quantitatively evaluated by 123 I-IMP SPECT in 25 patients. (author)

  14. A quantitative analysis of statistical power identifies obesity end points for improved in vivo preclinical study design.

    Science.gov (United States)

    Selimkhanov, J; Thompson, W C; Guo, J; Hall, K D; Musante, C J

    2017-08-01

    The design of well-powered in vivo preclinical studies is a key element in building the knowledge of disease physiology for the purpose of identifying and effectively testing potential antiobesity drug targets. However, as a result of the complexity of the obese phenotype, there is limited understanding of the variability within and between study animals of macroscopic end points such as food intake and body composition. This, combined with limitations inherent in the measurement of certain end points, presents challenges to study design that can have significant consequences for an antiobesity program. Here, we analyze a large, longitudinal study of mouse food intake and body composition during diet perturbation to quantify the variability and interaction of the key metabolic end points. To demonstrate how conclusions can change as a function of study size, we show that a simulated preclinical study properly powered for one end point may lead to false conclusions based on secondary end points. We then propose the guidelines for end point selection and study size estimation under different conditions to facilitate proper power calculation for a more successful in vivo study design.

  15. Study of a simple method and software for quantitative measurement of rCBF with 99Tcm-ECD SPECT brain imaging

    International Nuclear Information System (INIS)

    Shu Boxue; Lai Huaan; Li Zhigang; Shi An

    2000-01-01

    Objective: To create a simple, practical, stable and easy to popularize rCBF quantitative measurement method. Methods: 1) Creating attenuation correction factor (δ) of brain; 2) Proving a factor (ρ) between planar image and tomographic image; 3) Creating SPECT system to determine the dead time and to correct linear regression equation; 4) Measuring lung retardation rate (R 1 ); 5) Improving Nickel model and editing the software; 6) Clinical application; The modified method was performed in 24 subjects, including 15 healthy controls, 8 patients with epilepsy in intermission and 1 patient with brain infarction. Results: δ = 1.7, ρ = 2.23, R 1 -1 ·100 g -1 . The rCBFs of foci in 8 cases of epilepsy were obviously decreased, (22.5∼34.2) mL·min -1 ·100 g -1 , and in the case of brain infarction was only 7.2 mL·min -1 ·100 g -1 . Conclusions: The method is reliable, practical and easy to perform with good quality control. Overall, it is of high clinical value

  16. Assessment of global and regional LV function obtained by quantitative gated SPECT using {sup 99m}Tc-tetrofosmin. Comparison with left ventricular cineangiography and echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Kazunobu; Nakajima, Toru; Aoki, Naoto; Abe, Sumihisa; Handa, Shunnosuke; Suzuki, Yutaka [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    1998-11-01

    The quantitative gated SPECT (QGS) software that has automatic edge detection algorithm of the left ventricle, is able to calculate LV volumes and visualize LV wall motion with perfusion throughout the cardiac cycle. We evaluated the reliability of global and regional LV function derived from QGS using {sup 99m}Tc-tetrofosmin by comparing with left ventricular cineangiography (LVG) and echocardiography (ECHO). In 22 cardiac patients, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were calculated. Using cinematic display, regional LV wall motion were scored on a 3-point scale (1=normal, 2=hypokinesis, 3=akinesis; WMS). EDV, ESV and LVEF correlated well with those by LVG (p<0.001 for each). Correlation between WMS derived from QGS and ECHO was high (r=0.85, p<0.001). There was an inverse correlation between WMS and LVEF (r=0.77, p<0.001). In conclusion, QGS is useful to evaluate global LV function. Regional wall motion evaluated by QGS is good enough for clinical application. (author)

  17. Quantitative comparison of dobutamine and exercise stress 99mTc-MIBI myocardial SPECT in diagnosis of coronary artery disease

    International Nuclear Information System (INIS)

    Wu, H.; Liu, H.C.

    2002-01-01

    Aim: To compare the value of dobutamine and exercise stress 99m Tc-MIBI myocardial imaging in diagnosis of coronary heart disease (CHD). Material and Methods: The subjects included twenty-one patients, in whom 18 were suspected with CHD and 3 were clinically diagnosed with myocardial infarction. The final diagnosis in all patients was confirmed by coronary angiography. Both dobutamine stress (DOB-ST) and bicycle exercise stress (EX-ST) 99m Tc-MIBI myocardial perfusion SPECT were undertaken in every patient. The two stress imaging in one patient were performed within three days. Results: Twenty-four vessels in fourteen patients were diagnosed with coronary artery disease. There were no significant difference between DOB-ST and EX-ST in overall sensitivity (92.8% vs 92.8%), specificity (71.4 vs 85.7%), positive predictive value (86.7% vs 92.9%) and negative predictive value (83.3 vs 85.7%). There were also no significant difference in the sensitivity and specificity for detecting single or multiple vessel disease and for detecting specified vessel lesions (LDA, RCA, LCX). However, in 69 segments which related to the diseased vessels DOB-ST revealed 47 ischemic segments and EX-ST found 30 ischemic segments (P<0.05). The ischemic size which was expressed by the percentage of black-out area in polar map were bigger in DOB-ST image than that in EX-ST image (22.8±11.4% vs 17.5±12.3%, P<0.01) and, average radioactivity uptake ratio of ischemic region in DOB-ST image was lower than that in EX-ST image (43.2±13.8% vs 57.4±14.6%, P<0.01). Conclusion: DOB-ST demonstrated similar diagnostic efficacy to EX-ST in detecting coronary artery disease, thus it may be a feasible intervention for myocardial perfusion imaging. Whether DOB-ST is more sensitive to detect mild ischemia than EX-ST remains to be further investigated

  18. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods

    Science.gov (United States)

    He, Bin; Frey, Eric C.

    2010-06-01

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were

  19. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods

    Energy Technology Data Exchange (ETDEWEB)

    He Bin [Division of Nuclear Medicine, Department of Radiology, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, NY 10021 (United States); Frey, Eric C, E-mail: bih2006@med.cornell.ed, E-mail: efrey1@jhmi.ed [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287-0859 (United States)

    2010-06-21

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed {sup 111}In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations

  20. Organ volume estimation using SPECT

    CERN Document Server

    Zaidi, H

    1996-01-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang's algorithm. The dual-window method was used for scatter subtraction. We used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of 1) fixed thresholding, 2) automatic thresholding, 3) attenuation, 4) scatter, and 5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are perform...

  1. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  2. Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection

    Science.gov (United States)

    Sibai, Mira; Fisher, Carl; Veilleux, Israel; Elliott, Jonathan T.; Leblond, Frederic; Roberts, David W.; Wilson, Brian C.

    2017-07-01

    5-Aminolevelunic acid-induced protoporphyrin IX (PpIX) fluorescence-guided resection (FGR) enables maximum safe resection of glioma by providing real-time tumor contrast. However, the subjective visual assessment and the variable intrinsic optical attenuation of tissue limit this technique to reliably delineating only high-grade tumors that display strong fluorescence. We have previously shown, using a fiber-optic probe, that quantitative assessment using noninvasive point spectroscopic measurements of the absolute PpIX concentration in tissue further improves the accuracy of FGR, extending it to surgically curable low-grade glioma. More recently, we have shown that implementing spatial frequency domain imaging with a fluorescent-light transport model enables recovery of two-dimensional images of [PpIX], alleviating the need for time-consuming point sampling of the brain surface. We present first results of this technique modified for in vivo imaging on an RG2 rat brain tumor model. Despite the moderate errors in retrieving the absorption and reduced scattering coefficients in the subdiffusive regime of 14% and 19%, respectively, the recovered [PpIX] maps agree within 10% of the point [PpIX] values measured by the fiber-optic probe, validating its potential as an extension or an alternative to point sampling during glioma resection.

  3. Quantitative assessment of the infarct size with the unfolded map method of sup 201 Tl myocardial SPECT in patient with acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Masahiro (Sapporo Medical Coll. (Japan))

    1992-03-01

    The unfolded map method of {sup 201}Tl single photon emission computed tomography (SPECT) was evaluated as to the ability to quantify and the clinical reliability in estimation of infarct size. The following results were obtained from basic experiments using a thoracic phantom. The defect area estimated by the unfolded map method was well correlated with the real defect area, in spite of overestimation of the defect area, when the defect area was determined by an isocount method (below 80% of maximum count) (y=1.941 + 2.292x, r=0.971). The defect volume estimated by short-axis images of {sup 201}Tl SPECT was closely correlated with real defect volume in spite of overestimation of defect volume (y=0.762 + 2.156x, r=0.982). When the defect area was estimated by division of the defect volume by the mean myocardial compartment thickness, it was closely correlated with real defect area (y=0.946 + 1.232x, r=0.990). When the volume was calculated from the summation of voxels in the regions districted by isocount threshold level at each section of the {sup 99m}Tc SPECT, the optimal isocount threshold level (percentage to maximum count) was 55%. Then, the clinical reliability of the unfolded map method as infarct sizing was evaluated in 26 patients with acute myocardial infarction by comparing it with enzymatic method, Bull's eye method, and {sup 99m}Tc pyrophosphate (PYP) SPECT method. In 14 first attack patients without right ventricular infarction, infarct area (IA) of the unfolded map method correlated most closely with the accumulated creatine kinase MB isoenzyme release (CK-MBr) (r=0.897), compared with the extent score (ES) (r=0.853) and the severity score (SS) (r=0.871) of Bull's eye method and the infarct volume (IV) (r=0.595) of {sup 99m}Tc PYP SPECT. In conclusion, although the unfolded map method of {sup 201}Tl SPECT has the tendency for overestimating infarct size, it is accurate and clinically reliable in estimating infarct size. (author).

  4. Attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Hosoba, Minoru

    1986-01-01

    Attenuation correction is required for the reconstruction of a quantitative SPECT image. A new method for detecting body contours, which are important for the correction of tissue attenuation, is presented. The effect of body contours, detected by the newly developed method, on the reconstructed images was evaluated using various techniques for attenuation correction. The count rates in the specified region of interest in the phantom image by the Radial Post Correction (RPC) method, the Weighted Back Projection (WBP) method, Chang's method were strongly affected by the accuracy of the contours, as compared to those by Sorenson's method. To evaluate the effect of non-uniform attenuators on the cardiac SPECT, computer simulation experiments were performed using two types of models, the uniform attenuator model (UAM) and the non-uniform attenuator model (NUAM). The RPC method showed the lowest relative percent error (%ERROR) in UAM (11 %). However, 20 to 30 percent increase in %ERROR was observed for NUAM reconstructed with the RPC, WBP, and Chang's methods. Introducing an average attenuation coefficient (0.12/cm for Tc-99m and 0.14/cm for Tl-201) in the RPC method decreased %ERROR to the levels for UAM. Finally, a comparison between images, which were obtained by 180 deg and 360 deg scans and reconstructed from the RPC method, showed that the degree of the distortion of the contour of the simulated ventricles in the 180 deg scan was 15 % higher than that in the 360 deg scan. (Namekawa, K.)

  5. SPECT assay of radiolabeled monoclonal antibodies

    International Nuclear Information System (INIS)

    Jaszczak, R.J.

    1992-02-01

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ( 123 I, 131 I, and 111 In) and with another radionuclide, 211 At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for 111 In and 123 I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches

  6. Regional cerebral blood flow in children with autism spectrum disorders: a quantitative 99mTc-ECD brain SPECT study with statistical parametric mapping evaluation

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-han; JING Jin; XIU Li-juan; CHENG Mu-hua; WANG Xin; BAO Peng; WANG Qing-xiong

    2011-01-01

    Background Autism spectrum disorders (ASD), which include autism, asperger syndrome (AS) and pervasive developmental disorder-not otherwise specified (PDD-NOS), are devastating neurodevelopmental disorders of childhood resulting in deficits in social interaction, repetitive patterns of behaviors, and restricted interests and activities. Single photon emission computed tomography (SPECT) is a common technique used to measure regional cerebral blood flow (rCBF). Several studies have measured rCBF in children with ASD using SPECT, however, findings are discordant. In addition, the majority of subjects used in these studies were autistic. In this study, we aimed to investigate changes in rCBF in children with ASD using SPECT.Methods A Technetium-99m-ethyl cysteinate dimmer (99mTc-ECD) brain SPECT study was performed on an ASD group consisting of 23 children (3 girls and 20 boys; mean age (7.2±3.0) years) who were diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-Ⅳ) criteria and an age-matched control group with 8children (1 girl and 7 boys, mean age (5.5±2.4) years). Image data were evaluated with Statistical Parametric Mapping,5th version (SPM5). A Student's t test for unpaired data was used to compare rCBF and asymmetry in the autism and corresponding control group. The covariance analysis, taking age as covariance, was performed between the ASD and control group.Results There was a significant reduction in rCBF in the bilateral frontal lobe (frontal poles, arcula frontal gyrus) and the bilateral basal ganglia in the autism group, and a reduction in the bilateral frontal, temporal, parietal, legumina nucleus and cerebellum in the AS group compared to the control. In addition, asymmetry of hemispheric hypoperfusion in the ASD group was observed. Inner-group comparison analysis revealed that rCBF decreased significantly in the bilateral frontal lobe (42.7%), basal nucleus (24.9%) and temporal lobe (22.8%) in the autism

  7. Brain SPECT. SPECT in der Gehirndiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Feistel, H. (Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik)

    1991-12-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG).

  8. Labeled receptor ligands for spect

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Receptor specific imaging agents for single photon emission computed tomography (SPECT) can potentially be useful in the understanding of basic biochemistry and pharmacology of receptors. SPECT images may also provide tools for evaluation of density and binding kinetics of a specific receptor, information important for diagnosis and patient management. Basic requirements for receptor imaging agents are: (a) they are labeled with short-lived isotopes, (b) they show high selectivity and specific uptake, (c) they exhibit high target/background ratio, and (d) they can be modeled to obtain quantitative information. Several good examples of CNS receptor specific ligands labeled with I-123 have been developed, including iodoQNB, iodoestrogen iodobenzadiazepine, iodobenazepine, iodobenzamides for muscarinic, estrogen benzadiazepine, D-1 and D-2 dopamine receptors. With the advent of newer and faster SPECT imaging devices, it may be feasible to quantitate the receptor density by in vivo imaging techniques. These new brain imaging agents can provide unique diagnostic information, which may not be available through other imaging modalities, such as CT and MRI

  9. SPECT in psychiatry. SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  10. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young; Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung

    2002-01-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0±2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3±4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group

  11. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young [Ajou University School of Medicine, Suwon (Korea, Republic of); Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0{+-}2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3{+-}4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group.

  12. Quantitation of specific binding ratio in 123I-FP-CIT SPECT: accurate processing strategy for cerebral ventricular enlargement with use of 3D-striatal digital brain phantom.

    Science.gov (United States)

    Furuta, Akihiro; Onishi, Hideo; Amijima, Hizuru

    2018-06-01

    This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of 123 I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digital brain (SDB) phantom. Ventricular enlargement was simulated by three-dimensional extensions in a 3D-SDB phantom comprising segments representing the striatum, ventricle, brain parenchyma, and skull bone. The Evans Index (EI) was measured in 3D-SDB phantom images of an enlarged ventricle. Projection data sets were generated from the 3D-SDB phantoms with blurring, scatter, and attenuation. Images were reconstructed using the ordered subset expectation maximization (OSEM) algorithm and corrected for attenuation, scatter, and resolution recovery. We bundled DaTView (Southampton method) with the CSF-Mask processing software for SBR. We assessed SBR with the use of various coefficients (f factor) of the CSF-Mask. Specific binding ratios of 1, 2, 3, 4, and 5 corresponded to SDB phantom simulations with true values. Measured SBRs > 50% that were underestimated with EI increased compared with the true SBR and this trend was outstanding at low SBR. The CSF-Mask improved 20% underestimates and brought the measured SBR closer to the true values at an f factor of 1.0 despite an increase in EI. We connected the linear regression function (y = - 3.53x + 1.95; r = 0.95) with the EI and f factor using root-mean-square error. Processing with CSF-Mask generates accurate quantitative SBR from dopamine transporter SPECT images of patients with ventricular enlargement.

  13. The effect of selective intraarterial infusion of the anticancer agents on cerebral hemodynamics: Concerned with the change of CBF in the non-tumoral tissue. Quantitative evaluation using 123-IMP-SPECT

    International Nuclear Information System (INIS)

    Hirano, Hiroko; Tomura, Noriaki; Kobayashi, Mitsuru; Ohyama, Yoichi; Watarai, Jiro

    1996-01-01

    The effect of intraarterial chemotherapy on cerebral blood flow (CBF) of patients with brain tumor was quantitatively studied by means of single photon emission computed tomography (SPECT). The subjects consisted of twenty patients with brain tumor (2 fibrillary astrocytoma grade II, 9 malignant astrocytoma grade III, 7 glioblastoma grade IV, 1 pineoblastoma grade IV and 1 malignant glioma). In twenty patients, twenty-four intraarterial infusions (IAs) were performed. IA chemotherapy was selectively performed through the Tracker-18 catheter, using nimustine (ACNU) in 22 infusions and tumor necrotizing factor-α (TNF) in 2 infusions. CBF was quantitatively measured by Kuhl's method, using N-isopropyl-p= 123 I=-iodoamphetamine (IMP). All patients underwent a baseline SPECT scan 1-10 days prior to IA chemotherapy, and a scan 1-22 days after IA. The change of CBF before and after IA, particularly in the non-tumoral tissue, was highlighted. CBF in the infused region as well as in the non-infused region variously changed after IA. The mean CBF of the whole brain before IA was 47.8±11.9 (mean±SD, n=24) ml/100 ml/min and than after IA was 49.3±12.4. CBF in the infused region changed (-17-+52%) after IA chemotherapy. In 12 patients whose CBF measurement was performed within 5 days after IA, CBF increased in 6 patients compared with that measured before IA. In 3 patients whose CBF measurement was performed more than 10 days after IA, CBF decreased in all of patients. This result suggested that the increase of CBF may possibly be an early change after IA chemotherapy, and that an augmented cellular metabolism and/or acute inflammatory reaction may explain this early change after IA chemotherapy. (author)

  14. PET and SPECT of neurobiological systems

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Gent Univ. (Belgium). Dept. of Nuclear Medicine; Otte, Andreas [Univ. of Applied Sciences, Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-04-01

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  15. Brain SPECT in psychiatry: Delusion or reality?

    International Nuclear Information System (INIS)

    Pavel, D.G.; Davis, G.; Epstein, P.; Kohn, R.; Antonino, F.; Devore-Best, S.; Craita, I.; Liu, P.

    2002-01-01

    temporals. The cataloging of the various shape and magnitude increases and/or decreases in any of these areas for any given patient has often provided definite guidance about the drug (s) of choice and, most importantly, about the sequencing of medication. A follow-up SPECT has proven especially important in the confirmation/prognosis of dementia-s. Conclusion: provided high resolution Brain SPECT is properly performed and a multiparametric and semi-quantitative color display is used, brain SPECT in Psychiatry is a reality not a delusion. This does not mean using SPECT as a routine, but as a well thought procedure aimed at tailoring treatment and/or establishing prognosis

  16. Brain SPECT in children

    International Nuclear Information System (INIS)

    Guyot, M.; Baulieu, J.L.

    1996-01-01

    Brain SPECT in child involves specific trends regarding the patient cooperation, irradiation, resolution and especially interpretation because of the rapid scintigraphic modifications related to the brain maturation. In a general nuclear medicine department, child brain SPECT represents about 2 % of the activity. The choice indications are the perfusion children: thallium and MIBI in brain tumours, pharmacological and neuropsychological interventions. In the future, brain dedicated detectors and new radiopharmaceuticals will promote the development of brain SPECT in children. (author)

  17. PET/SPECT/CT multimodal imaging in a transgenic mouse model of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Boisgard, R.; Alberini, J.L.; Jego, B.; Siquier, K.; Theze, B.; Guillermet, S.; Tavitian, B. [Service Hospitalier Frederic Joliot, Institut d' Imagerie BioMedicale, CEA, 91 - Orsay (France); Inserm, U803, 91 - Orsay (France)

    2008-02-15

    Background. - In the therapy monitoring of breast cancer, conventional imaging methods include ultrasound, mammography, CT and MRI, which are essentially based on tumor size modifications. However these modifications represent a late consequence of the biological response and fail to differentiate scar or necrotic tissue from residual viable tumoral tissue. Therefore, a current objective is to develop tools able to predict early response to treatment. Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are imaging modalities able to provide extremely sensitive quantitative molecular data and are widely used in humans and animals. Results. - Mammary epithelial cells of female transgenic mice expressing the polyoma middle T onco-protein (Py M.T.), undergo four distinct stages of tumour progression, from pre malignant to malignant stages. Stages are identifiable in the mammary tissue and can lead to the development of distant metastases Longitudinal studies by dynamic whole body acquisitions by multimodal imaging including PET, SPECT and Computed Tomography (CT) allow following the tumoral evolution in Py M.T. mice in comparison with the histopathological analysis. At four weeks of age, mammary hyperplasia was identified by histopathology, but no abnormalities were found by palpation or detected by PET with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose. Such as in some human mammary cancers, the sodium iodide sym-porter (N.I.S.) in tumoral mammary epithelial cells is expressed in this mouse model. In order to investigate the expression of N.I.S. in the Py M.T. mice mammary tumours, [{sup 99m}Tc]TcO{sub 4} imaging was performed with a dedicated SPECT/CT system camera (B.I.O.S.P.A.C.E. Gamma Imager/CT). Local uptake of [{sup 99m}Tc]TcO{sub 4} was detected as early as four weeks of age. The efficacy of chemotherapy was evaluated in this mouse model using a conventional regimen (Doxorubicine, 100 mg/ kg) administered weekly from nine to

  18. Scatter and attenuation correction in SPECT

    International Nuclear Information System (INIS)

    Ljungberg, Michael

    2004-01-01

    The adsorbed dose is related to the activity uptake in the organ and its temporal distribution. Measured count rate with scintillation cameras is related to activity through the system sensitivity, cps/MBq. By accounting for physical processes and imaging limitations we can measure the activity at different time points. Correction for physical factor, such as attenuation and scatter is required for accurate quantitation. Both planar and SPECT imaging can be used to estimate activities for radiopharmaceutical dosimetry. Planar methods have been the most widely used but is a 2D technique. With accurate modelling for imagine in iterative reconstruction, SPECT methods will prove to be more accurate

  19. The role of quantitative Tc-99m-MIBI gated SPECT/F-18-FDG PET imaging in the monitoring of intracoronary bone marrow cell transplantation

    International Nuclear Information System (INIS)

    Kaminek, M.; Myslivecek, M.

    2006-01-01

    A lot of unresolved questions still exist concerning the exact mechanism of the beneficial effects of bone marrow cell (BMC) transplantation for myocardial regeneration. The aim of this communication is to report the cases of patients with and without post-transplantation left ventricular function improvement. To this study we included consecutive patients with irreversible damage after a first acute ST-elevation myocardial infarction treated by coronary angioplasty with stent implantation. The irreversible damage was identified by dobutamine echocardiography and confirmed by rest gated Tc-99m-MIBI gated SPECT and in the majority of patients by F-18-FDG PET imaging as well. Using 4D-MSPECT software, we quantified MIBI/FDG uptake and gated SPECT left ventricular ejection fraction, end-diastolic/end-systolic volumes (LVEF, EDV/ESV) before BMC therapy and 3 months later. The results obtained in the initial group of patients in this study (27 patients in the BMC treated group, 16 patients in the control group) have been published previously [Eur J Nucl Med 2005; 32 (Suppl 1 ): S46]. Among the BMC group, we identified 13 responders to therapy with average LVEF improvement from 43.3%± 11% to 51.4%± 10.4% and EDV/ESV improvement from 145 ml/84 ml to 133 ml/67 ml. The remaining 14 patients were non-responders to therapy with no significant change in LVEF (39.1%±8.1% versus 39.8% ± 7.4%), the EDV/ESV increased from 166 ml/105 ml to 188 ml/116 ml. Responders to the cell therapy had prevailing MIBI uptake in the range of 31-50% of maximum in the infarction territory. On the other hand, non-responders to BMC therapy had prevailing MIBI uptake in the range of 0-30% of maximum. Two cases are presented in this report. Further studies with a larger cohort of patients would be helpful to evaluate our findings. We observed strong interindividual differences in the effectiveness of the cell therapy. Prevailing residual MIBI uptake in the range of 31-50% of maximum was in the

  20. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  1. Quantitative Nuclear Medicine. Chapter 17

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, J.; El Fakhri, G. [Massachusetts General Hospital and Harvard Medical School, Boston (United States)

    2014-12-15

    Planar imaging is still used in clinical practice although tomographic imaging (single photon emission computed tomography (SPECT) and positron emission tomography (PET)) is becoming more established. In this chapter, quantitative methods for both imaging techniques are presented. Planar imaging is limited to single photon. For both SPECT and PET, the focus is on the quantitative methods that can be applied to reconstructed images.

  2. Development of a high-resolution detection module for the INSERT SPECT/MRI system

    Energy Technology Data Exchange (ETDEWEB)

    Busca, Paolo; Fiorini, Carlo; Butt, Arslan D; Occhipinti, Michele; Quaglia, Riccardo; Trigilio, Paolo [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Golgi 40, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Nemeth, Gabor; Major, Peter; Bukki, Tamas; Nagy, Kalman [Mediso Medical Imaging Systems, Alsotorokvesz 14, H-1022 Budapest (Hungary); Piemonte, Claudio; Ferri, Alessandro; Gola, Alberto [Fondazione Bruno Kessler (FBK), Via Sommarive, 18, 38123 Trento (Italy); Rieger, Jan [MRI.TOOLS GmbH, Robert-Roessle-Str. 10, 13125 Berlin (Germany); Niendorf, Thoralf [MRI.TOOLS GmbH, Robert-Roessle-Str. 10, 13125 Berlin (Germany); Berlin Ultrahigh Field Facility (B.UniversityF.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin (Germany)

    2014-07-29

    A new multi-modality imaging tool is under development in the framework of the INSERT (Integrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus that can be used as an insert for commercially available MRI systems. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes are being developed, one dedicated to preclinical imaging (7 and 9.4 T), the second one dedicated to clinical imaging (3 T).

  3. Development of a high-resolution detection module for the INSERT SPECT/MRI system

    International Nuclear Information System (INIS)

    Busca, Paolo; Fiorini, Carlo; Butt, Arslan D; Occhipinti, Michele; Quaglia, Riccardo; Trigilio, Paolo; Nemeth, Gabor; Major, Peter; Bukki, Tamas; Nagy, Kalman; Piemonte, Claudio; Ferri, Alessandro; Gola, Alberto; Rieger, Jan; Niendorf, Thoralf

    2014-01-01

    A new multi-modality imaging tool is under development in the framework of the INSERT (Integrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus that can be used as an insert for commercially available MRI systems. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes are being developed, one dedicated to preclinical imaging (7 and 9.4 T), the second one dedicated to clinical imaging (3 T).

  4. Quantitative evaluation of renal dynamic scan with 99mTc-MAG3 assessment of interoposterior myocardial infarction using ECG gated SPECT with 99mTc-MIBI

    International Nuclear Information System (INIS)

    Cho, Keiichi; Kumita, Shinichiro; Mizumura, Sunao

    1997-01-01

    Simultaneous assessment of regional myocardial perfusion and local contraction ability of interoposterior myocardial infarction was examined by ECG gated SPECT. In thirteen cases of acute interoposterior myocardial infarction, the above-mentioned data were obtained by 180deg data acquisition method using L-shaped 2 detecting element type gamma camera. Mean and standard deviation of %Uptake and wall thickening (WT) in inferior wall were as follows: Infarction case; 57±9.2%/23±11.3%, normal case; 71±8.2%/61±10.2%. The significant depression (p<0.01/p<0.001) of both data were found in the infarction case. The both data in posterior wall were as follows: Infarction case; 55±10.7%/16±8.9%, normal case; 64±9.7%/41±15.0%. The significant depression (p<0.05/p<0.001) were also found in the infarction case. In both inferior wall and posterior wall, the AUC of ROC curve of WT was greater than that of %Uptake, and diagnostic ability of this method was favorable. The best sensitivity/specificity rate and the threshold were as follows: %Uptake of inferior wall 77/65, -0.5SD, WT of inferior wall 100/100, -2SD, %Uptake of posterior wall 62/82, -1SD, WT of posterior wall 85/88, -4SD. Accordingly, in diagnosis of interoposterior myocardial infarction, assessment of focus cardiac function, for example WT, is necessary as well as %Uptake. (K.H.)

  5. SPECT in psychiatry

    International Nuclear Information System (INIS)

    Barocka, A.; Feistel, H.; Ebert, D.; Lungershausen, E.

    1993-01-01

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D 2 and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.) [de

  6. Rapid gated Thallium-201 perfusion SPECT - clinically feasible?

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.; Wilkinson, D.; Abatti, D.

    1998-01-01

    Full text: Standard dose energy window optimised Thallium-201 (Tl-201) SPECT has about half the counts of a standard dose from Technetium-99m Sestamibi (Tc99m-Mibi) gated perfusion SPECT. This study investigates the clinical feasibility of rapid energy window optimised Tl-201 gated perfusion SPECT (gated-TI) and compares quantitative left ventricular ejection fraction (LVEF) and visually assessed image quality for wall motion and thickening to analogous values obtained from Tc99m-Mibi gated perfusion SPECT (gated - mibi). Methods: We studied 60 patients with a rest gated Tl-201 SPECT (100 MBq, 77KeV peak, 34% window, 20 sec/projection) followed by a post stress gated Sestamibi SPECT (1GBq, 140KeV, 20% window, 20 sec/projection) separate dual isotope protocol. LVEF quantitation was performed using commercially available software (SPECTEF, General Electric). Visual grading of image quality for wall thickening and motion was performed using a three-point scale (excellent, good and poor). Results: LVEF for gated Tl-201 SPECT was 59.6 ± 12.0% (Mean ± SD). LVEF for gated Sestamibi SPECT was 60.4 ±11.4% (Mean ± SD). These were not significantly different (P=0.27, T-Test). There was good correlation (r=0.9) between gated-TI and gated-mibi LVEF values. The quality of gated-Tl images was ranked as excellent, good and poor in 12, 50 and 38% of the patients respectively. Image quality was better in gated-mibi SPECT, with ratings of 12, 62 and 26% respectively. Conclusion: Rapid gated Thallium-201 acquisition with energy window optimisation can be effectively performed on majority of patients and offers the opportunity to assess not only myocardial perfusion and function, as with Technetium based agents, but also viability using a single day one isotope protocol

  7. Applications of the Preclinical Molecular Imaging in Biomedicine: Gene Therapy

    International Nuclear Information System (INIS)

    Collantes, M.; Peñuelas, I.

    2014-01-01

    Gene therapy constitutes a promising option for efficient and targeted treatment of several inherited disorders. Imaging techniques using ionizing radiation as PET or SPECT are used for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In this review the main reporter gene/reporter probe strategies are summarized, as well as the contribution of preclinical models to the development of this new imaging modality previously to its application in clinical arena. [es

  8. Evaluation of Tl-201 SPECT imaging findings in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sinem Ozyurt

    2015-07-01

    Full Text Available Objectives: To compare with histopathological findings the findings of prostate cancer imaging by SPECT method using Tl-201 as a tumor seeking agent. Methods: The study comprised 59 patients (age range 51-79 years, mean age 65.3 ± 6.8 years who were planned to have transrectal ultrasonography (TRUS-guided biopsies due to suspicion of prostate cancer between April 2011 and September 2011. Early planar, late planar and SPECT images were obtained for all patients. Scintigraphic evaluation was made in relation to uptake presence and patterns in the visual assessment and to Tumor/Background (T/Bg ratios for both planar and SPECT images in the quantitative assessment. Histopathological findings were compatible with benign etiology in 36 (61% patients and malign etiology in 23 (39% patients. Additionally, comparisons were made to evaluate the relationships between uptake patterns,total PSA values and Gleason scores. Results: A statistically significant difference was found between the benign and malignant groups in terms of uptake in planar and SPECT images and T/Bg ratios and PSA values. No statistically significant difference was found between uptake patterns of planar and SPECT images and Gleason scores in the malignant group. Conclusions: SPECT images were superior to planar images in the comparative assessment. Tl-201 SPECT imaging can provide an additional contribution to clinical practice in the diagnosis of prostate cancer and it can be used in selected patients.

  9. Brain SPECT in childhood

    International Nuclear Information System (INIS)

    Tranquart, F.; Saliba, E.; Prunier, C.; Baulieu, F.; Besnard, J.C.; Guilloteau, D.; Baulieu, J.L.

    2001-01-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  10. Clinical application of SPECT and PET in cerebrovascular disease

    International Nuclear Information System (INIS)

    Ra, Young Shin

    2003-01-01

    Single photon emission computed tomography(SPECT) and positron emission tomography(PET) are modern imaging techniques that allow for both qualitative are quantitative assessment of hemodynamic changes in cerebrovascular diseases. SPECT has been becoming an indispensable method to investigate regional cerebral blood flow because equipment and isotope are easily available in most general hospitals. Acetazolamide stress SPECT has also been proved to be useful to evaluate the cerebrovascular reserve of occlusive cerebrovascular diseases and to select surgical candidate. PET has gained wide spread clinical use in the evaluation of the hemodynamic and metabolic consequences of extracranial or intracranial arterial obstructive disease despite its complexity and limited availability. PET has been established as an invaluable tool in the pathophysilogy investigation of acute ischemic stroke. The potentials, limitations, and clinical applications of SPECT and PET in various cerebrovascular diseases will be discussed in this article with reviews of literatures

  11. Clinical application of SPECT and PET in cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Ra, Young Shin [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2003-02-01

    Single photon emission computed tomography(SPECT) and positron emission tomography(PET) are modern imaging techniques that allow for both qualitative are quantitative assessment of hemodynamic changes in cerebrovascular diseases. SPECT has been becoming an indispensable method to investigate regional cerebral blood flow because equipment and isotope are easily available in most general hospitals. Acetazolamide stress SPECT has also been proved to be useful to evaluate the cerebrovascular reserve of occlusive cerebrovascular diseases and to select surgical candidate. PET has gained wide spread clinical use in the evaluation of the hemodynamic and metabolic consequences of extracranial or intracranial arterial obstructive disease despite its complexity and limited availability. PET has been established as an invaluable tool in the pathophysilogy investigation of acute ischemic stroke. The potentials, limitations, and clinical applications of SPECT and PET in various cerebrovascular diseases will be discussed in this article with reviews of literatures.

  12. SPECT assay of radiolabeled monoclonal antibodies. Final performance report, March 1992--November 1995

    International Nuclear Information System (INIS)

    Jaszczak, R.J.

    1995-12-01

    Research is described in the following areas: development and evaluation quantitatively of reconstruction algorithms with improved compensations for attenuation, scatter, and geometric collimator response; evaluation of single photon emission computed tomography (SPECT) quantification of iodine 123 and astatine 211; and the development and evaluation of SPECT pinhole imaging for low and medium energy photons

  13. SPECT assay of radiolabeled monoclonal antibodies. Final performance report, March 1992--November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jaszczak, R.J.

    1995-12-01

    Research is described in the following areas: development and evaluation quantitatively of reconstruction algorithms with improved compensations for attenuation, scatter, and geometric collimator response; evaluation of single photon emission computed tomography (SPECT) quantification of iodine 123 and astatine 211; and the development and evaluation of SPECT pinhole imaging for low and medium energy photons.

  14. SPECT in psychiatry

    International Nuclear Information System (INIS)

    Kasper, S.; Gruenwald, F.; Walter, H.; Klemm, E.; Podreka, I.; Biersack, H.J.

    1994-01-01

    In the last fifteen years different attempts have been undertaken to understand the biological basis of major psychiatric disorders. One important tool to determine patterns of brain dysfunction is single emission computed tomography (SPECT). Whereas SPECT investigations are already a valuable diagnostic instrument for the diagnosis of dementia of the Alzheimer Type (DAT) there have not been consistent findings that can be referred to as specific for any other particular psychiatric diagnostic entity. Nevertheless, SPECT studies have been able to demonstrate evidence of brain dysfunction in patients with schizophrenia, depression, anxiety disorders, and substance abuse in which other methods showed no clear abnormality of brain function. Our manuscript reviews the data which are currently available in the literature and stresses the need for further studies, especially for prediction and monitoring psychiatric treatment modalities. (orig.) [de

  15. Applications of cerebral SPECT

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, C., E-mail: claire.mcarthur@nhs.net [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Jampana, R.; Patterson, J.; Hadley, D. [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom)

    2011-07-15

    Single-photon emission computed tomography (SPECT) can provide three-dimensional functional images of the brain following the injection of one of a series of radiopharmaceuticals that crosses the blood-brain barrier and distributes according to cerebral perfusion, neurotransmitter, or cell density. Applications include differentiating between the dementias, evaluating cerebrovascular disease, preoperative localization of epileptogenic foci, diagnosing movement disorders, and evaluation of intracerebral tumours, while also proving a useful research tool. Unlike positronemission tomography (PET), SPECT imaging is widely available and can be performed in any department that has access to a rotating gamma camera. The purpose of this review is to demonstrate the utility of cerebral SPECT and increase awareness of its role in the investigation of neurological and psychiatric disorders.

  16. Two-dimensional mapping of three-dimensional SPECT data: a preliminary step to the quantitation of thallium myocardial perfusion single photon emission tomography

    International Nuclear Information System (INIS)

    Goris, M.L.; Boudier, S.; Briandet, P.A.

    1987-01-01

    A method is presented by which tomographic myocardial perfusion data are prepared for quantitative analysis. The method is characterized by an interrogation of the original data, which results in a size and shape normalization. The method is analogous to the circumferential profile methods used in planar scintigraphy but requires a polar-to-cartesian transformation from three to two dimensions. As was the case in the planar situation, centering and reorientation are explicit. The degree of data reduction is evaluated by reconstructing idealized three-dimensional data from the two-dimensional sampling vectors. The method differs from previously described approaches by the absence in the resulting vector of a coordinate reflecting cartesian coordinate in the original data (slice number)

  17. SPECT-CT Hybrid cardiac imaging synchronized to Ecg for the mouse after myocardium infarction; Imagerie cardiaque hybride TEMP-TDM synchronisee a l'ECG chez la souris apres infarctus du myocarde

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, P.; Goetz, C.; Aubertin, G.; Hubele, F. [HUS Strasbourg, Service de biophysique et medecine nucleaire, 67 (France); El-Fertak, L.; Monassier, L. [Laboratoire de pharmacologie cardiovasculaire, 67 - Strasbourg (France)

    2010-07-01

    The preclinical SPECT-CT imaging synchronized to electrocardiogram among mice allows to acquire isotropic morphological and functional data, data of high spatial and temporal resolutions with relatively short acquisition times. (N.C.)

  18. Usefulness of brain SPECT

    International Nuclear Information System (INIS)

    Raynaud, C.; Rancurel, G.; Kieffer, E.; Ricard, S.; Askienazy, S.; Moretti, J.L.; Bourdoiseau, M.; Rapin, J.; Soussaline, F.

    1983-01-01

    Brain SPECT was not effectively exploited until I-123 isopropyl amphetamine (IAMP), indicator able to penetrate the blood brain barrier, became available. Although the experience of research teams working with IAMP is quite restricted due to the high cost of the indicator, some applications now appear to be worth the cost and in some cases provide data which cannot be obtained with routine techniques, especially in cerebrovascular patients, in epilepsy and some cases of tumor. Brain SPECT appears as an atraumatic test which is useful to establish a functional evaluation of the cerebral parenchyma, and which is a complement to arteriography, X-ray scan and regional cerebral blood flow measurement

  19. Brain spect imaging

    International Nuclear Information System (INIS)

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  20. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  1. Quantification in single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Buvat, Irene

    2005-01-01

    The objective of this lecture is to understand the possibilities and limitations of the quantitative analysis of single photon emission computed tomography (SPECT) images. It is also to identify the conditions to be fulfilled to obtain reliable quantitative measurements from images. Content: 1 - Introduction: Quantification in emission tomography - definition and challenges; quantification biasing phenomena; 2 - quantification in SPECT, problems and correction methods: Attenuation, scattering, un-stationary spatial resolution, partial volume effect, movement, tomographic reconstruction, calibration; 3 - Synthesis: actual quantification accuracy; 4 - Beyond the activity concentration measurement

  2. WE-H-206-00: Advances in Preclinical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    -modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.

  3. WE-H-206-00: Advances in Preclinical Imaging

    International Nuclear Information System (INIS)

    2016-01-01

    -modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198

  4. Radiopharmaceuticals for brain - SPECT

    International Nuclear Information System (INIS)

    Moretti, J.L.

    1992-01-01

    Perfusion tracers for brain SPECT imaging suitable for regional cerebral blood flow measurement and regional cerebral blood volume determination, with respect to their ability to pass the blood-brain-barrier, are described. Problems related t the use of specific radiotracers to map receptors distribution in the brain are also discussed in this lecture. 9 figs, 6 tabs

  5. Synthesis and Preclinical Characterization of a Cationic Iodinated Imaging Contrast Agent (CA4+) and Its Use for Quantitative Computed Tomography of Ex Vivo Human Hip Cartilage.

    Science.gov (United States)

    Stewart, Rachel C; Patwa, Amit N; Lusic, Hrvoje; Freedman, Jonathan D; Wathier, Michel; Snyder, Brian D; Guermazi, Ali; Grinstaff, Mark W

    2017-07-13

    Contrast agents that go beyond qualitative visualization and enable quantitative assessments of functional tissue performance represent the next generation of clinically useful imaging tools. An optimized and efficient large-scale synthesis of a cationic iodinated contrast agent (CA4+) is described for imaging articular cartilage. Contrast-enhanced CT (CECT) using CA4+ reveals significantly greater agent uptake of CA4+ in articular cartilage compared to that of similar anionic or nonionic agents, and CA4+ uptake follows Donnan equilibrium theory. The CA4+ CECT attenuation obtained from imaging ex vivo human hip cartilage correlates with the glycosaminoglycan content, equilibrium modulus, and coefficient of friction, which are key indicators of cartilage functional performance and osteoarthritis stage. Finally, preliminary toxicity studies in a rat model show no adverse events, and a pharmacokinetics study documents a peak plasma concentration 30 min after dosing, with the agent no longer present in vivo at 96 h via excretion in the urine.

  6. Quantative pre-surgical lung function estimation with SPECT/CT

    International Nuclear Information System (INIS)

    Bailey, Dale L.; Timmins, Sophi; Harris, Benjamin E.; Bailey, Elizabeth A.; Roach, Paul J.; Willowson, Kathy P.

    2009-01-01

    Full text: Objectives: To develop methodology to predict lobar lung function based on SPECT/CT ventilation 6 k perfusion (V/Q) scanning in candidates for lobectomy for lung cancer. This combines two development areas from our group: quantitative SPECT based on CT-derived corrections for scattering and attenuation of photons, and SPECT V/Q scanning with lobar segmentation from CT Six patients underwent baseline pulmonary function testing (PFT) including spirometry, measurement of DLCO and cardio-pulmonary exercise testing. A SPECT/CT V/Q scan was acquired at baseline. Using in-house software each lobe was anatomically defined using CT to provide lobar ROIs which could be applied to the SPECT data. From these, individual lobar contribution to overall function was calculated from counts within the lobe and post-operative FEVl, DLCO and V02 peak were predicted. This was compared with the quantitative planar scan method using 3 rectangular ROIs over each lung.

  7. Validation of Left Ventricular Ejection Fraction with the IQ•SPECT System in Small-Heart Patients.

    Science.gov (United States)

    Yoneyama, Hiroto; Shibutani, Takayuki; Konishi, Takahiro; Mizutani, Asuka; Hashimoto, Ryosuke; Onoguchi, Masahisa; Okuda, Koichi; Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo

    2017-09-01

    The IQ•SPECT system, which is equipped with multifocal collimators ( SMART ZOOM) and uses ordered-subset conjugate gradient minimization as the reconstruction algorithm, reduces the acquisition time of myocardial perfusion imaging compared with conventional SPECT systems equipped with low-energy high-resolution collimators. We compared the IQ•SPECT system with a conventional SPECT system for estimating left ventricular ejection fraction (LVEF) in patients with a small heart (end-systolic volume IQ•SPECT. End-systolic volume, end-diastolic volume, and LVEF were calculated using quantitative gated SPECT (QGS) and cardioREPO software. We compared the LVEF from gated myocardial perfusion SPECT to that from echocardiographic measurements. Results: End-diastolic volume, end-systolic volume, and LVEF as obtained from conventional SPECT, IQ•SPECT, and echocardiography showed a good to excellent correlation regardless of whether they were calculated using QGS or using cardioREPO. Although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (65.4% ± 13.8% vs. 68.4% ± 15.2%) ( P = 0.0002), LVEF calculated using cardioREPO did not (69.5% ± 10.6% vs. 69.5% ± 11.0%). Likewise, although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (75.0 ± 9.6 vs. 79.5 ± 8.3) ( P = 0.0005), LVEF calculated using cardioREPO did not (72.3% ± 9.0% vs. 74.3% ± 8.3%). Conclusion: In small-heart patients, the difference in LVEF between IQ•SPECT and conventional SPECT was less when calculated using cardioREPO than when calculated using QGS. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  8. Correlation of X-Ray Computed Tomography with Quantitative Nuclear Magnetic Resonance Methods for Pre-Clinical Measurement of Adipose and Lean Tissues in Living Mice

    Directory of Open Access Journals (Sweden)

    Matthew N. Metzinger

    2014-10-01

    Full Text Available Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT or quantitative nuclear magnetic resonance (QMR. Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.

  9. Mnemonic activation by SPECT

    International Nuclear Information System (INIS)

    Migneco, O.; Darcourt, J.; Benoit, M; Malandain, G.; Thirion, J.P.; Robert, Ph.; Vidal, R.; Desvignes, Ph.; Benoliel, J.; Ayache, N.; Bussiere, F.

    1997-01-01

    Data of literature show that SPECT is able to detect cerebral activations induced by sensory-motor stimuli. The facts are not clearly established in what concerns the cognitive activations the amplitude of which is lower. We have studied an activation paradigm such as the Grober and Bruschke test which implies the long term explicit memory. It comprises a visual presentation of words followed by their indexed recall. By using a two-day protocol, 2 SPECTs were achieved in 4 healthy right-handed voluntaries as follows: one of activation (A) and one of control (B). The fifth subject benefited by a SPECT B and of an MRI. The injection for the examination A has been done during the indexed recall stage and for the examination B at the moment when the patient repeated several times the same 3 words. The SPECT data were collected 1 hour after the injection of 370 MBq of ECD making use of a 3-head camera equipped with UHR fan collimators and ending by a LMH on the reconstructed images of 8 mm. The MRI has been achieved by means of a Signa 1.5 Tesla magnet. The SPECT A and B of the subjects 1 to 4 were matched elastically to that of the subject 5 and that of the subject 5 was rigidly matched on its MRI. In this way the individual activation cards of the 4 subjects could be averaged and superimposed on the MRI of the 5. subject. One observes an internal temporal activation (maximal activation of left tonsil, +25% and right uncus, +23%) and a right cingulum activation (maximal activation, +25%), in agreement with the neuro-physiological data. The elastic matching makes possible the inter-subject averaging, what increases the signal-to-noise ratio of activation. The inter-modality rigid matching facilitates the anatomical localisation of the activation site. With these adapted tools, the cognitive activation is thus possible by SPECT and opens perspectives for early diagnosis of neurological troubles, namely of Alzheimer's disease

  10. Metabolic imaging using SPECT

    International Nuclear Information System (INIS)

    Taki, Junichi; Matsunari, Ichiro

    2007-01-01

    In normal condition, the heart obtains more than two-thirds of its energy from the oxidative metabolism of long chain fatty acids, although a wide variety of substrates such as glucose, lactate, ketone bodies and amino acids are also utilised. In ischaemic myocardium, on the other hand, oxidative metabolism of free fatty acid is suppressed and anaerobic glucose metabolism plays a major role in residual oxidative metabolism. Therefore, metabolic imaging can be an important technique for the assessment of various cardiac diseases and conditions. In SPECT, several iodinated fatty acid traces have been introduced and studied. Of these, 123 I-labelled 15-(p-iodophenyl)3-R, S-methylpentadecanoic acid (BMIPP) has been the most commonly used tracer in clinical studies, especially in some of the European countries and Japan. In this review article, several fatty acid tracers for SPECT are characterised, and the mechanism of uptake and clinical utility of BMIPP are discussed in detail. (orig.)

  11. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design

    Science.gov (United States)

    Lai, Xiaochun; Meng, Ling-Jian

    2018-02-01

    In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.

  12. Functional brain imaging with SPECT in normal again and dementia. Methodological, pathophysiological, and diagnostic aspects

    International Nuclear Information System (INIS)

    Waldemar, G.

    1996-03-01

    New developments in instrumentation, radiochemistry, and data analysis, particularly the introduction of 99m Tc-labeled brain-retained tracers for perfusion studies, have opened up a new era of single photon emission computed tomography (SPECT). In this review critical methodological issues relating to the SPECT instrument, the radioactive tracers, the scanning procedure, the data analysis and interpretation of data, and subject selection are discussed together with the changes in regional cerebral blood flow (rCBF) observed in normal aging. An overview is given of the topography and the pathophysiological and diagnostic significance of focal rCBF deficits in Alzheimer's disease and in other dementia disorders, in which SPECT is capable of early or preclinical disease detection. In Alzheimer's disease, the diagnostic sensitivity and specificity of focal rCBF deficits measured with SPECT and brain-retained tracers are very high, in particular when combined with medial temporal lob atrophy on CT. Together with neuropsychological testing, SPECT serves to map the topography of brain dysfunction. Thus, in the clinical setting, SPECT provides information that is supplemental to that obtained in other studies. Future applications include neuroreceptor studies and treatment studies, in which SPECT may serve as a diagnostic aid in the selection of patients and as a potential mean for monitoring treatment effects. Although positron emission tomography is the best characterized tool for addressing some of these clinical and research issues in dementia, only the less expensive and technically simpler SPECT technique will have the potential of being available as a screening diagnostic instrument in the clinical setting. It is concluded that, properly approached, functional brain imaging with SPECT represents an important tool in the diagnosis, management, and research of dementia disorders. (au) 251 refs

  13. Co-registered perfusion SPECT/CT: Utility for prediction of improved postoperative outcome in lung volume reduction surgery candidates

    International Nuclear Information System (INIS)

    Takenaka, Daisuke; Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Onishi, Yumiko; Matsumoto, Keiko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2010-01-01

    Purpose: To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Materials and methods: Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1 s (FEV 1 ) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Results: Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60 ≤ r ≤ -0.42, p < 0.05). Conclusion: Co-registered perfusion SPECT/CT has better correlation with clinical outcome in LVRS candidates than do planar imaging, SPECT or qualitatively assessed CT, and is at least as valid as quantitatively assessed CT.

  14. Co-registered perfusion SPECT/CT: Utility for prediction of improved postoperative outcome in lung volume reduction surgery candidates

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Daisuke [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.j [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Nogami, Munenobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Division of Image-Based Medicine, Institute of Biomedical Research and Innovation, 2-2, Minatojima Minamimachi Chuo-ku, Kobe, Hyogo, 650-0047 (Japan); Onishi, Yumiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Matsumoto, Keiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Department of Radiology, University of Yamanashi, 1110 Shimogato, Chuo, Yamanashi, 409-3898 (Japan); Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan)

    2010-06-15

    Purpose: To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Materials and methods: Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1 s (FEV{sub 1}) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Results: Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60 {<=} r {<=} -0.42, p < 0.05). Conclusion: Co-registered perfusion SPECT/CT has better correlation with clinical outcome in LVRS candidates than do planar imaging, SPECT or qualitatively assessed CT, and is at least as valid as quantitatively assessed CT.

  15. The origins of SPECT and SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Brian F. [University College London, Institute of Nuclear Medicine, London (United Kingdom); University of Wollongong, Centre for Medical Radiation Physics, Wollongong, NSW (Australia)

    2014-05-15

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility. (orig.)

  16. SPECT imaging of cardiac reporter gene expression in living rabbits

    International Nuclear Information System (INIS)

    Liu Ying; Lan Xiaoli; Zhang Liang; Wu Tao; Jiang Rifeng; Zhang Yongxue

    2009-01-01

    This work is to demonstrate feasibility of imaging the expression of herpes simplex virus 1-thymidine kinase (HSVI-tk) reporter gene in rabbits myocardium by using the reporter probe 131 I-2'-fluoro-2'-deoxy-l-β-D-arabinofuranosyl-5-iodouracil ( 131 I-FIAU) and SPECT. Rabbits of the study group received intramyocardial injection of Ad5-tk and control group received aseptic saline injection. Two sets of experiments were performed on the study group. Rabbits of the 1st set were injected with 131 I-FIAU 600 μCi at Day 2 after intramyocardial transfection of Ad5-tk in 1xl0 9 , 5x10 8 , 1x10 8 , 5x10 7 and 1x10 7 pfu, and heart SPECT imaging was done at different hours. Rabbits of the 2nd were transferred various titers of Ad5-tk (1x10 9 , 5x10 8 , 1x10 8 , 5x10 7 , 1x10 7 pfu) to determine the threshold and optimal viral titer needed for detection of gene expression. Two days later, 131 I-FIAU was injected and heart SPECT imaging was performed at 6, 24 and 48 h, before killing them for gamma counting of the hearts. Reverse transcription-polymerase chain reaction (RT-PCR) was used to verify the transferred HSVI-tk gene expression. Semi-quantitative analysis derived of region of interest (ROI) of SPECT images and RT-PCR images was performed and the relationship of SPECT images with ex vivo gamma counting and mRNA level were evaluated. SPECT images conformed 131 I-FIAU accumulation in rabbits injected with Ad5-tk in the anterolateral wall. The optimal images quality was obtained at 24-48 h for different viral titers. The highest radioactivity in the focal myocardium was seen at 6 h, and then declined with time. The threshold was 5x10 7 pfu of virus titer. The result could be set better in 1-5x10 8 pfu by SPECT analysis and gamma counting. ROI-derived semi-quantitative study on SPECT images correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The HSVI-tk/ 131 I-FIAU reporter gene/reporter probe system is feasible for cardiac SPECT reporter

  17. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Grova, C [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Jannin, P [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Biraben, A [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Buvat, I [INSERM U494, CHU Pitie Salpetriere, Paris (France); Benali, H [INSERM U494, CHU Pitie Salpetriere, Paris (France); Bernard, A M [Service de Medecine Nucleaire, Centre Eugene Marquis, Rennes (France); Scarabin, J M [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Gibaud, B [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France)

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were

  18. A Comparative Study of SPECT, q-EEG and CT in Patients with Mild, Acute Head Trauma

    International Nuclear Information System (INIS)

    Lee, Suk Ho; Kim, Jin Seok; Moon, Hee Seung

    1993-01-01

    Functional cerebral impairments have been verified objectively by brain SPECT and q-EEG (quantitative electroencephalography). Microcerebral circulatory defects without anatomical changes cannot be detected by the brain CT or MRI. Brain SPECT using 99m Tc-HMPAO (Hexamethyl propyleneamine oxime) as a key radioisotope may be accepted as the useful method for identifying functional cerebral impairments. We studied 25 patients with mild head trauma to define whether the SPECT was helpful in detecting cerebral impairment. The SPECT was positive in 23 patients out of 25, q-EEG positive in 16 patients and brain CT was positive in 3 cases. SPECT and q-EEG were more sensitive than CT. SPECT would be more useful method than brain CT to investigate cerebral function after head injury

  19. The characteristics of SPECT images in childhood benign partial epilepsy

    International Nuclear Information System (INIS)

    Jia Shaowei; Liao Jianxiang; Liu Xiaoyan; Zheng Xiyuan; Qin Jiong; Pan Zhongyun; Zuo Qihua

    1998-01-01

    Purpose: To investigate childhood benign partial epilepsy (BPE) with SPECT. Methods: Double SPECT imaging was performed on 21 cases of BPE at the stage of wake (interval spike discharge) and sleep (spike discharge), under EEG monitoring. The transverse images were reconstructed after digital image subtraction. The quantitative analysis was conducted with brain flow change rate (BFCR) % mathematical model. Results: EEG monitoring demonstrated approximately normal background of 21 cases of BPE during the stage of wake, and spike discharge frequency markedly increased during the stage of sleep, 117 foci were showed by SPeCT in cases of BPE, and the average was 5.6 +- 1.6 foci/case. The characteristics of SPECT transverse images were 1) multiple foci of mirror, 2) mostly seen in Rolandic region, 3) circular symbol, 4) the radioactivity in foci decreased during the stage of wake (interval spike discharge) and increased during the stage of sleep (spike discharge). The concordance of SPECT and EEG was 93.1% (109/117 foci). The BFCR% of all epileptogenic foci exceeded normal limit (99% confidence interval). There was no correlation between the spike discharge frequency and BFCR% (r = 0.45, P>0.05). Conclusions: Regional cerebral blood flow and function were abnormal during the epileptogenic foci were discharging abnormally in BPE

  20. Neuropsychiatry: PET and SPECT

    International Nuclear Information System (INIS)

    Quintana F, Juan Carlos

    2002-01-01

    Functional brain imaging with PET and SPECT have a definitive and well established role in the investigation of a variety of conditions such as dementia, epilepsy and drug addiction. With these methods it is possible to detect early rCBF (regional Cerebral Blood Flow) changes seen in dementia (even before clinical symptoms) and differentiate Alzheimer's disease from other dementias by means of the rCBF pattern change. 18-F-FDG PET imaging is a useful tool in partial epilepsy because both rCBF and brain metabolism are compromised at the epileptogenic focus. During the seizure, rCBF dramatically increases locally. Using SPECT it is possible to locate such foci with 97% accuracy. In drug addiction, particularly with cocaine, functional imaging has proven to be very sensitive to detect brain flow and metabolism derangement early in the course of this condition. These findings are important in many ways: prognostic value, they are used as a powerful reinforcement tool and to monitor functional recovery with rehabilitation. There are many other conditions in which functional brain imaging is of importance such as acute stroke treatment assessment, trauma rehabilitation and in psychiatric and abnormal movement diseases specially with the development of receptor imaging (au)

  1. Applications of the Preclinical Molecular Imaging in Biomedicine: Cardiology; Aplicaciones de la Imagen Molecular Preclínica en Biomedicina: Cardiología

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, M.; Peñuelas, I.

    2014-07-01

    Cardiovascular diseases remain the leading cause of death in industrialized countries. Imaging techniques using PET or SPECT radiotracers allow to examine noninvasively regional changes in myocardial perfusion, myocardial viability and innervation, as well as to study atheroma plaques that causes atherosclerosis. Preclinical studies using these techniques permit to characterize animal models that reproduce heart diseases, providing a noninvasive, serial and quantitative assessment of myocardial function and the effectiveness of new therapeutic approaches. [Spanish] Las enfermedades cardiovasculares constituyen la principal causa de muerte en los países industrializados. Las técnicas de imagen utilizando radiotrazadores de tipo PET o SPECT permiten examinar de manera no invasiva cambios regionales en la perfusión, viabilidad e innervación miocárdica, así como estudiar las placas de ateroma que causan la ateroesclerosis. Los estudios preclínicos utilizando esta técnicas permiten caracterizar los modelos animales que reproducen enfermedades cardiacas, proporcionando una evaluación no invasiva, seriada y cuantitativa de su función miocárdica y de la efectividad de nuevas aproximaciones terapéuticas.

  2. Clinical application of cardiac SPECT

    International Nuclear Information System (INIS)

    Nishimura, Shigeyuki

    1999-01-01

    Single-photon emission computed tomography (SPECT) has replaced planar imaging techniques for myocardial scintigraphy. Thallium-201 was the dominant agent employed for myocardial perfusion imaging. Today new technetium-99m labelled radionuclides have been used as excellent alternatives to 201 Tl for detection of coronary artery disease, prognostification, and even assessment of myocardial viability. Pharmacologic stress imaging using either dipyridamole, adenosine or dobutamine is a substitute for exercise stress. Accurate determination of myocardial viability is vitally important for clinical decision making for patients with LV dysfunction who will most benefit from revascularization. Stunned and hibernated myocardium may result in profound regional LTV dysfunction in absence of necrosis. The various approach such as stress-redistribution-reinjection imaging, rest-redistribution imaging and stress-redistribution-24 hours delayed imaging has been utilized to assess myocardial viability with 201 Tl. Quantitative assessment of 99m Tc MIBI uptake reflect the degree of viability. 123 I-Metaiodobenzylguanidine (MIBG), an analog of norepinephrine, has been used for scintigraphic assessment of regional cardiac adrenergic innervation. Cardiac sympathetic denervation, assessed by 123 I-MIBG, due to ischemia in non-Q myocardial infarction and unstable angina has been shown. Quantitative cardiac MIBG scintigram was shown to have prognostic value in patients with severe congestive heart failure. 23 I-BMIPP (ρ-methyl-iodophenyl pentadecanoic acid) has been used to assess myocardial fatty acid utilization. BMIPP has the memory function of ischemia in unstable angina, since decreased BMIPP uptake persists several days after ischemic episode. Nuclear cardiology in Japan has experienced an expansion in the techniques including use of new radionuclides, 99m Tc perfusion agents, 123 I-MIBG and 23 I-BMIPP and in associated clinical application to the various cardiac diseases

  3. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Oyebola O. Sogbein

    2014-01-01

    Full Text Available Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT myocardial perfusion imaging (MPI with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET and magnetic resonance imaging (MRI continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.

  4. Serial SPECT in children with partial epilepsy

    International Nuclear Information System (INIS)

    Hosoya, Machiko; Ushiku, Hideo

    1995-01-01

    We performed serial single-photon emission CT (SPECT) with N-isopropyl-p-( 123 I)-Iodoamphetamine to measure the regional cerebral blood flow (rCBF) in 15 children with partial epilepsy. SPECT showed focal changes in 14 cases. Ten cases had abnormalities in the initial SPECT and another four cases in the second test. The cases with normal rCBF in initial SPECT had been tested in an early phase after the onset, and then decreased rCBF were observed in the second SPECT. The cases with both abnormal rCBF in the initial SPECT and improved rCBF in the second SPECT showed good prognosis in clinico-electrophysiological evolutions. In cases with abnormal changes of rCBF in the second SPECT, clinical prognosis was found to be not so good. These findings suggest that serial SPECT may be used to follow the course of epilepsy. (author)

  5. Dopamine transporter imaging with [{sup 123}I]FP-CIT SPECT: potential effects of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Kemp, Paul [Southampton University Hospitals Trust, Department of Nuclear Medicine, Southampton (United Kingdom)

    2008-02-15

    [{sup 123}I]N-{omega}-fluoropropyl-2{beta}-carbomethoxy-3{beta}-{l_brace}4-iodophenyl{r_brace}nortropane ([{sup 123}I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [{sup 123}I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  6. Dopamine transporter imaging with [123I]FP-CIT SPECT: potential effects of drugs

    International Nuclear Information System (INIS)

    Booij, Jan; Kemp, Paul

    2008-01-01

    [ 123 I]N-ω-fluoropropyl-2β-carbomethoxy-3β-{4-iodophenyl}nortropane ([ 123 I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [ 123 I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  7. Diagnostic evaluation of brain SPECT imaging in diseases of nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Yongsheng, Jiang; Chengmo, Zhu; Jixian, Zhang; Weijia, Tian [Shanghai Second Medical Univ. (China). Ruijing Hospital

    1992-11-01

    The dynamic distributions of home made ECD and the Amersham brain SPECT imaging agent 'Ceretec' in normal person as well as their diagnostic use in diseases of nervous system were investigated. Semi-quantitative analysis combined with direct observation was more accurate for the diagnosis. Aside from cerebrovascular diseases, SPECT brain imaging has its unique value for the diagnosis of transient ischemic attack, Alzheimer disease, multiple ischemic dementia and epilepsy etc.

  8. In vivo characteristics of IBZM in rat brains, an agent for quantitative SPECT imaging of D2 dopamine receptors. A basis for semiquantitative measurement of the receptor density using equilibrium analysis

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Maeda, Hisato; Takeuchi, Akira; Koga, Sukehiko; Matsumura, Kaname; Nakashima, Hiromichi; Ichise, Masanori; Kurami, Miki; Nakagawa, Tsuyoshi.

    1994-01-01

    To establish a basis for semiquantitative SPECT measurements of the D 2 dopamine receptor density using equilibrium analysis, we evaluated in vivo kinetic properties of 125 I-IBZM in rat brains. We measured percent uptakes (% dose/g) of 125 I-IBZM in the striatum, frontal cortex, and cerebellum. We made these regional measurements at 15, 30, 45, 60, 90, and 120 minutes after injection, respectively. The specific striatal uptake, which is the uptake difference between striatum and frontal cortex or cerebellum, showed a transient equilibrium phase at 60 min. Theoretically, with these 'reversible' D 2 receptor binding ligands, the tracer-uptake ratio of the striatum-to-frontal cortex or cerebellum during the equilibrium phase provides an estimate of binding potential (Bound/Free=B max /K d ). Our experiment showed that these ratio increased with time after bolus injection of the tracer. Striatum to frontal cortex or cerebellum ratios which were calculated with pooled data (n=12) at 60 minutes in equilibrium phase showed nearly constant values (C.V.=12.3% and 13.5%, respectively). Although measuring the striatum to frontal cortex or cerebellum ratios near equilibrium phase by bolus injection of the tracer which are widely used in human SPECT study could not exactly signify the binding potential, those ratios at fixed time after injection would be reliable for semiquantitative index. (author)

  9. Partition Model-Based 99mTc-MAA SPECT/CT Predictive Dosimetry Compared with 90Y TOF PET/CT Posttreatment Dosimetry in Radioembolization of Hepatocellular Carcinoma: A Quantitative Agreement Comparison.

    Science.gov (United States)

    Gnesin, Silvano; Canetti, Laurent; Adib, Salim; Cherbuin, Nicolas; Silva Monteiro, Marina; Bize, Pierre; Denys, Alban; Prior, John O; Baechler, Sebastien; Boubaker, Ariane

    2016-11-01

    90 Y-microsphere selective internal radiation therapy (SIRT) is a valuable treatment in unresectable hepatocellular carcinoma (HCC). Partition-model predictive dosimetry relies on differential tumor-to-nontumor perfusion evaluated on pretreatment 99m Tc-macroaggregated albumin (MAA) SPECT/CT. The aim of this study was to evaluate agreement between the predictive dosimetry of 99m Tc-MAA SPECT/CT and posttreatment dosimetry based on 90 Y time-of-flight (TOF) PET/CT. We compared the 99m Tc-MAA SPECT/CT results for 27 treatment sessions (25 HCC patients, 41 tumors) with 90 Y SIRT (7 glass spheres, 20 resin spheres) and the posttreatment 90 Y TOF PET/CT results. Three-dimensional voxelized dose maps were computed from the 99m Tc-MAA SPECT/CT and 90 Y TOF PET/CT data. Mean absorbed dose ([Formula: see text]) was evaluated to compute the predicted-to-actual dose ratio ([Formula: see text]) in tumor volumes (TVs) and nontumor volumes (NTVs) for glass and resin spheres. The Lin concordance ([Formula: see text]) was used to measure accuracy ([Formula: see text]) and precision (ρ). Administered activity ranged from 0.8 to 1.9 GBq for glass spheres and from 0.6 to 3.4 GBq for resin spheres, and the respective TVs ranged from 2 to 125 mL and from 6 to 1,828 mL. The mean dose [Formula: see text] was 240 Gy for glass and 122 Gy for resin in TVs and 72 Gy for glass and 47 Gy for resin in NTVs. [Formula: see text] was 1.46 ± 0.58 (0.65-2.53) for glass and 1.16 ± 0.41 (0.54-2.54) for resin, and the respective values for [Formula: see text] were 0.88 ± 0.15 (0.56-1.00) and 0.86 ± 0.2 (0.58-1.35). DR variability was substantially lower in NTVs than in TVs. The Lin concordance between [Formula: see text] and [Formula: see text] (resin) was significantly better for tumors larger than 150 mL than for tumors 150 mL or smaller ([Formula: see text] = 0.93 and [Formula: see text] = 0.95 vs. [Formula: see text] = 0.57 and [Formula: see text] = 0.93; P < 0.05). In 90 Y radioembolization

  10. In vivo SPECT reporter gene imaging of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ehsan Sharif-Paghaleh

    Full Text Available Regulatory T cells (Tregs were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4(+CD25(+FoxP3(+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate ((99mTcO(4(- and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6 mice by SPECT/CT using (99mTcO(4(-. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.

  11. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects.

    Science.gov (United States)

    Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo

    2015-06-01

    A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR

  12. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    Science.gov (United States)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  13. Recommendations for Benchmarking Preclinical Studies of Nanomedicines.

    Science.gov (United States)

    Dawidczyk, Charlene M; Russell, Luisa M; Searson, Peter C

    2015-10-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small-molecule drug therapy for cancer and to achieve both therapeutic and diagnostic functions in the same platform. Preclinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of preclinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of preclinical trials and propose a protocol for benchmarking that we recommend be included in in vivo preclinical studies of drug-delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. ©2015 American Association for Cancer Research.

  14. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Himuro, Kazuhiko; Yamashita, Yasuo; Komiya, Isao [Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Shingo [Department of Clinical Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually

  15. Automatic extraction of left ventricle in SPECT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Liu Li; Zhao Shujun; Yao Zhiming; Wang Daoyu

    1999-01-01

    An automatic method of extracting left ventricle from SPECT myocardial perfusion data was introduced. This method was based on the least square analysis of the positions of all short-axis slices pixels from the half sphere-cylinder myocardial model, and used a iterative reconstruction technique to automatically cut off the non-left ventricular tissue from the perfusion images. Thereby, this technique provided the bases for further quantitative analysis

  16. Motor activation SPECT for the neurosurgical diseases. Examination protocol and basic study

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We examined and analyzed the region activated by the unilateral finger opposition task using motor activation single photon emission computed tomography (M-SPECT). M-SPECT studies were carried out on 11 cases, all of whom were normal volunteers (mean age: 49.4 years), none of whom showed any abnormal findings on magnetic resonance images (MRIs) or any neurological abnormalities. The SPECT images for each case were superimposed on the MRIs using Image Fusion Software. The result of the M-SPECT study was expressed as positive or negative. The cases with a marked increase of blood flow in the sensori-motor cortex during the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among 11 patients, 10 cases (90.9%) showed positive M-SPECT findings, and the eleventh case showed negative M-SPECT findings. The asymmetry index (AI) was calculated on the sensorio-motor cortex in the SPECT images before and after motor activation, with the 10 cases with positive M-SPECT having an AI before motor activation of 0.99{+-}0.06 (mean{+-}standard deviation) and an AI after motor activation of 1.14{+-}0.07. This change was statistically significant (p<0.05). In the single case categorized as negative, the AI before motor activation was 1.04, and the AI after motor activation was 1.01. There was no significant difference of AI values between the resting and motor activation stages. The positive M-SPECT was seen in 90.9% of the normal volunteer series using a visual inspection method. In these cases, the blood flow in the sensorio-motor cortex significantly increased after application of the finger opposition task using the semi-quantitative method. (author)

  17. SPECT in Focal Epilepsies

    Directory of Open Access Journals (Sweden)

    Roderick Duncan

    2000-01-01

    Full Text Available Brain perfusion changes during seizures were first observed in the 1930s. Single Photon Emission Computed Tomography (SPECT was developed in the 1970s, and tracers suitable for the imaging of regional cerebral perfusion (rCP became available in the 1980s. The method was first used to study rCP in the interictal phase, and this showed areas of low perfusion in a proportion of cases, mainly in patients with temporal lobe epilepsies. However, the trapping paradigm of tracers such as hexamethyl propyleneamine oxime (HMPAO provided a practicable method of studying changes in rCP during seizures, and a literature was established in the late 1980s and early 1990s showing a typical sequence of changes during and after seizures of mesial temporal lobe origin; the ictal phase was associated with large increases in perfusion throughout the temporal lobe, with first the lateral, then the mesial temporal lobe becoming hypoperfused in the postictal phase. Activation and inhibition of other structures, such as the basal ganglia and frontal cortex, were also seen. Studies of seizures originating elsewhere in the brain have shown a variety of patterns of change, according to the structures involved. These changes have been used practically to aid the process of localisation of the epileptogenic zone so that epilepsy surgery can be planned.

  18. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-01-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  19. SPECT imaging with resolution recovery

    International Nuclear Information System (INIS)

    Bronnikov, A. V.

    2011-01-01

    Single-photon emission computed tomography (SPECT) is a method of choice for imaging spatial distributions of radioisotopes. Many applications of this method are found in nuclear industry, medicine, and biomedical research. We study mathematical modeling of a micro-SPECT system by using a point-spread function (PSF) and implement an OSEM-based iterative algorithm for image reconstruction with resolution recovery. Unlike other known implementations of the OSEM algorithm, we apply en efficient computation scheme based on a useful approximation of the PSF, which ensures relatively fast computations. The proposed approach can be applied with the data acquired with any type of collimators, including parallel-beam fan-beam, cone-beam and pinhole collimators. Experimental results obtained with a micro SPECT system demonstrate high efficiency of resolution recovery. (authors)

  20. PET and SPECT in neurology

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium). Dept. of Radiology and Nuclear Medicine; Vries, Erik F.J. de; Waarde, Aren van [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Otte, Andreas (ed.) [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology

    2014-07-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  1. PET and SPECT in neurology

    International Nuclear Information System (INIS)

    Dierckx, Rudi A.J.O.; Ghent Univ.; Vries, Erik F.J. de; Waarde, Aren van; Otte, Andreas

    2014-01-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  2. Normal anatomy of lung perfusion SPECT scintigraphy

    International Nuclear Information System (INIS)

    Moskowitz, G.W.; Levy, L.M.

    1987-01-01

    Ten patients studies for possible pulmonary embolic disease had normal lung perfusion planar and SPECT scintigraphy. A computer program was developed to superimpose the CT scans on corresponding SPECT images. Superimposition of CT scans on corresponding SPECT transaxial cross-sectional images, when available, provides the needed definition and relationships of adjacent organs. SPECT transaxial sections provide clear anatomic definition of perfusion defects without foreground and background lung tissue superimposed. The location, shape, and size of the perfusion defects can be readily assessed by SPECT. An algorithm was developed for the differentiation of abnormal pulmonary perfusion patterns from normal structures on variation

  3. Radiopharmaceuticals for SPECT cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V. I., E-mail: chernov@oncology.tomsk.ru; Medvedeva, A. A., E-mail: tickayaAA@oncology.tomsk.ru; Zelchan, R. V., E-mail: r.zelchan@yandex.ru; Sinilkin, I. G., E-mail: sinilkinig@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Stasyuk, E. S.; Larionova, L. A. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Slonimskaya, E. M.; Choynzonov, E. L. [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with {sup 199}Tl and {sup 99}mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal {sup 199}Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of {sup 199}Tl SPECT. In the breast cancer patients, the increased {sup 199}Tl uptake in the breast was visualized in 94.8% patients, {sup 99m}Tc-MIBI—in 93.4% patients. The increased {sup 199}Tl uptake in axillary lymph nodes was detected in 60% patients, and {sup 99m}Tc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI was 95%. The {sup 199}Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the {sup 99m}Tc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  4. 201Thallium SPECT, accuracy in astrocytoma diagnosis and treatment evaluation

    International Nuclear Information System (INIS)

    Kaellen, K.

    1999-10-01

    The aims of the studies included in this thesis were: - to investigate the reliability of 201 Thallium single photon emission computed tomography. Tl SPECT for preoperative diagnosis and histological staging of malignant astrocytomas in comparison with CT; - to develop a method for quantification of cerebral thallium uptake, and to evaluate the quantitative measurement in comparison with CT, for astrocytoma treatment follow-up purposes; - to compare quantitative Tl SPECT and proton magnetic resonance spectroscopy (H-MRS) with conventional MR imaging for astrocytoma monitoring, and to evaluate associations between change of morphological tumour characteristics during treatment and changes of cerebral thallium uptake and metabolic ratios. Results and conclusions: - High TI-index, calculated as a ratio comparing tumour uptake to uptake in the contralateral hemisphere, is an indicator of highly malignant astrocytoma. Differentiation between the high-grade astrocytomas, the low-grade astrocytomas, and infectious lesions is only partial, with an overlap of Tl-indexes between these groups. High-grade astrocytomas that do not show contrast enhancement on CT, and astrocytomas with central necrosis and moderate ring-enhancement, tend to be underestimated when evaluated by Tl-index calculation. Tl SPECT is not a reliable method for non-invasive tumour staging among the group of highly malignant astrocytomas. - Quantification of cerebral TI-uptake, defining the volume of viable tumour tissue, is a new method for astrocytoma chemotherapy monitoring. Results suggest that the method provides prognostic information, and information of treatment efficacy, at an earlier stage than CT. - We did not find a higher accuracy of quantitative Tl SPECT than of MR for monitoring purposes and our results indicated that treatment induced MR changes were interrelated with TI-uptake variations. - Multi-voxel H-MRS was difficult to apply for astrocytoma treatment monitoring, due to the anatomical

  5. Preclinical QSP Modeling in the Pharmaceutical Industry: An IQ Consortium Survey Examining the Current Landscape

    Science.gov (United States)

    Wu, Fan; Bansal, Loveleena; Bradshaw‐Pierce, Erica; Chan, Jason R.; Liederer, Bianca M.; Mettetal, Jerome T.; Schroeder, Patricia; Schuck, Edgar; Tsai, Alice; Xu, Christine; Chimalakonda, Anjaneya; Le, Kha; Penney, Mark; Topp, Brian; Yamada, Akihiro

    2018-01-01

    A cross‐industry survey was conducted to assess the landscape of preclinical quantitative systems pharmacology (QSP) modeling within pharmaceutical companies. This article presents the survey results, which provide insights on the current state of preclinical QSP modeling in addition to future opportunities. Our results call attention to the need for an aligned definition and consistent terminology around QSP, yet highlight the broad applicability and benefits preclinical QSP modeling is currently delivering. PMID:29349875

  6. Psychiatric and subjective symptoms and cerebral blood flow in patients with chronic cerebral infarction after treatment with Ca antagonist (nilvadipine). Quantitative measurement of cerebral blood flow by the 123IMP-SPECT ARG method

    International Nuclear Information System (INIS)

    Sakayori, Osamu; Kitamura, Shin; Mishina, Masahiro; Yamazaki, Mineo; Terashi, Akirou

    1997-01-01

    Psychiatric and subjective symptoms such as headache, dizziness, lack of spontaneity, anxiety, and a depressive state are often found in patients with chronic cerebral infarction. Some Ca antagonists are reported to relieve such symptoms. The purpose of the present study was to investigate the relationship between psychiatric and subjective symptoms and cerebral blood flow (CBF) in cerebral infarction and to evaluate the clinical effects of Ca antagonists from the standpoint of the cerebral circulation. Nilvadipine was administered to is patients with chronic cerebral infarction and their CBF was measured by the 123 IMP-SPECT ARG method before and at 8 weeks after the nilvadipine treatment. The CBF in patients with hypertension was increased by 11% after giving nilvadipine. Patients without hypertension showed no tendency for elevation of their CBF. Patients who were relieved from some psychiatric symptoms revealed a 14% increase of CBF in all cortical regions, and a significant increase was noted in the frontal and temporal regions. In other patients without changes in psychiatric symptoms, the CBF did not increase in any of the cortical regions. No relationship between symptoms and CBF was observed in any of the patients with subjective symptoms. Our study demonstrated a close correlation between psychiatric symptoms and CBF. We speculate that psychiatric symptoms in chronic cerebral infarction may reflect diffuse brain dysfunctions. We also conclude that nilvadipine is more effective in relieving psychiatric symptoms in patients with hypertensive cerebral infarction. It is inferred that nilvadipine may be more effective in relieving psychiatric symptoms in patients with hypertension. (author)

  7. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT.

    Science.gov (United States)

    Armstrong, Ian S; Hoffmann, Sandra A

    2016-11-01

    The interest in quantitative single photon emission computer tomography (SPECT) shows potential in a number of clinical applications and now several vendors are providing software and hardware solutions to allow 'SUV-SPECT' to mirror metrics used in PET imaging. This brief technical report assesses the accuracy of activity concentration measurements using a new algorithm 'xSPECT' from Siemens Healthcare. SPECT/CT data were acquired from a uniform cylinder with 5, 10, 15 and 20 s/projection and NEMA image quality phantom with 25 s/projection. The NEMA phantom had hot spheres filled with an 8 : 1 activity concentration relative to the background compartment. Reconstructions were performed using parameters defined by manufacturer presets available with the algorithm. The accuracy of activity concentration measurements was assessed. A dose calibrator-camera cross-calibration factor (CCF) was derived from the uniform phantom data. In uniform phantom images, a positive bias was observed, ranging from ∼6% in the lower count images to ∼4% in the higher-count images. On the basis of the higher-count data, a CCF of 0.96 was derived. As expected, considerable negative bias was measured in the NEMA spheres using region mean values whereas positive bias was measured in the four largest NEMA spheres. Nonmonotonically increasing recovery curves for the hot spheres suggested the presence of Gibbs edge enhancement from resolution modelling. Sufficiently accurate activity concentration measurements can easily be measured on images reconstructed with the xSPECT algorithm without a CCF. However, the use of a CCF is likely to improve accuracy further. A manual conversion of voxel values into SUV should be possible, provided that the patient weight, injected activity and time between injection and imaging are all known accurately.

  8. Performance of Myocardial Perfusion Imaging Using Multi-focus Fan Beam Collimator with Resolution Recovery Reconstruction in a Comparison with Conventional SPECT

    International Nuclear Information System (INIS)

    Matsutomo, Norikazu; Nagaki, Akio; Sasaki, Masayuki

    2014-01-01

    IQ-SPECT is an advanced high-speed SPECT modality for myocardial perfusion imaging (MPI), which uses a multi-focus fan beam collimator with resolution recovery reconstruction. The aim of this study was to compare IQ-SPECT with conventional SPECT in terms of performance, based on standard clinical protocols. In addition, we examined the concordance between conventional and IQ-SPECT in patients with coronary artery disease (CAD). Fifty-three patients, undergoing rest-gated MPI for the evaluation of known or suspected CAD, were enrolled in this study. In each patient, conventional SPECT ( 99m Tc-tetrofosmin, 9.6 min and 201 Tl, 12.9 min) was performed, immediately followed by IQ-SPECT, using a short acquisition time (4.3 min for 99m Tc-tetrofosmin and 6.2 min for 201 Tl). A quantitative analysis was performed on an MPI polar map, using a 20-segment model of the left ventricle. An automated analysis by gated SPECT was carried out to determine the left ventricular volume and function including end-diastolic volume (EDV), end-systolic volume (ESV), and left ventricular ejection fraction (LVEF). The degree of concordance between conventional SPECT and IQ-SPECT images was evaluated according to linear regression and Bland-Altman analyses. The segmental percent uptake exhibited a significant correlation between IQ-SPECT and conventional SPECT (P<0.05). The mean differences in 99m Tc-tetrofosmin studies were 1.1±6.6% (apex), 2.8±5.7% (anterior wall), 2.9±6.2% (septal wall), 4.9±6.7% (lateral wall), and 1.8±5.6% (inferior wall). Meanwhile, regarding the 201 Tl-SPECT studies, these values were 1.6±6.9%, 2.0±6.6%, 2.1±5.9%, 3.3±7.2%, and 2.4±5.8%, respectively. Although the mean LVEF in IQ-SPECT tended to be higher than that observed in conventional SPECT (conventional SPECT=64.8±11.8% and IQ-SPECT=68.3±12.1% for 99m Tc-tetrofosmin; conventional SPECT= 56.0±11.7% and IQ-SPECT=61.5±12.2% for 201 Tl), quantitative parameters were not significantly different between

  9. PET and SPECT in psychiatry

    International Nuclear Information System (INIS)

    Dierckx, Rudi A.J.O.; Otte, Andreas; Vries, Erik F.J. de; Waarde, Aren van

    2014-01-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  10. SPECT og PET i neurobiologien

    DEFF Research Database (Denmark)

    Paulson, O.B.; Lassen, N.A.

    1997-01-01

    PET (positron emission tomography) and SPECT (single photon emission computed tomography) are isotopic methods in which the distribution is registered of radiolabelled tracers given in such small amounts that they are without effect on the organism or the organism's disposal of them. Thus, a series...

  11. PET and SPECT in psychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Otte, Andreas [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-09-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  12. Effect of bypass on the motor activation SPECT compared to the acetazolamide SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Shoichiro; Iwahashi, Hideaki; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    2002-03-01

    The authors evaluated and analyzed motor activation single photon emission computed tomography (M-SPECT) in ischemic cerebrovascular disease compared to resting and acetazolamide (ACZ) activated SPECT studies. Seventeen cases with STA-MCA bypass performed for ischemic cerebrovascular disease were examined. The SPECT studies consisting of resting, ACZ activation, and motor activation stages were performed before bypass, at 1 month, and 3 months after bypass. The result of the M-SPECT was expressed as negative or positive. Before bypass: In all 17 cases, SPECT studies of the affected side showed reduction of resting cerebral blood flow (CBF) and reduction of cerebrovascular reserve capacity (CVRC). Eight cases were positive in the M-SPECT study. One week after bypass: The resting CBF increased in seven cases. Four showed preoperative positive M-SPECT. Eight cases showed improvement of the CVRC. Twelve cases were positive in M-SPECT, and two were negative in the preoperative M-SPECT. Three months after bypass: Thirteen cases showed improvement in the resting CBF, and fourteen cases showed improvement of the CVRC. Fourteen cases were positive in the M-SPECT, and among these, 6 were negative in the preoperative M-SPECT. There was a discrepancy between the improvement in CVRC and M-SPECT. M-SPECT study can provide information about the degree of hemodynamic compromise and effect of bypass surgery. (author)

  13. Effect of bypass on the motor activation SPECT compared to the acetazolamide SPECT

    International Nuclear Information System (INIS)

    Kawaguchi, Shoichiro; Iwahashi, Hideaki; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    2002-01-01

    The authors evaluated and analyzed motor activation single photon emission computed tomography (M-SPECT) in ischemic cerebrovascular disease compared to resting and acetazolamide (ACZ) activated SPECT studies. Seventeen cases with STA-MCA bypass performed for ischemic cerebrovascular disease were examined. The SPECT studies consisting of resting, ACZ activation, and motor activation stages were performed before bypass, at 1 month, and 3 months after bypass. The result of the M-SPECT was expressed as negative or positive. Before bypass: In all 17 cases, SPECT studies of the affected side showed reduction of resting cerebral blood flow (CBF) and reduction of cerebrovascular reserve capacity (CVRC). Eight cases were positive in the M-SPECT study. One week after bypass: The resting CBF increased in seven cases. Four showed preoperative positive M-SPECT. Eight cases showed improvement of the CVRC. Twelve cases were positive in M-SPECT, and two were negative in the preoperative M-SPECT. Three months after bypass: Thirteen cases showed improvement in the resting CBF, and fourteen cases showed improvement of the CVRC. Fourteen cases were positive in the M-SPECT, and among these, 6 were negative in the preoperative M-SPECT. There was a discrepancy between the improvement in CVRC and M-SPECT. M-SPECT study can provide information about the degree of hemodynamic compromise and effect of bypass surgery. (author)

  14. Preclinical Evaluation of RYM1, a Matrix Metalloproteinase-Targeted Tracer for Imaging Aneurysm.

    Science.gov (United States)

    Toczek, Jakub; Ye, Yunpeng; Gona, Kiran; Kim, Hye-Yeong; Han, Jinah; Razavian, Mahmoud; Golestani, Reza; Zhang, Jiasheng; Wu, Terence L; Jung, Jae-Joon; Sadeghi, Mehran M

    2017-08-01

    Matrix metalloproteinases (MMPs) play a key role in abdominal aortic aneurysm (AAA) development. Accordingly, MMP-targeted imaging provides important information regarding vessel wall biology in the course of aneurysm development. Given the small size of the vessel wall and its proximity with blood, molecular imaging of aneurysm optimally requires highly sensitive tracers with rapid blood clearance. To this end, we developed a novel hydrosoluble zwitterionic MMP inhibitor, RYM, on the basis of which a pan-MMP tracer, RYM1, was designed. Here, we describe the development and preclinical evaluation of RYM1 in comparison with RP805, a commonly used pan-MMP tracer in murine models of aneurysm. Methods: The macrocyclic hydroxamate-based pan-MMP inhibitor coupled with 6-hydrazinonicotinamide, RYM1, was synthesized and labeled with 99m Tc. Radiochemical stability of 99m Tc-RYM1 was evaluated by radio-high-performance liquid chromatography analysis. Tracer blood kinetics and biodistribution were compared with 99m Tc-RP805 in C57BL/6J mice ( n = 10). 99m Tc-RYM1 binding to aneurysm and specificity were evaluated by quantitative autoradiography in apolipoprotein E-deficient (apoE -/- ) mice with CaCl 2 -induced carotid aneurysm ( n = 11). Angiotensin II-infused apoE -/- ( n = 16) mice were used for small-animal SPECT/CT imaging. Aortic tissue MMP activity and macrophage marker CD68 expression were assessed by zymography and reverse-transcription polymerase chain reaction. Results: RYM1 showed nanomolar range inhibition constants for several MMPs. 99m Tc-RYM1 was radiochemically stable in mouse blood for 5 h and demonstrated rapid renal clearance and lower blood levels in vivo compared with 99m Tc-RP805. 99m Tc-RYM1 binding to aneurysm and its specificity were shown by autoradiography in carotid aneurysm. Angiotensin II infusion in apoE -/- mice for 4 wk resulted in AAA formation in 36% (4/11) of surviving animals. In vivo 99m Tc-RYM1 small-animal SPECT/CT images showed

  15. Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification. An IAEA phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Brian E. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grosev, Darko [Univ. Hospital Centre Zagreb (Croatia); Buvat, Irene [Service Hospitalier Frederic Joliot, Paris (France); and others

    2017-08-01

    Accurate quantitation of activity provides the basis for internal dosimetry of targeted radionuclide therapies. This study investigated quantitative imaging capabilities at sites with a variety of experience and equipment and assessed levels of errors in activity quantitation in Single-Photon Emission Computed Tomography (SPECT) and planar imaging. Participants from 9 countries took part in a comparison in which planar, SPECT and SPECT with X ray computed tomography (SPECT-CT) imaging were used to quantify activities of four epoxy-filled cylinders containing {sup 133}Ba, which was chosen as a surrogate for {sup 131}I. The sources, with nominal volumes of 2, 4, 6 and 23 mL, were calibrated for {sup 133}Ba activity by the National Institute of Standards and Technology, but the activity was initially unknown to the participants. Imaging was performed in a cylindrical phantom filled with water. Two trials were carried out in which the participants first estimated the activities using their local standard protocols, and then repeated the measurements using a standardized acquisition and analysis protocol. Finally, processing of the imaging data from the second trial was repeated by a single centre using a fixed protocol. In the first trial, the activities were underestimated by about 15% with planar imaging. SPECT with Chang's first order attenuation correction (Chang-AC) and SPECT-CT overestimated the activity by about 10%. The second trial showed moderate improvements in accuracy and variability. Planar imaging was subject to methodological errors, e.g., in the use of a transmission scan for attenuation correction. The use of Chang-AC was subject to variability from the definition of phantom contours. The project demonstrated the need for training and standardized protocols to achieve good levels of quantitative accuracy and precision in a multicentre setting. Absolute quantification of simple objects with no background was possible with the strictest protocol to

  16. Quality control of analogue to digital conversion circuitry for artefact-free SPECT imaging

    International Nuclear Information System (INIS)

    Gillen, G.J.; Elliott, A.T.

    1992-01-01

    A simple method for the objective, quantitative assessment of analogue to digital conversion (ADC) differential linearity has been developed for SPECT imaging. The analytical approach uses the fact that a differential non-linearity in the ADC will produce a non-uniformity in the digitized image which has a well defined periodicity. This can be most clearly demonstrated in the frequency space domain by determining the Fourier transform of a thick profile which is taken through the centre of a flood field image. The accuracy of the method permits deteriorations in the performance of ADCs to be detected well before significant reductions in SPECT image quality are produced. The availability of a quantitative measure of ADC performance, which can be tested objectively using a simple data acquisition method, is of value in the specification, acceptance testing and general quality control of gamma camera SPECT systems. (author)

  17. Dosimetry and quantitative radionuclide imaging in radioimmunotherapy: Final report, July 15, 1992-July 14, 1996

    International Nuclear Information System (INIS)

    Leichner, P.K.

    1996-09-01

    Brief summaries of the principal accomplishments of this project on the development of quantitative SPECT for high energy photons (87Y, 19F) and stability testing of 87Y-labeled antibodies in the nude mouse model, development of an unified approach to photon and beta particle dosimetry, quantitative SPECT for nonuniform attenuation, and development of patient-specific dosimetry in radioimmunotherapy

  18. SPECT and PET imaging in epilepsy

    International Nuclear Information System (INIS)

    Semah, F.

    2007-01-01

    Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging are very useful for the management of patients with medically refractory partial epilepsy. Presurgical evaluation of patients with medically refractory partial epilepsy often included PET imaging using FDG. The use of SPECT in these patients adds some more information and gives the clinicians the possibility of having ictal imaging. Furthermore, PET and SPECT imaging are performed to better understand the pathophysiology of epilepsy. (authors)

  19. HMPAO-SPECT in cerebral seizures

    International Nuclear Information System (INIS)

    Gruenwald, F.; Bockisch, A.; Reichmann, K.; Ammari, B.; Hotze, A.; Biersack, H.J.; Durwen, H.; Buelau, P.; Elger, C.E.; Rohde, A.; Penin, H.

    1988-01-01

    In nine patients with suspected psychogenic seizures and in three patients with proven epileptic seizures HMPAO-SPECT was performed prior to and during seizure. In the patients with lateron-proven psychogenic seizures no, or only slight, changes of regional cerebral blood flow were found. Patients with proven epilepsy revealed partly normal findings interictally but during seizure a markedly increased circumscript blood flow was found in all patients. Even though PET is superior to SPECT with respect to spatial resolution, in the diagnosis of seizures HMPAO-SPECT has the advantage of enabling injection of the tracer during the seizure and the performance of the SPECT study subsequently. (orig.) [de

  20. Preliminary Experience with Small Animal SPECT Imaging on Clinical Gamma Cameras

    Directory of Open Access Journals (Sweden)

    P. Aguiar

    2014-01-01

    Full Text Available The traditional lack of techniques suitable for in vivo imaging has induced a great interest in molecular imaging for preclinical research. Nevertheless, its use spreads slowly due to the difficulties in justifying the high cost of the current dedicated preclinical scanners. An alternative for lowering the costs is to repurpose old clinical gamma cameras to be used for preclinical imaging. In this paper we assess the performance of a portable device, that is, working coupled to a single-head clinical gamma camera, and we present our preliminary experience in several small animal applications. Our findings, based on phantom experiments and animal studies, provided an image quality, in terms of contrast-noise trade-off, comparable to dedicated preclinical pinhole-based scanners. We feel that our portable device offers an opportunity for recycling the widespread availability of clinical gamma cameras in nuclear medicine departments to be used in small animal SPECT imaging and we hope that it can contribute to spreading the use of preclinical imaging within institutions on tight budgets.

  1. Comparative analysis of the sensitivity of the scanner rSPECT: using GAMOS: a Geant4-based framework

    International Nuclear Information System (INIS)

    Martinez Turtos, Rosana; Diaz Garcia, Angelina; Abreu Alfonso, Yamiel; Arteche, Jossue; Leyva Pernia, Diana

    2012-01-01

    The molecular imaging of cellular processes in vivo using preclinical animal studies and SPECT technique is one of the main reasons for the design of new devices with high spatial resolution. As an auxiliary tool, Monte Carlo simulation has allowed the characterization and optimization of those medical imaging systems effectively. At present there is a new simulation framework called GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations); which code, libraries and particle transport method correspond to those developed by GEANT4 and contains specific applications for nuclear medicine. This tool has been already validated for PET technique by comparison with experimental data, while not yet been done the correct evaluation of GAMOS for SPECT systems. Present work have demonstrated the potential of GAMOS in obtaining simulated realistic data using this nuclear imaging technique. For this purpose, simulation of a novel installation 'rSPECT' ,dedicated to the study of rodents, has been done. The study comprises the collimation and detection geometries and the fundamental characteristics of the previous published experimental measurements for rSPECT installation. Studies have been done using 99mTc and 20% energy window. Sensitivity values obtained by simulation revealed an acceptable agreement with experimental values. Therefore we can conclude that simulation results have shown good agreement with the real data. This fact allowed to estimate the behavior of the new GEANT4 simulation platform 'GAMOS' in SPECT applications and have demonstrated the feasibility of reproducing experimental data. (author)

  2. Brain perfusion SPECT imaging before and during the acetazolamide test using sup 99m Tc-HMPAO

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Higashi, Sotaro; Kinuya, Keiko; Tsuji, Shiro; Sumiya, Hisashi; Hisada, Kinichi; Yamashita, Junkoh (Kanazawa Univ. (Japan). School of Medicine)

    1990-05-01

    A new method using brain perfusion {sup 99m}Tc-HMPAO SPECT imaging was developed for evaluating cerebral perfusion reserve by the acetazolamide test with a short period. The first SPECT study was carried out for 13.5 min to obtain SPECT images at the resting state after 3 min postinjection of 555 MBq (15 mCi) of {sup 99m}Tc-HMPAO. At the same time as the start of the first SPECT study, 1 g of acetazolamide was intravenously injected. Immediately after the stop of the 1st SPECT study, 925 MBq (25 mCi) of {sup 99m}Tc-HMPAO from the same vial as in the first study was additionally injected. Three minutes later the second SPECT study was carried out for 10 min. After reconstruction the tomographic images in the first study were subtracted from the images in the second study to obtain those during the acetazolamide test after correction of the time differences in data acquisition between the two studies. This subtraction technique gives independent brain perfusion SPECT images before and during the acetazolamide test. Besides, the regional flow changes during the test were quantitatively analyzed. In conclusion this method seems to be practically useful for evaluating regional brain perfusion before and during drug treatments as a consecutive study with a short period of approximately 30 min. (author).

  3. SPECT of aged backache patients

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Shigehiko; Nishikimi, Junzo; Mizuno, Naokado; Watanabe, Kentaro; Kondo, Masaki; Ozaki, Satoshi; Urasaki, Tetsuya; Muro, Toshiyuki [Prefectural Tajimi Hospital, Gifu (Japan)

    1995-12-01

    Single photon emission computed tomography (SPECT) using {sup 99m}Tc-HMDP was performed on 53 middle-aged or elderly patients (male 20, female, 33; age range, 40-80 years old) with lumbago, i.e., 25 patients with lumbar spondylosis, 15 with lumbar degenerative spondylolisthesis, 4 with spondylolytic spondylolisthesis, 3 with compression fracture, 3 with pulurent spondylitis, 2 with spondylous osteoporosis, and 1 with spinal osteodesmosis. {sup 99m}Tc-HMDP (740 MBq) was intravenously injected and regular SPECT was performed at 3 hours. Gamma camera was performed for about 10 seconds with 5deg intervals, and 36 steps (180deg) of collection was completed after about 6 minutes. The radioisotope accumulation, the presence or absence of sthenia, and its site were evaluated. Forty-seven (88.7%) patients showed excessive accumulation, i.e., 40 (75.5%) in peripheral vertebral osteophyte, 31 (58.5%) in vertebral articulations, and 10 (18.9%) in whole vertebral body. Significantly increased bilateral excessive accumulation was admitted in the vertebral articulations of sliding disc in degenerative spondylolisthesis. SPECT is considered useful in understanding the pathophysiology of degenerative lumber diseases. (S.Y.).

  4. SPECT of aged backache patients

    International Nuclear Information System (INIS)

    Ito, Shigehiko; Nishikimi, Junzo; Mizuno, Naokado; Watanabe, Kentaro; Kondo, Masaki; Ozaki, Satoshi; Urasaki, Tetsuya; Muro, Toshiyuki

    1995-01-01

    Single photon emission computed tomography (SPECT) using 99m Tc-HMDP was performed on 53 middle-aged or elderly patients (male 20, female, 33; age range, 40-80 years old) with lumbago, i.e., 25 patients with lumbar spondylosis, 15 with lumbar degenerative spondylolisthesis, 4 with spondylolytic spondylolisthesis, 3 with compression fracture, 3 with pulurent spondylitis, 2 with spondylous osteoporosis, and 1 with spinal osteodesmosis. 99m Tc-HMDP (740 MBq) was intravenously injected and regular SPECT was performed at 3 hours. Gamma camera was performed for about 10 seconds with 5deg intervals, and 36 steps (180deg) of collection was completed after about 6 minutes. The radioisotope accumulation, the presence or absence of sthenia, and its site were evaluated. Forty-seven (88.7%) patients showed excessive accumulation, i.e., 40 (75.5%) in peripheral vertebral osteophyte, 31 (58.5%) in vertebral articulations, and 10 (18.9%) in whole vertebral body. Significantly increased bilateral excessive accumulation was admitted in the vertebral articulations of sliding disc in degenerative spondylolisthesis. SPECT is considered useful in understanding the pathophysiology of degenerative lumber diseases. (S.Y.)

  5. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    NARCIS (Netherlands)

    Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well

  6. Novel SPECT Technologies and Approaches in Cardiac Imaging

    Directory of Open Access Journals (Sweden)

    Piotr Slomka

    2016-12-01

    Full Text Available Recent novel approaches in myocardial perfusion single photon emission CT (SPECT have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans.

  7. NCI Pediatric Preclinical Testing Consortium

    Science.gov (United States)

    NCI has awarded grants to five research teams to participate in its Pediatric Preclinical Testing Consortium, which is intended to help to prioritize which agents to pursue in pediatric clinical trials.

  8. The current status of SPECT or SPECT/CT in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ik Dong; Choi, Eun Kyung; Chung, Yong An [Dept. of Radiology, Incheon Saint Mary' s HospitalThe Catholic University of Korea, Incheon (Korea, Republic of)

    2017-06-15

    The first step to nuclear medicine in Korea started with introduction of the gamma camera in 1969. Although planar images with the gamma camera give important functional information, they have the limitations that result from 2-dimensional images. Single-photon emission computed tomography (SPECT) due to its 3-dimensional image acquisition is superior to earlier planar gamma imaging in image resolution and diagnostic accuracy. As demand for a hybrid functional and anatomical imaging device has increased, integrated SPECT/CT systems have been used. In Korea, SPECT/CT was for the first time installed in 2003. SPECT/CT can eliminate many possible pitfalls on SPECT-alone images, making better attenuation correction and thereby improving image quality. Therefore, SPECT/CT is clinically preferred in many hospitals in various aspects. More recently, additional SPECT/CT images taken from the region with equivocal uptake on planar images have been helpful in making precise interpretation as part of their clinical workup in postoperative thyroid cancer patients. SPECT and SPECT/CT have various advantages, but its clinical application has gradually decreased in recent few years. While some researchers investigated the myocardial blood flow with cardiac PET using F-18 FDG or N-13 ammonia, myocardial perfusion SPECT is, at present, the radionuclide imaging study of choice for the risk stratification and guiding therapy in the coronary artery disease patients in Korea. New diagnostic radiopharmaceuticals for AD have received increasing attention; nevertheless, brain SPECT will remain the most reliable modality evaluating cerebral perfusion.

  9. Neuronal imaging using SPECT

    International Nuclear Information System (INIS)

    Yamashina, Shohei; Yamazaki, Jun-ichi

    2007-01-01

    123 I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy is one of only a few methods available for objective evaluation of cardiac sympathetic function at the clinical level. Disorders of cardiac sympathetic function play an important role in various heart diseases, and MIBG provides an abundance of useful information for the evaluation of severity, prognosis and therapeutic effects; this is particularly useful in cases of heart failure, ischaemic heart disease and arrhythmic disease. On the other hand, the quantitative indices for MIBG differ between institutions, and evidence has not been sufficiently well established for MIBG scintigraphy when compared with myocardial perfusion imaging in ischaemic heart diseases. In consideration of these difficulties, this review provides fundamental information regarding MIBG, its usefulness for various diseases and future difficulties. (orig.)

  10. Neuronal imaging using SPECT

    International Nuclear Information System (INIS)

    Yamashina, Shohei; Yamazaki, Jun-ichi

    2007-01-01

    123 I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy is one of only a few methods available for objective evaluation of cardiac sympathetic function at a clinical level. Disorders in cardiac sympathetic function play an important role in various heart diseases, and MIBG provides an abundance of useful information for evaluation of disease severity, prognosis, and therapeutic effects; this information is of particular value in patients with heart failure, ischemic heart diseases, or arrhythmic disorders. On the other hand, the quantitative indices for MIBG differ between institutions, and evidence has not been sufficiently well established for MIBG, compared with myocardial perfusion imaging, in ischemic heart diseases. In view of these difficulties, this review provides fundamental information regarding MIBG, its usefulness for various diseases and future difficulties. (orig.)

  11. SPECT/CT and pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Jann [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); The Faroese National Hospital, Department of Medicine, Torshavn (Faroe Islands); Gutte, Henrik [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Herlev Hospital, Copenhagen University Hospital, Department of Radiology, Copenhagen (Denmark); University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark)

    2014-05-15

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume coverage per rotation and faster rotation. Furthermore, the dual energy CT technique is a promising modality that can provide functional imaging in combination with anatomical information. Newer high-end CT scanners and SPECT systems are able to visualize smaller subsegmental emboli. However, consensus is lacking regarding the clinical impact and treatment. In the present review, SPECT and SPECT in combination with low-dose CT, CTPA and dual energy CT are discussed in the context of diagnosing PE. (orig.)

  12. Can perfusion SPECT aid CTPA interpretation?

    International Nuclear Information System (INIS)

    Gradinscak, D. J.; Roach, P.; Bailey, E.; Kueh, S.

    2009-01-01

    Full text:Objective: To determine whether fusion of perfusion SPECT and CTPA improves the diagnostic accuracy of CTPA. Methods: 35 patients with suspected PE who underwent both CTPA and SPECT V/Q within 48 hours were included. Of these, the majority (n=30) had PE as determined by the V/Q SPECT scan and the others (n=5) were negative for PE. The clinical reports of CTPA were reviewed and pulmonary emboli tabulated based on anatomical location. A second radiologist, blinded to the results of the clinical read and the V/Q SPECT scan, reviewed the CTPA with and without perfusion SPECT fusion for assistance. Results: A total 57 PE were reported on the clinical reports and 60 PE identified on the blinded read. Fused CTPA/perfursion SPECT images identified a further 5 PE not identified on the clinical read (8% increase) and 2 PE not identified on the blinded read (3% increase). The additional emboli detected resulted in a change in final diagnosis from PE negative to PE positive in 2 patients (6%) compared with the clinical read and 1 patient (3%) compared with the blinded read without SPECT fusion. Conclusion: Fused CTPA-SPECT perfusion improves the sensitivity of CTPA for the detection of PE in a small number of patients. Fused data may help guide the radiologist to identify sites of PE on CTPA.

  13. Clinical applications of SPECT-CT

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzadehfar, Hojjat; Biersack, Hans-Juergen (eds.) [University Hospital Bonn (Germany). Dept. of Nuclear Medicine

    2014-06-01

    Covers the full spectrum of clinical applications of SPECT/CT in diagnosis of benign and malignant diseases. Includes chapters on the use of SPECT/CT for dosimetry and for therapy planning. Completely up to date. Many helpful illustrations. SPECT/CT cameras have considerably improved diagnostic accuracy in recent years. Such cameras allow direct correlation of anatomic and functional information, resulting in better localization and definition of scintigraphic findings. In addition to this anatomic referencing, CT coregistration provides superior quantification of radiotracer uptake based on the attenuation correction capabilities of CT. Useful applications of SPECT/CT have been identified not only in oncology but also in other specialties such as orthopedics and cardiology. This book covers the full spectrum of clinical applications of SPECT/CT in diagnosis and therapy planning of benign and malignant diseases. Opening chapters discuss the technology and physics of SPECT/CT and its use for dosimetry. The role of SPECT/CT in the imaging of a range of pathologic conditions is then addressed in detail. Applications covered include, among others, imaging of the thyroid, bone, and lungs, imaging of neuroendocrine tumors, cardiac scintigraphy, and sentinel node scintigraphy. Individual chapters are also devoted to therapy planning in selective internal radiation therapy of liver tumors and bremsstrahlung SPECT/CT. Readers will find this book to be an essential and up-to-date source of information on this invaluable hybrid imaging technique.

  14. MR guided spatial normalization of SPECT scans

    International Nuclear Information System (INIS)

    Crouch, B.; Barnden, L.R.; Kwiatek, R.

    2010-01-01

    Full text: In SPECT population studies where magnetic resonance (MR) scans are also available, the higher resolution of the MR scans allows for an improved spatial normalization of the SPECT scans. In this approach, the SPECT images are first coregistered to their corresponding MR images by a linear (affine) transformation which is calculated using SPM's mutual information maximization algorithm. Non-linear spatial normalization maps are then computed either directly from the MR scans using SPM's built in spatial normalization algorithm, or, from segmented TI MR images using DARTEL, an advanced diffeomorphism based spatial normalization algorithm. We compare these MR based methods to standard SPECT based spatial normalization for a population of 27 fibromyalgia patients and 25 healthy controls with spin echo T 1 scans. We identify significant perfusion deficits in prefrontal white matter in FM patients, with the DARTEL based spatial normalization procedure yielding stronger statistics than the standard SPECT based spatial normalization. (author)

  15. Brain imaging during seizure: ictal brain SPECT

    International Nuclear Information System (INIS)

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  16. Neuroradiological findings in primary progressive aphasia: CT, MRI and cerebral perfusion SPECT

    International Nuclear Information System (INIS)

    Sinnatamby, R.; Antoun, N.A.; Freer, C.E.L.; Miles, K.A.; Hodges, J.R.

    1996-01-01

    Primary progressive aphasia (PPA) is defined as progressive decline in language for 2 or more years with preservation of activities of daily living and general cognitive functions. Whereas the clinical features of this syndrome have been well documented, the neuroradiological findings have not been studied systematically. We studied 13 patients with PPA retrospectively: 10 underwent CT, 12 MRI and 12 cerebral perfusion studies using 99m Tc-HMPAO SPECT. CT and MR images were scored for focal atrophy by two independent assessors. Initial qualitative assessment of SPECT images was confirmed by quantitative analysis. CY was normal in 5 patients. Focal atrophy, affecting predominantly the left temporal lobe, was seen in 4 of 10 patients on CT, and 10 of 12 on MRI. Atrophy was localised primarily to the superior and middle temporal gyri on MRI. All 12 patients who underwent SPECT had unilateral temporal lobe perfusion defects, in 2 patients of whom MRI was normal. CT is relatively insensitive to focal abnormalities in PPA; MRI and SPECT are the imaging modalities of choice. MRI allows accurate, specific localisation of atrophy with the temporal neocortex. SPECT may reveal a functional decrease in cerebral perfusion prior to establishment of structural change. (orig.)

  17. An investigation of inconsistent projections and artefacts in multi-pinhole SPECT with axially aligned pinholes

    International Nuclear Information System (INIS)

    Kench, P L; Meikle, S R; Lin, J; Gregoire, M C

    2011-01-01

    Multiple pinholes are advantageous for maximizing the use of the available field of view (FOV) of compact small animal single photon emission computed tomography (SPECT) detectors. However, when the pinholes are aligned axially to optimize imaging of extended objects, such as rodents, multiplexing of the pinhole projections can give rise to inconsistent data which leads to 'ghost point' artefacts in the reconstructed volume. A novel four pinhole collimator with a baffle was designed and implemented to eliminate these inconsistent projections. Simulation and physical phantom studies were performed to investigate artefacts from axially aligned pinholes and the efficacy of the baffle in removing inconsistent data and, thus, reducing reconstruction artefacts. SPECT was performed using a Defrise phantom to investigate the impact of collimator design on FOV utilization and axial blurring effects. Multiple pinhole SPECT acquired with a baffle had fewer artefacts and improved quantitative accuracy when compared to SPECT acquired without a baffle. The use of four pinholes positioned in a square maximized the available FOV, increased acquisition sensitivity and reduced axial blurring effects. These findings support the use of a baffle to eliminate inconsistent projection data arising from axially aligned pinholes and improve small animal SPECT reconstructions.

  18. Neuroradiological findings in primary progressive aphasia: CT, MRI and cerebral perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sinnatamby, R. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Antoun, N.A. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Freer, C.E.L. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Miles, K.A. [Dept. of Nuclear Medicine, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Hodges, J.R. [Dept. of Neurology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom)

    1996-04-01

    Primary progressive aphasia (PPA) is defined as progressive decline in language for 2 or more years with preservation of activities of daily living and general cognitive functions. Whereas the clinical features of this syndrome have been well documented, the neuroradiological findings have not been studied systematically. We studied 13 patients with PPA retrospectively: 10 underwent CT, 12 MRI and 12 cerebral perfusion studies using {sup 99m}Tc-HMPAO SPECT. CT and MR images were scored for focal atrophy by two independent assessors. Initial qualitative assessment of SPECT images was confirmed by quantitative analysis. CY was normal in 5 patients. Focal atrophy, affecting predominantly the left temporal lobe, was seen in 4 of 10 patients on CT, and 10 of 12 on MRI. Atrophy was localised primarily to the superior and middle temporal gyri on MRI. All 12 patients who underwent SPECT had unilateral temporal lobe perfusion defects, in 2 patients of whom MRI was normal. CT is relatively insensitive to focal abnormalities in PPA; MRI and SPECT are the imaging modalities of choice. MRI allows accurate, specific localisation of atrophy with the temporal neocortex. SPECT may reveal a functional decrease in cerebral perfusion prior to establishment of structural change. (orig.)

  19. Early and delayed Tc-99m ECD brain SPECT in SLE patients with CNS involvement

    International Nuclear Information System (INIS)

    Kikukawa, Kaoru; Toyama, Hiroshi; Katayama, Masao

    2000-01-01

    We compared early and delayed Tc-99m ECD SPECT scans in 32 SLE patients (Group 1, definite neuropsychiatric disorders; Group 2, minor neurologic symptoms or normal) with those of normal controls by visual inspection and semi-quantitative evaluation. With visual interpretation, 13 out of 14 patients in Group 1 (93%) and 7 out of 18 patients in Group 2 (39%) had diffuse uneven decrease in early scans. Seven patients in Group 2 (39%) who had normal early scans demonstrated focal decrease in the medial frontal lobe in delayed scans. With cerebral region to cerebellar ratios, in early scans, the medial frontal lobe in Group 1 and Group 2 was significantly lower than in normal controls, and lateral frontal lobe and occipital lobes in Group 1 were significantly lower than in normal controls. Nevertheless, in delayed scans, every cortical region except for the parietal lode in Groups 1 and 2 was significantly lower than in normal controls. The retention rates in all regions in SLE patients were significantly lower than in normal controls. No case showed SPECT improvement on follow-up studies in either group in spite of clinical improvement. Delayed Tc-99m ECD brain SPECT of high sensitivity might be useful in detecting CNS involvement. Although the SPECT findings did not correlate with the neuropsychiatric symptoms, early and delayed Tc-99m ECD SPECT seems to provide useful objective diagnostic information in SLE patients. (author)

  20. The usefulness of treatment evaluation of severe heart failure by ECG-gated myocardial SPECT

    International Nuclear Information System (INIS)

    Ohkoshi, Nobuyuki; Watanabe, Shingo; Matsumoto, Tooru

    2011-01-01

    Our purpose of study was to investigate the usefulness of treatment evaluation of severe heart failure by Electrocardiogram (ECG)-gated myocardial single photon emission computed tomography (SPECT). We evaluated the cardiac function in the case of severe heart failure by gated SPECT and compared it with the cardiac function obtained by left ventriculography (LVG), echocardiography, cardiac MRI, and B-type natriuretic peptide (BNP) values. We investigated the correlation of ejection fraction (EF), time lag of wall motion between the septal and lateral walls of the left ventricle for cardiac resynchronization therapy (CRT) and wall thickening (WT). We classified the left ventricular (LV) into basal, middle and apical areas for comparison of WT. We investigated the effect of a perfusion defect score in these comparisons. The gated SPECT results were correlated with comparative subjects in EF. The results were correlated with MRI on the middle area of the LV in the comparison of WT. We thought it was possible that there was an effect from a perfusion defect score in a time lag comparison of wall motion. Treatment evaluation of severe heart failure by gated SPECT is useful, because it is able to obtain three-dimensional cardiac function analysis, and it offers objectivity and reproducible quantitative evaluation. At the same time, perfusion SPECT is helpful for CRT and LV-plasty. (author)

  1. SPECT og PET i neurobiologien

    DEFF Research Database (Denmark)

    Paulson, O.B.; Lassen, N.A.

    1997-01-01

    PET (positron emission tomography) and SPECT (single photon emission computed tomography) are isotopic methods in which the distribution is registered of radiolabelled tracers given in such small amounts that they are without effect on the organism or the organism's disposal of them. Thus, a series...... of important biological processes in the intact organism can be studied. The methods have been used in many disciplines but in particular for neurobiological research on the brain--e.g., the brain's regional blood circulation and mapping of the brain's functional structure. The methods have also been used...

  2. Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Park, S-J; Yu, A R; Lee, Y-J; Kim, Y-S; Kim, H-J

    2014-01-01

    Dedicated single-photon-emission computed tomography (SPECT) systems based on pixelated semiconductors such as cadmium telluride (CdTe) are in development to study small animal models of human disease. In an effort to develop a high-resolution, low-dose system for small animal imaging, we compared a CdTe-based SPECT system and a conventional NaI(Tl)-based SPECT system in terms of spatial resolution, sensitivity, contrast, and contrast-to-noise ratio (CNR). In addition, we investigated the radiation absorbed dose and calculated a figure of merit (FOM) for both SPECT systems. Using the conventional NaI(Tl)-based SPECT system, we achieved a spatial resolution of 1.66 mm at a 30 mm source-to-collimator distance, and a resolution of 2.4-mm hot-rods. Using the newly-developed CdTe-based SPECT system, we achieved a spatial resolution of 1.32 mm FWHM at a 30 mm source-to-collimator distance, and a resolution of 1.7-mm hot-rods. The sensitivities at a 30 mm source-to-collimator distance were 115.73 counts/sec/MBq and 83.38 counts/sec/MBq for the CdTe-based SPECT and conventional NaI(Tl)-based SPECT systems, respectively. To compare quantitative measurements in the mouse brain, we calculated the CNR for images from both systems. The CNR from the CdTe-based SPECT system was 4.41, while that from the conventional NaI(Tl)-based SPECT system was 3.11 when the injected striatal dose was 160 Bq/voxel. The CNR increased as a function of injected dose in both systems. The FOM of the CdTe-based SPECT system was superior to that of the conventional NaI(Tl)-based SPECT system, and the highest FOM was achieved with the CdTe-based SPECT at a dose of 40 Bq/voxel injected into the striatum. Thus, a CdTe-based SPECT system showed significant improvement in performance compared with a conventional system in terms of spatial resolution, sensitivity, and CNR, while reducing the radiation dose to the small animal subject. Herein, we discuss the feasibility of a CdTe-based SPECT system for high

  3. Wide beam reconstruction for half-dose or half-time cardiac gated SPECT acquisitions: optimization of resources and reduction in radiation exposure

    International Nuclear Information System (INIS)

    Marcassa, Claudio; Campini, Riccardo; Zoccarato, Orazio; Calza, Paolo

    2011-01-01

    A new iterative reconstruction algorithm (WBR trademark) has been recently proposed for cardiac single photon emission computed tomography (SPECT). The WBR trademark technology is designed to reduce noise, improving lesion identification without affecting the image resolution, allowing SPECT studies with reduced count statistic. This allows for either half-time (HT) or half-dose (HD) cardiac SPECT, with image quality and quantitative data comparable to standard-time (ST) or standard-dose (SD) SPECT. Few data exist on the comparison between conventional filtered backprojection (FBP) and this new algorithm in a clinical setting. The aim of this study was to compare the performance of FBP and WBR trademark. Phantoms studies were performed to compare spatial resolution and contrast recovery with FBP, ordered subset expectation maximization (OSEM) and WBR trademark. A group of 92 patients, with different cardiac pathology, scheduled for a stress-rest SPECT were studied: 52 patients (group A) were injected with a SD of tracer and underwent both ST and HT SPECT; 40 patients (group B) were injected with a half dose of tracer and underwent ST SPECT and immediately after an additional SPECT at double time/projection (DT), to compensate for the low count statistic. A 2-day 99m Tc-sestamibi protocol was used in all patients. SD/ST and HD/DT SPECT were reconstructed with a conventional FBP; SD/HT and HD/ST SPECT were reconstructed with WBR trademark. The summed stress score (SSS) and summed rest score (SRS) were calculated; the left ventricular ejection fraction (LVEF) was automatically derived. In group A (SD), no significant differences were observed between ST FBP SPECT and HT WBR trademark in SSS (11.1 and 11.7, respectively) and SRS (9.4 and 10.3, respectively, NS). LVEF on rest acquisitions was also comparable (50% on ST SPECT and 49% on HT SPECT, NS); LVEF on post-stress studies in HT SPECT (46%) was lower than ST SPECT (50%), although not statistically significant. In

  4. Preclinical models in radiation oncology

    Directory of Open Access Journals (Sweden)

    Kahn Jenna

    2012-12-01

    Full Text Available Abstract As the incidence of cancer continues to rise, the use of radiotherapy has emerged as a leading treatment modality. Preclinical models in radiation oncology are essential tools for cancer research and therapeutics. Various model systems have been used to test radiation therapy, including in vitro cell culture assays as well as in vivo ectopic and orthotopic xenograft models. This review aims to describe such models, their advantages and disadvantages, particularly as they have been employed in the discovery of molecular targets for tumor radiosensitization. Ultimately, any model system must be judged by its utility in developing more effective cancer therapies, which is in turn dependent on its ability to simulate the biology of tumors as they exist in situ. Although every model has its limitations, each has played a significant role in preclinical testing. Continued advances in preclinical models will allow for the identification and application of targets for radiation in the clinic.

  5. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  6. SPECT of the brain: Present and future

    International Nuclear Information System (INIS)

    Fazio, F.; Lenzi, G.L.

    1986-01-01

    In both PET and SPECT, most of the studies and the models have been addressed to two organs: brain and heart. So far, brain has certainly been investigated more. The several comparisons between planar scintigraphy and SPECT, between X-ray TCT and SPECT, and also between PET and SPECT, have tended to consider SPECT a cheap but scarcely useful tool for a nuclear medicine section. Again the authors feel that this is due to the fact that SPECT is really a ''physiological tomography'', with little known about its physiology or how it is measured. Thus the present state of the art of SPECT of the brain is characterized by a collection of data and reports on brain imaging and by a slowly growing basic understanding of the utilized modes. The introduction of a new brain-imaging radiopharmaceutical is immediately signaled by its ''first clinical application'' without parallel studies on the kinetics, the metabolic degradation, and the real suitability of the molecule as a tracer for measurement of regional CBF. Only a few attempts seek to narrow this discussion between clinic and biology, and the authors like to emphasize the need for nuclear medicine people to dedicate more time and effort

  7. Preclinical electrogastrography in experimental pigs

    Science.gov (United States)

    Květina, Jaroslav; Varayil, Jithinraj Edakkanambeth; Ali, Shahzad Marghoob; Kuneš, Martin; Bureš, Jan; Tachecí, Ilja; Rejchrt, Stanislav; Kopáčová, Marcela

    2010-01-01

    Surface electrogastrography (EGG) is a non-invasive means of recording gastric myoelectric activity or slow waves from cutaneous leads placed over the stomach. This paper provides a comprehensive review of preclinical EGG. Our group recently set up and worked out the methods for EGG in experimental pigs. We gained our initial experience in the use of EGG in assessment of porcine gastric myoelectric activity after volume challenge and after intragastric administration of itopride and erythromycin. The mean dominant frequency in pigs is comparable with that found in humans. EGG in experimental pigs is feasible. Experimental EGG is an important basis for further preclinical projects in pharmacology and toxicology. PMID:21217873

  8. SPECT quantification of regional radionuclide distributions

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.

    1986-01-01

    SPECT quantification of regional radionuclide activities within the human body is affected by several physical and instrumental factors including attenuation of photons within the patient, Compton scattered events, the system's finite spatial resolution and object size, finite number of detected events, partial volume effects, the radiopharmaceutical biokinetics, and patient and/or organ motion. Furthermore, other instrumentation factors such as calibration of the center-of-rotation, sampling, and detector nonuniformities will affect the SPECT measurement process. These factors are described, together with examples of compensation methods that are currently available for improving SPECT quantification. SPECT offers the potential to improve in vivo estimates of absorbed dose, provided the acquisition, reconstruction, and compensation procedures are adequately implemented and utilized. 53 references, 2 figures

  9. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Krausz, Y.; Yaffe, S.; Atlan, H.; Cohen, D.; Konstantini, S.; Meiner, Z.

    1991-01-01

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99m Tc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  10. Role of brain SPECT in epilepsy exploration

    International Nuclear Information System (INIS)

    Biraben, A.; Bernard, AM.

    1996-01-01

    The management of epileptic patients is currently developing in relation with the introduction of video EEG and the opening of medical centers dedicated to epilepsy. The role of SPECT is now well established to assess the temporal and spatial dynamic phenomena during seizures. Ictal SPECT has technical and organisational requirements but is a very sensitive method, which appears to be superior to other available imaging techniques. (author)

  11. Technical approach to improvement of SPECT images

    International Nuclear Information System (INIS)

    Fukukita, Hiroyoshi

    1985-01-01

    At present, a large number of SPECT systems are being widely used in Japan, hence, it is reasonable for us to know the physical and imaging characteristics of these SPECT devices, and also to recommend the optimum utility of SPECT systems. For this reason, a survey respect of characteristics of the commercialy available SPECT devices was carried out. In addition to this, various factors which have significant influence over SPECT image quality, such as, data acquisition matrix, reconstruction filter, γ-ray attenuation correction and daily quality control procedure, were also investigated. The materials used for this study are PET/SPECT phantom, Alderson liver phantom filled with Tc-99m solution, and either LFOV-E or ZLC-7500 interfaced to Scintipac 2400 minicomputer with 256 K byte of memory. Following are the results of this study. 1) The suitable data acquisition procedure was 128 x 128 matrix for linear sampling and approximately 64 views for angular sampling. 2) Reconstructed image using pre-processing filter with Wiener and Butterworth filters provided high quality image as compared with the Ramp filter. 3) Weighted backprojection method (WBP) proposed by Tanaka was superior to other methods, such as Sorenson method and Chang method in the object with non-uniform distribution of radionuclide. 4) It was found that uniformity correction of gamma camera and precise adjustment of the center of rotation are most important to maintain the images with a high quality. (author)

  12. Impact of patient motion on myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Huang Kemin; Feng Yanlin; He Xiaohong; Wen Guanghua; Yu Fengwen; Liu Shusheng; Liu Dejun; Yuan Jianwei; Yang Ming

    2008-01-01

    Objective: It is well known that patient motion may cause artifacts in myocardial SPECT images and affect clinical diagnosis. The aim of the study was to evaluate the effects of motion on quality and semi-quantitative results of myocardial perfusion images. Methods: Six healthy volunteers un- derwent myocardial perfusion SPECT. The raw data in each case was manually shifted 1-6 frames and 1 4 pixels, respectively by using the motion correction software. The shifted raw data were then reconstructed. A semi-quantitative software was used to assess the myocardial perfusion of left ventricle. The quality and semi-quantitative results of the tomographic images reconstructed from the raw data with and without motion were compared and analyzed. SPSS 12.0 was used for data analysis. Results: There was no visible artifact and semi-quantitative difference on the data with 1 frame and (or) 1 pixel shift when compared with the original data without shift. The image artifacts became significantly deteriorated when the number of flame and (or) pixel shift was increased. In general, the image artifact of inferior and posterior wall was related to the upward shift, and that of anterior and infero-posterior wall was related to the downward shift, that of septal, anterior, infero-postefior wall and apex was related to right-ward shift, and the septal and infero-posterior wall was related to the left-ward shift. The differences along the x-axis shift were more prominent than that of the y-axis (t=2.848, P<0.01), and the differences in the downward and rightward shift were more severe than the upward and leftward shift (t=2.941, 6.598; all P<0.01), respectively. Conclusions: Image artifacts became significant when there was motion induced by manual shift of more than one flame and (or) one pixel. Different motion directions were closely related to different segments of left ventricle. (authors)

  13. A new reconstruction strategy for image improvement in pinhole SPECT

    International Nuclear Information System (INIS)

    Zeniya, Tsutomu; Watabe, Hiroshi; Kim, Kyeong Min; Teramoto, Noboru; Hayashi, Takuya; Iida, Hidehiro; Aoi, Toshiyuki; Sohlberg, Antti; Kudo, Hiroyuki

    2004-01-01

    Pinhole single-photon emission computed tomography (SPECT) is able to provide information on the biodistribution of several radioligands in small laboratory animals, but has limitations associated with non-uniform spatial resolution or axial blurring. We have hypothesised that this blurring is due to incompleteness of the projection data acquired by a single circular pinhole orbit, and have evaluated a new strategy for accurate image reconstruction with better spatial resolution uniformity. A pinhole SPECT system using two circular orbits and a dedicated three-dimensional ordered subsets expectation maximisation (3D-OSEM) reconstruction method were developed. In this system, not the camera but the object rotates, and the two orbits are at 90 and 45 relative to the object's axis. This system satisfies Tuy's condition, and is thus able to provide complete data for 3D pinhole SPECT reconstruction within the whole field of view (FOV). To evaluate this system, a series of experiments was carried out using a multiple-disk phantom filled with 99m Tc solution. The feasibility of the proposed method for small animal imaging was tested with a mouse bone study using 99m Tc-hydroxymethylene diphosphonate. Feldkamp's filtered back-projection (FBP) method and the 3D-OSEM method were applied to these data sets, and the visual and statistical properties were examined. Axial blurring, which was still visible at the edge of the FOV even after applying the conventional 3D-OSEM instead of FBP for single-orbit data, was not visible after application of 3D-OSEM using two-orbit data. 3D-OSEM using two-orbit data dramatically reduced the resolution non-uniformity and statistical noise, and also demonstrated considerably better image quality in the mouse scan. This system may be of use in quantitative assessment of bio-physiological functions in small animals. (orig.)

  14. Clinical evaluation of stress thallium spect in ischemic heart disease

    International Nuclear Information System (INIS)

    Sui, Osamu; Kimura, Nazuna; Soeki; Takeshi; Takeichi, Naoki; Shinohara, Hisanori; Tamura, Yoshiyuki; Fukuda, Nobuo

    1997-01-01

    Thallium SPECT was performed in patients with significant coronary artery stenosis, 67 cases were after maximal exercise and 74 cases were during coronary vasodilation induced by ATP (adenosine triphosphate) infusion. In patients suspected of angina pectoris, the sensitivity, specificity and predictive accuracy for detection of coronary artery disease (CAD) were 88%, 78% and 82% for exercise SPECT, and 100%, 72% and 84% for ATP SPECT studies, respectively. In patients with old myocardial infarction, these were 73%, 100% and 88% for exercise SPECT and 71%, 100% and 81% for ATP SPECT. These were 75%, 49% and 60% for treadmill exercise test in the patient group including both angina and myocardial infarction. For detection of diseased vessels, the diagnostic accuracy for left anterior descending artery and right coronary artery lesions was almost equal for ATP and exercise SPECT study, but ATP SPECT study was more sensitive than exercise SPECT study in detection of left circumflex artery lesions. ATP as well as exercise SPECT studies occasionally gave false positive results in patients with single-vessel disease. ATP as well as exercise SPECT studies underestimated the severity of multi-vessel disease. In general, the results of ATP SPECT imaging were highly concordant with the results of exercise SPECT imaging. ATP stress thallium SPECT imaging provided a safe and highly accurate diagnostic tool for detection of CAD. (author)

  15. Perspective: Recommendations for benchmarking pre-clinical studies of nanomedicines

    Science.gov (United States)

    Dawidczyk, Charlene M.; Russell, Luisa M.; Searson, Peter C.

    2015-01-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small molecule drug therapy for cancer, and to achieve both therapeutic and diagnostic functions in the same platform. Pre-clinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of pre-clinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of pre-clinical trials and propose a protocol for benchmarking that we recommend be included in in vivo pre-clinical studies of drug delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. PMID:26249177

  16. Utility of the cerebral SPECT in schizophrenia

    International Nuclear Information System (INIS)

    Heuguerot, C.H.; Lopez-Lerena, J.J.; Quagliata, A.; Hermida, J.C.; Oliveira, M.C.; Anastasia, H.

    2002-01-01

    Objective: To compare cortical and subcortical cerebral perfusion in schizophrenics patients with normal controls, and analyze the relation to clinical patterns and neuroleptic treatment. Method: 18 patients meeting DSM-IV criteria for schizophrenia under neuroleptic treatment (except 3 cases), evaluated with clinical scales (BPRS and PANSS). The control group included 5 subjects in good health. All subjects were studied with single photon emission computed tomography (SPECT) using technetium-99 etilencisteinato (99mTc-ECD) as a tracer. Region of interest (ROI) were defined in cerebral cortex and thalamus-basal ganglia areas. The cortical cerebral blood flow was measured with a quantitative analysis, expressed as a ratio of regional tracer uptake to occipital cortex uptake. In basal ganglia and thalamus, regional blood flow was evaluated with a semiquantitative methodology, defining categories. Results: Schizophrenics patients showed a significant reduction of perfusion on a left anterior frontal cortex ('hipofrontality') and global decrease of perfusion on left hemisphere. The interhemispheric (left/right) ratio of perfusion was incremented respect control group. In thalamic-basal ganglia complex, a significant hypoperfusion was found in neuroleptic-free patients and control group. On the other hand, neuroleptic-treated patients revealed normal or increased regional blood flow in thalamus and basal ganglia. Only the clinical item 'thought disorder' had significant high correlation with perfusion on left structures (left anterior frontal, left lateral frontal, left temporo-parietal); the other items correlated with right structures. Conclusions: The findings suggest a pattern o left cerebral hypoperfusion in patients with an incremented interhemispheric ratio of cerebral blood flow. The pivotal role of thalamic and basal ganglia areas in the pathophysiology of schizophrenia and neuroleptic action was reaffirmed; apparently, perfusion in thalamic-basal ganglia

  17. Semi-quantitative analysis of post-transarterial radioembolization 90Y Microsphere position emission tomography combined with computed tomography (PET/CT) images in advance liver malignancy: Comparison with 99mTc macroaggregated albumin (MAA) single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Rhee, Seung Hong; Kim, Sung Eun; Cho, Jae Hyuk; Park, Ju Kyung; Kim, Yun Hwan; Choe, Jae Gol; Eo, Jae Seon; Park, So Yeon; Lee, Eun Sub

    2016-01-01

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ( 99 mTc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ( 90 Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent 90 Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone 99 mTc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of 90 Y microspheres, the patients underwent posttreatment 90 Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in 90 Y PET/CT (TNR-yp) and 99 mTc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The 99mTc MAA SPECT showed a good correlation with 90 Y PET/CT in TNR values, suggesting that 99 mTc MAA can be used as an adequate pretreatment evaluation method. However, the 99 mTc MAA SPECT image consistently shows lower TNR values compared to 90Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using 99 mTc MAA SPECT. Considering that 99 mTc MAA is the only clinically available surrogate marker

  18. Semi-quantitative analysis of post-transarterial radioembolization {sup 90}Y Microsphere position emission tomography combined with computed tomography (PET/CT) images in advance liver malignancy: Comparison with {sup 99m}Tc macroaggregated albumin (MAA) single photon emission computed tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Seung Hong; Kim, Sung Eun; Cho, Jae Hyuk; Park, Ju Kyung; Kim, Yun Hwan; Choe, Jae Gol [Korea University Anam Hospital, Seoul (Korea, Republic of); Eo, Jae Seon; Park, So Yeon; Lee, Eun Sub [Dept. of Nuclear Medicine, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2016-03-15

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ({sup 99}mTc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ({sup 90}Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent {sup 90}Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone {sup 99}mTc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of {sup 90}Y microspheres, the patients underwent posttreatment {sup 90}Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in {sup 90}Y PET/CT (TNR-yp) and {sup 99}mTc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The 99mTc MAA SPECT showed a good correlation with {sup 90}Y PET/CT in TNR values, suggesting that {sup 99}mTc MAA can be used as an adequate pretreatment evaluation method. However, the {sup 99}mTc MAA SPECT image consistently shows lower TNR values compared to 90Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using {sup 99}mTc MAA SPECT. Considering that

  19. Myocardial perfusion SPECT for assessment of left ventricular function and volume- comparison with echocardiography

    International Nuclear Information System (INIS)

    Cheng Xu; Huang Gang

    2004-01-01

    LVEF(59.8±14,7% versus 60.9±15.1%), EDV(89.7±40.1 ml versus 86.5±39.9 ml) and ESV(40.9±37.5 ml versus 38.8±36.1 ml). The correlation coefficients between these three parameters were excellent (all with r=0.99, P 90 ml) had similar LVEF(50.6+18.3% versus 53.1+10.9%), EDV(112.6+54.1 ml versus 122.8±30.8 ml) and ESV(63.8±55.0 ml versus 60.2±29.0 ml) in gated SPECT and echocardiography (all P>0.10). Conclusions: Quantitative gated myocardial perfusion SPECT had a good correlation with echocardiography for the measurements of LVEF and absolute LV volumes. This automatic technique was highly reproducible. However, gated SPECT may overestimate LVEF due to underestimate LV ESV in the patients with smaller left ventricular volumes. (authors)

  20. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    International Nuclear Information System (INIS)

    Chan, Chung; Sinusas, Albert J; Liu, Chi; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory–cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory–cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased

  1. Evaluating performance of a pixel array semiconductor SPECT system for small animal imaging

    International Nuclear Information System (INIS)

    Kubo, Naoki; Zhao, Songji; Fujiki, Yutaka

    2005-01-01

    Small animal imaging has recently been focused on basic nuclear medicine. We have designed and built a small animal SPECT imaging system using a semiconductor camera and a newly designed collimator. We assess the performance of this system for small object imaging. We employed an MGC 1500 (Acrorad Co.) camera including a CdTe semiconductor. The pixel size was 1.4 mm/pixel. We designed and produced a parallel-hole collimator with 20-mm hole length. Our SPECT system consisted of a semiconductor camera with the subject holder set on an electric rotating stage controlled by a computer. We compared this system with a conventional small animal SPECT system comprising a SPECT-2000H scanner with four Anger type cameras and pinhole collimators. The count rate linearity for estimation of the scatter was evaluated for a pie-chart phantom containing different concentrations of 99m Tc. We measured the full width half maximum (FWHM) of the 99m Tc SPECT line source along with scatter. The system volume sensitivity was examined using a flood source phantom which was 35 mm long with a 32-mm inside diameter. Additionally, an in vivo myocardial perfusion SPECT study was performed with a rat. With regards to energy resolution, the semiconductor camera (5.6%) was superior to the conventional Anger type camera (9.8%). In the count rate linearity evaluation, the regression lines of the SPECT values were y=0.019x+0.031 (r 2 =0.999) for our system and y=0.018x+0.060 (r 2 =0.997) for the conventional system. Thus, the scatter count using the semiconductor camera was less than that using the conventional camera. FWHMs of our system and the conventional system were 2.9±0.1 and 2.0±0.1 mm, respectively. Moreover, the system volume sensitivity of our system [0.51 kcps/(MBq/ml)/cm] was superior to that of the conventional system [0.44 kcps/(MBq/ml)/cm]. Our system provided clear images of the rat myocardium, sufficient for practical use in small animal imaging. Our SPECT system, utilizing a

  2. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    Science.gov (United States)

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of

  3. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    International Nuclear Information System (INIS)

    Lee, Joo Ryung; Ahn, Byeong Cheol; Kewm, Do Hun

    2005-01-01

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, ρ =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 ± 0.20 vs 3.04 ± 0.27, ρ =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, ρ =0.012, r=-0.924, ρ =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers

  4. Dopamine transporter density of the basal ganglia assessed with I-123 IPT SPECT in methamphetamine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Ryung; Ahn, Byeong Cheol [Kyungpook National University Medical School, Daegu (Korea, Republic of); Kewm, Do Hun [National Bugok Mental Hospital, Changryung (Korea, Republic of)] (and others)

    2005-10-15

    Functional imaging of dopamine transporter (DAT) defines integrity of the dopaminergic system, and DAT is the target site of drugs of abuse such as cocaine and methamphetamine. Functional imaging the DAT may be a sensitive and selective indicator of neurotoxic change by the drug. The aim of the present study is to evaluate the clinical implications of qualitative/quantitative analyses of dopamine transporter imaging in methamphetamine abusers. Six detoxified methamphetamine abusers (abuser group) and 4 volunteers (control group) were enrolled in this study. Brain MRI was performed in all of abuser group. Abuser group underwent psychiatric and depression assessment using brief psychiatric rating scale (BPRS) and Hamilton depression rating scale (HAMD), respectively. All of the subjects underwent I-123 IPT SPECT (IPT SPECT). IPT SPECT image was analysed with visual qualitative method and quantitative method using basal ganglia dopamine transporter (DAT) specific/non-specific binding ratio (SBR). Comparison of DAT SBR between abuser and control groups was performed. We also performed correlation tests between psychiatric and depression assessment results and DAT SBR in abuser group. All of abuser group showed normal MRI finding, but had residual psychiatric and depressive symptoms, and psychiatric and depressive symptom scores were exactly correlated (r=1.0, {rho} =0.005) each other. Five of them showed abnormal finding on qualitative visual I-123 IPT SPECT. Abuser group had lower basal ganglia DAT SBR than that of control (2.38 {+-} 0.20 vs 3.04 {+-} 0.27, {rho} =0.000). Psychiatric and depressive symptoms were negatively well correlated with basal ganglia DAT SBR (r=-0.908, {rho} =0.012, r=-0.924, {rho} =0.009) This results suggest that dopamine transporter imaging using I-123 IPT SPECT may be used to evaluate dopaminergic system of the basal ganglia and the clinical status in methamphetamine abusers.

  5. Design of common software for quality control of SPECT

    International Nuclear Information System (INIS)

    Li Xiaohua; Gao Ruzhen; Chen Shengzu

    1993-01-01

    The goal of this study is to design a common testing system for SPECT quality control according to NEMA standard. Using the system, the performances of different types of SPECT can be tested, so that the acceptance testing, performance comparing and routine quality control for SPECT can be normalized. The system was based on IBM PC series of microcomputer. Testing data are acquired from various types of SPECT, then transferred into IBM PC through interface and tested with an unique testing program. Two parts were included: interface and SPECT testing program. It emphatically studied the managing program of RS232 interface, designing skills and the mathematic patterns of SPECT testing program. The system which was composed of 11 subroutines can be used to measure the performances for both gamma camera and SPECT. The system was tested on OMEGA 500/MCS 560 SPECT and the results showed that it is effective, accurate and easy to use

  6. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  7. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  8. Noise suppressed partial volume correction for cardiac SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chung; Liu, Chi, E-mail: chi.liu@yale.edu [Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520 (United States); Liu, Hui [Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520 and Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Grobshtein, Yariv [GE Healthcare, Haifa 3910101 (Israel); Stacy, Mitchel R. [Department of Internal Medicine, Yale University, New Haven, Connecticut 06520 (United States); Sinusas, Albert J. [Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520 and Department of Internal Medicine, Yale University, New Haven, Connecticut 06520 (United States)

    2016-09-15

    Purpose: Partial volume correction (PVC) methods typically improve quantification at the expense of increased image noise and reduced reproducibility. In this study, the authors developed a novel voxel-based PVC method that incorporates anatomical knowledge to improve quantification while suppressing noise for cardiac SPECT/CT imaging. Methods: In the proposed method, the SPECT images were first reconstructed using anatomical-based maximum a posteriori (AMAP) with Bowsher’s prior to penalize noise while preserving boundaries. A sequential voxel-by-voxel PVC approach (Yang’s method) was then applied on the AMAP reconstruction using a template response. This template response was obtained by forward projecting a template derived from a contrast-enhanced CT image, and then reconstructed using AMAP to model the partial volume effects (PVEs) introduced by both the system resolution and the smoothing applied during reconstruction. To evaluate the proposed noise suppressed PVC (NS-PVC), the authors first simulated two types of cardiac SPECT studies: a {sup 99m}Tc-tetrofosmin myocardial perfusion scan and a {sup 99m}Tc-labeled red blood cell (RBC) scan on a dedicated cardiac multiple pinhole SPECT/CT at both high and low count levels. The authors then applied the proposed method on a canine equilibrium blood pool study following injection with {sup 99m}Tc-RBCs at different count levels by rebinning the list-mode data into shorter acquisitions. The proposed method was compared to MLEM reconstruction without PVC, two conventional PVC methods, including Yang’s method and multitarget correction (MTC) applied on the MLEM reconstruction, and AMAP reconstruction without PVC. Results: The results showed that the Yang’s method improved quantification, however, yielded increased noise and reduced reproducibility in the regions with higher activity. MTC corrected for PVE on high count data with amplified noise, although yielded the worst performance among all the methods

  9. Inverse Monte Carlo: a unified reconstruction algorithm for SPECT

    International Nuclear Information System (INIS)

    Floyd, C.E.; Coleman, R.E.; Jaszczak, R.J.

    1985-01-01

    Inverse Monte Carlo (IMOC) is presented as a unified reconstruction algorithm for Emission Computed Tomography (ECT) providing simultaneous compensation for scatter, attenuation, and the variation of collimator resolution with depth. The technique of inverse Monte Carlo is used to find an inverse solution to the photon transport equation (an integral equation for photon flux from a specified source) for a parameterized source and specific boundary conditions. The system of linear equations so formed is solved to yield the source activity distribution for a set of acquired projections. For the studies presented here, the equations are solved using the EM (Maximum Likelihood) algorithm although other solution algorithms, such as Least Squares, could be employed. While the present results specifically consider the reconstruction of camera-based Single Photon Emission Computed Tomographic (SPECT) images, the technique is equally valid for Positron Emission Tomography (PET) if a Monte Carlo model of such a system is used. As a preliminary evaluation, experimentally acquired SPECT phantom studies for imaging Tc-99m (140 keV) are presented which demonstrate the quantitative compensation for scatter and attenuation for a two dimensional (single slice) reconstruction. The algorithm may be expanded in a straight forward manner to full three dimensional reconstruction including compensation for out of plane scatter

  10. MRI and HMPAO-SPECT in the diagnosis of epilepsy

    International Nuclear Information System (INIS)

    Bokisch, A.; Gruenwald, F.; Elger, C.E.; Kaiser, W.A.; Biersack, H.J.

    1992-01-01

    Eighty-three patients suffering from intractable epilepsy were investigated by magnetic resonance imaging (MRI) and by HMPAO-SPECT during presurgical evaluation. MRI was proven to be most sensitive concerning the detection of focal lesions. Acquisition of thin slices and high signal/noise ratios are prerequisites for optimal sensitivity, the use of Gd-DTPA, in addition, increases the reliability slightly. Histological findings were available in 21 patients and in all cases of focal lesions without prior surgery, malignancy was detected or excluded correctly. The sensitivity was reduced, however, in the 4 patients with recurrency of astrocytoma. 2 cases were missed. Quantitative evaluation of signal intensities in the amygdala/hippocampal region or of the signal dynamics after contrast media application were not helpful in patients without focal lesion. In these patients no reliable criterium to determine the side of the focus with MRI investigations could be established. HMPAO-SPECT investigations were found to be complementary to MRI. In 19 of 36 patients without focal lesions the lateralisation was feasible by scintigraphy. In addition a correlation between the volume asymmetry of the temporal horns detected by MRI and the scintigraphic finding was established. The statistical proven correlation between the unilateral dilatation of the temporal horn and relative hypoperfusion is too weak, however, to imply individual consequences. (orig.) [de

  11. A promising hybrid approach to SPECT attenuation correction

    International Nuclear Information System (INIS)

    Lewis, N.H.; Faber, T.L.; Corbett, J.R.; Stokely, E.M.

    1984-01-01

    Most methods for attenuation compensation in SPECT either rely on the assumption of uniform attenuation, or use slow iteration to achieve accuracy. However, hybrid methods that combine iteration with simple multiplicative correction can accommodate nonuniform attenuation, and such methods converge faster than other iterative techniques. The authors evaluated two such methods, which differ in use of a damping factor to control convergence. Both uniform and nonuniform attenuation were modeled, using simulated and phantom data for a rotating gamma camera. For simulations done with 360 0 data and the correct attenuation map, activity levels were reconstructed to within 5% of the correct values after one iteration. Using 180 0 data, reconstructed levels in regions representing lesion and background were within 5% of the correct values in three iterations; however, further iterations were needed to eliminate the characteristic streak artifacts. The damping factor had little effect on 360 0 reconstruction, but was needed for convergence with 180 0 data. For both cold- and hot-lesion models, image contrast was better from the hybrid methods than from the simpler geometric-mean corrector. Results from the hybrid methods were comparable to those obtained using the conjugate-gradient iterative method, but required 50-100% less reconstruction time. The relative speed of the hybrid methods, and their accuracy in reconstructing photon activity in the presence of nonuniform attenuation, make them promising tools for quantitative SPECT reconstruction

  12. SPECT quantification of 123I - and - CIT in Parkinsonism

    International Nuclear Information System (INIS)

    Larcos, G.; Shaffi, M.; Hutton, B.F.; Hatton, R.; Kyme, A.; Fung, V.S.C.; Morris, J.G.L.

    2002-01-01

    Full text: Evaluation of presynaptic dopaminergic function using 2B-carboxymethoxy-3B-(4-[ 123 I] iodophenyl) tropane ( 123 I-and-CIT) SPECT has employed subjective or semi-quantitative methods. Our hypothesis is that disease classification in Parkinsonism may be improved by partial volume correction and co-registration with MRI. We studied seven patients (pts) with IPD (four men, three women, mean age=54.5+/-10.9 yrs; Hoehn and Yahr stage range 1-3; Schwab and England scale range: 30-100 [mean=67.1+/-26.9]) and two controls with 123 I- - CIT using 110-150 MBq and a dual-head camera equipped with fan-beam collimation. SPECT was registered to MRI and then aligned to a reference template. Specific to non-specific dopaminergic binding (UR) was calculated for the putamen and caudate nucleus, as well as the fractional volume (FV; fraction of the Structure affected) and residual uptake ratio (RUR; count density in area/remnant apparently unaffected by disease). Parameters that were statistically significant were the putamen (p; but not caudate) UR, FV and RUR. We conclude that: (a) it is possible to distinguish dopaminergic activity within the putamen from caudate using MRI image co-registration and (b) parameters other than UR may discriminate IPD from normal subjects and other entities. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. High-throughput high-volume nuclear imaging for preclinical in vivo compound screening§.

    Science.gov (United States)

    Macholl, Sven; Finucane, Ciara M; Hesterman, Jacob; Mather, Stephen J; Pauplis, Rachel; Scully, Deirdre; Sosabowski, Jane K; Jouannot, Erwan

    2017-12-01

    Preclinical single-photon emission computed tomography (SPECT)/CT imaging studies are hampered by low throughput, hence are found typically within small volume feasibility studies. Here, imaging and image analysis procedures are presented that allow profiling of a large volume of radiolabelled compounds within a reasonably short total study time. Particular emphasis was put on quality control (QC) and on fast and unbiased image analysis. 2-3 His-tagged proteins were simultaneously radiolabelled by 99m Tc-tricarbonyl methodology and injected intravenously (20 nmol/kg; 100 MBq; n = 3) into patient-derived xenograft (PDX) mouse models. Whole-body SPECT/CT images of 3 mice simultaneously were acquired 1, 4, and 24 h post-injection, extended to 48 h and/or by 0-2 h dynamic SPECT for pre-selected compounds. Organ uptake was quantified by automated multi-atlas and manual segmentations. Data were plotted automatically, quality controlled and stored on a collaborative image management platform. Ex vivo uptake data were collected semi-automatically and analysis performed as for imaging data. >500 single animal SPECT images were acquired for 25 proteins over 5 weeks, eventually generating >3500 ROI and >1000 items of tissue data. SPECT/CT images clearly visualized uptake in tumour and other tissues even at 48 h post-injection. Intersubject uptake variability was typically 13% (coefficient of variation, COV). Imaging results correlated well with ex vivo data. The large data set of tumour, background and systemic uptake/clearance data from 75 mice for 25 compounds allows identification of compounds of interest. The number of animals required was reduced considerably by longitudinal imaging compared to dissection experiments. All experimental work and analyses were accomplished within 3 months expected to be compatible with drug development programmes. QC along all workflow steps, blinding of the imaging contract research organization to compound properties and

  14. Indeterminate lesions on planar bone scintigraphy in lung cancer patients: SPECT, CT or SPECT-CT?

    International Nuclear Information System (INIS)

    Sharma, Punit; Kumar, Rakesh; Singh, Harmandeep; Bal, Chandrasekhar; Malhotra, Arun; Julka, Pramod Kumar; Thulkar, Sanjay

    2012-01-01

    The objective of the present study was to compare the role of single photon emission computed tomography (SPECT), computed tomography (CT) and SPECT-CT of selected volume in lung cancer patients with indeterminate lesions on planar bone scintigraphy (BS). The data of 50 lung cancer patients (53 ± 10.3 years; range 30-75; male/female 38/12) with 65 indeterminate lesions on planar BS (January 2010 to November 2010) were retrospectively evaluated. All of them underwent SPECT-CT of a selected volume. SPECT, CT and SPECT-CT images were independently evaluated by two experienced readers (experience in musculoskeletal imaging, including CT: 5 and 7 years) in separate sessions. A scoring scale of 1 to 5 was used, in which 1 is definitely metastatic, 2 is probably metastatic, 3 is indeterminate, 4 is probably benign and 5 is definitely benign. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for each modality, taking a score ≤2 as metastatic. With receiver operating characteristic (ROC) curve analysis, areas under the curve (AUC) were calculated for each modality and compared. Clinical and imaging follow-up and/or histopathology were taken as reference standard. For both readers SPECT was inferior to CT (P = 0.004, P = 0.022) and SPECT-CT (P = 0.003, P = 0.037). However, no significant difference was found between CT and SPECT-CT for reader 1 (P = 0.847) and reader 2 (P = 0.592). The findings were similar for lytic as well as sclerotic lesions. Moderate inter-observer agreement was seen for SPECT images (κ = 0.426), while almost perfect agreement was seen for CT (κ = 0.834) and SPECT-CT (κ = 0.971). CT alone and SPECT-CT are better than SPECT for accurate characterisation of indeterminate lesions on planar BS in lung cancer patients. CT alone is not inferior to SPECT-CT for this purpose and might be preferred because of shorter acquisition time and wider availability. (orig.)

  15. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    Science.gov (United States)

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    .7%, p=0.000) and at young adult age (AI=2.4 ± 1.7%, p=0.000). Gender had no effect on asymmetry. Voxel-wise testing confirmed the ROI-based findings. In conclusion, high-resolution HMPAO SPECT is a promising technique for measuring rCBF in preclinical research. It indicates lateral asymmetry of rCBF in the mouse brain as well as age-related changes during late maturation. ECD is not suitable as tracer for brain SPECT in the mouse because of its fast clearance from tissue indicating an interspecies difference in esterase activity between mice and humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Assessment of congenital heart disease by a thallium-201 SPECT study in children

    International Nuclear Information System (INIS)

    Ishii, Iwao; Nakajima, Kenichi; Taki, Junichi; Taniguchi, Mitsuru; Bunko, Hisashi; Tonami, Norihisa; Hisada, Kinichi; Ohno, Takashi

    1993-01-01

    The characteristics of correlation between the right-to-left ventricular systolic pressure ratios (RVp/LVp) and the thallium-201 right-to-left ventricular ( 201 Tl R/L) count ratios was investigated in children with various congenital heart diseases. High-resolution three-headed SPECT system equipped with either parallel-hole or fan-beam collimators was used. In a total of 102 patients, the correlation between RVp/LVp and 201 Tl R/L average count ratios was good in both planar (r=0.89, p=0.0001) and SPECT studies (r=0.80, p=0.0001). Quantitative analysis of myocardial uptake by SPECT demonstrated the characteristic pattern of each disease as well as the differences in the right ventricular overload types. When the linear regression analysis was performed in each heart disease, ventricular septal defect showed most excellent correlation. Complex heart anomalies also showed positive correlation (r=0.51, p=0.05) with RVp/LVp, and it can be used to estimate right ventricular pressure. After surgical treatment of tetralogy of Fallot and pulmonary stenosis, the decrease of 201 Tl R/L count ratio was in accordance with improvement of right ventricular overload. We conclude that 201 Tl SPECT study can be a good indicator for estimation of right ventricular pressure. (author)

  17. Evaluation of SPECT with N-isopropyl[I-123]-p-iodoamphetamine (IMP) in epileptic patients

    International Nuclear Information System (INIS)

    Nambu, Toshikazu; Itoh, Kazuo; Sumi, Tetsuo; Furudate, Masayori; Irie, Goro

    1988-01-01

    Brain SPECT scintigrams with N-Isopropyl[I-123]-p-Iodoamphetamine (IMP) were reviewed and compared with the EEG findings in 21 epileptic patients (22 SPECT images) with normal CT. Thirteen of 22 SPECT images showed abnormal low uptake and 7 of them corresponded to the EEG focus. In order to obtain the quantitative analysis, the count ratio of the focus side to the opposite I-123 content in fixed ROI was measured for each case, but no statistically significant correlation for the frequency or the duration of epilepsy was found. EEG is not considered to be favorite standard for localizing epileptic foci, especially in deep cerebral region, and that may be one of the main reason for the incomplete correlation. In the qualitative study, however, the cases with frequent epileptic attack were more likely to show abnormal findings. I-123 IMP SPECT can now be considered as having a significant clinical role for the diagnosis and management of patients with epilepsy. (author)

  18. Comparison of Tc-99m ECD brain SPECT between patients with delayed development and cerebral palsy

    International Nuclear Information System (INIS)

    Cho, I.; Chun, K.; Won, K.; Lee, H.; Jang, S.; Lee, J.

    2002-01-01

    Purpose: In previous study, thalamic or cerebellar hypoperfusion were reported in patients with cerebral palsy. This study was performed to evaluate cerebral perfusion abnormalities using Tc-99m ECD brain SPECT in patients with delayed motor development. Methods: Nineteen patients (9 boys, 10 girls, mean age 25.5 months) with delayed development underwent brain SPECT after injection of 185∼370 MBq of Tc-99m ECD. The imaging was obtained between 30 minutes and 1hr after injection. The patients were divided clinically as follows, patients with delayed development (n=5) and patients with cerebral palsy (n=14) who has delayed development and abnormal movement. The clinical subtypes of cerebral palsy were spastic quadriplegia (n=5), spastic diplegia (n=6) and spastic hemiplegia (n=3). In each group, decrease of cerebral perfusion was evaluated visually as mild, moderate and severe and quantitation of cerebral perfusion after Lassen's correction was also obtained. Results: SPECT findings showed normal or mildly decreased thalamic perfusion in patients with delayed development and severe decrease of thalamic or cerebellar perfusion in patients with spastic quadriplegia. In patients with spastic diplegia, mild decrease of perfusion was observed in thalamus. In quantified data, thalamic perfusion was lowest in patients with spastic quadriplegia and highest in patients with delayed development, but there were no statistically significant differences. Conclusion: Brain SPECT with Tc-99m ECD has a role in the detection of perfusion abnormalities in patients with delayed development and cerebral palsy

  19. Determination of hyperactive areas of Cortex Cerebri with using brain SPECT study

    International Nuclear Information System (INIS)

    Stepien, A.; Pawlus, J.; Wasilewska-Radwanska, M.

    2004-01-01

    The aim of this study was the assessment of the ability to apply of SPECT technique to determination of hyperactive areas of cortex cerebri. Analysis included 50 patients (mean aged 44 - 58). Brain SPECT scanning was performed after 1 hour after the intravenous injection of 740 MBq of ethylcisteinate dimmer labeled 99m Technetium (99mTc-ECD) with the use one-head gamma camera with a low-energy, ultra-high resolution collimator. Qualitative and quantitative analysis was performed using specialised software. In 20 cases normal biodistribution of the radiotracer was observed (hyperactive areas in cerebellum and occiput). In patients with psychiatric and neurological disturbances hyperactive areas were visualized in 25 cases in temporal lobes, in 4 cases in parietal lobes and in 1 patient in frontal area and basal ganglia. It is concluded that a number of factors limit the wide-scale use of SPECT, including the sophistication of imaging equipment (single-head cameras are inferior to the newer multihead units) and the experience of the physicians interpreting the scans and utilizing the data. In many diseases physicians do not know which areas of the patient's brain according disorders. Brain SPECT study can be a very useful tool to evaluation of hyperactive areas of cortex cerebri. This technique visualization of cortex cerebri completes standard analysis of disorders of brain activity

  20. Brain SPECT of chronic fatigue syndrome (CFS): a blinded visual analysis

    International Nuclear Information System (INIS)

    Casse, R.; Chew, G.; Barnden, L.; DelFante, P.; Burnet, R.; Kwiatek, R.; Chew, J.; Behin-Ain, S.; Unger, S.

    2002-01-01

    Full text: Chronic fatigue syndrome (CFS) is a debilitating and complex disorder characterised by profound fatigue and neuropsychiatric dysfunction. Previous studies with cerebral perfusion SPECT (rCBF) scans have yielded conflicting results. Most were performed with inhomogeneous patient populations and the findings were not based on a blinded visual analysis. To address this, HMPAO SPECT on a triple head gamma camera was performed on a group of 59 subjects. This group included 32 subjects (16-61 years, 24F and 8M) with moderate CFS based on the Fukuda criteria not on medication and not depressed and 27 normal volunteers (20-56 years, 16F and 11 M). Two blinded reviewers (RC and GC) separately assessed the SPECT studies. 28 brain structures were scored as either definitely abnormal(1), possibly abnormal(2) or normal(3-5). Abnormal results were only found in the temporal lobes and brainstem. The results (Sensitivity/Specificity) based on scores 1 or 2, show that that abnormal score yielded acceptable specificity but low sensitivity. Scores 1 or 2 improved sensitivity but reduced the specificity. This shows that visual analysis of brain SPECT is not a reliable discriminant test for CFS, although quantitative analysis with statistical parametric mapping (SPM) has demonstrated significant abnormalities. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  1. Gated spect myocardial perfusion scintigraphy for identifying septal perfusion artifacts in left bundle branch block

    International Nuclear Information System (INIS)

    Afzal, M.S.; Imran, M.B.; Akhtar, M.S.; Muhammand, K.; Nadeem, A.; Aslam, N.; Khurshid, S.J.; Farooq, U.I.; Sohaib, M.

    2006-01-01

    To determine the role of gated Single Photon Emission Computed Tomography (SPECT) for accurate assessment of myocardial perfusion scintigraphy (MPS) of patients with left bundle branch block (LBBB). MPS data of patients with LBBB was analyzed. Resting gated SPECT MPS was performed after an injection of 740 MBq 99mTc-MIBI in 10 normal and 25 subjects with LBBB (with low probability of coronary artery disease). Visual and quantitative analyses were done on non-gated (NG), end diastolic (ED), end systolic (ES) images. Calculations included septal to lateral wall ratio (SLR), myocardial thickening (MT=% increase in counts during systole) at end systolic phase and myocardial thickening at peak level (% peak MT). Septal hypoperfusion was noted in 19 (76%) patients on NG images and in only 1 (4%) patient on gated SPECT ED images. On NG images of LBBB group, SLR was lower than in controls (0.68 +- 0.07 vs. 0.87 +- 0.05, p<0.001). SLR of LBBB patients approached to that of control group in gated SPECT ED data (0.86 +- 0.06 vs 0.88 +- 0.06, p=ns). Myocardial thickening at ES for septum was markedly lower in LBBB group than in controls (21.83% +- 10.86 vs. 66.32% +- 20.15, p<0.001). (author)

  2. Tl-201 and Tc-99m-DTPA neuro-SPECT in cerebral radiation necrosis

    International Nuclear Information System (INIS)

    Cleto, E.M. Jr.; Holmes, R.A.; Gumerlock, M.K.; Cabeen, M.; Logan, K.W.; Hoffman, T.J.

    1992-01-01

    The results in 3 cases of radiation necrosis demonstrate that by using both radionuclides Tl-201 and Tc-99m-DTPA, one can provide a semi-quantitative method to differentiate recurrent tumor from radiation necrosis. Focally increased cerebral Tl-201 activity in irradiated brain tumor patients is not specific for tumor recurrence, but when used in combination with DTPA, one is able to estimate the amount of Tl-201 activity resulting from increased blood-brain barrier permeability. If the average Tl-201 index is less than the average Tc-99m-DTPA index it suggests that the increased Tl-201 activity results primarily from blood-brain barrier breakdown. Tc-99m-DTPA SPECT, in addition to Tl-201 SPECT, or serial Tl-201 SPECT imaging may increase the accuracy of brain scintigraphy in differentiating radiation necrosis from tumor recurrence. To verify these preliminary findings, we are in the process of analyzing additional SPECT data on 9 more patients with malignant brain tumors. Using a slightly different method of quantifying Tl- 201/Tc-99m-DTPA ratios (computing the ratio of intralesional Tl-201 or Tc-99m-DTPA activity compared to adjacent scalp activity), patients with tumor recurrence have higher Tl-201/Tc-99m-DTPA ratios compared to those with radiation necrosis (verbal communication with Dr. Mary K. Gumerlock). (orig.) [de

  3. Clinical applications of SPECT/CT: advantages and limitations

    International Nuclear Information System (INIS)

    Rigo, P.

    2006-01-01

    The application of hybrid SPECT cameras in Nuclear Medicine follows the revolutionary introduction of PET/CT. This review focuses on the advantages and limitations of SPECT/CT in its various clinical indications. It appears that SPECT/CT will be a clear factor of progress for Nuclear Medicine. (author)

  4. SPECT in patients with cortical visual loss.

    Science.gov (United States)

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  5. Noninvasive evaluation of ischemic stroke with SPECT

    International Nuclear Information System (INIS)

    Gomez, C.R.; Malik, M.M.; Gomez, S.M.; Wingkun, E.C.

    1988-01-01

    Technetium Tc 99m DTPA single photon emission computerized tomography (SPECT) brain scans of 20 patients with acute ischemic stroke were reviewed retrospectively and compared with clinical and radiologic (CT) data. Fourteen of the patients had abnormal SPECT studies. The abnormal findings were demonstrated by static views in eight patients, by the flow study in one patient, and by both sets of images in the other five patients. All abnormalities correlated with the clinical syndrome of presentation, and only two of the patients had no corresponding lesions on CT. Of the six patients with normal SPECT scans, two had abnormal CT studies, and in the other four, no lesions were shown at all. The ability of /sup 99m/Tc DTPA SPECT to display cerebral infarctions appears to be, at best, comparable to that of CT. SPECT also provides qualitative information regarding flow dynamics in the affected hemisphere of some patients (6/20 in our review). This, we believe, represents the objective demonstration of the preexisting insufficient collateral flow in the hemisphere at risk for ischemic stroke

  6. Regional cerebral blood flow in Parkinson's disease measured with N-isopropyl-p-[123I]iodoamphetamine (IMP) SPECT

    International Nuclear Information System (INIS)

    Odano, Ikuo; Nishihara, Mamiko; Hayashi, Hiroko; Higuchi, Shoichi; Sakai, Kunio; Ishikawa, Atsushi; Ibayashi, Katsuhiko.

    1992-01-01

    N-isopropyl-p-[ 123 I]iodoamphetamine (IMP) SPECT studies were performed on 21 patients (13 females; 45-73 yrs) with idiopathic Parkinson's disease (PD) and 10 age-matched normal controls (39-69 yrs). Regional cerebral blood flow (rCBF) was quantitatively measured by the arterial blood sampling method. When compared with normal controls, global CBF, and rCBF in the frontal cortex and in the basal ganglia were reduced 22.1% (p 123 I-IMP SPECT imaging is useful for evaluation and follow-up of patients with PD. (author)

  7. N-isopropyl-p-[123I]iodoamphetamine SPECT in MELAS syndrome: Comparison with CT and MR imaging

    International Nuclear Information System (INIS)

    Satoh, M.; Ishikawa, N.; Yoshizawa, T.; Takeda, T.; Akisada, M.

    1991-01-01

    Regional cerebral perfusion was studied in three patients with the mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, using single photon emission computed tomography (SPECT) with N-isopropyl-p-[123I]iodoamphetamine (IMP). Accumulation of the tracer was relatively decreased in the parietooccipital regions and also in the frontotemporal regions after stroke-like episodes. However, quantitative regional cerebral blood flow (rCBF) measurement showed that rCBF was relatively well preserved even at these sites, and a hyperemic state was observed at the sites of normal accumulation. IMP SPECT may be useful in the diagnosis and assessment of the progress of the MELAS syndrome

  8. Comparison of Gated SPECT Myocardial Perfusion Imaging with Echocardiography for the Measurement of Left Ventricular Volumes and Ejection Fraction in Patients With Severe Heart Failure

    Science.gov (United States)

    Shojaeifard, Maryam; Ghaedian, Tahereh; Yaghoobi, Nahid; Malek, Hadi; Firoozabadi, Hasan; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amin, Ahmad; Azizian, Nasrin; Rastgou, Feridoon

    2015-01-01

    Background: Gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is known as a feasible tool for the measurement of left ventricular ejection fraction (EF) and volumes, which are of great importance in the management and follow-up of patients with coronary artery diseases. However, considering the technical shortcomings of SPECT in the presence of perfusion defect, the accuracy of this method in heart failure patients is still controversial. Objectives: The aim of the present study was to compare the results from gated SPECT MPI with those from echocardiography in heart failure patients to compare echocardiographically-derived left ventricular dimension and function data to those from gated SPECT MPI in heart failure patients. Patients and Methods: Forty-one patients with severely reduced left ventricular systolic function (EF ≤ 35%) who were referred for gated SPECT MPI were prospectively enrolled. Quantification of EF, end-diastolic volume (EDV), and end-systolic volume (ESV) was performed by using quantitative gated spect (QGS) (QGS, version 0.4, May 2009) and emory cardiac toolbox (ECTb) (ECTb, revision 1.0, copyright 2007) software packages. EF, EDV, and ESV were also measured with two-dimensional echocardiography within 3 days after MPI. Results: A good correlation was found between echocardiographically-derived EF, EDV, and ESV and the values derived using QGS (r = 0.67, r = 0.78, and r = 0.80 for EF, EDV, and ESV, respectively; P echocardiography. ECTb-derived EDV was also significantly higher than the EDV measured with echocardiography and QGS. The highest correlation between echocardiography and gated SPECT MPI was found for mean values of ESV different. Conclusions: Gated SPECT MPI has a good correlation with echocardiography for the measurement of left ventricular EF, EDV, and ESV in patients with severe heart failure. However, the absolute values of these functional parameters from echocardiography and gated

  9. Contrast detail phantom for SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejas, M.L. de; Arashiro, J G; Giannone, C. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Camuyrano, M; Nohara, G [Universidad de Buenos Aires, Buenos Aires (Argentina). Facultad Ciencias Exactas

    1996-06-01

    A new low variable contrast phantom for single photon emission computed tomography (SPECT) was constructed, tested and compared with other existing phantoms. It contains simulated cylindrical lesions of four different diameters (D{sub i}), embedded in a cylindrical scattering medium and a uniform section to evaluate tomographic uniformity. The concentration of tracer in the simulated lesions and the scattering medium (background) can be varied to simulate hot and cold lesions. Different applications of the phantom were tested, including determination of the minimum object contrast (OCm) necessary to detect lesions as a function of lesion size, lesion type (hot or cold) and acquisition and processing protocols by visual inspection. This parameter allows categorization of instruments comparing an `image quality index` (IQI). Preliminary comparison with the Britten contrast processing method showed that the detectable OCm was of the same order of magnitude, but the presented device seems more suitable for training and intercomparison purposes. The constructed phantom, of simple design, has proved to be useful for acquisition and processing condition evaluation, OCm estimation and external quality control. (author). 11 refs, 4 figs.

  10. Assessment of sistemic ventricle function in corrected transposition of great arteries with Gated SPECT: comparison with radionuclide ventriculography

    International Nuclear Information System (INIS)

    Alexanderson, E.; Espinola, N.; Duenas, D.; Fermon, S.; Acevedo, C.; Martinez, C.

    2002-01-01

    Corrected trasposition of great arteries is a uncommon congenital heart disease where the right ventricle works as the sistemic one. QGS Gated SPECT program was designed to recognize the contours of left ventricle being a good method to evaluate left ventricle ejection fraction. The purpose of this study was to evaluate the right ventricle ejection fraction (RVEF) by gated SPECT using Tc-99mSestaMIBI in comparison with radionuclide ventriculography (RVG) in patients with corrected trasposition of great arteries. Methods: We performed gated SPECT and radionuclide ventriculography within 15 days of each other in 7 adults consecutive patients with the diagnosis of corrected trasposition of great arteries (5 men, 2 women; mean age 47 y). Gated tomographic data, including ventricular volumes and ejection fraction, were processed using QGS automatic algorithm, whereas equilibrium radionuclide ventriculography used standard techniques. Results: We found a good correlation between right ventricle ejection fraction obtained with Gated SPECT compared with equilibrium radionuclide ventriculography. The mean of the RVEF with Gated SPECT was 41.2% compared with 44.2% of RVEF with equilibrium radionuclide ventriculography. Both methods recognized abnormal RVEF in 5 patients ( 50%) with Gated SPECT and abnormal with RVG meanwhile another patient had normal RVEF with RVG and abnormal with Gated SPECT. Conclusion: Quantitative gated tomography, using Tc 99mSestaMIBI, has a good correlation with radionuclide ventriculography for the assessment of right ventricle ejection fraction in patients with corrected trasposition of great arteries. These results support the clinical use of this technique among these patients

  11. Improved quantification for local regions of interest in preclinical PET imaging

    Science.gov (United States)

    Cal-González, J.; Moore, S. C.; Park, M.-A.; Herraiz, J. L.; Vaquero, J. J.; Desco, M.; Udias, J. M.

    2015-09-01

    In Positron Emission Tomography, there are several causes of quantitative inaccuracy, such as partial volume or spillover effects. The impact of these effects is greater when using radionuclides that have a large positron range, e.g. 68Ga and 124I, which have been increasingly used in the clinic. We have implemented and evaluated a local projection algorithm (LPA), originally evaluated for SPECT, to compensate for both partial-volume and spillover effects in PET. This method is based on the use of a high-resolution CT or MR image, co-registered with a PET image, which permits a high-resolution segmentation of a few tissues within a volume of interest (VOI) centered on a region within which tissue-activity values need to be estimated. The additional boundary information is used to obtain improved activity estimates for each tissue within the VOI, by solving a simple inversion problem. We implemented this algorithm for the preclinical Argus PET/CT scanner and assessed its performance using the radionuclides 18F, 68Ga and 124I. We also evaluated and compared the results obtained when it was applied during the iterative reconstruction, as well as after the reconstruction as a postprocessing procedure. In addition, we studied how LPA can help to reduce the ‘spillover contamination’, which causes inaccurate quantification of lesions in the immediate neighborhood of large, ‘hot’ sources. Quantification was significantly improved by using LPA, which provided more accurate ratios of lesion-to-background activity concentration for hot and cold regions. For 18F, the contrast was improved from 3.0 to 4.0 in hot lesions (when the true ratio was 4.0) and from 0.16 to 0.06 in cold lesions (true ratio  =  0.0), when using the LPA postprocessing. Furthermore, activity values estimated within the VOI using LPA during reconstruction were slightly more accurate than those obtained by post-processing, while also visually improving the image contrast and uniformity

  12. SPECT I-123 iodoamphetamine brain imaging

    International Nuclear Information System (INIS)

    Tikofsky, R.S.; Liebman, A.; Hellman, R.S.; Collier, B.D.; Voslar, A.M.

    1988-01-01

    SPECT/IMP studies of 100 patients with a presumptive diagnosis of dementia were performed with a rotating gamma camera 15-20 minutes after intravenous injection of 3.5 mCi of IMP. Of these studies, 43 were interpreted as normal for age; 28 demonstrated decreased but not absent activity bilaterally in posterior parietal/occipital regions (consistent with Alzheimer-type dementia); 28 showed unilateral abnormalities in regional cerebral blood flow consistent with cerebrovascular disease; and one had mixed findings. Based on SPECT/IMP results, further diagnostic testing and/or management would be altered for 72% of patients, suggesting that SPECT/IMP provides valuable data, not available on clinical examination, to guide the evaluation and management of demented patients

  13. Stereotactic radiosurgery planning with ictal SPECT images

    International Nuclear Information System (INIS)

    Ackerly, T.; RMIT University, Bundoora, VIC; Geso, M.; O'Keefe, G.; Smith, R.

    2004-01-01

    This paper is motivated by a clinical requirement to utilise ictal SPECT images for target localisation in stereotactic radiosurgery treatment planning using the xknife system which only supports CT and MRI images. To achieve this, the SPECT images were converted from raw (pixel data only) format into a part 10 compliant DICOM CT fileset. The minimum requirements for the recasting of a raw format image as DICOM CT or MRI data set are described in detail. The method can be applied to the importation of raw format images into any radiotherapy treatment planning system that supports CT or MRI import. It is demonstrated that the combination of the low spatial resolution SPECT images, depicting functional information, with high spatial resolution MRI images, which show the structural information, is suitable for stereotactic radiosurgery treatment planning. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  14. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    2 by the use of a program prepared by combining the advantage of a surface rendering method with that of a volume rendering method by means of the general-purpose visualization software AVS-MV (Application Visualization System Medical Viewer). The AVS-MV permits production of semitransparent images as well, so that metabolic and physiological functions in internal tissues with the same threshold value can be seen through external tissues. The voxel and threshold distribution curve was plotted and analyzed by this software. The distribution of voxel in normal individuals shows such a bimodal curve that RI count presents a trough at a threshold value of 40% and a crest at 70%. In hydrocephalus, on the other hand, the 40% region showed an increase and 70% region showed a decrease . After shunt operation for hydrocephalus, with improvement in symptoms, the 40% region decreased and 70% region increased, so that a normal pattern was approached. This composite 3D MRI and SPECT imaging technique made it possible not only to establish an intracranial position in SPECT, but also to assess the profile of cerebral circulation around the cerebral venuicles. Analysis of these 3D composite images permits quantitative expression of brain volume in SPECT and extensive elucidation of the cerebral circulation profile in morphological detail. This analysis is, therefore, considered to contribute largely to the development of functional images

  15. SPECT and PET imaging in epilepsia

    International Nuclear Information System (INIS)

    Landvogt, C.

    2007-01-01

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, 11 C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed

  16. Motor activation SPECT for the neurosurgical diseases. Clinical application

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  17. Motor activation SPECT for the neurosurgical diseases. Clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-08-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  18. Effects of Piecewise Spatial Smoothing in 4-D SPECT Reconstruction

    Science.gov (United States)

    Qi, Wenyuan; Yang, Yongyi; King, Michael A.

    2014-02-01

    In nuclear medicine, cardiac gated SPECT images are known to suffer from significantly increased noise owing to limited data counts. Consequently, spatial (and temporal) smoothing has been indispensable for suppressing the noise artifacts in SPECT reconstruction. However, recently we demonstrated that the benefit of spatial processing in motion-compensated reconstruction of gated SPECT (aka 4-D) could be outweighed by its adverse effects on the myocardium, which included degraded wall motion and perfusion defect detectability. In this work, we investigate whether we can alleviate these adverse effects by exploiting an alternative spatial smoothing prior in 4-D based on image total variation (TV). TV based prior is known to induce piecewise smoothing which can preserve edge features (such as boundaries of the heart wall) in reconstruction. However, it is not clear whether such a property would necessarily be beneficial for improving the accuracy of the myocardium in 4-D reconstruction. In particular, it is unknown whether it would adversely affect the detectability of perfusion defects that are small in size or low in contrast. In our evaluation study, we first use Monte Carlo simulated imaging with 4-D NURBS-based cardiac-torso (NCAT) phantom wherein the ground truth is known for quantitative comparison. We evaluated the accuracy of the reconstructed myocardium using a number of metrics, including regional and overall accuracy of the myocardium, accuracy of the phase activity curve (PAC) of the LV wall for wall motion, uniformity and spatial resolution of the LV wall, and detectability of perfusion defects using a channelized Hotelling observer (CHO). For lesion detection, we simulated perfusion defects with different sizes and contrast levels with the focus being on perfusion defects that are subtle. As a preliminary demonstration, we also tested on three sets of clinical acquisitions. From the quantitative results, it was demonstrated that TV smoothing could

  19. {sup 201}Thallium SPECT, accuracy in astrocytoma diagnosis and treatment evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kaellen, K

    1999-10-01

    The aims of the studies included in this thesis were: - to investigate the reliability of {sup 201}Thallium single photon emission computed tomography. Tl SPECT for preoperative diagnosis and histological staging of malignant astrocytomas in comparison with CT; - to develop a method for quantification of cerebral thallium uptake, and to evaluate the quantitative measurement in comparison with CT, for astrocytoma treatment follow-up purposes; - to compare quantitative Tl SPECT and proton magnetic resonance spectroscopy (H-MRS) with conventional MR imagingfor astrocytoma monitoring, and to evaluate associations between change of morphological tumour characteristics during treatment and changes of cerebral thallium uptake and metabolic ratios. Results and conclusions: - High TI-index, calculated as a ratio comparing tumour uptake to uptake in the contralateral hemisphere, is an indicator of highly malignant astrocytoma. Differentiation between the high-grade astrocytomas, the low-grade astrocytomas, and infectious lesions is only partial, with an overlap of Tl-indexes between these groups. High-grade astrocytomas that do not show contrast enhancement on CT, and astrocytomas with central necrosis and moderate ring-enhancement, tend to be underestimated when evaluated by Tl-index calculation. Tl SPECT is not a reliable method for non-invasive tumour staging among the group of highly malignant astrocytomas. - Quantification of cerebral TI-uptake, defining the volume of viable tumour tissue, is a new method for astrocytoma chemotherapy monitoring. Results suggest that the method provides prognostic information, and information of treatment efficacy, at an earlier stage than CT. - We did not find a higher accuracy of quantitative Tl SPECT than of MR for monitoring purposes and our results indicated that treatment induced MR changes were interrelated with TI-uptake variations. - Multi-voxel H-MRS was difficult to apply for astrocytoma treatment monitoring, due to the

  20. Advances in SPECT Instrumentation (Including Small Animal Scanners). Chapter 4

    International Nuclear Information System (INIS)

    Di Domenico, G.; Zavattini, G.

    2009-01-01

    Fundamental major efforts have been devoted to the development of positron emission tomography (PET) imaging modality over the last few decades. Recently, a novel surge of interest in single photon emission computed tomography (SPECT) technology has occurred, particularly after the introduction of the hybrid SPECT-CT imaging system. This has led to a flourishing of investigations in new types of detectors and collimators, and to more accurate refinement of reconstruction algorithms. Along with SPECT-CT, new, fast gamma cameras have been developed for dedicated cardiac imaging. The existing gap between PET and SPECT in sensitivity and spatial resolution is progressively decreasing, and this trend is particularly apparent in the field of small animal imaging where the most important advances have been reported in SPECT tomographs. An outline of the basic features of SPECT technology, and of recent developments in SPECT instrumentation for both clinical applications and basic biological research on animal models is described. (author)

  1. Evaluation of usefulness of bone SPECT for lumbar spondylolysis

    International Nuclear Information System (INIS)

    Watanabe, Osamu; Hashimoto, Manabu; Tomura, Noriaki; Watarai, Jiro

    2002-01-01

    The purpose of this study was to evaluate the usefulness of 99m Tc-MDP SPECT (bone SPECT) for lumbar spondylolysis. We analyzed 11 cases with 17 lesions. All cases were compared using plain radiography, computed tomography (CT), planar bone scintigraphy (PBS), and bone SPECT. Four lesions that showed a wide defect on CT were negative on bone SPECT and may have been chronic lesions. Thirteen lesions that were positive on bone SPECT were narrow or showed no defect on CT and may have been early lesions. Two cases showed no defect on CT but were positive on bone SPECT, and one of them progressed to bilateral spondylolysis after one year. This may have been a very early lesion. Thus bone SPECT is useful for the diagnosis of lumbar spondylolysis, especially in its early stage. (author)

  2. Evaluation of usefulness of bone SPECT for lumbar spondylolysis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Osamu; Hashimoto, Manabu; Tomura, Noriaki; Watarai, Jiro [Akita Univ. (Japan). School of Medicine

    2002-07-01

    The purpose of this study was to evaluate the usefulness of {sup 99m}Tc-MDP SPECT (bone SPECT) for lumbar spondylolysis. We analyzed 11 cases with 17 lesions. All cases were compared using plain radiography, computed tomography (CT), planar bone scintigraphy (PBS), and bone SPECT. Four lesions that showed a wide defect on CT were negative on bone SPECT and may have been chronic lesions. Thirteen lesions that were positive on bone SPECT were narrow or showed no defect on CT and may have been early lesions. Two cases showed no defect on CT but were positive on bone SPECT, and one of them progressed to bilateral spondylolysis after one year. This may have been a very early lesion. Thus bone SPECT is useful for the diagnosis of lumbar spondylolysis, especially in its early stage. (author)

  3. Methods of evaluating SPECT images. The usefulness of the Matsuda`s method by the Patlak plot method in children

    Energy Technology Data Exchange (ETDEWEB)

    Takaishi, Yasuko [Nippon Medical School, Tokyo (Japan); Hashimoto, Kiyoshi; Fujino, Osamu [and others

    1998-11-01

    Single photon emission computed tomography (SPECT) is a tool to study cerebral blood flow (CBF) kinetics. There are three methods of evaluating SPECT images: visual, semi-quantitative (evaluation of the radioactivity ratio of the cerebral region to the cerebellum (R/CE) or to the thalamus (R/TH)) and quantitative (Matsuda`s method by Patlak plot method using {sup 99m}Tc-hexamethylpropylene amine oxime radionuclide angiography). We evaluated SPECT images by the quantitative method in 14 patients with neurological disorders and examined the correlation of the results to those obtained by the semi-quantitative method. There was no significant correlation between the R/CE or R/TH ratio and regional CBF except two regions. The evaluation by the semi-quantitative method may have been inappropriate, probably because the cerebellar or thalamic blood flow was not constant in each case. Evaluation by the quantitative method, on the other hand, seemed to be useful not only for the comparison of CBF among normal subjects, but also in the demonstration of progressive changes of CBF in the same case. The Matsuda`s method by the Patlak plot method is suitable for examination of children, since it dose not require aortic blood sampling. (author)

  4. Functional brain imaging study in patients with anxiety disorders using SPECT

    International Nuclear Information System (INIS)

    Sun Da; Zhan Hongwei; Liu Hongbiao; Li Huichun

    2005-01-01

    Objective: To evaluate the changes of brain function in patients with anxiety disorders. Methods: Regional cerebral perfusion was investigated using SPECT in 65 patients with anxiety disorders dragnosed according to the fourth edition of the diagnostic and statistical manual of mental disorder (DSMTD) criteria and in a matched control group of 21 healthy volunteers. 65 cases of the patients were further divided into: drug treated group (31 patients) and non-drug treated group (34 patients). The mean ages of the patients and the controls were (39.2±26.1) and (34.4±9.7) years, respectively. The severity of the anxiety was assessed using the 17-item Hamilton Anxiety scale (mean: 24.8±5.5 and 24.7±7.5, respectively). After administration of 740-925 MBq 99 Tc m -ethylene cysteinate direct (ECD) brain SPECT image study was performed. For the semi- quantitative analysis of the data, the ratios of the mean counts/pixel in the different cerebral regions of interest (ROI) to that of cerebellum were calculated respectively as a regional perfusion index (RPI). Some patients had a repeated SPECT after three months of treatment. Results: 93.8% (61/65) patients had relative hypoperfusions in some cerebral regions. Compared with the control group, the patients had a significant decrease of regional cerebral blood flow (rCBF) in the bilateral frontal lobes, paralimbic system, temporal lobes and basal ganglia. The course of disease had negatively correlated with the changes of rCBF in both groups of patients. Follow-up SPECT study demonstrated increased rCBF related with the symptomatic improvement. Conclusions: Patients with anxiety disorders had profound dysfunction of the frontal and temporal cortices, and was closely related to the symptom and therapy. 99 Tc m -ECD brain SPECT may offer the most accurate assessment of response to therapy. . (authors)

  5. Application of SPECT to psychiatry

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    1999-01-01

    Brain perfusion SPECT using 99m Tc-ethyl-cysteinate dimer ( 99m Tc-ECD) was applied to psychiatric diseases with aid of statistical parametric mapping (SPM) for analysis of data. To evaluate influence of aging on brain perfusion, noninvasive measurements of cerebral blood flow using 99m Tc-ECD were performed in 53 normal volunteers, age 18 to 87 years old. Mean cerebral blood flow (mCBF) was 43.9±5.0 ml/100 g/min and showed weak negative correlation with aging (r=0.451). Perisylvian cerebral cortices and medial frontal areas including anterior cingulate gyri showed greater negative correlation than other areas. These findings suggest the necessity of age-matched control regional CBF (rCBF) data to investigate rCBF abnormality in patients. Four drug-naive schizophrenic patients showed flow decrease in bilateral frontal and superior temporal areas and a left infero-posterior temporal area. Haloperidol administration induced flow decrease in bilateral frontal and left parietal areas, while flow increase in bilateral striatal and right hippocampal areas. Ten aged depressive patients showed flow decrease in bilateral frontal and left temporo-parietal areas. Even after remission patients showed flow decrease in the left frontal area as compared with normal subjects. Remission induced flow increase in the right frontal, right parietal, and right orbitofrontal areas compared with depression. These results suggest that CBF measurements using 99m Tc-ECD were useful for objective evaluation of regional abnormality in brain function in psychiatric diseases. (author)

  6. SPECT in psychiatry; Die Bedeutung der Hirn-SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, S [Universitaetsklinik fuer Psychiatrie, Wien (Austria); Gruenwald, F [Bonn Univ. (Germany). Klinik fuer Nuklearmedizin; Danos, P [Psychiatrische Universitaetsklinik, Bonn (Germany); Walter, H [Universitaetsklinik fuer Psychiatrie, Wien (Austria); Klemm, E [Bonn Univ. (Germany). Klinik fuer Nuklearmedizin; Bruecke, T [Universitaetsklinik fuer Neurologie, Wien (Austria); Podreka, I [Universitaetsklinik fuer Neurologie, Wien (Austria); Biersack, H J [Bonn Univ. (Germany). Klinik fuer Nuklearmedizin

    1994-10-01

    In the last fifteen years different attempts have been undertaken to understand the biological basis of major psychiatric disorders. One important tool to determine patterns of brain dysfunction is single emission computed tomography (SPECT). Whereas SPECT investigations are already a valuable diagnostic instrument for the diagnosis of dementia of the Alzheimer Type (DAT) there have not been consistent findings that can be referred to as specific for any other particular psychiatric diagnostic entity. Nevertheless, SPECT studies have been able to demonstrate evidence of brain dysfunction in patients with schizophrenia, depression, anxiety disorders, and substance abuse in which other methods showed no clear abnormality of brain function. Our manuscript reviews the data which are currently available in the literature and stresses the need for further studies, especially for prediction and monitoring psychiatric treatment modalities. (orig.) [Deutsch] In den vergangenen 15 Jahren wurde durch verschiedene methodologische Ansaetze versucht, die biologischen Ursachen psychiatrischer Erkrankungen naeher zu erforschen. Als eine bedeutende Methode hat sich dabei die Single-Photonen-Emissions-Computertomographie (SPECT) herausgestellt. Waehrend die SPECT-Untersuchungen bereits Eingang in die Routinediagnostik bei Demenzen vom Alzheimer-Typ gefunden haben, konnten fuer weitere psychiatrische Erkrankungen noch keine eindeutigen Befunde etabliert werden. Mit der SPECT-Methode ist es jedoch gelungen, funktionelle Veraenderungen des Gehirns von psychiatrischen Erkrankungen darzustellen, wie z.B. Schizophrenie, Depression, Angsterkrankungen bzw. Substanzmissbrauch. In Forschungsprotokollen wird durch die SPECT-Methode versucht, abzuklaeren, inwieweit es moeglich ist, innerhalb der Erkrankungsentitaeten psychiatrischer Erkrankungen oder auch diese uebergreifend eine Subklassifizierung zu finden und evtl. Gehirnsysteme ausfindig zu machen, die mit einer spezifischen

  7. Physical factors affecting single photon emission computed tomography (SPECT) applied in nuclear medicine

    International Nuclear Information System (INIS)

    Farag, H.I.; Khalil, W.A.; Hassan, R.A.

    2003-01-01

    many physical factors degrade single photon emission computed tomography (SPECT) images both qualitatively and quantitatively. Physical properties important for the assessment of the potential of emission computed tomography implemented by collimated detector systems include sensitivity, statistical and angular sampling requirements, attenuation compensation, resolution, uniformity, and multisection design constraints. SPECT has highlighted the used to improve gamma camera performance. Flood field nonuniformity is translated into tomographic the need to improve gamma camera performance. Flood field nonuniformity is translated into tomographic images as major artifacts because it distorts the data obtained at each projection. Also, poor energy resolution translates directly into degraded spatial resolution through reduced ability to reject scattered photons on the basic of pluses height analysis. The aim of this work is study the different and most important acquisition and processing parameters, which affect the quality of the SPECT images. The present study investigates the various parameters effecting SPECT images and experimental results demonstrate that: daily uniformity checks and evaluation are essential to ensure that the SPECT system is working properly. The Core used in the reconstruction process could be correct to avoid data misalignment. 60 mumblers of views gave the best image quality, rather than 20 or 30 views. Time per view (TPV) 30 or 20 sec gave a good image quality, rather than high-resolution collimator, is recommended in order to provide good spatial resolution. On the other hand patient motion could cause serious reconstruction artifacts. A cine display is recommended to identify movement artifacts. In the case of matrix size, matrix 128x128 give the best resolution than matrix 64x64. Energy window width, 15% compared with the standard 20% improved the resolution. Butter worth filter (cut off 0.57 cyc/cm with order 6 ) give the best resolution

  8. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    Science.gov (United States)

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.

    2009-05-01

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  9. Evaluation of multi-modality CT-MRI-SPECT registration tools for radiotherapy treatment planning purposes

    International Nuclear Information System (INIS)

    Bianchini, S.; Alfonso, R.; Castillo, J.; Coca, M.; Torres, L.

    2013-01-01

    A qualitative and quantitative comparison of registration CT-CT, CT-MR and CT-SPECT performed by the different software and algorithms studies is presented. Only two studied software were full DICOM RT compatible while accepting DICOM images in any layout. Quantitative results of fiducial displacement errors were calculated for all software and available registration methods. The presented methodology demonstrated being effective for assessing the quality of studied image registration tools in the radiotherapy planning context, provided the images are free of significant geometric deformation. When implementing this methodology in real patients, the use of immobilization devices, such as thermoplastic masks, is recommended for enhanced quality of image registration. (Author)

  10. Chilaiditi's syndrome demonstrated by SPECT/CT

    Directory of Open Access Journals (Sweden)

    Nalini S Perumal

    2009-11-01

    Full Text Available Purpose: Chilaiditi’s syndrome is a rare condition commonly diagnosed as an incidental radiological finding. The aim of this report is to show the role of SPECT-CT in this syndrome and state the functional and anatomical role of this hybrid imaging modality. Materials and Methods: A case report. Results: A 49-year-old female patient was referred for gallium-67 citrate for a possible granulomatous myositis and underwent SPECT-CT of the abdomen to assess the area of decreased gallium uptake on planar images of the liver. The combined SPECT and CT modality demonstrated findings consistent with the clinical evidence of Chilaiditi’s syndrome. The anatomical part of this hybrid modality made it easier to evaluate the area of gallium lack of uptake which was due to air in the colon. Conclusion: This case does not only show the role of SPECT-CT in this syndrome but also suggest that the use of such modality should be considered whenever available in the evaluation of patients in whom the localization of active disease becomes imperative.

  11. SPECT and PET in Eating Disorders

    NARCIS (Netherlands)

    van Waarde, Aren; Audenaert, Kurt; Busatto, Geraldo F.; Buchpiguel, Carlos; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; den Boer, Johan A

    2014-01-01

    Medical imaging techniques like PET and SPECT have been applied for investigation of brain function in anorexia and bulimia nervosa. Regional abnormalities have been detected in cerebral blood flow, glucose metabolism, the availability of several neurotransmitter receptors (serotonin 1A and 2A,

  12. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  13. Brain SPECT with Tl-201 DDC

    International Nuclear Information System (INIS)

    Bruine, J.F. de.

    1988-01-01

    The development, animal and human experiments and the first clinical results of a new blood flow tracer thallium-201 diethyldithiocarbamate (Tl-201 DDC) are discussed for functional brain imaging with single-photon emission computed tomography (SPECT). 325 refs.; 43 figs.; 22 tabs

  14. Kernel integration scatter model for parallel beam gamma camera and SPECT point source response

    International Nuclear Information System (INIS)

    Marinkovic, P.M.

    2001-01-01

    Scatter correction is a prerequisite for quantitative single photon emission computed tomography (SPECT). In this paper a kernel integration scatter Scatter correction is a prerequisite for quantitative SPECT. In this paper a kernel integration scatter model for parallel beam gamma camera and SPECT point source response based on Klein-Nishina formula is proposed. This method models primary photon distribution as well as first Compton scattering. It also includes a correction for multiple scattering by applying a point isotropic single medium buildup factor for the path segment between the point of scatter an the point of detection. Gamma ray attenuation in the object of imaging, based on known μ-map distribution, is considered too. Intrinsic spatial resolution of the camera is approximated by a simple Gaussian function. Collimator is modeled simply using acceptance angles derived from the physical dimensions of the collimator. Any gamma rays satisfying this angle were passed through the collimator to the crystal. Septal penetration and scatter in the collimator were not included in the model. The method was validated by comparison with Monte Carlo MCNP-4a numerical phantom simulation and excellent results were obtained. The physical phantom experiments, to confirm this method, are planed to be done. (author)

  15. A preliminary study of neuroSPECT evaluation of patients with post-traumatic smell impairment

    International Nuclear Information System (INIS)

    Eftekhari, Mohammad; Assadi, Majid; Kazemi, Majid; Saghari, Mohsen; Esfahani, Armaghan Fard; Sichani, Babak Fallahi; Gholamrezanezhad, Ali; Beiki, Davood

    2005-01-01

    Most olfactory testings are subjective and since they depend upon the patients' response, they are prone to false positive results. The aim of this study was to use quantitative brain perfusion SPECT in order to detect possible areas of brain activation in response to odorant stimulation in patients with post-traumatic impaired smell in comparison to a group of normal subjects. Fourteen patients with post-traumatic impaired smell and ten healthy controls were entered in this prospective study. All subjects underwent brain SPECT after intravenous injection of 740-MBq 99m Tc-ECD and 48 hours later, the same procedure was repeated following olfactory stimulus (vanilla powder). In most of seven regions of interest (Orbital Frontal Cortex, Inferior Frontal Pole, Superior Frontal Pole, Posterior Superior Frontal Lobe, Parasagittal Area, Occipital Pole, and Cerebellar area) the post-stimulation quantitative values show increased cortical perfusion being more pronounced in normal volunteers than the anosmic patients (except cerebellar areas and the right occipital pole). Maximal activation was observed in orbitofrontal regions (right+ 25.45% and left +25.47%). Brain SPECT is a valuable imaging technique in the assessment of post-traumatic anosmia and could be competitive as an alternative to other imaging techniques, especially when functional MRI is unavailable or unsuitable. However, this procedure may benefit from complementary MRI or CT anatomical imaging

  16. 99mTc-HMPAO SPECT in patients with Alzheimer's disease and multiinfraction dementia

    International Nuclear Information System (INIS)

    Klisarova, A.; Tranulov, G.; Deleva, N.; Kaprelian, A.; Terzieva, M.; Ivanov, B.

    2002-01-01

    Alzheimer's disease (AD) and multiinfarktion dementia (MD) are the commonest causes giving rise to progressive cognitive function deficit in adult individuals. It is the purpose of the study to evaluate 99m Tc-HMPAO SPECT in making the diagnosis and differential diagnosis of Alzheimer's disease and multiinfarction dementia in patients presenting progressive cognitive disorders. Twenty patients with symptoms of dementia divided up in two groups (10 suspected for AD, and 10 with evidence of MD) are subjected to 99m Tc-HMPAO SPECT. To assay the scintigraphic images semi-quantitative perfusion indices are introduced. Bilateral hypoperfusion zones in the temporoparietal and temporal regions are detected in nine AD patients. In 4 of them in advanced stage of the disease hypoperfusion zones are found in the frontal lobe. In 8/10 MD patients vascular dependent hypoperfusion areas are located along the course of vessels. The perfusion indices implemented in practice contribute to the semi-quantitative evaluation of hypoperfusion areas and precise assessment of the scintigraphic findings. 99m Tc-HMPAO SPECT is an atraumatic, noninvasive technique, taken to be the method of choice in making the diagnosis and differential diagnosis of Alzheimer's disease and multiinfarction dementia in routine clinical practice. (authors)

  17. Anything wrong with brain SPECT? Not really

    International Nuclear Information System (INIS)

    Pavel, D.G.; Davis, G.; Craita, I.; Liu, P.

    2002-01-01

    Aim: Despite increased evidence about the usefulness of Brain SPECT in Neuro-Psychiatry, it continues to represent only a low percentage of Nuclear Medicine procedures. The prevalent perception is that it is an inadequate diagnostic tool, and/or is not changing patient management. There are objective reasons for this, as the lack of awareness by Psychiatrists about the value of SPECT, but most important is the frequently poor quality of images provided. This can be due to inadequate gamma cameras but is mostly due to poor quality software. Materials and Methods: High resolution brain SPECT via triple head gamma camera, super-high resolution fan beam collimator and Tc-HMPAO. A combination of commercial software and local optimization was used for the final displays as well as for realignment of sequential brain SPECT studies. Results: We found out that 6 basic software improvements are needed to generate a final display where features can be clearly distinguished and which can be also easily assimilated by the referring physician. 1) Color scales: simple and efficient tools needed to generate user friendly and semiquantitative color shades as needed. Unfortunately various color scales may be needed depending on printer and paper used. 2): 3 D displays allowing, multiple standardized thresholdings, any number of groupings, differential coloring (with functional meaning) and adequate labeling. Should be completely or at least mostly automatic. 3) Automatic realignment of sequential studies: such programs exist in various forms (free WWW versions, proprietary Beta versions, etc.) but are still not supplied by the gamma camera vendors for general use. Should provide SPECT -SPECT and SPECT MRI options. 4) Localization of structures and slices a) Triangulation of structures and b) Identification of section location. 5) Graphics improvement for generating any number of optimized summary displays to accompany reports. 6) Availability of voxel based quantification software

  18. In vivo quantification by SPECT of [{sup 123}I] ADAM bound to serotonin transporters in the brains of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.-X. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hwang, J.-J. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hsieh, J.-F. [Department of Nuclear Medicine, Chi-Mei Foundation Medical Center, Yungkang City 710, Taiwan (China); Chen, J.-C. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jcchen@ym.edu.tw; Chou, Y.-T. [Institute of Physiology, National Yang-Ming University, Taipei 112, Taiwan (China); Tu, K.-Y. [Department of Nuclear Medicine, Mackey Memorial Hospital, Taipei, Taiwan 104 (China); Wey, S.-P. [Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Taoyuan, Taiwan 333 (China); Ting Gann [Institute of Nuclear Energy Research, Tao- Yuan 335, Taiwan (China)

    2004-11-01

    Background: A novel radioiodine ligand [{sup 123}I] ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) has been suggested as a promising serotonin transporter (SERT) imaging agent for the central nervous system. In this study, the biodistribution of SERTs in the rabbit brain was investigated using [{sup 123}I] ADAM and mapping images of the same animal produced by both single-photon emission computed tomography (SPECT) and microautoradiography. A semiquantification method was adopted to deduce the optimum time for SPECT imaging, whereas the input for a simple fully quantitative tracer kinetic model was provided from arterial blood sampling data. Methods: SPECT imaging was performed on female rabbits postinjection of 185 MBq [{sup 123}I] ADAM. The time-activity curve obtained from the SPECT images was used to quantify the SERTs, for which the binding potential was calculated from the kinetic modeling of [{sup 123}I] ADAM. The kinetic data were analyzed by the nonlinear least squares method. The effects of the selective serotonin reuptake inhibitors fluoxetine and p-chloroamphetamine (PCA) on rabbits were also evaluated. After scanning, the same animal was sacrificed and the brain was removed for microautoradiography. Regions-of-interest were analyzed using both SPECT and microautoradiography images. The SPECT images were coregistered manually with the corresponding microautoradiography images for comparative study. Results: During the time interval 90-100 min postinjection, the peak specific binding levels in different brain regions were compared and the brain stem was shown to have the highest activity. The target-to-background ratio was 1.89{+-}0.02. Similar studies with fluoxetine and PCA showed a background level for SERT occupation. Microautoradiography demonstrated a higher level of anatomical details of the [{sup 123}I] ADAM distribution than that obtained by SPECT imaging of the rabbit brain. Conclusion: SPECT imaging of the rabbit brain with

  19. In vivo quantification by SPECT of [123I] ADAM bound to serotonin transporters in the brains of rabbits

    International Nuclear Information System (INIS)

    Ye, X.-X.; Hwang, J.-J.; Hsieh, J.-F.; Chen, J.-C.; Chou, Y.-T.; Tu, K.-Y.; Wey, S.-P.; Ting Gann

    2004-01-01

    Background: A novel radioiodine ligand [ 123 I] ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) has been suggested as a promising serotonin transporter (SERT) imaging agent for the central nervous system. In this study, the biodistribution of SERTs in the rabbit brain was investigated using [ 123 I] ADAM and mapping images of the same animal produced by both single-photon emission computed tomography (SPECT) and microautoradiography. A semiquantification method was adopted to deduce the optimum time for SPECT imaging, whereas the input for a simple fully quantitative tracer kinetic model was provided from arterial blood sampling data. Methods: SPECT imaging was performed on female rabbits postinjection of 185 MBq [ 123 I] ADAM. The time-activity curve obtained from the SPECT images was used to quantify the SERTs, for which the binding potential was calculated from the kinetic modeling of [ 123 I] ADAM. The kinetic data were analyzed by the nonlinear least squares method. The effects of the selective serotonin reuptake inhibitors fluoxetine and p-chloroamphetamine (PCA) on rabbits were also evaluated. After scanning, the same animal was sacrificed and the brain was removed for microautoradiography. Regions-of-interest were analyzed using both SPECT and microautoradiography images. The SPECT images were coregistered manually with the corresponding microautoradiography images for comparative study. Results: During the time interval 90-100 min postinjection, the peak specific binding levels in different brain regions were compared and the brain stem was shown to have the highest activity. The target-to-background ratio was 1.89±0.02. Similar studies with fluoxetine and PCA showed a background level for SERT occupation. Microautoradiography demonstrated a higher level of anatomical details of the [ 123 I] ADAM distribution than that obtained by SPECT imaging of the rabbit brain. Conclusion: SPECT imaging of the rabbit brain with [ 123 I] ADAM showed

  20. The correlative analysis between CBF measured by SPECT and Chinese reading test in childhood reading disorder

    International Nuclear Information System (INIS)

    Wu Yonggang; Su Jianzhi; He Jianjun; Yang Zhiwei; Liu Guofeng

    2002-01-01

    Objective: To investigate changes of cerebral blood flow (CBF) and its association with Chinese reading skill diagnostic test (CRSDT) in childhood reading disorder (RD). Methods: In 25 RD children and 20 age-matched control subjects, the authors quantitatively determined CBF and regional cerebral blood flow (rCBF) with SPECT using the non-blood-withdrew method. The authors studied the correlation between the CBF and the total raw scores by CRSDT. Results: CBF in case group was (38.87 +- 3.77) ml·100 g -1 ·min -1 and was significantly lower than that in control group [43.65 +- 2.64) mL·100 g -1 ·min -1 (P < 0.01)]. These reduction in CBF correlated with the total raw scores by CRSDT. Conclusion: These results suggest the children with reading disorder have CBF reduction and SPECT is useful for evaluation of cerebral functioning in reading disorder children

  1. A fully automated contour detection algorithm the preliminary step for scatter and attenuation compensation in SPECT

    International Nuclear Information System (INIS)

    Younes, R.B.; Mas, J.; Bidet, R.

    1988-01-01

    Contour detection is an important step in information extraction from nuclear medicine images. In order to perform accurate quantitative studies in single photon emission computed tomography (SPECT) a new procedure is described which can rapidly derive the best fit contour of an attenuated medium. Some authors evaluate the influence of the detected contour on the reconstructed images with various attenuation correction techniques. Most of the methods are strongly affected by inaccurately detected contours. This approach uses the Compton window to redetermine the convex contour: It seems to be simpler and more practical in clinical SPECT studies. The main advantages of this procedure are the high speed of computation, the accuracy of the contour found and the programme's automation. Results obtained using computer simulated and real phantoms or clinical studies demonstrate the reliability of the present algorithm. (orig.)

  2. Brain pertechnetate SPECT in perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Sfakianakis, G.; Curless, R.; Goldberg, R.; Clarke, L.; Saw, C.; Sfakianakis, E.; Bloom, F.; Bauer, C.; Serafini, A.

    1984-01-01

    Single photon emission computed tomography of the brain was performed in 6 patients with perinatal asphyxis aged 8-26 days. A single-head (LFOV) commercial SPECT system (Picker) was used and data were acquired 2-3 hr after an IV injection of 1-2 mCi Tc-99m-pertechnetate (360/sup 0/ rotation, 60 views, 64 x 64 matrix, 50K cts/view). Reconstruction in three planes was performed using MDS software (Hanning medium resolution filter, with or without attenuation correction using Sorenson's technique). For each clinical study, a ring type phantom source was used to identify the level of reconstruction noise in the tomographic planes. Abnormalities were found in all patients studied, 3 central (moderate intensity), 2 peripheral (1 severe, 1 moderate) and 1 diffuse (mild intensity). Despite use of oral perchlorate (50 mg) in one patient the choroid plexus was visible. Since attenuation correction tended to amplify noise, the clinical studies were interpreted both with and without this correction. All 3 patients with central lesions were found abnormal on early (1-4 mo) neurologic follow-up examination, whereas the others were normal. No correlation was found between SPECT and 24 hr blood levels of CPK, ammonia, base excess, or the Apgar scores. Ct scans were reported abnormal (3 diffuse, 1 peripheral, 1 central and 1 questionable). Planar scintigrams obtained immediately after SPECT were normal (2), questionable (2) and abnormal (2). Follow-up SPECT brain scintigrams in two of the patients showed partial resolution. SPECT of the brain appears promising in perinatal asphyxia but long-term correlation with patient development is necessary.

  3. SPECT/CT imaging in children with papillary thyroid carcinoma

    International Nuclear Information System (INIS)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E.

    2011-01-01

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  4. Clinical results of neurotransmission SPECT in extra-pyramidal diseases; Resultats cliniques de la TEMP de la neurotransmission en pathologie extra-pyramidale

    Energy Technology Data Exchange (ETDEWEB)

    Baulieu, J.L.; Prunier, C.; Tranquart, F.; Guilloteau, D. [Centre Hospitalier Universitaire Bretonneau, Service de Medecine Nucleaire in vitro, INSERM U316, 37 - Tours (France)

    1999-12-01

    We present some methodological aspects and clinical applications of dopamine D2 receptor and transporter SPECT using new radiotracers radiolabeled with iodine 123. The gamma camera quality control and standardisation has to be adapted to the small volume and deep location of striata, where receptors and transporters are present. Phantom containing hollow spheres of different diameters which can be filled with different amounts of {sup 99m}Tc or {sup 123}I. The semi quantitation of receptor and transporter molecular concentration is based on an equilibrium binding model. According to this model, the binding potential (Bmax. Ka) is equal to the ratio between specific binding in the striatum and circulating activity in a reference region of interest in the occipital cortex. By comparing ECD and ILIS SPECT, it has been shown that striatal ILIS binding does not depend on the local perfusion. The clinical applications mainly concern the extra-pyramidal pathology: ILIS and IBZM SPECT are able to differentiate pre- and post-synaptic lesions. In Parkinson disease the nigrostriatal pathway is damaged and D2 receptors are normal or increased, as shown by normal or elevated IBZM or ILIS uptake. In other extra pyramidal degenerative diseases as progressive supra nuclear palsy or multiple system atrophy striatal D2 receptors are damaged as shown by decreased IBZM or ILIS uptake. In our experience, 88 per cent of patients are correctly classified by ILIS SPECT and 86 per cent with IBZM SPECT. Dopamine transporter SPECT with {beta}CIT and PE2I provides an evaluation of the presynaptic neuronal density in the striatum. One can expect an help for the early diagnosis and the evaluation of Parkinson disease. Another potential application of dopaminergic neurotransmission SPECT is the evaluation of neuronal loss after hypoxo-ischemia. We conclude that dopaminergic neurotransmission SPECT using specific ligands should become a useful diagnosis tool to study a large number of brain

  5. Pre and post operative evaluation of the perfusion reserve by acetazolamide 99mTc-HMPAO SPECT in patients with chronic occlusive cerebral arteries. A comparative study with PET

    International Nuclear Information System (INIS)

    Kuwabara, Yasuo; Ichiya, Yuichi; Sasaki, Masayuki; Akashi, Yuko; Yoshida, Tsuyoshi; Fukumura, Toshimitsu; Masuda, Kouji; Fujii, Kiyotaka; Fukui, Masashi

    1994-01-01

    We studied the pre and post-operative perfusion reserve using Diamox 99m Tc-HMPAO SPECT in 7 patients with chronic occlusive cerebral arteries and then compared the results with PET. STAMCA anastomosis was performed on 5 patients, while a carotid endarterectomy was done on 2 patients. The cerebral blood flow, the vascular response to CO 2 or Diamox, the oxygen extraction fraction and transit time (CBV/CBF) were measured by PET. In the pre-operative state, the visual evaluations for hypoperfusion area at rest agreed in 5 out of 7 patients in HMPAO SPECT and PET studies. In the remaining 2 patients, hypoperfusion areas were only detected in the PET study. The pre-operative evaluation of perfusion reserve agreed in 2 patients. In the remaining 5 patients, 3 patients showed definite positive (++) in PET and positive (+) in HMPAO SPECT, and one patient showed positive (+) in PET and negative (-) in HMPAO SPECT. The post-operative change of hypoperfusion areas well agreed in HMPAO SPECT and PET studies. However, the change of perfusion reserve was underestimated in HMPAO SPECT compared with PET. In the semiquantitative and quantitative analyses, the count rate ratios (affected/unaffected side) in HMPAO SPECT were apparently higher than those of CBF in PET. The postoperative change of the count rate ratios in HMPAO SPECT were smaller than those of CBF in PET. There was no significant correlation between the change in the ratio of the HMPAO SPECT after the administration of Diamox and the oxygen extraction fraction, and it was thus thought to be impossible to predict the areas with an increased oxygen extraction fraction. Thus, Diamox HMPAO SPECT may underestimate the areas of hypoperfusion or decrease in perfusion reserve when compared with PET. We should consider these limitations in the evaluation of pre and post operative cerebral hemodynamics. (author)

  6. TU-F-12A-01: Quantitative Non-Linear Compartment Modeling of 89Zr- and 124I- Labeled J591 Monoclonal Antibody Kinetics Using Serial Non-Invasive Positron Emission Tomography Imaging in a Pre-Clinical Human Prostate Cancer Mouse Model

    Energy Technology Data Exchange (ETDEWEB)

    Fung, EK; Cheal, SM; Chalasani, S; Fareedy, SB; Punzalan, B; Humm, JL; Osborne, JR; Larson, SM; Zanzonico, PB [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Otto, B; Bander, NH [Weill Cornell Medical College, New York, NY (United States)

    2014-06-15

    Purpose: To examine the binding kinetics of human IgG monoclonal antibody J591 which targets prostate-specific membrane antigen (PSMA) in a pre-clinical mouse cancer model using quantitative PET compartmental analysis of two radiolabeled variants. Methods: PSMA is expressed in normal human prostate, and becomes highly upregulated in prostate cancer, making it a promising therapeutic target. Two forms of J591, radiolabeled with either {sup 89}Zr or {sup 124}I, were prepared. {sup 89}Zr is a radiometal that becomes trapped in the cell upon internalization by the antigen-antibody complex, while radioiodine leaves the cell. Mice with prostate cancer xenografts underwent non-invasive serial imaging on a Focus 120 microPET up to 144 hours post-injection of J591. A non-linear compartmental model describing the binding and internalization of antibody in tumor xenograft was developed and applied to the PET-derived time-activity curves. The antibody-antigen association rate constant (ka), total amount of antigen per gram tumor (Ag-total), internalization rate of antibody-antigen complex, and efflux rate of radioisotope from tumor were fitted using the model. The surface-bound and the internalized activity were also estimated. Results: Values for ka, Ag-total, and internalization rate were found to be similar regardless of radiolabel payload used. The efflux rate, however, was ∼ 9-fold higher for {sup 124}I-J591 than for {sup 89}Zr-J591. Time-dependent surface-bound and internalized radiotracer activity were similar for both radiolabels at early times post-injection, but clearly differed beyond 24 hours. Conclusion: Binding and internalization of J591 to PSMA-expressing tumor xenografts were similar when radiolabeled with either {sup 89}Zr or {sup 124}I payload. The difference in efflux of radioactivity from tumor may be attributable to differential biological fate intracellularly of the radioisotopes. This has great significance for radioimmunotherapy and antibody

  7. Preparation and preclinical pharmacological study on a novel bone imaging agent 99mTc-EMIDP

    International Nuclear Information System (INIS)

    Lin Jianguo; Luo Shineng; Chen Chuanqing; Qiu Ling; Wang Yan; Cheng Wen; Ye Wanzhong; Xia Yongmei

    2010-01-01

    A novel zoledronic acid (ZL) derivative, 1-hydroxy-2-(2-ethyl-4-methyl-1H-imidazol-1-yl)ethane-1,1-diyldiphosphonic acid (EMIDP), was prepared and labeled with 99m Tc successfully in a high labeling yield and good stability in vitro. The preclinical pharmacological properties of 99m Tc-EMIDP were investigated and compared with 99m Tc-MDP and 99m Tc-ZL. The studies of biodistribution in mice and SPECT bone imaging of the rabbit suggest that 99m Tc-EMIDP has highly selective uptake in the skeletal system and rapid clearance in the soft tissues. The present findings indicate that 99m Tc-EMIDP holds great potential for bone scintigraphy.

  8. Image viewing station for MR and SPECT : using personal computer

    International Nuclear Information System (INIS)

    Yim, Byung Il; Jeong, Eun Kee; Suh, Jin Suck; Kim, Myeong Joon

    1996-01-01

    Macro language was programmed to analyze and process on Macintosh personal computers, GEMR images digitally transferred from the MR main computer, with special interest in the interpretation of information such as patients data and imaging parameters under each image header. By this method, raw data(files) of certain patients may be digitally stored on a hard disk or CD ROM, and the quantitative analysis, interpretation and display is possible. Patients and images were randomly selected 4.X MR images were transferred through FTP using the ethernet network. 5.X and SPECT images were transferred using floppy diskettes. To process transferred images, an freely distributed software for Macintosh namely NIH Image, with its macro language, was used to import images and translate header information. To identify necessary information, a separate window named I nfo=txt , was made for each image series. MacLC, Centris650, and PowerMac6100/CD, 7100/CD, 8100/CD models with 256 color and RAM over 8Mbyte were used. Different versions of MR images and SPECT images were displayed simultaneously and a separate window named 'info-txt' was used to show all necessary information(name of the patient, unit number, date, TR, TE, FOV etc.). Additional information(diagnosis, pathologic report etc.) was stored in another text box in 'info-txt'. The size of the file for each image plane was about 149Kbytes and the images were stored in a step-like file folders. 4.X and 5.X GE Signa 1.5T images were successfully processed with Macintosh computer and NIH Image. This result may be applied to many fields and there is hope of a broader area of application with the linkage of NIH Image and a database program

  9. Baseline and cognition activated brain SPECT imaging in depression

    International Nuclear Information System (INIS)

    Zhao Jinhua; Lin Xiangtong; Jiang Kaida; Liu Yongchang; Xu Lianqin

    1998-01-01

    Purpose: To evaluate the regional cerebral blood flow (rCBF) abnormalities through the semiquantitative analysis of the baseline and cognition activated rCBF imaging in unmedicated depressed patients. Methods: 27 depressed patients unmedicated by anti-depressants were enrolled. The diagnosis (depression of moderate degree with somatization) was confirmed by the ICD-10 criteria. 15 age matched normal controls were studied under identical conditions. Baseline and cognition activated 99m Tc-ECD SPECT were performed on 21 of the 27 patients with depression and 13 of the 15 normal controls. Baseline 99m Tc-ECD SPECT alone were performed on the rest 6 patients with depression and 2 normal controls. The cognitive activation is achieved by Wisconsin Card Sorting Test (WCST). 1110 MBq of 99m Tc-ECD was administered by intravenous bolus injection 5 minutes after the onset of the WCST. Semi-quantitative analysis was conducted with the 7th, 8th, 9th, 10th, 11th slices of the transaxial imaging. rCBF ratios of every ROI were calculated using the average tissue activity in the region divided by the maximum activity in the cerebellum. Results: 1) The baseline rCBF of left frontal (0.720) and left temporal lobe (0.720) were decreased significantly in depressed patients comparing with those of the control subjects. 2) The activated rCBF of left frontal lobe (0.719) and left temporal lobe (0.690), left parietal lobe (0.701) were decreased evidently than those of the controls. Conclusions: 1) Hypoperfusions of left frontal and left temporal cortexes were identified in patients with depression. 2) The hypoperfusion of left frontal and left temporal cortexes may be the cause of cognition disorder and depressed mood in patients with depression. 3) Cognition activated brain perfusion imaging is helpful for making a more accurate diagnosis of depression

  10. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR.

    Science.gov (United States)

    Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna

    2017-12-01

    Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.

  11. In vivo quantification of {sup 177}Lu with planar whole-body and SPECT/CT gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Faculty of Health Sciences, University of Sydney, Cumberland, NSW (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Hennessy, Thomas M.; Willowson, Kathy P.; Henry, E. Courtney [Institute of Medical Physics, University of Sydney, Camperdown, NSW (Australia); Chan, David L.H. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Aslani, Alireza [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Roach, Paul J. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia)

    2015-09-17

    Advances in gamma camera technology and the emergence of a number of new theranostic radiopharmaceutical pairings have re-awakened interest in in vivo quantification with single-photon-emitting radionuclides. We have implemented and validated methodology to provide quantitative imaging of {sup 177}Lu for 2D whole-body planar studies and for 3D tomographic imaging with single-photon emission computed tomography (SPECT)/CT. Whole-body planar scans were performed on subjects to whom a known amount of [{sup 177}Lu]-DOTA-octreotate had been administered for therapy. The total radioactivity estimated from the images was compared with the known amount of the radionuclide therapy administered. In separate studies, venous blood samples were withdrawn from subjects after administration of [{sup 177}Lu]-DOTA-octreotate while a SPECT acquisition was in progress and the concentration of the radionuclide in the venous blood sample compared with that estimated from large blood pool structures in the SPECT reconstruction. The total radioactivity contained within an internal SPECT calibration standard was also assessed. In the whole-body planar scans (n = 28), the estimated total body radioactivity was accurate to within +4.6 ± 5.9 % (range −17.1 to +11.2 %) of the correct value. In the SPECT reconstructions (n = 12), the radioactivity concentration in the cardiac blood pool was accurate to within −4.0 ± 7.8 % (range −16.1 to +7.5 %) of the true value and the internal standard measurements (n = 89) were within 2.0 ± 8.5 % (range −16.3 to +24.2 %) of the known amount of radioactivity contained. In our hands, state-of-the-art hybrid SPECT/CT gamma cameras were able to provide accurate estimates of in vivo radioactivity to better than, on average, ±10 % for use in biodistribution and radionuclide dosimetry calculations.

  12. Functional neuroimaging in epilepsy: FDG-PET and SPECT

    International Nuclear Information System (INIS)

    Lee, Sang Kun; Lee, Dong Soo

    2003-01-01

    Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. lctal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test

  13. Functional neuroimaging in epilepsy: FDG-PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Kun; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2003-02-01

    Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. lctal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

  14. The clinical use of brain SPECT imaging in neuropsychiatry

    International Nuclear Information System (INIS)

    Amen, Daniel G; Wu, Joseph C; Carmichael, Blake

    2003-01-01

    This article reviews the literature on brain SPECT imaging in brain trauma, dementia, and temporal lobe epilepsy. Brain SPECT allows clinicians the ability to view cerebral areas of healthy, low, and excessive perfusion. This information can be correlated with what is known about the function or dysfunction of each area. SPECT has a number of advantages over other imaging techniques, including wider availability, lower cost, and high quality resolution with multi-headed cameras. There are a number of issues that compromise the effective use of SPECT, including low quality of some imaging cameras, and variability of image rendering and readings (Au)

  15. Influence of void on image quality of industrial SPECT

    International Nuclear Information System (INIS)

    Park, J G; Jung, S H; Kim, J B; Moon, J; Kim, C H

    2013-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising technique to determine the dynamic behavior of industrial process media and has been developed in the Korea Atomic Energy Research Institute. The present study evaluated the influence of a void, which is presence in multiphase reactors of industrial process, on the image quality of an industrial SPECT. The results are very encouraging; that is, the performance of the industrial SPECT system is little influenced by the presence of a void, which means that industrial SPECT is an appropriate tool to estimate the dynamic characteristics of the process media in a water-air phase bubble column with a static gas sparger

  16. Methods of gated-blood-pool-spect data processing

    International Nuclear Information System (INIS)

    Kosa, I.; Mester, J.; Tanaka, M.; Csernay, L.; Mate, E.; Szasz, K.

    1991-01-01

    Three techniques of gated SPECT were evaluated. The methods of Integral SPECT (ISPECT), enddyastole-endsystole SPECT (ED-ES SPECT) and Fourier SPECT were adapted and developed on the Hungarian nuclear medicine data processing system microSEGAMS. The methods are based on data reduction before back projection which results in processing times acceptable for the clinical routine. The clinical performance of the introduced techniques was tested in 10 patients with old posterior myocardial infarction and in 5 patients without cardiac disease. The left ventricular ejection faction determined by ISPECT correlated well with the planar values. The correlation coefficient was 0.89. The correlation coefficient of EF values determined by ED-ES SPECT and planar radionuclide ventriculography was lower (0.70). For the identification of left ventricular wall motion abnormalities ED-ES SPECT and Fourier SPECT exhibited a favourable performance, but ISPECT only moderate suitability. In the detection of regional phase delay Fourier-SPECT demonstrated higher sensitivity than the planar radionuclide ventriculography. (author) 4 refs.; 3 figs.; 2 tabs

  17. I-123 Iofetamine SPECT scan in children with neurological disorders

    International Nuclear Information System (INIS)

    Flamini, J.R.; Konkol, R.J.; Wells, R.G.; Sty, J.R.

    1990-01-01

    I-123 Iofetamine (IMP) single photon emission computed tomography (SPECT) imaging of the brain in 42 patients (ages 14 days to 23 years) was compared with other localizing studies in children with neurological diseases. All had an EEG and at least one imaging study of the brain (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Seventy-eight percent of the patients had an EEG within 24-72 hours of the IMP-SPECT scan. Thirty-five (83%) had a history of seizures, and the remainder had other neurological conditions without a history of seizures. In most cases, a normal EEG reading with normal CT or MRI result predicted a normal SPECT study. When the EEG was abnormal the majority of the IMP-SPECT scans were abnormal and localized the abnormality to the same region. A comparison with CT and MRI showed that structural abnormalities involving the cortex were usually well demonstrated with IMP-SPECT imaging. Structural lesions confined to the white matter were generally not detectable with IMP-SPECT. In a few cases, SPECT scans revealed abnormalities in deep brain areas not identified by EEG. IMP-SPECT imaging is a valuable technique for the detection and localization of abnormal cerebral metabolic activity in children with seizure disorders. A correlation with CT or MRI is essential for proper interpretation of abnormalities detected with IMP SPECT imaging

  18. Preclinical models for obesity research

    Directory of Open Access Journals (Sweden)

    Perry Barrett

    2016-11-01

    Full Text Available A multi-dimensional strategy to tackle the global obesity epidemic requires an in-depth understanding of the mechanisms that underlie this complex condition. Much of the current mechanistic knowledge has arisen from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. These experimental models mimic certain aspects of the human condition and its root causes, particularly the over-consumption of calories and unbalanced diets. As with human obesity, obesity in rodents is the result of complex gene–environment interactions. Here, we review the traditional monogenic models of obesity, their contemporary optogenetic and chemogenetic successors, and the use of dietary manipulations and meal-feeding regimes to recapitulate the complexity of human obesity. We critically appraise the strengths and weaknesses of these different models to explore the underlying mechanisms, including the neural circuits that drive behaviours such as appetite control. We also discuss the use of these models for testing and screening anti-obesity drugs, beneficial bio-actives, and nutritional strategies, with the goal of ultimately translating these findings for the treatment of human obesity.

  19. Ethical Considerations of Preclinical Testing

    Directory of Open Access Journals (Sweden)

    Allen Goldenthal

    2015-12-01

    Full Text Available The numbers of animal tests being conducted are on a sharp incline.  Much of this increase is directly due to our ability to generate transgenic models and knock-outs, thereby increasing the validity of the animal model but not necessarily correlating directly with any translational medical benefits to the human counterpart.  In spite of our best efforts, there still exist species differences that prevent the application directly from animal to human, and in some examples having a completely different and adverse effect from that seen in the animal model. There are several ways in which we can improve the opportunity for a positive test outcome and at the same time reduce the animal usage which is associated with our current animal testing practices. The benefit of the 3R’s is that they encourage us not only to avoid wastage of life but that they require us to provide considerable foresight and extrapolated thought before directly engaging in the preclinical testing phase.

  20. Preclinical studies of dendrimer prodrugs.

    Science.gov (United States)

    Kojima, Chie

    2015-01-01

    Dendrimers are synthetic macromolecules with well-defined structures bearing a wide variety of functional groups on their periphery. These groups can be used to conjugate bioactive molecules such as drugs, ligands and imaging agents. Dendrimer prodrugs can be used to improve the water solubility and pharmacokinetic properties of the corresponding free drugs. This article summarizes preclinical studies pertaining to the use of drug-dendrimer conjugates as dendrimer prodrugs for the treatments of various diseases, including cancer and inflammatory diseases. A wide range of anticancer drugs have been conjugated to dendrimers via biodegradable linkers. The side effects of the parent drugs can be markedly reduced using dendrimer prodrugs, with some drugs showing improved efficacy. Anti-inflammatory agents have also been conjugated to dendrimers and used to treat a number of inflammatory diseases. Drug-dendrimer conjugates are preferable to drug-dendrimer complexes, where the use of degradable linkers is critical to the release of the drug. Polyethylene glycol and/or ligands can be added to a dendrimer prodrug, which is useful for the targeting of affected tissues. Imaging probes can also be incorporated into dendrimer prodrugs for the simultaneous delivery of therapeutic and diagnostic agents as 'theranostics.'

  1. Measurement of lung water with SPECT

    International Nuclear Information System (INIS)

    Chu, R.Y.L.; Ficken, V.J.; Ekeh, S.U.; Ryals, C.J.; Allen, E.W.; Basmadjian, G.

    1990-01-01

    This paper investigates the use of iodoantipyrine (IAP) labeled with radioactive iodine (I-123) and single photon emission tomography (SPECT) to measure lung water. I-123 IAP was injected intravenously to six New Zealand White rabbits under anesthesia. After 1 hour, Tc-99m macroaggregates of albumin (MAA) were injected. SPECT imaging was performed in dual-energy mode. After a blood sample was drawn, the animals were sacrificed, and the lungs were removed. Blood samples were assayed for radioactivity. The lungs were weighed, dried, and weighted again to determine water content. The product of area defined by MAA in a tomogram and IAP count rate of central pixels of that region in the corresponding tomogram was taken as the relative amount of IAP in each lung

  2. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  3. New SPECT and PET dementia tracers

    International Nuclear Information System (INIS)

    Vergote, J.; Chalon, S.; Emond, P.; Vercouillie, J.; Guilloteau, D.; Vergote, J.; Guilloteau, D.; Pappata, J.S.

    2009-01-01

    Single photon emission tomography (SPECT) and positron emission tomography (PET) are techniques to study in vivo neurotransmitter systems, neuro inflammation and amyloid deposits in normal human brain and in dementia. These methods used to explore the integrity of dopaminergic, cholinergic and serotonergic systems in Alzheimer's disease and in other dementias allowed to understand how the neurotransmission was modified in these disorders. Progress in the understanding of pathophysiological and clinical signs of dementia requires an evolution of the radioligands used to carry out an increasingly early and differential diagnosis in addition to monitoring the progression of disease and the effects of therapies. New emerging radiotracers for neuro inflammation or amyloid deposits are essential. In this article, new SPECT and PET tracers are presented. (authors)

  4. SPECT/CT in pediatric patient management

    International Nuclear Information System (INIS)

    Nadel, Helen R.

    2014-01-01

    Hybrid SPECT/CT imaging is becoming the standard of care in pediatric imaging. Indications are mainly for oncologic imaging including mIBG scintigraphy for neuroblastoma and I-123 post surgical imaging of children with thyroid carcinoma, bone scintigraphy for back pain, children referred from sports medicine and neurodevelopmentally delayed children presenting with pain symptoms. The studies provide improved diagnostic accuracy, and oncologic imaging that includes optimized CT as part of the SPECT/CT study may decrease the number of studies and sedation procedures an individual child may need. The studies, however, must be tailored on an individual basis as the addition of the CT study can increase exposure to the child and should only be performed after appropriate justification and with adherence to optimized low dose pediatric protocols. (orig.)

  5. Silicon Detectors for PET and SPECT

    Science.gov (United States)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  6. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  7. SPECT/CT in pediatric patient management

    Energy Technology Data Exchange (ETDEWEB)

    Nadel, Helen R. [British Columbia Children' s Hospital, University of British Columbia, Pediatric Radiologist and Nuclear Medicine Physician, Division of Nuclear Medicine Department of Radiology, Vancouver, British Columbia (Canada)

    2014-05-15

    Hybrid SPECT/CT imaging is becoming the standard of care in pediatric imaging. Indications are mainly for oncologic imaging including mIBG scintigraphy for neuroblastoma and I-123 post surgical imaging of children with thyroid carcinoma, bone scintigraphy for back pain, children referred from sports medicine and neurodevelopmentally delayed children presenting with pain symptoms. The studies provide improved diagnostic accuracy, and oncologic imaging that includes optimized CT as part of the SPECT/CT study may decrease the number of studies and sedation procedures an individual child may need. The studies, however, must be tailored on an individual basis as the addition of the CT study can increase exposure to the child and should only be performed after appropriate justification and with adherence to optimized low dose pediatric protocols. (orig.)

  8. Assessment of inferior wall in 123I-metaiodobenzylguanidine myocardial SPECT in diabetic patients

    International Nuclear Information System (INIS)

    Fukumoto, Yoshihiro; Kuroda, Yasuhisa; Ohta, Jun; Osono, Ken; Saitou, Miyoko; Suzuki, Mituaki; Nakajima, Toshiki

    1994-01-01

    A phantom experiment and a clinical assessment have been made with the purpose of investigating the causes of low accumulation and deficiency of the inferior wall in 123 I-metaiodobenzylguanidine (MIBG) myocardial SPECT and the method for its evaluation. By the phantom experiment, assessments were made regarding (1) influence of the liver positioned adjacently; and (2) involvement of absorption and attenuation of the inferior wall. For the clinical assessment, 84 patients with diabetes in whom no abnormality was observed by exercise myocardial SPECT ( 201 TlCl) and 5 cases of inferior myocardial infarction (OMI group) were adopted as subjects. The inferior walls were evaluated as visually deficient because of the adjacently-positioned liver, but no low value was exhibited by quantitative evaluation. By pulmonary mediastinal phantom (-), improvement of the inferior wall was observed visually and quantitatively, compared with pulmonary mediastinal phantom (+). By quantitative evaluation, the patients were classified into normal MIBG group (N group); segmentally deficient group (S group); and non-accumulated group (DH group). In addition, S group was classified by severity score into those from S 1 to S 4 groups. No significant difference was observed in Relative Regional Uptake (RRU) in the inferior wall between S 4 group and OMI group. To sum up, we considered the causes for low accumulation and deficiency of the inferior wall, (1) adjacently-positioned liver; (2) absorption and attenuation; and (3) the lesion itself. Visual evaluation is not sufficient as the evaluating method. Quantitative evaluation becomes necessary. (author)

  9. Adaptive Angular Sampling for SPECT Imaging

    OpenAIRE

    Li, Nan; Meng, Ling-Jian

    2011-01-01

    This paper presents an analytical approach for performing adaptive angular sampling in single photon emission computed tomography (SPECT) imaging. It allows for a rapid determination of the optimum sampling strategy that minimizes image variance in regions-of-interest (ROIs). The proposed method consists of three key components: (a) a set of close-form equations for evaluating image variance and resolution attainable with a given sampling strategy, (b) a gradient-based algor...

  10. Brain perfusion SPECT in dementia syndromes

    International Nuclear Information System (INIS)

    Libus, P.; Stupalova, J.; Kuzelka, I.; Konrad, J.

    2002-01-01

    Aim: Brain perfusion SPECT is used in differential diagnostics of dementia syndromes. First of all the aim is to distinguish vascular dementia from degenerative dementia and to differentiate dementia from delirium, psychiatric syndromes, depression and secondary dementia, which is important in relation to therapy. The purpose of our study was to detect significance of BP SPECT and include it into the diagnostic process in dementia syndromes. Materials and methods: 51 women and 63 men aged 55 - 88 were evaluated in the study. The patients correspond to the general criteria of dementia diagnosis. They were sent to the examination by neurological, internal and psychiatric departments and out-patient departments. All patients were examined by 99mTc ECD SPECT using a double head camera PRISM 200 VP with LEHR collimator. The scintigraphic data were evaluated by the visual and semiquantitative analysis. Results: It was established that most patients in our group had vascular dementia, while Alzheimer's disease was second. In other groups we found out dementia at strategic infarct location, e.g. in gyrus angularis in the dominant hemisphere, frontal temporal lobe dementia and alcoholic dementia. Twenty-four patients had a normal diagnosis. Fifteen of them had a somatic reason of the delirious state and were re-classified into pseudodementia. Nine patients were not diagnostically included and the examination will repeated in four months time. Conclusion: We have found out a good applicability of brain perfusion SPECT in dementia syndromes diagnosis in our work. The best diagnosticable and most specific were the findings in multi-infarct dementia, Alzheimer's disease and frontal temporal lobe dementia. When vascular dementia is concerned we can even distinguish dementia at strategic infarction location, e.g. in thalamus, basal frontal telencefalon, in gyrus angularis of the dominant hemisphere, etc

  11. Compensation for nonuniform attenuation in SPECT brain imaging

    International Nuclear Information System (INIS)

    Glick, S.J.; King, M.A.; Pan, T.S.; Soares, E.J.

    1996-01-01

    Accurate compensation for photon attenuation is needed to perform quantitative brain single-photon-emission computed tomographic (SPECT) imaging. Bellini's attenuation-compensation method has been used with a nonuniform attenuation map to account for the nonuniform attenuation properties of the head. Simulation studies using a three-dimensional (3-D) digitized anthropomorphic brain phantom were conducted to compare quantitative accuracy of reconstructions obtained with the nonuniform Bellini method to that obtained with the Chang method and to iterative reconstruction using maximum-likelihood expectation maximization (ML-EM). Using the Chang method and assuming the head to be a uniform attenuator gave reconstructions with an average bias of approximately 6-8%, whereas using the Bellini or the iterative ML-EM method with a nonuniform attenuation map gave an average bias of approximately 1%. The computation time required to implement nonuniform attenuation compensation with the Bellini algorithm is approximately equivalent to the time required to perform one iteration of ML-EM. Thus, using the Bellini method with a nonuniform attenuation map provides accurate compensation for photon attenuation within the head, and the method can be implemented in computation times suitable for routine clinical use

  12. Evaluation of reconstruction algorithms in SPECT neuroimaging: Pt. 1

    International Nuclear Information System (INIS)

    Heejoung Kim; Zeeberg, B.R.; Reba, R.C.

    1993-01-01

    In the presence of statistical noise, an iterative reconstruction algorithm (IRA) for the quantitative reconstruction of single-photon-emission computed tomographic (SPECT) brain images overcomes major limitations of applying the standard filtered back projection (FBP) reconstruction algorithm to projection data which have been degraded by convolution of the true radioactivity distribution with a finite-resolution distance-dependent detector response: (a) the non-uniformity within the grey (or white) matter voxels which results even though the true model is uniform within these voxels; (b) a significantly lower ratio of grey/white matter voxel values than in the true model; and (c) an inability to detect an altered radioactivity value within the grey (or white) matter voxels. It is normally expected that an algorithm which improves spatial resolution and quantitative accuracy might also increase the magnitude of the statistical noise in the reconstructed image. However, the noise properties in the IRA images are very similar to those in the FBP images. (Author)

  13. Neuropharmacological studies with SPECT in neuropsychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Andreas; Jones, Douglas W.; Raedler, Thomas; Coppola, Richard; Knable, Michael B.; Weinberger, Daniel R. E-mail: weinberd@intra.nimh.nih.gov

    2000-10-01

    The last decade saw a rapid development of single photon emission computed tomography (SPECT) from a tool to assess cerebral blood flow to the study of specific neurotransmitter systems. Because of the relatively long half-life of SPECT radioisotopes, it is practical to measure the availability of neuroreceptors and transporters in conditions approaching equilibrium. The cost-efficiency of SPECT allowed studies in relatively large samples of patients with various neuropsychiatric disorders. We have applied this approach in studies of dopaminergic, serotonergic, and muscarinergic neurotransmission in patients with dementia, extrapyramidal disorders, schizophrenia, and alcoholism. No simple associations were observed between a single defect in one neurotransmitter system and a certain neuropsychiatric disease. Instead, complex dysfunction of several neurotransmitter systems in multiple, partially connected brain circuits have been implicated. Treatment effects also have been characterized. Microdialysis and neurotransmitter depletion studies showed that most radioligands and endogenous neurotransmitters compete for binding at receptors and transporters. Future research directions include the assessment of endogenous neurotransmitter concentrations measured by depletion studies and of genetic effects on neuroreceptor and transporter expression.

  14. Single photon emission computerized tomography (SPECT)

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as 123 I and 99 Tc m that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  15. Neuropharmacological studies with SPECT in neuropsychiatric disorders

    International Nuclear Information System (INIS)

    Heinz, Andreas; Jones, Douglas W.; Raedler, Thomas; Coppola, Richard; Knable, Michael B.; Weinberger, Daniel R.

    2000-01-01

    The last decade saw a rapid development of single photon emission computed tomography (SPECT) from a tool to assess cerebral blood flow to the study of specific neurotransmitter systems. Because of the relatively long half-life of SPECT radioisotopes, it is practical to measure the availability of neuroreceptors and transporters in conditions approaching equilibrium. The cost-efficiency of SPECT allowed studies in relatively large samples of patients with various neuropsychiatric disorders. We have applied this approach in studies of dopaminergic, serotonergic, and muscarinergic neurotransmission in patients with dementia, extrapyramidal disorders, schizophrenia, and alcoholism. No simple associations were observed between a single defect in one neurotransmitter system and a certain neuropsychiatric disease. Instead, complex dysfunction of several neurotransmitter systems in multiple, partially connected brain circuits have been implicated. Treatment effects also have been characterized. Microdialysis and neurotransmitter depletion studies showed that most radioligands and endogenous neurotransmitters compete for binding at receptors and transporters. Future research directions include the assessment of endogenous neurotransmitter concentrations measured by depletion studies and of genetic effects on neuroreceptor and transporter expression

  16. Single photon emission computerized tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as {sup 123}I and {sup 99}Tc{sup m} that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  17. Blood lipid levels and SPECT of myocardium perfusion to type 2 asymptomatic diabetic patients

    International Nuclear Information System (INIS)

    Pena Quian, Yamile; Fernandez-Britto Rodriguez, Jose; Coca Perez, Marco A; Batista Cuellar, Juan F; Rochela Vazquez, Luis Manuel

    2006-01-01

    SPECT, coronary angiography and laboratories test were performed on 31 asymptomatic type 2 diabetes patients, in order to determine the relationship among the lipid levels in blood and the results of the SPECT. Patients were classified in two groups (positive SPECT or negative SPECT). Simple descriptive statistics were calculated for all variables in both groups. Positive SPECT was detected in 35,5% of the patients and negative SPECT in 64,5%.The coronary angiography and SPECT showed good correlation. Low values of HDLc showed significant association with the positive results of the SPECT. The logistical regression showed an increment of the capacity to predict a positive SPECT if the values of HDLc are used. Conclusion: The present investigation demonstrated a significant association among the low levels of HDLc in blood and the positive results of the SPECT. The low values of HDLc could predict the possibility of a positive SPECT in asymptomatic diabetic type 2 patients (au)

  18. Assessment of vascularization within hydroxyapatite ocular implant by bone scintigraphy: compartive analysis of planar and SPECT imaging

    International Nuclear Information System (INIS)

    Lim, Seok Tae; Sohn, Myung Hee; Park, Soon Ah

    1999-01-01

    Complete fibrovascular ingrowth within the hydroxyapatite ocular implant is necessary for peg drilling which is performed to prevent infection and to provide motility to the ocular prosthesis. We compared planar bone scintigraphy and SPECT for the evaluation of the vascularization within hydroxyapatite ocular implants. Seventeen patients (M:F=12:5, mean age: 50.4±17.5 years) who had received a coralline hydroxyapatite ocular implant after enucleation surgery were enrolled. Patients underwent Tc-99m MDP planar bone and SPECT imaging by dual head gamma camera after their implant surgery (interval: 197±81 days). Uptake on planar and SPECT images was graded visually as less than (grade 1), equal to (grade 2), and greater than (grade 3) nasal bridge activity. Quantitative ratio of implanted to non-implanted intraorbital activity was also measured. Vascularization within hydroxyapatite implants was confirmed by slit lamp examination and ocular movement. All but three patients were considered to be vascularized within hydroxyapatite implants. In visual analysis of planar image and SPECT, grade 1 was noted in 9/18 (50%) and 6/18 (33%), respectively. Grade 2 pattern 7/18 (39%) and 4/18 (22%), and grade 3 pattern was 2/18 (11%) and 8/18 (44%) respectively. When grade 2 or 3 was considered to be positive for vascularization, the sensitivity of planar and SPECT imaging were 60% (9/15) and 80% (12/15), respectively. In 3 patients with incomplete vascularization, both planar and SPECT showed grade 1 uptake. The orbital activity ratios on planar imaging were not significantly different between complete and incomplete vascularization (1.96±9.87 vs 1.17±0.08 , p>0.05), however, it was significantly higher on SPECT in patients with complete vascularization (8.44±5.45 vs 2.20±0.87, p<0.05). In the assessment of fibrovascular ingrowth within ocular implants by Tc-99m MDP bone scintigraphy, SPECT image appears to be more effective than planar scintigraphy

  19. 99mTc-HMPAO SPECT thalamic blood flow study in migraine

    International Nuclear Information System (INIS)

    Zhang Zhijian; Steiner, T.J.

    1995-01-01

    The changes of blood flow in the thalamic of migraineurs by 99m Tc-HMPAO SPECT imaging are investigated. 60 cases with migraine were performed by Novo 810 high-resolution SPECT 30 minutes after injection of 99m Tc-HMPAO. The quantitative analysis of SPECT data was based on the irregular ROI% uptake normalized to total slice method. There were significantly increased mean % uptake values in migraine with aura (259.1 +-17.1), and more significantly in those who experienced hemisensory symptoms and hemiparesis during aura (263.8 +- 17.2), compared to that of migraine without aura (249.1 +- 14.9), but there were not statistically significant difference between migraine with only visual disturbance during aura (255.1 +- 16.4) and without aura. The possible explanations for the increased mean % uptake values in migraineurs who experienced hemisensory symptoms and hemiparesis during aura are: (1) the reactive postischemic hyperemia. (2) excepting thalamus, the regional blood flow was decreased. (3) the secondary phenomenon to the various neurogenic and chemical stimuli

  20. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Huang, Qiu; You, Jiangsheng; Zeng, Gengsheng L.

    2008-01-01

    In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-beam reconstruction algorithms are either approximate or involve iterative methods. The SPECT reconstruction problem is more complicated due to degradations in the imaging detection process, one of which is the effect of attenuation of gamma ray photons. Attenuation should be compensated for to obtain quantitative results. In this paper, an analytical reconstruction algorithm for uniformly attenuated cone-beam projection data is presented for SPECT imaging. The algorithm adopts the DBH method, a procedure consisting of differentiation and backprojection followed by a finite inverse cosh-weighted Hilbert transform. The significance of the proposed approach is that a selected region of interest can be reconstructed even with a detector with a reduced field of view. The algorithm is designed for a general trajectory. However, to validate the algorithm, a numerical study was performed using a helical trajectory. The implementation is efficient and the simulation result is promising

  1. The study of low level laser irradiation therapy on brain infarction with SPECT

    Institute of Scientific and Technical Information of China (English)

    Xiao Xuechang; Jia Shaowei; Zleng Xiyuan

    2000-01-01

    Objective: Effect of rCBF and brain function on ILIB treating brain infarction will be investigated by SPECT brain perfusion imaging. Method: 3 1 patients with brain infarction, 17 patients were treated by ILIB on standard pharmaceutial treatment. SPECT brain perfusion imaging was performed before and after ILIB therapy with comparison of oneself. They were quantified with BFCR% model effect during ILIB in 14 patients were observed. Result: ILIB 30 rnme SPECT showed the improvement of rCBF and cerebral function in 14 patients with brain infarction, and in 17 patients locus were prominence than mirror regions att er ILIB therapy, both are higher singnitficant difference ( t=4.4052, P<0.0001 ), but mirror regions were not singnificant difference before and after ILIB (t=1.6995, P>0.05). BFCR% quantitative results of locus were higher mirror regions, and higher singnificant difference (t=4.5278 p<0.0001 )。 Conclusion: ILIB can improve the rCBF and cerebral function of patients with brain infarction, and provoke function of brain cells. Some new evidence was provided for ILIB treatment of cerebral ischemia

  2. Peritoneal fluid causing inferior attenuation on SPECT thallium-201 myocardial imaging in women

    International Nuclear Information System (INIS)

    Rab, S.T.; Alazraki, N.P.; Guertler-Krawczynska, E.

    1988-01-01

    On SPECT thallium images, myocardial left ventricular (LV) anterior wall attenuation due to breast tissue is common in women. In contrast, in men, inferior wall counts are normally decreased compared to anterior counts. The purpose of this report is to describe cases of inferior wall attenuation of counts in women caused by peritoneal fluid, not myocardial disease. Twelve consecutive SPECT thallium myocardial studies performed in women on peritoneal dialysis, being evaluated for kidney transplant, were included in this study. For all studies, 3.5 mCi 201Tl were injected intravenously. Thirty-two images were acquired over 180 degrees (45 degrees RAO progressing to 45 degrees LPO) at 40 sec per stop. SPECT images were reviewed in short axis, horizontal long and vertical long axes. Data were also displayed in bullseye format with quantitative comparison to gender-matched normal files. Ten of 12 female patients studied had inferior wall defects on images, confirmed by bullseye display. All patients had approximately 2 liters of peritoneal fluid. Review of planar rotational views showed diaphragm elevation and fluid margin attenuations affecting left ventricular inferior wall. Thus, peritoneal fluid is a cause of inferior attenuation on 201Tl cardiac imaging

  3. Iodine-123 iodobenzofuran (I-123 IBF) SPECT in patients with parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Nakabeppu, Yoshiaki; Nakajo, Masayuki; Mitsuda, Mitsuru; Tsuchimochi, Shinsaku; Tani, Atsushi; Osame, Mitsuhiro [Kagoshima Univ. (Japan). Faculty of Medicine

    1999-12-01

    Iodine-123 benzofuran (I-123 IBF) is a dopaminergic antagonist which is suitable for SPECT imaging of D2 receptors. The purpose of this study is to evaluate the potential usefulness of semi-quantitative parameters obtained from brain SPECT data of I-123 IBF for differential diagnosis in patients with parkinsonism (PN). Subjects were 10 patients with PN: 2 patients with striato-nigral degeneration (SND), 5 patients with Parkinson's disease (PD), 2 patients with progressive supranuclear palsy (PSP) and one patient with olivo-ponto-cerebellar atrophy (OPCA). The data were acquired with a triple-head gamma camera at 2 hours after intravenous injection of 167 MBq of I-123 IBF. Transverse images were reconstructed by means of filtered backprojection, and attenuation correction was performed by Chang's method ({mu}=0.08). The basal ganglia-to-frontal cortex ratio (GFR) and the basal ganglia-to-occipital cortex ratio (GOR) on slices of 5 different thicknesses were calculated. The GFR and GOR were lower in the SND group than in the other disease groups in all slices with different thicknesses (7.2 mm, 14.4 mm, 21.6 mm, 28.8 mm and 43.2 mm). The semiquantitative parameters (GFR and GOR) obtained from brain SPECT data at 2 hours after intravenous injection of I-123 IBF may be useful for differential diagnosis in patients with PN. (author)

  4. Iodine-123 iodobenzofuran (I-123 IBF) SPECT in patients with parkinsonism

    International Nuclear Information System (INIS)

    Nakabeppu, Yoshiaki; Nakajo, Masayuki; Mitsuda, Mitsuru; Tsuchimochi, Shinsaku; Tani, Atsushi; Osame, Mitsuhiro

    1999-01-01

    Iodine-123 benzofuran (I-123 IBF) is a dopaminergic antagonist which is suitable for SPECT imaging of D2 receptors. The purpose of this study is to evaluate the potential usefulness of semi-quantitative parameters obtained from brain SPECT data of I-123 IBF for differential diagnosis in patients with parkinsonism (PN). Subjects were 10 patients with PN: 2 patients with striato-nigral degeneration (SND), 5 patients with Parkinson's disease (PD), 2 patients with progressive supranuclear palsy (PSP) and one patient with olivo-ponto-cerebellar atrophy (OPCA). The data were acquired with a triple-head gamma camera at 2 hours after intravenous injection of 167 MBq of I-123 IBF. Transverse images were reconstructed by means of filtered backprojection, and attenuation correction was performed by Chang's method (μ=0.08). The basal ganglia-to-frontal cortex ratio (GFR) and the basal ganglia-to-occipital cortex ratio (GOR) on slices of 5 different thicknesses were calculated. The GFR and GOR were lower in the SND group than in the other disease groups in all slices with different thicknesses (7.2 mm, 14.4 mm, 21.6 mm, 28.8 mm and 43.2 mm). The semiquantitative parameters (GFR and GOR) obtained from brain SPECT data at 2 hours after intravenous injection of I-123 IBF may be useful for differential diagnosis in patients with PN. (author)

  5. Quantification of reversible perfusion abnormality using exercise-stress thallium SPECT before and after coronary revascularization

    International Nuclear Information System (INIS)

    Nagao, Kazuhiko; Nakata, Tomoaki; Tsuchihashi, Kazufumi

    1994-01-01

    Reversible myocardial perfusion abnormality was quantified by bull's eye and unfolded surface mapping methods in exercise thallium SPECT before and after coronary revascularization in 47 patients with angina pectoris, including 34 patients with previous myocardial infarction (PMI) and 13 with effort angina (AP). There was no difference in the incidence or extent of myocardial ischemia between the 2 groups before revascularization. However, the ischemic scores were significantly smaller in PMI group preoperatively than the reductions of the ischemic scores after revascularization. The ischemic scores, preoperatively estimated reversible perfusion abnormality was 32%, 69% and 48% of the improvement of the ischemic score (extent score, severity score, and ischemic area, respectively). Using the 3 ischemic scores, the improvement of perfusion abnormality was well predicted in 70-89% of AP patients but 35-57% of PMI patients. Thus, quantitative analysis in stress thallium SPECT is useful for detecting myocardial ischemia and evaluating the effect of coronary revascularization. However, about a half of myocardial viability was underestimated in one third of PMI patients by the conventional exercise-stress thallium SPECT study. (author)

  6. Clinical evaluation of coronary territory map by using unfolded map of Tl-201 myocardial SPECT

    International Nuclear Information System (INIS)

    Uehara, Toshiisa; Nishimura, Tsunehiko; Katafuchi, Tetsuro; Yamagami, Hidetoshi; Kumita, Shinichirou; Hayashida, Kohei; Hayashi, Makoto

    1990-01-01

    Coronary territory map was developed on unfolded map of exercise Tl-201 myocardial SPECT. Each coronary territory was determined by summing the each unfolded map of 54 cases of single vessel disease respectively, and standardizing with normal pattern obtained from normal patients. The diagnostic accuracy of coronary territory map to identify the diseased coronary artery was analyzed in 104 clinical cases and was compared with that of planar and SPECT visual diagnosis, simple unfolded map (raw map) and extent and severity map. The results were as follows. (1) Territory map showed excellent diagnostic accuracy in single or double vessel disease, especially in diagnosis of left circumflex coronary artery lesion. (2) In triple vessel disease, the diagnostic accuracy of territory map or other unfolded maps was 30% at best, and was inferior to planar or SPECT visual analysis. The cause of this inferiority seemed that the quantitatively analyzed map had no information about the degree of Tl-uptake into lung or myocardium, which give useful information in visual diagnosis. (3) The diagnostic agreement ratio in two observers was the highest in territory map diagnosis, so that the territory map diagnosis seemed to be the most objective one. (4) The unfolded map diagnosis with apical display obtained from long-axis tomogram was useful to diagnose left anteior descending coronary (LAD) lesion, which improve not only the sensitivity of LAD but also specificity of right coronary artery single vessel disease. (author)

  7. SPECT and PET imaging in epilepsia; SPECT und PET in der Diagnostik von Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Landvogt, C. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-09-15

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, {sup 11}C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed.

  8. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  9. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    Science.gov (United States)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  10. Interictal SPECT of rCBF is of clinical utility in the preoperative evaluation of patients with partial epilepsy

    DEFF Research Database (Denmark)

    Andersen, A R; Hansen, B A; Høgenhaven, H

    1996-01-01

    Fifty-eight patients with drug-resistant partial epilepsy were studied preoperatively by interictal rCBF measurements using 99mTc-HMPAO and a dedicated brain SPECT camera (Tomomatic 64). Follow-up of seizure outcome, using the "Engel score", was at least 3 years. The data were analyzed in a blinded...... set-up, first visually and subsequently quantitatively by an automatic regional analysis. By visual analysis 95% of the patients were considered abnormal in one part of the brain, of whom 27% were abnormal on CT, 45% on MRI and 98% on scalp EEG. Using a quantitative regional analysis subdividing each...... patients ictal SPECT of rCBF was additionally performed. In 2 cases it added further information to the patient evaluation....

  11. Interictal SPECT of rCBF is of clinical utility in the preoperative evaluation of patients with partial epilepsy

    DEFF Research Database (Denmark)

    Andersen, A.R.; Hansen, B.A.; Hogenhaven, H

    1996-01-01

    Fifty-eight patients with drug-resistant partial epilepsy were studied preoperatively by interictal rCBF measurements using 99mTc-HMPAO and a dedicated brain SPECT camera (Tomomatic 64). Follow-up of seizure outcome, using the 'Engel score', was at least 3 years. The data were analyzed in a blinded...... set-up, first visually and subsequently quantitatively by an automatic regional analysis. By visual analysis 95% of the patients were considered abnormal in one part of the brain, of whom 27% were abnormal on CT, 45% on MRI and 98% on scalp EEG. Using a quantitative regional analysis subdividing each...... patients ictal SPECT of rCBF was additionally performed. In 2 cases it added further information to the patient evaluation...

  12. Implementation and Evaluation of Pinhole SPECT

    International Nuclear Information System (INIS)

    MacArtain Anne Marie

    2002-08-01

    The aim of this work was to implement Pinhole SPECT into a working Nuclear Medicine department. It has been reported that pinhole SPECT has been successfully performed to visualise pathology in ankle bones using gamma camera and the images were constructed using a standard filtered back-projection algorithm (Bahk YW, 1998). The objective of this study was to produce and evaluate this technique with the equipment available in the nuclear medicine department. The system performance was assessed using both the low-energy high resolution and the pinhole collimators. Phantoms constructed using capillary tubes, filled with technetium 99m (pertechnetate) were imaged in different arrays to identify possible limitations in the reconstruction software. A thyroid phantom with hot and cold inserts was also imaged. Data was acquired in ''tep-and-shoot'' mode as the camera was rotated 180 degrees or 360 degrees around the phantom. Images were reconstructed using standard parallel back-projection algorithm and a weighted backprojection algorithm (Nowak). An attempt was made to process images of the phantom in Matlab using the Iradon function modified by application of a cone-beam type algorithm (Feldkamp L, 1984). Visual comparison of static images between the pinhole and the LEHR collimators showed the expected improved spatial resolution of the pinhole images. Pinhole SPECT images should be reconstructed using the appropriate cone beam algorithm. However, it was established that reconstructing pinhole SPECT images using a standard parallel backprojection algorithm yielded results which were deemed to be clinically useful. The Nowak algorithm results were a distinct improvement on those achieved with the parallel backprojection algorithm. Likewise the results from the cone beam algorithm were better than the former but not as good as those obtained from the Nowak algorithm. This was due to the fact that the cone beam algorithm did not include a weighting factor. Implementation

  13. Evaluation and reduction of respiratory motion artifacts in small animal SPECT with GATE

    International Nuclear Information System (INIS)

    Lee, C.-L.; Park, S.-J.; Kim, H.-J.

    2015-01-01

    The degradation of image quality caused by respiration is a major impediment to accurate lesion detection in single photon emission computed tomography (SPECT) imaging. This study was performed to evaluate the effects of lung motion on image quantification. A small animal SPECT system with NaI(Tl) was modeled in the Geant4 application for tomographic emission (GATE) simulation for a lung lesion using a 4D mouse whole-body phantom. SPECT images were obtained using 120 projection views acquired from 0 o to 360 o with a 3 o step. Slices were reconstructed using ordered subsets expectation maximization (OS-EM) without attenuation correction with five iterations and four subsets. Image quality was compared between the static mode without respiratory motion, and dynamic mode with respiratory motion in terms of spatial resolution was measured by the full width at half maximum (FWHM), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The FWHM of the non-gated image and the respiratory gated image were also compared. Spatial resolution improved as activity increased and lesion diameter decreased in the static and dynamic modes. The SNR and CNR increased significantly as lesion activity increased and lesion diameter decreased. Our results show that respiratory motion leads to reduced contrast and quantitative accuracy and that image quantification depends on both the amplitude and the pattern of the respiratory motion. We verified that respiratory motion can have a major effect on the accuracy of measurement of lung lesions and that respiratory gating can reduce activity smearing on SPECT images

  14. Statistical parametric mapping of Tc-99m HMPAO SPECT cerebral perfusion in the normal elderly

    International Nuclear Information System (INIS)

    Turlakow, A.; Scott, A.M.; Berlangieri, S.U.; Sonkila, C.; Wardill, T.D.; Crowley, K.; Abbott, D.; Egan, G.F.; McKay, W.J.; Hughes, A.

    1998-01-01

    Full text: The clinical value of Tc-99m HMPAO SPECT cerebral blood flow studies in cognitive and neuropsychiatric disorders has been well described. Currently, interpretation of these studies relies on qualitative or semi- quantitative techniques. The aim of our study is to generate statistical measures of regional cerebral perfusion in the normal elderly using statistical parametric mapping (Friston et al, Wellcome Department of Cognitive Neurology, London, UK) in order to facilitate the objective analysis of cerebral blood flow studies in patient groups. A cohort of 20 healthy, elderly volunteers, aged 68 to 81 years, was prospectively selected on the basis of normal physical examination and neuropsychological testing. Subjects with risk factors, or a history of cognitive impairment were excluded from our study group. All volunteers underwent SPECT cerebral blood flow imaging, 30 minutes following the administration of 370 MBq Tc-99m HMPAO, on a Trionix Triad XLT triple-headed scanner (Trionix Research Laboratory Twinsburg, OH) using high resolution, fan-beam collimators resulting in a system resolution of 10 mm full width at half-maximum (FWHM). The SPECT cerebral blood flow studies were analysed using statistical parametric mapping (SPM) software specifically developed for the routine statistical analysis of functional neuroimaging data. The SPECT images were coregistered with each individual's T1-weighted MR volume brain scan and spatially normalized to standardised Talairach space. Using SPM, these data were analyzed for differences in interhemispheric regional cerebral blood flow. Significant asymmetry of cerebral perfusion was detected in the pre-central gyrus at the 95th percentile. In conclusion, the interpretation of cerebral blood flow studies in the elderly should take into account the statistically significant asymmetry in interhemispheric pre-central cortical blood flow. In the future, clinical studies will be compared to statistical data sets in age

  15. Statistical parametric mapping of Tc-99m HMPAO SPECT cerebral perfusion in the normal elderly

    Energy Technology Data Exchange (ETDEWEB)

    Turlakow, A.; Scott, A.M.; Berlangieri, S.U.; Sonkila, C.; Wardill, T.D.; Crowley, K.; Abbott, D.; Egan, G.F.; McKay, W.J.; Hughes, A. [Austin and Repatriation Medical Centre, Heidelberg, VIC (Australia). Departments of Nuclear Medicine and Centre for PET Neurology and Clinical Neuropsychology

    1998-06-01

    Full text: The clinical value of Tc-99m HMPAO SPECT cerebral blood flow studies in cognitive and neuropsychiatric disorders has been well described. Currently, interpretation of these studies relies on qualitative or semi- quantitative techniques. The aim of our study is to generate statistical measures of regional cerebral perfusion in the normal elderly using statistical parametric mapping (Friston et al, Wellcome Department of Cognitive Neurology, London, UK) in order to facilitate the objective analysis of cerebral blood flow studies in patient groups. A cohort of 20 healthy, elderly volunteers, aged 68 to 81 years, was prospectively selected on the basis of normal physical examination and neuropsychological testing. Subjects with risk factors, or a history of cognitive impairment were excluded from our study group. All volunteers underwent SPECT cerebral blood flow imaging, 30 minutes following the administration of 370 MBq Tc-99m HMPAO, on a Trionix Triad XLT triple-headed scanner (Trionix Research Laboratory Twinsburg, OH) using high resolution, fan-beam collimators resulting in a system resolution of 10 mm full width at half-maximum (FWHM). The SPECT cerebral blood flow studies were analysed using statistical parametric mapping (SPM) software specifically developed for the routine statistical analysis of functional neuroimaging data. The SPECT images were coregistered with each individual`s T1-weighted MR volume brain scan and spatially normalized to standardised Talairach space. Using SPM, these data were analyzed for differences in interhemispheric regional cerebral blood flow. Significant asymmetry of cerebral perfusion was detected in the pre-central gyrus at the 95th percentile. In conclusion, the interpretation of cerebral blood flow studies in the elderly should take into account the statistically significant asymmetry in interhemispheric pre-central cortical blood flow. In the future, clinical studies will be compared to statistical data sets in age

  16. Automated Analysis of 123I-beta-CIT SPECT Images with Statistical Probabilistic Anatomical Mapping

    International Nuclear Information System (INIS)

    Eo, Jae Seon; Lee, Hoyoung; Lee, Jae Sung; Kim, Yu Kyung; Jeon, Bumseok; Lee, Dong Soo

    2014-01-01

    Population-based statistical probabilistic anatomical maps have been used to generate probabilistic volumes of interest for analyzing perfusion and metabolic brain imaging. We investigated the feasibility of automated analysis for dopamine transporter images using this technique and evaluated striatal binding potentials in Parkinson's disease and Wilson's disease. We analyzed 2β-Carbomethoxy-3β-(4- 123 I-iodophenyl)tropane ( 123 I-beta-CIT) SPECT images acquired from 26 people with Parkinson's disease (M:F=11:15,mean age=49±12 years), 9 people with Wilson's disease (M: F=6:3, mean age=26±11 years) and 17 normal controls (M:F=5:12, mean age=39±16 years). A SPECT template was created using striatal statistical probabilistic map images. All images were spatially normalized onto the template, and probability-weighted regional counts in striatal structures were estimated. The binding potential was calculated using the ratio of specific and nonspecific binding activities at equilibrium. Voxel-based comparisons between groups were also performed using statistical parametric mapping. Qualitative assessment showed that spatial normalizations of the SPECT images were successful for all images. The striatal binding potentials of participants with Parkinson's disease and Wilson's disease were significantly lower than those of normal controls. Statistical parametric mapping analysis found statistically significant differences only in striatal regions in both disease groups compared to controls. We successfully evaluated the regional 123 I-beta-CIT distribution using the SPECT template and probabilistic map data automatically. This procedure allows an objective and quantitative comparison of the binding potential, which in this case showed a significantly decreased binding potential in the striata of patients with Parkinson's disease or Wilson's disease

  17. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    Science.gov (United States)

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  18. Comparison between CT perfusion and Tc-99m ECD SPECT in the assessment of cerebrovascular reserve: a case study

    International Nuclear Information System (INIS)

    Crouch, J.; Wood, C.; Campbell, A.; McCarthy, M.; Dunne, M.; Bynevelt, M.; Lenzo, N.

    2003-01-01

    Full text: Brain perfusion is sensitively assessed by cerebral SPECT imaging utilising perfusion agents such as Tc-99m HMPAO and Tc-99m ethyl cysteinate dimer (ECD). Positron emission tomography can accurately assess and quantify brain perfusion and MRI can also be used for perfusion assessment. Both MRI and PET however are currently limited by cost and availability. A new technique utilising CT with contrast has been developed to assess and quantitate cerebral perfusion. The technique utilises arterial input information and deconvolution analysis to develop quantifiable measures of perfusion and contrast transit. The technique has been validated for acute stroke assessment and is being assessed for other possible applications. We present a case study comparison of this technique with cerebral SPECT perfusion using Tc-99m ECD in the assessment of cerebrovasular reserve. In each case, the CT and SPECT studies were performed pre- and post-acetazolamide and the SPECT study was statistically compared with a normal database utilising an automated brain perfusion statistical analysis package (NeurostatT). We discuss the correlation found between techniques, their strengths, weaknesses and possible future roles. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Use of X-ray CT-defined regions of interest for the determination of SPECT recovery coefficients

    International Nuclear Information System (INIS)

    Tang, H.R.; Brown, J.K.; Hasegawa, B.H.

    1996-01-01

    For accurate activity per unit volume measurements in SPECT, recovery coefficients are usually applied based on the size and shape of objects being imaged to properly account for the resolution limitations of the gamma camera. Because of noise and limited spatial resolution, determination of object sizes and boundaries can be difficult using the SPECT images alone. We therefore have developed a technique which determines activity concentrations for SPECT using regions of interest (ROI's) obtained from coregistered X-ray CT images. In this study, experimental phantoms containing cylindrical and spherical objects were imaged on a combined X-ray CT/SPECT system and reconstructed data volumes were registered using the known geometry of the system. ROI's were defined on the registered CT images and used to help quantify activity concentration in localized regions and to measure object volumes. We have derived the recovery curves for these objects and scan technique. We have also tested a technique that demonstrates activity quantitation without the need for object and size dependent recovery coefficients in the case of low background

  20. Wide beam reconstruction for half-dose or half-time cardiac gated SPECT acquisitions: optimization of resources and reduction in radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Marcassa, Claudio [S. Maugeri Fnd, IRCCS, Scientific Institute of Veruno, Cardiology Department (Italy); Campini, Riccardo; Zoccarato, Orazio; Calza, Paolo [S. Maugeri Fnd, IRCCS, Scientific Institute of Veruno, Nuclear Medicine Department (Italy)

    2011-03-15

    A new iterative reconstruction algorithm (WBR trademark) has been recently proposed for cardiac single photon emission computed tomography (SPECT). The WBR trademark technology is designed to reduce noise, improving lesion identification without affecting the image resolution, allowing SPECT studies with reduced count statistic. This allows for either half-time (HT) or half-dose (HD) cardiac SPECT, with image quality and quantitative data comparable to standard-time (ST) or standard-dose (SD) SPECT. Few data exist on the comparison between conventional filtered backprojection (FBP) and this new algorithm in a clinical setting. The aim of this study was to compare the performance of FBP and WBR trademark. Phantoms studies were performed to compare spatial resolution and contrast recovery with FBP, ordered subset expectation maximization (OSEM) and WBR trademark. A group of 92 patients, with different cardiac pathology, scheduled for a stress-rest SPECT were studied: 52 patients (group A) were injected with a SD of tracer and underwent both ST and HT SPECT; 40 patients (group B) were injected with a half dose of tracer and underwent ST SPECT and immediately after an additional SPECT at double time/projection (DT), to compensate for the low count statistic. A 2-day {sup 99m}Tc-sestamibi protocol was used in all patients. SD/ST and HD/DT SPECT were reconstructed with a conventional FBP; SD/HT and HD/ST SPECT were reconstructed with WBR trademark. The summed stress score (SSS) and summed rest score (SRS) were calculated; the left ventricular ejection fraction (LVEF) was automatically derived. In group A (SD), no significant differences were observed between ST FBP SPECT and HT WBR trademark in SSS (11.1 and 11.7, respectively) and SRS (9.4 and 10.3, respectively, NS). LVEF on rest acquisitions was also comparable (50% on ST SPECT and 49% on HT SPECT, NS); LVEF on post-stress studies in HT SPECT (46%) was lower than ST SPECT (50%), although not statistically significant

  1. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    International Nuclear Information System (INIS)

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  2. Frequencies and implications of discordant findings of interictal SPECT and itcal SPECT in patients with intractable epilepsy

    International Nuclear Information System (INIS)

    Lee, D. S.; Lee, S. K.; Jeong, J. K.; Lee, M. C.; Ko, C. S.

    1997-01-01

    Interictal SPECT could be used at best as a reference image to ictal SPECT, and cause sometimes confusion if it had given unexplained discordant findings from ictal SPECT. We investigated implications of discordant findings which occurred in 26 among 268 which found their epileptogenic zones using ictal EEG and/or operative outcome. Sensitivity of interictal SPECT was only 36%. Among these 268, 69 patients had no structural lesions on MR, 14 of whom had decreased perfusion on interictal SPECT (8 trues and 6 falses (adjacent or contralateral)). Structural lesion were found in 199 on MR, 103 of whom had decreased perfusion (89 trues and 14 falses). Among 26 having discordant cases, 10 interictal SPECT were proved wrong after operation and/or invasive EEG and the other 16 were on speculation using PET and ictal EEG. Ictal hyperperfusion was observed in 14 patients in these interictal SPECT. Six ictal studies were found postictal accompanied by contralateral propagation or not. Two patients had dual pathology, and the remaining 2 unknown. Interictal SPECT was done on the 2nd day after ictal study(24), the 3rd day (18), the 4th day(16), the 5th day (23). Four among 24 interictal studies (17%) of the 2nd day and the other 4 among 57 of 3rd to 5th day revealed ictal hyperperfusion on interictal SPECT. Six interictal studies (2.7% among 221) acquired on the indifferent day showed also ictal hyperperfusion. We could suggest that the next day is not desirable for interictal SPECT after ictal study, as ictal hyperperfusion on interictal study confounded more than postictal findings of ictal SPECT in the discrete localization than reassuring ictal study

  3. Frequencies and implications of discordant findings of interictal SPECT and itcal SPECT in patients with intractable epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, S K; Jeong, J K; Lee, M C; Ko, C S [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    1997-07-01

    Interictal SPECT could be used at best as a reference image to ictal SPECT, and cause sometimes confusion if it had given unexplained discordant findings from ictal SPECT. We investigated implications of discordant findings which occurred in 26 among 268 which found their epileptogenic zones using ictal EEG and/or operative outcome. Sensitivity of interictal SPECT was only 36%. Among these 268, 69 patients had no structural lesions on MR, 14 of whom had decreased perfusion on interictal SPECT (8 trues and 6 falses (adjacent or contralateral)). Structural lesion were found in 199 on MR, 103 of whom had decreased perfusion (89 trues and 14 falses). Among 26 having discordant cases, 10 interictal SPECT were proved wrong after operation and/or invasive EEG and the other 16 were on speculation using PET and ictal EEG. Ictal hyperperfusion was observed in 14 patients in these interictal SPECT. Six ictal studies were found postictal accompanied by contralateral propagation or not. Two patients had dual pathology, and the remaining 2 unknown. Interictal SPECT was done on the 2nd day after ictal study(24), the 3rd day (18), the 4th day(16), the 5th day (23). Four among 24 interictal studies (17%) of the 2nd day and the other 4 among 57 of 3rd to 5th day revealed ictal hyperperfusion on interictal SPECT. Six interictal studies (2.7% among 221) acquired on the indifferent day showed also ictal hyperperfusion. We could suggest that the next day is not desirable for interictal SPECT after ictal study, as ictal hyperperfusion on interictal study confounded more than postictal findings of ictal SPECT in the discrete localization than reassuring ictal study.

  4. Lung perfusion scintigraphy by SPECT

    International Nuclear Information System (INIS)

    Hirayama, Takanobu

    1990-01-01

    The initial study reports the characteristic performance using lung segmental phantom filled in Tc-99m pertechnetate. To evaluate the segmental defect in lung perfusion scintigraphy, we applied Bull's-eye analysis in addition to planar image set. Bull's-eye analysis especially facilitated the interpretation in both middle and lower lobes. Subsequently, to evolute the clinical application of Bull's-eye analysis, pulmonary scintigraphy was performed on 10 normal subjects and 60 patients with several pulmonary diseases. Of interest, Bull's-eye analysis, however, encouraged the interpretation in both lower lobes. To calculate the extention and severity of perfusion defect, the present study describes Bull's-eye analysis. Quantitative scoring showed higher in patients with lung cancer than those with pulmonary tuberculosis. The present study focus that Bull's-eye analysis can be useful for evaluating perfusion in patients with a couple of pulmonary diseases. (author)

  5. DIAGNOSTIC VALUE of Tc-99m TETROFOSMİN GATED SPECT IN MYOCARDIAL VIABILITY INVESTIGATION AFTER ADMINISTRATION TRIMETAZIDINE and NITRATE IN THE PATIENTS WITH MYOCARDIAL INFARCTION

    OpenAIRE

    TURHAL, Özgül; TUTUŞ, Ahmet; KULA, Mustafa

    2018-01-01

    ABSTRACT Aim: With the aim of investigating of the myocardial viability on the patients with MI, the results obtained from Tc-99m-tetrofosmin gated SPECT following the nitrate infusion and acute TMZ were compared.Method: For this study, 30 patients who had MI and were be planned of revascularization process were taken. The patients were applied Tc-99m-tetrofosmin gated SPECT basally and following nitrate infusion and acute TMZ separately each day. The data from perfusion were quantitatively e...

  6. Pre-evaluation study in SPECT images using a phantom

    International Nuclear Information System (INIS)

    Rebelo, Marina de Sa; Furuie, Sergio Shiguemi; Abe, Rubens; Moura, Lincoln

    1996-01-01

    An alternative solution for the reconstruction of SPECT images using a Poisson Noise Model is presented. The proposed algorithm was applied on a real phantom and compared to the standard clinical procedures. Results have shown that the proposed method improves the quality of the SPECT images

  7. Ictal cerebral perfusion patterns in partial epilepsy: SPECT subtraction

    International Nuclear Information System (INIS)

    Lee, Hyang Woon; Hong, Seung Bong; Tae, Woo Suk; Kim, Sang Eun; Seo, Dae Won; Jeong, Seung Cheol; Yi, Ji Young; Hong, Seung Chyul

    2000-01-01

    To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction. The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.=20

  8. Ictal cerebral perfusion patterns in partial epilepsy: SPECT subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyang Woon; Hong, Seung Bong; Tae, Woo Suk; Kim, Sang Eun; Seo, Dae Won; Jeong, Seung Cheol; Yi, Ji Young; Hong, Seung Chyul [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2000-06-01

    To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction. The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.

  9. The assessment of whole body bone SPECT in oncology

    International Nuclear Information System (INIS)

    Scortechini, Shonika

    2009-01-01

    Full text: Objectives: To assess the significance and practicability of oncology whole body bone SPECT as part of the standard skeletal survey and its impact on the traditional planar whole body bone imaging protocol. Method: Three consenting oncology patients were injected with a standard adult dose of Tc-99m MOP. Delayed Imaging of whole body sweep and SPECT acquisitions were performed on a Siemens Symbia T6. The patient was positioned supine with arms down with a SPECT scan length covering vortex to thighs. SPECT data was reconstructed and a single whole body zipped file created. Normal SPECT slices along with a cine/MIP of the zipped data were created for review. Results: Both image data sets were reviewed to assess if SPECT provided any further diagnostic clinical information not apparent in planer imaging. In our limited review, whole body SPECT did not add extra value to the planar whole body scans performed; it did however demonstrate vertebral involvement with greater resolution. The processing software and system limitations in seamlessly knitting data sets (creating image artefacts) was a major limiting factor in not pursuing further studies. Conclusion: Both imaging techniques offer differing advantages and limitations, however due to image artefact in the triple knitted SPECT approach with current software technology, it cannot be substituted for whole body imaging at this time.

  10. An efficient algorithm for reconstruction of spect images in the presence of spatially varying attenuation

    International Nuclear Information System (INIS)

    Zeeberg, B.R.; Bacharach, S.; Carson, R.; Green, M.V.; Larson, S.M.; Soucaille, J.F.

    1985-01-01

    An algorithm is presented which permits the reconstruction of SPECT images in the presence of spatially varying attenuation. The algorithm considers the spatially variant attenuation as a perturbation of the constant attenuation case and computes a reconstructed image and a correction image to estimate the effects of this perturbation. The corrected image will be computed from these two images and is of comparable quality both visually and quantitatively to those simulated for zero or constant attenuation taken as standard reference images. In addition, the algorithm is time efficient, in that the time required is approximately 2.5 times that for a standard convolution-back projection algorithm

  11. An automatic MRI/SPECT registration algorithm using image intensity and anatomical feature as matching characters: application on the evaluation of Parkinson's disease

    International Nuclear Information System (INIS)

    Lee, J.-D.; Huang, C.-H.; Weng, Y.-H.; Lin, K.-J.; Chen, C.-T.

    2007-01-01

    Single-photon emission computed tomography (SPECT) of dopamine transporters with 99m Tc-TRODAT-1 has recently been proposed to offer valuable information in assessing the functionality of dopaminergic systems. Magnetic resonance imaging (MRI) and SPECT imaging are important in the noninvasive examination of dopamine concentration in vivo. Therefore, this investigation presents an automated MRI/SPECT image registration algorithm based on a new similarity metric. This similarity metric combines anatomical features that are characterized by specific binding, the mean count per voxel in putamens and caudate nuclei, and the distribution of image intensity that is characterized by normalized mutual information (NMI). A preprocess, a novel two-cluster SPECT normalization algorithm, is also presented for MRI/SPECT registration. Clinical MRI/SPECT data from 18 healthy subjects and 13 Parkinson's disease (PD) patients are involved to validate the performance of the proposed algorithms. An appropriate color map, such as 'rainbow,' for image display enables the two-cluster SPECT normalization algorithm to provide clinically meaningful visual contrast. The proposed registration scheme reduces target registration error from >7 mm for conventional registration algorithm based on NMI to approximately 4 mm. The error in the specific/nonspecific 99m Tc-TRODAT-1 binding ratio, which is employed as a quantitative measure of TRODAT receptor binding, is also reduced from 0.45±0.22 to 0.08±0.06 among healthy subjects and from 0.28±0.18 to 0.12±0.09 among PD patients

  12. SP-ECT imaging and its physical study

    International Nuclear Information System (INIS)

    Kinoshita, Fujimi

    1983-01-01

    Recently, more than a hundred hospitals are provided with SPECT system for clinical examination in Japan. However, a standardization of measuring method and performance test of the systems is ont yet made. We have been studying some basic problems of SPECT system with special phantoms originaly designed by ourselves. We got a conclusion that a standardized phantom is necessary for comparing performances between SPECT systems. In clinical experiences with 3,332 cases, we think that SPECT image combined with conventional image presents much more informations for accurate diagnosis, especially in brain, bone and tumor imagings. Synthesized image of SPECT and XCT, double tracer image and transmission image are useful to visualize the body contour and the clinical diagnosis. (author)

  13. Study on SPECT image for children with cerebral infarction

    International Nuclear Information System (INIS)

    Xie Wenhuang; Xie Zhichun; Chen Yucai; Lin Haoxue; Zheng Aidong; Xie Hui

    1998-01-01

    To explore the diagnostic value of SPECT image for children with cerebral infarction (CCI), comparative research was made on 26 cases undergoing regional cerebral perfusion (rCP) image between SPECT imaging and CT scanning. The results showed that the rCP in the infarct and its distant area was decreased. The positive rate of SPECT and CT were 92.3% (24/26) and 84.5% (22/26) respectively. The difference was not significant (P = 0.67, P>0.05). But, the positive rate of SPECT image 2 days after onset in 9 CCI was 100% (9/9), significantly higher than 55.6% (5/9) in CT scanning (P = 0.04, P<0.05). These findings suggested that the SPECT imaging is a sensitive method for the early diagnosis of CCI, and also helpful for observation of the therapeutic effect and evaluation of the prognosis

  14. Radionuclide cisternography: SPECT and 3D-rendering. Radionuklidzisternographie: SPECT- und 3D-Technik

    Energy Technology Data Exchange (ETDEWEB)

    Henkes, H; Huber, G; Piepgras, U [Universitaet des Saarlandes, Homburg/Saar (Germany, F.R.). Abt. fuer Neuroradiologie; Hierholzer, J [Freie Univ. Berlin (Germany, F.R.). Strahlenklinik und Poliklinik; Cordes, M [British Columbia Univ., Vancouver, BC (Canada). Belzberg Lab. of Neuroscience

    1991-10-01

    Radionuclide cisternography is indicated in the clinical work-up for hydrocephalus, when searching for CSF leaks, and when testing whether or not intracranial cystic lesions are communicating with the adjacent subarachnoid space. This paper demonstrates the feasibility and diagnostic value of SPECT and subsequent 3D surface rendering in addition to conventional rectilinear CSF imaging in eight patients. Planar images allowed the evaluation of CSF circulation and the detection of CSF fistula. They were advantageous in examinations 48 h after application of {sup 111}In-DTPA. SPECT scans, generated 4-24 h after tracer application, were superior in the delineation of basal cisterns, especially in early scans; this was helpful in patients with pooling due to CSF fistula and in cystic lesions near the skull base. A major drawback was the limited image quality of delayed scans, when the SPECT data were degraded by a low count rate. 3D surface rendering was easily feasible from SPECT data and yielded high quality images. The presentation of the spatial distribution of nuclide-contaminated CSF proved especially helpful in the area of the basal cisterns. (orig.).

  15. [Myokard-Perfusions-SPECT. Myocardial perfusion SPECT - Update S1 guideline].

    Science.gov (United States)

    Lindner, Oliver; Bengel, Frank; Burchert, Wolfgang; Dörr, Rolf; Hacker, Marcus; Schäfer, Wolfgang; Schäfers, Michael A; Schmidt, Matthias; Schwaiger, Markus; Vom Dahl, Jürgen; Zimmermann, Rainer

    2017-08-14

    The S1 guideline for myocardial perfusion SPECT has been published by the Association of the Scientific Medical Societies in Germany (AWMF) and is valid until 2/2022. This paper is a short summary with comments on all chapters and subchapters wich were modified and amended.

  16. Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis

    Science.gov (United States)

    Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young

    2018-01-01

    Objective Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Materials and Methods Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels wer