WorldWideScience

Sample records for quantitative spect imaging

  1. Accuracy of quantitative reconstructions in SPECT/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbinin, S; Celler, A [Department of Radiology, University of British Columbia, 366-828 West 10th Avenue, Vancouver BC, V5Z 1L8 (Canada); Belhocine, T; Vanderwerf, R; Driedger, A [Department of Nuclear Medicine, London Health Sciences Centre, 375 South Street, PO Box 5375, London ON, N6A 4G5 (Canada)], E-mail: shcher2@interchange.ubc.ca

    2008-09-07

    The goal of this study was to determine the quantitative accuracy of our OSEM-APDI reconstruction method based on SPECT/CT imaging for Tc-99m, In-111, I-123, and I-131 isotopes. Phantom studies were performed on a SPECT/low-dose multislice CT system (Infinia-Hawkeye-4 slice, GE Healthcare) using clinical acquisition protocols. Two radioactive sources were centrally and peripherally placed inside an anthropometric Thorax phantom filled with non-radioactive water. Corrections for attenuation, scatter, collimator blurring and collimator septal penetration were applied and their contribution to the overall accuracy of the reconstruction was evaluated. Reconstruction with the most comprehensive set of corrections resulted in activity estimation with error levels of 3-5% for all the isotopes.

  2. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    Science.gov (United States)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  3. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth

    Science.gov (United States)

    Jha, Abhinav K.; Song, Na; Caffo, Brian; Frey, Eric C.

    2015-03-01

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method pro- vided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  4. Quantitative analysis of L-SPECT system for small animal brain imaging

    Science.gov (United States)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2016-03-01

    This paper aims to investigate the performance of a newly proposed L-SPECT system for small animal brain imaging. The L-SPECT system consists of an array of 100 × 100 micro range diameter pinholes. The proposed detector module has a 48 mm by 48 mm active area and the system is based on a pixelated array of NaI crystals (10×10×10 mm elements) coupled with an array of position sensitive photomultiplier tubes (PSPMTs). The performance of this system was evaluated with pinhole radii of 50 μm, 60 μm and 100 μm. Monte Carlo simulation studies using the Geant4 Application for Tomographic Emission (GATE) software package validate the performance of this novel dual head L-SPECT system where a geometric mouse phantom is used to investigate its performance. All SPECT data were obtained using 120 projection views from 0° to 360° with a 3° step. Slices were reconstructed using conventional filtered back projection (FBP) algorithm. We have evaluated the quality of the images in terms of spatial resolution (FWHM) based on line spread function, the system sensitivity, the point source response function and the image quality. The sensitivity of our newly proposed L- SPECT system was about 4500 cps/μCi at 6 cm along with excellent full width at half-maximum (FWHM) using 50 μm pinhole aperture at several radii of rotation. The analysis results show the combination of excellent spatial resolution and high detection efficiency over an energy range between 20-160 keV. The results demonstrate that SPECT imaging using a pixelated L-SPECT detector module is applicable in a quantitative study of mouse brain imaging.

  5. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Science.gov (United States)

    Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-05-01

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50% when imaging with iodine-125, and up to 25% when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30%, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50%) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the use of resolution

  6. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  7. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    Science.gov (United States)

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of (99m)Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  8. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization.

    Directory of Open Access Journals (Sweden)

    Mattijs Elschot

    Full Text Available BACKGROUND: After yttrium-90 ((90Y microsphere radioembolization (RE, evaluation of extrahepatic activity and liver dosimetry is typically performed on (90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, (90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of (90Y and on the accuracy of liver dosimetry. METHODOLOGY/PRINCIPAL FINDINGS: SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere to 11% (37-mm sphere for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. CONCLUSIONS/SIGNIFICANCE: In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the

  9. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ward, T [Department of Medical Physics and Bioengineering, Southampton University Hospitals Trust, Southampton, Hampshire, SO16 6YD (United Kingdom); Fleming, J S [Department of Medical Physics and Bioengineering, Southampton University Hospitals Trust, Southampton, Hampshire, SO16 6YD (United Kingdom); Hoffmann, S M A [Department of Medical Physics and Bioengineering, Southampton University Hospitals Trust, Southampton, Hampshire, SO16 6YD (United Kingdom); Kemp, P M [Department of Nuclear Medicine, Southampton University Hospitals Trust, Southampton, Hampshire, SO16 6YD (United Kingdom)

    2005-11-21

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  10. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    Science.gov (United States)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  11. Quantitative (177)Lu SPECT imaging using advanced correction algorithms in non-reference geometry.

    Science.gov (United States)

    D'Arienzo, M; Cozzella, M L; Fazio, A; De Felice, P; Iaccarino, G; D'Andrea, M; Ungania, S; Cazzato, M; Schmidt, K; Kimiaei, S; Strigari, L

    2016-12-01

    Peptide receptor therapy with (177)Lu-labelled somatostatin analogues is a promising tool in the management of patients with inoperable or metastasized neuroendocrine tumours. The aim of this work was to perform accurate activity quantification of (177)Lu in complex anthropomorphic geometry using advanced correction algorithms. Acquisitions were performed on the higher (177)Lu photopeak (208keV) using a Philips IRIX gamma camera provided with medium-energy collimators. System calibration was performed using a 16mL Jaszczak sphere surrounded by non-radioactive water. Attenuation correction was performed using μ-maps derived from CT data, while scatter and septal penetration corrections were performed using the transmission-dependent convolution-subtraction method. SPECT acquisitions were finally corrected for dead time and partial volume effects. Image analysis was performed using the commercial QSPECT software. The quantitative SPECT approach was validated on an anthropomorphic phantom provided with a home-made insert simulating a hepatic lesion. Quantitative accuracy was studied using three tumour-to-background activity concentration ratios (6:1, 9:1, 14:1). For all acquisitions, the recovered total activity was within 12% of the calibrated activity both in the background region and in the tumour. Using a 6:1 tumour-to-background ratio the recovered total activity was within 2% in the tumour and within 5% in the background. Partial volume effects, if not properly accounted for, can lead to significant activity underestimations in clinical conditions. In conclusion, accurate activity quantification of (177)Lu can be obtained if activity measurements are performed with equipment traceable to primary standards, advanced correction algorithms are used and acquisitions are performed at the 208keV photopeak using medium-energy collimators.

  12. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications

    Science.gov (United States)

    Wei, Wentao; Huang, Qiu; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring. PMID:28251150

  13. Parametric Cerebrovascular Reserve Images Using Acetazolamide {sup 99m}Tc-HMPAO SPECT: A Feasibility Study of Quantitative Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hongyoon; Yoo, Min Young; Cheon, Gi Jeong; Kang, Keon Wook; Chung, Junekey; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2013-09-15

    Basal/acetazolamide stress {sup 99m}Tc-HMPAO single-photon emission computed tomography (SPECT) has been widely used for evaluation of hemodynamics; however, qualitative and subjective visual assessment of cerebrovascular reserve (CVR) has been performed in clinical settings. The aim of this study was to generate parametric CVR images and evaluate its feasibility of quantification. Basal/acetazolamide stress {sup 99m}Tc-HMPAO SPECT data from 17 patients who underwent bypass surgery or percutaneous transluminal angioplasty were used. Spatial normalization was performed and parametric CVR images were generated using relative CVR (rCVR) of each voxel proportional to CVR of the whole brain. Binary parametric maps to show area of relatively reduced CVR were generated also using threshold of rCVR < 90 %. We calculated rCVR of internal carotid artery (ICA) using the parametric CVR images and probabilistic maps for ICA territory. Pre- and postprocedural parametric CVR images were obtained and quantitative rCVRs were compared. The rCVRs were evaluated according to visual grades for regional decreased CVR. Postprocedural rCVR obtained from parametric CVR images increased significantly from preprocedural rCVR. The rCVR was significantly correlated with visual grades of reduced CVR for each side of ICA territories. We generated parametric CVR images for basal/acetazolamide stress {sup 99m}Tc-HMPAO SPECT. As a quantitative measurement, rCVR obtained from the parametric image was feasibly assessed hemodynamic abnormalities with preserved anatomical information.

  14. Impact of reconstruction parameters on quantitative I-131 SPECT

    NARCIS (Netherlands)

    van Gils, C A J; Beijst, C; van Rooij, R; de Jong, H W A M

    2016-01-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate cor

  15. Impact of reconstruction parameters on quantitative I-131 SPECT

    NARCIS (Netherlands)

    van Gils, C A J; Beijst, C; van Rooij, R; de Jong, H W A M

    2016-01-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate

  16. Patient-specific dosimetry based on quantitative SPECT imaging and 3D-DFT convolution

    Energy Technology Data Exchange (ETDEWEB)

    Akabani, G.; Hawkins, W.G.; Eckblade, M.B.; Leichner, P.K. [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    1999-01-01

    The objective of this study was to validate the use of a 3-D discrete Fourier Transform (3D-DFT) convolution method to carry out the dosimetry for I-131 for soft tissues in radioimmunotherapy procedures. To validate this convolution method, mathematical and physical phantoms were used as a basis of comparison with Monte Carlo transport (MCT) calculations which were carried out using the EGS4 system code. The mathematical phantom consisted of a sphere containing uniform and nonuniform activity distributions. The physical phantom consisted of a cylinder containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the Circular Harmonic Transform (CHT) algorithm.

  17. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  18. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Viergever, Max A. [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  19. A quantitative assessment of heart phantom motion and its effect on myocardial perfusion SPECT images

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to study the image characteristics of motion artifacts and todetermine the relations of motion artifacts with varied motion types, and the inag-ing timings, frames, distances and directions during SPECT acquisition, a myocardialphantom filled with pertechnetate solution was used to simulate the patient motion.In nonreturning pattern, the simulation motion was timed at the 0°, -45° and -90°positions during the rotation of the detector over a 180° arc from +45° right antcrioroblique to -135° left posterior oblique. Simulation motion was performed by movingthe phantom +5mm, ±-10mm and +20mm along X- (from left to right), Y- (fromhead to caudal) and Z-axis (from back to ventral) respectively. In returning patternthe acquired 30 projections were divided into three equal parts. The simulation motionwas timed at the middle 1-7 projections of each part and performed by moving thephantom +5, ±10, ±15, ±20, ±25, ±30 and ±50 mm along X-, Y- and Z-axis respec-tively. Each image was compared with normal image and assessed by three experiencedobservers without knowledge of the phantom motion. Logistic regression analysis wasused to determine the relationship of motion artifacts with the affecting factors. Nosignificant artifacts can be found when the phantom was moved slightly, no matterwhich motion pattern, direction and timing were taken. The characteristics of motionartifacts showed a radioactive marker dot in inferior wall firstly when the phantomwas moved along X-axis. Septal and lateral wall became "hot" symmetrically whenthe phantom was moved along Y-axis. And nodular hot could be found in anteriorwall when the phantom was moved along Z-axis. At last the "lumpy" and "defect"areas existed alternately and formed a triangle respectively. The presence of motionartifacts was related to motion directions, distance and affected frames, but was in-dependent of motion timing. The characteristics of motion artifacts could be foundwhen the phantom was moved

  20. Gamma camera calibration and validation for quantitative SPECT imaging with (177)Lu.

    Science.gov (United States)

    D'Arienzo, M; Cazzato, M; Cozzella, M L; Cox, M; D'Andrea, M; Fazio, A; Fenwick, A; Iaccarino, G; Johansson, L; Strigari, L; Ungania, S; De Felice, P

    2016-06-01

    Over the last years (177)Lu has received considerable attention from the clinical nuclear medicine community thanks to its wide range of applications in molecular radiotherapy, especially in peptide-receptor radionuclide therapy (PRRT). In addition to short-range beta particles, (177)Lu emits low energy gamma radiation of 113keV and 208keV that allows gamma camera quantitative imaging. Despite quantitative cancer imaging in molecular radiotherapy having been proven to be a key instrument for the assessment of therapeutic response, at present no general clinically accepted quantitative imaging protocol exists and absolute quantification studies are usually based on individual initiatives. The aim of this work was to develop and evaluate an approach to gamma camera calibration for absolute quantification in tomographic imaging with (177)Lu. We assessed the gamma camera calibration factors for a Philips IRIX and Philips AXIS gamma camera system using various reference geometries, both in air and in water. Images were corrected for the major effects that contribute to image degradation, i.e. attenuation, scatter and dead- time. We validated our method in non-reference geometry using an anthropomorphic torso phantom provided with the liver cavity uniformly filled with (177)LuCl3. Our results showed that calibration factors depend on the particular reference condition. In general, acquisitions performed with the IRIX gamma camera provided good results at 208keV, with agreement within 5% for all geometries. The use of a Jaszczak 16mL hollow sphere in water provided calibration factors capable of recovering the activity in anthropomorphic geometry within 1% for the 208keV peak, for both gamma cameras. The point source provided the poorest results, most likely because scatter and attenuation correction are not incorporated in the calibration factor. However, for both gamma cameras all geometries provided calibration factors capable of recovering the activity in

  1. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  2. Molecular imaging of angiogenesis with SPECT.

    NARCIS (Netherlands)

    Dijkgraaf, I.; Boerman, O.C.

    2010-01-01

    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life th

  3. Quantitative image reconstruction for dual-isotope parathyroid SPECT/CT: phantom experiments and sample patient studies

    Science.gov (United States)

    Shcherbinin, S.; Chamoiseau, S.; Celler, A.

    2012-08-01

    We investigated the quantitative accuracy of the model-based dual-isotope single-photon emission computed tomography (DI-SPECT) reconstructions that use Klein-Nishina expressions to estimate the scattered photon contributions to the projection data. Our objective was to examine the ability of the method to recover the absolute activities pertaining to both radiotracers: Tc-99m and I-123. We validated our method through a series of phantom experiments performed using a clinical hybrid SPECT/CT camera (Infinia Hawkeye, GE Healthcare). Different activity ratios and different attenuating media were used in these experiments to create cross-talk effects of varying severity, which can occur in clinical studies. Accurate model-based corrections for scatter and cross-talk with CT attenuation maps allowed for the recovery of the absolute activities from DI-SPECT/CT scans with errors that ranged 0-10% for both radiotracers. The unfavorable activity ratios increased the computational burden but practically did not affect the resulting accuracy. The visual analysis of parathyroid patient data demonstrated that our model-based processing improved adenoma/background contrast and enhanced localization of small or faint adenomas.

  4. The additive prognostic value of perfusion and functional data assessed by quantitative gated SPECT in women

    NARCIS (Netherlands)

    Y.G.C.J. America (Yves); J.J. Bax (Jeroen); H. Boersma (Eric); M. Stokkel (Marcel); E.E. van der Wall (Ernst)

    2009-01-01

    textabstractBackground: The aim of this study was to assess the prognostic value of technetium-99m tetrofosmin gated SPECT imaging in women using quantitative gated single photon emission computed tomography (SPECT) imaging. Methods: We followed 453 consecutive female patients. Average follow-up was

  5. Absolute quantitative total-body small-animal SPECT with focusing pinholes

    NARCIS (Netherlands)

    Wu, Chao; van der Have, Frans; Vastenhouw, Brendan; Dierckx, Rudi A. J. O.; Paans, Anne M. J.; Beekman, Freek J.

    2010-01-01

    In pinhole SPECT, attenuation of the photon flux on trajectories between source and pinholes affects quantitative accuracy of reconstructed images. Previously we introduced iterative methods that compensate for image degrading effects of detector and pinhole blurring, pinhole sensitivity and scatter

  6. Absolute quantitative total-body small-animal SPECT with focusing pinholes

    NARCIS (Netherlands)

    Wu, C.; Van der Have, F.; Vastenhouw, B.; Dierckx, R.A.J.O.; Paans, A.M.J.; Beekman, F.J.

    2010-01-01

    Purpose: In pinhole SPECT, attenuation of the photon flux on trajectories between source and pinholes affects quantitative accuracy of reconstructed images. Previously we introduced iterative methods that compensate for image degrading effects of detector and pinhole blurring, pinhole sensitivity an

  7. Evaluation of Tl-201 SPECT imaging findings in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sinem Ozyurt

    2015-07-01

    Full Text Available Objectives: To compare with histopathological findings the findings of prostate cancer imaging by SPECT method using Tl-201 as a tumor seeking agent. Methods: The study comprised 59 patients (age range 51-79 years, mean age 65.3 ± 6.8 years who were planned to have transrectal ultrasonography (TRUS-guided biopsies due to suspicion of prostate cancer between April 2011 and September 2011. Early planar, late planar and SPECT images were obtained for all patients. Scintigraphic evaluation was made in relation to uptake presence and patterns in the visual assessment and to Tumor/Background (T/Bg ratios for both planar and SPECT images in the quantitative assessment. Histopathological findings were compatible with benign etiology in 36 (61% patients and malign etiology in 23 (39% patients. Additionally, comparisons were made to evaluate the relationships between uptake patterns,total PSA values and Gleason scores. Results: A statistically significant difference was found between the benign and malignant groups in terms of uptake in planar and SPECT images and T/Bg ratios and PSA values. No statistically significant difference was found between uptake patterns of planar and SPECT images and Gleason scores in the malignant group. Conclusions: SPECT images were superior to planar images in the comparative assessment. Tl-201 SPECT imaging can provide an additional contribution to clinical practice in the diagnosis of prostate cancer and it can be used in selected patients.

  8. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  9. Quantitative multi-pinhole small-animal SPECT : uniform versus non-uniform Chang attenuation correction

    NARCIS (Netherlands)

    Wu, C.; de Jong, J. R.; van Andel, H. A. Gratama; van der Have, F.; Vastenhouw, B.; Laverman, P.; Boerman, O. C.; Dierckx, R. A. J. O.; Beekman, F. J.

    2011-01-01

    Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusi

  10. Quantitative multi-pinhole small-animal SPECT: uniform versus non-uniform Chang attenuation correction

    NARCIS (Netherlands)

    Wu, C.; Jong, J.R. de; Gratama van Andel, H.A.; Have, F. van der; Vastenhouw, B.; Laverman, P.; Boerman, O.C.; Dierckx, R.A.; Beekman, F.J.

    2011-01-01

    Attenuation of photon flux on trajectories between the source and pinhole apertures affects the quantitative accuracy of reconstructed single-photon emission computed tomography (SPECT) images. We propose a Chang-based non-uniform attenuation correction (NUA-CT) for small-animal SPECT/CT with focusi

  11. Evaluation of SPECT imaging using myocardial phantoms in Akita prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Kiyohiko [Akita Univ. (Japan). Hospital; Watarai, Jiro; Miura, Mamoru

    1998-09-01

    Evaluation of SPECT imaging using myocardial phantom in Akita Prefecture. The Society of Nuclear Medicine for Circulation disease in Akita was established in July, 1997. To improve myocardial spect imaging in Akita Prefecture, we first visually evaluated two acrlic defect (2 cm{phi} x 1 cm thickness aqcliel and 1 cm{phi} x 1 cm thickness) images of long axis and short axis of myocardial phantoms, using 14 SPECT Cameras. These defect images of myocardial phantom were evaluated by four cardiologists and twelve radiologists between August and December, 1996. Secondly, we measured the FWHM of four line sources (anterior, lateral, inferior, and septum positions in the short axis of myocardial phantom) using quantitative analysis by myocardial phantom between April and July, 1997. The results were reported at the 4th and 5th meeting of the Society of Nuclear Medicine for Circulation Disease in Akita. In conclusion, about 70% of myocardial spect images were of good or normal quality, whereas about 30% of the images were evaluated as of bad quality. To improve the myocardial spect images, we recognized that the basic performance of the SPECT cameras need be investigated. (author)

  12. Evaluation of quantitative accuracy in CZT-based pre-clinical SPECT for various isotopes

    Science.gov (United States)

    Park, S.-J.; Yu, A. R.; Kim, Y.-s.; Kang, W.-S.; Jin, S. S.; Kim, J.-S.; Son, T. J.; Kim, H.-J.

    2015-05-01

    In vivo pre-clinical single-photon emission computed tomography (SPECT) is a valuable tool for functional small animal imaging, but several physical factors, such as scatter radiation, limit the quantitative accuracy of conventional scintillation crystal-based SPECT. Semiconductor detectors such as CZT overcome these deficiencies through superior energy resolution. To our knowledge, little scientific information exists regarding the accuracy of quantitative analysis in CZT-based pre-clinical SPECT systems for different isotopes. The aim of this study was to assess the quantitative accuracy of CZT-based pre-clinical SPECT for four isotopes: 201Tl, 99mTc, 123I, and 111In. The quantitative accuracy of the CZT-based Triumph X-SPECT (Gamma-Medica Ideas, Northridge, CA, U.S.A.) was compared with that of a conventional SPECT using GATE simulation. Quantitative errors due to the attenuation and scatter effects were evaluated for all four isotopes with energy windows of 5%, 10%, and 20%. A spherical source containing the isotope was placed at the center of the air-or-water-filled mouse-sized cylinder phantom. The CZT-based pre-clinical SPECT was more accurate than the conventional SPECT. For example, in the conventional SPECT with an energy window of 10%, scatter effects degraded quantitative accuracy by up to 11.52%, 5.10%, 2.88%, and 1.84% for 201Tl, 99mTc, 123I, and 111In, respectively. However, with the CZT-based pre-clinical SPECT, the degradations were only 9.67%, 5.45%, 2.36%, and 1.24% for 201Tl, 99mTc, 123I, and 111In, respectively. As the energy window was increased, the quantitative errors increased in both SPECT systems. Additionally, the isotopes with lower energy of photon emissions had greater quantitative error. Our results demonstrated that the CZT-based pre-clinical SPECT had lower overall quantitative errors due to reduced scatter and high detection efficiency. Furthermore, the results of this systematic assessment quantifying the accuracy of these SPECT

  13. Impact of reconstruction parameters on quantitative I-131 SPECT

    Science.gov (United States)

    van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.

    2016-07-01

    Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be  Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.

  14. Automatic composition of MRI and SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Hiromi [Research Inst. of Brain and Blood Vessels, Akita (Japan)

    1999-12-01

    The new method to automatically compose MRI image and SPECT image was devised to support the SPECT image which was inferior in the morphological information. This method is a kind of the coordinate transformation to obtain maximal agreement between images using cross correlation of MRI image and SPECT image as the evaluation function to show the degree of the agreement. For the calculation of the cross correlation, MRI T1 weighted image and the morphological information of SPECT image treated by the spatial quadratic differentiation (Laplacian) were used. This method does not require to fix the control point in the tomographic imaging, and can be also applied to PET other than SPECT. This is also useful to follow up the chronological change of a patient by composition among SPECT images and among PET images. Since this method is focused on the internal structure of brain, it is also useful for cases such as cerebral infarction which brain structure has little change. But this method is still under the trial and the examination of the accuracy remained. (K.H.)

  15. SPECT imaging of cardiac reporter gene expression in living rabbits

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; LAN Xiaoli; ZHANG Liang; WU Tao; JIANG Rifeng; ZHANG Yongxue

    2009-01-01

    This work is to demonstrate feasibility of imaging the expression of herpes simplex virus 1-thymidine ki-nase (HSV1-tk) reporter gene in rabbits myocardium by using the reporter probe 131I-2'-fluoro-2'-deoxy-1-β-D- arabi-nofuranosyl-5-iodouracil (131I-FIAU) and SPECT. Rabbits of the study group received intramyocardial injection of Ad5-tk and control group received aseptic saline injection. Two sets of experiments were performed on the study group. Rabbits of the 1st set were injected with 131I-FIAU 600 μCi at Day 2 after intramyocardial transfection of Ad5-tk in 1×109, 5×108, 1×108, 5×107 and 1×107 pfu, and heart SPECT imaging was done at different hours. Rabbits of the 2nd were transferred various titers of Ad5-tk (1×109, 5×108, 1×108, 5×107, 1×107 pfu) to determine the threshold and optimal viral titer needed for detection of gene expression. Two days later, 131I-FIAU was injected and heart SPECT imaging was performed at 6, 24 and 48 h, before killing them for gamma counting of the hearts. Reverse tran-scription-polymerase chain reaction (RT-PCR) was used to verify the transferred HSV1-tk gene expression. Semi-quantitative analysis derived of region of interest (ROI) of SPECT images and RT-PCR images was performed and the relationship of SPECT images with ex vivo gamma counting and mRNA level were evaluated. SPECT images conformed 131I-FIAU accumulation in rabbits injected with Ad5-tk in the anterolateral wall. The optimal images qual-ity was obtained at 24~48 h for different viral titers. The highest radioactivity in the focal myocardium was seen at 6 h, and then declined with time. The threshold was 5×107 pfu of virus titer. The result could be set better in 1~5×108 pfu by SPECT analysis and gamma counting. ROI-derived semi-quantitative study on SPECT images correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The HSV1-tk/131I-FIAU reporter gene/reporter probe system is feasible for cardiac SPECT reporter gene imaging

  16. Molecular imaging of angiogenesis with SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Ingrid; Boerman, Otto C. [Radboud University Nijmegen Medical Center, Department of Nuclear Medicine, P.O. Box 9101, HB Nijmegen (Netherlands)

    2010-08-15

    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: {sup 99m}Tc (E{sub max} 141 keV, T{sub 1/2} 6.02 h), {sup 123}I (E{sub max} 529 keV, T{sub 1/2} 13.0 h) and {sup 111}In (E{sub max} 245 keV, T{sub 1/2} 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. (orig.)

  17. Absolute quantitative total-body small-animal SPECT with focusing pinholes

    OpenAIRE

    Wu, C.; Have, F. van der; Vastenhouw, B.; Dierckx, R. A. J. O.; Paans, A.M.J.; Beekman, F.J.

    2010-01-01

    Purpose: In pinhole SPECT, attenuation of the photon flux on trajectories between source and pinholes affects quantitative accuracy of reconstructed images. Previously we introduced iterative methods that compensate for image degrading effects of detector and pinhole blurring, pinhole sensitivity and scatter for multi-pinhole SPECT. The aim of this paper is (1) to investigate the accuracy of the Chang algorithm in rodents and (2) to present a practical Changbased method using body outline con...

  18. Advances in SPECT imaging with respect to radionuclide therapy.

    Science.gov (United States)

    D'Asseler, Y

    2009-06-01

    Radionuclide therapy is gradually becoming more important as a therapy option in various diseases. Nuclear medicine imaging plays an important role in this, before, during and after the therapy. Single photon emission computed tomography (SPECT) imaging can be used to predict therapy response, calculate doses delivered to the tumour and the surrounding organ, check radiopharmaceutical distribution and follow-up this distribution in time. On a technological level, radionuclide imaging in a therapy setting shows some particularities and issues to be resolved. Accurate quantification is important but is hampered by attenuation, scatter from different energy peaks and from bremsstrahlung photons, septal penetration, partial volume effects etc. Some of these issues are discussed in this paper. A technique specific for therapy imaging is bremsstrahlung imaging, which can be used if the therapeutical agent is a pure beta emitter. Quantitative bremsstrahlung imaging is particularly challenging due to the complicated nature of the energy spectrum of these photons. Some work towards quantitative bremsstrahlung imaging is discussed here. Finally, some recent technical advances relevant to this field are pointed out. On the software side, Monte Carlo simulations seem to have a great potential for accurate quantitative SPECT reconstruction and subsequent patient specific image based dose calculations. Concerning hardware, the availability of SPECT-CT technology may have a large impact in imaging in radionuclide therapy. Novel detector technologies such as solid-state detectors may also prove to have significant advantages in this field.

  19. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  20. SPECT/CT and tumour imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abikhzer, Gad [Rambam Health Care Campus, Department of Nuclear Medicine, Haifa (Israel); Keidar, Zohar [Rambam Health Care Campus, Department of Nuclear Medicine, Haifa (Israel); Technion - Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa (Israel)

    2014-05-15

    Scintigraphic techniques are sensitive imaging modalities in the diagnosis and follow-up of cancer patients providing the functional and metabolic activity characteristics of the tumour. Hybrid SPECT/CT improves the diagnostic accuracy of these well-established imaging techniques by precise anatomical localization and characterization of morphological findings, differentiation between foci of physiological and pathological tracer uptake, resulting in a significant impact on patient management and more definitive interpretations. The use of SPECT/CT has been studied in a variety of applications in tumour imaging which are reviewed in this article. By combining functional and anatomical information in a single imaging session, SPECT/CT has become a one-stop cancer imaging modality. (orig.)

  1. Central benzodiazepine receptor imaging and quantitation with single photon emission computerised tomography

    DEFF Research Database (Denmark)

    Okocha, C I; Kapczinski, F; Lassen, N

    1995-01-01

    This review discusses the current use of single photon emission computerised tomography (SPECT) for central benzodiazepine receptor imaging and quantitation. The general principles underlying SPECT imaging and receptor quantitation methods such as the kinetic, pseudo-equilibrium and steady...

  2. Brain SPECT imaging in Sydenham's chorea

    Directory of Open Access Journals (Sweden)

    Barsottini O.G.P.

    2002-01-01

    Full Text Available The objective of the present study was to determine whether brain single-photon emission computed tomography (SPECT imaging is capable of detecting perfusional abnormalities. Ten Sydenham's chorea (SC patients, eight females and two males, 8 to 25 years of age (mean 13.4, with a clinical diagnosis of SC were submitted to brain SPECT imaging. We used HMPAO labeled with technetium-99m at a dose of 740 MBq. Six examinations revealed hyperperfusion of the basal ganglia, while the remaining four were normal. The six patients with abnormal results were females and their data were not correlated with severity of symptoms. Patients with abnormal brain SPECT had a more recent onset of symptoms (mean of 49 days compared to those with normal SPECT (mean of 85 days but this difference did not reach statistical significance. Brain SPECT can be a helpful method to determine abnormalities of the basal ganglia in SC patients but further studies on a larger number of patients are needed in order to detect the phase of the disease during which the examination is more sensitive.

  3. PET and SPECT imaging in veterinary medicine.

    Science.gov (United States)

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.

  4. Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms

    Directory of Open Access Journals (Sweden)

    Yvonne Höller

    2017-09-01

    Full Text Available Single photon emission computed tomography (SPECT and Electroencephalography (EEG have become established tools in routine diagnostics of dementia. We aimed to increase the diagnostic power by combining quantitative markers from SPECT and EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that the combination of SPECT with measures of interaction (connectivity in the EEG yields higher diagnostic accuracy than the single modalities. We examined 39 patients with Alzheimer's dementia (AD, 69 patients with depressive cognitive impairment (DCI, 71 patients with amnestic mild cognitive impairment (aMCI, and 41 patients with amnestic subjective cognitive complaints (aSCC. We calculated 14 measures of interaction from a standard clinical EEG-recording and derived graph-theoretic network measures. From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime (HMPAO-SPECT in 46 regions, we calculated relative cerebral perfusion in these patients. Patient groups were classified pairwise with a linear support vector machine. Classification was conducted separately for each biomarker, and then again for each EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%, aMCI vs. AD (70%, and AD vs. DCI (100%, while a selection of EEG measures performed best when classifying aSCC vs. aMCI (82% and aMCI vs. DCI (90%. Only the contrast between aSCC and DCI did not result in above-chance classification accuracy (60%. In general, accuracies were higher when measures of interaction (i.e., connectivity measures were applied directly than when graph-theoretical measures were derived. We suggest that quantitative analysis of EEG and machine-learning techniques can support differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging methods such as SPECT. Quantitative analysis of EEG connectivity could become

  5. Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms

    Science.gov (United States)

    Höller, Yvonne; Bathke, Arne C.; Uhl, Andreas; Strobl, Nicolas; Lang, Adelheid; Bergmann, Jürgen; Nardone, Raffaele; Rossini, Fabio; Zauner, Harald; Kirschner, Margarita; Jahanbekam, Amirhossein; Trinka, Eugen; Staffen, Wolfgang

    2017-01-01

    Single photon emission computed tomography (SPECT) and Electroencephalography (EEG) have become established tools in routine diagnostics of dementia. We aimed to increase the diagnostic power by combining quantitative markers from SPECT and EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that the combination of SPECT with measures of interaction (connectivity) in the EEG yields higher diagnostic accuracy than the single modalities. We examined 39 patients with Alzheimer's dementia (AD), 69 patients with depressive cognitive impairment (DCI), 71 patients with amnestic mild cognitive impairment (aMCI), and 41 patients with amnestic subjective cognitive complaints (aSCC). We calculated 14 measures of interaction from a standard clinical EEG-recording and derived graph-theoretic network measures. From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime (HMPAO)-SPECT in 46 regions, we calculated relative cerebral perfusion in these patients. Patient groups were classified pairwise with a linear support vector machine. Classification was conducted separately for each biomarker, and then again for each EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%), aMCI vs. AD (70%), and AD vs. DCI (100%), while a selection of EEG measures performed best when classifying aSCC vs. aMCI (82%) and aMCI vs. DCI (90%). Only the contrast between aSCC and DCI did not result in above-chance classification accuracy (60%). In general, accuracies were higher when measures of interaction (i.e., connectivity measures) were applied directly than when graph-theoretical measures were derived. We suggest that quantitative analysis of EEG and machine-learning techniques can support differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging methods such as SPECT. Quantitative analysis of EEG connectivity could become an

  6. Application of Quantitative Analysis in Brain SPECT Imaging of Neuropsychiatric in Systemic Lupus Erythematosus%定量分析在系统性红斑狼疮脑病SPECT脑显像中的应用

    Institute of Scientific and Technical Information of China (English)

    许守林; 冯雪凤; 施鸣

    2013-01-01

    Objective: To elucidate a method for the quantitative analysis in 99mTc-ECD brain SPECT imaging of neuropsychiatric in systemic lupus erythematosus and the correlation of visual and quantitative analysis. Methods: 99mTc-ECD SPECT imaging was performed in 33 SLE patients and 29 controls. The results were analyzed by visual and quantitative comparison. The images were analyzed with brain search (BS). Results: The change of cerebral blood flow, especially decreases in regional cerebral blood flow were associated with serious neuropsychiatric SLE presentations. Cingulate gyrus and temporal- parietal were most involved areas under unpaired t-test. The positive rate of SPECT imaging by visual and quantitative analysis was respectively 51.51%, and 57.57%. The method of quantitative and visual analysis had high correlation. Conclusions: 99mTc-ECD SPECT could easily demonstrate metabolic, functional lesions and cerebral blood flow change without structural abnormalities. The sensitivity of cerebral blood flow perfusion SPECT imaging was high, but lack of specificity. The combination of brain perfusion SPECT and brain search (BS) was a convenient and shortcut method to align the disfunctional areas of the brain. 99Tcm-ECD SPECT was a useful and objective method for detecting perfusion abnormalities in SLE patients.%目的:探讨定量分析在SPECT脑99mTc-ECD显像检测系统性红斑狼疮(SLE)脑病中的应用价值和目测分析与定量分析方法的相关性.方法:选择年龄匹配的健康人作比较,分别对33例SLE患者和29例正常对照进行SPECT脑血流灌注显像,采用肉眼读片分析及定量分析进行评价,BS软件进行分析.结果:狼疮脑病患者99mTc-ECD显像有脑血流改变,多表现为局部脑血流降低.肉眼读片分析SPECT诊断的SLE脑部受损的阳性率为51.51%,定量分析的阳性率达57.57%.成组t检验示扣带回、颞顶叶等部位最常受累.结论:SPECT脑血流灌注显像可探查到脑组织代谢

  7. Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT.

    Science.gov (United States)

    Iida, H; Eberl, S

    1998-01-01

    Thallium-201 has been used extensively as a myocardial perfusion agent and to assess myocardial viability. Unlike other 99mTc-labeled agents such as 99mTc-sestamibi and 99mTc-tetrofosmine, the regional concentration of 201Tl varies with time, and its kinetics make it a potential candidate for estimating absolute physiologic parameters with kinetic model analysis. This article outlines a strategy for quantitative assessment of regional myocardial blood flow in man using 201Tl and dynamic single photon emission computed tomography (SPECT). Quantitatively accurate SPECT images that are proportional to the true radioactivity distribution are prerequisites for model-based kinetic analysis. Our technique for quantitative SPECT includes ordered-subset maximum likelihood-expectation maximization (ML-EM) reconstruction with transmission data-based attenuation correction and transmission-dependent convolution subtraction scatter correction. A three-compartment model was found to reproduce the observed regional time-activity curves well, and dog experiments demonstrated that influx rate constant (K1) values estimated from the dynamic SPECT data correlated well with absolute myocardial blood flow determined by in vitro microspheres for a physiologically wide range of flows. Several possible strategies for simplifying the study procedures, without compromising accuracy, are also presented, which should make absolute quantitation of regional myocardial blood flow feasible using 201Tl and a conventional SPECT camera in a clinical setting.

  8. Novel SPECT Technologies and Approaches in Cardiac Imaging

    Directory of Open Access Journals (Sweden)

    Piotr Slomka

    2016-12-01

    Full Text Available Recent novel approaches in myocardial perfusion single photon emission CT (SPECT have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans.

  9. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su-Jin [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Yu, A. Ram [Laboratory animal center, OSONG Medical Innovation Foundation, Chunguk 363-951 (Korea, Republic of); Department of Nuclear Medicine, College of Medicine, Hanyang University Hospital, Seoul 133-792 (Korea, Republic of); Choi, Yun Young [Department of Nuclear Medicine, College of Medicine, Hanyang University Hospital, Seoul 133-792 (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of)

    2015-05-11

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m ({sup 99m}Tc) and thallium-201 ({sup 201}Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for {sup 99m}Tc varied from 5% to 20%, and that for {sup 201}Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For {sup 99m}Tc SPECT imaging, the energy window of 138–145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For {sup 201}Tl SPECT imaging, the energy window of 64–85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the

  10. ENVISION, developing SPECT imaging for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Single Photon Emission Computed Tomography (SPECT) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  11. SPECT and PET Imaging of Meningiomas

    Directory of Open Access Journals (Sweden)

    Varvara Valotassiou

    2012-01-01

    Full Text Available Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical and grade III (anaplastic meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT and Magnetic Resonance Imaging (MRI are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT and Positron Emission Tomography (PET could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue.

  12. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young [Ajou University School of Medicine, Suwon (Korea, Republic of); Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0{+-}2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3{+-}4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group.

  13. Bayesian learning for cardiac SPECT image interpretation.

    Science.gov (United States)

    Sacha, Jarosław P; Goodenday, Lucy S; Cios, Krzysztof J

    2002-01-01

    In this paper, we describe a system for automating the diagnosis of myocardial perfusion from single-photon emission computerized tomography (SPECT) images of male and female hearts. Initially we had several thousand of SPECT images, other clinical data and physician-interpreter's descriptions of the images. The images were divided into segments based on the Yale system. Each segment was described by the physician as showing one of the following conditions: normal perfusion, reversible perfusion defect, partially reversible perfusion defect, fixed perfusion defect, defect showing reverse redistribution, equivocal defect or artifact. The physician's diagnosis of overall left ventricular (LV) perfusion, based on the above descriptions, categorizes a study as showing one or more of eight possible conditions: normal, ischemia, infarct and ischemia, infarct, reverse redistribution, equivocal, artifact or LV dysfunction. Because of the complexity of the task, we decided to use the knowledge discovery approach, consisting of these steps: problem understanding, data understanding, data preparation, data mining, evaluating the discovered knowledge and its implementation. After going through the data preparation step, in which we constructed normal gender-specific models of the LV and image registration, we ended up with 728 patients for whom we had both SPECT images and corresponding diagnoses. Another major contribution of the paper is the data mining step, in which we used several new Bayesian learning classification methods. The approach we have taken, namely the six-step knowledge discovery process has proven to be very successful in this complex data mining task and as such the process can be extended to other medical data mining projects.

  14. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake

    Energy Technology Data Exchange (ETDEWEB)

    Strydhorst, Jared H., E-mail: jared.strydhorst@gmail.com; Ruddy, Terrence D.; Wells, R. Glenn [Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada)

    2015-04-15

    Purpose: Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with {sup 99m}Tc and {sup 201}Tl single photon emission computed tomography (SPECT). Methods: Eight male Sprague-Dawley rats were injected with {sup 99m}Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with {sup 201}Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolute uptake of {sup 99m}Tc in the heart was also quantified with and without attenuation correction. Results: For {sup 99m}Tc imaging, relative segmental perfusion changed by up to +2.1%/−1.8% as a result of attenuation correction. Relative changes of +3.6%/−1.0% were observed for the {sup 201}Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected {sup 99m}Tc scans, and 3.6% and 4.3%, respectively, for the {sup 201}Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. Conclusions: Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.

  15. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    Science.gov (United States)

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  16. Clinical Significance of Quantitative 123I-MIBG SPECT/CT Analysis of Pheochromocytoma and Paraganglioma.

    Science.gov (United States)

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Togashi, Kaori

    2016-11-01

    This retrospective study compared the diagnostic performances of quantitative versus visual analyses of I-MIBG scintigraphy in patients with suspected pheochromocytoma and paraganglioma (PPGL). SPECT images were obtained 6 and/or 24 h after MIBG injection from 68 patients with clinically suspected PPGL, with attenuation correction by low-dose unenhanced CT. Planar images were also obtained at each time point. SUVs of retroperitoneal tumors, including PPGLs, and physiological uptake by normal organs were measured using the SPECT images. The diagnostic performance of the quantitative assessment in differentiating PPGLs from other lesions or normal adrenal glands was assessed using receiver operating characteristic analysis. The planar scans and 6-h and 24-h SPECT/CT images were also assessed visually. PPGLs showed a significantly higher SUVmax (mean ± SD = 9.97 ± 3.86) than other retroperitoneal lesions (3.85 ± 1.51) or normal adrenal glands (3.91 ± 1.20). At an optimal cut-off of 6.57, the sensitivity, specificity, and accuracy of the quantitative assessment for 6-h SPECT/CT in differentiating PPGLs was 78.6%, 96.3%, and 92.6%, respectively; the area under the curve was 0.878. The diagnostic performance did not significantly differ between the quantitative and visual analyses, but the specificity of the former tended to be higher at 6 h (96.3% vs. 90.7%) and at 24 h (91.2% vs. 82.4%). The specificity, but not the sensitivity, of the quantitative approach was higher than that of visual assessment in differentiating PPGLs from other retroperitoneal pathologies and from physiological uptake in the normal adrenal gland.

  17. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  18. SPECT/CT imaging in children with papillary thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E. [Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States)

    2011-08-15

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  19. Hotspot quantification of myocardial focal tracer uptake from molecular targeted SPECT/CT images: experimental validation

    Science.gov (United States)

    Liu, Yi-Hwa; Sahul, Zakir; Weyman, Christopher A.; Ryder, William J.; Dione, Donald P.; Dobrucki, Lawrence W.; Mekkaoui, Choukri; Brennan, Matthew P.; Hu, Xiaoyue; Hawley, Christi; Sinusas, Albert J.

    2008-03-01

    We have developed a new single photon emission computerized tomography (SPECT) hotspot quantification method incorporating extra cardiac activity correction and hotspot normal limit estimation. The method was validated for estimation accuracy of myocardial tracer focal uptake in a chronic canine model of myocardial infarction (MI). Dogs (n = 4) at 2 weeks post MI were injected with Tl-201 and a Tc-99m-labeled hotspot tracer targeted at matrix metalloproteinases (MMPs). An external point source filled with Tc-99m was used for a reference of absolute radioactivity. Dual-isotope (Tc-99m/Tl-201) SPECT images were acquired simultaneously followed by an X-ray CT acquisition. Dogs were sacrificed after imaging for myocardial gamma well counting. Images were reconstructed with CT-based attenuation correction (AC) and without AC (NAC) and were quantified using our quantification method. Normal limits for myocardial hotspot uptake were estimated based on 3 different schemes: maximum entropy, meansquared-error minimization (MSEM) and global minimization. Absolute myocardial hotspot uptake was quantified from SPECT images using the normal limits and compared with well-counted radioactivity on a segment-by-segment basis (n = 12 segments/dog). Radioactivity was expressed as % injected dose (%ID). There was an excellent correlation (r = 0.78-0.92) between the estimated activity (%ID) derived using the SPECT quantitative approach and well-counting, independent of AC. However, SPECT quantification without AC resulted in the significant underestimation of radioactivity. Quantification using SPECT with AC and the MSEM normal limit yielded the best results compared with well-counting. In conclusion, focal myocardial "hotspot" uptake of a targeted radiotracer can be accurately quantified in vivo using a method that incorporates SPECT imaging with AC, an external reference, background scatter compensation, and a suitable normal limit. This hybrid SPECT/CT approach allows for the serial

  20. Application of PET/SPECT imaging in vascular disease

    NARCIS (Netherlands)

    van der Vaart, M. G.; Meerwaidt, R.; Slart, R. H. J. A.; van Dam, G. M.; Tio, R. A.; Zeebregts, C. J.

    2008-01-01

    Background. Nuclear medicine imaging differs from other imaging modalities by showing physiological processes instead of anatomical details. Objective. To describe the current applications of positron emission tomography (PET) and single photon emission computed tomography (SPECT) as a diagnostic to

  1. Ultra-high-resolution small-animal SPECT imaging

    NARCIS (Netherlands)

    Have, F. van der

    2007-01-01

    The main subject of this thesis is the development of the first two in a series of dedicated ultra-high resolution Single Photon Emission Computed Tomography (SPECT) systems (U-SPECT-I and II) for the imaging of distributions of radio-isotope labeled tracers in small laboratory animals such as mice

  2. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Science.gov (United States)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  3. Quantitative assessment of rest and acetazolamide CBF using quantitative SPECT reconstruction and sequential administration of (123)I-iodoamphetamine: comparison among data acquired at three institutions.

    Science.gov (United States)

    Yamauchi, Miho; Imabayashi, Etsuko; Matsuda, Hiroshi; Nakagawara, Jyoji; Takahashi, Masaaki; Shimosegawa, Eku; Hatazawa, Jun; Suzuki, Michiyasu; Iwanaga, Hideyuki; Fukuda, Kenji; Iihara, Koji; Iida, Hidehiro

    2014-11-01

    A recently developed technique which reconstructs quantitative images from original projection data acquired using existing single-photon emission computed tomography (SPECT) devices enabled quantitative assessment of cerebral blood flow (CBF) at rest and after acetazolamide challenge. This study was intended to generate a normal database and to investigate its inter-institutional consistency. The three institutions carried out a series of SPECT scanning on 32 healthy volunteers, following a recently proposed method that involved dual administration of (123)I-iodoamphetamine during a single SPECT scan. Intra-institute and inter-institutional variations of regional CBF values were evaluated both at rest and after acetazolamide challenge. Functional images were pooled for both rest and acetazolamide CBF, and inter-institutional difference was evaluated among these images using two independent software programs. Quantitative assessment of CBF images at rest and after acetazolamide was successfully achieved with the given protocol in all institutions. Intra-institutional variation of CBF values at rest and after acetazolamide was consistent with previously reported values. Quantitative CBF values showed no significant difference among institutions in all regions, except for a posterior cerebral artery region after acetazolamide challenge in one institution which employed SPECT device with lowest spatial resolution. Pooled CBF images at rest and after acetazolamide generated using two software programs showed no institutional differences after equalization of the spatial resolution. SPECT can provide reproducible images from projection data acquired using different SPECT devices. A common database acquired at different institutions may be shared among institutions, if images are reconstructed using a quantitative reconstruction program, and acquired by following a standardized protocol.

  4. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease

    DEFF Research Database (Denmark)

    George, Richard T; Mehra, Vishal C; Chen, Marcus Y

    2014-01-01

    ). Sensitivity and specificity were calculated with use of prespecified cutoffs. The reference standard was a stenosis of at least 50% at coronary angiography as determined with quantitative methods. RESULTS: CAD was diagnosed in 229 of the 381 patients (60%). The per-patient sensitivity and specificity......PURPOSE: To compare the diagnostic performance of myocardial computed tomographic (CT) perfusion imaging and single photon emission computed tomography (SPECT) perfusion imaging in the diagnosis of anatomically significant coronary artery disease (CAD) as depicted at invasive coronary angiography...... or pharmacologic stress SPECT before and within 60 days of coronary angiography. Images from CT perfusion imaging, SPECT, and coronary angiography were interpreted at blinded, independent core laboratories. The primary diagnostic parameter was the area under the receiver operating characteristic curve (Az...

  5. Pharmacokinetics of SPECT radiopharmaceuticals for imaging hypoxic tissues.

    Science.gov (United States)

    Wiebe, L I; Stypinski, D

    1996-09-01

    Although hypoxia has been known for decades to play an important role in the outcome of radiotherapy in oncology, and inspite of the contribution of hypoxia to a myriad of pathologies that involve vascular disease, the selective imaging of hypoxic tissue has attained prominence only within the past decade. Contemporary research in the hypoxia imaging field is based largely on radiosensitizer research of the 1960's and 1970's. Early sensitizer research identified a family of nitro-organic compounds, the N-1 substituted 2-nitroimidazoles as candidate drugs. The early champion, and still the reference standard for therapeutic radiosensitization of hypoxic tumor cells is misonidazole (MISO). Its peripheral neurotoxicity led to failure in clinical studies, but its biological, biophysical and biochemical properties have been investigated in detail and serve as a basis for further design, not only of sensitizers, but of diagnostic radiopharmaceuticals for imaging tissue hypoxia. Pharmacokinetic characterization of radiopharmaceuticals, specifically radiopharmaceuticals for imaging tissue hypoxia, has not been a central theme in their development. The advent of PET, through which quantitative determinations first became possible, opened the field for both descriptive and analytical radiopharmacokinetic studies. In SPECT, however, this approach is still undergoing refinement. This paper addresses some of the underlying issues in radiopharmaceutical pharmacokinetics. There is a paucity of published radiopharmacokinetic data for SPECT hypoxia imaging agents. Consequently, the pharmacokinetic issues for MISO are presented as a basis for development of pharmacokinetics for the chemically-related imaging agents. Properties of an hypoxia marker are described from a pharmacokinetic viewpoint, a theoretical model for descriptive pharmacokinetics is introduced and finally, recent pharmacokinetic studies from our laboratory are described.

  6. Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification. An IAEA phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Brian E. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grosev, Darko [Univ. Hospital Centre Zagreb (Croatia); Buvat, Irene [Service Hospitalier Frederic Joliot, Paris (France); and others

    2017-08-01

    Accurate quantitation of activity provides the basis for internal dosimetry of targeted radionuclide therapies. This study investigated quantitative imaging capabilities at sites with a variety of experience and equipment and assessed levels of errors in activity quantitation in Single-Photon Emission Computed Tomography (SPECT) and planar imaging. Participants from 9 countries took part in a comparison in which planar, SPECT and SPECT with X ray computed tomography (SPECT-CT) imaging were used to quantify activities of four epoxy-filled cylinders containing {sup 133}Ba, which was chosen as a surrogate for {sup 131}I. The sources, with nominal volumes of 2, 4, 6 and 23 mL, were calibrated for {sup 133}Ba activity by the National Institute of Standards and Technology, but the activity was initially unknown to the participants. Imaging was performed in a cylindrical phantom filled with water. Two trials were carried out in which the participants first estimated the activities using their local standard protocols, and then repeated the measurements using a standardized acquisition and analysis protocol. Finally, processing of the imaging data from the second trial was repeated by a single centre using a fixed protocol. In the first trial, the activities were underestimated by about 15% with planar imaging. SPECT with Chang's first order attenuation correction (Chang-AC) and SPECT-CT overestimated the activity by about 10%. The second trial showed moderate improvements in accuracy and variability. Planar imaging was subject to methodological errors, e.g., in the use of a transmission scan for attenuation correction. The use of Chang-AC was subject to variability from the definition of phantom contours. The project demonstrated the need for training and standardized protocols to achieve good levels of quantitative accuracy and precision in a multicentre setting. Absolute quantification of simple objects with no background was possible with the strictest protocol to

  7. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with {sup 13}N-Ammonia PET myocardial blood flow quantitation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Bailing [University of Missouri-Columbia, Nuclear Science and Engineering Institute, Columbia, Missouri (United States); Hu, Lien-Hsin; Yang, Bang-Hung; Ting, Chien-Hsin; Huang, Wen-Sheng [Taipei Veterans General Hospital, Department of Nuclear Medicine, Taipei (China); Chen, Lung-Ching [Shin Kong Wu-Ho Su Memorial Hospital, Division of Cardiology, Taipei (China); Chen, Yen-Kung [Shin Kong Wu-Ho Su Memorial Hospital, Department of Nuclear Medicine, Taipei (China); Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Changhua (China); Wu, Tao-Cheng [National Yang-Ming University, Cardiovascular Research Center, Taipei (China)

    2017-01-15

    The aim of this study was to evaluate the accuracy of myocardial blood flow (MBF) quantitation of {sup 99m}Tc-Sestamibi (MIBI) single photon emission computed tomography (SPECT) compared with {sup 13}N-Ammonia (NH3) position emission tomography (PET) on the same cohorts. Recent advances of SPECT technologies have been applied to develop MBF quantitation as a promising tool to diagnose coronary artery disease (CAD) for areas where PET MBF quantitation is not available. However, whether the SPECT approach can achieve the same level of accuracy as the PET approach for clinical use still needs further investigations. Twelve healthy volunteers (HVT) and 16 clinical patients with CAD received both MIBI SPECT and NH3 PET flow scans. Dynamic SPECT images acquired with high temporary resolution were fully corrected for physical factors and processed to quantify K1 using the standard compartmental modeling. Human MIBI tracer extraction fraction (EF) was determined by comparing MIBI K1 and NH3 flow on the HVT group and then used to convert flow values from K1 for all subjects. MIBI and NH3 flow values were systematically compared to validate the SPECT approach. The human MIBI EF was determined as [1.0-0.816*exp(-0.267/MBF)]. Global and regional MBF and myocardial flow reserve (MFR) of MIBI SPECT and NH3 PET were highly correlated for all subjects (global R{sup 2}: MBF = 0.92, MFR = 0.78; regional R{sup 2}: MBF ≥ 0.88, MFR ≥ 0.71). No significant differences for rest flow, stress flow, and MFR between these two approaches were observed (All p ≥ 0.088). Bland-Altman plots overall revealed small bias between MIBI SPECT and NH3 PET (global: ΔMBF = -0.03Lml/min/g, ΔMFR = 0.07; regional: ΔMBF = -0.07 - 0.06, ΔMFR = -0.02 - 0.22). Quantitation with SPECT technologies can be accurate to measure myocardial blood flow as PET quantitation while comprehensive imaging factors of SPECT to derive the variability between these two approaches were fully addressed and corrected

  8. Reference Range of Functional Data of Gated Myocardial Perfusion SPECT by Quantitative Gated SPECT of Cedars-Sinai and 4D-MSPECT of Michigan University

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Kim, Moo Hyun; Kim, Young Dae [College of Medicine, Univ. of Donga, Pusan (Korea, Republic of)

    2003-07-01

    Various programs have been developed for gating of myocardial perfusion SPECT. Among the those program, the most popular program is the Quantitative Gated SPECT (QGS)? developed by Cedars-Sinai hospital and most recently released program is 4D-MSPECT? developed by university of Michigan. It is important to know the reference range of the functional data of gated myocardial perfusion SPECT because it is necessary to determine abnormality of individual patient and echocardiographic data is different from those of gated SPECT. Tc-99m MIBI gated myocardial perfusion SPECT image was reconstructed by dual head gamma camera (Siemens, BCAM, esoft) as routine procedure and analyzed using QGS? and 4D-MSPECT? program. All patients (M: F=9: 18, Age 69{+-}9 yrs) showed normal myocardial perfusion. The patients with following characteristics were excluded: previous angina or MI history, ECG change with Q wave or ST-T change, diabetes melitius, hypercholesterolemia, typical chest pain, hypertension and cardiomyopathy. Pre-test likelihood of all patients was low. (1) In stress gated SPECT by QGS?, EDV was 73{+-}25 ml, ESV 25{+-}14 ml, EF 67{+-}11 % and area of first frame of gating 106.4{+-}21cm{sup 2}. In rest gated SPECT, EDV was 76{+-}26 ml, ESV 27{+-}15 ml, EF 66{+-}12 and area of first frame of gating 108{+-}20cm{sup 2}. (2) In stress gated SPECT by 4D-MSPECT?, EDV was 76{+-}28 ml, ESV 23{+-}16 ml, EF 72{+-}11 %, mass 115{+-}24 g and ungated volume 42{+-}15 ml. In rest gated SPECT, EDV was 75{+-}27 ml, ESV 23{+-}12 ml, EF 71{+-}9%, mass 113{+-}25g and ungate dvolume 42{+-}15 ml, (3) s-EDV, s-EF, r-ESV and r-EF were significantly different between QGS? and 4D-MSPECT? (each p=0.016, p<0.001. p=0.003 and p=0.001). We determined the normal reference range of functional parameters by QGS? and 4D-MSPECT? program to diagnose individually the abnormality of patients. And the reference ranges have to adopted to be patients by each specific gating program.

  9. High-resolution SPECT for small-animal imaging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency.

  10. Multipinhole SPECT helical scan parameters and imaging volume

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Rutao, E-mail: rutaoyao@buffalo.edu; Deng, Xiao [Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Wei, Qingyang; Dai, Tiantian; Ma, Tianyu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Lecomte, Roger [Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2015-11-15

    Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluated by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.

  11. A SPECT imager with synthetic collimation

    Science.gov (United States)

    Havelin, Ronan J.; Miller, Brian W.; Barrett, Harrison H.; Furenlid, Lars R.; Murphy, J. M.; Foley, Mark J.

    2013-09-01

    This work outlines the development of a multi-pinhole SPECT system designed to produce a synthetic-collimator image of a small field of view. The focused multi-pinhole collimator was constructed using rapid-prototyping and casting techniques. The collimator projects the field of view through forty-six pinholes when the detector is adjacent to the collimator. The detector is then moved further from the collimator to increase the magnification of the system. The amount of pinhole-projection overlap increases with the system magnification. There is no rotation in the system; a single tomographic angle is used in each system configuration. The maximum-likelihood expectation-maximization (MLEM) algorithm is implemented on graphics processing units to reconstruct the object in the field of view. Iterative reconstruction algorithms, such as MLEM, require an accurate model of the system response. For each system magnification, a sparsely-sampled system response is measured by translating a point source through a grid encompassing the field of view. The pinhole projections are individually identified and associated with their respective apertures. A 2D elliptical Gaussian model is applied to the pinhole projections on the detector. These coefficients are associated with the object-space location of the point source, and a finely-sampled system matrix is interpolated. Simulations with a hot-rod phantom demonstrate the efficacy of combining low-resolution non-multiplexed data with high-resolution multiplexed data to produce high-resolution reconstructions.

  12. Radiotracers for SPECT imaging. Current scenario and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Adak, S.; Vijaya Raj, K.K.; Mandal, S. [GE Healthcare Medical Diagnostics, John F. Welch Technology Center, Bangalore (India).; Bhalla, R.; Pickett, R.; Luthra, S.K. [GE Healthcare Medical Diagnostics, The Grove Centre, Amersham (United Kingdom)

    2012-07-01

    Single photon emission computed tomography (SPECT) has been the cornerstone of nuclear medicine and today it is widely used to detect molecular changes in cardiovascular, neurological and oncological diseases. While SPECT has been available since the 1980s, advances in instrumentation hardware, software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. The biggest change in the last decade has been the fusion of CT with SPECT, which has improved attenuation correction and image quality. Advances in collimator design, replacement of sodium iodide crystals in the detectors with cadmium zinc telluride (CZT) detectors as well as advances in software and reconstruction algorithms have all helped to retain SPECT as a much needed and used technology. Today, a wide spectrum of radiotracers is available for use in cardiovascular, neurology and oncology applications. The development of several radiotracers for neurological disorders is briefly described in this review, including [{sup 123}I]FP-CIT (DaTSCAN trademark) available for Parkinson's disease. In cardiology, while technetium-99m labeled tetrofosmin and technetium-99m labeled sestamibi have been well known for myocardial perfusion imaging, we describe a recently completed multicenter clinical study on the use of [{sup 123}I]mIBG (AdreView trademark) for imaging in chronic heart failure patients. For oncology, while bone scanning has been prevalent, newer radiotracers that target cancer mechanisms are being developed. Technetium-99m labeled RGD peptides have been reported in the literature that can be used for imaging angiogenesis, while technetium-99m labeled duramycin has been used to image apoptosis. While PET/CT is considered to be the more advanced technology particularly for oncology applications, SPECT continues to be the modality of choice and the workhorse in many hospitals and nuclear medicine centers. The cost of SPECT instruments also

  13. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  14. Registration of renal SPECT and 2.5D US images.

    Science.gov (United States)

    Galdames, Francisco J; Perez, Claudio A; Estévez, Pablo A; Held, Claudio M; Jaillet, Fabrice; Lobo, Gabriel; Donoso, Gilda; Coll, Claudia

    2011-06-01

    Image registration is the process of transforming different image data sets of an object into the same coordinate system. This is a relevant task in the field of medical imaging; one of its objectives is to combine information from different imaging modalities. The main goal of this study is the registration of renal SPECT (Single Photon Emission Computerized Tomography) images and a sparse set of ultrasound slices (2.5D US), combining functional and anatomical information. Registration is performed after kidney segmentation in both image types. The SPECT segmentation is achieved using a deformable model based on a simplex mesh. The 2.5D US image segmentation is carried out in each of the 2D slices employing a deformable contour and Gabor filters to capture multi-scale image features. Moreover, a renal medulla detection method was developed to improve the US segmentation. A nonlinear optimization algorithm is used for the registration. In this process, movements caused by patient breathing during US image acquisition are also corrected. Only a few reports describe registration between SPECT images and a sparse set of US slices of the kidney, and they usually employ an optical localizer, unlike our method, that performs movement correction using information only from the SPECT and US images. Moreover, it does not require simultaneous acquisition of both image types. The registration method and both segmentations were evaluated separately. The SPECT segmentation was evaluated qualitatively by medical experts, obtaining a score of 5 over a scale from 1 to 5, where 5 represents a perfect segmentation. The 2.5D US segmentation was evaluated quantitatively, by comparing our method with an expert manual segmentation, and obtaining an average error of 3.3mm. The registration was evaluated quantitatively and qualitatively. Quantitatively the distance between the manual segmentation of the US images and the model extracted from the SPECT image was measured, obtaining an

  15. Parallel-hole collimator concept for stationary SPECT imaging.

    Science.gov (United States)

    Pato, Lara R V; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-21

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems' performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view ([Formula: see text] of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice.

  16. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S. [Oak Ridge National Laboratory; Endres, Christopher J. [Johns Hopkins, Baltimore; Foss, Catherine A. [Johns Hopkins, Baltimore; Nimmagadda, Sridhar [Johns Hopkins, Baltimore; Jung, Hyeyun [Johns Hopkins, Baltimore; Goddard, James S. [Oak Ridge National Laboratory; Lee, Seung Joon [JLAB; McKisson, John [JLAB; Smith, Mark F. [University of Maryland; Stolin, Alexander V. [West Virginia University; Weisenberger, Andrew G. [JLAB; Pomper, Martin G. [Johns Hopkins, Baltimore

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  17. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Endres, Christopher [Johns Hopkins University; Foss, Catherine [Johns Hopkins University; Nimmagadda, Sridhar [Johns Hopkins University; Jung, Hyeyun [Johns Hopkins University; Goddard Jr, James Samuel [ORNL; Lee, Seung Joon [Jefferson Lab; McKisson, John [Jefferson Lab; Smith, Mark F. [University of Maryland School of Medicine, The, Baltimore, MD; Stolin, Alexander [West Virginia University, Morgantown; Weisenberger, Andrew G. [Jefferson Lab; Pomper, Martin [Johns Hopkins University

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  18. Determination of left ventricular mass through SPECT imaging

    Science.gov (United States)

    Zárate-Morales, A.; Rodríguez-Villafuerte, M.; Martínez-Rodríguez, F.; Arévila-Ceballos, N.

    1998-08-01

    An edge detection algorithm has been applied to estimate left ventricular (LV) mass from single photon emission computed tomography (SPECT) thallium-201 images. The algorithm was validated using SPECT images of a phantom. The algorithm was applied to 20 patient studies from the Hospital de Cardiologia, Centro Médico Nacional Siglo XXI. Left ventricular masses derived from the stress and redistribution studies were highly correlated (r=0.96). The average LV masses obtained were 162±37 g and 169±34 g in the redistribution and stress studies, respectively.

  19. Noninvasive Nuclear SPECT Myocardial Blood Flow Quantitation to Guide Management for Coronary Artery Disease.

    Science.gov (United States)

    Chen, Lung-Ching; Jong, Bor-Hsin; Lin, Sheng-Che; Ku, Chi-Tai; Chen, Ing-Jou; Chen, Yen-Kung; Hsu, Bailing

    2017-09-01

    Recently, myocardial blood flow quantitation with dynamic SPECT has been validated to enhance the detection of multivessel coronary artery disease (CAD) and conclude equivocal SPECT myocardial perfusion study. This advance opened an important clinical application to utilize the tool in guiding CAD management for area where myocardial perfusion tracers for PET are unavailable or unaffordable. We present a clinical patient with ongoing recursive angina who underwent multiple nuclear stress tests for a sequence of CAD evaluation in 26 months and demonstrated that SPECT myocardial blood flow quantitation properly guided CAD management to warrant patient outcome.

  20. Quantitation of myocardial blood flow and myocardial flow reserve with {sup 99m}Tc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Bailing [University of Missouri-Columbia, Nuclear Science and Engineering Institute, Columbia, MO (United States); Chen, Fu-Chung; Chen, Chien-Cheng [Show Chwan Memorial Hospital, Section of Cardiology, Department of Internal Medicine, Changhua (China); Wu, Tao-Cheng [Taipei Veterans General Hospital, Section of Cardiology, Department of Internal Medicine, Taipei (China); Huang, Wen-Sheng [Changhua Christian Hospital, Department of Medical Research and Department of Nuclear Medicine, Changhua (China); Hou, Po-Nien [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Lukong Town, Changhua Shien (China); Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Department of Nuclear Medicine, Lukong Town, Changhua Shien (China); Central Taiwan University of Science and Technology, Department of Medical Imaging and Radiological Science, Taichung (China); China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China)

    2014-12-15

    Conventional dual-head single photon emission computed tomography (SPECT)/CT systems capable of fast dynamic SPECT (DySPECT) imaging have a potential for flow quantitation. This study introduced a new method to quantify myocardial blood flow (MBF) and myocardial flow reserve (MFR) with DySPECT scan and evaluated the diagnostic performance of detecting coronary artery disease (CAD) compared with perfusion using invasive coronary angiography (CAG) as the reference standard. This study included 21 patients with suspected or known CAD who had received DySPECT, ECG-gated SPECT (GSPECT), and CAG (13 with ≥50 % stenosis in any vessel; non-CAD group: 8 with patent arteries or <50 % stenosis). DySPECT and GSPECT scans were performed on a widely used dual-head SPECT/CT scanner. The DySPECT imaging protocol utilized 12-min multiple back-and-forth gantry rotations during injections of {sup 99m}Tc-sestamibi (MIBI) tracer at rest or dipyridamole-stress stages. DySPECT images were reconstructed with full physical corrections and converted to the physical unit of becquerels per milliliter. Stress MBF (SMBF), rest MBF (RMBF), and MFR were quantified by a one-tissue compartment flow model using time-activity curves derived from DySPECT images. Perfusion images were processed for GSPECT scan and interpreted to obtain summed stress score (SSS) and summed difference score (SDS). Receiver-operating characteristic (ROC) analyses were conducted to evaluate the diagnostic performance of flow and perfusion. Using the criteria of ≥50 % stenosis as positive CAD, areas under the ROC curve (AUCs) of flow assessment were overall significantly greater than those of perfusion. For patient-based analysis, AUCs for MFR, SMBF, SSS, and SDS were 0.91 ± 0.07, 0.86 ± 0.09, 0.64 ± 0.12, and 0.59 ± 0.13. For vessel-based analysis, AUCs for MFR, SMBF, SSS, and SDS were 0.81 ± 0.05, 0.76 ± 0.06, 0.62 ± 0.07, and 0.56 ± 0.08, respectively. The preliminary data suggest that MBF quantitation with a

  1. SPECT imaging evaluation in movement disorders: far beyond visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Badiavas, Kosmas [General Hospital, Medical Physics Department, Thessaloniki (Greece); Molyvda, Elisavet; Psarrakos, Kyriakos [Medical Physics Dept., General Hospital, Thessaloniki (Greece); Iakovou, Ioannis; Karatzas, Nikolaos [Medical Physical Dept., Aristotle Univ., Thessaloniki (Greece); Tsolaki, Magdalini [3. Neurology Clinic, Aristotle Univ., Thessaloniki (Greece)

    2011-04-15

    Single photon emission computed tomography (SPECT) imaging with {sup 123}I-FP-CIT is of great value in differentiating patients suffering from Parkinson's disease (PD) from those suffering from essential tremor (ET). Moreover, SPECT with {sup 123}I-IBZM can differentiate PD from Parkinson's ''plus'' syndromes. Diagnosis is still mainly based on experienced observers' visual assessment of the resulting images while many quantitative methods have been developed in order to assist diagnosis since the early days of neuroimaging. The aim of this work is to attempt to categorize, briefly present and comment on a number of semi-quantification methods used in nuclear medicine neuroimaging. Various arithmetic indices have been introduced with region of interest (ROI) manual drawing methods giving their place to automated procedures, while advancing computer technology has allowed automated image registration, fusion and segmentation to bring quantification closer to the final diagnosis based on the whole of the patient's examinations results, clinical condition and response to therapy. The search for absolute quantification has passed through neuroreceptor quantification models, which are invasive methods that involve tracer kinetic modelling and arterial blood sampling, a practice that is not commonly used in a clinical environment. On the other hand, semi-quantification methods relying on computers and dedicated software try to elicit numerical information out of SPECT images. The application of semi-quantification methods aims at separating the different patient categories solving the main problem of finding the uptake in the structures of interest. The semi-quantification methods which were studied fall roughly into three categories, which are described as classic methods, advanced automated methods and pixel-based statistical analysis methods. All these methods can be further divided into various subcategories. The plethora of

  2. Utility of Quantitative 99mTc-MAA SPECT/CT for 90yttrium-Labelled Microsphere Treatment Planning: Calculating Vascularized Hepatic Volume and Dosimetric Approach

    Directory of Open Access Journals (Sweden)

    Etienne Garin

    2011-01-01

    Full Text Available Objectives. The aim of this study was to assess the effectiveness of SPECT/CT for volume measurements and to report a case illustrating the major impact of SPECT/CT in calculating the vascularized liver volume and dosimetry prior to injecting radiolabelled yttrium-90 microspheres (Therasphere. Materials and Methods. This was a phantom study, involving volume measurements carried out by two operators using SPECT and SPECT/CT images. The percentage of error for each method was calculated, and interobserver reproducibility was evaluated. A treatment using Therasphere was planned in a patient with three hepatic arteries, and the quantitative analysis of SPECT/CT for this patient is provided. Results. SPECT/CT volume measurements proved to be accurate (mean error <6% for volumes ≥16 cm3 and reproductive (interobserver agreement = 0.9. In the case report, 99mTc-MAA SPECT/CT identified a large liver volume, not previously identified with angiography, which was shown to be vascularized after selective MAA injection into an arterial branch, resulting in a large modification in the activity of Therasphere used. Conclusions. MAA SPECT/CT is accurate for vascularized liver volume measurements, providing a valuable contribution to the therapeutic planning of patients with complex hepatic vascularization.

  3. SPECT Molecular Imaging in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2012-01-01

    Full Text Available Parkinson's disease (PD is a common disorder, and the diagnosis of Parkinson's disease is clinical and relies on the presence of characteristic motor symptoms. The accuracy of the clinical diagnosis of PD is still limited. Functional neuroimaging using SPECT technique is helpful in patients with first signs of parkinsonism. The changes detected may reflect the disease process itself and/or compensatory responses to the disease, or they may arise in association with disease- and/or treatment-related complications. This paper addresses the value of SPECT in early differential diagnosis of PD and its potential as a sensitive tool to assess the pathophysiology and progression, as well as the therapeutic efficacy of PD.

  4. U-SPECT-II: An Ultra-High-Resolution Device for Molecular Small-Animal Imaging

    NARCIS (Netherlands)

    Van der Have, F.; Vastenhouw, B.; Ramakers, R.M.; Branderhorst, W.; Krah, J.O.; Ji, C.; Staelens, S.G.; Beekman, F.J.

    2009-01-01

    We present a new rodent SPECT system (U-SPECT-II) that enables molecular imaging of murine organs down to resolutions of less than half a millimeter and high-resolution total-body imaging. Methods: The U-SPECT-II is based on a triangular stationary detector set-up, an XYZ stage that moves the animal

  5. Quantitative evaluation of right ventricular overload in cor pulmonale using sup 201 Tl myocardial SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hiroshi; Misawa, Toshihiro; Kutsumi, Yasunori (Fukui Medical School, Matsuoka (Japan)) (and others)

    1991-01-01

    To determine quantitatively the discriminant and characteristics of cor pulmonale, {sup 201}Tl myocardial perfusion SPECT was performed in 16 patients with chronic obstructive pulmonary disease (COPD) and 7 with restrictive pulmonary disease (RPD). One section of the short-axis SPECT image in which the right ventricle was most clearly visualized was selected. Tl-score was defined as the ratio of the sum of counts in the region of interest (ROI) at the anterior, mid, and posterior regions of the right ventricular free wall to the sum of counts in ROI at the posterior, lateral, and anterior walls of the left ventricle, and the anterior and posterior regions of the interventricular septum. In the group of COPD patients, Tl-score was positively correlated with mean pulmonary arterial pressure (mPAP), total pulmonary vascular resistance (TPR), and arterial carbon dioxide tension (PaCO{sub 2}), while it was inversely correlated with arterial oxygen tension (PaO{sub 2}). However, there was no significant correlation between Tl-score and mPAP, TPR, PaCO{sub 2}, and PaO{sub 2} in the group of RPD patients. In assessing pulmonary hypertension as defined by mPAP over 20 mmHg, a Tl-score greater than 0.25 was useful with a sensitivity of 69% and a specificity of 90%. The occurrence of cor pulmonale is a major factor in determining the prognosis of COPD patients. It was concluded that {sup 201}Tl myocardial SPECT is useful for evaluating right ventricular overload quantitatively, as well as for assessing core pulmonale, especially in COPD patients, since the ratio of Tl counts in the right and left ventricles was significantly correlated with right cardiopulmonary hemodynamic parameters. (N.K.).

  6. Attenuation Correction in SPECT during Image Reconstruction using an Inverse Monte Carlo Method: A Simulation Study

    OpenAIRE

    Shahla Ahmadi; Hossein Rajabi; Farshid Babapoor; Faraz Kalantari

    2011-01-01

    Introduction: The main goal of SPECT imaging is to determine activity distribution inside the organs of the body. However, due to photon attenuation, it is almost impossible to do a quantitative study. In this paper, we suggest a mathematical relationship between activity distribution and its corresponding projections using a transfer matrix. Monte Carlo simulation was used to find a precise transfer matrix including the effects of photon attenuation.  Material and Methods: List mode output o...

  7. Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments

    Directory of Open Access Journals (Sweden)

    Arman Rahmim

    2016-01-01

    Full Text Available Dopamine transporter (DAT SPECT imaging is increasingly utilized for diagnostic purposes in suspected Parkinsonian syndromes. We performed a cross-sectional study to investigate whether assessment of texture in DAT SPECT radiotracer uptake enables enhanced correlations with severity of motor and cognitive symptoms in Parkinson's disease (PD, with the long-term goal of enabling clinical utility of DAT SPECT imaging, beyond standard diagnostic tasks, to tracking of progression in PD. Quantitative analysis in routine DAT SPECT imaging, if performed at all, has been restricted to assessment of mean regional uptake. We applied a framework wherein textural features were extracted from the images. Notably, the framework did not require registration to a common template, and worked in the subject-native space. Image analysis included registration of SPECT images onto corresponding MRI images, automatic region-of-interest (ROI extraction on the MRI images, followed by computation of Haralick texture features. We analyzed 141 subjects from the Parkinson's Progressive Marker Initiative (PPMI database, including 85 PD and 56 healthy controls (HC (baseline scans with accompanying 3 T MRI images. We performed univariate and multivariate regression analyses between the quantitative metrics and different clinical measures, namely (i the UPDRS (part III - motor score, disease duration as measured from (ii time of diagnosis (DD-diag. and (iii time of appearance of symptoms (DD-sympt., as well as (iv the Montreal Cognitive Assessment (MoCA score. For conventional mean uptake analysis in the putamen, we showed significant correlations with clinical measures only when both HC and PD were included (Pearson correlation r = −0.74, p-value < 0.001. However, this was not significant when applied to PD subjects only (r = −0.19, p-value = 0.084, and no such correlations were observed in the caudate. By contrast, for the PD subjects, significant correlations

  8. Investigation of Metastatic Breast Tumor Heterogeneity and Progression Using Dual Optical/SPECT Imaging

    Science.gov (United States)

    2005-05-01

    tumors in the lungs or other internal organs. Figures 3c and 3d show images obtained first in air and then in gel, with the fiber displaced 10 mm from the...the mouse lungs and viscera, and characterize the advantages of this method for quantitative imaging. We have also demonstrated micro-SPECT imaging of...resolution, high-throughput screening. 3. Prototype Recently, a prototype system using CR image plates for co-registered 1-125 planar scintigraphy and x

  9. Evaluating image denoising methods in myocardial perfusion single photon emission computed tomography (SPECT) imaging

    Science.gov (United States)

    Skiadopoulos, S.; Karatrantou, A.; Korfiatis, P.; Costaridou, L.; Vassilakos, P.; Apostolopoulos, D.; Panayiotakis, G.

    2009-10-01

    The statistical nature of single photon emission computed tomography (SPECT) imaging, due to the Poisson noise effect, results in the degradation of image quality, especially in the case of lesions of low signal-to-noise ratio (SNR). A variety of well-established single-scale denoising methods applied on projection raw images have been incorporated in SPECT imaging applications, while multi-scale denoising methods with promising performance have been proposed. In this paper, a comparative evaluation study is performed between a multi-scale platelet denoising method and the well-established Butterworth filter applied as a pre- and post-processing step on images reconstructed without and/or with attenuation correction. Quantitative evaluation was carried out employing (i) a cardiac phantom containing two different size cold defects, utilized in two experiments conducted to simulate conditions without and with photon attenuation from myocardial surrounding tissue and (ii) a pilot-verified clinical dataset of 15 patients with ischemic defects. Image noise, defect contrast, SNR and defect contrast-to-noise ratio (CNR) metrics were computed for both phantom and patient defects. In addition, an observer preference study was carried out for the clinical dataset, based on rankings from two nuclear medicine clinicians. Without photon attenuation conditions, denoising by platelet and Butterworth post-processing methods outperformed Butterworth pre-processing for large size defects, while for small size defects, as well as with photon attenuation conditions, all methods have demonstrated similar denoising performance. Under both attenuation conditions, the platelet method showed improved performance with respect to defect contrast, SNR and defect CNR in the case of images reconstructed without attenuation correction, however not statistically significant (p > 0.05). Quantitative as well as preference results obtained from clinical data showed similar performance of the

  10. In vivo SPECT reporter gene imaging of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ehsan Sharif-Paghaleh

    Full Text Available Regulatory T cells (Tregs were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4(+CD25(+FoxP3(+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate ((99mTcO(4(- and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6 mice by SPECT/CT using (99mTcO(4(-. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.

  11. Infective endocarditis detection through SPECT/CT images digital processing

    Science.gov (United States)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  12. Validation of Cross-calibration Schemes for Quantitative Bone SPECT/CT Using Different Sources under Various Geometric Conditions.

    Science.gov (United States)

    Miyaji, Noriaki; Miwa, Kenta; Motegi, Kazuki; Umeda, Takuro; Wagatsuma, Kei; Fukai, Shohei; Takiguchi, Tomohiro; Terauchi, Takashi; Koizumi, Mitsuru

    Several cross-calibration schemes have been proposed to produce quantitative values in bone SPECT imaging. Differences in the radionuclide sources and geometric conditions can decrease the accuracy of cross-calibration factor (CCF). The present study aimed to validate the effects of calibration schemes using different sources under various geometric conditions. Temporal variations as well as variations in acquisition counts and the shapes of (57)Co standard and (99m)Tc point sources and a (99m)Tc disk source were determined. The effects of the geometric conditions of the source-to-camera distance (SCD) and lateral distance on the CCF were investigated by moving the camera or source away from the origin. The system planar sensitivity of NEMA incorporated into a Symbia Intevo SPECT/CT device (Siemens®) was defined as reference values. The temporal variation in CCF using the (57)Co source was relatively stable within the range of 0.7% to 2.3%, whereas the (99m)Tc source ranged from 2.7% to 7.3%. In terms of source shape, the (57)Co standard point source was the most stable. Both SCD and lateral distance decreased as a function of distance from the origin. Errors in the geometric condition were higher for the (57)Co standard point source than the (99m)Tc disk source. Different calibration schemes influenced the reliability of quantitative values. The (57)Co standard point source was stable over a long period, and this helped to maintain the quality of quantitative SPECT/CT imaging data. The CCF accuracy of the (99m)Tc source decreased depending on the preparative method. The method of calibration for quantitative SPECT should be immediately standardized to eliminate uncertainty.

  13. Computed-tomography-guided anatomic standardization for quantitative assessment of dopamine transporter SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kota [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Imabayashi, Etsuko; Matsuda, Hiroshi [National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Sumida, Kaoru; Sone, Daichi; Kimura, Yukio; Sato, Noriko [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); Mukai, Youhei; Murata, Miho [National Center of Neurology and Psychiatry, Department of Neurology, Tokyo (Japan)

    2017-03-15

    For the quantitative assessment of dopamine transporter (DAT) using [{sup 123}I]FP-CIT single-photon emission computed tomography (SPECT) (DaTscan), anatomic standardization is preferable for achieving objective and user-independent quantification of striatal binding using a volume-of-interest (VOI) template. However, low accumulation of DAT in Parkinson's disease (PD) would lead to a deformation error when using a DaTscan-specific template without any structural information. To avoid this deformation error, we applied computed tomography (CT) data obtained using SPECT/CT equipment to anatomic standardization. We retrospectively analyzed DaTscan images of 130 patients with parkinsonian syndromes (PS), including 80 PD and 50 non-PD patients. First we segmented gray matter from CT images using statistical parametric mapping 12 (SPM12). These gray-matter images were then anatomically standardized using the diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) algorithm. Next, DaTscan images were warped with the same parameters used in the CT anatomic standardization. The target striatal VOIs for decreased DAT in PD were generated from the SPM12 group comparison of 20 DaTscan images from each group. We applied these VOIs to DaTscan images of the remaining patients in both groups and calculated the specific binding ratios (SBRs) using nonspecific counts in a reference area. In terms of the differential diagnosis of PD and non-PD groups using SBR, we compared the present method with two other methods, DaTQUANT and DaTView, which have already been released as software programs for the quantitative assessment of DaTscan images. The SPM12 group comparison showed a significant DAT decrease in PD patients in the bilateral whole striatum. Of the three methods assessed, the present CT-guided method showed the greatest power for discriminating PD and non-PD groups, as it completely separated the two groups. CT-guided anatomic standardization using

  14. Attenuation correction in SPECT images using attenuation map estimation with its emission data

    Science.gov (United States)

    Tavakoli, Meysam; Naji, Maryam; Abdollahi, Ali; Kalantari, Faraz

    2017-03-01

    Photon attenuation during SPECT imaging significantly degrades the diagnostic outcome and the quantitative accuracy of final reconstructed images. It is well known that attenuation correction can be done by using iterative reconstruction methods if we access to attenuation map. Two methods have been used to calculate the attenuation map: transmission-based and transmissionless techniques. In this phantom study, we evaluated the importance of attenuation correction by quantitative evaluation of errors associated with each method. For transmissionless approach, the attenuation map was estimated from the emission data only. An EM algorithm with attenuation model was developed and used for attenuation correction during image reconstruction. Finally, a comparison was done between reconstructed images using our OSEM code and analytical FBP method before and after attenuation correction. The results of measurements showed that: our programs are capable to reconstruct SPECT images and correct the attenuation effects. Moreover, to evaluate reconstructed image quality before and after attenuation correction we applied a novel approach using Image Quality Index. Attenuation correction increases the quality and quantitative accuracy in both methods. This increase is independent of activity in quantity factor and decreases with activity in quality factor. In EM algorithm, it is necessary to use regularization to obtain true distribution of attenuation coefficients.

  15. Automated Analysis of {sup 123}I-beta-CIT SPECT Images with Statistical Probabilistic Anatomical Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Eo, Jae Seon; Lee, Hoyoung; Lee, Jae Sung; Kim, Yu Kyung; Jeon, Bumseok; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-03-15

    Population-based statistical probabilistic anatomical maps have been used to generate probabilistic volumes of interest for analyzing perfusion and metabolic brain imaging. We investigated the feasibility of automated analysis for dopamine transporter images using this technique and evaluated striatal binding potentials in Parkinson's disease and Wilson's disease. We analyzed 2β-Carbomethoxy-3β-(4-{sup 123}I-iodophenyl)tropane ({sup 123}I-beta-CIT) SPECT images acquired from 26 people with Parkinson's disease (M:F=11:15,mean age=49±12 years), 9 people with Wilson's disease (M: F=6:3, mean age=26±11 years) and 17 normal controls (M:F=5:12, mean age=39±16 years). A SPECT template was created using striatal statistical probabilistic map images. All images were spatially normalized onto the template, and probability-weighted regional counts in striatal structures were estimated. The binding potential was calculated using the ratio of specific and nonspecific binding activities at equilibrium. Voxel-based comparisons between groups were also performed using statistical parametric mapping. Qualitative assessment showed that spatial normalizations of the SPECT images were successful for all images. The striatal binding potentials of participants with Parkinson's disease and Wilson's disease were significantly lower than those of normal controls. Statistical parametric mapping analysis found statistically significant differences only in striatal regions in both disease groups compared to controls. We successfully evaluated the regional {sup 123}I-beta-CIT distribution using the SPECT template and probabilistic map data automatically. This procedure allows an objective and quantitative comparison of the binding potential, which in this case showed a significantly decreased binding potential in the striata of patients with Parkinson's disease or Wilson's disease.

  16. Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests and SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California (United States); Kabus, Sven; Lorenz, Cristian [Department of Digital Imaging, Philips Research Europe, Hamburg (Germany); Mittra, Erik [Departments of Radiology, Stanford University School of Medicine, Stanford, California (United States); Hong, Julian C.; Chung, Melody; Eclov, Neville; To, Jacqueline; Diehn, Maximilian; Loo, Billy W. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia)

    2014-10-01

    Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volume change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V

  17. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections

    DEFF Research Database (Denmark)

    de Nijs, Robin; Lagerburg, Vera; Klausen, Thomas L

    2014-01-01

    and the activity, which depends on the collimator type, the utilized energy windows and the applied scatter correction techniques. In this study, energy window subtraction-based scatter correction methods are compared experimentally and quantitatively. MATERIALS AND METHODS: (177)Lu SPECT images of a phantom...... with known activity concentration ratio between the uniform background and filled hollow spheres were acquired for three different collimators: low-energy high resolution (LEHR), low-energy general purpose (LEGP) and medium-energy general purpose (MEGP). Counts were collected in several energy windows......, and scatter correction was performed by applying different methods such as effective scatter source estimation (ESSE), triple-energy and dual-energy window, double-photopeak window and downscatter correction. The intensity ratio between the spheres and the background was measured and corrected for the partial...

  18. Improved SPECT quantitation using fully three-dimensional iterative spatially variant scatter response compensation.

    Science.gov (United States)

    Beekman, F J; Kamphuis, C; Viergever, M A

    1996-01-01

    The quality and quantitative accuracy of iteratively reconstructed SPECT images improves when better point spread function (PSF) models of the gamma camera are used during reconstruction. Here, inclusion in the PSF model of photon crosstalk between different slices caused by limited gamma camera resolution and scatter is examined. A three-dimensional (3-D) projector back-projector (proback) has been developed which models both the distance dependent detector point spread function and the object shape-dependent scatter point spread function of single photon emission computed tomography (SPECT). A table occupying only a few megabytes of memory is sufficient to represent this scatter model. The contents of this table are obtained by evaluating an analytical expression for object shape-dependent scatter. The proposed approach avoids the huge memory requirements of storing the full transition matrix needed for 3-D reconstruction including object shape-dependent scatter. In addition, the method avoids the need for lengthy Monte Carlo simulations to generate such a matrix. In order to assess the quantitative accuracy of the method, reconstructions of a water filled cylinder containing regions of different activity levels and of simulated 3-D brain projection data have been evaluated for technetium-99m. It is shown that fully 3-D reconstruction including complete detector response and object shape-dependent scatter modeling clearly outperforms simpler methods that lack a complete detector response and/or a complete scatter response model. Fully 3-D scatter correction yields the best quantitation of volumes of interest and the best contrast-to-noise curves.

  19. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pourmoghaddas, Amir, E-mail: apour@ottawaheart.ca; Wells, R. Glenn [Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada and Cardiology, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada)

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  20. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    Science.gov (United States)

    Jacobsson Svärd, Staffan; Holcombe, Scott; Grape, Sophie

    2015-05-01

    A fuel assembly operated in a nuclear power plant typically contains 100-300 fuel rods, depending on fuel type, which become strongly radioactive during irradiation in the reactor core. For operational and security reasons, it is of interest to experimentally deduce rod-wise information from the fuel, preferably by means of non-destructive measurements. The tomographic SPECT technique offers such possibilities through its two-step application; (1) recording the gamma-ray flux distribution around the fuel assembly, and (2) reconstructing the assembly's internal source distribution, based on the recorded radiation field. In this paper, algorithms for performing the latter step and extracting quantitative relative rod-by-rod data are accounted for. As compared to application of SPECT in nuclear medicine, nuclear fuel assemblies present a much more heterogeneous distribution of internal attenuation to gamma radiation than the human body, typically with rods containing pellets of heavy uranium dioxide surrounded by cladding of a zirconium alloy placed in water or air. This inhomogeneity severely complicates the tomographic quantification of the rod-wise relative source content, and the deduction of conclusive data requires detailed modelling of the attenuation to be introduced in the reconstructions. However, as shown in this paper, simplified models may still produce valuable information about the fuel. Here, a set of reconstruction algorithms for SPECT on nuclear fuel assemblies are described and discussed in terms of their quantitative performance for two applications; verification of fuel assemblies' completeness in nuclear safeguards, and rod-wise fuel characterization. It is argued that a request not to base the former assessment on any a priori information brings constraints to which reconstruction methods that may be used in that case, whereas the use of a priori information on geometry and material content enables highly accurate quantitative assessment, which

  1. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    Science.gov (United States)

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  2. Feasibility of one-eighth time gated myocardial perfusion SPECT functional imaging using IQ-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Caobelli, Federico; Thackeray, James T.; Bengel, Frank M. [Medizinische Hochschule Hannover, Klinik fuer Nuklearmedizin, Hannover (Germany); Soffientini, Alberto; Pizzocaro, Claudio; Guerra, Ugo Paolo [Fondazione Poliambulanza, Department of Nuclear Medicine, Brescia (Italy)

    2015-11-15

    IQ-SPECT, an add-on to general purpose cameras based on multifocal collimation, can reduce myocardial perfusion imaging (MPI) acquisition times to one-fourth that of standard procedures (to 12 s/view). In a phantom study, a reduction of the acquisition time to one-eighth of the standard time (to 6 s/view) was demonstrated as feasible. It remains unclear whether such a reduction could be extended to clinical practice. Fifty patients with suspected or diagnosed CAD underwent a 2-day stress-rest {sup 99m}Tc-sestamibi MPI protocol. Two consecutive SPECT acquisitions (6 and 12 s/view) were performed. Electrocardiogram-gated images were reconstructed with and without attenuation correction (AC). Polar maps were generated and visually scored by two blinded observers for image quality and perfusion in 17 segments. Global and regional summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS) were determined. Left ventricular volumes and ejection fraction were calculated based on automated contour detection. Image quality was scored higher with the 12 s/view acquisition, both with and without AC. Summed scores were statistically comparable between the 6 s/view and the 12 s/view acquisition, both globally and in individual coronary territories (e.g. in images with AC, SSS were 6.6 ± 8.3 and 6.2 ± 8.2 with 6 s and 12 s/view, respectively, p = 0.10; SRS were 3.9 ± 5.6 and 3.5 ± 5.3, respectively, p = 0.19; and SDS were 2.8 ± 5.7 and 2.6 ± 5.7, respectively, p = 0.59). Both acquisitions allowed MPI-based diagnosis of CAD in 25 of the 50 patients (with AC). Calculated end-diastolic volume (EDV) and end-systolic volume (ESV) were modestly higher with the 6 s/view acquisition than with the 12 s/view acquisition (EDV +4.8 ml at rest and +3.7 ml after stress, p = 0.003; ESV +4.1 ml at rest and +2.6 ml after stress, p = 0.01), whereas the ejection fraction did not differ (-1.2 % at rest, p = 0.20, and -0.9 % after stress, p = 0.27). Image quality and

  3. Dual-energy micro-CT imaging of pulmonary airway obstruction: correlation with micro-SPECT

    Science.gov (United States)

    Badea, C. T.; Befera, N.; Clark, D.; Qi, Y.; Johnson, G. A.

    2014-03-01

    To match recent clinical dual energy (DE) CT studies focusing on the lung, similar developments for DE micro-CT of the rodent lung are required. Our group has been actively engaged in designing pulmonary gating techniques for micro- CT, and has also introduced the first DE micro-CT imaging method of the rodent lung. The aim of this study was to assess the feasibility of DE micro-CT imaging for the evaluation of airway obstruction in mice, and to compare the method with micro single photon emission computed tomography (micro-SPECT) using technetium-99m labeled macroaggregated albumin (99mTc-MAA). The results suggest that the induced pulmonary airway obstruction causes either atelectasis, or air-trapping similar to asthma or chronic bronchitis. Atelectasis could only be detected at early time points in DE micro-CT images, and is associated with a large increase in blood fraction and decrease in air fraction. Air trapping had an opposite effect with larger air fraction and decreased blood fraction shown by DE micro-CT. The decrease in perfusion to the hypoventilated lung (hypoxic vasoconstriction) is also seen in micro-SPECT. The proposed DE micro-CT technique for imaging localized airway obstruction performed well in our evaluation, and provides a higher resolution compared to micro-SPECT. Both DE micro-CT and micro-SPECT provide critical, quantitative lung biomarkers for image-based anatomical and functional information in the small animal. The methods are readily linked to clinical methods allowing direct comparison of preclinical and clinical results.

  4. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  5. Absolute quantitation of myocardial blood flow with {sup 201}Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Hidehiro; Kim, Kyeong-Min; Nakazawa, Mayumi; Sohlberg, Antti; Zeniya, Tsutomu; Hayashi, Takuya; Watabe, Hiroshi [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita City, Osaka (Japan); Eberl, Stefan [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita City, Osaka (Japan); Royal Prince Alfred Hospital, PET and Nuclear Medicine Department, Camperdown, NSW (Australia); Tamura, Yoshikazu [Akita Kumiai General Hospital, Department of Cardiology, Akita City (Japan); Ono, Yukihiko [Akita Research Institute of Brain, Akita City (Japan)

    2008-05-15

    {sup 201}Tl has been extensively used for myocardial perfusion and viability assessment. Unlike {sup 99m}Tc-labelled agents, such as {sup 99m}Tc-sestamibi and {sup 99m}Tc-tetrofosmine, the regional concentration of {sup 201}Tl varies with time. This study is intended to validate a kinetic modelling approach for in vivo quantitative estimation of regional myocardial blood flow (MBF) and volume of distribution of {sup 201}Tl using dynamic SPECT. Dynamic SPECT was carried out on 20 normal canines after the intravenous administration of {sup 201}Tl using a commercial SPECT system. Seven animals were studied at rest, nine during adenosine infusion, and four after beta-blocker administration. Quantitative images were reconstructed with a previously validated technique, employing OS-EM with attenuation-correction, and transmission-dependent convolution subtraction scatter correction. Measured regional time-activity curves in myocardial segments were fitted to two- and three-compartment models. Regional MBF was defined as the influx rate constant (K{sub 1}) with corrections for the partial volume effect, haematocrit and limited first-pass extraction fraction, and was compared with that determined from radio-labelled microspheres experiments. Regional time-activity curves responded well to pharmacological stress. Quantitative MBF values were higher with adenosine and decreased after beta-blocker compared to a resting condition. MBFs obtained with SPECT (MBF{sub SPECT}) correlated well with the MBF values obtained by the radio-labelled microspheres (MBF{sub MS}) (MBF{sub SPECT} = -0.067 + 1.042 x MBF{sub MS}, p < 0.001). The three-compartment model provided better fit than the two-compartment model, but the difference in MBF values between the two methods was small and could be accounted for with a simple linear regression. Absolute quantitation of regional MBF, for a wide physiological flow range, appears to be feasible using {sup 201}Tl and dynamic SPECT. (orig.)

  6. Sequential SPECT/CT imaging starting with stress SPECT in patients with left bundle branch block suspected for coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Engbers, Elsemiek M.; Mouden, Mohamed [Isala, Department of Cardiology, Zwolle (Netherlands); Isala, Department of Nuclear Medicine, Zwolle (Netherlands); Timmer, Jorik R.; Ottervanger, Jan Paul [Isala, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala, Department of Nuclear Medicine, Zwolle (Netherlands)

    2017-01-15

    To investigate the impact of left bundle branch block (LBBB) on sequential single photon emission computed tomography (SPECT)/ CT imaging starting with stress-first SPECT. Consecutive symptomatic low- to intermediate-risk patients without a history of coronary artery disease (CAD) referred for SPECT/CT were included from an observational registry. If stress SPECT was abnormal, additional rest SPECT and, if feasible, coronary CT angiography (CCTA) were acquired. Of the 5,018 patients, 218 (4.3 %) demonstrated LBBB. Patients with LBBB were slightly older than patients without LBBB (65±12 vs. 61±11 years, p<0.001). Stress SPECT was more frequently abnormal in patients with LBBB (82 % vs. 46 %, p<0.001). After reviewing stress and rest images, SPECT was normal in 43 % of the patients with LBBB, compared to 77 % of the patients without LBBB (p<0.001). Sixty-four of the 124 patients with LBBB and abnormal stress-rest SPECT underwent CCTA (52 %), which could exclude obstructive CAD in 46 of the patients (72 %). Sequential SPECT/CT imaging starting with stress SPECT is not the optimal imaging protocol in patients with LBBB, as the majority of these patients have potentially false-positive stress SPECT. First-line testing using CCTA may be more appropriate in low- to intermediate-risk patients with LBBB. (orig.)

  7. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    for molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm......Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...

  8. Myocardial Perfusion Spect Imaging in Dextrocardia: A Case Report

    Directory of Open Access Journals (Sweden)

    Semra Özdemir

    2013-08-01

    Full Text Available The myocardial perfusion scintigraphy acquisition and analysis present some technical differences in the rare dextrocardia cases. Here we report a case of a 38 year-old woman with dextrocardia who had been applied myocardial perfusion scintigraphy. Presented case showed that the thoracic and abdominal organs had a mirror image with situs inversus totalis type dextrocardia. The incidence of coronary heart disease and life span of people with situs inversus totalis are the same as the normal population. So we may apply myocardial perfusion scintigraphy to this patient group. The current case is presented in order to remind the special applications of myocardial perfusion SPECT imaging in patients with dextrocardia.

  9. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Oyebola O. Sogbein

    2014-01-01

    Full Text Available Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT myocardial perfusion imaging (MPI with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET and magnetic resonance imaging (MRI continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.

  10. Physiological imaging with PET and SPECT in Dementia

    Energy Technology Data Exchange (ETDEWEB)

    Jagust, W.J. (California Univ., San Francisco, CA (United States). Dept. of Neurology Lawrence Berkeley Lab., CA (United States))

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  11. The impact of hypertension on diastolic left ventricular function, evaluated by quantitative ECG-gated myocardial perfusion SPECT

    Directory of Open Access Journals (Sweden)

    Mohamed H.M. Sayed

    2015-09-01

    Conclusions: Quantitative ECG-gated Tc-99m tetrofosmin SPECT reveals that hypertensive patients with preserved global LV systolic function may have significant changes in diastolic LV function. Gated myocardial perfusion SPECT reports are always lacking in these changes in diastolic function. We recommend inclusion of such changes in diastolic function in gated myocardial perfusion SPECT reports that can help in proper management of hypertensive patients.

  12. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kida, S [UC Davis School of Medicine, Sacramento, CA (United States); University of Tokyo Hospital, Bunkyo, Tokyo (Japan); Bal, M [Philips Healthcare (Netherlands); Kabus, S [Philips Research, Hamburg (Germany); Loo, B [Stanford University, Stanford, CA (United States); Keall, P [University of Sydney, Camperdown (Australia); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Stanford University, Stanford, CA (United States)

    2014-06-15

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (a surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image

  13. Quantitative simultaneous 111In∕99mTc SPECT-CT of osteomyelitis.

    Science.gov (United States)

    Cervo, Morgan; Gerbaudo, Victor H; Park, Mi-Ae; Moore, Stephen C

    2013-08-01

    A well-established approach for diagnostic imaging of osteomyelitis (OM), a bone infection, is simultaneous SPECT-CT of 99mTc sulfur colloid (SC) and 111In white blood cells (WBC). This method provides essentially perfect spatial registration of the tracers within anatomic sites of interest. Currently, diagnosis is based purely on a visual assessment-where relative discordance between 99mTc and 111In uptake in bone, i.e., high 111In and low 99mTc, suggests OM. To achieve more quantitative images, noise, scatter, and crosstalk between radionuclides must be addressed through reconstruction. Here the authors compare their Monte Carlo-based joint OSEM (MC-JOSEM) algorithm, which reconstructs both radionuclides simultaneously, to a more conventional triple-energy window-based reconstruction (TEW-OSEM), and to iterative reconstruction with no compensation for scatter (NC-OSEM). The authors created numerical phantoms of the foot and torso. Multiple bone-infection sites were modeled using high-count Monte Carlo simulation. Counts per voxel were then scaled to values appropriate for 111In WBC and 99mTc SC imaging. Ten independent noisy projection image sets were generated by drawing random Poisson deviates from these very low-noise images. Data were reconstructed using the two iterative scatter-compensation methods, TEW-OSEM and MC-JOSEM, as well as the uncorrected method (NC-OSEM). Mean counts in volumes of interest (VOIs) were used to evaluate the bias and precision of each method. Data were also acquired using a phantom, approximately the size of an adult ankle, consisting of regions representing infected and normal bone marrow, within a bone-like attenuator and surrounding soft tissue; each compartment contained a mixture of 111In and 99mTc. Low-noise data were acquired during multiple short scans over 29 h on a Siemens Symbia T6 SPECT-CT with medium-energy collimators. Pure 99mTc and 111In projection datasets were derived by fitting the acquired projections to the sum

  14. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  15. DMSA SPECT imaging using oblique reconstruction in a paediatric population - benefits and technical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, G.; Ford, M.; Crisp, J.; Bernard, E.; Howman-Giles, R. [The New Childrens Hospital, Westmead, NSW, (Australia). Department of Nuclear Medicine

    1997-09-01

    Full text: DMSA renal scans are frequently requested for the diagnosis and follow-up of acute pyelonephritis and cortical scarring. This study was designed to:- 1. evaluate oblique reconstruction of DMSA SPECT over standard plane reconstruction and planar imaging; and 2. report on the technical aspects important in obtaining high quality DMSA SPECT, particularly in neonates. Over seven months, 210/231 (91 %) of DMSA scans were performed with SPECT on children from age nine days to 16 years, the median age being 2.5 years. 65 patients (31 %) were under one year and 39 (18%) were under six months. Planar and SPECT imaging with standard plane reconstruction and oblique reorientation was performed on the Siemens triple-headed gamma camera. High quality SPECT images were obtained on the smallest babies using a paediatric palette, and were of comparable quality to those of older children. At the time of reporting, the nuclear medicine physician assessed the diagnostic value of the three types of date presented: (1) planar images; (2) standard plane SPECT reconstruction; and (3) oblique SPECT reconstruction. Cortical defects were identified separately for upper, middle and lower poles. Three physicians concluded that high quality SPECT is superior to planar images when assessing the renal cortex. In addition, oblique reorientation is superior to standard reconstruction, particularly at the upper and lower poles. SPECT is now performed routinely on patients of all ages, and the oblique sagittal and coronal reorientation is now used in place of the standard reconstruction.

  16. Comparison of I-123 MIBG planar imaging and SPECT for the detection of decreased heart uptake in Parkinson disease.

    Science.gov (United States)

    Oh, Jin-Kyoung; Choi, Eun-Kyoung; Song, In-Uk; Kim, Joong-Seok; Chung, Yong-An

    2015-10-01

    Decreased myocardial uptake of I-123 metaiodobenzylguanidine (MIBG) is an important finding for diagnosis of Parkinson's disease (PD). This study compared I-123 MIBG SPECT and planar imaging with regard to their diagnostic yield for PD. 52 clinically diagnosed PD patients who also had decreased striatal uptake on FP-CIT PET/CT were enrolled. 16 normal controls were also included. All underwent cardiac MIBG planar scintigraphy and SPECT separately. Myocardial I-123 MIBG uptake was interpreted on planar and SPECT/CT images separately by visual and quantitative analysis. The final diagnosis was made by consensus between two readers. Kappa analyses were performed to determine inter-observer agreement for both methods. Sensitivity, specificity, and accuracy were compared with McNemar's test. The sensitivity, specificity, and accuracy were 84.6, 100, and 88.2% for planar images and 96.2, 100 and 97.1% for SPECT, respectively, with a significant difference between the two imaging methods (p diagnostic performance for PD than planar images. Increased lung uptake may cause false-negative results on planar imaging.

  17. Assessing the Reliability of Quantitative Imaging of Sm-153

    Science.gov (United States)

    Poh, Zijie; Dagan, Maáyan; Veldman, Jeanette; Trees, Brad

    2013-03-01

    Samarium-153 is used for palliation of and recently has been investigated for therapy for bone metastases. Patient specific dosing of Sm-153 is based on quantitative single-photon emission computed tomography (SPECT) and knowing the accuracy and precision of image-based estimates of the in vivo activity distribution. Physical phantom studies are useful for estimating these in simple objects, but do not model realistic activity distributions. We are using realistic Monte Carlo simulations combined with a realistic digital phantom modeling human anatomy to assess the accuracy and precision of Sm-153 SPECT. Preliminary data indicates that we can simulate projection images and reconstruct them with compensation for various physical image degrading factors, such as attenuation and scatter in the body as well as non-idealities in the imaging system, to provide realistic SPECT images.

  18. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kugaya, Akira; Fujita, Masahiro; Innis, R.B. [Yale Univ., New Haven, CT (United States). School of Medicine

    2000-02-01

    Single photon emission computed tomography (SPECT) tracers selective for pre- and post-synaptic targets have allowed measurements of several aspects of dopaminergic (DA) neurotransmission. In this article, we will first review our DA transporter imaging in Parkinson's disease. We have developed the in vivo dopamine transporter (DAT) imaging with [{sup 123}I]{beta}-CIT ((1R)-2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)tropane). This method showed that patients with Parkinson's disease have markedly reduced DAT levels in striatum, which correlated with disease severity and disease progression. Second, we applied DA imaging techniques in patients with schizophrenia. Using amphetamine as a releaser of DA, we observed the enhanced DA release, which was measured by imaging D2 receptors with [{sup 123}I]IBZM (iodobenzamide), in schizophrenics. Further we developed the measurement of basal synaptic DA levels by AMPT (alpha-methyl-paratyrosine)-induced unmasking of D2 receptors. Finally, we expanded our techniques to the measurement of extrastriatal DA receptors using [{sup 123}I]epidepride. The findings suggest that SPECT is a useful technique to measure DA transmission in human brain and may further our understanding of the pathophysiology of neuropsychiatric disorders. (author)

  19. Skeletal scintigraphy and SPECT/CT in orthopedic imaging; Knochenszintigrafie und SPECT/CT bei orthopaedischen Fragestellungen

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, B.; Walter, M.; Krause, T. [Inselspital Bern (Switzerland). Universitaetsklinik fuer Nuklearmedizin

    2011-03-15

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  20. Performance of coincidence imaging with long-lived positron emitters as an alternative to dedicated PET and SPECT

    Science.gov (United States)

    Sandström, Mattias; Tolmachev, Vladimir; Kairemo, Kalevi; Lundqvist, Hans; Lubberink, Mark

    2004-12-01

    An important application of quantitative imaging in nuclear medicine is the estimation of absorbed doses in radionuclide therapy. Depending on the radionuclide used for therapy, quantitative imaging of the kinetics of the therapeutic radiopharmaceutical could be done using planar imaging, SPECT or PET. Since many nuclear medicine departments have a gamma camera system that is also suitable for coincidence imaging, the performance of these systems with respect to quantitative imaging of PET isotopes that could be of use in radionuclide dosimetry is of interest. We investigated the performance of a gamma camera with coincidence imaging capabilities with 99mTc, 111In, 18F and 76Br and a dedicated PET system with 18F and 76Br, using a single standard set of phantom measurements. Here, 76Br was taken as a typical example of prompt gamma-emitting PET isotopes that are applicable in radionuclide therapy dosimetry such as 86Y and 124I. Image quality measurements show comparable image contrasts for 76Br coincidence imaging and 111In SPECT. Although the spatial resolution of coincidence imaging is better than single photon imaging, the contrast obtained with 76Br is not better than that with 99mTc or 111In because of the prompt gamma involved. Additional improvements are necessary to allow for quantitative coincidence imaging of long-lived, prompt gamma producing positron emitters.

  1. SPECT/CT imaging in bone scintigraphy of a case of clavicular osteoma

    Directory of Open Access Journals (Sweden)

    Yuka Yamamoto

    2014-05-01

    diphosphonate (HMDP. Whole-body image showed a focus of intensely increased uptake in the clavicle. Single photon emission computed tomography/ computed tomography (SPECT/CT images were also acquired and clearly showed intense uptake at the tumor site. Integrated SPECT/CT imaging supplies both functional and anatomic information about bone: the SPECT imaging improves sensitivity compared with planar imaging, the CT imaging provides precise localization of the abnormal uptake, and information on the shape and structure of the abnormalities improves the specificity of the diagnosis.

  2. Attenuation correction of myocardial SPECT images with X-ray CT. Effects of registration errors between X-ray CT and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yasuyuki; Murase, Kenya [Osaka Univ., Suita (Japan). Graduate School of Medicine; Higashino, Hiroshi [Ehime Prefectural Imabari Hospital (Japan); Mochizuki, Teruhito [Ehime Univ., Matsuyama (Japan). School of Medicine; Motomura, Nobutoku [Toshiba Corp., Otawara, Tochigi (Japan). Medical Engineering Lab.

    2002-09-01

    Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. Registerion (fusion) of the X-ray CT and SPECT images was done with standard packaged software in three dimensional fashion, by using linked transaxial, coronal and sagittal images. In the phantom study, and X-ray CT image was shifted 1 to 3 pixels on the x, y and z axes, and rotated 6 degrees clockwise. Attenuation correction maps generated from each misaligned X-ray CT image were used to reconstruct misaligned SPECT images of the phantom filled with {sup 201}Tl. In a human volunteer, X-ray CT was acquired in different conditions (during inspiration vs. expiration). CT values were transferred to an attenuation constant by using straight lines; an attenuation constant of 0/cm in the air (CT value=-1,000 HU) and that of 0.150/cm in water (CT value=0 HU). For comparison, attenuation correction with transmission CT (TCT) data and an external {gamma}-ray source ({sup 99m}Tc) was also applied to reconstruct SPECT images. Simulated breast attenuation with a breast attachment, and inferior wall attenuation were properly corrected by means of the attenuation correction map generated from X-ray CT. As pixel shift increased, deviation of the SPECT images increased in misaligned images in the phantom study. In the human study, SPECT images were affected by the scan conditions of the X-ray CT. Attenuation correction of myocardial SPECT with an X-ray CT image is a simple and potentially beneficial method for clinical use, but accurate registration of the X-ray CT to SPECT image is essential for satisfactory attenuation correction. (author)

  3. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    Energy Technology Data Exchange (ETDEWEB)

    Verberne, Hein J.; Eck-Smit, Berthe L.F. van; Wit, Tim C. de [University of Amsterdam, Department of Nuclear Medicine, F2-238, Academic Medical Center, Amsterdam (Netherlands); Acampa, Wanda [National Council of Research, Institute of Biostructures and Bioimaging, Naples (Italy); Anagnostopoulos, Constantinos [Academy of Athens, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Athens (Greece); Ballinger, Jim [Guy' s Hospital - Guy' s and St Thomas' Trust Foundation, Department of Nuclear Medicine, London (United Kingdom); Bengel, Frank [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Bondt, Pieter De [OLV Hospital, Department of Nuclear Medicine, Aalst (Belgium); Buechel, Ronny R.; Kaufmann, Philip A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Flotats, Albert [Universitat Autonoma de Barcelona, Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Hindorf, Cecilia [Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Lindner, Oliver [University Hospital of the Ruhr-University Bochum, Heart and Diabetes Center North Rhine-Westphalia, Institute for Radiology, Nuclear Medicine and Molecular Imaging, Bad Oeynhausen (Germany); Ljungberg, Michael [Lund University, Department of Medical Radiation Physics, Lund (Sweden); Lonsdale, Markus [Bispebjerg Hospital, Department of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Manrique, Alain [Caen University Hospital, Department of Nuclear Medicine, Service Commun Investigations chez l' Homme, GIP Cyceron, Caen (France); Minarik, David [Skaane University Hospital, Radiation Physics, Malmoe (Sweden); Scholte, Arthur J.H.A. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Slart, Riemer H.J.A. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Traegaardh, Elin [Skaane University Hospital and Lund University, Clinical Physiology and Nuclear Medicine, Malmoe (Sweden); Hesse, Birger [University Hospital of Copenhagen, Department of Clinical Physiology and Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark)

    2015-11-15

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/ publications/guidelines/2015{sub 0}7{sub E}ANM{sub F}INAL myocardial{sub p}erfusion{sub g}uideline.pdf. (orig.)

  4. Comparison of (99m)Tc-MDP SPECT qualitative vs quantitative results in patients with suspected condylar hyperplasia.

    Science.gov (United States)

    López Buitrago, D F; Ruiz Botero, J; Corral, C M; Carmona, A R; Sabogal, A

    To compare qualitative vs quantitative results of Single Photon Emission Computerised Tomography (SPECT), calculated from percentage of (99m)Tc-MDP (methylene diphosphonate) uptake, in condyles of patients with a presumptive clinical diagnosis of condylar hyperplasia. A retrospective, descriptive study was conducted on the (99m)Tc-MDP SPECT bone scintigraphy reports from 51 patients, with clinical impression of facial asymmetry related to condylar hyperplasia referred by their specialist in orthodontics or maxillofacial surgery, to a nuclear medicine department in order to take this type of test. Quantitative data from (99m)Tc-MDP condylar uptake of each were obtained and compared with qualitative image interpretation reported by a nuclear medicine expert. The concordances between the 51 qualitative and quantitative reports results was established. The total sample included 32 women (63%) and 19 men (37%). The patient age range was 13-45 years (21±8 years). According to qualitative reports, 19 patients were positive for right side condylar hyperplasia, 12 for left side condylar hyperplasia, with 8 bilateral, and 12 negative. The quantitative reports diagnosed 16 positives for right side condylar hyperplasia, 10 for left side condylar hyperplasia, and 25 negatives. Nuclear medicine images are an important diagnostic tool, but the qualitative interpretation of the images is not as reliable as the quantitative calculation. The agreement between the two types of report is low (39.2%, Kappa=0.13; P>.2). The main limitation of quantitative reports is that they do not register bilateral condylar hyperplasia cases. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  5. Visual and semi-quantitative assessment of brain tumors using (201)Tl-SPECT.

    Science.gov (United States)

    Nose, Ayumi; Otsuka, Hideki; Nose, Hayato; Otomi, Yoichi; Terazawa, Kaori; Harada, Masafumi

    2013-01-01

    To evaluate the usefulness of (201)Tl-SPECT in differentiating benign from malignant brain tumors. Eighty-eight patients (44 males and 44 females) with 58 high-grade (WHO grade III-IV) and 30 low-grade (WHO grade I-II) tumors were evaluated with (201)Tl-SPECT. (1) Visual assessment was performed by board-certificated radiologists using (201)Tl-SPECT. Tumors were classified in two groups (Tl-positive and Tl-negative) and scored using the five grade evaluation system. Receiver operating characteristic (ROC) analysis was performed in the Tl-positive group. (2) Semi-quantitative assessment involved measurement of early and delayed (201)Tl uptake, and the retention index (RI) was applied as follows: RI=delayed uptake ratio/early uptake ratio. Three combinations of RI using mean and maximum values of the region of interest were calculated. (1) Seventy-four Tl-positive and 14 Tl-negative tumors. The area under the ROC curve (AUC) estimated by three radiologists exceeded a value of 0.7. The value was greater when estimated by the more experienced radiologist. (2) In all RIs, the difference of RI between high-grade tumors and low-grade tumors was statistically significant. A visual and semi-quantitative assessment using (201)Tl-SPECT was found to be useful for differentiating benign from malignant brain tumors.

  6. Assessment of vascularization within hydroxyapatite ocular implant by bone scintigraphy: compartive analysis of planar and SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seok Tae; Sohn, Myung Hee; Park, Soon Ah [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    1999-08-01

    Complete fibrovascular ingrowth within the hydroxyapatite ocular implant is necessary for peg drilling which is performed to prevent infection and to provide motility to the ocular prosthesis. We compared planar bone scintigraphy and SPECT for the evaluation of the vascularization within hydroxyapatite ocular implants. Seventeen patients (M:F=12:5, mean age: 50.4{+-}17.5 years) who had received a coralline hydroxyapatite ocular implant after enucleation surgery were enrolled. Patients underwent Tc-99m MDP planar bone and SPECT imaging by dual head gamma camera after their implant surgery (interval: 197{+-}81 days). Uptake on planar and SPECT images was graded visually as less than (grade 1), equal to (grade 2), and greater than (grade 3) nasal bridge activity. Quantitative ratio of implanted to non-implanted intraorbital activity was also measured. Vascularization within hydroxyapatite implants was confirmed by slit lamp examination and ocular movement. All but three patients were considered to be vascularized within hydroxyapatite implants. In visual analysis of planar image and SPECT, grade 1 was noted in 9/18 (50%) and 6/18 (33%), respectively. Grade 2 pattern 7/18 (39%) and 4/18 (22%), and grade 3 pattern was 2/18 (11%) and 8/18 (44%) respectively. When grade 2 or 3 was considered to be positive for vascularization, the sensitivity of planar and SPECT imaging were 60% (9/15) and 80% (12/15), respectively. In 3 patients with incomplete vascularization, both planar and SPECT showed grade 1 uptake. The orbital activity ratios on planar imaging were not significantly different between complete and incomplete vascularization (1.96{+-}9.87 vs 1.17{+-}0.08 , p>0.05), however, it was significantly higher on SPECT in patients with complete vascularization (8.44{+-}5.45 vs 2.20{+-}0.87, p<0.05). In the assessment of fibrovascular ingrowth within ocular implants by Tc-99m MDP bone scintigraphy, SPECT image appears to be more effective than planar scintigraphy.

  7. Myocardial Perfusion SPECT Imaging in Patients after Percutaneous Coronary Intervention.

    Science.gov (United States)

    Georgoulias, Panagiotis; Valotassiou, Varvara; Tsougos, Ioannis; Demakopoulos, Nikolaos

    2010-05-01

    Coronary artery disease (CAD) is the most prevalent form of cardiovascular disease affecting about 13 million Americans, while more than one million percutaneous transluminal intervention (PCI) procedures are performed annually in the USA. The relative high occurrence of restenosis, despite stent implementation, seems to be the primary limitation of PCI. Over the last decades, single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI), has proven an invaluable tool for the diagnosis of CAD and patients' risk stratification, providing useful information regarding the decision about revascularization and is well suited to assess patients after intervention. Information gained from post-intervention MPI is crucial to differentiate patients with angina from those with exo-cardiac chest pain syndromes, to assess peri-intervention myocardial damage, to predict-detect restenosis after PCI, to detect CAD progression in non-revascularized vessels, to evaluate the effects of intervention if required for occupational reasons and to evaluate patients' long-term prognosis. On the other hand, chest pain and exercise electrocardiography are largely unhelpful in identifying patients at risk after PCI.Although there are enough published data demonstrating the value of myocardial perfusion SPECT imaging in patients after PCI, there is still debate on whether or not these tests should be performed routinely.

  8. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    Science.gov (United States)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-10-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback-Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data.

  9. In vivo quantification of {sup 177}Lu with planar whole-body and SPECT/CT gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Faculty of Health Sciences, University of Sydney, Cumberland, NSW (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Hennessy, Thomas M.; Willowson, Kathy P.; Henry, E. Courtney [Institute of Medical Physics, University of Sydney, Camperdown, NSW (Australia); Chan, David L.H. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Aslani, Alireza [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Roach, Paul J. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia)

    2015-09-17

    Advances in gamma camera technology and the emergence of a number of new theranostic radiopharmaceutical pairings have re-awakened interest in in vivo quantification with single-photon-emitting radionuclides. We have implemented and validated methodology to provide quantitative imaging of {sup 177}Lu for 2D whole-body planar studies and for 3D tomographic imaging with single-photon emission computed tomography (SPECT)/CT. Whole-body planar scans were performed on subjects to whom a known amount of [{sup 177}Lu]-DOTA-octreotate had been administered for therapy. The total radioactivity estimated from the images was compared with the known amount of the radionuclide therapy administered. In separate studies, venous blood samples were withdrawn from subjects after administration of [{sup 177}Lu]-DOTA-octreotate while a SPECT acquisition was in progress and the concentration of the radionuclide in the venous blood sample compared with that estimated from large blood pool structures in the SPECT reconstruction. The total radioactivity contained within an internal SPECT calibration standard was also assessed. In the whole-body planar scans (n = 28), the estimated total body radioactivity was accurate to within +4.6 ± 5.9 % (range −17.1 to +11.2 %) of the correct value. In the SPECT reconstructions (n = 12), the radioactivity concentration in the cardiac blood pool was accurate to within −4.0 ± 7.8 % (range −16.1 to +7.5 %) of the true value and the internal standard measurements (n = 89) were within 2.0 ± 8.5 % (range −16.3 to +24.2 %) of the known amount of radioactivity contained. In our hands, state-of-the-art hybrid SPECT/CT gamma cameras were able to provide accurate estimates of in vivo radioactivity to better than, on average, ±10 % for use in biodistribution and radionuclide dosimetry calculations.

  10. PET/SPECT/CT multimodal imaging in a transgenic mouse model of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Boisgard, R.; Alberini, J.L.; Jego, B.; Siquier, K.; Theze, B.; Guillermet, S.; Tavitian, B. [Service Hospitalier Frederic Joliot, Institut d' Imagerie BioMedicale, CEA, 91 - Orsay (France); Inserm, U803, 91 - Orsay (France)

    2008-02-15

    Background. - In the therapy monitoring of breast cancer, conventional imaging methods include ultrasound, mammography, CT and MRI, which are essentially based on tumor size modifications. However these modifications represent a late consequence of the biological response and fail to differentiate scar or necrotic tissue from residual viable tumoral tissue. Therefore, a current objective is to develop tools able to predict early response to treatment. Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are imaging modalities able to provide extremely sensitive quantitative molecular data and are widely used in humans and animals. Results. - Mammary epithelial cells of female transgenic mice expressing the polyoma middle T onco-protein (Py M.T.), undergo four distinct stages of tumour progression, from pre malignant to malignant stages. Stages are identifiable in the mammary tissue and can lead to the development of distant metastases Longitudinal studies by dynamic whole body acquisitions by multimodal imaging including PET, SPECT and Computed Tomography (CT) allow following the tumoral evolution in Py M.T. mice in comparison with the histopathological analysis. At four weeks of age, mammary hyperplasia was identified by histopathology, but no abnormalities were found by palpation or detected by PET with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose. Such as in some human mammary cancers, the sodium iodide sym-porter (N.I.S.) in tumoral mammary epithelial cells is expressed in this mouse model. In order to investigate the expression of N.I.S. in the Py M.T. mice mammary tumours, [{sup 99m}Tc]TcO{sub 4} imaging was performed with a dedicated SPECT/CT system camera (B.I.O.S.P.A.C.E. Gamma Imager/CT). Local uptake of [{sup 99m}Tc]TcO{sub 4} was detected as early as four weeks of age. The efficacy of chemotherapy was evaluated in this mouse model using a conventional regimen (Doxorubicine, 100 mg/ kg) administered weekly from nine to

  11. Improved diagnostic accuracy of lung perfusion imaging using Tc-99m MAA SPECT

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, J.K.; Golish, J.A.; Go, R.T.; Risius, B.; Graor, R.A.; MacIntyre, W.J.; Feiglin, D.H.

    1984-01-01

    The addition of emission tomography (SPECT) to pulmonary perfusion imaging should improve diagnostic accuracy by detecting perfusion defects otherwise masked by superimposition of normal lung activity and by reducing problems with interpretation of defects that result from overlying soft tissue or pleural effusions. In order to examine the contribution of SPECT in the scintigraphic evaluation for pulmonary embolus (PE), the authors have obtained both planar and SPECT studies in 94 cases of suspected PE. All studies employed 3-4 mCi of Tc-99m MAA and standard six-view planar image acquisition. SPECT raw data of 64 images were then acquired over a 360 degree transaxial rotation with subsequent computer reconstruction. Xe-133 ventilation studies were performed when clinically indicated and tolerated by the patient. For 19 studies angiographic (AN) correlation was obtained within 24 hours. In 16/19 planar and SPECT both gave a high probability of PE but SPECT gave better segmental localization and showed better agreement with the number of defects seen at AN. In 3 indeterminate planar scans, 2 were low probability with SPECT and had negative AN. The third, a patient with Wegener's vasculitis, remained indeterminate with SPECT and had negative AN. Five patients with PE had repeat planar/SPECT/AN studies to evaluate response to treatment. SPECT correlated better with AN findings in each case. The authors conclude that SPECT perfusion imaging provides better anatomic accuracy for defects representing PE and is the non-invasive technique of choice for documenting response to therapy.

  12. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for beta-cell mass assessments

    NARCIS (Netherlands)

    Eter, W.A.; Parween, S.; Joosten, L.; Frielink, C.; Eriksson, M.; Brom, M.; Ahlgren, U.; Gotthardt, M.

    2016-01-01

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in beta-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections

  13. De-Noising SPECT Images from a Typical Collimator Using Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Farshid Babapour Mofrad

    2009-12-01

    Full Text Available Introduction: SPECT is a diagnostic imaging technique the main disadvantage of which is the existence of Poisson noise. So far, different methods have been used by scientists to improve SPECT images. The Wavelet Transform is a new method for de-noising which is widely used for noise reduction and quality enhancement of images. The purpose of this paper is evaluation of noise reduction in SPECT images by wavelet. Material and Methods: To calculate and simulate noise in images, it is common in nuclear medicine to use Monte Carlo techniques. The SIMIND software was used to simulate SPECT images in this research. The simulated and real images formed using the current typical (hexagonal collimator were de-noised by different types of wavelets. Results: The best type of wavelet was selected for SPECT images. The results demonstrated that the best type of wavelet in the simulated and real images increased Signal to Noise Ratio (SNR by 33% and 45% respectively. Also, Coefficient of Variation (CV decreased by 77% and 71% respectively, while Contrast of Recovery (CR was reduced by only 4% and 9% respectively. Conclusion: Comparing the results for real SPECT images in this paper with previously acquired results in real PET images, it can be concluded that the images of both nuclear medicine systems using Wavelet Transform differ in SNR and CR by only 5% and 7% respectively, and in CV by about 20%. Therefore, wavelet transform is applicable for nuclear medicine image de-noising.

  14. [Effect of wall thickness of left ventricle on 201Tl myocardial SPECT images: myocardial phantom study].

    Science.gov (United States)

    Koto, M; Namura, H; Kawase, O; Yamasaki, K; Kono, M

    1996-07-01

    201Tl myocardial SPECT is known for better sensitivity, specificity, and accuracy than planar images in detecting coronary artery disease and diagnosing myocardial viability. SPECT images are also superior to planar images in diagnostic sensitivity and anatomical orientation. However, as limitation of the spatial resolution of the machine, we often encounter poor SPECT plower image quality in patients with decreased wall thickness. To test the accuracy of SPECT images in patients with marked thinning of the left ventricular wall, as occurs in dilated cardiomyopathy, we performed a experimental study using myocardial phantom with 7 mm wall thickness. Tomographic image of the phantom images were rather heterogeneous, though no artificial defect was located. Dilated cardiomyopathy is thought to be characterized by patchy defects in the left ventricle. Careful attention should be given to elucidating myocardial perfusion in patients with a thin left ventricle wall, as there are technical limitations in addition to clinical features.

  15. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    Science.gov (United States)

    Uzun Ozsahin, D.; Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  16. Filters in 2D and 3D Cardiac SPECT Image Processing

    Directory of Open Access Journals (Sweden)

    Maria Lyra

    2014-01-01

    Full Text Available Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  17. Filters in 2D and 3D Cardiac SPECT Image Processing.

    Science.gov (United States)

    Lyra, Maria; Ploussi, Agapi; Rouchota, Maritina; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  18. Dual-Energy SPECT and the Development of Peptide p5+14 for Imaging Amyloidosis

    Directory of Open Access Journals (Sweden)

    Jonathan S. Wall PhD

    2017-05-01

    Full Text Available Amyloidosis is associated with a number of rare diseases and is characterized by the deposition, in abdominothoracic organs and peripheral nerves, of extracellular protein fibrils, which leads to dysfunction and severe morbidity. Effective clinical evaluation and management of patients with systemic amyloidosis are hampered by the lack of a noninvasive, quantitative method for detecting whole-body amyloid load. We have used a battery of assays including dual-energy SPECT imaging and comparative effectiveness studies in support of translation of a synthetic polybasic peptide, p5+14, as a novel radiotracer for visualization of amyloidosis by molecular imaging. These data provide support for a phase 1 positron emission tomography/computed tomography imaging trial of this reagent, labeled with iodine-124, in patients with all forms of systemic amyloidosis.

  19. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  20. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  1. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis.

    Science.gov (United States)

    Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro

    2017-05-01

    We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB + SPECT

  2. Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    Directory of Open Access Journals (Sweden)

    S. Benameur

    2009-01-01

    Full Text Available Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI. This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter.

  3. Technological value of SPECT/CT fusion imaging for the diagnosis of lower gastrointestinal bleeding.

    Science.gov (United States)

    Wang, Z G; Zhang, G X; Hao, S H; Zhang, W W; Zhang, T; Zhang, Z P; Wu, R X

    2015-11-24

    The aim of this study was to assess the clinical value of diagnosing and locating lower gastrointestinal (GI) bleeding using single photon emission computed tomography (SPECT)/computed tomography (CT) fusion imaging with 99mTc labeled red blood cells ((99m)Tc-RBC). Fifty-six patients with suspected lower GI bleeding received a preoperative intravenous injection of (99m)Tc-RBC and each underwent planar, SPECT/CT imaging of the lower abdominal region. The location and path of lower GI bleeding were diagnosed by contrastive analysis of planar and SPECT/CT fusion imaging. Among the 56 patients selected, there were abnormalities in concentrated radionuclide activity with planar imaging in 50 patients and in SPECT/CT fusion imaging in 52 patients. Moreover, bleeding points that were coincident with the surgical results were evident with planar imaging in 31 patients and with SPECT/CT fusion imaging in 48 patients. The diagnostic sensitivity of planar imaging and SPECT/CT fusion imaging were 89.3% (50/56) and 92.9% (52/56), respectively, and the difference was not statistically significant (χ(2) = 0.11, P > 0.05). The corresponding positional accuracy values were 73.8% (31/42) and 92.3% (48/52), and the difference was statistically significant (χ(2) = 4.63, P CT fusion imaging is an effective, simple, and accurate method that can be used for diagnosing and locating lower GI bleeding.

  4. Quantitative evaluation of regional cerebral blood flow by visual stimulation in {sup 99m}Tc- HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Juh, Ra Hyeong; Suh, Tae Suk; Kwark, Chul Eun; Choe, Bo Young; Lee, Hyoung Koo; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo [College of Medicine, The Catholic Univ. of Seoul, Seoul (Korea, Republic of)

    2002-06-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '9{sup 9m}Tc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and {sup 99m}Tc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50{+-}5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

  5. Quantitative evaluation of regional cerebral blood flow by visual stimulation in {sup 99m}Tc-HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic Univ., of Korea, Seoul (Korea, Republic of)

    2002-07-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50{+-}5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

  6. A single CdZnTe detector for simultaneous CT/SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barber, W.C. E-mail: bill@barber.uscf.edu; Iwata, Koji; Hasegawa, B.H.; Bennett, P.R.; Cirignano, L.J.; Shah, K.S

    2003-06-01

    Clinical CT/SPECT systems acquire CT and SPECT data sequentially using different detectors in close proximity to minimise patient movement and interscan delay. We have developed a prototype simultaneous CT/SPECT imager, using a single CdZnTe detector, with the goal of improving image coregistration and decreasing scan time. A 16-pixel CdZnTe detector was operated in pulse-counting mode with 50 ns shaping time. Energy discrimination is used to separate the CT and SPECT data. Simultaneous SPECT and CT images were obtained for a phantom with the X-ray flux limited to reduce pulse pile-up in the radionuclide energy window. At 140 keV, the efficiency and energy resolution are 70% and 10%, respectively, and were constant for fluence rates up to 10{sup 3} cps per detector element for 140 keV gamma rays, but degrade rapidly at higher fluence rates. In pulse-counting mode, the maximum count rate of 10{sup 3} cps per element from the CdZnTe detector is sufficient for SPECT imaging, but is considerably lower than the fluence rates encountered in CT. The smallest lesion visually detectable in SPECT is 9 mm and the CT spatial resolution is smaller than 4.5 mm. Image registration is intrinsic because the data can be acquired simultaneously with a single detector with the same reconstruction geometry.

  7. Autoradiography study and SPECT imaging of reporter gene HSV1-tk expression in heart

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: LXL730724@hotmail.com; Liu Ying; He Yong; Wu Tao; Zhang Binqing; Gao Zairong; An Rui [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China); Zhang Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: zhyx1229@163.com

    2010-04-15

    . The ARG images in region of interest-derived semi-quantitative study correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The gamma counting and RT-PCR also correlated well with each other in both sets of experiments. Both SPECT planar and tomographic images showed clear uptake of {sup 131}I-FIAU in the anterolateral wall where Ad5-tk was injected. Conclusion: The study confirmed the feasibility of cardiac SPECT reporter gene imaging with HSV1-tk as a reporter gene and {sup 131}I-FIAU as a reporter probe. The optimal Ad5-tk titer for imaging was 1x10{sup 8} pfu and the optimal imaging time was 1-2 days after gene transfer. Thus, the imaging of HSV1-tk transgene expression in the heart is feasible and may be used for the noninvasive SPECT imaging of gene therapy in cardiac diseases.

  8. Geometric calibration for a SPECT system dedicated to breast imaging

    Institute of Scientific and Technical Information of China (English)

    WU Li-Wei; WEI Long; CAO Xue-Xiang; WANG Lu; HUANG Xian-Chao; CHAI Pei; YUN Ming-Kai; ZHANG Yu-Bao; ZHANG Long; SHAN Bao-Ci

    2012-01-01

    Geometric calibration is critical to the accurate SPECT reconstruction.In this paper,a geometric calibration method was developed for a dedicated breast SPECT system with a tilted parallel beam (TPB)orbit.The acquisition geometry of the breast SPECT was firstly characterized.And then its projection model was established based on the acquisition geometry.Finally,the calibration results were obtained using a nonlinear optimization method that fitted the measured projections to the model.Monte Carlo data of the breast SPECT were used to verify the calibration method.Simulation results showed that the geometric parameters with reasonable accuracy could be obtained by the proposed method.

  9. Brain PET and technetium-99m-ECD SPECT imaging in Lhermitte-Duclos disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, K.; Yasuda, S.; Beppu, T.; Kobayashi, M.; Doi, M.; Kuroda, K.; Ogawa, A. [Dept. of Neurosurgery, Iwate Medical Univ., Morioka (Japan)

    2001-11-01

    Two patients with Lhermitte-Duclos disease were evaluated by brain positron emission tomography (PET) and technetium-99m-ethyl cysteinate dimer ({sup 99m}Tc-ECD) single-photon emission computed tomography (SPECT). In the lesions in both patients, hyperperfusion was detected on cerebral blood flow images obtained by PET, and hyperactivity by standard {sup 99m}Tc-ECD SPECT. Dynamic {sup 99m}Tc-ECD SPECT images demonstrated a plateau of activity in each lesion. These findings suggest that lesions in Lhermitte-Duclos disease have a retention mechanism for {sup 99m}Tc-ECD equivalent to that of normal neural tissue. (orig.)

  10. Development of new peripheral benzodiazepine receptor ligands for SPECT and PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Katsifis, A.; Fookes, C.; Pham, T.; Holmes, T.; Mattner, F.; Berghoffer, P.; Gregoire, M.C.; Loc' h, C.; Greguric, I. [Radiopharmaceuticas Research Institute, ANSTO, Menai, N.S.W. Sydney (Australia); Thominiaux, C.; Boutin, H.; Chauveau, F.; Gregoire, M.C.; Hantraye, Ph.; Tavitain, B.; Dolle, F. [Service Hospitalier Frederic Joliot, CEA/DSV, 91 - Orsay (France); Arlicot, N.; Chalon, S.; Guilloteau, D. [Universite Francois Rabelais, Inserm U619, 37 - Tours (France)

    2008-02-15

    This study aims to demonstrate that a number of radiolabelled ({sup 123}I,{sup 11}C, {sup 18}F) imidazo pyridines, imidazo pyridazines and indolglyoxylamides can be developed as potential tracers for SPECT and PET imaging. (N.C.)

  11. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  12. SPECT and PET imaging in epilepsia; SPECT und PET in der Diagnostik von Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Landvogt, C. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-09-15

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, {sup 11}C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed.

  13. SPECT Imaging of Epilepsy: An Overview and Comparison with F-18 FDG PET

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2011-01-01

    Full Text Available Epilepsy surgery is highly effective in treating refractory epilepsy, but requires accurate presurgical localization of the epileptogenic focus. Briefly, localization of the region of seizure onset traditionally dependents on seizure semiology, scalp EEG recordings and correlation with anatomical imaging modalities such as MRI. The introduction of noninvasive functional neuroimaging methods, including single-photon emission computed tomography (SPECT and positron emission tomography (PET has dramatically changed the method for presurgical epilepsy evaluation. These imaging modalities have become powerful tools for the investigation of brain function and are an essential part of the evaluation of epileptic patients. Of these methods, SPECT has the practical capacity to image blood flow functional changes that occur during seizures in the routine clinical setting. In this review we present the basic principles of epilepsy SPECT and PET imaging. We discuss the properties of the SPECT tracers to be used for this purpose and imaging acquisition protocols as well as the diagnostic performance of SPECT in addition to SPECT image analysis methods. This is followed by a discussion and comparison to F-18 FDG PET acquisition and imaging analysis methods.

  14. A study of partial volume effect on SPECT imaging using myocardial phantom. With HCM (ASH) model myocardial phantom

    Energy Technology Data Exchange (ETDEWEB)

    Onoguchi, Masahisa [Kanazawa Univ. (Japan). School of Medicine

    1997-05-01

    In order to evaluate simultaneously both myocardial perfusion and regional wall motion using ECG-gated myocardial SPECT imaging, correction for the partial volume effect (PVE) should be performed. For the quantitative analysis of myocardial SPECT imaging in patients with hypertrophic cardiomyopathy (HCM), we formed a new phantom simulating HCM with various septal wall thicknesses and estimated PVE using the recovery coefficient (RC). The value of RC in all phantoms increased with increasing thickness of the septal wall reaching a plateau at 25 mm for the cylindrical phantom and 25 mm for the Ep-phantom. Compared with the RC value, the PMMA-phantom had little influence on PVE. Therefore, our results suggested that the count in the septal wall could be underestimated if PVE was corrected by the value obtained for the cylindrical phantom. In conclusion, our new phantom simulating HCM was useful in assessing PVE in the hypertrophic septal wall. (author)

  15. Impact of the Adaptive Statistical Iterative Reconstruction Technique on Radiation Dose and Image Quality in Bone SPECT/CT.

    Science.gov (United States)

    Sibille, Louis; Chambert, Benjamin; Alonso, Sandrine; Barrau, Corinne; D'Estanque, Emmanuel; Al Tabaa, Yassine; Collombier, Laurent; Demattei, Christophe; Kotzki, Pierre-Olivier; Boudousq, Vincent

    2016-07-01

    The purpose of this study was to compare a routine bone SPECT/CT protocol using CT reconstructed with filtered backprojection (FBP) with an optimized protocol using low-dose CT images reconstructed with adaptive statistical iterative reconstruction (ASiR). In this prospective study, enrolled patients underwent bone SPECT/CT, with 1 SPECT acquisition followed by 2 randomized CT acquisitions: FBP CT (FBP; noise index, 25) and ASiR CT (70% ASiR; noise index, 40). The image quality of both attenuation-corrected SPECT and CT images was visually (5-point Likert scale, 2 interpreters) and quantitatively (contrast ratio [CR] and signal-to-noise ratio [SNR]) estimated. The CT dose index volume, dose-length product, and effective dose were compared. Seventy-five patients were enrolled in the study. Quantitative attenuation-corrected SPECT evaluation showed no inferiority for contrast ratio and SNR issued from FBP CT or ASiR CT (respectively, 13.41 ± 7.83 vs. 13.45 ± 7.99 and 2.33 ± 0.83 vs. 2.32 ± 0.84). Qualitative image analysis showed no difference between attenuation-corrected SPECT images issued from FBP CT or ASiR CT for both interpreters (respectively, 3.5 ± 0.6 vs. 3.5 ± 0.6 and 3.6 ± 0.5 vs. 3.6 ± 0.5). Quantitative CT evaluation showed no inferiority for SNR between FBP and ASiR CT images (respectively, 0.93 ± 0.16 and 1.07 ± 0.17). Qualitative image analysis showed no quality difference between FBP and ASiR CT images for both interpreters (respectively, 3.8 ± 0.5 vs. 3.6 ± 0.5 and 4.0 ± 0.1 vs. 4.0 ± 0.2). Mean CT dose index volume, dose-length product, and effective dose for ASiR CT (3.0 ± 2.0 mGy, 148 ± 85 mGy⋅cm, and 2.2 ± 1.3 mSv) were significantly lower than for FBP CT (8.5 ± 3.7 mGy, 365 ± 160 mGy⋅cm, and 5.5 ± 2.4 mSv). The use of 70% ASiR blending in bone SPECT/CT can reduce the CT radiation dose by 60%, with no sacrifice in attenuation-corrected SPECT and CT image quality, compared with the conventional protocol using FBP CT

  16. SPECT and PET imaging in epilepsy; La TEP et la TEMP pour l'etude des epilepsies

    Energy Technology Data Exchange (ETDEWEB)

    Semah, F. [Service Hospitalier Frederic-Joliot, Institut d' Imagerie Biomedicale, Dir. des Sciences du Vivant, Commissariat a l' Energie Atomique, 91 - Orsay (France)

    2007-06-15

    Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging are very useful for the management of patients with medically refractory partial epilepsy. Presurgical evaluation of patients with medically refractory partial epilepsy often included PET imaging using FDG. The use of SPECT in these patients adds some more information and gives the clinicians the possibility of having ictal imaging. Furthermore, PET and SPECT imaging are performed to better understand the pathophysiology of epilepsy. (authors)

  17. Imaging the DNA damage response with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Knight, James C.; Koustoulidou, Sofia; Cornelissen, Bart [University of Oxford, CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford (United Kingdom)

    2017-06-15

    DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins. (orig.)

  18. [Neurological diseases and SPECT--analysis using easy Z-score imaging system (eZIS)].

    Science.gov (United States)

    Matsuda, Hiroshi

    2007-05-01

    We developed a method for automated diagnosis of brain perfusion SPECT and designated this method as an easy Z-score imaging system (eZIS). In this software program, voxel-by-voxel Z-score analysis after voxel normalization to global mean or cerebellar values; Z-score = ( [control mean] - [individual value] )/ (control SD) is performed. These Z-score maps are displayed by overlay on tomographic sections and by projection with averaged Z-score of 14mm thickness to surface rendering of the anatomically standardized MRI template. Anatomical standardization of SPECT images into a stereotactic space is performed using statistical parametric mapping (SPM) 2. This program has an advantage of capability of incorporation of SPM results into automated analysis of Z-score values as a volume of interest (VOI). A specific VOI can be determined by group comparison of SPECT images for patients with a neuropsychiatric disease with those for healthy volunteers using SPM. Even if a center can construct a normal database with good quality comprising a large number of healthy volunteers, other centers have not been able to use this normal database because of differences between the used gamma cameras, collimators and physical correction algorithms. Since SPECT exhibits greater variations in image quality among different centers than PET, conversion of SPECT images may be necessary for sharing a normal database. In this eZIS software, we incorporated a newly developed program for making it possible to share a normal database in SPECT studies. A Hoffman 3-dimensional brain phantom experiment was conducted to determine systematic differences between SPECT scanners. SPECT images for the brain phantom were obtained using two different scanners. Dividing these two phantom images after anatomical standardization by SPM created a 3-dimensional conversion map. The use of a conversion map obtained from SPECT images of the same phantom provided very similar SPECT data despite extreme differences

  19. Impact of SPECT/CT in imaging inflammation and infection; Wertigkeit der SPECT/CT fuer die nuklearmedizinische Entzuendungsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R. [Klinikum Bremen-Mitte, Bremen (Germany). Klinik fuer Nuklearmedizin; Kuwert, T. [Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik

    2011-03-15

    Even today infection remains a significant concern, and the diagnosis and localization of infectious foci is an important health issue. As an established infection-imaging modality, nuclear medicine plays a vital health-care role in the diagnosis and subsequent effective treatment of this condition. Several techniques in nuclear medicine significantly aid infection diagnosis, including triple-phase bone scanning, {sup 18}F-FDG-PET and imaging with {sup 111}In-oxine-, {sup 99m}Tc-HMPAO-labeled leukocytes. Each radiopharmaceutical has specific advantages and disadvantages that makes it suitable to diagnose different infectious processes (e.g., soft-tissue sepsis, inflammatory bowel disease, osteomyelitis, occult fever, fever of unknown origin, and infections commonly found in immuno-compromised patients). However, their clinical applications may be limited by the relatively low spatial resolution and the lack of anatomic landmarks of a highly specific tracer with only scarce background uptake to use as a framework for orientation. Anatomic imaging modalities such as CT provide a high-quality assessment of structural abnormalities related to infection, but these structural abnormalities may be unspecific. Furthermore, to detect infection before anatomical changes are present, functional imaging could have some advantages over anatomical imaging. Scintigraphic studies have demonstrated high sensitivity and specificity to an infectious process. Diagnosis and precise delineation of infection may be challenging in certain clinical scenarios, rendering decisions concerning further patient management difficult. The SPECT/CT-technology combines the acquisition of SPECT and CT data with the same imaging device enabling perfect overlay of anatomical and functional images. SPECT/CT imaging data has been shown to be beneficial for many clinical settings such as indeterminate findings in bone scintigraphy, orthopaedic disorders, endocrine, and neuroendocrine tumors. Therefore

  20. Tests of scanning model observers for myocardial SPECT imaging

    Science.gov (United States)

    Gifford, H. C.; Pretorius, P. H.; Brankov, J. G.

    2009-02-01

    Many researchers have tested and applied human-model observers as part of their evaluations of reconstruction methods for SPECT perfusion imaging. However, these model observers have generally been limited to signal-known- exactly (SKE) detection tasks. Our objective is to formulate and test scanning model observers that emulate humans in detection-localization tasks involving perfusion defects. Herein, we compare several models based on the channelized nonprewhitening (CNPW) observer. Simulated Tc-99m images of the heart with and without defects were created using a mathematical anthropomorphic phantom. Reconstructions were performed with an iterative algorithm and postsmoothed with a 3D Gaussian filter. Human and model-observer studies were conducted to assess the optimal number of iterations and the smoothing level of the filter. The human-observer study was a multiple-alternative forced-choice (MAFC) study with five defects. The CNPW observer performed the MAFC study, but also performed an SKE-but-variable (SKEV) study and a localization ROC (LROC) study. A separate LROC study applied an observer based on models of human search in mammograms. The amount of prior knowledge about the possible defects differed for these four model-observer studies. The trend was towards improved agreement with the human observers as prior knowledge decreased.

  1. SPECT Imaging of patients with parkinsonian syndromes; SPECT-Untersuchungen bei Patienten mit Parkinson-Syndromen

    Energy Technology Data Exchange (ETDEWEB)

    Tatsch, K. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Univ. Muenchen-Grosshardern (Germany)

    2002-09-01

    Stimulated by the commercial availability of specific radioligands in vivo characterization of the dopaminergic system with single-photon emission tomography (SPECT) has gained clinical importance in the diagnostic work-up of patiens with parkinsonism. Currently interest is focused on two aspects of the dopaminergic neurotransmission: Cocaine analogues bind to the presynaptically located striatal dopamine transporter and herewith allow to assess the structural integrity of the presynaptic terminals which are the striatal projections of neurons originating in the substantia nigra. For functional assessment of the postsynaptic aspect of the dopaminergic synapse binding of specific receptor antagonists to postsynaptically located D2 receptors is analyzed. Depending on the clinical question and the pathology expected both methods - either each one alone or a combination of both - provide valuable diagnostic information. Currently those SPECT methods are applied to confirm or exclude a Parkinsonian syndrome, in the early and differential diagnosis of Parkinsonian syndromes, to assess disease severity and measure disease progression, and to monitor the effects of therapy e.g. with potentially neuroprotective drugs. This paper offers a comprehensive summary of the SPECT results reported in the literature dealing with the mentioned clinical applications. (orig.) [German] Stimuliert durch die kommerzielle Verfuegbarkeit spezifischer Radioliganden gewinnt die In-vivo-Charakterisierung des dopaminergen Systems mit der single-photon-emissions-computertomographie (SPECT) bei der diagnostischen Abklaerung von Parkinson-Syndromen zunehmend an Bedeutung. Hierbei stehen zwei Aspekte der dopaminergen Neurotransmission im Blickpunkt des Interesses: Die Bindung von Kokainanaloga an den praesynaptischen Dopamintransporter laesst Rueckschluesse auf die Integritaet von Neuronen der Substantia nigra mit ihren zum Corpus striatum projizierenden Axonen (praesynaptische Nervenfasern) zu. Die

  2. Interference from high gall bladder uptake in Technetium-99m tetrofosmin myocardial perfusion SPECT imaging and improvement

    Energy Technology Data Exchange (ETDEWEB)

    Hisano, Harutaka; Urabe, Konomu; Hiroki, Akinori; Abe, Kazuyuki; Yoshikai, Tomonori [Saga Medical School (Japan). Hospital

    2000-08-01

    The purpose of this study was to estimate the influence of high gall bladder uptake in Technetium-99m myocardial SPECT imaging and to establish improvements of artifacts for better image quality and quantitativeness. In the phantom studies, artifactual defects were observed in the posterior, inferior, and anterior walls when the myocardium/gall bladder radioactive ratio increased (more than 1:1), and they were markedly demonstrated when the ratio increased further (more than 1:2). Marked artifactual defects were also observed when setting gall bladder activity in the myocardial reconstruction area. Although relative activity in myocardial SPECT images increased when the gall bladder was masked, counts in defect areas yielded by artifact did not increase, indicating that quantitativeness was not improved. Masking of gall bladder activity on the projection data was necessary for improvement of image quality and quantity. We examined countermeasures for promoting bile excretion and the ''right lateral bending position'' in the clinical studies. Radioactivity was decreased 60.2% in the gall bladder and 49.7% in the hepatic bile duct by excreting bile. These counts were increased 50.91% in the apex and 43.55% in the inferior wall by the right lateral bending position. We concluded that we could obtain more accurate image quality and quantitativeness by either promoting bile excretion or using the right lateral bending position. (author)

  3. 99mTc-ECD brain SPECT imaging in patients with acquired immunodeficiency syndromes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to investigate the changes of regional cerebral blood flow(rCBF) in patients with acquired immunodeficiency syndromes (AIDS), 99mTc-ECDbrain SPECT imaging was performed in 5 patients with AIDS and 16 sex and agematched normal controls, and the rCBF percentages compared to the cerebellum werecalculated using a semi-quantitative processing software. Hypoperfusions in the rightand left frontal, temporal, porietal lobe, basal ganglia and left thalamus were seen in1 patient with dementia. Hypoperfusions in the right and left frontal and temporallobe were seen in 4 asymptomatic patients. The rCBF in the right and left frontal.temporal, porietal lobe, basal ganglia and thalamus, front and pons were decreasedsignificantly in patients with AIDS than those of the control subjects (p <0.005). Itis concluded that there exists reduced cortico-subcortical rCBF in AIDS patients.``

  4. Comparison of heterogeneity quantification algorithms for brain SPECT perfusion images

    OpenAIRE

    Modzelewski, Romain; Janvresse, Elise; De La Rue, Thierry; Vera, Pierre

    2012-01-01

    Background Several algorithms from the literature were compared with the original random walk (RW) algorithm for brain perfusion heterogeneity quantification purposes. Algorithms are compared on a set of 210 brain single photon emission computed tomography (SPECT) simulations and 40 patient exams. Methods Five algorithms were tested on numerical phantoms. The numerical anthropomorphic Zubal head phantom was used to generate 42 (6 × 7) different brain SPECT simulations. Seven diffuse cortical ...

  5. Evaluation of crossed cerebellar diaschisis in 30 patients with major cerebral artery occlusion by means of quantitative I-123 IMP SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Nobuhiko; Toyama, Keiji; Arbab, A.S.; Arai, Takao; Nukui, Hideaki [Yamanashi Medical Univ., Tamaho (Japan); Koizumi, Kiyoshi

    2001-12-01

    Quantitative crossed cerebellar diaschisis (CCD) and the correlation with a reduction in supratentorial regional cerebral blood flow (rCBF) and cerebrovascular reserve capacity (CVR) were investigated in clinically stable patients with major cerebral artery occlusion by the iodine-123-N-isopropyl-p-iodoamphetamine (I-123 IMP) single photon emission computed tomography (SPECT) method. Thirty patients with major cerebral artery occlusion underwent SPECT by the I-123 IMP autoradiographic method. Regional CBF was measured in the cerebral hemisphere, frontal and parietal lobes, temporo-parietal lobe, and cerebellum both at rest and after administration of acetazolamide. Eighteen of 30 patients (60%) had CCD. CCD was significantly related to magnetic resonance imaging evidence of infarction. Quantitative CCD was 17% and the CVR in the cerebellum was preserved in patients with CCD. There was a significant difference in CBF and CVR between the affected and normal sides in all regions of interest in the patients without CCD [CBF (ml/100 g/min): hemisphere (H), normal side (N): 31.4{+-}6.8, affected side (A): 27.5{+-}7.4; p<0.05. CVR: H, N: 0.56{+-}0.38, A: 0.42{+-}0.18; p<0.01]. CCD is common in patients with major cerebral artery occlusion, and quantitative I-123 IMP SPECT is helpful in detecting CCD in clinically stable patients with occlusion of major cerebral arteries. (author)

  6. Quantitation of renal uptake of technetium-99m DMSA using SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Groshar, D.; Frankel, A.; Iosilevsky, G.; Israel, O.; Moskovitz, B.; Levin, D.R.; Front, D.

    1989-02-01

    Quantitative single photon emission computed tomography (SPECT) methodology based on calibration with kidney phantoms has been applied for the assessment of renal uptake of (/sup 99m/Tc)DMSA in 25 normals; 16 patients with a single normal kidney; 30 patients with unilateral nephropathy; and 17 patients with bilateral nephropathy. An excellent correlation (r = 0.99, s.e.e. = 152) was found between SPECT measured concentration and actual concentration in kidney phantoms. Kidney uptake at 6 hr after injection in normals was 20.0% +/- 4.6% for the left and 20.8% +/- 4.4% for the right. Patients with unilateral nephropathy had a statistically significant (p less than 0.001) low uptake in the diseased kidney (7.0% +/- 4.7%), but the contralateral kidney uptake did not differ from the normal group (20.0% +/- 7.0%). The method was especially useful in patients with bilateral nephropathy. Significantly (p less than 0.001) decreased uptake was found in both kidneys (5.1% +/- 3.4% for the left and 6.7% +/- 4.2% for the right). The total kidney uptake (right and left) in this group showed to be inversely correlated (r = 0.83) with serum creatinine. The uptake of (/sup 99m/Tc)DMSA in single normal kidney was higher (p less than 0.001) than in a normal kidney (34.7% +/- 11.9%), however, it was lower than the total absolute uptake (RT + LT = 41.5% +/- 8.8%) in the normal group. The results indicate that SPECT is a reliable and reproducible technique to quantitate absolute kidney uptake of (/sup 99m/Tc)DMSA.

  7. Attenuation Correction in SPECT during Image Reconstruction using an Inverse Monte Carlo Method: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Shahla Ahmadi

    2011-09-01

    Full Text Available Introduction: The main goal of SPECT imaging is to determine activity distribution inside the organs of the body. However, due to photon attenuation, it is almost impossible to do a quantitative study. In this paper, we suggest a mathematical relationship between activity distribution and its corresponding projections using a transfer matrix. Monte Carlo simulation was used to find a precise transfer matrix including the effects of photon attenuation.  Material and Methods: List mode output of the SIMIND Monte Carlo simulator was used to find the relationship between activity distribution and pixel values in projections. The MLEM iterative reconstruction method was then used to reconstruct the activity distribution from the projections. Attenuation-free projections were also simulated. Reconstructed images from these projections were used as reference images. Our suggested attenuation correction method was evaluated using three different phantom configurations: uniform activity and uniform attenuation phantom, non-uniform activity and non-uniform attenuation phantom, and NCAT torso phantom. The mean pixel values and fits between profiles were used as quantitative parameters. Results: Images free from attenuation-related artifacts were reconstructed by our suggested method. A significant increase in pixel values was found after attenuation correction. Better fits between profiles of the corrected and reference images were also found for all phantom configurations.  Discussion and Conclusion: Using a Monte Carlo method, it is possible to find the most precise relationship between activity distribution and its projections. Therefore, it is possible to create mathematical projections that include the effects of attenuation. This helps to have a more realistic comparison between mathematical and real projections, which is a necessary step for image reconstruction using MLEM. This results in images with much better quantitative accuracy at a cost of

  8. Can DCE-MRI explain the heterogeneity in radiopeptide uptake imaged by SPECT in a pancreatic neuroendocrine tumor model?

    Directory of Open Access Journals (Sweden)

    Karin Bol

    Full Text Available Although efficient delivery and distribution of treatment agents over the whole tumor is essential for successful tumor treatment, the distribution of most of these agents cannot be visualized. However, with single-photon emission computed tomography (SPECT, both delivery and uptake of radiolabeled peptides can be visualized in a neuroendocrine tumor model overexpressing somatostatin receptors. A heterogeneous peptide uptake is often observed in these tumors. We hypothesized that peptide distribution in the tumor is spatially related to tumor perfusion, vessel density and permeability, as imaged and quantified by DCE-MRI in a neuroendocrine tumor model. Four subcutaneous CA20948 tumor-bearing Lewis rats were injected with the somatostatin-analog (111In-DTPA-Octreotide (50 MBq. SPECT-CT and MRI scans were acquired and MRI was spatially registered to SPECT-CT. DCE-MRI was analyzed using semi-quantitative and quantitative methods. Correlation between SPECT and DCE-MRI was investigated with 1 Spearman's rank correlation coefficient; 2 SPECT uptake values grouped into deciles with corresponding median DCE-MRI parametric values and vice versa; and 3 linear regression analysis for median parameter values in combined datasets. In all tumors, areas with low peptide uptake correlated with low perfusion/density/ /permeability for all DCE-MRI-derived parameters. Combining all datasets, highest linear regression was found between peptide uptake and semi-quantitative parameters (R(2>0.7. The average correlation coefficient between SPECT and DCE-MRI-derived parameters ranged from 0.52-0.56 (p<0.05 for parameters primarily associated with exchange between blood and extracellular extravascular space. For these parameters a linear relation with peptide uptake was observed. In conclusion, the 'exchange-related' DCE-MRI-derived parameters seemed to predict peptide uptake better than the 'contrast amount- related' parameters. Consequently, fast and efficient

  9. SPECT/CT 90Y-Bremsstrahlung images for dosimetry during therapy

    OpenAIRE

    Fabbri, C.; Sarti, G.; Agostini, M; Di Dia, A; Paganelli, G

    2008-01-01

    Background: the characteristics of 90Y, suitable for therapy, are denoted by the lack of γ-emission. Alternative methods, using analogues labelled with 111In or 86Y, are generally applied to image 90Y-conjugates, with some inevitable drawbacks. New generation SPECT/CT image systems offer improved Bremsstrahlung images. The intent of this brief communication is to show that high quality 90Y-Bremsstrahlung SPECT-CT images can be obtained, allowing the biodistribution of pure β-emitter therapeut...

  10. Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Michiel A. de; Boogers, Mark J.; Veltman, Caroline E. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); The Interuniversity Cardiology Institute of The Netherlands, Utrecht (Netherlands); El-Naggar, Heba M.; Bax, Jeroen J.; Delgado, Victoria [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Broersen, Alexander; Kitslaar, Pieter H.; Dijkstra, Jouke [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Kroft, Lucia J. [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Younis, Imad Al [Leiden University Medical Center, Department of Nuclear Medicine, Leiden (Netherlands); Reiber, Johan H. [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Medis medical imaging systems B.V., Leiden (Netherlands); Scholte, Arthur J. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands)

    2013-08-15

    Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT). Included in the study were 40 patients (mean age 58.2 {+-} 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS {>=}2) on gated myocardial perfusion SPECT. Myocardial ischaemia was seen in 25 patients (62.5 %) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95 % CI 2.41-24.7, p < 0.001, and OR 1.07, 95 % CI 1.00-1.45, p = 0.032, respectively) after correcting for clinical variables and visually assessed significant stenosis. The addition of quantitatively assessed significant stenosis ({chi} {sup 2} = 20.7) and lesion length ({chi} {sup 2} = 26.0) to the clinical variables and the visual assessment ({chi} {sup 2} = 5.9) had incremental value in the association with myocardial ischaemia. Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have

  11. Imaging lung function in mice using SPECT/CT and per-voxel analysis.

    Directory of Open Access Journals (Sweden)

    Brian N Jobse

    Full Text Available Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q single photon emission computed tomography (SPECT with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with (99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03 in 12 week old animals and a mean log(V/Q ratio of -0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies.

  12. Proprieties of quantitative evaluation of defect size by myocardial SPECT. Evaluation using myocardial phantom

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Jiro; Nakatsuka, Teruo; Fujioka, Tadao; Kashima, Kenji; Matsumura, Yasushi; Yamamoto, Kazuhiro

    1987-09-01

    The accuracy to quantify the size and the extent of Thallium-201 (Tl) uptake of defect zone by Tl single photon emission computed tomogram (SPECT) was evaluated, using myocardial phantom. Long-axis SPECT image was devided into 6 slices from apex to base, and radians were projected from the center to define 32 myocardial secters, 11.25 degrees each. Then the maximum count in each secter was plotted on each radian (maximum count circumferential profile analysis:mcCPA), and was normalized to the maximum count for the whole heart (%Tl-uptake). In this way, circumferential profile curve was obtained, and normal value in each secter of myocardial phantom with defects was analysed and the ratio of segments, %Tl-uptake of which was below the normal value, was defined as % defect volume (%DV). The difference between the value of %Tl-uptake of defect zone and the normal value was difined as defect severity, and the average of defect severity was defined as mean defect severity (mDS). We prepared myocardial phantoms with a variety of area of defect, and with a variety of thickness of defect, and acquired these SPECT images. %DV and mDS were calculated from those images and compared with real area and thickess of defect. In the phantom with given thickness of defect, %DV was closely correlated to area of defect (r > 0.976), but also correlated to thickness of defect. In the phantom with given area of defect, mDS was closely correlated to thickness of defect (r = 0.988), and also correlated to area of defect. In conclusion, %DV and mDS were good indices of the defect size and the extent of Tl-uptake respectively, but it is necessary to consider their influence on each other.

  13. μSPECT: image evaluation using collimator type pinhole. Preliminary results; μSPECT: avaliacao da imagem utilizando colimador tipo pinhole: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Miady, Leandro Sunao [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sao Jose do Rio Preto, SP (Brazil); Squair, Peterson Lima [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Pozzo, Lorena, E-mail: lorena.pozzo@ipen.br [Universidade de Sao Paulo (USP), SP (Brazil)

    2015-04-15

    At scintigraphy, the method of obtaining tomographic image is called SPECT (single photon emission computed tomography), as well as the equipment able to acquire such tomographic images involving small animals can be called μSPECT. Although the equipment is directed to the acquisition of three-dimensional images, a need exists in certain studies to obtain two-dimensional images. This study aims to verify and analyze the two-dimensional image magnification factor for later application to the study of {sup 131}I dosimetry in mice. The experimental results allowed to analyze and compare the magnification factors for each parameter used for future experiments. (author)

  14. Filters in 2D and 3D Cardiac SPECT Image Processing

    OpenAIRE

    Maria Lyra; Agapi Ploussi; Maritina Rouchota; Stella Synefia

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the de...

  15. Quantification of GABAA receptors in the rat brain with [(123)I]Iomazenil SPECT from factor analysis-denoised images.

    Science.gov (United States)

    Tsartsalis, Stergios; Moulin-Sallanon, Marcelle; Dumas, Noé; Tournier, Benjamin B; Ghezzi, Catherine; Charnay, Yves; Ginovart, Nathalie; Millet, Philippe

    2014-02-01

    In vivo imaging of GABAA receptors is essential for the comprehension of psychiatric disorders in which the GABAergic system is implicated. Small animal SPECT provides a modality for in vivo imaging of the GABAergic system in rodents using [(123)I]Iomazenil, an antagonist of the GABAA receptor. The goal of this work is to describe and evaluate different quantitative reference tissue methods that enable reliable binding potential (BP) estimations in the rat brain to be obtained. Five male Sprague-Dawley rats were used for [(123)I]Iomazenil brain SPECT scans. Binding parameters were obtained with a one-tissue compartment model (1TC), a constrained two-tissue compartment model (2TCc), the two-step Simplified Reference Tissue Model (SRTM2), Logan graphical analysis and analysis of delayed-activity images. In addition, we employed factor analysis (FA) to deal with noise in data. BPND obtained with SRTM2, Logan graphical analysis and delayed-activity analysis was highly correlated with BPF values obtained with 2TCc (r=0.954 and 0.945 respectively, p<0.0001). Equally significant correlations were found between values obtained with 2TCc and SRTM2 in raw and FA-denoised images (r=0.961 and 0.909 respectively, p<0.0001). Scans of at least 100min are required to obtain stable BPND values from raw images while scans of only 70min are sufficient from FA-denoised images. These images are also associated with significantly lower standard errors of 2TCc and SRTM2 BP values. Reference tissue methods such as SRTM2 and Logan graphical analysis can provide equally reliable BPND values from rat brain [(123)I]Iomazenil SPECT. Acquisitions, however, can be much less time-consuming either with analysis of delayed activity obtained from a 20-minute scan 50min after tracer injection or with FA-denoising of images. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cerebral infarction on 99mTc-MDP SPECT/CT imaging.

    Science.gov (United States)

    Guo, Jia; Hu, Shuang; Wang, Haitao; Kuang, Anren

    2013-11-01

    A 70-year-old man with lung cancer underwent whole-body MDP bone scintigraphy to evaluate bone metastases that showed marked tracer uptake in the right side of the head, suggestive of skull metastasis. SPECT/CT imaging was performed for further evaluation. The SPECT images demonstrated increased MDP activity in the region of the brain perfused by the right middle cerebral artery. On CT images, there was a large hypoattenuation area corresponding to elevated MDP accumulation. At the same day, magnetic resonance angiography of the brain revealed occlusion of the right middle cerebral artery.

  17. Radiolabeled Peptide Scaffolds for PET/SPECT - Optical in Vivo Imaging of Carbohydrate-Lectin Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Susan

    2014-09-30

    The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because of their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently

  18. Imaging the neurobiological substrate of atypical depression by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Salmaso, Dario [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Nardo, Davide [University of Rome La Sapienza, Department of Psychology, Rome (Italy); Jonsson, Cathrine; Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Gardner, Ann [Karolinska University Hospital Huddinge, Karolinska Institutet, Department of Clinical Neuroscience, Section of Psychiatry, Stockholm (Sweden)

    2007-01-15

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in {sup 99m}Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  19. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Bowsher, James; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Cheng, Lin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-11-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the

  20. SPECT Imaging as a Tool for Testing and Challenging Assumptions About Transport in Porous Media

    Science.gov (United States)

    Moysey, S. M.; DeVol, T. A.; Tornai, M. P.

    2014-12-01

    Medical imaging has shown promise for unraveling the influence of physical, chemical and biological processes on contaminant transport. Micro-CT scans, for instance, are increasingly utilized to image the pore-scale structure of rocks and soils, which can subsequently be used within modeling studies. A disadvantage of micro-CT, however, is that this imaging modality does not directly detect contaminants. In contrast, Single Photon Emission Computed Tomography (SPECT) can provide the three-dimensional distribution of gamma emitting materials and is thus ideal for imaging the transport of radionuclides. SPECT is of particular interest as a tool for both directly imaging the behavior of long-lived radionuclides of interest, e.g., 99Tc and 137Cs, as well as monitoring shorter-lived isotopes as in-situ tracers of flow and biogeochemical processes. We demonstrate the potential of combining CT and SPECT imaging to improve the mechanistic understanding of flow and transport processes within a heterogeneous porous medium. In the experiment, a column was packed with 0.2mm glass beads with a cylindrical zone of 2mm glass beads embedded near the outlet; this region could be readily identified within the CT images. The column was injected with a pulse of NaCl solution spiked with 99mTcO4- and monitored using SPECT while aliquots of the effluent were used to analyze the breakthrough of both solutes. The breakthrough curves could be approximately replicated by a one-dimensional transport model, but the SPECT data revealed that the tracers migrated around the inclusion of larger beads. Although the zone of large-diameter beads was expected to act as a preferential pathway, the observed behavior could only be replicated in numerical transport simulations if this region was treated as a low-permeability zone relative to the rest of the column. This simple experiment demonstrates the potential of SPECT for investigating flow and transport phenomena within a porous medium.

  1. Murine cardiac images obtained with focusing pinhole SPECT are barely influenced by extra-cardiac activity

    Science.gov (United States)

    Branderhorst, Woutjan; van der Have, Frans; Vastenhouw, Brendan; Viergever, Max A.; Beekman, Freek J.

    2012-02-01

    Ultra-high-resolution SPECT images can be obtained with focused multipinhole collimators. Here we investigate the influence of unwanted high tracer uptake outside the scan volume on reconstructed tracer distributions inside the scan volume, for 99mTc-tetrofosmin myocardial perfusion scanning in mice. Simulated projections of a digital mouse phantom (MOBY) in a focusing multipinhole SPECT system (U-SPECT-II, MILabs, The Netherlands) were generated. With this system differently sized user-defined scan volumes can be selected, by translating the animal in 3D through the focusing collimators. Scan volume selections were set to (i) a minimal volume containing just the heart, acquired without translating the animal during scanning, (ii) a slightly larger scan volume as is typically applied for the heart, requiring only small XYZ translations during scanning, (iii) same as (ii), but extended further transaxially, and (iv) same as (ii), but extended transaxially to cover the full thorax width (gold standard). Despite an overall negative bias that is significant for the minimal scan volume, all selected volumes resulted in visually similar images. Quantitative differences in the reconstructed myocardium between gold standard and the results from the smaller scan volume selections were small; the 17 standardized myocardial segments of a bull's eye plot, normalized to the myocardial mean of the gold standard, deviated on average 6.0%, 2.5% and 1.9% for respectively the minimal, the typical and the extended scan volume, while maximum absolute deviations were respectively 18.6%, 9.0% and 5.2%. Averaged over ten low-count noisy simulations, the mean absolute deviations were respectively 7.9%, 3.2% and 1.9%. In low-count noisy simulations, the mean and maximum absolute deviations for the minimal scan volume could be reduced to respectively 4.2% and 12.5% by performing a short survey scan of the exterior activity and focusing the remaining scan time at the organ of interest. We

  2. Progress in BazookaSPECT: High-Resolution, Dynamic Scintigraphy with Large-Area Imagers.

    Science.gov (United States)

    Miller, Brian W; Barber, H Bradford; Barrett, Harrison H; Liu, Zhonglin; Nagarkar, Vivek V; Furenlid, Lars R

    2012-08-12

    We present recent progress in BazookaSPECT, a high-resolution, photon-counting gamma-ray detector. It is a new class of scintillation detector that combines columnar scintillators, image intensifiers, and CCD (charge-coupled device) or CMOS (complementary metal-oxide semiconductors) sensors for high-resolution imaging. A key feature of the BazookaSPECT paradigm is the capability to easily design custom detectors in terms of the desired intrinsic detector resolution and event detection rate. This capability is possible because scintillation light is optically amplified by the image intensifier prior to being imaging onto the CCD/CMOS sensor, thereby allowing practically any consumer-grade CCD/CMOS sensor to be used for gamma-ray imaging. Recent efforts have been made to increase the detector area by incorporating fiber-optic tapers between the scintillator and image intensifier, resulting in a 16× increase in detector area. These large-area BazookaSPECT detectors can be used for full-body imaging and we present preliminary results of their use as dynamic scintigraphy imagers for mice and rats. Also, we discuss ongoing and future developments in BazookaSPECT and the improved event-detection rate capability that is achieved using Graphics Processing Units (GPUs), multi-core processors, and new high-speed, USB 3.0 CMOS cameras.

  3. [Quantitative evaluation of 123I-FP-CIT SPECT: validation of a semiautomated method].

    Science.gov (United States)

    Lorenzo Bosquet, C; Cuberas Borrós, G; Miquel Rodríguez, F; Caresia, P; Aguadé Bruix, S; Castell Conesa, J

    2005-01-01

    To assess the utility of a quantification of the 123I-FP-CIT uptake by the definition of some reference values, normal range values and interobserver variation. Fifty patients with a 123I-FP-CIT SPECT: 25 patients had a pathological SPECT with the diagnosis of Parkinson's disease and the remaining had a qualitative normal SPET, with the diagnosis of 14 drug-induced Parkinsonism and 11 with psychogenic Parkinsonism. In the transversal slices, the best central slice that showed the nuclei of the base best was selected and standard ROIs (Region Of Interest) were applied. Specific (caudate and putamen) versus non specific (occipital) and laterality ratios were calculated. A normal statistical analysis for independent quantitative samples was used (mean, standard deviation and range) as well as variation coefficient and correlation coefficient of two observers and the 10th and 90th percentile. The variation coefficient interobserver was 3.24-5.61 and the correlation coefficient was 0.89-0.99. Cut-off values between both populations were established at 2.10 in the right putamen and at 2.05 in the left. Cut-off values definition in caudate were not assessable due to overlapping of ratios of both populations. This quantification method is highly reproducible. It makes it possible to obtain reference values and to define normal range.

  4. Regularized image reconstruction algorithms for dual-isotope myocardial perfusion SPECT (MPS) imaging using a cross-tracer prior.

    Science.gov (United States)

    He, Xin; Cheng, Lishui; Fessler, Jeffrey A; Frey, Eric C

    2011-06-01

    In simultaneous dual-isotope myocardial perfusion SPECT (MPS) imaging, data are simultaneously acquired to determine the distributions of two radioactive isotopes. The goal of this work was to develop penalized maximum likelihood (PML) algorithms for a novel cross-tracer prior that exploits the fact that the two images reconstructed from simultaneous dual-isotope MPS projection data are perfectly registered in space. We first formulated the simultaneous dual-isotope MPS reconstruction problem as a joint estimation problem. A cross-tracer prior that couples voxel values on both images was then proposed. We developed an iterative algorithm to reconstruct the MPS images that converges to the maximum a posteriori solution for this prior based on separable surrogate functions. To accelerate the convergence, we developed a fast algorithm for the cross-tracer prior based on the complete data OS-EM (COSEM) framework. The proposed algorithm was compared qualitatively and quantitatively to a single-tracer version of the prior that did not include the cross-tracer term. Quantitative evaluations included comparisons of mean and standard deviation images as well as assessment of image fidelity using the mean square error. We also evaluated the cross tracer prior using a three-class observer study with respect to the three-class MPS diagnostic task, i.e., classifying patients as having either no defect, reversible defect, or fixed defects. For this study, a comparison with conventional ordered subsets-expectation maximization (OS-EM) reconstruction with postfiltering was performed. The comparisons to the single-tracer prior demonstrated similar resolution for areas of the image with large intensity changes and reduced noise in uniform regions. The cross-tracer prior was also superior to the single-tracer version in terms of restoring image fidelity. Results of the three-class observer study showed that the proposed cross-tracer prior and the convergent algorithms improved the

  5. Semi-quantitative analysis of post-transarterial radioembolization {sup 90}Y Microsphere position emission tomography combined with computed tomography (PET/CT) images in advance liver malignancy: Comparison with {sup 99m}Tc macroaggregated albumin (MAA) single photon emission computed tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Seung Hong; Kim, Sung Eun; Cho, Jae Hyuk; Park, Ju Kyung; Kim, Yun Hwan; Choe, Jae Gol [Korea University Anam Hospital, Seoul (Korea, Republic of); Eo, Jae Seon; Park, So Yeon; Lee, Eun Sub [Dept. of Nuclear Medicine, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2016-03-15

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ({sup 99}mTc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ({sup 90}Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent {sup 90}Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone {sup 99}mTc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of {sup 90}Y microspheres, the patients underwent posttreatment {sup 90}Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in {sup 90}Y PET/CT (TNR-yp) and {sup 99}mTc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The 99mTc MAA SPECT showed a good correlation with {sup 90}Y PET/CT in TNR values, suggesting that {sup 99}mTc MAA can be used as an adequate pretreatment evaluation method. However, the {sup 99}mTc MAA SPECT image consistently shows lower TNR values compared to 90Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using {sup 99}mTc MAA SPECT. Considering that

  6. Determination of Three-Dimensional Left Ventricle Motion to Analyze Ventricular Dyssyncrony in SPECT Images

    DEFF Research Database (Denmark)

    de Sá Rebelo, Marina; Aarre, Ann Kirstine Hummelgaard; Clemmesen, Karen-Louise;

    2010-01-01

    A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). The method was applied to 3D gated-SPECT images...... sets from normal subjects and patients with severe Idiopathic Heart Failure, before and after CRT. Color coded visualization maps representing the LV regional motion showed significant difference between patients and normal subjects. Moreover, they indicated a difference between the two groups...

  7. Simultaneous SPECT imaging of multi-targets to assist in identifying hepatic lesions

    Science.gov (United States)

    Guo, Zhide; Gao, Mengna; Zhang, Deliang; Li, Yesen; Song, Manli; Zhuang, Rongqiang; Su, Xinhui; Chen, Guibing; Liu, Ting; Liu, Pingguo; Wu, Hua; Du, Jin; Zhang, Xianzhong

    2016-01-01

    Molecular imaging technique is an attractive tool to detect liver disease at early stage. This study aims to develop a simultaneous dual-isotope single photon emission computed tomography (SPECT)/CT imaging method to assist diagnosis of hepatic tumor and liver fibrosis. Animal models of liver fibrosis and orthotopic human hepatocellular carcinoma (HCC) were established. The tracers of 131I-NGA and 99mTc-3P-RGD2 were selected to target asialoglycoprotein receptor (ASGPR) on the hepatocytes and integrin αvβ3 receptor in tumor or fibrotic liver, respectively. SPECT imaging and biodistribution study were carried out to verify the feasibility and superiority. As expected, 99mTc-3P-RGD2 had the ability to evaluate liver fibrosis and detect tumor lesions. 131I-NGA showed that it was effective in assessing the anatomy and function of the liver. In synchronized dual-isotope SPECT/CT imaging, clear fusion images can be got within 30 minutes for diagnosing liver fibrosis and liver cancer. This new developed imaging approach enables the acquisition of different physiological information for diagnosing liver fibrosis, liver cancer and evaluating residual functional liver volume simultaneously. So synchronized dual-isotope SPECT/CT imaging with 99mTc-3P-RGD2 and 131I-NGA is an effective approach to detect liver disease, especially liver fibrosis and liver cancer. PMID:27377130

  8. Quantitative Comparison of Y-90 and Ge-68 PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sangkeun; Kwak, Shin Hye; Lee, Jeong A; Song, Han Kyeol; Kang, Joo Hyun; Lim, Sang Moo; KIm, Kyeong Min [Korea Institute of Raiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Su Young [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2014-05-15

    The purpose of this study was to assess statistical characteristics and to improve count rate of image for enhancing Y-90 image quality by using non-parametric bootstrap method. The results showed that Y-90 PET image can be improved using non-parametric bootstrap method. PET data was able to be improved using non-parametric bootstrap method and it was verified with showing improved prompts rate. Y-90 PET image quality was improved and bias indicated that the bootstrapped image was more similar to the gold standard than other images. The non-parametric bootstrap method will be useful tool for enhancing Y-90 PET image and it will be expected to reduce time for acquisition and to elevate performance for diagnosis and treatment. Yttrium-90 (Y-90) radioembolization is one of the treatment methods unrespectable stage of hepatocellular carcinoma (HCC) and metastatic colon cancer to the liver. However, Y-90 radioembolization is a catheter-based therapy that delivers internal radiation to tumors, it results in greater radiation exposure to the tumors than using external radiation. Also, unlike other current therapies for the treatment of unresectable liver tumors, Y-90 radioembolization is much less often associated with toxicities such as abdominal pain, fever, nausea, and vomiting. Therefore Y-90 has been received much interest and studied by many researchers. Imaging of Y-90 has been conducted using most commonly gamma camera but quantitative PET imaging is required due to low sensitivity and resolution. Y-90 imaging is generally performed with SPECT by Bremsstrahlung photons. Unfortunately, the low image quality due to the nature of the Bremsstrahlung photon limits the quantitative accuracy of Y-90 SPECT. To overcome this limitation in SPECT imaging, Y-90 PET has been suggested as an alternative.

  9. Quantitative Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Ted A.G. Steemers

    2008-09-01

    Full Text Available Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared. By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms.

  10. Segmentation of the Striatum from MR Brain Images to Calculate the -TRODAT-1 Binding Ratio in SPECT Images

    Directory of Open Access Journals (Sweden)

    Ching-Fen Jiang

    2013-01-01

    Full Text Available Quantification of regional -TRODAT-1 binding ratio in the striatum regions in SPECT images is essential for differential diagnosis between Alzheimer's and Parkinson's diseases. Defining the region of the striatum in the SPECT image is the first step toward success in the quantification of the TRODAT-1 binding ratio. However, because SPECT images reveal insufficient information regarding the anatomical structure of the brain, correct delineation of the striatum directly from the SPECT image is almost impossible. We present a method integrating the active contour model and the hybrid registration technique to extract regions from MR T1-weighted images and map them into the corresponding SPECT images. Results from three normal subjects suggest that the segmentation accuracy using the proposed method was compatible with the expert decision but has a higher efficiency and reproducibility than manual delineation. The binding ratio derived by this method correlated well (R2 = 0.76 with those values calculated by commercial software, suggesting the feasibility of the proposed method.

  11. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation

    Science.gov (United States)

    Cot, A.; Sempau, J.; Pareto, D.; Bullich, S.; Pavía, J.; Calviño, F.; Ros, D.

    2004-07-01

    The iterative reconstruction algorithms employed in brain single-photon emission computed tomography (SPECT) allow some quantitative parameters of the image to be improved. These algorithms require accurate modelling of the so-called point spread function (PSF). Nowadays, most in vivo neurotransmitter SPECT studies employ pharmaceuticals radiolabelled with 123I. In addition to an intense line at 159 keV, the decay scheme of this radioisotope includes some higher energy gammas which may have a non-negligible contribution to the PSF. The aim of this work is to study this contribution for two low-energy high-resolution collimator configurations, namely, the parallel and the fan beam. The transport of radiation through the material system is simulated with the Monte Carlo code PENELOPE. We have developed a main program that deals with the intricacies associated with tracking photon trajectories through the geometry of the collimator and detection systems. The simulated PSFs are partly validated with a set of experimental measurements that use the 511 keV annihilation photons emitted by a 18F source. Sensitivity and spatial resolution have been studied, showing that a significant fraction of the detection events in the energy window centred at 159 keV (up to approximately 49% for the parallel collimator) are originated by higher energy gamma rays, which contribute to the spatial profile of the PSF mostly outside the 'geometrical' region dominated by the low-energy photons. Therefore, these high-energy counts are to be considered as noise, a fact that should be taken into account when modelling PSFs for reconstruction algorithms. We also show that the fan beam collimator gives higher signal-to-noise ratios than the parallel collimator for all the source positions analysed.

  12. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Fonseca Lemos de [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mejia, Jorge [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Carvalho, Eduardo Elias Vieira de; Lataro, Renata Maria; Frassetto, Sarita Nasbine [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Fazan, Rubens Jr.; Salgado, Hélio Cesar [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Galvis-Alonso, Orfa Yineth [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Simões, Marcus Vinícius, E-mail: msimoes@fmrp.usp.br [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-07-15

    Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. To determine the accuracy of this system for quantification of myocardial infarct area in rats. Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents.

  13. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    Energy Technology Data Exchange (ETDEWEB)

    Angelis, Georgios I., E-mail: georgios.angelis@sydney.edu.au; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R. [Faculty of Health Sciences and Brain and Mind Research Institute, The University of Sydney, Sydney, NSW 2006 (Australia); Fulton, Roger R. [Faculty of Health Sciences and Brain and Mind Research Institute, The University of Sydney, Sydney, NSW 2006 (Australia); School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Department of Medical Physics, Westmead Hospital, Sydney, NSW 2145 (Australia)

    2014-09-15

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  14. Quantitative luminescence imaging system

    Science.gov (United States)

    Batishko, C. R.; Stahl, K. A.; Fecht, B. A.

    The goal of the Measurement of Chemiluminescence project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  15. Comparison of inferior myocardial defect between planar and SPECT image of {sup 123}I-metaiodobenzylguanidine cardiac scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hideki; Momose, Mitsuru; Kashikura, Kenichi; Matsumoto, Nobusuke; Saito, Katsumi; Asano, Ryuta; Hosoda, Saichi; Kusakabe, Kiyoko [Tokyo Women`s Medical Coll. (Japan)

    1995-02-01

    Discordant findings of inferior MIBG defect between SPECT and planar images were sometimes observed in the clinical studies. In this study, we compared inferior myocardial findings between planar and SPECT image of {sup 123}I-metaiodobenzyl-guanidine (MIBG) cardiac scintigraphy in 29 patients. All patients were estimated as normal in anterior accumulation of MIBG. The patients were divided into 3 groups according to the visual finding of inferior defect in the planar and SPECT image; normal group (normal inferior accumulation of MIBG both in the planar and SPECT image, N=10), discordance group (inferior MIBG defect was only observed in the SPECT image, but was not observed in the planar image, N=7), inferior defect group (inferior MIBG defect was observed both in the planar and SPECT image, N=12). Inferior/anterior count ratio of SPECT and planar image were 0.96{+-}0.11 vs. 0.97{+-}0.05 in normal group, 0.59{+-}0.21 vs. 0.99{+-}0.13 in discordance group, 0.46{+-}0.13 vs. 0.82{+-}0.04 in inferior defect group. Liver/heart count ratio was significantly higher in the discordance group (2.07{+-}0.49) than that in the normal (1.14{+-}0.15) and inferior defect group (1.45{+-}0.39). In phantom study, it has been reported that increased liver accumulation of MIBG causes artifactual inferior defect adjacent to the liver. These data indicate that increased liver/heart count ratio may cause artifactual inferior defect on MIBG SPECT image in the clinical studies. Planar image evaluation may be helpful to distinct the artifactual inferior defect on SPECT image. (author).

  16. Comparison of diagnostic sensitivity and quantitative indices between {sup 68}Ga-DOTATOC PET and {sup 111}In-pentetreotide SPECT/CT in neuroendocrine tumors: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Ki; Paeng, Jin Chul; Shin, Chan Soo; Lee, Soo Jin; Jang, Jin Young; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June Key; Kang, Keon Wook [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-12-15

    In-pentetreotide has been used for neuroendocrine tumors expressing somatostatin receptors. Recently, {sup 68}Ga-DOTATOC PET has been used with the advantage of high image quality. In this study, we compared quantitative indices between {sup 111}In-pentetreotide SPECT/CT and {sup 68}Ga-DOTATOC PET/CT. Thirteen patients diagnosed with neuroendocrine tumors were prospectively recruited. Patients underwent {sup 111}In-pentetreotide scans with SPECT/CT and {sup 68}Ga-DOTATOC PET/CT before treatment. The number and location of lesions were analyzed on both imaging techniques to compare lesion detectability. Additionally, the maximal uptake count of each lesion and mean uptake count of the lungs were measured on both imagings, and target-to-normal lung ratios (TNR) were calculated as quantitative indices. Among 13 patients, 10 exhibited lesions with increased uptake on {sup 111}In-pentetreotide SPECT/CT and/or {sup 68}Ga-DOTATOC PET/CT. Scans with SPECT/CT detected 19 lesions, all of which were also detected on PET/CT. Moreover, 16 additional lesions were detected on PET/CT (6 in the liver, 9 in the pancreas and 1 in the spleen). PET/CT exhibited a significantly higher sensitivity than SPECT/CT (100 % vs. 54 %, P < 0.001). TNR was significantly higher on PET/CT than on SPECT/CT (99.9 ± 84.3 vs. 71.1 ± 114.9, P < 0.001) in spite of a significant correlation (r = 0.692, P = 0.01). Ga-DOTATOC PET/CT has a higher diagnostic sensitivity than {sup 111}In-pentetreotide scans with SPECT/CT. The TNR on PET/CT is higher than that of SPECT/CT, which also suggests the higher sensitivity of PET/CT. {sup 111}In-pentetreotide SPECT/CT should be used carefully if it is stead of {sup 68}Ga-DOTATOC PET/CT.

  17. A Silicon SPECT System for Molecular Imaging of the Mouse Brain

    OpenAIRE

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S.; Durko, Heather L.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 102...

  18. Classification decision tree algorithm assisting in diagnosing solitary pulmonary nodule by SPECT/CT fusion imaging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To develop a classification tree algorithm to improve diagnostic performances of 99mTc-MIBI SPECT/CT fusion imaging in differentiating solitary pulmonary nodules(SPNs).Methods Forty-four SPNs,including 30 malignant cases and 14 benign ones that were eventually pathologically identified,were included in this prospective study.All patients received 99Tcm-MIBI SPECT/CT scanning at an early stage and a delayed stage before operation.Thirty predictor variables,including 11 clinical variables,4 variable...

  19. A Silicon SPECT System for Molecular Imaging of the Mouse Brain

    OpenAIRE

    Shokouhi, Sepideh; Fritz, Mark A.; McDonald, Benjamin S.; Durko, Heather L.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 102...

  20. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    Science.gov (United States)

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  1. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  2. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-12-31

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  3. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study

    Science.gov (United States)

    van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard

    2016-08-01

    Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.

  4. Effect of wall thickness of left ventricle on {sup 201}Tl myocardial SPECT images. Myocardial phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Koto, Masanobu; Kawase, Osami [Kobe Univ. (Japan). Hospital; Namura, Hiroyuki; Yamasaki, Katsuhito; Kono, Michio

    1996-07-01

    {sup 201}Tl myocardial SPECT is known for better sensitivity, specificity, and accuracy than planar images in detecting coronary artery disease and diagnosing myocardial viability. SPECT images arc also superior to planar images in diagnostic sensitivity and anatomical orientation. However, as limitation of the spatial resolution of the machine, we often encounter poor SPECT plower image quality in patients with decreased wall thickness. To test the accuracy of SPECT images in patients with marked thinning of the left ventricular wall, as occurs in dilated cardiomyopathy, we performed a experimental study using myocardial phantom with 7 mm wall thickness. Tomographic image of the phantom images were rather heterogeneous, though no artificial defect was located Dilated cardiomyopathy is thought to be characterized by patchy defects in the left ventricle. Careful attention should be given to elucidating myocardial perfusion in patients with a thin left ventricle wall, as there are technical limitations in addition to clinical features. (author)

  5. Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice.

    Science.gov (United States)

    Wu, Max C; Hasegawa, Bruce H; Dae, Michael W

    2002-12-01

    The increasing use of transgenic mice as models of human physiology and disease has motivated the development of dedicated in vivo imaging systems for anatomic and functional characterization of mice as an adjunct to or a replacement for established ex vivo techniques. We have developed a pinhole single photon emission computed tomography (SPECT) system for high resolution imaging of mice with cardiovascular imaging as the primary application. In this work, we characterize the system performance through phantom studies. The spatial resolution and sensitivity were measured from images of a line source and point source, respectively, and were reported for a range of object-to-pinhole distances and pinhole diameters. Tomographic images of a uniform cylindrical phantom, Defrise phantom, and grid phantom were used to characterize the image uniformity and spatial linearity. The uniform phantom image did not contain any ring or reconstruction artifacts, but blurring in the axial direction was evident in the Defrise phantom images. The grid phantom images demonstrated excellent spatial linearity. A novel phantom modeling perfusion of the left ventricle of a mouse was designed and built with perfusion defects of varying sizes to evaluate the system performance for myocardial perfusion imaging of mice. The defect volumes were measured from the pinhole SPECT images and correlated to the actual defect volumes calculated according to geometric formulas. Linear regression analysis produced a correlation coefficient of r = 0.995 (p defect size in mice using pinhole SPECT. We have performed phantom studies to characterize the spatial resolution, sensitivity, image uniformity, and spatial linearity of the pinhole SPECT system. Measurement of the perfusion defect size is a valuable phenotypic assessment and will be useful for hypothesis testing in murine models of cardiovascular disease.

  6. Simplifying volumes-of-interest (VOIs) definition in quantitative SPECT: Beyond manual definition of 3D whole-organ VOIs.

    Science.gov (United States)

    Vicente, Esther M; Lodge, Martin A; Rowe, Steven P; Wahl, Richard L; Frey, Eric C

    2017-05-01

    We investigated the feasibility of using simpler methods than manual whole-organ volume-of-interest (VOI) definition to estimate the organ activity concentration in single photon emission computed tomography (SPECT) in cases where the activity in the organ can be assumed to be uniformly distributed on the scale of the voxel size. In particular, we investigated an anatomic region-of-interest (ROI) defined in a single transaxial slice, and a single sphere placed inside the organ boundaries. The evaluation was carried out using Monte Carlo simulations based on patient indium (111) In pentetreotide SPECT and computed tomography (CT) images. We modeled constant activity concentrations in each organ, validating this assumption by comparing the distribution of voxel values inside the organ VOIs of the simulated data with the patient data. We simulated projection data corresponding to 100, 50, and 25% of the clinical count level to study the effects of noise level due to shortened acquisition time. Images were reconstructed using a previously validated quantitative SPECT reconstruction method. The evaluation was performed in terms of the accuracy and precision of the activity concentration estimates. The results demonstrated that the non-uniform image intensity observed in the reconstructed images in the organs with normal uptake was consistent with uniform activity concentration in the organs on the scale of the voxel size; observed non-uniformities in image intensity were due to a combination of partial-volume effects at the boundaries of the organ, artifacts in the reconstructed image due to collimator-detector response compensation, and noise. Using an ROI defined in a single transaxial slice produced similar biases compared to the three-dimensional (3D) whole-organ VOIs, provided that the transaxial slice was near the central plane of the organ and that the pixels from the organ boundaries were not included in the ROI. Although this slice method was sensitive to noise

  7. Ventricular function following coronary artery bypass grafting: comparison between Gated SPECT and cardiac magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Claudio Tinoco [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil). Servico de Medicina Nuclear; Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Pessoa, Maria Carolina Pinheiro [Pro-Echo Hospital Samaritano, Rio de Janeiro, RJ (Brazil); Vasconcelos, Paulo Pontes [Centro de Diagnostico por Imagens (CDPI), Rio de Janeiro, RJ (Brazil); Oliveira Junior, Amarino Carvalho [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil). Servico de Radiologia; Dohmann, Hans Fernando Rocha [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil). Servico de Radiologia; Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Reis, Adair Gomes dos [Nuclear Diagnosticos, SP (Brazil); Fonseca, Lea Mirian Barbosa da [Pro-Echo Hospital Samaritano, Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2009-04-15

    Background: The assessment of left ventricular function may be impaired by the abnormal interventricular septal motion frequently found after coronary artery bypass grafting (CABG). Studies on the validation of gated SPECT as a tool for the assessment of left ventricular function in this patient group are scarce. Objective: We investigated the agreement and correlation between left ventricular ejection fraction (LVEF), end-diastolic volume (EDV), and end-systolic volume (ESV) as obtained using electrocardiogram-gated myocardial perfusion scintigraphy (gated SPECT) and cardiac magnetic resonance imaging in 20 patients undergoing coronary artery bypass grafting. Methods: Correlation was measured using Spearman's correlation coefficient ({rho}). Agreement was assessed using Bland-Altman analysis. Results: A good correlation was found between gated SPECT and cardiac magnetic resonance imaging in patients after CABG with regard to left ventricular ejection fraction ({rho} = 0.85; p =0.0001), moderate correlation for end-diastolic volume ({rho} = 0.51; p = 0.02), and non-significant correlation for end-diastolic volume ({rho} = 0.13; p = 0.5). Agreement ranges for LVEF, ESV and EDV were: -20% to 12%; -38 to 54 ml and; -96 to 100 ml, respectively. Conclusion: A reliable correlation was found for left ventricular ejection fraction as obtained by gated SPECT and magnetic resonance imaging in patients undergoing CABG. For ventricular volumes, however, the correlation is not adequate. (author)

  8. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    Science.gov (United States)

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  9. A restraint-free small animal SPECT imaging system with motion tracking

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.; Kross, B.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels while retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.

  10. Nontraumatic femoral head necrosis. Classification of bone scintigraphic findings and diagnostic value of SPECT following planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Satoshi; Uchida, Yoshitaka; Anzai, Yoshimi; Uno, Kimiichi; Arimizu, Noboru (Chiba Univ. (Japan). School of Medicine)

    1994-09-01

    This study was conducted to determine bone scintigraphic findings in nontraumatic femoral head avascular necrosis and diagnostic value of SPECT imaging following a conventional planar imaging. Forty-three femoral heads in twenty-six cases with idiopathic femoral head necrosis (n=2), systemic lupus erythematosus (n=22), aplastic anemia (n=1), and renal transplantation (n=1) were studied. The diagnosis for femoral head necrosis was based on magnetic resonance imaging as well as other diagnostic studies in all cases. Scintigraphic findings of planar and SPECT images were classified into six categories: normal (N); cold or decrease (C); partial increase with cold or decrease (PH+C); ring-like increase with a cold center (RH+C); partial increase (PH); diffuse and/or irregular increase (DH). Avascular necrosis was confirmed in twenty-four femoral heads, in which planar and SPECT images showed scintigraphic findings of N (n=3, 2), C (n=1, 3), PH+C (n=2, 8), RH+C (n=2, 3), PH (n=9, 2), and DH (n=7, 6), respectively. Femoral heads without avascular necrosis demonstrated planar and SPECT findings of N (n=16, 12), C (n=0, 6), and DH (n=3, 1), respectively. When considering C, PH+C, and RH+C as diagnostic findings for avascular necrosis, sensitivities of planar and SPECT images were 21% and 58%, and specificities were 100% and 68%, respectively. In nineteen femoral heads with normal planar findings (N), SPECT correctly identified avascular necrosis in two femoral heads and misidentified six normal femoral heads as avascular necrosis. In nineteen femoral heads with nondiagnostic abnormalities (PH, DH), SPECT correctly identified avascular necrosis in seven femoral heads and showed no false positive. Diagnostic planar findings in five femoral heads were concordant with SPECT diagnosis. These results indicate that SPECT imaging is most valuable when planar images show nondiagnostic abnormalities based on the proposed classification of scintigraphic findings. (author).

  11. A comparative study of the quality of SPECT images obtained by {sup 123}I-IMP, {sup 99m}Tc-HMPAO and {sup 99m}Tc-ECD

    Energy Technology Data Exchange (ETDEWEB)

    Odano, Ikuo; Takahashi, Makoto; Noguchi, Eikichi; Ohtaki, Hiro; Kasahara, Toshifumi; Shibaki, Mitsurou; Hatano, Masayoshi [Niigata Univ. (Japan). School of Medicine; Ohkubo, Masaki

    1997-03-01

    The purpose of this study was to comparatively evaluate the quality of SPECT images for the mapping of rCBF using three tracers, {sup 123}I-IMP, {sup 99m}Tc-HMPAO and {sup 99m}Tc-ECD. We performed three SPECT studies on seven patients with various cerebral diseases under the same conditions. An effect of Lassen`s correction on SPECT images obtained by HMPAO was also evaluated. The same irregular regions of interest were placed on the four transaxial SPECT images. To quantitatively evaluate the pattern of tracer uptake and image contrast, the uptake ratio, regional count/mean count of the cerebrum, and its coefficient variations (CV) were defined, respectively. The order of the value of CV was HMPAO with correction>IMP>ECD>HMPAO without correction. HMPAO with correction showed the best image contrast, but HMPAO without correction was the worst. Uptake ratios of ECD and HMPAO with correction were decreased in the brain stem and thalamus in comparison with those of IMP. Both uptake ratios of ECD and HMPAO without correction were increased in the occipital cortex. IMP provides high quality SPECT images. Images obtained by HMPAO should be modified by Lassen`s correction to increase image contrast. ECD or HMPAO should not be used to evaluate patients with spinocerebellar degeneration. (author)

  12. Quantitative Tc-99m myocardial perfusion SPECT with 180[degree] acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Ye, J.

    1992-01-01

    Myocardial perfusion single photon emission computed tomography (SPECT) images using 180[degrees] acquisition are degraded by the effects of scatter, nonuniform attenuation and system geometric resolution variation with source depth. Using a 180[degrees] scan orbit which is closer to the heart may provide higher image resolution, signal-to-noise ratio and defect-to-normal contrast than using a 360[degrees] orbit, however, significant object shape distortion has been observed in the 180[degrees] reconstructed images. A method has been developed that combines filtered back-projection (FBP) with iterative attenuation and three-dimensional (3-D) resolution compensation for Tc-99m myocardial perfusion imaging, data. The non-uniform attenuation coefficient distribution is obtained by a quick transmission scan using a flood source and segmentation of the reconstructed transmission image to define areas of significantly different attenuation. A priori attenuation coefficients are assigned to the areas to form the attenuation distribution map. The 3-D correction is accomplished by including both the non-uniform attenuation and depth-dependent resolution variation in the reprojection procedure of an iterative correction algorithm. The method was evaluated with both simulated and experimental data using clinical protocols with a cardiac phantom. A significant improvement in image resolution was observed with line source images was reduced from approximately 10 mm to 7.l5 mm after 7 iterations of the 3-D correction. The contrast of two perfusion defects to the surrounding normally perfused regions was significantly improved with the correction. Significant improvement in uniformity at different positions in the 100% perfused areas in the myocardium was also observed. The normalized root squared error (NRSE) of one transaxial image from the original source distribution in the simulation study was reduced from 0.8 to 0.2 after 5 iterations of the 3-D correction.

  13. Quantitative multimodality imaging in cancer research and therapy.

    Science.gov (United States)

    Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad

    2014-11-01

    Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

  14. 5-HT radioligands for human brain imaging with PET and SPECT

    DEFF Research Database (Denmark)

    Paterson, Louise M; Kornum, Birgitte R; Nutt, David J

    2013-01-01

    for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists...... to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.......The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used...

  15. System calibration and image reconstruction for a new small-animal SPECT system

    Science.gov (United States)

    Chen, Yi-Chun

    A novel small-animal SPECT imager, FastSPECT II, was recently developed at the Center for Gamma-Ray Imaging. FastSPECT II consists of two rings of eight modular scintillation cameras and list-mode data-acquisition electronics that enable stationary and dynamic imaging studies. The instrument is equipped with exchangeable aperture assemblies and adjustable camera positions for selections of magnifications, pinhole sizes, and fields of view (FOVs). The purpose of SPECT imaging is to recover the radiotracer distribution in the object from the measured image data. Accurate knowledge of the imaging system matrix (referred to as H) is essential for image reconstruction. To assure that all of the system physics is contained in the matrix, experimental calibration methods for the individual cameras and the whole imaging system were developed and carefully performed. The average spatial resolution over the FOV of FastSPECT II in its low-magnification (2.4X) configuration is around 2.4 mm, computed from the Fourier crosstalk matrix. The system sensitivity measured with a 99mTc point source at the center of the FOV is about 267 cps/MBq. The system detectability was evaluated by computing the ideal-observer performance on SKE/BKE (signal-known-exactly/background-known-exactly) detection tasks. To reduce the system-calibration time and achieve finer reconstruction grids, two schemes for interpolating H were implemented and compared: these are centroid interpolation with Gaussian fitting and Fourier interpolation. Reconstructed phantom and mouse-cardiac images demonstrated the effectiveness of the H-matrix interpolation. Tomographic reconstruction can be formulated as a linear inverse problem and solved using statistical-estimation techniques. Several iterative reconstruction algorithms were introduced, including maximum-likelihood expectation-maximization (ML-EM) and its ordered-subsets (OS) version, and some least-squares (LS) and weighted-least-squares (WLS) algorithms such

  16. Prognostic Value of Normal Perfusion but Impaired Left Ventricular Function in the Diabetic Heart on Quantitative Gated Myocardial Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwanjeong; Choi, Sehun; Han, Yeonhee [Research Institute of Chonbuk National Univ. Medical School and Hospitial, Jeonju (Korea, Republic of); Lee, Dong Soo; Lee, Hoyoung; Chung, Junekey [Seoul National Univ., Seoul (Korea, Republic of)

    2013-09-15

    This study aimed at identifying the predictive parameters on quantitative gated myocardial perfusion single-photon emission computed tomography (QG-SPECT) in diabetic patients with normal perfusion but impaired function. Methods Among the 533 consecutive diabetic patients, 379 patients with normal perfusion on rest Tl-201/dipyridamole-stress Tc-{sup 99m} sestamibi Gated SPECT were enrolled. Patients were grouped into those with normal post-stress left ventricular function (Group I) and those with impaired function (EF <50 or impaired regional wall motion, Group II). We investigated cardiac events and cause of death by chart review and telephone interview. Survival analysis and Cox proportional hazard model analysis were performed. Between the Group I and II, cardiac events as well as chest pain symptoms, smoking, diabetic complications were significantly different (P<0.05). On survival analysis, event free survival rate in Group II was significantly lower than in Group I (P=0.016). In univariate Cox proportional hazard analysis on overall cardiac event, Group (II over I), diabetic nephropathy, summed motion score (SMS), summed systolic thickening score (STS), numbers of abnormal segmental wall motion and systolic thickening predicted more cardiac events (P<0.05). Multivariate analysis showed that STS was the only independent predictor cardiac event. The functional parameter, especially summed systolic thickening score on QG-SPECT had prognostic values, despite normal perfusion, in predicting cardiac events in diabetic patients, and QG-SPECT provides clinically useful risk stratification in diabetic patients with normal perfusion.

  17. Rest delayed images on {sup 99m}Tc-MIBI myocardial SPECT as a noninvasive screen for the diagnosis of vasospastic angina pectoris

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Soichi; Yamaguchi, Hiroyuki; Takayama, Shin [Yamagata Prefectural Shinjo Hospital (Japan); Kurabe, Atsushi; Heito, Takayuki [Yamagata Prefectural Nihonkai Hospital, Sakata (Japan)

    2002-05-01

    Diagnostic usefulness of {sup 99m}Tc-hexakis-2-methoxy isobutyl isonitrile (MIBI) myocardial SPECT at rest was examined in 39 cases of coronary vasospastic angina pectoris who were diagnosed by a positive reaction to ergonovine provocation. SPECT was performed 45 minutes (early image) and 3 hours (delayed image) after the intravenous injection of approximately 600 MBq of MIBI. Decrease in accumulation was ranked by four defect scores (0: normal; 1: slight decrease; 2: moderate decrease; 3: severe decrease) and the total defect score was evaluated semiquantitatively. The washout rate between the normal area and the spasm area was also evaluated quantitatively using bull's eye. As a result, 15 cases (15/39; 38.4%) showed decreased accumulation in the early image and 27 cases (27/39; 69.2%) showed decreased accumulation in the delayed image. All of the cases which showed decreased accumulation in the early image had decreased accumulation in the delayed image as well. In 6 cases (6/34; 17.6%) showed ST wave changes during exercise ECG and 16 cases (16/34: 47%) showed decreased accumulation in the exercise myocardial SPECT. The washout rate of MIBI in the decreased accumulation area was significantly higher than that of the normal area. Of 32 ergonovine induced vasospastic area, 23 areas (72%) exhibited decreased accumulation in the delayed image for the same area. Decreased accumulation in the delayed image in MIBI was due to the enhanced washout, which, in turn, indicated declined retention of MIBI by mitochondrial membrane. In coronary vasospastic angina pectoris, spasm induced ischemia was thought to have an effect on the mitochondria. This study suggested that even with a normal exercise ECG and exercise myocardial SPECT, there's a strong possibility of coronary vasospastic angina pectoris if a decreased accumulation was found in the delayed image in the MIBI myocardial SPECT at rest. Hence, in diagnosing coronary vasospastic angina pectoris, the delayed

  18. SPECT myocardial perfusion imaging as an adjunct to coronary calcium score for the detection of hemodynamically significant coronary artery stenosis

    Directory of Open Access Journals (Sweden)

    von Ziegler Franz

    2012-12-01

    Full Text Available Abstract Background Coronary artery calcifications (CAC are markers of coronary atherosclerosis, but do not correlate well with stenosis severity. This study intended to evaluate clinical situations where a combined approach of coronary calcium scoring (CS and nuclear stress test (SPECT-MPI is useful for the detection of relevant CAD. Methods Patients with clinical indication for invasive coronary angiography (ICA were included into our study during 08/2005-09/2008. At first all patients underwent CS procedure as part of the study protocol performed by either using a multidetector computed tomography (CT scanner or a dual-source CT imager. CAC were automatically defined by dedicated software and the Agatston score was semi-automatically calculated. A stress-rest SPECT-MPI study was performed afterwards and scintigraphic images were evaluated quantitatively. Then all patients underwent ICA. Thereby significant CAD was defined as luminal stenosis ≥75% in quantitative coronary analysis (QCA in ≥1 epicardial vessel. To compare data lacking Gaussian distribution an unpaired Wilcoxon-Test (Mann–Whitney was used. Otherwise a Students t-test for unpaired samples was applied. Calculations were considered to be significant at a p-value of Results We consecutively included 351 symptomatic patients (mean age: 61.2±12.3 years; range: 18–94 years; male: n=240 with a mean Agatston score of 258.5±512.2 (range: 0–4214. ICA verified exclusion of significant CAD in 66/67 (98.5% patients without CAC. CAC was detected in remaining 284 patients. In 132/284 patients (46.5% with CS>0 significant CAD was confirmed by ICA, and excluded in 152/284 (53.5% patients. Sensitivity for CAD detection by CS alone was calculated as 99.2%, specificity was 30.3%, and negative predictive value was 98.5%. An additional SPECT in patients with CS>0 increased specificity to 80.9% while reducing sensitivity to 87.9%. Diagnostic accuracy was 84.2%. Conclusions In patients

  19. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays.

    Science.gov (United States)

    Kim, Hyunki; Furenlid, Lars R; Crawford, Michael J; Wilson, Donald W; Barber, H Bradford; Peterson, Todd E; Hunter, William C J; Liu, Zhonglin; Woolfenden, James M; Barrett, Harrison H

    2006-02-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm x 2.7 cm x -0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 x 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 x 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 x 10(-4) with the energy window of +/-10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT.

  20. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  1. Creation and evaluation of complementary composite three-dimensional image in various brain diseases. An application of three-dimensional brain SPECT image and three-dimensional CT image

    Energy Technology Data Exchange (ETDEWEB)

    Seiki, Yoshikatsu; Shibata, Iekado; Mito, Toshiaki; Sugo, Nobuo [Toho Univ., Tokyo (Japan). School of Medicine

    2000-09-01

    The purpose of this study was to develop 3D composite images for use in functional and anatomical evaluation of various cerebral pathologies. Imaging studies were performed in normal volunteers, patients with hydrocephalus and patients with brain tumor (meningioma and metastatic tumor) using a three-detector SPECT system (Prism 3000) and helical CT scanner (Xvigor). {sup 123}I-IMP was used in normal volunteers and patients with hydrocephalus, and {sup 201}TLCL in patients with brain tumor. An Application Visualization System-Medical Viewer (AVS-MV) was used on a workstation (Titan 2) to generate 3D images. A new program was developed by synthesizing surface rendering and volume rendering techniques. The clinical effects of shunt operations were successfully evaluated in patients with hydrocephalus by means of translucent 3D images of the deep brain. Changes in the hypoperfusion area around the cerebral ventricle were compared with morphological changes in the cerebral ventricle on CT. In addition to the information concerning the characteristics of brain tumors and surrounding edemas, hemodynamic changes and changeable hypoperfusion areas around the tumors were visualized on 3D composite CT and SPECT images. A new method of generating 3D composite images of CT and SPECT was developed by combining graphic data from different systems on the same workstation. Complementary 3D composite images facilitated quantitative analysis of brain volume and functional analysis in various brain diseases. (author)

  2. Predictive value of dopamine transporter SPECT imaging with [(123)I]PE2I in patients with subtle parkinsonian symptoms

    DEFF Research Database (Denmark)

    Ziebell, Morten; Andersen, Birgitte B; Thomsen, Gerda

    2012-01-01

    To examine the diagnostic sensitivity and specificity of dopamine transporter SPECT imaging with a highly dopamine transporter selective radioligand. The study included consecutively enrolled, drug-naive patients with an average short history of parkinsonian motor symptoms, referred for diagnosti...

  3. Cerebral infarction mimicking brain tumor on Tc-99m tetrofosmin brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon [College of Medicine, Dongguk Univ., Gyeongju (Korea, Republic of); Zeon, Seok Kil; Won, Kyoung Sook [School of Medicine, Keimyung Univ., Daegu (Korea, Republic of)

    2004-06-01

    A 43-year-old man was presented with persistent headache for two weeks. T2 weighted MR imaging showed high signal intensity with surrounding edema in the left frontal lobe. These findings were considered with intracranial tumor such as glioma or metastasis. Tc-99m tetrofosmin SPECT showed focal radiotracer accumulation in the left frontal lobe. The operative specimen contained cerebral infarction with organizing leptomeningeal hematoma by pathologist. Another 73-year-old man was hospitalized for chronic headache. Initial CT showed ill-defined hypodensity with mass effect in the right parietal lobe. Tc-99m tetrofosmin SPECT showed focal radiotracer uptake in the right parietal lobe. These findings were considered with low-grade glioma or infarction. Follow-up CT after 5 months showed slightly decreased in size of low density in the right parietal lobe, and cerebral infarction is more likely than others. Tc-99m tetrofosmin has been proposed as a cardiotracer of myocardial perfusion imaging and an oncotropic radiotracer. Tc-99 tetrofosmin SPECT image provides a better attractive alternative agent than TI-201 as a tumor-imaging agent, with characteristics such as high-energy flux, short half-life, favorable biodistribution, dosimetry and lower background radioactivity. We have keep in mind on the analysis of Tc-99m tetrofosmin imaging when cerebral infarction is being differentiated from brain tumor.

  4. Clinical utility and reliability of sup(81m)Kr SPECT images applied to posterior circulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Takashi; Kikuchi, Haruhiko; Karasawa, Jun (National Cardiovascular Center, Suita, Osaka (Japan))

    1984-08-01

    The instrument used in this study has a sensitivity of 28,000 counts/mCi/cm/sup 3/ for sup(99m)Tc and a spatial resolution of approximately 20mm full width at a half-maximum. The tomographic images were obtained by the continuous infusion of sup(81m)Kr at the base of the ascending aorta. Material was subsequently studied in 49 cases that met the conditions of: 1) obstructive vertebrobasilar system lesions (8 cases), 2) no ischemic cerebrovascular diseases (10), or 3) ischemic cerebrovascular disorders in anterior circulation (31). The reproducibility, as studied in 20 cases, was satisfactory. 6 cases were compared with a stable Xe CT CBF map that had regional depressions similar to those of the sup(81m)Kr SPECT images. In the 2nd group, 8 of the 10 cases showed a mild laterality on cerebellar perfusion images obtained by SPECT, as did 29 of the 31 in the 3rd group; among them, 2 cases with a recently completed stroke revealed a marked depression in the ipsilateral cerebellar hemisphere to the side of the hemiplegia. Cases of the lst group showed generally depressed perfusion images of the brain stem or cerebellum, and the low-density areas of X-ray CT were comparable to the lower perfusional regions on SPECT. The authors concluded that posterior perfusion images obtained by sup(81m)Kr SPECT were affected by occlusive vertebrobasilar-system lesions as well as by carotid-system lesions and cerebellar functions, and that this method for evaluating hemodynamics will be of much more clinical use in repeated studies to demonstrate the changes in posterior ciculation in course or by some loadings with subclinical characteristics, for this paper includes the first report on cerebellar functional images, though it is restricted by the low-spatial resolution from defining the architecture of the posterior fossa in detail.

  5. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT : 2015 revision

    NARCIS (Netherlands)

    Verberne, Hein J.; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R.; Cuocolo, Alberto; van Eck-Smit, Berthe L. F.; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A.; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J. H. A.; Slart, Riemer H. J. A.; Tragardh, Elin; de Wit, Tim C.; Hesse, Birger

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 201

  6. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT

    DEFF Research Database (Denmark)

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos;

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated ...

  7. Assessment of left ventricular performance by ECG-gated SPECT. Comparison with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tadamura, Eiji; Inubushi, Masayuki; Kubo, Shigeto; Matsumoto, Keiichi; Yokoyama, Hiroshi; Fujita, Toru; Konishi, Junji [Kyoto Univ. (Japan). Faculty of Medicine

    1999-10-01

    In the measurement of a left ventricular volume, MIBI-QGS was compared with MRI. Because it became clear by the experiment using phantom that a volume calculated with QGS was smaller than the actual volume, data of clinical study were corrected. Subjects were 20 patients with coronary artery disease. Fourteen patients had anamnesis of myocardial infarct. ECG-gated SPECT was performed one hour after intravenous injection of MIBI (600 MBq) in rest. End diastolic volume (EDV), end systolic volume (ESV) and ejection fraction (EF) were calculated using QGS. Cine-MR image was obtained by using MR system of 1.5 Tesla within 1 week after SPECT. A condition was as follows; segmented k-space gradient echo with view sharing, TR=11 ms, TE=1.4 ms, flip angle 20 degree, field of view 32 cm, matrix 256 x 196, 8 lines per segment. LVEF, ESV and EF were analysed by Bland-Altman method, and the difference between MIBI-gated-SPECT and MRI was no problem. Horizontal dislocation image and vertical major axis dislocation image were provided. Minor axis crossing images of 10-12 slice were also filmed in order to cover all left ventricles. As a result, availability of MIBI-QGS became clear. Some factors which produces the measurement error are examined. (K.H.)

  8. SPECT/CT imaging of the lumbar spine in chronic low back pain: a case report

    Directory of Open Access Journals (Sweden)

    Carstensen Michael H

    2011-01-01

    Full Text Available Abstract Mechanical low back pain is a common indication for Nuclear Medicine imaging. Whole-body bone scan is a very sensitive but poorly specific study for the detection of metabolic bone abnormalities. The accurate localisation of metabolically active bone disease is often difficult in 2D imaging but single photon emission computed tomography/computed tomography (SPECT/CT allows accurate diagnosis and anatomic localisation of osteoblastic and osteolytic lesions in 3D imaging. We present a clinical case of a patient referred for evaluation of chronic lower back pain with no history of trauma, spinal surgery, or cancer. Planar whole-body scan showed heterogeneous tracer uptake in the lumbar spine with intense localisation to the right lateral aspect of L3. Integrated SPECT/CT of the lumbar spine detected active bone metabolism in the right L3/L4 facet joint in the presence of minimal signs of degenerative osteoarthrosis on CT images, while a segment demonstrating more gross degenerative changes was more quiescent with only mild tracer uptake. The usefulness of integrated SPECT/CT for anatomical and functional assessment of back pain opens promising opportunities both for multi-disciplinary clinical assessment and treatment for manual therapists and for research into the effectiveness of manual therapies.

  9. Semi-automatic Epileptic Hot Spot Detection in ECD brain SPECT images

    Science.gov (United States)

    Papp, Laszlo; Zuhayra, Maaz; Henze, Eberhard

    A method is proposed to process ECD brain SPECT images representing epileptic hot spots inside the brain. For validation 35 ictal —interictal patient image data were processed. The images were registered by a normalized mutual information method, then the separation of the suspicious and normal brain areas were performed by two threshold-based segmentations. Normalization between the images was performed by local normal brain mean values. Based on the validation made by two medical physicians, minimal human intervention in the segmentation parameters was necessary to detect all epileptic spots and minimize the number of false spots inside the brain.

  10. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  11. Development of a Hybrid Nanoprobe for Triple-Modality MR/SPECT/Optical Fluorescence Imaging

    Science.gov (United States)

    Madru, Renata; Svenmarker, Pontus; Ingvar, Christian; Ståhlberg, Freddy; Engels, Stefan-Andersson; Knutsson, Linda; Strand, Sven-Erik

    2014-01-01

    Hybrid clinical imaging is an emerging technology, which improves disease diagnosis by combining already existing technologies. With the combination of high-resolution morphological imaging, i.e., MRI/CT, and high-sensitive molecular detection offered by SPECT/PET/Optical, physicians can detect disease progression at an early stage and design patient-specific treatments. To fully exploit the possibilities of hybrid imaging a hybrid probe compatible with each imaging technology is required. Here, we present a hybrid nanoprobe for triple modality MR/SPECT/Fluorescence imaging. Our imaging agent is comprised of superparamagnetic iron oxide nanoparticles (SPIONs), labeled with 99mTc and an Alexa fluorophore (AF), together forming 99mTc-AF-SPIONs. The agent was stable in human serum, and, after subcutaneous injection in the hind paw of Wistar rats, showed to be highly specific by accumulating in the sentinel lymph node. All three modalities clearly visualized the imaging agent. Our results show that a single imaging agent can be used for hybrid imaging. The use of a single hybrid contrast agent permits simultaneous hybrid imaging and, more conventionally, allow for single modality imaging at different time points. For example, a hybrid contrast agent enables pre-operative planning, intra-operative guidance, and post-operative evaluation with the same contrast agent. PMID:26852675

  12. PET and SPECT Imaging of Tumor Biology: New Approaches towards Oncology Drug Discovery and Development.

    Science.gov (United States)

    Van Dort, Marcian E; Rehemtulla, Alnawaz; Ross, Brian D

    2008-01-01

    Spiraling drug developmental costs and lengthy time-to-market introduction are two critical challenges facing the pharmaceutical industry. The clinical trials success rate for oncology drugs is reported to be 5% as compared to other therapeutic categories (11%) with most failures often encountered late in the clinical development process. PET and SPECT nuclear imaging technologies could play an important role in facilitating the drug development process improving the speed, efficiency and cost of drug development. This review will focus on recent studies of PET and SPECT radioligands in oncology and their application in the investigation of tumor biology. The use of clinically-validated radioligands as imaging-based biomarkers in oncology could significantly impact new cancer therapeutic development.

  13. Design and evaluation of a mobile bedside PET/SPECT imaging system

    Science.gov (United States)

    Studenski, Matthew Thomas

    Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the

  14. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Ma, Tianyu, E-mail: maty@tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China)

    2015-06-21

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  15. Nickel-mediated radioiodination of aryl and heteroaryl bromides: rapid synthesis of tracers for SPECT imaging.

    Science.gov (United States)

    Cant, Alastair A; Champion, Sue; Bhalla, Rajiv; Pimlott, Sally L; Sutherland, Andrew

    2013-07-22

    Rapid and efficient radioiodination of aryl and heteroaryl bromides has been achieved using a nickel(0)-mediated halogen-exchange reaction. This transformation gives direct access to [(123)I]- and [(125)I]-imaging agents for single photon emission computed tomography (SPECT), such as 5-[(123)I]-A85380 (see scheme, Boc = tert-butyloxycarbonyl, cod = 1,5-cyclooctadiene, TFA = trifluoroacetic acid). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. PET and SPECT Imaging of Tumor Biology: New Approaches towards Oncology Drug Discovery and Development

    OpenAIRE

    Van Dort, Marcian E.; Rehemtulla, Alnawaz; Brian D. Ross

    2008-01-01

    Spiraling drug developmental costs and lengthy time-to-market introduction are two critical challenges facing the pharmaceutical industry. The clinical trials success rate for oncology drugs is reported to be 5% as compared to other therapeutic categories (11%) with most failures often encountered late in the clinical development process. PET and SPECT nuclear imaging technologies could play an important role in facilitating the drug development process improving the speed, efficiency and cos...

  17. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    Science.gov (United States)

    Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric

    2014-06-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in

  18. Development of a combined microSPECT/CT system for small animal imaging

    Science.gov (United States)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved

  19. Differential diagnosis of regional cerebral hyperfixation of TC-99m HMPAO on SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, P.; Konopka, L.; Crayton, J.W. [Loyola Univ. Medical Center, Maywood, IL (United States)] [and others

    1994-05-01

    Accurate diagnostic evaluation of patients with neurologic and neuropsychiatric disease is important because early treatment may halt disease progression and prevent impairment or disability. Cerebral hyperfixation of HMPAO has been ascribed to luxury perfusion following ischemic infarction. The present study sought to identify other conditions that also display radiotracer hyperfixation in order to develop a differential diagnosis of this finding on SPECT imaging. Two hundred fifty (n=250) successive cerebral SPECT images were reviewed for evidence of HMPAO hyperfixation. Hyperfixation was defined as enhanced focal perfusion surrounded by a zone of diminished or normal cerebral perfusion. All patients were scanned after intravenous injection of 25 mCi Tc-99m HMPAO. Volume-rendered and oblique images were obtained with a Trionix triple-head SPECT system using ultra high resolution fan beam collimators. Thirteen (13/250; 5%) of the patients exhibited regions of HMPAO hyperfixation. CT or MRI abnormalities were detected in 6/13 cases. Clinical diagnoses in these patients included intractable psychosis, post-traumatic stress disorder, alcohol and narcotic dependence, major depression, acute closed-head trauma, hypothyroidism, as well as subacute ischemic infarction. A wide variety of conditions may be associated with cerebral hyperfixation of HMPAO. These conditions include neurologic and psychiatric diagnoses, and extend the consideration of hyperfixation beyond ischemic infarction. Consequently, a differential diagnosis of HMPAO hyperfixation may be broader than originally considered, and this may suggest a fundamental role for local cerebral hyperperfusion. Elucidation of the fundamental mechanism(s) for cerebral hyperperfusion requires further investigation.

  20. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K.; Yasuhiko, K. (Dept. of Radiology, St. Hill Hospital, Ube, Yamaguchi (Japan)); Iwanaga, H.; Tokuda, O.; Matsunaga, N. (Dept. of Radiology, Yamaguchi Univ. School of Medicine, Ube, Yamaguchi (Japan))

    2009-01-15

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  1. 99mTc-bicisate (neurolite) SPECT brain imaging and cognitive impairment in dementia of the Alzheimer type

    DEFF Research Database (Denmark)

    Waldemar, G; Walovitch, R C; Andersen, A R

    1994-01-01

    of the Alzheimer type (DAT) and to examine the interreader agreement for visual reading of images in a multicenter SPECT study. Images for a total of 86 subjects were available for the blinded read. The images for 28 subjects were rated as noninterpretable due to technical inadequacies. Images for 58 subjects (45...

  2. Prognostic value of normal stress-only myocardial perfusion imaging: a comparison between conventional and CZT-based SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shu; Ottervanger, Jan Paul; Timmer, Jorik R. [Isala Hospital, Department of Cardiology, Zwolle (Netherlands); Mouden, Mohamed; Engbers, Elsemiek [Isala Hospital, Department of Cardiology, Zwolle (Netherlands); Isala Hospital, Department of Nuclear Medicine, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala Hospital, Department of Nuclear Medicine, Zwolle (Netherlands)

    2016-02-15

    Single photon emission computed tomography (SPECT) myocardial perfusion imaging has proven to have prognostic importance in patients with suspected stable coronary artery disease (CAD). The recently introduced ultrafast cadmium zinc telluride (CZT)-based gamma cameras have been associated with less equivocal findings and more normal interpretations, allowing stress-only imaging to be performed more often. However, it is yet unclear whether normal stress-only CZT SPECT has comparable prognostic value as normally interpreted stress-only conventional SPECT. The study population consisted of 1,650 consecutive patients without known CAD with normal stress-only myocardial perfusion results with either conventional (n = 362) or CZT SPECT (n = 1,288). The incidence of major adverse cardiac events (MACE, all-cause death, non-fatal myocardial infarction and/or coronary revascularization) was compared between the conventional SPECT and CZT SPECT groups. Multivariable analyses using the Cox model were used to adjust for differences in baseline variables. Patients scanned with CZT were less often male (33 vs 39 %), had less often hypercholesterolaemia (41 vs 50 %) and had more often a family history of CAD (57 vs 49 %). At a median follow-up time of 37 months (interquartile range 28-45 months) MACE occurred in 68 patients. The incidence of MACE was 1.5 %/year in the CZT group, compared to 2.0 %/year in the conventional group (p = 0.08). After multivariate analyses, there was a trend to a lower incidence of MACE in the CZT SPECT group (hazard ratio 0.61, 95 % confidence interval 0.35-1.04, p = 0.07). The prognostic value of normal stress-only CZT SPECT is at least comparable and may be even better than that of normal conventional stress SPECT. (orig.)

  3. Comparison of 360 degrees and 180 degrees data collection in SPECT imaging.

    Science.gov (United States)

    Knesaurek, K

    1987-11-01

    The problem of using 360 degrees or 180 degrees data sampling techniques in transaxial SPECT imaging is still to be solved. A theoretical point source study for an ideal response detector has shown, for objects which are close enough to the origin of the reconstructed area, that there are significant differences between sections obtained by different sampling methods. A computer simulation study of line sources in a homogeneous attenuated medium has confirmed the results of clinical studies in which significant image distortion has been observed in 180 degrees sections but not in 360 degrees reconstructed images.

  4. Segmentation of acute pyelonephritis area on kidney SPECT images using binary shape analysis

    Science.gov (United States)

    Wu, Chia-Hsiang; Sun, Yung-Nien; Chiu, Nan-Tsing

    1999-05-01

    Acute pyelonephritis is a serious disease in children that may result in irreversible renal scarring. The ability to localize the site of urinary tract infection and the extent of acute pyelonephritis has considerable clinical importance. In this paper, we are devoted to segment the acute pyelonephritis area from kidney SPECT images. A two-step algorithm is proposed. First, the original images are translated into binary versions by automatic thresholding. Then the acute pyelonephritis areas are located by finding convex deficiencies in the obtained binary images. This work gives important diagnosis information for physicians and improves the quality of medical care for children acute pyelonephritis disease.

  5. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    Science.gov (United States)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  6. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI.

    Science.gov (United States)

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-04-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus.

  7. Pattern of brain blood perfusion in tinnitus patients using technetium-99m SPECT imaging

    Directory of Open Access Journals (Sweden)

    Saeid Mahmoudian

    2012-01-01

    Full Text Available Background and Purpose: Tinnitus is associated with an increased activity in central auditory system as demonstrated by neuroimaging studies. Brain perfusion scanning using single photon emission computed tomography (SPECT was done to understand the pattern of brain blood perfusion of tinnitus subjects and find the areas which are mostly abnormal in these patients. Materials and Methods: A number of 122 patients with tinnitus were enrolled to this cross-sectional study. They underwent SPECT and magnetic resonance imaging (MRI of brain, and the images were fused to find the regions with abnormal perfusion. Results: SPECT scan results were abnormal in 101 patients (83%. Most patients had bilateral abnormal perfusion (N = 65, 53.3%, and most subjects had abnormality in middle-temporal gyrus (N = 83, 68% and temporoparietal cortex (N = 46, 37.7%. Patients with multifocal involvement had the least mean age than other 2 groups (patients with no abnormality and unifocal abnormality (P value = 0.045. Conclusions: Brain blood perfusion pattern differs in patient with tinnitus than others. These patients have brain perfusion abnormality, mostly in auditory gyrus (middle temporal and associative cortex (temporoparietal cortex. Multifocal abnormalities might be due to more cognitive and emotional brain centers involvement due to tinnitus or more stress and anxiety of tinnitus in the young patients.

  8. Scatter correction in planar imaging and SPECT by constrained factor analysis of dynamic structures (FADS)

    Energy Technology Data Exchange (ETDEWEB)

    Mas, J.; Younes, R.B.; Bellaton, B.; Bidet, R. (Centre Hospitalier Universitaire Jean Minjoz, 25 - Besancon (France). Lab. de Biophysique et de Medecine Nucleaire); Hannequin, P. (Centre d' Imagerie Nucleaire, 74 -Annecy (France))

    1990-11-01

    A new approach to Compton scatter correction based on factor analysis of dynamic structures (FADS) is presented in this study. The innovation is the use of a constrained photopeak factor. This novel algorithm is evaluated both on planar imaging and SPECT data using Monte Carlo simulations and real phantoms. A comparison with the modified method of Jaszczak is also presented. Different parameters are significantly improved with the authors' recombination method in SPECT studies; particularly after attenuation compensation by the iterative method of Chang. Compared with the subtraction method the contrast is increased by 1.5 for planar Monte Carlo simulations and the scatter fraction is reduced four times with the recombination method. (author).

  9. Recent advances in the development of PET/SPECT probes for atherosclerosis imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoich; Kuge, Yuji [Hokkaido University, Sapporo (Japan)

    2016-12-15

    The rupture of vulnerable atherosclerotic plaques and subsequent thrombus formation are the major causes of myocardial and cerebral infarction. Accordingly, the detection of vulnerable plaques is important for risk stratification and to provide appropriate treatment. Inflammation imaging using 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ({sup 18}F-FDG) has been most extensively studied for detecting vulnerable atherosclerotic plaques. It is of great importance to develop PET/SPECT probes capable of specifically visualizing the biological molecules involved in atherosclerotic plaque formation and/or progression. In this article, we review recent advances in the development of PET/SPECT probes for visualizing atherosclerotic plaques and their application to therapy monitoring, mainly focusing on experimental studies.

  10. Reduction in camera-specific variability in [(123)I]FP-CIT SPECT outcome measures by image reconstruction optimized for multisite settings

    DEFF Research Database (Denmark)

    Buchert, Ralph; Kluge, Andreas; Tossici-Bolt, Livia

    2016-01-01

    reconstruction algorithm for its ability to reduce camera-specific intersubject variability in [(123)I]FP-CIT SPECT. The secondary aim was to evaluate binding in whole brain (excluding striatum) as a reference for quantitative analysis. METHODS: Of 73 healthy subjects from the European Normal Control Database...... of [(123)I]FP-CIT recruited at six centres, 70 aged between 20 and 82 years were included. SPECT images were reconstructed using the QSPECT software package which provides fully automated detection of the outer contour of the head, camera-specific correction for scatter and septal penetration...... by transmission-dependent convolution subtraction, iterative OSEM reconstruction including attenuation correction, and camera-specific "to kBq/ml" calibration. LINK and HERMES reconstruction were used for head-to-head comparison. The specific striatal [(123)I]FP-CIT binding ratio (SBR) was computed using...

  11. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  12. Investigating the role of 99mTc-TRODAT-1 SPECT imaging in idiopathic Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    GENG Yu; SHI Guo-hua; JIANG Yun; XU Ling-xun; HU Xing-yue; SHAO Yu-quan

    2005-01-01

    Objective: To investigate the role of 99mTc-TRODAT-1 SPECT in diagnosis and assessing severity of idiopathic Parkinson's disease (PD). Methods: Thirty-eight patients with primary, tentative diagnosis of PD and eighteen age-matched normal controls were studied with 99mTc-TRODAT-1 SPECT imaging. The regions of interests (ROIs) were drawn manually on cerebellum (CB), occipital cortex (OC) and three transverse plane slice-views of striatums, the semiquantitative BG (background)/[(OC+CB)/2] were then calculated. Results: A lower uptake of 99mTc-TRODAT-Ⅰ in striatums were displayed in thirty-six out of thirty-eight PD patients by visual inspection, compared to controls. In twenty-four PD cases with HYS (Hoehn and Yahr scale) stage I, a greater loss of DAT uptake was found in striatum and its subregions contralateral striatum to the affected limbs than in the same regions of the controls, although the striatal uptake was bilaterally reduced. Using Spearman correlation analysis showed that the reduction of the uptake ratios significantly correlated with the UPDRS in striatum and all its subregions in the PD group (P<0.05), a similar change was also found in the putamen by using the rating scale of Hoehn and Yahr (P<0.05).However, analysis of variance (ANOVA) did not show any relationship between the decreasing uptake of 99mTc-TRODAT-1 and increasing severity of PD patients, although the specific uptake of 99mTc-TRODAT-Ⅰ was continuously decreased in the striatum by visual inspection with the progress of PD from HYS stage Ⅰ to Ⅲ. Conclusion: 99mTc-TRODAT- 1 SPECT imaging may serve as a useful method for improving the correct diagnosis of PD. In assessing the role of99mTc-TRODAT- 1 SPECT in disease severity of PD, UPDRS can offer a comprehensive index, although the Hoehn and Yahr assessment may be available in part.

  13. Quantitative ultrasonic phased array imaging

    Science.gov (United States)

    Engle, Brady J.; Schmerr, Lester W., Jr.; Sedov, Alexander

    2014-02-01

    When imaging with ultrasonic phased arrays, what do we actually image? What quantitative information is contained in the image? Ad-hoc delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM) fail to answer these questions. We have shown that a new quantitative approach allows the formation of flaw images by explicitly inverting the Thompson-Gray measurement model. To examine the above questions, we have set up a software simulation test bed that considers a 2-D scalar scattering problem of a cylindrical inclusion with the method of separation of variables. It is shown that in SAFT types of imaging the only part of the flaw properly imaged is the front surface specular response of the flaw. Other responses (back surface reflections, creeping waves, etc.) are improperly imaged and form artifacts in the image. In the case of TFM-like imaging the quantity being properly imaged is an angular integration of the front surface reflectivity. The other, improperly imaged responses are also averaged, leading to a reduction in some of the artifacts present. Our results have strong implications for flaw sizing and flaw characterization with delay-and-sum images.

  14. Quantitative multiphoton imaging

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  15. [Studies of biologic activation associated with molecular receptor increase and tumor response in ChL6/L6 protocol patients; Studies in phantoms; Quantitative SPECT; Preclinical studies; and Clinical studies]. DOE annual report, 1994--95

    Energy Technology Data Exchange (ETDEWEB)

    DeNardo, S.J.

    1995-12-31

    The authors describe results which have not yet been published from their associated studies listed in the title. For the first, they discuss Lym-1 single chain genetically engineered molecules, analysis of molecular genetic coded messages to enhance tumor response, and human dosimetry and therapeutic human use radiopharmaceuticals. Studies in phantoms includes a discussion of planar image quantitation, counts coincidence correction, organ studies, tumor studies, and {sup 90}Y quantitation with Bremsstrahlung imaging. The study on SPECT discusses attenuation correction and scatter correction. Preclinical studies investigated uptake of {sup 90}Y-BrE-3 in mice using autoradiography. Clinical studies discuss image quantitation verses counts from biopsy samples, S factors for radiation dose calculation, {sup 67}Cu imaging studies for lymphoma cancer, and {sup 111}In MoAb imaging studies for breast cancer to predict {sup 90}Y MoAb therapy.

  16. [Studies of biologic activation associated with molecular receptor increase and tumor response in ChL6/L6 protocol patients; Studies in phantoms; Quantitative SPECT; Preclinical studies; and Clinical studies]. DOE annual report, 1994--95

    Energy Technology Data Exchange (ETDEWEB)

    DeNardo, S.J.

    1995-12-31

    The authors describe results which have not yet been published from their associated studies listed in the title. For the first, they discuss Lym-1 single chain genetically engineered molecules, analysis of molecular genetic coded messages to enhance tumor response, and human dosimetry and therapeutic human use radiopharmaceuticals. Studies in phantoms includes a discussion of planar image quantitation, counts coincidence correction, organ studies, tumor studies, and {sup 90}Y quantitation with Bremsstrahlung imaging. The study on SPECT discusses attenuation correction and scatter correction. Preclinical studies investigated uptake of {sup 90}Y-BrE-3 in mice using autoradiography. Clinical studies discuss image quantitation verses counts from biopsy samples, S factors for radiation dose calculation, {sup 67}Cu imaging studies for lymphoma cancer, and {sup 111}In MoAb imaging studies for breast cancer to predict {sup 90}Y MoAb therapy.

  17. Diagnostic accuracy of [99mTc]TRODAT-1 SPECT imaging in early Parkinson's disease.

    Science.gov (United States)

    Chou, K L; Hurtig, H I; Stern, M B; Colcher, A; Ravina, B; Newberg, A; Mozley, P D; Siderowf, A

    2004-08-01

    We evaluated the diagnostic accuracy of SPECT imaging using [(99m)Tc]TRODAT-1 (TRODAT), a relatively inexpensive technetium-labeled dopamine transporter ligand, in distinguishing 29 patients with early PD from 38 healthy volunteers. Mean TRODAT uptake values were significantly decreased in the caudate (p=0.0097) and anterior and posterior putamen (p accuracy (sensitivity 0.79, specificity 0.92). These findings show that TRODAT imaging can accurately differentiate early PD patients from controls and has the potential to improve the diagnosis of patients with early signs of PD.

  18. SPECT imaging for brain improvement quantification in a patient with cerebrotendinous xanthomatosis.

    Science.gov (United States)

    Selva-O'Callaghan, Albert; Bardes, Ignasi; Jacas, Carlos; Jubany, Lluis; Lorenzo-Bosquet, Carles; Cuberas-Borrós, Gemma; Vilardell-Tarres, Miquel

    2011-01-01

    Cerebrotendinous xanthomatosis is a rare recessive autosomal disease caused by mutations of the sterol 27-hydroxylase gene (CYP27), which leads to reduced synthesis of bile acids, particularly chenodeoxycholic acid (Cali et al, J Biol Chem. 1991;266:7779-7783; Gallus et al, Neurol Sci. 2006;27:143-149). The disease is characterized by progressive neurologic dysfunction due to accumulation of cholestanol in neurologic tissues (Moghadasian et al, Arch Neurol. 2002;59:527-529; Selva-O'Callaghan et al, Rheumatology. 2007;46:1212-1213). Long-term treatment with chenodeoxycholic acid can arrest or even reverse progression of the disease (Pierre et al, J Inherit Metab Dis. In press).Brain SPECT with 740 MBq of Tc-99m ethyl cysteinate dimmer, using a double-head gamma camera (Siemens E.cam) with high-resolution, low-energy parallel collimators was performed in our patient at onset and 2 years after starting chenodeoxycholic acid treatment. SPECT acquisitions were performed using a 360-degree orbit, 1 image/30 seg/3 degree, and 128 × 128 matrix. Reconstruction was by means of filtered back-projection, Butterworth 5/0.25, without attenuation correction. Pre- and post-SPECT dicom images were reoriented into Talairach space using NeuroGam (Segami Corporation). To visually identify abnormal perfusion regions, volume render brain image was computed, where abnormal perfusion regions were found by comparing with age-matched normal database, and Brodmann areas (BA) were quantified. Pre- versus post-treatment changes were computed by means of relative percentage between counts. Post-treatment SPECT showed better perfusion than pretreatment SPECT with an increase between 5% and 10% in frontal cortex (BA 9, BA 24, BA 32, BA 46, BA 47), parietal cortex (BA 5, BA 31), and temporal cortex (BA 20, BA 22, BA 28, BA 36, BA 37, BA 38), and with an increase of more than 10% in frontal cortex (BA 45) and parietal cortex (BA 23). This case illustrates the benefit of bile acid therapy for

  19. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  20. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  1. Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT.

    Science.gov (United States)

    Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T

    2014-05-01

    Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.

  2. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  3. Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods

    Science.gov (United States)

    Yang, Bang-Hung; Tsai, Sung-Yi; Wang, Shyh-Jen; Su, Tung-Ping; Chou, Yuan-Hwa; Chen, Chia-Chieh; Chen, Jyh-Cheng

    2011-08-01

    The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images.Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of 123I-ADAM. The image matrix size was 128×128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans.The average of specific uptake ratio (SUR: target/cerebellum-1) of 123I-ADAM binding to SERT in midbrain was 1.78±0.27, pons was 1.21±0.53, and striatum was 0.79±0.13. The cronbach's α of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2 analysis. This finding might help us

  4. Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bang-Hung [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Tsai, Sung-Yi [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Imaging Medical, St.Martin De Porres Hospital, Chia-Yi, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Su, Tung-Ping; Chou, Yuan-Hwa [Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taiwan (China); Chen, Jyh-Cheng, E-mail: jcchen@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China)

    2011-08-21

    The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images. Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of {sup 123}I-ADAM. The image matrix size was 128x128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans. The average of specific uptake ratio (SUR: target/cerebellum-1) of {sup 123}I-ADAM binding to SERT in midbrain was 1.78{+-}0.27, pons was 1.21{+-}0.53, and striatum was 0.79{+-}0.13. The cronbach's {alpha} of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2

  5. Classification decision tree algorithm assisting in diagnosing solitary pulmonary nodule by SPECT/CT fusion imaging

    Institute of Scientific and Technical Information of China (English)

    Qiang Yongqian; Guo Youmin; Jin Chenwang; Liu Min; Yang Aimin; Wang Qiuping; Niu Gang

    2008-01-01

    Objective To develop a classification tree algorithm to improve diagnostic performances of 99mTc-MIBI SPECT/CT fusion imaging in differentiating solitary pulmonary nodules (SPNs). Methods Forty-four SPNs, including 30 malignant cases and 14 benign ones that were eventually pathologically identified, were included in this prospective study. All patients received 99Tcm-MIBI SPECT/CT scanning at an early stage and a delayed stage before operation. Thirty predictor variables, including 11 clinical variables, 4 variables of emission and 15 variables of transmission information from SPECT/CT scanning, were analyzed independently by the classification tree algorithm and radiological residents. Diagnostic rules were demonstrated in tree-topology, and diagnostic performances were compared with Area under Curve (AUC) of Receiver Operating Characteristic Curve (ROC). Results A classification decision tree with lowest relative cost of 0.340 was developed for 99Tcm-MIBI SPECT/CT scanning in which the value of Target/Normal region of 99Tcm-MIBI uptake in the delayed stage and in the early stage, age, cough and specula sign were five most important contributors. The sensitivity and specificity were 93.33% and 78. 57e, respectively, a little higher than those of the expert. The sensitivity and specificity by residents of Grade one were 76.67% and 28.57%, respectively, and AUC of CART and expert was 0.886±0.055 and 0.829±0.062, respectively, and the corresponding AUC of residents was 0.566±0.092. Comparisons of AUCs suggest that performance of CART was similar to that of expert (P=0.204), but greater than that of residents (P<0.001). Conclusion Our data mining technique using classification decision tree has a much higher accuracy than residents. It suggests that the application of this algorithm will significantly improve the diagnostic performance of residents.

  6. Automated microSPECT/microCT image analysis of the mouse thyroid gland.

    Science.gov (United States)

    Cheng, Peng; Hollingsworth, Brynn; Scarberry, Daniel; Shen, Daniel Hueng-Yuan; Powell, Kimerly; Smart, Sean C; Beech, John; Sheng, Xiaochao; Kirschner, Lawrence S; Menq, Chia-Hsiang; Jhiang, Sissy M

    2017-09-16

    Background: The ability of thyroid follicular cells to take up iodine enables the use of radioactive iodine (RAI) for imaging and targeted killing of RAI-avid thyroid cancer following thyroidectomy. To facilitate identifying novel strategies to improve 131I therapeutic efficacy for patients with RAI refractory disease, it is desired to optimize image acquisition and analysis for preclinical mouse models of thyroid cancer. Methods: A customized mouse cradle was designed and used for microSPECT/CT image acquisition at 1 hour (t1) and 24 hours (t24) post-injection of 123I, which mainly reflect RAI influx/efflux equilibrium and RAI retention in the thyroid, respectively. FVB/N mice with normal thyroid glands and TgBRAFV600E mice with thyroid tumors were imaged. In-house CTViewer software was developed to streamline image analysis with new capabilities along with display of 3D voxel-based 123I gamma photon intensity in MATLAB. Results: Our customized mouse cradle facilitates consistent tissue configuration among image acquisitions such that rigid body registration can be applied to align serial images of the same mouse via our in-house CTViewer software. CTViewer is designed specifically to streamline SPECT/CT image analysis with functions tailored to quantify thyroid radioiodine uptake. Automatic segmentation of thyroid volumes of interest (VOI) from adjacent salivary glands in t1 images is enabled by superimposing the thyroid VOI from the t24 image onto the corresponding aligned t1 image. The extent of heterogeneity in 123I accumulation within thyroid VOIs can be visualized by 3D display of voxel-based 123I gamma photon intensity. Conclusion: MicroSPECT/CT image acquisition and analysis for thyroidal RAI uptake is greatly improved by our cradle and CTViewer software, respectively. Furthermore, our approach of superimposing thyroid VOIs from t24 images to select thyroid VOIs on corresponding aligned t1 images can be applied to studies in which the target tissue has

  7. Combined visual and semi-quantitative assessment of (123)I-FP-CIT SPECT for the diagnosis of dopaminergic neurodegenerative diseases.

    Science.gov (United States)

    Ueda, Jun; Yoshimura, Hajime; Shimizu, Keiji; Hino, Megumu; Kohara, Nobuo

    2017-07-01

    Visual and semi-quantitative assessments of (123)I-FP-CIT single-photon emission computed tomography (SPECT) are useful for the diagnosis of dopaminergic neurodegenerative diseases (dNDD), including Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. However, the diagnostic value of combined visual and semi-quantitative assessment in dNDD remains unclear. Among 239 consecutive patients with a newly diagnosed possible parkinsonian syndrome who underwent (123)I-FP-CIT SPECT in our medical center, 114 patients with a disease duration less than 7 years were diagnosed as dNDD with the established criteria or as non-dNDD according to clinical judgment. We retrospectively examined their clinical characteristics and visual and semi-quantitative assessments of (123)I-FP-CIT SPECT. The striatal binding ratio (SBR) was used as a semi-quantitative measure of (123)I-FP-CIT SPECT. We calculated the sensitivity and specificity of visual assessment alone, semi-quantitative assessment alone, and combined visual and semi-quantitative assessment for the diagnosis of dNDD. SBR was correlated with visual assessment. Some dNDD patients with a normal visual assessment had an abnormal SBR, and vice versa. There was no statistically significant difference between sensitivity of the diagnosis with visual assessment alone and semi-quantitative assessment alone (91.2 vs. 86.8%, respectively, p = 0.29). Combined visual and semi-quantitative assessment demonstrated superior sensitivity (96.7%) to visual assessment (p = 0.03) or semi-quantitative assessment (p = 0.003) alone with equal specificity. Visual and semi-quantitative assessments of (123)I-FP-CIT SPECT are helpful for the diagnosis of dNDD, and combined visual and semi-quantitative assessment shows superior sensitivity with equal specificity.

  8. A preliminary study of SPECT-MRI fusion imaging by different machine in patients with moyamoya disease%SPECT-MRI异机融合图像在烟雾病中的应用价值初探

    Institute of Scientific and Technical Information of China (English)

    张林悦; 弓健; 郭斌; 唐勇进; 尚靖杰; 徐浩

    2016-01-01

    目的:分析烟雾病(MMD)的单光子发射计算机断层成像(SPECT)、磁共振成像(MRI)图像及SPECT-MRI异机融合图像,探讨SPECT-MRI异机融合图像在烟雾病中的应用价值.方法:回顾性分析符合烟雾病诊断标准的5例MMD患者的99m Tc-ECD脑血流灌注SPECT显像及头颅MRI检查并影像资料,总结其SPECT-MRI影像的特征性表现.结果:SPECT显示额、颞、顶、枕叶放射性稀疏缺损区,脑血流灌注减少;MRI可清晰显示MMD患者的脑实质损害表现(脑梗死、脑出血、脑软化及脑萎缩);SPECT-MRI融合图像显示3例SPECT显示脑血流灌注减低区和MRI显示脑实质损害区是同一部位,SPECT-MRI二者病灶显示匹配;2例SPECT显示脑血流灌注减低区,而相应区域的MRI显示脑实质正常,SPECT-MRI二者病灶显示不匹配.结论:SPECT-MRI融合图像能直观显示烟雾病患者脑实质解剖上的损害及脑血流灌注情况.%Aim:The images of SPECT,MRI,and the SPECT-MRI fusion imaging of Moyamoya dis-ease (MMD)were analyzed and the values of SPECT-MRI fusion imaging in MMD were investigated. Methods:Five cases of patients with MMD were reviewed,which were in accordance with the diagnostic standard.The images of SPECT and MRI and their characteristics of SPECT-MRI fusion imaging wene analyzed.Results:SPECT can show radioactive sparseness areas in frontal lobe,temporal lobe,parietal lobe,occipital lobe.These areas indicate a reduction of cerebral perfusion;MRI can show the lesions clearly in brain parenchymal,such as the cerebral infarction,hemorrhage,encephalomalacia,brain atro-phy.SPECT-MRI fusion imaging shows that the regions of cerebral blood flow perfusion defect in SPECT are the same with the regions of brain damage showed in MRI in three patients,and these lesions match. However,the regions of cerebral blood flow perfusion defect showed in SPECT are normal in MRI, SPECT-MRI shows that these lesions do not match.Conclusion:SPECT-MRI fusion imaging can show

  9. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sajedi, Salar; Zeraatkar, Navid [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Moji, Vahideh; Farahani, Mohammad Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Sarkar, Saeed [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Arabi, Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Teymoorian, Behnoosh [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Ghafarian, Pardis [Chronic Respiratory Disease Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahmim, Arman [Department of Radiology, Johns Hopkins University, Baltimore, MD (United States); Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD (United States); Reza Ay, Mohammad, E-mail: mohammadreza_ay@sina.tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-21

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT.

  10. Quantitative ultrasound in cancer imaging.

    Science.gov (United States)

    Feleppa, Ernest J; Mamou, Jonathan; Porter, Christopher R; Machi, Junji

    2011-02-01

    Ultrasound is a relatively inexpensive, portable, and versatile imaging modality that has a broad range of clinical uses. It incorporates many imaging modes, such as conventional gray-scale "B-mode" imaging to display echo amplitude in a scanned plane; M-mode imaging to track motion at a given fixed location over time; duplex, color, and power Doppler imaging to display motion in a scanned plane; harmonic imaging to display nonlinear responses to incident ultrasound; elastographic imaging to display relative tissue stiffness; and contrast-agent imaging with simple contrast agents to display blood-filled spaces or with targeted agents to display specific agent-binding tissue types. These imaging modes have been well described in the scientific, engineering, and clinical literature. A less well-known ultrasonic imaging technology is based on quantitative ultrasound (QUS), which analyzes the distribution of power as a function of frequency in the original received echo signals from tissue and exploits the resulting spectral parameters to characterize and distinguish among tissues. This article discusses the attributes of QUS-based methods for imaging cancers and providing improved means of detecting and assessing tumors. The discussion will include applications to imaging primary prostate cancer and metastatic cancer in lymph nodes to illustrate the methods. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Physical phantom evaluation of simultaneous 99mTc/ 123I SPECT imaging

    Science.gov (United States)

    Yang, Bang-Hung; Wang, Shyh-Jen; Lee, Jhih-Shian; Jan, Meei-Ling; Chang, Chia-Jung; Chen, Jyh-Cheng

    2011-10-01

    .03 and that of 123I was 1.07 from the W_eICA method. Besides, the recovery rate of 99mTc was 0.84 and that of 123I was 1.05 from the AEW approach. According to our results, the W_eICA method not only decreased the number of energy windows but also separated dual-isotope photopeaks successfully. The results have demonstrated that the W_eICA method improved the quantitative accuracy and might be an effective tool for simultaneous dual-isotope SPECT imaging.

  12. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  13. PET/SPECT imaging : From carotid vulnerability to brain viability

    NARCIS (Netherlands)

    Meerwaldt, Robbert; Slart, Riemer H. J. A.; van Dam, Gooitzen M.; Luijckx, Gert-Jan; Tio, Rene A.; Zeebregts, Clark J.

    2010-01-01

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)

  14. The group study of diagnostic efficacy of cerebro-vascular disease by I-123 IMP SPECT images obtained with ring type SPECT scanner; The ROC analysis on the diagnosis of perfusion defect and redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Kikuo; Honda, Norinari (Saitama Medical School, Kawagoe (Japan). Saitama Medical Center); Matsumoto, Toru (and others)

    1991-11-01

    We performed two image reading experiments in order to investigate the diagnostic capability of I-123 IMP SPECT obtained by the ring type SPECT scanner in cerebro-vascular disease. Fourteen physicians diagnosed SPECT images of 55 cases with reference to clinical neurological information, first without brain XCT images and second with XCT images. Each physician detected perfusion defects and redistributions of I-123 IMP and assigned a confidence level of abnormality for these SPECT findings by means of five rating method. From results obtained by ROC analysis, we concluded as follows. (1) Generally, I-123 IMP SPECT is a stable diagnostic modality in the diagnosis of cerebro-vascular disease and the image reading of XCT had no effects on the diagnosis of SPECT on the whole of physician. (2) However, there were unnegligible differences among individuals in the detectability of findings and the effect of XCT image reading. (3) Detectability of redistribution of I-123 IMP was lower than that of perfusion defect and inter-observer variation in the diagnostic performance for redistribution was larger than that of perfusion defect. The results suggest that it is necessary to standardize diagnostic criteria among physicians for redistribution of I-123 IMP. (author).

  15. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study

    Energy Technology Data Exchange (ETDEWEB)

    Genovesi, Dario; Giorgetti, Assuero; Gimelli, Alessia; Kusch, Annette; D' Aragona Tagliavia, Irene; Casagranda, Mirta; Marzullo, Paolo [Fondazione CNR-Regione Toscana ' ' G. Monasterio' ' , Nuclear Medicine, Pisa (Italy); Cannizzaro, Giorgio [A.O.V. Cervello, Nuclear Medicine, Palermo (Italy); Giubbini, Raffaele; Bertagna, Francesco [Spedali Civili, Nuclear Medicine, Brescia (Italy); Fagioli, Giorgio; Rossi, Massimiliano; Romeo, Annadina [Ospedale Maggiore, Nuclear Medicine, Bologna (Italy); Bertolaccini, Pietro; Bonini, Rita [Ospedale SS Giacomo e Cristoforo, Nuclear Medicine, Massa (Italy)

    2011-10-15

    In clinical myocardial single photon emission computed tomography (SPECT), attenuation artefacts may cause a loss of specificity in the identification of diseased vessels that can be corrected by means of gated SPECT (GSPECT) acquisition or CT attenuation correction (AC). The purpose of this multicentre study was to assess the impact of GSPECT and AC on the diagnostic performance of myocardial scintigraphy, according to patient's sex, body mass index (BMI) and site of coronary artery disease (CAD). We studied a group of 104 patients who underwent coronary angiography within 1 month before or after the SPECT study. Patients with a BMI > 27 were considered ''overweight''. Attenuation-corrected and standard GSPECT early images were randomly interpreted by three readers blinded to the clinical data. In the whole group, GSPECT and AC showed a diagnostic accuracy of 86.5% (sensitivity 82%, specificity 93%) and 77% (sensitivity 75.4%, specificity 81.4%), respectively (p < 0.05). In women, when anterior ischaemia was matched with CAD, AC failed to show any increase in specificity (AC 63.6% vs GSPECT 63.6%) with evident loss of sensitivity (AC 72.7% vs GSPECT 90.9%). AC significantly improved SPECT specificity in the identification of right CAD in overweight men (AC 100% vs GSPECT 66.7%, p <0.05). AC improved specificity in the evaluation of right CAD in overweight men. In the other evaluable subgroups specificity was not significantly affected while sensitivity was frequently reduced. (orig.)

  16. SPECT assay of radiolabeled monoclonal antibodies. Final performance report, March 1992--November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jaszczak, R.J.

    1995-12-01

    Research is described in the following areas: development and evaluation quantitatively of reconstruction algorithms with improved compensations for attenuation, scatter, and geometric collimator response; evaluation of single photon emission computed tomography (SPECT) quantification of iodine 123 and astatine 211; and the development and evaluation of SPECT pinhole imaging for low and medium energy photons.

  17. NOTE: Gaussian prefiltering of 123I DAT SPECT images when using depth-independent resolution recovery

    Science.gov (United States)

    Larsson, Anne; Jakobson Mo, Susanna; Sundström, Torbjörn; Riklund, Katrine

    2007-09-01

    Previously we have investigated a depth-independent compensation for collimator detector response (CDR) included in the OSEM reconstruction, intended for SPECT images that have been corrected for scatter and septal penetration using convolution-based methods. In this work, the aim was to study how different filtering strategies affect contrast as a function of noise when using Gaussian smoothing filters in combination with the above-described CDR compensation. The evaluation was performed for 123I dopamine transporter (DAT) SPECT images. Prefiltering with 2D Gaussian filter kernels, where the deterioration in resolution is included in the depth-independent CDR compensation, was compared to conventional postfiltering with 3D Gaussian filter kernels. Images reconstructed without filtering are also included in the comparison. It was found that there is little benefit in noise reduction when using CDR compensation. However, this variant of prefiltering gives consistently higher contrasts as a function of noise compared with the postfiltering alternative, and that could be of interest when using other types of filters with contrast improving properties.

  18. Benzodiazepine receptor imaging with iomazenil SPECT in aphasic patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Ohyama, Masashi [Nippon Medical School, Tokyo (Japan)] (and others)

    1999-08-01

    To investigate the relationship between prognosis of aphasia and neuronal damage in the cerebral cortex, we evaluated the distribution of central-type benzodiazepine receptor (BZR) binding in post-stroke aphasics with [{sup 123}I]iomazenil and SPECT. We performed iomazenil SPECT in six aphasic patients (aged from 45 to 75 years; all right-handed) with unilateral left cerebral infarction. Three patients showed signs of Broca's aphasia and the other three Wernicke's aphasia. Cerebral blood flow (CBF) imaging was performed with [{sup 123}I]iodoamphetamine (IMP). The regions of interest (ROIs) on both images were set in the cerebral cortex, cerebellar cortex and language relevant area in both hemispheres. Three patients were classified in the mild prognosis group and the other three in the moderate prognosis group. The left language-relevant area was more closely concerned with the difference in aphasic symptoms than the right one in both BZR and CBF distribution, but the ipsilateral to the contralateral ratio (I/C ratio) in the language-relevant areas in the BZR distribution was significantly lower in the moderate prognosis group than in the mild prognosis group, although no difference was seen for these values between the two groups in the CBF distribution. These results suggest that BZR imaging, which makes possible an increase in neuronal cell viability in the cerebral cortex, is useful not only for clarifying the aphasic symptoms but also for evaluating the prognosis of aphasia in patients with cerebral infarction. (author)

  19. Performance evaluation of a parallel-hole collimated detector module for animal SPECT imaging

    Institute of Scientific and Technical Information of China (English)

    HUANG Xian-Chao; WANG Ying-Jie; WEI Long; SHAN Bao-Ci; WANG Bao-Yi; ZHANG Zhi-Ming; LI Dao-Wu; TANG Hao-Hui; LI Ting; LIAO Yan-Fei; LIU Jun-Hui; WANG Pei-Lin; CHEN Yan

    2011-01-01

    We have built and investigated a detector module for animal SPECT imaging,especially for use in large field of view (FOV) conditions.The module consists of a PMT-based detector and a parallel-hole collimator with an effective area of 80 mm × 80 mm.The detector is composed of a NaI scintillation crystal array coupled to four H8500 position sensitive photomultiplier tubes (PS-PMT).The intrinsic energy resolution of the detector is 11.5% at 140 keV on average.The planar spatial resolution of the module changes from 2.2 mm to 5.1 mm at different source-to-collimator distances with an unchanged sensitivity of about 34cps/MBq.Additionally,the SPECT Micro Deluxe Phantom imaging was performed with a radius of rotation (ROR)of 40 mm.Using the FBP reconstruction algorithm,a high performance image was obtained,indicating the feasibility of this detector module.

  20. Molecular imaging of plaques in coronary arteries with PET and SPECT

    Institute of Scientific and Technical Information of China (English)

    Zhong-Hua SUN; Hairil Rashmizal; Lei XU

    2014-01-01

    Coronary artery disease remains a major cause of mortality. Presence of atherosclerotic plaques in the coronary artery is responsible for lu-men stenosis which is often used as an indicator for determining the severity of coronary artery disease. However, the degree of coronary lumen stenosis is not often related to compromising myocardial blood flow, as most of the cardiac events that are caused by atherosclerotic plaques are the result of vulnerable plaques which are prone to rupture. Thus, identification of vulnerable plaques in coronary arteries has become increas-ingly important to assist identify patients with high cardiovascular risks. Molecular imaging with use of positron emission tomography (PET) and single photon emission computed tomography (SPECT) has fulfilled this goal by providing functional information about plaque activity which enables accurate assessment of plaque stability. This review article provides an overview of diagnostic applications of molecular imaging tech-niques in the detection of plaques in coronary arteries with PET and SPECT. New radiopharmaceuticals used in the molecular imaging of coro-nary plaques and diagnostic applications of integrated PET/CT and PET/MRI in coronary plaques are also discussed.

  1. Gaussian prefiltering of {sup 123}I DAT SPECT images when using depth-independent resolution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Anne [Department of Radiation Sciences, Radiation Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Mo, Susanna Jakobson [Department of Radiation Sciences, Diagnostic Radiology, Umeaa University, SE-901 87 Umeaa (Sweden); Sundstroem, Torbjoern [Department of Radiation Sciences, Diagnostic Radiology, Umeaa University, SE-901 87 Umeaa (Sweden); Riklund, Katrine [Department of Radiation Sciences, Diagnostic Radiology, Umeaa University, SE-901 87 Umeaa (Sweden)

    2007-09-21

    Previously we have investigated a depth-independent compensation for collimator detector response (CDR) included in the OSEM reconstruction, intended for SPECT images that have been corrected for scatter and septal penetration using convolution-based methods. In this work, the aim was to study how different filtering strategies affect contrast as a function of noise when using Gaussian smoothing filters in combination with the above-described CDR compensation. The evaluation was performed for {sup 123}I dopamine transporter (DAT) SPECT images. Prefiltering with 2D Gaussian filter kernels, where the deterioration in resolution is included in the depth-independent CDR compensation, was compared to conventional postfiltering with 3D Gaussian filter kernels. Images reconstructed without filtering are also included in the comparison. It was found that there is little benefit in noise reduction when using CDR compensation. However, this variant of prefiltering gives consistently higher contrasts as a function of noise compared with the postfiltering alternative, and that could be of interest when using other types of filters with contrast improving properties. (note)

  2. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M [Stanford University School of Medicine, Stanford, CA (United States); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P [Stanford University, Stanford, CA (United States); Diehn, M [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.

  3. FlipADAM: a potential new SPECT imaging agent for the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Julie L.; Deutsch, Eric C. [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States)

    2010-07-15

    Introduction: Single photon emission computed tomography (SPECT) imaging of the serotonin transporter (SERT) in the brain is a useful tool for examining normal physiological functions and disease states involving the serotonergic system. The goal of this study was to develop an improved SPECT radiotracer with faster kinetics than the current leading SPECT tracer, [{sup 123}I]ADAM, for selective SERT imaging. Methods: The in vitro binding affinities of (2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine) (FlipADAM) (1c), were determined using Hampshire pig kidney cells stably overexpressing the serotonin, norepinephrine (NET) or dopamine transporter (DAT). Localization of [{sup 125}I]FlipADAM (1c) was evaluated through biodistribution and autoradiography in male Sprague Dawley rats, and the specificity of binding was assessed by injecting selective SERT or NET inhibitors prior to [{sup 125}I]FlipADAM (1c). Results: FlipADAM (1c) displayed a high binding affinity for SERT (K{sub i}=1.0 nM) and good selectivity over NET and DAT binding (43-fold and 257-fold, respectively). [{sup 125}I]FlipADAM (1c) successfully penetrated the blood brain barrier, as evidenced by the brain uptake at 2 min (1.75% dose/g). [{sup 125}I]FlipADAM(1c) also had a good target to non-target (hypothalamus/cerebellum) ratio of 3.35 at 60 min post-injection. In autoradiography studies, [{sup 125}I]FlipADAM (1c) showed selective localization in SERT-rich brain regions such as the thalamic nuclei, amygdala, dorsal raphe nuclei and other areas. Conclusion: [{sup 125}I]FlipADAM (1c) exhibited faster clearance from the brain and time to binding equilibrium when compared to [{sup 125}I]2-(2'-((dimethylamino)methyl)-phenylthio)-5-iodophenylamine [{sup 125}I]ADAM (1b) and a higher target to non-target ratio when compared to [{sup 125}I]5-iodo-2-(2'-((dimethylamino)methyl)-phenylthio)benzyl alcohol [{sup 125}I]IDAM (1a). Therefore, [{sup 123}I]FlipADAM (1c) may be an improved

  4. Computer-assisted detection of epileptiform focuses on SPECT images

    Science.gov (United States)

    Grzegorczyk, Dawid; Dunin-Wąsowicz, Dorota; Mulawka, Jan J.

    2010-09-01

    Epilepsy is a common nervous system disease often related to consciousness disturbances and muscular spasm which affects about 1% of the human population. Despite major technological advances done in medicine in the last years there was no sufficient progress towards overcoming it. Application of advanced statistical methods and computer image analysis offers the hope for accurate detection and later removal of an epileptiform focuses which are the cause of some types of epilepsy. The aim of this work was to create a computer system that would help to find and diagnose disorders of blood circulation in the brain This may be helpful for the diagnosis of the epileptic seizures onset in the brain.

  5. Improved visual [(123)I]FP-CIT SPECT interpretation for evaluation of parkinsonism by visual rating of parametric distribution volume ratio images.

    Science.gov (United States)

    Meyer, P T; Winz, O H; Dafotakis, M; Werner, C J; Krohn, T; Schäfer, W M

    2011-06-01

    Imaging of presynaptic dopamine transporters (DAT) by single-photon emission computed tomography (SPECT) and [(123)I]FP-CIT is an established method for differentiating between neurodegenerative and non-neurodegenerative parkinsonism. Whereas a region-of-interest (ROI) analysis is the method of choice for analyzing [(123)I]FP-CIT SPECT studies, visual image interpretations can also provide highly accurate results. The present study was undertaken to validate a visual reading system for parametric volume of distribution (DVR) [(123)I]FP-CIT SPECT images that combines the quantitative nature of ROI analyses and the simplicity of visual readings. A 9-step linear visual rating template for semi-quantitative DVR ratings of caudate nucleus and putamen was developed (VRDVR). The conventional 4-step visual reading system that is mainly based on the [(123)I]FP-CIT uptake pattern was used for comparison (VRP method). Six independent observers retrospectively rated the [(123)I]FP-CIT scans of 30 consecutive parkinsonism and tremor patients (N.=16 neurodegenerative, N.=14 non-neurodegenerative) using VRDVR and VRP. In addition, a highly trained investigator performed manual ROI analyses. The ROI analysis provided complete separation of both patient groups by comparing the lower DAT binding of both putamina (i.e., putamen contralateral to clinically most affected side in neurodegenerative parkinsonism). Using VRP, the two most experienced observers correctly classified all patients while 20 false-positive ratings occurred in the less experienced observers (mean area under the receiver operating characteristic curve [AUCROC] of all observers 0.93±0.07). The VRDVR ratings of the two most experienced observers did not overlap between patient groups, although at different VRDVR score cut-offs. Using the same VRDVR score cut-off for all observers, only six false-negative and one false-positive ratings occurred in total (AUCROC 0.99±0.01). Inter-observer agreement was good for VRP

  6. N-isopropyl-p-( sup 123 I)iodoamphetamine SPECT in MELAS syndrome: Comparison with CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, M.; Ishikawa, N.; Yoshizawa, T.; Takeda, T.; Akisada, M. (Univ. of Tsukuba (Japan))

    1991-01-01

    Regional cerebral perfusion was studied in three patients with the mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, using single photon emission computed tomography (SPECT) with N-isopropyl-p-(123I)iodoamphetamine (IMP). Accumulation of the tracer was relatively decreased in the parietooccipital regions and also in the frontotemporal regions after stroke-like episodes. However, quantitative regional cerebral blood flow (rCBF) measurement showed that rCBF was relatively well preserved even at these sites, and a hyperemic state was observed at the sites of normal accumulation. IMP SPECT may be useful in the diagnosis and assessment of the progress of the MELAS syndrome.

  7. SPECT in psychiatry. SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  8. Optimization of energy window for {sup 90}Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Rong Xing; Ghaly, Michael; Frey, Eric C. [Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287-0859 (United States)

    2013-06-15

    Gaussian distribution; the signal was modeled as a tumor with a Gaussian-distributed activity parameter located randomly with equal probability at one of three positions. The IO test statistics (i.e., likelihood ratios) were estimated using Markov-chain Monte Carlo methods. The authors realistically modeled human anatomy using a digital phantom code, and realistically simulated {sup 90}Y bremsstrahlung SPECT imaging with a clinical SPECT system and typical imaging parameters using a previously validated Monte Carlo bremsstrahlung simulation method. Model-mismatch was included by modeling image formation process in the calculation of IO test statistics using an analytic modeling method previously developed for quantitative {sup 90}Y bremsstrahlung SPECT. To demonstrate the effects of the model-mismatch on the detection task, the authors optimized the energy window both with and without model-mismatch included in the IO. Results: For all the energy windows, the AUC values for the IO-MM were smaller than that for the IO. The optimal windows for the IO-MM and the IO were 80-180 and 60-400 keV, respectively. Conclusions: The authors have demonstrated the degradation of the ideal performance due to model-mismatch and optimized the energy window for {sup 90}Y bremsstrahlung SPECT for detection tasks by accounting for the effects of the model-mismatch. The obtained optimal window was much narrower when taking into account the model-mismatch and similar to that obtained previously for estimation tasks.

  9. A comparative study of SPECT/CT fusion imaging and CT in infiltrated mandible by gingival carcinoma%牙龈癌侵犯下颌骨SPECT/CT融合显像和CT影像的对照研究

    Institute of Scientific and Technical Information of China (English)

    Hongwei Liu; Guichang Li; Ningyi Li; Jie Wang; Baomei Fang

    2009-01-01

    Objective: The aim of the study was to evaluate the clinical value of99mTc-methylene diphosphonic acid (MDP) SPECT/CT fusion imaging and CT scanning in diagnosis of infiltrated mandible by gingival carcinoma. Methods: 18 cases of gingival carcinoma were processed infiltrated mandible by99mTc-MDP SPECT/CT fusion image and CT, and their scanning results compared with pathology findings. Results: Eleven of 13 cases with well-differentiated squamous cell carcinoma showed positive images, one of 11 cases was false positive images by pathology findings, and 10 cases were exhibited infil-trated mandibles; 5 cases with moderately differentiated and poorly differentiated squamous cell carcinoma showed positive images, pathology showed carcinoma cell had infiltrated cavum ossis of mandible. Five of 18 cases were positive images by CT. Conclusion: 99mTc-MDP SPECT/CT fusion imaging is a useful method in diagnosis of infiltrated mandible by gingival carcinoma.

  10. An SVD Investigation of Modeling Scatter in Multiple Energy Windows for Improved SPECT Images.

    Science.gov (United States)

    Kadrmas, Dan J; Frey, Eric C; Tsui, Benjamin M W

    1996-08-01

    In this work singular value decomposition (SVD) techniques are used to investigate how the use of low energy photons and multiple energy windows affects the noise properties of Tc-99m SPECT imaging. We have previously shown that, when modeling scatter in the projector and backprojector of iterative reconstruction algorithms, simultaneous reconstruction from multiple energy window data can result in very different noise characteristics. Further, the properties depend upon the width and number of energy windows used. To investigate this further, we have generated photon transport matrices using models for scatter, an elliptical phantom containing cold rods of various sizes, and a number of multiple energy window acquisition schemes. Transfer matrices were also generated for the cases of perfect scatter rejection and ideal scatter subtraction. The matrices were decomposed using SVD, and signal power and projection space variance spectra were computed using the basis formed by the left singular vectors. Results indicate very different noise levels for the various energy window combinations. The perfect scatter rejection case resulted in the lowest variance spectrum, and reconstruction-based scatter compensation performed better than the scatter subtraction case. When including lower energy photons in reconstruction-based scatter compensation, using a series of multiple energy windows outperformed a single large energy window. One multiple window combination is presented which achieves a lower variance spectrum than the standard 20% energy window, indicating the potential for using low energy photons to improve the noise characteristics of SPECT images.

  11. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Suying [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Zhang, Qiushi [Institute for Drug and Instrument Control of Health Department GLD of PLA, No. 17 Fengtai West Road, Beijing 100071 (China); Xie, Zhaoheng; Liu, Qi [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Xu, Baixuan [The General Hospital of Chinese People’s Liberation Army, No. 28 Fuxing Road, Beijing 100039 (China); Yang, Kun; Li, Changhui [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing 100871 (China)

    2015-02-11

    This paper presents a small animal SPECT system that is based on cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ∼1.8 mm and sensitivity of ∼0.065 cps/kBq, can be an ideal configuration for our SPECT imager design.

  12. Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [{sup 123}I]FP-CIT and a dedicated small animal SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaus, Susanne; Wirrwar, Andreas; Antke, Christina; Arkian, Shahram; Mueller, Hans-Wilhelm; Larisch, Rolf [Heinrich-Heine University, Clinic of Nuclear Medicine, Duesseldorf (Germany); Schramm, Nils [Research Center Juelich, Central Laboratory for Electronics, Juelich (Germany)

    2005-03-01

    The aim of this study was to investigate the feasibility of assessing dopamine transporter binding after treatment with methylphenidate in the rat using a recently developed high-resolution small animal single-photon emission computed tomograph (TierSPECT) and [{sup 123}I]FP-CIT. [{sup 123}I]FP-CIT was administered intravenously 1 h after intraperitoneal injection of methylphenidate (10 mg/kg) or vehicle. Animals underwent scanning 2 h after radioligand administration. The striatum was identified by superimposition of [{sup 123}I]FP-CIT scans with bone metabolism and perfusion scans obtained with {sup 99m}Tc-DPD and {sup 99m}Tc-tetrofosmin, respectively. As these tracers do not pass the blood-brain barrier, their distribution permits the identification of extracerebral anatomical landmarks such as the orbitae and the harderian glands. The cerebellum was identified by superimposing [{sup 123}I]FP-CIT scans with images of brain perfusion obtained with {sup 99m}Tc-HMPAO. Methylphenidate-treated animals and vehicle-treated animals yielded striatal equilibrium ratios (V''{sub 3}) of 0.24{+-}0.26 (mean {+-} SD) and 1.09{+-}0.42, respectively (ttest, two-tailed, p<0.0001). Cortical V''{sub 3} values amounted to 0.05{+-}0.28 (methylphenidate) and 0.3{+-}0.39 (saline, p=0.176). This first in vivo study of rat dopamine transporter binding after pre-treatment with methylphenidate showed a mean reduction of 78% in striatal [{sup 123}I]FP-CIT accumulation. The results can be interpreted in terms of a pharmacological blockade in the rat striatum and show that in vivo quantitation of dopamine transporter binding is feasible with [{sup 123}I]FP-CIT and the TierSPECT. This may be of future relevance for in vivo investigations on rat models of attention deficit/hyperactivity disorder. Furthermore, our findings suggest that investigations in other animal models, e.g. of Parkinson's and Huntington's disease, may be feasible using SPECT radioligands and

  13. Multimodal imaging analysis of single-photon emission computed tomography and magnetic resonance tomography for improving diagnosis of Parkinson's disease; Multimodale SPECT- und MRT-Bilddatenanalyse zur Verbesserung der Diagnostik des idiopathischen Parkinson-Syndroms

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, H.; Georgi, P. [Leipzig Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Mueller, U.; Waechter, T.; Murai, T. [Max-Planck-Inst. fuer Neuropsychologische Forschung, Leipzig (Germany); Slomka, P. [Universitaet West-Ontario, London (Canada). Abt. fuer Nuklearmedizin; Dannenberg, C.; Kahn, T. [Leipzig Univ. (Germany). Klinik und Poliklinik fuer Diagnostische Radiologie

    2000-10-01

    Parkinson's disease (PD) is characterized by a degeneration of nigrostriated dopaminergic neurons, which can be imaged with {sup 123}I-labeled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl) tropane ([{sup 123}I]{beta}-CIT) and single-photon emission computed tomography (SPECT). However, the quality of the region of interest (ROI) technique used for quantitative analysis of SPECT data is compromised by limited anatomical information in the images. We investigated whether the diagnosis of PD can be improved by combining the use of SPECT images with morphological image data from magnetic resonance imaging (MRI)/computed tomography (CT). We examined 27 patients (8 men, 19 women; aged 55{+-}13 years) with PD (Hoehn and Yahr stage 2.1{+-}0.8) by high-resolution [{sup 123}I]{beta}-CIT SPECT (185-200 MBq, Ceraspect camera). SPECT images were analyzed both by a unimodal technique (ROIs defined directly within the SPECT studies) and a multimodal technique (ROIs defined within individual MRI/CT studies and transferred to the corresponding interactively coregistered SPECT studies). [{sup 123}I]{beta}-CIT binding ratios (cerebellum as reference), which were obtained for heads of caudate nuclei (CA), putamina (PU), and global striatal structures were compared with clinical parameters. Differences between contra- and ipsilateral (related to symptom dominance) striatal [{sup 123}I]{beta}-CIT binding ratios proved to be larger in the multimodal ROI technique than in the unimodal approach (e.g., for PU: 1.2*** vs. 0.7**). Binding ratios obtained by the unimodal ROI technique were significantly correlated with those of the multimodal technique (e.g., for CA: y=0.97x+2.8; r=0.70; P<0.001). Concerning the correlations between SPECT data and clinical parameters, the significance levels in the multimodal ROI technique exceeded those of the unimodal technique, for example, for the correlation between CA and the UPDRS{sub com} subscore (r=-0.49* vs. -0.32). These results show that the

  14. Case-based statistical learning applied to SPECT image classification

    Science.gov (United States)

    Górriz, Juan M.; Ramírez, Javier; Illán, I. A.; Martínez-Murcia, Francisco J.; Segovia, Fermín.; Salas-Gonzalez, Diego; Ortiz, A.

    2017-03-01

    Statistical learning and decision theory play a key role in many areas of science and engineering. Some examples include time series regression and prediction, optical character recognition, signal detection in communications or biomedical applications for diagnosis and prognosis. This paper deals with the topic of learning from biomedical image data in the classification problem. In a typical scenario we have a training set that is employed to fit a prediction model or learner and a testing set on which the learner is applied to in order to predict the outcome for new unseen patterns. Both processes are usually completely separated to avoid over-fitting and due to the fact that, in practice, the unseen new objects (testing set) have unknown outcomes. However, the outcome yields one of a discrete set of values, i.e. the binary diagnosis problem. Thus, assumptions on these outcome values could be established to obtain the most likely prediction model at the training stage, that could improve the overall classification accuracy on the testing set, or keep its performance at least at the level of the selected statistical classifier. In this sense, a novel case-based learning (c-learning) procedure is proposed which combines hypothesis testing from a discrete set of expected outcomes and a cross-validated classification stage.

  15. Quantitative imaging as cancer biomarker

    Science.gov (United States)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine

  16. [Elaboration of the SPM template for the standardization of SPECT images with 123I-Ioflupane].

    Science.gov (United States)

    García-Gómez, F J; García-Solís, D; Luis-Simón, F J; Marín-Oyaga, V A; Carrillo, F; Mir, P; Vázquez-Albertino, R J

    2013-01-01

    Statistical parametric mapping (SPM) is a widely used produced for normalization of functional images. This study has aimed to develop a normalization template of (123)I-Ioflupane SPECT-imaging DaTSCAN(®), GE Healthcare), not available in SPM5, and to validate it compared to other quantification methods. In order to write the template we retrospectively selected 26 subjects who had no evidence of nigrostriatal degeneration and whose age distribution was similar to that of the patients in the usual practice of our Department: 2 subjects (7.6%) were 65 years (57.7%). All the studies were normalized with the T1-template available in SPM5 and an average image of the value was obtained for each voxel. For validation we analyzed 60 patients: 30 with idiopathic Parkinson's disease patients (iPD) with right involvement (66.83±12.20 years) and 30 with essential tremor patients (ET) (67.27±8.33 years). Specific uptake rates (SUR) of different striatal regions were compared after image normalization with our template and the application of a semiautomated VOIs-map created with Analyze v9.0 ((©)BIR, Mayo Clinic), against two quantification methods: a) manual adjustment of a ROIs-map drawn in Analyze, and b) semi-automated method (HERMES-BRASS) with normalization and implementation of VOIs-map. No statistically significant differences in the iPD/ET discriminatory capacity between the three methods analyzed were observed (p0,871, p<0,001). This difference was greater in patients with PD. Our study demonstrates the efficacy of our SPM «template» for (123)I-Ioflupane SPECT-imaging, obtained from normalization with «T1-template». Copyright © 2012 Elsevier España, S.L. and SEMNIM. All rights reserved.

  17. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively.

  18. Software-based hybrid perfusion SPECT/CT provides diagnostic accuracy when other pulmonary embolism imaging is indeterminate

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nishant; Xie, Karen; Mar, Winnie; Anderson, Thomas M.; Carney, Benjamin; Mehta, Nikhil; Machado, Roberto; Blend, Michael J.; Lu, Yang [University of Illinois Hospital and Health Sciences System, Chicago (Korea, Republic of)

    2015-12-15

    To investigate the diagnostic performance of perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) in patients suspected to have pulmonary embolism (PE) but with indeterminate computed tomographic pulmonary angiography (CTPA) or planar ventilation/perfusion (V/Q) scans. This retrospective study included two groups of patients. Group I consisted of 49 patients with nondiagnostic CTPA. These 49 patients underwent subsequent V/Q scans. Further Q-SPECTs were obtained in patients with indeterminate planar images and fused with existing CTPA. Group II consisted of 182 non-CTPA patients with indeterminate V/Q scans. These 182 patients underwent further Q-SPECT and separate noncontrast low-dose CT chest. Fusion Q-SPECT/CT scans were obtained through FDA-approved software and interpreted according to published criteria as positive, negative, or indeterminate for PE. Upon retrospective analyses, the final diagnosis was made using composite reference standards including all available clinical and imaging information for at least 6-month follow-up. In group I patients, 1 was positive, 24 were negative, and another 24 (49 %, 24/49) were indeterminate. In the subsequent 24 Q-SPECT/CTPAs, 4 were positive, 19 were negative, and 1 was indeterminate (4.2 %, 1/24). In group II patients, 9 (4.9 %, 9/182) were indeterminate, 33 were positive, and 140 were negative. The combined nondiagnostic rate for Q-SPECT/CT was only 4.9 % (10/206). There was six false-negative and one false-positive Q-SPECT/CT examinations. The sensitivity, specificity, and positive and negative predictive value of Q-SPECT/CT were 85.7 % (36/42), 99.4 % (153/154), 97.3 % (36/37) and 96.2 % (153/159), respectively. Q-SPECT/CT improves the diagnostic rate with promising accuracy in diagnosing PE that yields a satisfactory clinical verdict, especially when the CTPA and planar V/Q scan are indeterminate.

  19. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  20. Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging.

    Science.gov (United States)

    Pretorius, P Hendrik; King, Michael A

    2009-01-01

    The partial volume effect (PVE) significantly restricts the absolute quantification of regional myocardial uptake and thereby limits the accuracy of absolute measurement of blood flow and coronary flow reserve by SPECT. The template-projection-reconstruction method has been previously developed for PVE compensation. This method assumes the availability of coregistered high-spatial resolution anatomical information as is now becoming available with commercial dual-modality imaging systems such as SPECT/CTs. The objective of this investigation was to determine the extent to which the impact of the PVE on cardiac perfusion SPECT imaging can be diminished if coregistered high-spatial resolution anatomical information is available. For this investigation the authors introduced an additional parameter into the template-projection-reconstruction compensation equation called the voxel filling fraction (F). This parameter specifies the extent to which structure edge voxels in the emission reconstruction are filled by the structure in question as determined by the higher spatial-resolution imaging modality and the fractional presence of the structure at different states of physiological motion as in combining phases of cardiac motion. During correction the removal of spillover to the cardiac region from the surrounding structures is performed first by using reconstructed templates of neighboring structures (liver, blood pool, lungs) to calculate spillover fractions. This is followed by determining recovery coefficients for all voxels within the heart wall from the reconstruction of the template projections of the left and right ventricles (LV and RV). The emission data are subsequently divided by these recovery coefficients taking into account the filling fraction F. The mathematical cardiac torso phantom was used for investigation correction of PVE for a normal LV distribution, a defect in the inferior wall, and a defect in the anterior wall. PVE correction resulted in a

  1. Tracer-specific PET and SPECT templates for automatic co-registration of functional rat brain images

    NARCIS (Netherlands)

    Vállez Garcia, David; Schwarz, Adam J; Dierckx, Rudi; Koole, Michel; Doorduin, Janine

    2014-01-01

    Objectives: Template based spatial co-registration of PET and SPECT data is an important first step in its semi- automatic processing, facilitating VOI- and voxel-based analysis. Although this procedure is standard in human, using corresponding MRI images, these systems are often not accessible for

  2. Cerebrovascular disease in newborn infants: report of three cases with clinical follow-up and brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Ribeiro, Maria Valeriana L. de; Ciasca, Sylvia Maria; Vale-Cavalcanti, Mariza; Etchebehere, Elba C.S.C.; Camargo, Edwaldo E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas

    1999-07-01

    The clinical and neurological findings of three neonates with the diagnosis of cerebrovascular disease are reported. The neuropsychological evaluation disclosed impairment of fine motor function, coordination, language, perception and behavioral disturbances. Brain SPECT imaging revealed perfusional deficits in the three cases. (author)

  3. Feasibility of 99mTc-TRODAT-1 Micro-SPECT imaging of dopamine transporter in animal retinas

    Institute of Scientific and Technical Information of China (English)

    ZHAO Juan; QI Yujin; DAI Qiusheng; ZHANG Xuezhu; QU Xiaomei; HUANG Jia; LIU Xingdang

    2008-01-01

    In this paper, 99mTc-TRODAT-1 Micro-SPECT (single-photon emission computed tomography) was used for imaging dopamine transporter (DAT) in retinas and to investigate the changes of DAT in retinas of guinea pigs with form deprivation myopia. Pigmented guinea pigs aged 3 weeks were devided into form deprivation myopia (FDM) group (n=6) and normal control group (n=6). The test group wore translucent goggles randomly for 4 weeks,and both groups underwent biometric measurement (refraction and axial length) before and after the experiment.Micro-SPECT retinas imaging was performed at the 4th week after injection of 99nTc-TRODAT-1. The retinas were clearly resolved in the images. The ratio of 99mTc-TRODAT-1 uptake in the myopic retinas (11.55±2.80) was 3.64±1.40 lower than that in the control eye (15.20±1.98), and 2.35+1.05 lower than that in the fellow eyes (13.90±2.04). The results showed that 99mTc-TRODAT-1 Micro-SPECT eye imaging can be used to trace the distribution and changes of DAT in retina, and DAT in the myopic retinas were lower than that in the normal control eyes and fellow eyes. Micro-SPECT may provide a new approach for further studies on the role of dopamine system in the experimental myopia.

  4. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model

    DEFF Research Database (Denmark)

    Lomsky, Milan; Richter, Jens; Johansson, Lena

    2005-01-01

    A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model...

  5. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  6. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H. [and others

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  7. Left-ventricular dyssynchrony evaluated by Tl-201 gated SPECT myocardial perfusion imaging: a comparison with Tc-99m sestamibi.

    Science.gov (United States)

    Chen, Chien-Cheng; Huang, Wen-Sheng; Hung, Guang-Uei; Chen, Wan-Chen; Kao, Chia-Hung; Chen, Ji

    2013-03-01

    Phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has been validated as a reliable tool to assess left-ventricular (LV) mechanical dyssynchrony. The initial results were all confirmed from studies using technetium-99m (Tc-99m) sestamibi or tetrofosmin as the radiotracers. The purpose of this study was to evaluate the feasibility of phase analysis in thallium-201 (Tl-201) gated SPECT MPI. Seventeen patients referred from a cardiology clinic for evaluation of coronary artery disease were studied. All patients underwent both Tl-201 and Tc-99m sestamibi gated SPECT MPI within 1 week. An additional 34 patients with Tl-201 gated SPECT and 22 patients with Tc-99m sestamibi gated SPECT, who had a low likelihood of coronary artery disease, normal LV function, and normal perfusion on MPI, were used as normal controls. LV dyssynchrony parameters, including phase standard deviation (PSD) and phase histogram bandwidth (PHB), were measured using a standard phase analysis tool and compared between Tl-201 and Tc-99m sestamibi images. The LV dyssynchrony parameters correlated well (r=0.93 for PSD and r=0.84 for PHB) between Tl-201 and Tc-99m sestamibi images. The dyssynchrony parameters of Tl-201 were significantly larger than those of Tc-99m sestamibi (PSD: 24.5±12.0 vs. 17.4±9.7, PTl-201 and Tc-99m sestamibi images showed concordant results. LV dyssynchrony parameters correlated well between Tl-201 and Tc-99m sestamibi images, even though the values were significantly larger for Tl-201 than for Tc-99m sestamibi. Tl-201 images showed results similar to those of Tc-99m sestamibi in the diagnosis of LV dyssynchrony.

  8. Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.V.; Cooke, C.D.; Van Train, K.F.; Folks, R.; Peifer, J.; DePuey, E.G.; Maddahi, J.; Alazraki, N.; Galt, J.; Ezquerra, N. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1990-10-16

    Most reports to date using single photon emission computed tomography (SPECT) with technetium-99m (Tc-99m) sestamibi have used acquisition parameters that were optimized for thallium-201. To fully utilize the superior imaging characteristics of Tc-99m sestamibi, there is a need to optimize the technical aspects of SPECT imaging for this agent. Performance can be enhanced through the careful selection of optimal radiopharmaceutical doses, imaging sequences, acquisition parameters, reconstruction filters, perfusion quantification methods and multidimensional methods for visualizing perfusion distribution. The current report describes theoretical considerations, phantom studies and preliminary patient results that have led to optimized protocols, developed at Emory University and Cedars-Sinai Medical Center, for same-day rest-stress studies, given existing instrumentation and recommended dose limits. The optimizations were designed to fit a low-dose-high-dose rest-stress same-day imaging protocol. A principal change in the acquisition parameters compared with previous Tc-99m sestamibi protocols is the use of a high-resolution collimator. The approach is being developed in both prone and supine positions. A new method for extracting a 3-dimensional myocardial count distribution has been developed that uses spherical coordinates to sample the apical region and cylindrical coordinates to sample the rest of the myocardium. New methods for visualizing the myocardial distribution in multiple dimensions are also described, with improved 2-dimensional, as well as 3- and 4-dimensional (3 dimensions plus time) displays. In the improved 2-dimensional display, distance-weighted and volume-weighted polar maps are used that appear to significantly improve the representation of defect location and defect extent, respectively.

  9. Imaging characterization of a new gamma ray detector based on CRY019 scintillation crystal for PET and SPECT applications

    Science.gov (United States)

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.

    2017-02-01

    In the last 40 years, in the field of Molecular Medicine imaging there has been a huge growth in the employment and in the improvement of detectors for PET and SPECT applications in order to reach accurate diagnosis of the diseases. The most important feature required to these detectors is an high quality of images that is usually obtained benefitting from the development of a wide number of new scintillation crystals with high imaging performances. In this contest, features like high detection efficiency, short decay time, great spectral match with photodetectors, absence of afterglow and low costs are surely attractive. However, there are other factors playing an important role in the realization of high quality images such as energy and spatial resolutions, position linearity and contrast resolution. With the aim to realize an high performace gamma ray detector for PET and SPECT applications, this work is focused on the evaluation of the imaging characteristics of a recently developed scintillation crystal, CRY019.

  10. Quantification of dopaminergic neurotransmission SPECT studies with {sup 123}I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, Cristina; Aguiar, Pablo [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); Gallego, Judith [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Institut de Bioenginyeria de Catalunya, Barcelona (Spain); Cot, Albert [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); Universitat Politecnica de Catalunya, Seccio d' Enginyeria Nuclear, Departament de Fisica i Enginyeria Nuclear, Barcelona (Spain); Falcon, Carles; Ros, Domenec [Universitat de Barcelona - IDIBAPS, Unitat de Biofisica i Bioenginyeria, Departament de Ciencies Fisiologiques I, Facultat de Medicina, Barcelona (Spain); CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Bullich, Santiago [Hospital del Mar, Center for Imaging in Psychiatry, CRC-MAR, Barcelona (Spain); Pareto, Deborah [CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); PRBB, Institut d' Alta Tecnologia, Barcelona (Spain); Sempau, Josep [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Lomena, Francisco [IDIBAPS, Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Calvino, Francisco [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Universitat Politecnica de Catalunya, Seccio d' Enginyeria Nuclear, Departament de Fisica i Enginyeria Nuclear, Barcelona (Spain); Pavia, Javier [CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); IDIBAPS, Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain)

    2008-07-15

    {sup 123}I-labelled radioligands are commonly used for single-photon emission computed tomography (SPECT) imaging of the dopaminergic system to study the dopamine transporter binding. The aim of this work was to compare the quantitative capabilities of two different SPECT systems through Monte Carlo (MC) simulation. The SimSET MC code was employed to generate simulated projections of a numerical phantom for two gamma cameras equipped with a parallel and a fan-beam collimator, respectively. A fully 3D iterative reconstruction algorithm was used to compensate for attenuation, the spatially variant point spread function (PSF) and scatter. A post-reconstruction partial volume effect (PVE) compensation was also developed. For both systems, the correction for all degradations and PVE compensation resulted in recovery factors of the theoretical specific uptake ratio (SUR) close to 100%. For a SUR value of 4, the recovered SUR for the parallel imaging system was 33% for a reconstruction without corrections (OSEM), 45% for a reconstruction with attenuation correction (OSEM-A), 56% for a 3D reconstruction with attenuation and PSF corrections (OSEM-AP), 68% for OSEM-AP with scatter correction (OSEM-APS) and 97% for OSEM-APS plus PVE compensation (OSEM-APSV). For the fan-beam imaging system, the recovered SUR was 41% without corrections, 55% for OSEM-A, 65% for OSEM-AP, 75% for OSEM-APS and 102% for OSEM-APSV. Our findings indicate that the correction for degradations increases the quantification accuracy, with PVE compensation playing a major role in the SUR quantification. The proposed methodology allows us to reach similar SUR values for different SPECT systems, thereby allowing a reliable standardisation in multicentric studies. (orig.)

  11. Quantification of rat brain SPECT with 123I-ioflupane: evaluation of different reconstruction methods and image degradation compensations using Monte Carlo simulation

    Science.gov (United States)

    Roé-Vellvé, N.; Pino, F.; Falcon, C.; Cot, A.; Gispert, J. D.; Marin, C.; Pavía, J.; Ros, D.

    2014-08-01

    SPECT studies with 123I-ioflupane facilitate the diagnosis of Parkinson’s disease (PD). The effect on quantification of image degradations has been extensively evaluated in human studies but their impact on studies of experimental PD models is still unclear. The aim of this work was to assess the effect of compensating for the degrading phenomena on the quantification of small animal SPECT studies using 123I-ioflupane. This assessment enabled us to evaluate the feasibility of quantitatively detecting small pathological changes using different reconstruction methods and levels of compensation for the image degrading phenomena. Monte Carlo simulated studies of a rat phantom were reconstructed and quantified. Compensations for point spread function (PSF), scattering, attenuation and partial volume effect were progressively included in the quantification protocol. A linear relationship was found between calculated and simulated specific uptake ratio (SUR) in all cases. In order to significantly distinguish disease stages, noise-reduction during the reconstruction process was the most relevant factor, followed by PSF compensation. The smallest detectable SUR interval was determined by biological variability rather than by image degradations or coregistration errors. The quantification methods that gave the best results allowed us to distinguish PD stages with SUR values that are as close as 0.5 using groups of six rats to represent each stage.

  12. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.

    Science.gov (United States)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Islamian, Jalil Pirayesh

    2016-02-01

    Treatment efficacy of radioembolization using Yttrium-90 ((90)Y) microspheres is assessed by the (90)Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of (90)Y microspheres distribution. One of the main reasons of the poor image quality in (90)Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the (90)Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the (90)Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a (90)Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35-3.3mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for (90)Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3mm. Geometry of the ME parallel-hole collimator and energy

  13. In-111-labeled leukocyte brain SPECT imaging. Clinical significance in evaluating acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Fujinuma, Kunihiko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine

    2002-02-01

    Many experimental studies have demonstrated that leukocyte infiltration plays an important role in the progression of ischemic cellular damage or post perfusion brain injury. However, only a few clinical studies have been reported. The purpose of this study is to evaluate the clinical significance of leukocyte accumulation in the ischemic brain tissue. Seventy six patients (49 men, 27 women; mean age: 65.5{+-}13.9 years) with acute ischemic stroke were studied by leukocyte brain SPECT imaging. A diagnosis included cardioembolism (n=46), atherothrombotic infarction (n=24), TIA (n=3) and lacuna (n=3). Immediately after the CBF study using Tc-99m-ECD (600 MBq), indium-111-labeled autologous leukocytes were injected. A brain scan for leukocytes was performed 48 hours later. The leukocyte-SPECT study was made 11.1{+-}7.7 days after the onset of stroke. Regional accumulation of leukocytes in the ischemic tissue was evaluated both by visual assessment and by measuring the hemispheric asymmetry index for leukocyte (AI-leuko), and was evaluated by comparison with variable factors including age, gender, infarction size, hemorrhagic transformation, timing of study after the onset, type of stroke and functional outcome. Of the 61 patients with acute ischemic stroke within 2 weeks of onset, 28 patients showed the accumulation of leukocytes in the central zone of ischemia. Six of 7 patients with repeated studies showed a reduction in leukocyte accumulation with time after the onset. Factors significantly associated with the higher accumulation of leukocyte included cardioembolic stroke, larger size of infarct, presence of hemorrhagic transformation and significant reduction in flow. In the 61 patients within 2 weeks of onset, the functional outcome was significantly correlated with the accumulation of leukocyte (p<0.001). The accumulation of leukocytes was seen more in patients with embolic stroke, larger infarction, and hemorrhagic transformation. The higher accumulation

  14. Brain imaging with sup 123 I-IMP-SPECT in migraine between attacks

    Energy Technology Data Exchange (ETDEWEB)

    Schlake, H.P.; Boettger, I.G.G.; Grotemeyer, K.H.; Husstedt, I.W.

    1989-06-01

    {sup 123}I-IMP-SPECT brain imaging was performed in patients with classic migraine (n = 5) and migraine accompagnee (n = 18) during the headache-free interval. A regional reduction of tracer uptake into brain was observed in all patients with migraine accompagnee, while in patients with classic migraine only one case showed an area of decreased activity. The most marked alteration was found in a patient with persisting neurological symptoms (complicated migraine). In most cases the areas of decreased tracer uptake corresponded to headache localization as well as to topography of neurologic symptoms during migraine attacks. It may be concluded that migraine attacks occur in connection with exacerbations of preexisting changes of cerebral autoregulation due to endogenous or exogenous factors.

  15. Validation of semi-quantitative methods for DAT SPECT: influence of anatomical variability and partial volume effect

    Science.gov (United States)

    Gallego, J.; Niñerola-Baizán, A.; Cot, A.; Aguiar, P.; Crespo, C.; Falcón, C.; Lomeña, F.; Sempau, J.; Pavía, J.; Ros, D.

    2015-08-01

    The aim of this work was to evaluate the influence of anatomical variability between subjects and of the partial volume effect (PVE) on the standardized Specific Uptake Ratio (SUR) in [123I]FP-bib SPECT studies. To this end, magnetic resonance (MR) images of 23 subjects with differences in the striatal volume of up to 44% were segmented and used to generate a database of 138 Monte Carlo simulated SPECT studies. Data included normal uptakes and pathological cases. Studies were reconstructed by filtered back projection (FBP) and the ordered-subset expectation-maximization algorithm. Quantification was carried out by applying a reference method based on regions of interest (ROIs) derived from the MR images and ROIs derived from the Automated Anatomical Labelling map. Our results showed that, regardless of anatomical variability, the relationship between calculated and true SUR values for caudate and putamen could be described by a multiple linear model which took into account the spill-over phenomenon caused by PVE ({{R}2}≥slant 0.963 for caudate and ≥0.980 for putamen) and also by a simple linear model (R2 ≥ 0.952 for caudate and ≥0.973 for putamen). Calculated values were standardized by inverting both linear systems. Differences between standardized and true values showed that, although the multiple linear model was the best approach in terms of variability ({χ2}  ≥ 11.79 for caudate and  ≤7.36 for putamen), standardization based on a simple linear model was also suitable ({χ2}  ≥ 12.44 for caudate and  ≤12.57 for putamen).

  16. Use of a ray-based reconstruction algorithm to accurately quantify preclinical microSPECT images.

    Science.gov (United States)

    Vandeghinste, Bert; Van Holen, Roel; Vanhove, Christian; De Vos, Filip; Vandenberghe, Stefaan; Staelens, Steven

    2014-01-01

    This work aimed to measure the in vivo quantification errors obtained when ray-based iterative reconstruction is used in micro-single-photon emission computed tomography (SPECT). This was investigated with an extensive phantom-based evaluation and two typical in vivo studies using 99mTc and 111In, measured on a commercially available cadmium zinc telluride (CZT)-based small-animal scanner. Iterative reconstruction was implemented on the GPU using ray tracing, including (1) scatter correction, (2) computed tomography-based attenuation correction, (3) resolution recovery, and (4) edge-preserving smoothing. It was validated using a National Electrical Manufacturers Association (NEMA) phantom. The in vivo quantification error was determined for two radiotracers: [99mTc]DMSA in naive mice (n  =  10 kidneys) and [111In]octreotide in mice (n  =  6) inoculated with a xenograft neuroendocrine tumor (NCI-H727). The measured energy resolution is 5.3% for 140.51 keV (99mTc), 4.8% for 171.30 keV, and 3.3% for 245.39 keV (111In). For 99mTc, an uncorrected quantification error of 28 ± 3% is reduced to 8 ± 3%. For 111In, the error reduces from 26 ± 14% to 6 ± 22%. The in vivo error obtained with 99mTc-dimercaptosuccinic acid ([99mTc]DMSA) is reduced from 16.2 ± 2.8% to -0.3 ± 2.1% and from 16.7 ± 10.1% to 2.2 ± 10.6% with [111In]octreotide. Absolute quantitative in vivo SPECT is possible without explicit system matrix measurements. An absolute in vivo quantification error smaller than 5% was achieved and exemplified for both [99mTc]DMSA and [111In]octreotide.

  17. Use of a Ray-Based Reconstruction Algorithm to Accurately Quantify Preclinical MicroSPECT Images

    Directory of Open Access Journals (Sweden)

    Bert Vandeghinste

    2014-06-01

    Full Text Available This work aimed to measure the in vivo quantification errors obtained when ray-based iterative reconstruction is used in micro-single-photon emission computed tomography (SPECT. This was investigated with an extensive phantom-based evaluation and two typical in vivo studies using 99mTc and 111In, measured on a commercially available cadmium zinc telluride (CZT-based small-animal scanner. Iterative reconstruction was implemented on the GPU using ray tracing, including (1 scatter correction, (2 computed tomography-based attenuation correction, (3 resolution recovery, and (4 edge-preserving smoothing. It was validated using a National Electrical Manufacturers Association (NEMA phantom. The in vivo quantification error was determined for two radiotracers: [99mTc]DMSA in naive mice (n = 10 kidneys and [111In]octreotide in mice (n = 6 inoculated with a xenograft neuroendocrine tumor (NCI-H727. The measured energy resolution is 5.3% for 140.51 keV (99mTc, 4.8% for 171.30 keV, and 3.3% for 245.39 keV (111In. For 99mTc, an uncorrected quantification error of 28 ± 3% is reduced to 8 ± 3%. For 111In, the error reduces from 26 ± 14% to 6 ± 22%. The in vivo error obtained with “mTc-dimercaptosuccinic acid ([99mTc]DMSA is reduced from 16.2 ± 2.8% to −0.3 ± 2.1% and from 16.7 ± 10.1% to 2.2 ± 10.6% with [111In]octreotide. Absolute quantitative in vivo SPECT is possible without explicit system matrix measurements. An absolute in vivo quantification error smaller than 5% was achieved and exemplified for both [”mTc]DMSA and [111In]octreotide.

  18. Brain SPECT. SPECT in der Gehirndiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Feistel, H. (Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik)

    1991-12-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG).

  19. Comparison of occupational radiation exposure from myocardial perfusion imaging with Rb-82 PET and Tc-99m SPECT.

    Science.gov (United States)

    Tout, Deborah; Davidson, Gillian; Hurley, Caroline; Bartley, Michelle; Arumugam, Parthiban; Bradley, Andy

    2014-10-01

    Rubidium-82 (Rb-82) PET myocardial perfusion imaging (MPI) has superior diagnostic accuracy, at least similar prognostic value, and lower patient radiation exposure when compared with technetium-99m single-photon emission computed tomography (Tc-99m SPECT) MPI. The aim of this study was to compare occupational radiation exposure from the two modalities and show that improvements for the patient do not come at a cost to staff. Electronic personal dosimeters were worn by staff involved in the administration and imaging of routine clinical Tc-99m SPECT and Rb-82 PET MPI, and during tracer production and QC. To estimate dose to the staff in the event of a medical emergency, a survey meter was placed in close contact with the patient during Rb-82 infusion and imaging, and immediately after administration for Tc-99m SPECT. Mean (SD) whole-body effective dose to staff during a single MPI procedure was 0.4 (0.4) μSv for Rb-82 PET (1110 MBq) and 3.3 (1.7) μSv for Tc-99m SPECT (350 MBq). Staff effective dose during tracer production and QC was low (<0.2 μSv/patient) and comparable between tracers. An additional effective dose was measured at close contact to the patient during, and immediately after, tracer administration, although this will not pose a significant radiation risk to staff with either technique as long as this is not routine practice. There is a significant reduction in effective dose during Rb-82 PET when compared with Tc-99m SPECT MPI because of the short half-life of Rb-82 and reduced patient contact.

  20. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    Science.gov (United States)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  1. Utility of SPECT/CT as an adjunct to planar whole body I-131 imaging: liver metastasis from papillary thyroid cancer.

    Science.gov (United States)

    Agriantonis, Demetrios J; Hall, Lance; Wilson, Michael A

    2009-04-01

    One of the major limitations of planar I-131 imaging is its lack of anatomic precision. SPECT/CT offers the benefit of precise anatomic localization that planar imaging lacks. Whether for confirmation of physiologic uptake or true pathology, SPECT/CT has an important role to play in clarifying equivocal findings. We present a case of papillary thyroid cancer metastatic to the liver, a relatively rare scenario. SPECT/CT allowed definitive lesion characterization at the time of the patient's visit to the nuclear medicine department.

  2. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in {sup 123}I brain SPECT imaging-a Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Anne [Department of Radiation Sciences, Radiation Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Ljungberg, Michael [Medical Radiation Physics, Department of Clinical Sciences, Lund, Lund University, SE-221 85 Lund (Sweden); Mo, Susanna Jakobson [Department of Radiation Sciences, Diagnostic Radiology, Umeaa University, SE-901 87 Umeaa (Sweden); Riklund, Katrine [Department of Radiation Sciences, Diagnostic Radiology, Umeaa University, SE-901 87 Umeaa (Sweden); Johansson, Lennart [Department of Radiation Sciences, Radiation Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2006-11-21

    Scatter and septal penetration deteriorate contrast and quantitative accuracy in single photon emission computed tomography (SPECT). In this study four different correction techniques for scatter and septal penetration are evaluated for {sup 123}I brain SPECT. One of the methods is a form of model-based compensation which uses the effective source scatter estimation (ESSE) for modelling scatter, and collimator-detector response (CDR) including both geometric and penetration components. The other methods, which operate on the 2D projection images, are convolution scatter subtraction (CSS) and two versions of transmission dependent convolution subtraction (TDCS), one of them proposed by us. This method uses CSS for correction for septal penetration, with a separate kernel, and TDCS for scatter correction. The corrections are evaluated for a dopamine transporter (DAT) study and a study of the regional cerebral blood flow (rCBF), performed with {sup 123}I. The images are produced using a recently developed Monte Carlo collimator routine added to the program SIMIND which can include interactions in the collimator. The results show that the method included in the iterative reconstruction is preferable to the other methods and that the new TDCS version gives better results compared with the other 2D methods.

  3. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in 123I brain SPECT imaging-a Monte Carlo study.

    Science.gov (United States)

    Larsson, Anne; Ljungberg, Michael; Mo, Susanna Jakobson; Riklund, Katrine; Johansson, Lennart

    2006-11-21

    Scatter and septal penetration deteriorate contrast and quantitative accuracy in single photon emission computed tomography (SPECT). In this study four different correction techniques for scatter and septal penetration are evaluated for 123I brain SPECT. One of the methods is a form of model-based compensation which uses the effective source scatter estimation (ESSE) for modelling scatter, and collimator-detector response (CDR) including both geometric and penetration components. The other methods, which operate on the 2D projection images, are convolution scatter subtraction (CSS) and two versions of transmission dependent convolution subtraction (TDCS), one of them proposed by us. This method uses CSS for correction for septal penetration, with a separate kernel, and TDCS for scatter correction. The corrections are evaluated for a dopamine transporter (DAT) study and a study of the regional cerebral blood flow (rCBF), performed with 123I. The images are produced using a recently developed Monte Carlo collimator routine added to the program SIMIND which can include interactions in the collimator. The results show that the method included in the iterative reconstruction is preferable to the other methods and that the new TDCS version gives better results compared with the other 2D methods.

  4. Cumulative sums for edge determination of a single object in PET and SPECT images

    Science.gov (United States)

    Protonotarios, Nicholas E.; Spyrou, George M.; Kastis, George A.

    2016-08-01

    The issue of edge determination of a single object in reconstructed nuclear medicine images has been examined thoroughly in the past, nevertheless most of the investigation has focused on the concepts of either numerical sinogram differentiation or segmentation. This work aims to develop an automated method for determining the contour of a single convex object in PET and SPECT reconstructed images, which can be used for computing body edges for attenuation correction, as well as for eliminating streak artifacts outside the specific object. This was accomplished by implementing a modified cumulative sums (CUSUM) scheme in the sinogram. Our method can automatically detect the object's boundary in the reconstructed image. This approach has been tested in simulated as well as real phantoms and it performed efficiently for all convex objects. We were able to detect the contour of a single object in the image space, which in turn enabled us to eliminate streak artifacts outside and thus to obtain body edges necessary for attenuation correction.

  5. Numerical Surrogates for Human Observers in Myocardial Motion Evaluation From SPECT Images.

    Science.gov (United States)

    Marin, Thibault; Kalayeh, Mahdi M; Parages, Felipe M; Brankov, Jovan G

    2014-01-01

    In medical imaging, the gold standard for image-quality assessment is a task-based approach in which one evaluates human observer performance for a given diagnostic task (e.g., detection of a myocardial perfusion or motion defect). To facilitate practical task-based image-quality assessment, model observers are needed as approximate surrogates for human observers. In cardiac-gated SPECT imaging, diagnosis relies on evaluation of the myocardial motion as well as perfusion. Model observers for the perfusion-defect detection task have been studied previously, but little effort has been devoted toward development of a model observer for cardiac-motion defect detection. In this work, we describe two model observers for predicting human observer performance in detection of cardiac-motion defects. Both proposed methods rely on motion features extracted using previously reported deformable mesh model for myocardium motion estimation. The first method is based on a Hotelling linear discriminant that is similar in concept to that used commonly for perfusion-defect detection. In the second method, based on relevance vector machines (RVM) for regression, we compute average human observer performance by first directly predicting individual human observer scores, and then using multi reader receiver operating characteristic analysis. Our results suggest that the proposed RVM model observer can predict human observer performance accurately, while the new Hotelling motion-defect detector is somewhat less effective.

  6. Exprerimental Evaluation of a Dedicated Pinhole SPECT System for Small Animal Imaging and Scintimammography

    Directory of Open Access Journals (Sweden)

    G. Loudos

    2011-02-01

    Full Text Available Nuclear medicine (SPECT and PET provides functional information, which is complementary to the structural. In cancer imaging radiopharmaceuticals allow visualization of cancer cells functionality, thus small cell population can be imaged. This allows early diagnosis, as well as fast assessment of response to therapy. Our system is a single head gamma camera based on an R3292 position sensitive photomultiplier tube (PSPMT, coupled to a 10cm in diameter CsI:Tl crystal. We have assessed two CsI:Tl crystals with pixel size of 2x2mm2 and 3x3mm2 respectively. Three collimators were tested: a a hexagonal, 1.1mm in diameter, general purpose parallel hole collimator b a 1mm pinhole and c a 2mm pinhole. Systems were tested using capillary phantoms. All measurements were carried out in photon counting mode with gamma radiation produced by 99mTc. Using the 2x2mm2 crystal and the 1mm pinhole collimator - a resolution better than 1mm was achieved. This allows very detailed imaging of small animals. Using the 3x3mm2 and the 2mm pinhole collimator a resolution of 1.3mm was possible with suitable sensitivity for breast imaging. Those results indicate that this system is suitable for animal and breast studies. The next step will be clinical evaluation of the camera.

  7. Comparison of the channelized Hotelling and human observers for lesion detection in hepatic SPECT imaging

    Science.gov (United States)

    King, Michael A.; de Vries, Daniel J.; Soares, Edward J.

    1997-04-01

    The relative rankings of the channelized Hotelling model observer were compared to those of the human observers for the task of detecting 'hot' tumors in simulated hepatic SPECT slices. The signal-to-noise ratios (SNRs) were determined using eighty images for each of three slice locations. The acquisition and processing strategies investigated were: (1) imaging solely primary photons, (2) imaging primary plus scatter within a 20% symmetric energy window for Tc-99m, (3) imaging with primary plus an elevated amount of scatter, (4) energy-spectrum-based scatter compensation of the primary plus scatter acquisitions, and (5) energy-spectrum-based scatter compensation of the acquisitions with an elevated amount of scatter. Both square non-overlapping channels (SQR), and overlapping difference- of-Gaussian channels (DOG) were incorporated into the Hotelling model observer. When the scatter compensation results were excluded, both channelized Hotelling model observers exhibited a strong correlation with the rankings of the human-observers. With the inclusion of the scatter compensation results, only with the DOG model observer was the null-hypothesis of no correlation rejected at the p equals 0.05 level. It is concluded that further investigation of the channel model used with the Hotelling observer is indicated to determine if better correlation can be obtained.

  8. Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver; Schepis, Tiziano; Namdar, Mehdi; Valenta, Ines [University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kalff, Victor [Alfred Hospital, Department of Nuclear Medicine, Melbourne (Australia); Stefani, Laurent [GE Healthcare Bio-Sciences, Buc Cedex (France); Desbiolles, Lotus; Leschka, Sebastian; Husmann, Lars; Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic Radiology, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2007-07-15

    Combining the functional information of SPECT myocardial perfusion imaging (SPECT-MPI) and the morphological information of coronary CT angiography (CTA) may allow easier evaluation of the spatial relationship between coronary stenoses and perfusion defects. The aim of the present study was the validation of a novel software solution for three-dimensional (3D) image fusion of SPECT-MPI and CTA. SPECT-MPI with adenosine stress/rest {sup 99m}Tc-tetrofosmin was fused with 64-slice CTA in 15 consecutive patients with a single perfusion defect and a single significant coronary artery stenosis ({>=}50% diameter stenosis). 3D fused SPECT/CT images were analysed by two independent observers with regard to superposition of the stenosed vessel onto the myocardial perfusion defect. Interobserver variability was assessed by recording the X, Y, Z coordinates for the origin of the stenosed coronary artery and the centre of the perfusion defect and measuring the distance between the two landmarks. SPECT-MPI revealed a fixed defect in seven patients, a reversible defect in five patients and a mixed defect in three patients and CTA documented a significant stenosis in the respective subtending coronary artery. 3D fused SPECT/CT images showed a match of coronary lesion and perfusion defect in each patient and the fusion process took less than 15 min. Interobserver variability was excellent for landmark detection (r = 1.00 and r = 0.99, p < 0.0001) and very good for the 3D distance between the two landmarks (r = 0.94, p < 0.001). 3D SPECT/CT image fusion is feasible, reproducible and allows correct superposition of SPECT segments onto cardiac CT anatomy. (orig.)

  9. Quantitative analysis of qualitative images

    Science.gov (United States)

    Hockney, David; Falco, Charles M.

    2005-03-01

    We show optical evidence that demonstrates artists as early as Jan van Eyck and Robert Campin (c1425) used optical projections as aids for producing their paintings. We also have found optical evidence within works by later artists, including Bermejo (c1475), Lotto (c1525), Caravaggio (c1600), de la Tour (c1650), Chardin (c1750) and Ingres (c1825), demonstrating a continuum in the use of optical projections by artists, along with an evolution in the sophistication of that use. However, even for paintings where we have been able to extract unambiguous, quantitative evidence of the direct use of optical projections for producing certain of the features, this does not mean that paintings are effectively photographs. Because the hand and mind of the artist are intimately involved in the creation process, understanding these complex images requires more than can be obtained from only applying the equations of geometrical optics.

  10. GPC and quantitative phase imaging

    Science.gov (United States)

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson; Glückstad, Jesper

    2016-03-01

    Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical security, parallel laser marking and labelling and recently in contemporary biophotonics applications such as for adaptive and parallel two-photon optogenetics and neurophotonics. We will present our most recent GPC developments geared towards these applications. We first show a very compact static light shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging (QPI).

  11. Quantitative imaging with fluorescent biosensors.

    Science.gov (United States)

    Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B

    2012-01-01

    Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.

  12. Diagnosis of pulmonary embolism: planar images generated from V/Q SPECT are not a reliable substitute for traditional planar V/Q scan.

    Science.gov (United States)

    Le Roux, Pierre-Yves; Abgral, Ronan; Jaffrelot, Morgan; Delluc, Aurelien; Gut-Gobert, Christophe; Querellou, Solène; Cornily, Jean-Christophe; Le Gal, Grégoire; Salaün, Pierre-Yves

    2012-07-01

    The use of summed planar images generated from single-photon emission computed tomography (SPECT) ventilation/perfusion (V/Q) scintigraphy has been proposed as a substitute for planar V/Q scans in order to use the revised PIOPED interpretation criteria when only SPECT acquisition is performed in patients with suspected pulmonary embolism. The aim was to evaluate the accuracy of angular summed planar scans in comparison with true planar images. Patients included in the 'SPECT study' assessing the diagnostic performance of V/Q SPECT were analysed. Angular summed planar images were generated from SPECT acquisition data and compared with true planar scans. Angular summed planar images were successfully generated for 246 patients. Regarding interobserver variability, the interpretation result was different for 15 (6%) summed planar scans with an excellent degree of agreement (κ=0.92; 95% confidence interval 0.88-0.96). With regard to intermodality interpretation variability between conventional planar and angular summed images, the result was different for 63 (26%) of 246 patients with an intermodality degree of agreement of κ=0.66 (95% confidence interval 0.58-0.73). Planar images generated from SPECT V/Q scintigraphy are not a reliable substitute for true planar V/Q images.

  13. Dynamic molecular imaging of cardiac innervation using a dual headpinhole SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jicun; Boutchko, Rostyslav; Sitek, Arkadiusz; Reutter, BryanW.; Huesman, Ronald H.; Gullberg, Grant T.

    2008-03-29

    Typically 123I-MIBG is used for the study of innervation andfunction of the sympathetic nervous system in heart failure. The protocolinvolves two studies: first a planar or SPECT scan is performed tomeasure initial uptake of the tracer, followed some 3-4 hours later byanother study measuring the wash-out of the tracer from the heart. A fastwash-out is indicative of a compromised heart. In this work, a dual headpinhole SPECT system was used for imaging the distribution and kineticsof 123I-MIBG in the myocardium of spontaneous hypertensive rats (SHR) andnormotensive Wistar Kyoto (WKY) rats. The system geometry was calibratedbased on a nonlinear point projection fitting method using a three-pointsource phantom. The angle variation effect of the parameters was modeledwith a sinusoidal function. A dynamic acquisition was performed byinjecting 123I-MIBG into rats immediately after starting the dataacquisition. The detectors rotated continuously performing a 360o dataacquisition every 90 seconds. We applied the factor analysis (FA)methodand region of interest (ROI) sampling method to obtain time activitycurves (TACs)in the blood pool and myocardium and then appliedtwo-compartment modeling to estimate the kinetic parameters. Since theinitial injection bolus is too fast for obtaining a consistenttomographic data set in the first few minutes of the study, we appliedthe FA method directly to projections during the first rotation. Then thetime active curves for blood and myocardial tissue were obtained from ROIsampling. The method was applied to determine if there were differencesin the kinetics between SHR and WKY rats and requires less time byreplacing the delayed scan at 3-4 hours after injection with a dynamicacquisition over 90 to 120 minutes. The results of a faster washout and asmaller distribution volume of 123IMIBG near the end of life in the SHRmodel of hypertrophic cardiomyopthy may be indicative of a failing heartin late stages of heart failure.

  14. 4D-SPECT/CT in orthopaedics: a new method of combined quantitative volumetric 3D analysis of SPECT/CT tracer uptake and component position measurements in patients after total knee arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, Helmut; Falkowski, Anna L.; Forrer, Flavio [Kantonsspital Baselland, Institute for Radiology and Nuclear Medicine, Bruderholz (Switzerland); Henckel, Johann [Imperial College London, London (United Kingdom); Hirschmann, Michael T. [Kantonsspital Baselland, Department of Orthopaedic Surgery and Traumatology, Bruderholz (Switzerland)

    2013-09-15

    The purpose was to evaluate the intra- and inter-observer reliability of combined quantitative 3D-volumetric single-photon emission computed tomography (SPECT)/CT analysis including size, intensity and localisation of tracer uptake regions and total knee arthroplasty (TKA) position. Tc-99m-HDP-SPECT/CT of 100 knees after TKA were prospectively analysed. The anatomical areas represented by a previously validated localisation scheme were 3D-volumetrically analysed. The maximum intensity was recorded for each anatomical area. Ratios between the respective value and the mid-shaft of the femur as the reference were calculated. Femoral and tibial TKA position (varus-valgus, flexion-extension, internal rotation- external rotation) were determined on 3D-CT. Two consultant radiologists/nuclear medicine physicians interpreted the SPECT/CTs twice with a 2-week interval. The inter- and intra-observer reliability was determined (ICCs). Kappa values were calculated for the area with the highest tracer uptake between the observers. The measurements of tracer uptake intensity showed excellent inter- and intra-observer reliabilities for all regions (tibia, femur and patella). Only the tibial shaft area showed ICCs <0.89. The kappa values were almost perfect (0.856, p < 0.001; 95 % CI 0.778, 0.922). For measurements of the TKA position, there was strong agreement within and between the readings of the two observers; the ICCs for the orientation of TKA components for inter- and intra-observer reliability were nearly perfect (ICCs >0.84). This combined 3D-volumetric standardised method of analysing the location, size and the intensity of SPECT/CT tracer uptake regions (''hotspots'') and the determination of the TKA position was highly reliable and represents a novel promising approach to biomechanics. (orig.)

  15. Superfluorinated PEI Derivative Coupled with (99m) Tc for ASGPR Targeted (19) F MRI/SPECT/PA Tri-Modality Imaging.

    Science.gov (United States)

    Guo, Zhide; Gao, Mengna; Song, Manli; Li, Yesen; Zhang, Deliang; Xu, Duo; You, Linyi; Wang, Liangliang; Zhuang, Rongqiang; Su, Xinhui; Liu, Ting; Du, Jin; Zhang, Xianzhong

    2016-07-01

    Fluorinated polyethylenimine derivative labeled with radionuclide (99m) Tc is developed as a (19) F MRI/SPECT/PA multifunctional imaging agent with good asialoglycoprotein receptors (ASGPR)-targeting ability. This multifunctional agent is safe and suitable for (19) F MRI/SPECT/PA imaging and has the potential to detect hepatic diseases and to assess liver function, which provide powerful support for the development of personalized and precision medicine.

  16. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    OpenAIRE

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. Th...

  17. In vivo imaging of dopamine transporter function in rat striatum using pinhole SPECT and 123I-beta-CIT coregistered with small animal MRI

    CERN Document Server

    Dierkes, K

    2001-01-01

    The aim of this study was to establish in vivo imaging of dopamine transporter function in a small animal model of Parkinson's disease using pinhole SPECT and 123I labeled beta-CIT. Since functional imaging of small animals can hardly be interpreted without localization to related anatomical structures, MRI-SPECT coregistration secondly was established as an inexpensive tool for in vivo monitoring of physiological and pathological alterations in striatal dopamine transporters using beta-CIT as an specific radionuclear ligand.

  18. Effectiveness of quantitative MAA SPECT/CT for the definition of vascularized hepatic volume and dosimetric approach: phantom validation and clinical preliminary results in patients with complex hepatic vascularization treated with yttrium-90-labeled microspheres.

    Science.gov (United States)

    Garin, Etienne; Lenoir, Laurence; Rolland, Yan; Laffont, Sophie; Pracht, Marc; Mesbah, Habiba; Porée, Philippe; Ardisson, Valérie; Bourguet, Patrick; Clement, Bruno; Boucher, Eveline

    2011-12-01

    The goal of this study was to assess the use of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) analysis for vascularized volume measurements in the use of the yttrium-90-radiolabeled microspheres (TheraSphere). A phantom study was conducted for the validation of SPECT/CT volume measurement. SPECT/CT quantitative analysis was used for the measurement of the volume of distribution of the albumin macroaggregates (MAA; i.e., the vascularized volume) in the liver and the tumor, and the total activity contained in the liver and the tumor in four consecutive patients presenting with a complex liver vascularization referred for a treatment with TheraSphere. SPECT/CT volume measurement proved to be accurate (mean error data, instead of angiography and CT data, results in modifying the activity injected for three treatments of eight. Moreover, quantitative analysis of SPECT/CT allows us to calculate the absorbed dose in the tumor and in the healthy liver, leading to doubling of the injected activity for one treatment of eight. MAA SPECT/CT is accurate for volume measurements. It provides a valuable contribution to the therapeutic planning of patients presenting with complex hepatic vascularization, in particular for calculating the vascularized liver volume, the activity to be injected and the absorbed doses. Studies should be conducted to assess the role of quantitative MAA/SPECT CT in therapeutic planning.

  19. Effects of acquisition time and reconstruction algorithm on image quality, quantitative parameters, and clinical interpretation of myocardial perfusion imaging

    DEFF Research Database (Denmark)

    Enevoldsen, Lotte H; Menashi, Changez A K; Andersen, Ulrik B;

    2013-01-01

    BACKGROUND: Recently introduced iterative reconstruction algorithms with resolution recovery (RR) and noise-reduction technology seem promising for reducing scan time or radiation dose without loss of image quality. However, the relative effects of reduced acquisition time and reconstruction...... software have not previously been reported. The aim of the present study was to investigate the influence of reduced acquisition time and reconstruction software on quantitative and qualitative myocardial perfusion single photon emission computed tomography (SPECT) parameters using full time (FT) and half...... time (HT) protocols and Evolution for Cardiac Software. METHODS: We studied 45 consecutive, non-selected patients referred for a clinically indicated routine 2-day stress/rest (99m)Tc-Sestamibi myocardial perfusion SPECT. All patients underwent an FT and an HT scan. Both FT and HT scans were processed...

  20. Introducing simultaneous spatial resolution and attenuation correction after scatter removal in SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Younes, R.B.; Mas, J.; Pousse, A.; Bidet, R. (Laboratoire de Biophysique et de Medecine Nucleaire, Besancon Cedex (France)); Hannequin, P. (Centre d' Imagerie Nucleaire, Annecy (France))

    1991-12-01

    A new approach to simultaneous spatial resolution and attenuation correction in SPECT imaging is presented. Before these corrections, scatter is removed on the projections. This removal is performed by spectral constrained factor analysis. The innovation reported here is the use of the different impulse responses of the system, according to the source-detector distance, and their integration in a generalized version of the Chang attenuation correction method. This novel algorithm is evaluated on computed and physical phantoms. In the computer-simulated phantom, the count rates after full-processing are very close to the initial values. In the physical phantom, the contrast is increased by 1.8 after full processing. The activity profiles drawn both on raw projections and reconstructed slices demonstrate the effectiveness of the algorithm for the restoration of spatial resolution. Furthermore, the method improves the quality of the images greatly. A clinical study is also presented. When the whole procedure is applied, the resulting slice matches the corresponding computed tomographic scan very well, which is not the case with the usual back-projected images. The process is fully automatic and the computing time performance allows its daily use for single photon emission tomographic examinations. (author).

  1. Myocardial Perfusion SPECT Imaging in Dextrocardia with Situs Inversus: A Case Report

    Directory of Open Access Journals (Sweden)

    Olusegun Akinwale Ayeni

    2016-07-01

    Full Text Available Dextrocardia is a cardiac positional anomaly in which the heart is located in the right hemithorax with its base-to-apex axis directed to the right and caudad. Situs inversus is an autosomal recessive disorder that causes organs in the chest and abdomen to be positioned in a mirror image from their normal position. Dextrocardia may occur in isolation or as part of situs inversus. Similarly, situs inversus may occur with or without dextrocardia. Situs inversus accompanied with dextrocardia (situs inversus totalis is a rare congenital abnormality occurring in 0.01% of live births. Herein, we present the case of a 35-yearold man with previously diagnosed situs inversus totalis with mirror-image dextrocardia, referred to our facility for diagnosis of coronary artery disease (CAD. The incidence and presentation of CAD in patients with dextrocardiaare similar to the normal population. However, considerable attention should be paid to the acquisition of myocardial perfusion scintigraphy and data processing/analysis in this group of patients. The present case highlights thedistinctive applications and potential pitfalls of myocardial perfusion single photon emission computed tomography (SPECT imaging in patients with dextrocardia.

  2. Myocardial Perfusion SPECT Imaging in Dextrocardia with Situs Inversus: A Case Report.

    Science.gov (United States)

    Ayeni, Olusegun Akinwale; Malan, Nico; Hammond, Emmanuel Niiboye; Vangu, Mboyo-Di-Tamba Heben

    2016-01-01

    Dextrocardia is a cardiac positional anomaly in which the heart is located in the right hemithorax with its base-to-apex axis directed to the right and caudad. Situs inversus is an autosomal recessive disorder that causes organs in the chest and abdomen to be positioned in a mirror image from their normal position. Dextrocardia may occur in isolation or as part of situs inversus. Similarly, situs inversus may occur with or without dextrocardia. Situs inversus accompanied with dextrocardia (situs inversus totalis) is a rare congenital abnormality occurring in 0.01% of live births. Herein, we present the case of a 35-year-old man with previously diagnosed situs inversus totalis with mirror-image dextrocardia, referred to our facility for diagnosis of coronary artery disease (CAD). The incidence and presentation of CAD in patients with dextrocardia are similar to the normal population. However, considerable attention should be paid to the acquisition of myocardial perfusion scintigraphy and data processing/analysis in this group of patients. The present case highlights the distinctive applications and potential pitfalls of myocardial perfusion single-photon emission computed tomography (SPECT) imaging in patients with dextrocardia.

  3. Image reconstruction on point cloud-based tetrahedral meshes in small animal SPECT with pinhole collimation

    Energy Technology Data Exchange (ETDEWEB)

    Boutchko, Rostyslav; Reutter, Bryan; Gullberg, Grant T. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2011-07-01

    Irregular tetrahedral meshes based on adaptively distributed point clouds are used as the object space data representation method to reconstruct SPECT images in pinhole geometry. In the object space, a tetrahedron is defined by the positions and intensities of its four vertices; image intensity inside a tetrahedron is a linear combination of the vertex intensities. For the parallel projection geometry, the projection of a tetrahedron is conveniently expressed in terms of an integral that is solved analytically. For the pinhole case, the vertices are first projected onto the detector plane and the geometric magnification factor is computed. Then, a virtual tetrahedron is formed in the detector space and projected onto the detector using exact analytical formulae developed for the parallel geometry. In order to compute the system matrix, point cloud geometry and acquisition geometry is adjusted using geometric calibration expressed in terms of 24 parameters determined from a special calibration study. The 3D images are reconstructed using a standard MLEM algorithm. Initial reconstruction is performed on a uniform finely-spaced cloud. Then, the points are adaptively removed or merged in constant intensity regions and moved to better outline the boundaries. The density of the point cloud is adjusted adaptively after each reconstruction so that the number of unknowns in the inverse problem is reduced by an order of magnitude. (orig.)

  4. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo [National Center for Geriatrics and Gerontology Research Institute, Department of Brain Science and Molecular Imaging, Obu, Aichi (Japan); Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita (Japan); Kato, Rikio [National Center for Geriatrics and Gerontology, Department of Radiology, Obu (Japan)

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with {sup 99m}Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I{sub AC}{sup {mu}}{sup b} with Chang's attenuation correction factor. The scatter component image is estimated by convolving I{sub AC}{sup {mu}}{sup b} with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and {sup 99m}Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  5. Examining a hypothetical quantitative model for better approximation of culprit coronary artery and site of stenosis on 99mTc-sestamibi gated myocardial perfusion SPECT.

    Science.gov (United States)

    Pal, Sushanta; Sen, Srabani; Das, Debasis; Basu, Sandip

    2016-10-01

    A hypothetical quantitative model of analyzing gated myocardial perfusion SPECT is proposed and examined for the feasibility of its use as a predictor of diseased coronary artery and approximating the site of stenosis to determine whether it could serve as a useful noninvasive complement for coronary angiography. The extent and severity of perfusion defects on rest gated myocardial perfusion imaging SPECT-images were assessed on a five-point scale in a standard 17-segment model and total perfusion deficit was quantified by automated software. The first step was to locate the diseased coronary artery using a quantitative method: for this, the score of each segment belonging to a particular coronary artery was determined using a systematic presumptive approach. After determination of specific coronary artery segments, the scores of the contiguous segments in three short axis slices (apical, middle, and basal) were summed for six subdivisions (anterior, anterolateral, inferolateral, inferior, anteroseptal, and inferoseptal). The site of stenosis was determined from (a) the initial approximation of the involved segments with a defect score of 2-4 and (b) subsequent calculation of the defect score of each of the six subdivisions and allocating the site through a preassigned number for each coronary artery. For each coronary artery, only the subdivision with the highest defect score was considered. Proximal, middle, and distal segments of left anterior descending artery (LAD) were considered to be represented when the summed value of a subdivision within a particular arterial territory was more than or equal to 7, between 5 and 7, 5 and 3, respectively. For the left circumflex and right coronary artery, summed scores (of respective subdivisions) of more than or equal to 5 and between 3 and 5 were preassigned to proximal and distal stenosis, respectively. The results were then correlated with the coronary angiographic data. On coronary angiography, proximal LAD occlusion

  6. Quantitative Assessment of Radioisotope Uptake in Condyles by SPECT Bone Scintigraphy

    Directory of Open Access Journals (Sweden)

    Z. Dalili

    2006-03-01

    Full Text Available Statement of problem: Condylar hyperplasia of the mandible is a self limiting abnormality which can cause facial asymmetry, temporomandibular joint (TMJdysfunction and esthetic problems. Treatment planning is based on the results of isotope scanning, clinical findings and patient age. Single photon emission tomography(SPECT is considered to be a sensitive method in the calculation of condylar uptake differences.Purpose: The aim of this study was to determine the growth activity occurring in the mandibular condyles, and to devise an index of side-to-side differences in condylar activity in different individuals.Material and Methods: 38 patients, with an age range of 13 to 34 years, undergoing skeletal scintigraphy for a variety of conditions, were chosen for this study. 25 mci TC-99 was injected to all subjects in order to assess the difference between right (Rt andleft (Lt condylar uptake percentage and to calculate the Lt to Rt condylar uptake ratio.The normal index was determined.Results: The maximum amount of difference between the uptake of Rt and Lt condyles was 6.2 percent (Lt side and Rt side were 53.1 % and 46.9 %, respectively in the male patients and 5.7 percent in the female patients (Lt side and Rt side were 52.85 % and 47.15 %, respectively. The condylar activity difference and ratio of Lt to Rt condylar uptakes did not show a significant difference between the male and female groups.Conclusion: The difference between the growth activity of RT and LT normal TMJs was less than 6.2 percent.

  7. Evaluation of MR perfusion abnormalities in organophosphorus poisoning and its correlation with SPECT

    OpenAIRE

    K Uday Bhanu; Niranjan Khandelwal; Sameer Vyas; Paramjeet Singh; Anuj Prabhakar; B R Mittal; Ashish Bhalla

    2017-01-01

    Aim: Acute organophosphate (OP) pesticide poisoning causes substantial morbidity and mortality worldwide. Many imaging modalities, such as computerized tomography (CT), magnetic resonance imaging (MRI), and single photon emission computed tomography (SPECT) of the brain, have been used for quantitative assessment of the acute brain insult caused by acute OP poisoning. Perfusion defects on SPECT in acutely poisoned patients with OPs have been described, however, MR perfusion abnormalities have...

  8. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Mettivier, Giovanni, E-mail: mettivier@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Russo, Paolo, E-mail: russo@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Cesarelli, Mario; Ospizio, Roberto [Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni, Universita di Napoli Federico II, I-80125 Napoli (Italy); Passeggio, Giuseppe; Roscilli, Lorenzo; Pontoriere, Giuseppe; Rocco, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy)

    2011-02-11

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 {mu}m focal spot X-ray tube, a 50 {mu}m pitch flat panel detector and a 1-mm-thick, 55 {mu}m pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm{sup -1} at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses ({sup 99m}Tc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  9. Comparison of two different segmentation methods on planar lung perfusion scan with reference to quantitative value on SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min Seok; Kang, Yeon Koo; Ha, Seung Gyun [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); and others

    2017-06-15

    Until now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients. Fifty-five lung cancer patients (male:female, 37:18; age, 67.8 ± 10.7 years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99 m macroaggregated albumin (Tc-99 m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1 s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted. The % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation. The PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction.

  10. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, L [University of Heifelberg, Mannheim (Germany); Duke University Medical Center, Durham, NC (United States); Fudan University Shanghai Cancer Center, Shanghai (China); Bowsher, J; Yin, F [Duke University Medical Center, Durham, NC (United States); Duke University Medical Physics Graduate Program, Durham, NC (United States); Yan, S [Duke University Medical Physics Graduate Program, Durham, NC (United States)

    2014-06-15

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise was included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by

  11. Spatial resolution is dependent on image content for SPECT with iterative reconstruction incorporating distance dependent resolution (DDR) correction.

    Science.gov (United States)

    Badger, Daniel; Barnden, Leighton

    2014-09-01

    The aim of this study is to determine the dependence of single photon emission computed tomography (SPECT) spatial resolution on the content of images for iterative reconstruction with distance dependent resolution (DDR) correction. An experiment was performed using a perturbation technique to measure change in resolution of line sources in simple and complex images with iterative reconstruction with increasing iteration. Projections of the line sources were reconstructed alone and again after the addition of projections of a uniform flood or a complex phantom. An alternative experiment used images of a realistic brain phantom and evaluated an effective spatial resolution by matching the images to the digital version of the phantom convolved with 3D Gaussian kernels. The experiments were performed using ordered subset expectation maximisation iterative reconstruction with and without the use of DDR correction. The results show a significant difference in reconstructed resolution between images of line sources depending on the content of the added image. The full width at half maximum of images of a line source reconstructed using DDR correction increased by 20-30 % when the added image was complex. Without DDR this difference was much smaller and disappeared with increasing iteration. Reported SPECT resolution should be taken as indicative only with regard to clinical imaging if the measurement is made using a point or line source alone and an iterative reconstruction algorithm is used.

  12. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease

    Energy Technology Data Exchange (ETDEWEB)

    Cicala, Silvana; Paladini, Rodolfo; Leva, Francesco de [Santobono-Pausilipon Children Medical Hospital, Division of Cardiology, Department of Paediatrics, Naples (Italy); Pellegrino, Teresa; Caprio, Maria Grazia [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Storto, Giovanni [IRCCS, CROB, Rionero in Vulture (Italy); Mainolfi, Ciro; Cuocolo, Alberto [Federico II University, Department of Biomorphological and Functional Sciences, Naples (Italy); National Council of Research, Institute of Biostructures and Bioimages, Naples (Italy)

    2010-12-15

    The feasibility of coronary function estimation by single photon emission computed tomography (SPECT) has been recently demonstrated. The aim of this study was to apply SPECT imaging in patients with previous Kawasaki disease (KD) to assess the coronary functional status at long-term follow-up of the acute phase of the disease. Sixteen children with a history of KD underwent {sup 99m}Tc-sestamibi imaging at rest and during the cold pressor test (CPT). Myocardial blood flow (MBF) was estimated by measuring first transit counts in the pulmonary artery and myocardial counts from SPECT images. Coronary endothelial function was expressed as the ratio of the CPT to rest MBF. Six KD patients without coronary artery lesions served as controls and ten with coronary artery aneurysms during the acute phase of the disease were separated into two groups: group 1 (n = 4) with regressed and group 2 (n = 6) with persistent aneurysm at follow-up. The estimated coronary endothelial function was higher in controls compared to patients with coronary artery aneurysms (2.5 {+-} 0.3 vs 1.7 {+-} 0.7, p < 0.05). A significant difference in coronary endothelial function among groups was found (F = 5.21, p < 0.02). Coronary endothelial function was higher in patients of group 1 than in those of group 2 (1.9 {+-} 0.6 vs 1.4 {+-} 0.7, p < 0.02). SPECT may be applied as a noninvasive method for assessing coronary vascular function in children with a history of KD, demonstrating an impaired response to the CPT, an endothelial-dependent vasodilator stimulus. These findings reinforce the concept that coronary endothelial dysfunction may represent a long-term sequela of KD. (orig.)

  13. NP-59 SPECT/CT Imaging in Stage 1 Hypertensive and Atypical Primary Aldosteronism: A 5-Year Retrospective Analysis of Clinicolaboratory and Imaging Features

    Directory of Open Access Journals (Sweden)

    Yi-Chun Chen

    2013-01-01

    Full Text Available Objective. We retrospectively analyzed all primary aldosteronism (PA patients undergoing NP-59 SPECT/CT imaging with regard to their clinicolaboratory and imaging features, investigation, and outcomes. Material and Methods. 11 PA patients who presented to our hospital for NP-59 SPECT/CT imaging between April 2007 and March 2012 and managed here were analyzed. Results. Among 11 PA patients, eight (73% had stage 1 hypertension, three (27% stage 2 hypertension, four (36% normal plasma aldosterone concentration, nine (82% nonsuppressed plasma renin activity (PRA, six (55% normal aldosterone-renin-ratio (ARR, eight (73% serum potassium ≧3 mEq/L, seven (64% subclinical presentation, seven (64% negative confirmatory testing, and four (36% inconclusive results on CT scan and seven (64% on planar NP-59 scan. All 11 (100% patients had positive results on NP-59 SPECT/CT scan. Two (18% met typical triad and nine (82% atypical triad. Among nine atypical PA patients, three (33% had clinical presentation, six (67% subclinical presentation, six (67% negative confirmatory testing, and four (44% inconclusive results on CT scan and six (67% on planar NP-59 scan. All patients had improved outcomes. Significant differences between typical and atypical PA existed in PRA and ARR. Conclusions. NP-59 SPECT/CT may provide diagnostic potential in stage 1 hypertensive and atypical PA.

  14. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2010-12-01

    Full Text Available The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target’s three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology.

  15. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  16. SPECT {sup 99m}Tc-sestamibi/{sup 123}I subtraction images merged to the scanner: interest of patients with hyperparathyroidism, candidates to surgery; Images de soustraction SPECT 99mTc-Sestamibi/123 I fusionnees au scanner: interet chez des patients avec hyperparathyroidie, candidats a la chirurgie

    Energy Technology Data Exchange (ETDEWEB)

    Poullias, X.; Hapdey, S.; Salles, A.; Vera, P.; Edet-Sanson, A. [Centre Henri-Becquerel, 76 - Rouen (France); Guernou, M. [Centre cardiologique du Nord, 93 - Saint-Denis (France); Hitzel, A. [CHU de Toulouse, 31 (France)

    2010-07-01

    Purpose: the aim of this study is to evaluate the interest of SPECT subtraction images merged to the scanner (S/CT), compared to planar subtraction (S/PL) and to echography, in the framework of hyperparathyroidism. Conclusions: Although subtraction SPECT images merged on CT have a sensitivity close to planar subtraction images, making this modality often allows to visualize the lesion to define its size and anatomical reports. These elements are a help for surgical management. (N.C.)

  17. Interest of hybrid SPECT-CT imaging for diagnosis of infection; Interet de l'imagerie hybride TEMP-TDM dans l'exploration des infections

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, A.; Farid, K.; Guyot, M.; Jeandot, R.; Allard, M.; Fernandez, P. [Hopital Pellegrin, Service de Medecine Nucleaire, CHRU de Bordeaux, 33 - Bordeaux (France); Clermont, H. de [Hopital Haut-Leveque, CHRU de Bordeaux, Service de Medecine Nucleaire, 33 - Pessac (France); Dauchy, F.; Dupon, M. [Hopital Pellegrin, Dept. de Maladies Infectieuses, CHRU de Bordeaux, 33 - Bordeaux (France); Fernandez, P. [Bordeaux-2 Univ. Victor-Segalen, Inserm U577, 33 - Bordeaux (France)

    2008-03-15

    Single-Photon Emission Computed Tomography-Computerized Tomography (SPECT-CT) is a new hybrid technique which offers new diagnostic capabilities in daily nuclear medicine practice. This technique not only allows to acquire merged anatomic and functional images in the same time, but also, it increases sensitivity and accuracy of SPECT thanks to attenuation and scattering corrections got from transmission data. Until now, SPECT-CT data have been mainly obtained in oncology and cardiology, but now, many authors use it in many scan studies and particularly for infectious diseases. In inflammatory bowel diseases, SPECT-CT seems to increase diagnostic performances and to modify management of many patients. In suspected vascular sepsis, SPECT-CT could increase sensitivity of white blood cell scintigraphy but also its specificity thanks to spatial resolution of CT. In osteo-articular sepsis, SPECT-CT has the advantage to distinguish osteomyelitis from soft tissue infection and to guide biopsies. Nevertheless, in the light of PET-CT works, SPECT-CT development will probably modify nuclear medicine practice and many studies have to be conducted to highlight consensual procedure guidelines. (authors)

  18. Perfusion Imaging with SPECT in the Era of Pathophysiology-Based Biomarkers for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Markus Weih

    2010-01-01

    Full Text Available SPECT allows registration of regional cerebral blood flow (rCBF which is altered in a characteristic temporoparietal pattern in Alzheimer's Dementia. Numerous studies have shown the diagnostic value of reduced cerebral blood flow and metabolic changes using perfusion SPECT and FDG-PEPT in AD diagnosis as well as in differential diagnosis against frontotemporal dementia, dementia with Lewy bodies and vascular disease. Recently more pathophysiology-based biomarkers in CSF and Amyloid-PET tracers have been developed that probably have a higher diagnostic accuracy than the more indirect rCBF changes seen in perfusion SPECT. In the paper review, we describe recent advances in AD biomarkers as well as improvements in the SPECT technique.

  19. Evaluation of Fisher Information Matrix-Based Methods for Fast Assessment of Image Quality in Pinhole SPECT.

    Science.gov (United States)

    Pato, Lara R V; Vandenberghe, Stefaan; Vandeghinste, Bert; Van Holen, Roel

    2015-09-01

    The accurate determination of the local impulse response and the covariance in voxels from penalized maximum likelihood reconstructed images requires performing reconstructions from many noise realizations of the projection data. As this is usually a very time-consuming process, efficient analytical approximations based on the Fisher information matrix (FIM) have been extensively used in PET and SPECT to estimate these quantities. For 3D imaging, however, additional approximations need to be made to the FIM in order to speed up the calculations. The most common approach is to use the local shift-invariant (LSI) approximation of the FIM, but this assumes specific conditions which are not always necessarily valid. In this paper we take a single-pinhole SPECT system and compare the accuracy of the LSI approximation against two other methods that have been more recently put forward: the non-uniform object-space pixelation (NUOP) and the subsampled FIM. These methods do not assume such restrictive conditions while still increasing the speed of the calculations considerably. Our results indicate that in pinhole SPECT the NUOP and subsampled FIM approaches could be more reliable than the LSI approximation, especially when a high accuracy is required.

  20. Effect of beta blockade on single photon emission computed tomographic (SPECT) thallium-201 images in patients with coronary disease

    Energy Technology Data Exchange (ETDEWEB)

    Narahara, K.A.; Thompson, C.J.; Hazen, J.F.; Brizendine, M.; Mena, I.

    1989-05-01

    We evaluated the effect of beta blockers on thallium-201 (Tl-201) single photon emission computed tomographic (SPECT) imaging in 12 patients with coronary disease using an automated computer algorithm. Maximal exercise heart rate and blood pressure were reduced and exercise time was increased with beta blockers. Estimated stress defect size decreased from 47 +/- 36.3 gm during placebo treatment to 32 +/- 27.1 gm during beta blocker therapy (-32%; p less than 0.01). The placebo treatment redistribution defect was estimated to be 28 +/- 29.8 gm. It fell to 15 +/- 23.3 gm with beta blockade (-46%; p less than 0.005). All patients had a stress Tl-201 defect during placebo treatment and eight had redistribution defects consistent with residual scar. During beta blocker therapy, 2 of 12 patients had normal stress-redistribution studies and only five patients had redistribution defects. Beta blockade can reduce exercise and redistribution Tl-201 SPECT defect size significantly while simultaneously increasing exercise time and reducing angina. Beta blockers may unmask or may eliminate evidence of redistribution. Tl-201 SPECT imaging may be useful in defining the reduction in ischemia produced by cardiac drugs.

  1. Three-dimensional SPECT imaging with LaBr{sub 3}:Ce scintillator for characterization of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tushar, E-mail: tushar@barc.gov.in; Ratheesh, Jilju; Sinha, Amar

    2014-01-21

    Characterization of nuclear waste in terms of radioactivity distribution is important not only for their safe disposal but also for nuclear material accounting. Single Photon Emission Computed Tomography (SPECT) provides a non-invasive technique for the characterization and activity distribution of the gamma-emitting sources in a matrix. Sodium iodide scintillators, which are most commonly used, suffer from poor energy resolution and do not provide accurate peak discrimination for radioisotopes like {sup 239}Pu which have overlapping peaks. Cerium-activated lanthanum bromide (LaBr{sub 3}:Ce) scintillators have better energy resolution and provide better peak discrimination. In this paper, experimental studies using LaBr{sub 3}:Ce for 3D SPECT imaging of dummy waste drum has been discussed. The reconstruction has been done using the Filtered Backprojection scheme with attenuation compensation based on Novikov's inversion formula.

  2. Three-dimensional SPECT imaging with LaBr3:Ce scintillator for characterization of nuclear waste

    Science.gov (United States)

    Roy, Tushar; Ratheesh, Jilju; Sinha, Amar

    2014-01-01

    Characterization of nuclear waste in terms of radioactivity distribution is important not only for their safe disposal but also for nuclear material accounting. Single Photon Emission Computed Tomography (SPECT) provides a non-invasive technique for the characterization and activity distribution of the gamma-emitting sources in a matrix. Sodium iodide scintillators, which are most commonly used, suffer from poor energy resolution and do not provide accurate peak discrimination for radioisotopes like 239Pu which have overlapping peaks. Cerium-activated lanthanum bromide (LaBr3:Ce) scintillators have better energy resolution and provide better peak discrimination. In this paper, experimental studies using LaBr3:Ce for 3D SPECT imaging of dummy waste drum has been discussed. The reconstruction has been done using the Filtered Backprojection scheme with attenuation compensation based on Novikov's inversion formula.

  3. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images.

    Science.gov (United States)

    Larsson, Anne; Johansson, Lennart

    2003-11-21

    In single photon emission computed tomography (SPECT), transmission-dependent convolution subtraction has been shown to be useful when correcting for scattered events. The method is based on convolution subtraction, but includes a matrix of scatter fractions instead of a global scatter fraction. The method can be extended to iteratively improve the scatter estimate, but in this note we show that this requires a modification of the theory to use scatter-to-total scatter fractions for the first iteration only and scatter-to-primary fractions thereafter. To demonstrate this, scatter correction is performed on a Monte Carlo simulated image of a point source of activity in water. The modification of the theory is compared to corrections where the scatter fractions are based on the scatter-to-total ratio, using one and ten iterations. The resulting ratios of subtracted to original counts are compared to the true scatter-to-total ratio of the simulation and the most accurate result is found for our modification of the theory.

  4. SPECT imaging in evaluating extent of malignant external otitis: case report

    Energy Technology Data Exchange (ETDEWEB)

    English, R.J.; Tu' Meh, S.S.; Piwnica-Worms, D.; Holman, B.L.

    1987-03-01

    Otitis externa, a benign inflammatory process of the external auditory canal, is general responsive to local therapy. Some patients however, develop a less controllable disease leading to chondritis and osteomyelitis of the base of the skull. The direct invasive characteristic of the disease has led to the descriptive term malignant external otitis (MEO), more appropriately called necrotizing or invasive external otitis. Malignant external otitis is caused by an aggressive pseudomonas or proteus infection that almost exclusively occurs in elderly diabetic patients. The primary imaging modalities previously used in the diagnosis and evaluation of MEO were standard planar scintigraphic techniques with technetium-99M (/sup 99m/Tc) bone agents and gallium-67 (/sup 67/Ga), and pluridirectional tomography. The advent of high resolution computed tomography (CT) effectively allowed demonstration of the soft tissue extension and bone destruction associated with MEO, but still suffered from the low sensitivity constraints of all radiographic techniques in determining early inflammatory bone involvement. Recent work suggests that scintigraphic detection of MEO with /sup 99m/Tc-MDP and /sup 67/Ga, combined with the cross-sectional resolution of single photon emission computed tomography (SPECT) may be of value in planning treatment of this inflammatory condition.

  5. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    Science.gov (United States)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  6. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    Science.gov (United States)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric. C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulation and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter modeling

  7. Evaluation of 7 {alpha}-O-IADPN as a new potential SPECT opioid receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.F.; Mao, S.Y. [Fujian Medical College, Fuzhou (China). Dept. of Nuclear Medicine; Tafani, J.A.M.; Coulais, Y.; Guiraud, R. [Hospital Purpan, Toulouse (France). Service Central de medicine Nucleaire; Zajac, J.M. [LPTF-CNRS, Toulouse (France)

    1998-03-01

    Full text: A new iodinated diprenorphine antagonist analogue, [{sup 123}I]7 {alpha}.-O-IADPN, [E] - 17-(cyclopropylmethyl) -4,5 (x-epoxy- 18,19-dihydro-3-hydroxy-6-methoxy-7 {alpha}-[1-(3-iodoallyl)oxy-1-methylethyl]-6,14-endo-ethenomorphinan for in vivo and in vitro studies as a potential central nervous system (CNS) opioid receptor imaging agent was developed. In vivo biodistribution and metabolism of 7 {alpha}-O-lADPN in rat demonstrated that 0.16% of the iodinated compound was presented in mouse brain with a degradation-resistant at the first 60 min, and that 36% of the total cerebral radioactivity and 63% of its specific binding to opioid receptors were observed 20 min after i.v. injection. The cerebral radioactivity in mouse brain concentrated in the basal ganglion and cortex, and displayed a remarkably high target-to-non-target ratio (cortex/cerebellum = 60 min post-injection). The in vitro binding studies showed that [{sup 123}I]7 {alpha}-O-IADPN binds non selectively to multiple opioid receptors {mu} = 8 K) with a very high affinity (Ki = 0.4 + 0.2 nM). Ex vivo autoradiography results in mouse further confirmed the high uptake and retention of this agent in basal ganglion region and cortex. The planar imaging of monkey brains after i.v. injection of [{sup 123}I]7 {alpha}-O-IADPN clearly displayed that multiple opioid receptors can be visualized. With the excellent in vitro affinity and in vivo stability to deiodination and high target-to-nontarget ratio, [{sup 123}I]7 {alpha}- O-IADPN appears to be useful as a CNS opioid receptor imaging probe for SPECT in primate and non-primate.

  8. Calculation of variability in myocardial uptake of {sup 99m}Tc-tetrofosmin at exercise and rest SPECT images. Application to hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Nii, Takeshi; Nishida, Takuji; Kakizaki, Junko; Sugahara, Syuji [Kyoto Prefectural Univ. of Medicine (Japan)

    1998-11-01

    We examined whether or not it is better to use delayed myocardial SPECT images in determining the variability in myocardial uptake ({Delta}TF) of {sup 99m}Tc-tetrofosmin under the one-day protocol. We injected 370 MBq of {sup 99m}Tc-tetrofosmin at peak exercise, and initial (TF1) and delayed (TF2) exercise SPECT images were acquired 30 min and 3 hr, respectively, after the injection. Then, 740 MBq of {sup 99m}Tc-tetrofosmin was reinjected soon after TF2 acquisition, and rest SPECT images (TF3) were obtained 30 min later. Myocardial counts of TF1, TF2, and TF3 were defined as C1, C2, and C3, respectively, and {Delta}TF was determined by the following formula: {Delta}TF(A) = ({l_brace}C1 x R-(C3-C2`){r_brace}/(C3-C2`)) x 100(%). {Delta}TF(B) = ({l_brace}C1 x R-(C3-C1`){r_brace}/(C3-C1`)) x 100(%), where R is dose ratio, A is the procedure of imaging with delayed exercise SPECT, and B is the procedure of imaging without delayed exercise SPECT. The combination in which the delayed image was used better clarified the decreased uptake of {sup 99m}Tc-tetrofosmin at the hypertrophied myocardium, and thus proved to be useful. (author)

  9. Optimizing and Evaluating an Integrated SPECT-CmT System Dedicated to Improved 3-D Breast Cancer Imaging

    Science.gov (United States)

    2010-05-01

    M. P. Tornai, "Pilot Patient Studies Using a Dedicated Dual-Modality SPECT-CT System for Breast Imaging " 2008 AAPM (2008). 3M. J. Butson, P. K. N...for Breast Imaging " in 2008 AAPM , (Houston TX, 2008). 16. M. P. Tornai, R. L. McKinley, C. N. Brzymialkiewicz, P. Madhav, S. J. Cutler, D. J...S. Meigooni, R. Nath, J. E. Rodgers and C. G. Soares, "Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group

  10. Review of running injuries of the foot and ankle: clinical presentation and SPECT-CT imaging patterns

    Science.gov (United States)

    Pelletier-Galarneau, Matthieu; Martineau, Patrick; Gaudreault, Maxime; Pham, Xuan

    2015-01-01

    Distance running is among the fastest growing sports, with record registration to marathons worldwide. It is estimated that more than half of recreational runners will experience injuries related to the practice of their sport. Three-phase bone scintigraphy is a very sensitive tool to identify sports injury, allowing imaging of hyperemia, stress reaction, enthesopathy and fractures, often before abnormalities can be detected on conventional anatomical modalities. In this article, we review the most common running related injuries and their imaging findings on bone scintigraphy with SPECT-CT. PMID:26269770

  11. Impact of right-ventricular apical pacing on the optimal left-ventricular lead positions measured by phase analysis of SPECT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Guang-Uei [Chang Bing Show Chwan Memorial Hospital, Changhua (China); China Medical University, Department of Biomedical Imaging and Radiological Science, Taichung (China); Huang, Jin-Long [Taichung Veterans General Hospital, Cardiovascular Center, Taichung (China); School of Medicine, National Yang-Ming University, Institute of Clinical Medicine, and Cardiovascular Research Institute, Department of Medicine, Taipei (China); Chung-Shan Medical University, Department of Medicine, School of Medicine, Taichung (China); Lin, Wan-Yu; Tsai, Shih-Chung [Taichung Veterans General Hospital, Department of Nuclear Medicine, Taichung (China); Wang, Kuo-Yang [Taichung Veterans General Hospital, Cardiovascular Center, Taichung (China); Chung-Shan Medical University, Department of Medicine, School of Medicine, Taichung (China); Chen, Shih-Ann [School of Medicine, National Yang-Ming University, Institute of Clinical Medicine, and Cardiovascular Research Institute, Department of Medicine, Taipei (China); Taipei Veterans General Hospital, Division of Cardiology, Department of Medicine, Taipei (China); Lloyd, Michael S.; Chen, Ji [Emory University, Department of Radiology and Imaging Sciences, Atlanta, GA (United States)

    2014-06-15

    The use of SPECT phase analysis to optimize left-ventricular (LV) lead positions for cardiac resynchronization therapy (CRT) was performed at baseline, but CRT works as simultaneous right ventricular (RV) and LV pacing. The aim of this study was to assess the impact of RV apical (RVA) pacing on optimal LV lead positions measured by SPECT phase analysis. This study prospectively enrolled 46 patients. Two SPECT myocardial perfusion scans were acquired under sinus rhythm with complete left bundle branch block and RVA pacing, respectively, following a single injection of {sup 99m}Tc-sestamibi. LV dyssynchrony parameters and optimal LV lead positions were measured by the phase analysis technique and then compared between the two scans. The LV dyssynchrony parameters were significantly larger with RVA pacing than with sinus rhythm (p ∝0.01). In 39 of the 46 patients, the optimal LV lead positions were the same between RVA pacing and sinus rhythm (kappa = 0.861). In 6 of the remaining 7 patients, the optimal LV lead positions were along the same radial direction, but RVA pacing shifted the optimal LV lead positions toward the base. The optimal LV lead positions measured by SPECT phase analysis were consistent, no matter whether the SPECT images were acquired under sinus rhythm or RVA pacing. In some patients, RVA pacing shifted the optimal LV lead positions toward the base. This study supports the use of baseline SPECT myocardial perfusion imaging to optimize LV lead positions to increase CRT efficacy. (orig.)

  12. The Evaluation of Pulmonary Embolism Diagnosis Using SPECT V/Q Imaging Combined with D-Dimer Assay

    Directory of Open Access Journals (Sweden)

    LU Xia;MENG Jing-jing;XIE Xiao-fen;WANG Qian

    2016-11-01

    Full Text Available 全文: PDF (2692 KB HTML (1 KB 输出: BibTeX | EndNote (RIS 摘要 研究V/Q断层显像半定量分析联合测定血浆D-二聚体早期、准确诊断肺栓塞的价值,尤其在小面积肺栓塞诊断中的应用优势。疑诊肺栓塞来核医学科行V/Q断层显像患者共156例,以CT肺血管造影(computed tomographic pulmonary angiography, CTPA)检查及临床诊断为分组标准,肺栓塞组患者101例,非肺栓塞组患者55例。比较SPECT V/Q断层显像、血浆D-二聚体测定以及SPECT V/Q断层显像联合血浆D-二聚体测定三种方法对肺栓塞的诊断效能。应用Philips公司Oasis图像后处理软件对栓塞面积进行半定量分析,进一步评估对于肺栓塞面积占双肺容积≤15%的小面积肺栓塞的诊断价值。结果显示,血浆D-二聚体测定对于肺栓塞的诊断有较高的灵敏度(70.3%),但是特异性(61.8%)差;SPECT V/Q断层显像半定量分析对于肺栓塞的诊断具有较高的灵敏度和特异性,分别为85.1%、90.9%;而二者联合应用,诊断肺栓塞效能最高,灵敏度和特异性分别为91.1%、98.2%。 其中SPECT V/Q断层显像半定量分析对于肺栓塞面积小于15%的小面积肺栓塞诊断有优势。放射性核素SPECT V/Q断层显像联合测定血浆D-二聚体能显著提高肺栓塞的诊断效能,是临床实用、安全有效的肺栓塞疑诊患者诊断策略。 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章 卢霞 孟晶晶 解小芬 王蒨 关键词 : 肺栓塞, SPECT V/Q显像, 血浆D-二聚体测定, 诊断效能 Abstract: To evaluate the early and accurate diagnostic value of SPECT V/Q imaging combined with D-dimer assay,especially in non massive pulmonary embolism group. 156 patients with computed tomographic pulmonary angiography (CTPA, Geneva score, response of anticoagulation treatments, who was selected from 321

  13. Value of SPECT/CT imaging for follow-up of bone metastases%SPECT/CT显像在肿瘤骨转移同一病灶动态随访中的价值

    Institute of Scientific and Technical Information of China (English)

    董科; 石洪成; 刘江; 张一秋; 陈曙光; 蔡良

    2013-01-01

    Objective To retrospectively evaluate the value of SPECT/CT imaging for follow-up of bone metastases.Methods A total of 178 patients with bone metastases (387 lesions) underwent 2 or more events of whole-body bone scintigraphy (WBS) and SPECT/CT imaging.Sequential images were analyzed by 2 experienced,nuclear medicine physicians.Each lesion was interpreted as progressive,remissive or stable in WBS or SPECT/CT independently.Reasons for the discordance between WBS and SPECT/CT results were analyzed.The results of clinical follow-up,including clinical symptoms,tumor markers,serum ALP,radiograph,CT and MRI,were likewise classified as progressive,remissive or stable.The x2 test was used to compare the differences between the two imaging methods.Results The follow-up results of the two imaging methods were consistent in 313 (80.88%,313/387) lesions,including 208 in progression and 105 in remission or stable condition.Among the 74(19.12%,74/387) lesions showing discordance,48 showed remission or stable conditions on WBS but progression on SPECT/CT (64.86%,48/74) ; while 26 showed progression on WBS but remission or stable condition on SPECT/CT (35.14%,26/74).There was a statistically significant difference of the follow-up results between WBS and SPECT/CT (x2 =6.54,P <0.05).Conclusion SPECT/CT is more valuable than WBS for follow-up of bone metastases.%目的 探讨SPECT/CT显像在肿瘤骨转移同一病灶动态随访中的价值.方法 回顾性分析178例行2次或2次以上全身骨显像(WBS)和SPECT/CT显像的肿瘤骨转移患者(总计387个骨转移病灶)的影像资料.由2位核医学科医师共同对随访病灶的WBS和SPECT/CT显像结果进行动态评判,结果均分为进展、好转或稳定;分析评判结果不一致的原因.临床随访(临床表现、肿瘤标志物、ALP、X线、CT、MRI等)结果也分为进展、好转或稳定.WBS和SPECT/CT显像随访结果差异的比较采用配对资料x2检验.结果 SPECT/CT显像随

  14. Predictors and Diagnostic Significance of the Adenosine Related Side Effects on Myocardial Perfusion SPECT/CT Imaging

    Directory of Open Access Journals (Sweden)

    Nilüfer Yıldırım Poyraz

    2014-10-01

    Full Text Available Objective: The aim of this study was to investigate the relationship between patient characteristics and adenosine-related side-effects during stress myocard perfusion imaging (MPI. The effect of presence of adenosine-related side-effects on the diagnostic value of MPI with integrated SPECT/CT system for coronary artery disease (CAD, was also assessed in this study. Methods: Total of 281 patients (109 M, 172 F; mean age:62.6±10 who underwent standard adenosine stress protocol for MPI, were included in this study. All symptoms during adenosine infusion were scored according to the severity and duration. For the estimation of diagnostic value of adenosine MPI with integrated SPECT/CT system, coronary angiography (CAG or clinical follow-up were used as gold standard. Results: Total of 173 patients (61.6% experienced adenosine-related side-effects (group 1; flushing, dyspnea, and chest pain were the most common. Other 108 patients completed pharmacologic stress (PS test without any side-effects (group 2. Test tolerability were similar in the patients with cardiovascular or airway disease to others, however dyspnea were observed significantly more common in patients with mild airway disease. Body mass index (BMI ≥30 kg/m2 and age ≤45 years were independent predictors of side-effects. The diagnostic value of MPI was similar in both groups. Sensitivity of adenosine MPI SPECT/CT was calculated to be 86%, specificity was 94% and diagnostic accuracy was 92% for diagnosis of CAD. Conclusion: Adenosine MPI is a feasible and well tolerated method in patients who are not suitable for exercise stress test as well as patients with cardiopulmonary disease. However age ≤45 years and BMI ≥30 kg/m2 are the positive predictors of adenosine-related side-effects, the diagnostic value of adenosine MPI SPECT/CT is not affected by the presence of adenosine related side-effects.

  15. SPECT/CT骨显像对肿瘤骨转移诊断的增益价值%The added diagnostic value of SPECT/CT imaging for bone metastases from malignant tumors

    Institute of Scientific and Technical Information of China (English)

    彭东; 刘学芬; 王荣辉; 黄德娟; 何燕; 潘科; 刘徽婷; 何润川

    2012-01-01

      Objective To evaluate the added diagnostic value of SPECT/CT imaging over routine planar whole body bone scintigraphy (WBBS) for bone metastases from malignant tumors. Methods Seventy eight cases with malignant tumors,who suspected for bone metastasis,underwent routine 99mTc-methylene diphosphonic acid(MDP) (740-1110MBq) WBBS, folowed by SPECT/CT imaging over the regions with indeterminate findings on WBBS. Both WBBS and bone SPECT/CT images were interpreted by two experienced nuclear medicine physicians in consensus as the positive,negative or uncertain bone metastases. The final diagnosis was comfirmed by pathology or clinical folow-up. Diagnosis was confirmed by pathology(n=8),more than two kinds of radiological imaging(MRI,CT,X-ray)(n=42) and clinical folow-up in one years(n=28). χ2-test was used to compare the differences between the two imaging methods. Results The foci of increased activity were 169 in 78 cases analyzed by WBBS. However,one of total 169 analyzed by SPECT/CT related to the contamination of 99mTc-MDP,23 related to the hyperosteogeny,10 related to the operation or external injury and 135 related to the bone lesions of the bone metastases. In 78 patients,WBBS of 55 cases matched the final diagnosis in which 22 had benign lesions and 23 had bone metastases,The definite coincidence rates were 81.8%(45/55);bone SPECT/CT images of 70 cases matched the final diagnosis in which 32 had benign lesions and 36 cases diagnosed as bone metastases,The definite coincidence rates were 97.1%(68/70). Difference in the definte coincidence rates of bone metastases between WBBS and bone SPECT/CT was statisticaly significant(χ2=4.767 , P<0.05). Conclusion bone SPECT/CT imaging provides incremental diagnostic value over routine WBBS for bone metastases from malignant tumors.%  目的探讨SPECT/CT骨显像在肿瘤骨转移诊断中的增益价值.方法对78例可疑肿瘤骨转移的患者行99mTc-MDP SPECT全身骨显像,对发现的阳性病灶

  16. Disappearance of myocardial perfusion defects on prone SPECT imaging: Comparison with cardiac magnetic resonance imaging in patients without established coronary artery disease

    Directory of Open Access Journals (Sweden)

    Hedén Bo

    2009-08-01

    Full Text Available Abstract Background It is of great clinical importance to exclude myocardial infarction in patients with suspected coronary artery disease who do not have stress-induced ischemia. The diagnostic use of myocardial perfusion single-photon emission computed tomography (SPECT in this situation is sometimes complicated by attenuation artifacts that mimic myocardial infarction. Imaging in the prone position has been suggested as a method to overcome this problem. Methods In this study, 52 patients without known prior infarction and no stress-induced ischemia on SPECT imaging were examined in both supine and prone position. The results were compared with cardiac magnetic resonance imaging (CMR with delayed-enhancement technique to confirm or exclude myocardial infarction. Results There were 63 defects in supine-position images, 37 of which disappeared in the prone position. None of the 37 defects were associated with myocardial infarction by CMR, indicating that all of them represented attenuation artifacts. Of the remaining 26 defects that did not disappear on prone imaging, myocardial infarction was confirmed by CMR in 2; the remaining 24 had no sign of ischemic infarction but 2 had other kinds of myocardial injuries. In 3 patients, SPECT failed to detect small scars identified by CMR. Conclusion Perfusion defects in the supine position that disappeared in the prone position were caused by attenuation, not myocardial infarction. Hence, imaging in the prone position can help to rule out ischemic heart disease for some patients admitted for SPECT with suspected but not documented ischemic heart disease. This would indicate a better prognosis and prevent unnecessary further investigations and treatment.

  17. Evaluation of myocardial SPECT imaging reconstructed from 270deg projection data. A study using a cardiac phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kashikura, Kenichi [Japan Science and Technology Corp., Akita (Japan). Akita Lab.; Kobayashi, Hideki; Kashikura, Akemi

    1997-01-01

    SPECT reconstruction is commonly performed using 360deg or 180deg projection data. However, it is also possible to reconstruct SPECT images using other projection data arcs. The purpose of this study was to characterize images obtained by limiting the projection data to 270deg by discarding the projection views with severe attenuation. A series of phantom studies was performed with and without plastic chambers simulating perfusion defects using {sup 201}Tl and {sup 99m}Tc. Images using 270deg, 360deg, and 180deg projection arcs were identically reconstructed from the same data. In the absence of plastic chambers, intraslice uniformity in a given slice was assessed by computing the coefficient of variation (CV) of average counts in 8 ROIs within the slice. Interslice uniformity was assessed by computing the CV of average counts in five short axial slices. With plastic chambers in place, the variability in defect contrasts was assessed by computing the CV of defect contrasts in 4 chambers, located on the anterior, lateral, inferoposterior, and septal walls. The intraslice uniformity of the 270deg images were considerably inferior to those of the 360deg and 180deg images. The interslice uniformity was highest in the 360deg images, and lowest in the 180deg images. The variation in defect contrasts in the 270deg image was higher than those of the other two images. The 270deg images showed a high defect contrast in the septum and high counts in the anterior and anteroseptal wall. Because a large variation in defect contrasts within a segment might result in false positive or negative in diagnosis, 270deg imaging is not recommended over 360deg or 180deg imaging. (author)

  18. Evaluation of global and regional left ventricular function obtained by quantitative gated SPECT using {sup 99m}Tc-tetrofosmin for left ventricular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Kazunobu; Nakajima, Tohru; Iseki, Harukazu; Abe, Sumihisa; Handa, Shunnosuke; Suzuki, Yutaka [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    2000-08-01

    The quantitative gated SPECT (QGS) software is able to calculate LV volumes and visualize LV wall motion and perfusion throughout the cardiac cycle using an automatic edge detection algorithm of the left ventricle. We evaluated the reliability of global and regional LV function assessment derived from QGS by comparing it with the results from left ventriculo-cineangiography (LVG). In 20 patients with left ventricular dysfunction who underwent ECG gated {sup 99m}Tc-tetrofosmin SPECT, the end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were calculated. The QGS-assessed regional wall motion was determined using the cinematic display. QGS-derived EDV, ESV and LVEF correlated well with those by LVG (p<0.001 for each). There was a good correlation between wall motion score (WMS) derived from the QGS and the LVG (r=0.40, p<0.05). In some patients with extensive myocardial infarction, there was a discrepancy in the regional wall motion results between QGS and LVG. The ECG-gated SPECT using QGS is useful to evaluate global and regional LV functions in left ventricular dysfunction. (author)

  19. Decreases in blood perfusion of the anterior cingulate gyri in Anorexia Nervosa Restricters assessed by SPECT image analysis

    Directory of Open Access Journals (Sweden)

    Tsutsui Junko

    2001-06-01

    Full Text Available Abstract Background It is possible that psychopathological differences exist between the restricting and bulimic forms of anorexia nervosa. We investigated localized differences of brain blood flow of anorexia nervosa patients using SPECT image analysis with statistic parametric mapping (SPM in an attempt to link brain blood flow patterns to neurophysiologic characteristics. Methods The subjects enrolled in this study included the following three groups: pure restrictor anorexics (AN-R, anorexic bulimics (AN-BP, and healthy volunteers (HV. All images were transformed into the standard anatomical space of the stereotactic brain atlas, then smoothed. After statistical analysis of each brain image, the relationships among images were evaluated. Results SPM analysis of the SPECT images revealed that the blood flow of frontal area mainly containing bilateral anterior cingulate gyri (ACC was significantly decreased in the AN-R group compared to the AN-BP and HV groups. Conclusions These findings suggest that some localized functions ofthe ACCare possibly relevant to the psychopathological aspects of AN-R.

  20. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Pham THN

    2017-01-01

    Full Text Available TH Nguyen Pham,1 Nigel A Lengkeek,2 Ivan Greguric,2 Byung J Kim,1 Paul A Pellegrini,2 Stephanie A Bickley,3 Marcel R Tanudji,3 Stephen K Jones,3 Brian S Hawkett,1 Binh TT Pham1 1Key Centre for Polymers and Colloids, School of Chemistry, University of Sydney, 2Radioisotopes and Radiotracers, NSTLI, Australian Nuclear Science and Technology Organisation, Sydney, 3Sirtex Medical Limited, North Sydney, NSW, Australia Abstract: Physiologically stable multimodality imaging probes for positron emission tomography/single-photon emission computed tomography (PET/SPECT-magnetic resonance imaging (MRI were synthesized using the superparamagnetic maghemite iron oxide (γ-Fe2O3 nanoparticles (SPIONs. The SPIONs were sterically stabilized with a finely tuned mixture of diblock copolymers with either methoxypolyethylene glycol (MPEG or primary amine NH2 end groups. The radioisotope for PET or SPECT imaging was incorporated with the SPIONs at high temperature. 57Co2+ ions with a long half-life of 270.9 days were used as a model for the radiotracer to study the kinetics of radiolabeling, characterization, and the stability of the radiolabeled SPIONs. Radioactive 67Ga3+ and Cu2+-labeled SPIONs were also produced successfully using the optimized conditions from the 57Co2+-labeling process. No free radioisotopes were detected in the aqueous phase for the radiolabeled SPIONs 1 week after dispersion in phosphate-buffered saline (PBS. All labeled SPIONs were not only well dispersed and stable under physiological conditions but also noncytotoxic in vitro. The ability to design and produce physiologically stable radiolabeled magnetic nanoparticles with a finely controlled number of functionalizable end groups on the SPIONs enables the generation of a desirable and biologically compatible multimodality PET/SPECT-MRI agent on a single T2 contrast MRI probe. Keywords: magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography

  1. SPECT/CT for imaging of the spine and pelvis in clinical routine: a physician's perspective of the adoption of SPECT/CT in a clinical setting with a focus on trauma surgery

    Energy Technology Data Exchange (ETDEWEB)

    Scheyerer, Max J.; Zimmermann, Stefan M.; Osterhoff, Georg; Simmen, Hans-Peter; Werner, Clement M.L. [University Hospital Zurich, Department of Surgery, Division of Trauma Surgery, Zuerich (Switzerland); Pietsch, Carsten [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland)

    2014-05-15

    Injuries of the axial skeleton are an important field of work within orthopaedic surgery and traumatology. Most lesions following trauma may be diagnosed by means of conventional plain radiography, computed tomography or magnetic resonance imaging. However, for some aspects SPECT/ CT can be helpful even in a trauma setting. In particular, the combination of highly sensitive but nonspecific scintigraphy with nonsensitive but highly specific computed tomography makes it particularly useful in anatomically complex regions such as the pelvis and spine. From a trauma surgeon's point of view, the four main indications for nuclear medicine imaging are the detection of (occult) fractures, and the imaging of inflammatory bone and joint diseases, chronic diseases and postoperative complications such as instability of instrumentation or implants. The aim of the present review was to give an overview of the adoption of SPECT/CT in a clinical setting. (orig.)

  2. Differential impact of multi-focus fan beam collimation with L-mode and conventional systems on the accuracy of myocardial perfusion imaging: Quantitative evaluation using phantoms

    Directory of Open Access Journals (Sweden)

    Tatsunori Saho

    2013-10-01

    Full Text Available Introduction: A novel IQ-SPECTTM method has become widely used in clinical studies. The present study compares the quality of myocardial perfusion images (MPI acquired using the IQ-SPECTTM (IQ-mode,conventional (180° apart: C-mode and L-mode (90° apart: L-mode systems. We assessed spatial resolution, image reproducibility and quantifiability using various physical phantoms. Materials and Methods: SPECT images were acquired using a dual-headed gamma camera with C-mode, L-mode, and IQ-mode acquisition systems from line source, pai and cardiac phantoms containing solutions of 99mTc. The line source phantom was placed in the center of the orbit and at ± 4.0, ± 8.0, ± 12.0, ± 16.0 and ± 20.0 cm off center. We examined quantifiability using the pai phantom comprising six chambers containing 0.0, 0.016, 0.03, 0.045, 0.062, and 0.074 MBq/mLof 99m-Tc and cross-calibrating the SPECT counts. Image resolution and reproducibility were quantified as myocardial wall thickness (MWT and %uptake using polar maps. Results: The full width at half maximum (FWHM of the IQ-mode in the center was increased by 11% as compared with C-mode, and FWHM in the periphery was increased 41% compared with FWHM at the center. Calibrated SPECT counts were essentially the same when quantified using IQ-and C-modes. IQ-SPECT images of MWT were significantly improved (P<0.001 over L-mode, and C-mode SPECT imaging with IQ-mode became increasingly inhomogeneous, both visually and quantitatively (C-mode vs. L-mode, ns; C-mode vs. IQ-mode, P<0.05. Conclusion: Myocardial perfusion images acquired by IQ-SPECT were comparable to those acquired by conventional and L-mode SPECT, but with significantly improved resolution and quality. Our results suggest that IQ-SPECT is the optimal technology for myocardial perfusion SPECT imaging.

  3. Clinical value of 131I- SPECT/CT image in patients with differentiated thyroid carcinoma%分化型甲状腺癌患者131I-SPECT/CT显像的临床价值

    Institute of Scientific and Technical Information of China (English)

    刘晓强; 周海中

    2011-01-01

    Objective To evaluate the clinical value of radioiodine - 131 SPECT/CT image in patients with differentiated thyroid carcinoma. Methods Two hundred and eight cases of both whole body scans and SPECT/CT images were studied, which performed in 5 ~ 7 days after receiv-ing 3.7~11.1 GBq of radioiodine- 131 by oral intake for radioablation of thyroid remnants or recur-rent and metastatic foci after a thyroidectomy in one hundred forty - two patients with differentiated thyroid carcinoma. Results The truth - positive, false - positive, false - negative and truth - nega-tive of 131I - SPECT/CT images for detecting DTC recurrent and metastatic foci were 427, 2, 14 and 208 respectively, but those of 131I- WBS were 245, 14, 48 and 155. The sensitivity and accu-racy of 131I - SPECT/CT images in this study for detecting DTC recurrent and metastatic foci were 96.8% and 97.5%, which were significantly higher than 131I - WBS(P<0. 001, P<0.001), whereas those of 131I - WBS were 83.6 % and 86.5 % respectively. The specificity of 131I - SPECT/ CT images for detecting recurrent and metastatic foci in DTC patients was higher than 131I - WBS (0. 01SPECT/CT image can accurately locate recurrent or metastatic foci of DTC and eliminate the false - positive lesion such as radiopollution, tissues covering and so on. The sensitivity, accuracy and specificity of 131I - SPECT/CT images for detecting recurrent and metastatic foci in DTC pa-tients were higher than 131I - WBS. It is helpful in determining clinical stage, therapeutic effects, prognosis and therapeutic strategies of DTC patients. The method of post - therapeutic 131 I -SPECT/CT image is demonstrated higher clinical value in the DTC patients.%目的 探讨分化型甲状腺癌(differentiated thyroid carcinoma,DTC)患者131I - SPECT/CT显像的临床价值.方法 142例DTC患者甲状腺全切或次全切除术后行放射性131I

  4. Quantitative assessment of the infarct size with the unfolded map method of sup 201 Tl myocardial SPECT in patient with acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Masahiro (Sapporo Medical Coll. (Japan))

    1992-03-01

    The unfolded map method of {sup 201}Tl single photon emission computed tomography (SPECT) was evaluated as to the ability to quantify and the clinical reliability in estimation of infarct size. The following results were obtained from basic experiments using a thoracic phantom. The defect area estimated by the unfolded map method was well correlated with the real defect area, in spite of overestimation of the defect area, when the defect area was determined by an isocount method (below 80% of maximum count) (y=1.941 + 2.292x, r=0.971). The defect volume estimated by short-axis images of {sup 201}Tl SPECT was closely correlated with real defect volume in spite of overestimation of defect volume (y=0.762 + 2.156x, r=0.982). When the defect area was estimated by division of the defect volume by the mean myocardial compartment thickness, it was closely correlated with real defect area (y=0.946 + 1.232x, r=0.990). When the volume was calculated from the summation of voxels in the regions districted by isocount threshold level at each section of the {sup 99m}Tc SPECT, the optimal isocount threshold level (percentage to maximum count) was 55%. Then, the clinical reliability of the unfolded map method as infarct sizing was evaluated in 26 patients with acute myocardial infarction by comparing it with enzymatic method, Bull's eye method, and {sup 99m}Tc pyrophosphate (PYP) SPECT method. In 14 first attack patients without right ventricular infarction, infarct area (IA) of the unfolded map method correlated most closely with the accumulated creatine kinase MB isoenzyme release (CK-MBr) (r=0.897), compared with the extent score (ES) (r=0.853) and the severity score (SS) (r=0.871) of Bull's eye method and the infarct volume (IV) (r=0.595) of {sup 99m}Tc PYP SPECT. In conclusion, although the unfolded map method of {sup 201}Tl SPECT has the tendency for overestimating infarct size, it is accurate and clinically reliable in estimating infarct size. (author).

  5. Estimation of dynamic time activity curves from dynamic cardiac SPECT imaging

    Science.gov (United States)

    Hossain, J.; Du, Y.; Links, J.; Rahmim, A.; Karakatsanis, N.; Akhbardeh, A.; Lyons, J.; Frey, E. C.

    2015-04-01

    Whole-heart coronary flow reserve (CFR) may be useful as an early predictor of cardiovascular disease or heart failure. Here we propose a simple method to extract the time-activity curve, an essential component needed for estimating the CFR, for a small number of compartments in the body, such as normal myocardium, blood pool, and ischemic myocardial regions, from SPECT data acquired with conventional cameras using slow rotation. We evaluated the method using a realistic simulation of 99mTc-teboroxime imaging. Uptake of 99mTc-teboroxime based on data from the literature were modeled. Data were simulated using the anatomically-realistic 3D NCAT phantom and an analytic projection code that realistically models attenuation, scatter, and the collimator-detector response. The proposed method was then applied to estimate time activity curves (TACs) for a set of 3D volumes of interest (VOIs) directly from the projections. We evaluated the accuracy and precision of estimated TACs and studied the effects of the presence of perfusion defects that were and were not modeled in the estimation procedure. The method produced good estimates of the myocardial and blood-pool TACS organ VOIs, with average weighted absolute biases of less than 5% for the myocardium and 10% for the blood pool when the true organ boundaries were known and the activity distributions in the organs were uniform. In the presence of unknown perfusion defects, the myocardial TAC was still estimated well (average weighted absolute bias myocardial uptake (product of defect extent and severity) was ≤5%. This indicates that the method was robust to modest model mismatch such as the presence of moderate perfusion defects and uptake nonuniformities. With larger defects where the defect VOI was included in the estimation procedure, the estimated normal myocardial and defect TACs were accurate (average weighted absolute bias ≈5% for a defect with 25% extent and 100% severity).

  6. Brain SPECT imaging and whole-body biodistribution with [{sup 123}I]ADAM - a serotonin transporter radiotracer in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-J. [Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Nuclear Medicine, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Liu, C.-Y. [Neuroscience Research Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Psychiatry, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Wey, S.-P. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Hsiao, I.-T. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan (China); Wu, Jay [Health Physics Divisions, Atomic Energy Council, Institute of Nuclear Energy Research, Tao-Yuan 325, Taiwan (China); Fu, Y.-K. [Atomic Energy Council, Institute of Nuclear Energy Research, Tao-Yuan 325, Taiwan (China); Yen, T.-C. [Molecular Imaging Center, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China) and Department of Nuclear Medicine, Chang-Gung Memorial Hospital, Tao-Yuan 333, Taiwan (China)]. E-mail: yen1110@adm.cgmh.org.tw

    2006-02-15

    Introduction: [{sup 123}I]-2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine ([{sup 123}I]ADAM), a novel radiotracer, has promising application in the imaging of the serotonin transporter (SERT) in the human brain. In this study, the optimal scanning time for acquiring brain single photon emission computed tomography (SPECT) images was determined by performing dynamic SPECT studies at intervals from 0 to 6 h postinjection of [{sup 123}I]ADAM. Additionally, radiation-absorbed doses were determined for three healthy human subjects using attenuation-corrected images. Methods: Twelve subjects were randomized into one of three study groups as follows: whole-body distribution imaging (n=3), dynamic SPECT imaging (n=3) and brain SPECT imaging (n=6). The radiation-absorbed dose was calculated using MIRDOSE 3.0 software with attenuation-corrected data. The specific binding (SB) ratio of the brain stem was measured from dynamic SPECT images to determine the optimal scanning time. Results: Dynamic SPECT images showed that the SB of the brain stem gradually increased to a maximum 4 h postinjection. Single photon emission computed tomography images at 4 h postinjection showed a high uptake of the radiotracer (SB) in the hypothalamus (1.40{+-}0.12), brain stem (1.44{+-}0.16), pons (1.13{+-}0.14) and medial temporal lobe (0.59{+-}0.10). The mean adult male value of effective dose was 3.37x10{sup -2} mSv/MBq with a 4.8-h urine-voiding interval. Initial high uptake in SERT-rich sites was demonstrated in the lung and brain. A prominent washout of the radiotracer from the lung further increased brain radioactivity that reached a peak value of 5.03% of injected dose 40 min postinjection. Conclusions: [{sup 123}I]ADAM is a promising radiotracer for SPECT imaging of SERT in humans with acceptable dosimetry and high uptake in SERT-rich regions. Brain SPECT images taken within 4 h following injection show optimal levels of radiotracer uptake in known SERT sites. However, dynamic

  7. Evaluation of epileptogenic focus in temporal lobe: correlation between ictal brain SPECT, magnetic resonance imaging and magnetic resonance spectroscopy; Avaliacao de foco epileptogenico do lobo temporal: correlacao entre SPECT ictal, ressonancia magnetica e ressonancia magnetica com espectroscopia de protons

    Energy Technology Data Exchange (ETDEWEB)

    Diegues, Maria Elena Martins [Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil). Servico de Medicina Nuclear]. E-mail: emartyns@terra.com.br; Pellini, Marcos Pinto; Alves-Leon, Soniza Vieira [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina; Domingues, Romeu Cortes [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil)

    2004-02-01

    The purpose of this study was to determine the degree of concordance between radiological and radioisotopic methods and, if positive, to evaluate the usefulness of ictal SPECT in the localization of the epileptogenic focus. Ictal brain SPECT, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were performed on six patients with refractory temporal lobe epilepsy. Ictal SPECT was performed after withdrawal of the anti-epileptogenic drugs during video-EEG monitoring, using {sup 99m}Tc-ECD, administered to patients at the time of the ictus. MRI was performed in T1, T2 and FLAIR sequences and MRS was obtained using the PRESS technique, with a single voxel positioned in both hippocampi. The statistical analysis included the determination of the values of Kappa (k), standard error (se) and significance level (p) for the lateralization of the ictal focus. The analysis of all findings was based on EEG localization of the ictal discharge, seizure duration (109-280 s; 152 s average) and time of radiotracer injection (30-262 s; 96 s average). We obtained correlated data in four patients (67 per cent) and values of k = 0.67, se = 0.38, and p 0.041. We concluded that there is a concordance between ictal SPECT, MRI and MRS data and the usefulness of the radioisotopic procedure is related to a non diagnostic EEG and when there is a discordant or misleading diagnosis after a comparative analysis of EEG and MRS. (author)

  8. White-light Quantitative Phase Imaging Unit

    CERN Document Server

    Baek, YoonSeok; Yoon, Jonghee; Kim, Kyoohyun; Park, YongKeun

    2016-01-01

    We introduce the white light quantitative phase imaging unit (WQPIU) as a practical realization of quantitative phase imaging (QPI) on standard microscope platforms. The WQPIU is a compact stand-alone unit which measures sample induced phase delay under white-light illumination. It does not require any modification of the microscope or additional accessories for its use. The principle of the WQPIU based on lateral shearing interferometry and phase shifting interferometry provides a cost-effective and user-friendly use of QPI. The validity and capacity of the presented method are demonstrated by measuring quantitative phase images of polystyrene beads, human red blood cells, HeLa cells and mouse white blood cells. With speckle-free imaging capability due to the use of white-light illumination, the WQPIU is expected to expand the scope of QPI in biological sciences as a powerful but simple imaging tool.

  9. Quantitative histogram analysis of images

    Science.gov (United States)

    Holub, Oliver; Ferreira, Sérgio T.

    2006-11-01

    A routine for histogram analysis of images has been written in the object-oriented, graphical development environment LabVIEW. The program converts an RGB bitmap image into an intensity-linear greyscale image according to selectable conversion coefficients. This greyscale image is subsequently analysed by plots of the intensity histogram and probability distribution of brightness, and by calculation of various parameters, including average brightness, standard deviation, variance, minimal and maximal brightness, mode, skewness and kurtosis of the histogram and the median of the probability distribution. The program allows interactive selection of specific regions of interest (ROI) in the image and definition of lower and upper threshold levels (e.g., to permit the removal of a constant background signal). The results of the analysis of multiple images can be conveniently saved and exported for plotting in other programs, which allows fast analysis of relatively large sets of image data. The program file accompanies this manuscript together with a detailed description of two application examples: The analysis of fluorescence microscopy images, specifically of tau-immunofluorescence in primary cultures of rat cortical and hippocampal neurons, and the quantification of protein bands by Western-blot. The possibilities and limitations of this kind of analysis are discussed. Program summaryTitle of program: HAWGC Catalogue identifier: ADXG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXG_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Mobile Intel Pentium III, AMD Duron Installations: No installation necessary—Executable file together with necessary files for LabVIEW Run-time engine Operating systems or monitors under which the program has been tested: WindowsME/2000/XP Programming language used: LabVIEW 7.0 Memory required to execute with typical data:˜16MB for starting and ˜160MB used for

  10. The current status of SPECT or SPECT/CT in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ik Dong; Choi, Eun Kyung; Chung, Yong An [Dept. of Radiology, Incheon Saint Mary' s HospitalThe Catholic University of Korea, Incheon (Korea, Republic of)

    2017-06-15

    The first step to nuclear medicine in Korea started with introduction of the gamma camera in 1969. Although planar images with the gamma camera give important functional information, they have the limitations that result from 2-dimensional images. Single-photon emission computed tomography (SPECT) due to its 3-dimensional image acquisition is superior to earlier planar gamma imaging in image resolution and diagnostic accuracy. As demand for a hybrid functional and anatomical imaging device has increased, integrated SPECT/CT systems have been used. In Korea, SPECT/CT was for the first time installed in 2003. SPECT/CT can eliminate many possible pitfalls on SPECT-alone images, making better attenuation correction and thereby improving image quality. Therefore, SPECT/CT is clinically preferred in many hospitals in various aspects. More recently, additional SPECT/CT images taken from the region with equivocal uptake on planar images have been helpful in making precise interpretation as part of their clinical workup in postoperative thyroid cancer patients. SPECT and SPECT/CT have various advantages, but its clinical application has gradually decreased in recent few years. While some researchers investigated the myocardial blood flow with cardiac PET using F-18 FDG or N-13 ammonia, myocardial perfusion SPECT is, at present, the radionuclide imaging study of choice for the risk stratification and guiding therapy in the coronary artery disease patients in Korea. New diagnostic radiopharmaceuticals for AD have received increasing attention; nevertheless, brain SPECT will remain the most reliable modality evaluating cerebral perfusion.

  11. Mirror-image lymph node in FDG PET/CT and SPECT/CT for sentinel node detection.

    Science.gov (United States)

    Domenech, Beatriz; Paredes, Pilar; Rubí, Sebastià; Pahisa, Jaume; Vidal-Sicart, Sergi; Pons, Francesca

    2014-03-01

    We report a case of a patient with presumed stage IB1 squamous cell carcinoma of the cervix in which FDG PET/CT scan revealed 1 hypermetabolic left iliac node suggestive to be malignant. Lymphoscintigraphy and SPECT/CT studies previous to sentinel node (SLN) biopsy revealed unilateral drainage in the right pelvis. Intraoperative pathological assessment of the SLN showed no tumoral involvement, and the hypermetabolic node revealed macrometastasis. Tumor node invasion can lead to a lymphatic blockage and become false-negative for SLN technique. Although FDG PET/CT has lower sensitivity than surgical staging, this case shows its value as a preoperative imaging technique.

  12. Pituitary Prolactinoma Imaged by 99mTc-Sestamibi SPECT/CT in a Multiple Endocrine Neoplasia Type 1 Patient.

    Science.gov (United States)

    Pan, Yu; Lv, Jing; Guo, Rui; Pan, Mengyi; Zhang, Yifan

    2016-06-01

    A 35-year-old woman who had undergone bilateral inferior parathyroidectomy for primary hyperparathyroidism was referred to our hospital to evaluate the cause of irregular menses, galactorrhea, and paroxysmal headache. Multiple endocrine neoplasia type 1 was then suspected for the high levels of plasma prolactin, parathyroid hormone, serum calcium, insulin, and related symptoms. A Tc-sestamibi SPECT/CT acquired to evaluate parathyroid glands unexpectedly revealed an increased accumulation in the pituitary gland, which was further confirmed by enhanced magnetic resonance imaging as a pituitary microadenoma. Bromocriptine treatment gradually reduced the prolactin level.

  13. Concurrent Diffuse Pyelonephritis and Prostatitis: Discordant Findings on Sequential FDG PET/CT and 67Ga SPECT/CT Imaging.

    Science.gov (United States)

    Lucaj, Robert; Achong, Dwight M

    2017-01-01

    A 45-year-old man underwent FDG PET/CT for initial imaging evaluation of recurrent Escherichia coli urinary tract infections, which demonstrated no significant FDG uptake in either kidney and subtle FDG uptake in the right prostate lobe. Subsequent Ga SPECT/CT demonstrated abnormal intense gallium uptake throughout the right kidney and entire prostate gland, clearly discordant with PET/CT findings and consistent with unexpected concurrent pyelonephritis and prostatitis. Although FDG has effectively replaced Ga in everyday clinical practice, the current case serves as a reminder that there is still a role for Ga in the evaluation of genitourinary infections.

  14. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    Science.gov (United States)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  15. Cancer detection by quantitative fluorescence image analysis.

    Science.gov (United States)

    Parry, W L; Hemstreet, G P

    1988-02-01

    Quantitative fluorescence image analysis is a rapidly evolving biophysical cytochemical technology with the potential for multiple clinical and basic research applications. We report the application of this technique for bladder cancer detection and discuss its potential usefulness as an adjunct to methods used currently by urologists for the diagnosis and management of bladder cancer. Quantitative fluorescence image analysis is a cytological method that incorporates 2 diagnostic techniques, quantitation of nuclear deoxyribonucleic acid and morphometric analysis, in a single semiautomated system to facilitate the identification of rare events, that is individual cancer cells. When compared to routine cytopathology for detection of bladder cancer in symptomatic patients, quantitative fluorescence image analysis demonstrated greater sensitivity (76 versus 33 per cent) for the detection of low grade transitional cell carcinoma. The specificity of quantitative fluorescence image analysis in a small control group was 94 per cent and with the manual method for quantitation of absolute nuclear fluorescence intensity in the screening of high risk asymptomatic subjects the specificity was 96.7 per cent. The more familiar flow cytometry is another fluorescence technique for measurement of nuclear deoxyribonucleic acid. However, rather than identifying individual cancer cells, flow cytometry identifies cellular pattern distributions, that is the ratio of normal to abnormal cells. Numerous studies by others have shown that flow cytometry is a sensitive method to monitor patients with diagnosed urological disease. Based upon results in separate quantitative fluorescence image analysis and flow cytometry studies, it appears that these 2 fluorescence techniques may be complementary tools for urological screening, diagnosis and management, and that they also may be useful separately or in combination to elucidate the oncogenic process, determine the biological potential of tumors

  16. Preparation and biodistribution assessment of {sup 111}In-BPAMD as a novel agent for bone SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yousefnia, Hassan; Zolghadri, Samaneh; Jalilian, Amir Reza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2015-07-01

    An early diagnosis of bone metastases is very important for providing a profound decision on a subsequent therapy. In this study, a new agent for SPECT-imaging of bone metastases, {sup 111}In-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid ({sup 111}In-BPAMD) complex has been developed with specific activity of 2.85 TBq/mmol. Radiochemical purity of the radiolabeled complex was checked by instant thin layer chromatography method indicated high radiochemical purity > 95% at the optimal conditions. The complex demonstrated significant stability at room temperature and in human serum at least for 48 h. Hydroxyapatite (HA) binding assay showed high binding ability of the radiolabeled complex even at the low amounts of HA. Also, log P measurements highlighted the strong hydrophilic nature of the complex. Biodistribution studies as well as planar imaging after injection of the complex into the male Syrian mice showed major accumulation of the labelled compound in the bone tissue. Totally, the obtained results indicated that {sup 111}In-BPAMD has interesting characteristics as an agent for SPECT-imaging of the bone metastases.

  17. Collar Osteophytes Mimicking Osteonecrosis in Planar Bone Scintigraphy and Usefulness of SPECT/CT Images.

    Science.gov (United States)

    Juang, Jr-Jian; Chen, Yi-Hsing; Tsai, Shih-Chuan; Lin, Wan-Yu

    2017-03-01

    The use of prednisolone is one major risk factor for osteonecrosis in patients with systemic lupus erythematosus. Bone scintigraphy can be a diagnostic tool for early diagnosis. We present a case who had collar osteophytes at the bilateral femoral heads, which mimicked osteonecrosis in the planar bone scintigram. An SPECT/CT scan avoided this pitfall and increased the diagnostic accuracy for osteonecrosis.

  18. 肺癌患者SPECT/CT同机融合显像肋骨单发病灶影像分析%SPECT/CT fusion imaging analysis of costal single hot spots in patients with lung cancer

    Institute of Scientific and Technical Information of China (English)

    包贺菊; 陈刚; 陈燕燕

    2014-01-01

    Objective To analyze the imaging features and clinical significance of solitary costal hot spots in patient with lung cancer on SPECT/CT fusion imaging and the value of low-dose CT for diagnosis.Methods SPECT/CT scan was performed on 68 patients with lung cancer and costal single hot spots using whole body bone imaging.The sites of lesions were classified into four types:junction between costal cartilage and rib,frontal rib,lateral rib,posterior rib.The shapes of lesions were classified into two forms:punctiform and strip shapes,and were analyzed and classified.The differences of the diagnosis of whole body bone imaging and SPECT/CT scan were analyzed.Results Punctiform spots were mainly due to costal fractures(36/68,52.94%).The majority of spots in strip shape were costal metastases (21/23,91.30%).The lesions of junction between costal cartilage and rib were punctiform shape and benign.Hot spots in posterior ribs were mainly costal metastases (18/22,81.82%).Sensitivity of diagnosis of the metastatic bone tumor with whole body bone imaging and SPECT/CT in single hot spot of spine and rib was 69.23% (18/26) and 92.31%(24/26),specificity 59.52%(25/42) and 85.71%(36/42),accuracy 63.24%(43/68) and 88.24% (60/68),positive predictive value 51.43% (18/35) and 80.00% (24/30),negative predictive value 75.76% (25/33) and 94.74% (36/38).SPECT/CT scan had differences with whole body bone imaging in sensitivity (P < 0.05),SPECT/CT scan had significant differences with whole body bone imaging in coincidence and specificity (P < 0.01).Conclusions Useful imaging features can be obtained from SPECT/CT fusion imaging with single costal hot spots,being helpful to differential diagnosis of benign and malignant lesions.SPECT/CT fusion imaging may improve the accuracy to diagnose the rib disease.%目的 分析肺癌患者SPECT/CT同机融合显像肋骨单发病灶的特征和临床诊断之间的相互关系,并评价定位CT在诊断中的作用.方法

  19. omniSpect: an open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images.

    Science.gov (United States)

    Parry, R Mitchell; Galhena, Asiri S; Gamage, Chaminda M; Bennett, Rachel V; Wang, May D; Fernández, Facundo M

    2013-04-01

    We present omniSpect, an open source web- and MATLAB-based software tool for both desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) that performs computationally intensive functions on a remote server. These functions include converting data from a variety of file formats into a common format easily manipulated in MATLAB, transforming time-series mass spectra into mass spectrometry images based on a probe spatial raster path, and multivariate analysis. OmniSpect provides an extensible suite of tools to meet the computational requirements needed for visualizing open and proprietary format MSI data.

  20. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S; Touch, M [Duke University Medical Physics Graduate Program, Durham, NC (United States); Bowsher, J; Yin, F [Duke University Medical Physics Graduate Program, Durham, NC (United States); Duke University Medical Center, Durham, NC (United States); Cheng, L [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator and a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.

  1. SPECT imaging using [{sup 123}I]{beta}-CIT and [{sup 123}I]IBF in extrapyramidal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takahiro; Amano, Takahiro; Hashimoto, Jun; Itoh, Yoshiaki; Muramatsu, Kazuhiro; Kubo, Atsushi; Fukuuchi, Yasuo [Keio Univ., Tokyo (Japan). School of Medicine

    2003-01-01

    Imaging of dopaminergic function is useful in the investigation of patients with Parkinson disease (iPD) and other extrapyramidal diseases. Using agents that bind to dopamine transporters ([{sup 123}I]{beta}-CIT) and receptors ([{sup 123}I]IBF SPECT), we investigated SPECT in 9 healthy volunteers and 24 patients for dopamine transporters as well as 15 patients for dopamine receptors. In {beta}-CIT SPECT studies, we examined 17 iPD patients (63.3{+-}9.9 y/o), 3 multiple system atrophy (MSA) patients (olivopontocerebellar atrophy (OPCA) type) (64.0{+-}8.0 y/o), 2 vascular parkinsonism (VP) patients (71.0{+-}0.0 y/o), 1 progressive supranuclear palsy (PSP) patient (69 y/o), 1 cortico-basal degeneration (CBD) patient (50 y/o) and nine healthy controls (39.1{+-}9.3 y/o). For IBF SPECT studies 11 iPD patients (60.6{+-}10.9 y/o), 3 MSA patients (2 OPCA type (50.5{+-}3.5 y/o) and 1 striatonigral degeneration (SND) type (65 y/o)) and 1 PSP patient (60 y/o) underwent SPECT scans after the injection of [{sup 123}I]IBF. The specific to nonspecific striatal ratio (St/Oc-1), ratio of putaminal uptake to caudatal uptake (Pu/Ca), and asymmetry indices (AI) were estimated. {beta}-CIT studies showed ST/Oc-1 as follows; iPD: 2.66{+-}1.09 (n=17), VP: 5.73 and 7.39, MSA: 1.84{+-}0.46 (n=3), PSP: 2.34, CBD: 2.16. In all extrapyramidal diseases except VP, St/Oc-1 ratios were significantly lower than those in normal volunteers (6.46{+-}1.08) (p<0.01). Also in early-phase iPD patients (Yahr I-II), St/Oc-1 (3.16{+-}1.49: n=4) was significantly lower than those in normal volunteers (p<0.01). In IBF studies, St/Oc-1 ratios were significantly higher in early-phase (Yahr I-II) iPD patients (1.82{+-}0.25: n=5) than those in late-phase (Yahr III-IV) iPD patients (1.38{+-}0.32: n=6) (p<0.05). The Pu/Ca ratios in iPD patients (1.12{+-}0.13) and MSA (OPCA type) patients (0.95{+-}0.05) were higher than that in MSA (SND type) patient (0.78) and were lower than that in PSP patient (1.55). In conclusion

  2. Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner

    Science.gov (United States)

    Yao, Rutao; Ma, Tianyu; Shao, Yiping

    2008-08-01

    This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.

  3. The added diagnostic value of SPECT/CT imaging for bone metastases from lung cancer%SPECT/CT骨显像对肺癌骨转移诊断的增益价值

    Institute of Scientific and Technical Information of China (English)

    张一秋; 石洪成; 顾宇参; 陈曙光; 修雁; 李蓓蕾; 朱玮珉; 余浩军

    2011-01-01

    Objective To investigate the added diagnostic value of SPECT/CT imaging over routine planar whole-body bone scintigraphy (WBBS) for bone metastases from lung cancer. Methods One hundred and forty-six patients with lung cancer, confirmed by pathological examination, underwent routine 99Tcm-MDP (1110 MBq) WBBS, followed by SPECT/CT over the regions with indeterminate findings on WBBS. Both WBBS and bone SPECT/CT images were interpreted by two experienced nuclear medicine physicians in consensus as the positive, negative or uncertain bone metastases. The final diagnosis was comfirmed by pathology or clinical follow-up. x2 test was used to compare the differences between the two imaging methods. Results Finally, 45 patients were diagnosed as positive bone metastases and the other 101 as negative. The diagnostic sensitivity of bone SPECT/CT for bone metastases from lung cancer was 93.3%(42/45), singnificantly higher than that of WBBS (64.4%, 29/45) (x2 = 19.944, P<0.05). The diagnostic accuracy of bone SPECT/CT was 89.7% ( 131/146), much higher than that of WBBS (44.5%,65/146) ( x2 = 69. 598,P < 0.05). The uncertain and incorrect diagnostic rates of bone SPECT/CT and WBBS were 10.3% ( 15/146, raging from 5.3% to 15.2% with 95% confidence interval (CI) ) and 55.5% (81/146, raging from 47. 4% to 63.5% with95% CI), respectively. Conclusion BoneSPECT/CT provides incremental diagnostic value over routine WBBS for bone metastases from lung cancer.%目的 探讨SPECT/CT骨显像在肺癌骨转移诊断中的增益价值.方法 146例病理证实为肺癌的患者,静脉注射99Tcm-MDP1110 MBq,3~6 h后按常规方法行全身骨显像.由1位资深核医学科医师分析全身骨显像图像后,决定是否行SPECT/CT显像以及显像视野范围,然后采集SPECT和CT图像.由2位核医学科医师先对全身骨显像的平面图像进行分析,然后分析SPECT/CT融合图像并诊断,诊断分为肿瘤骨转移、无肿瘤骨转移和不能确定.根据术后病

  4. The influence of the image reconstruction in relative quantification in SPECT/PET/CT animal; A influencia da reconstrucao da imagem na quantificacao relativa em SPECT/PET/CT animal

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Sarah; Sa, Lidia Vasconcellos de, E-mail: sarahsoriano@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Souza, Sergio; Barboza, Thiago [Hospital Universitario Clementino Fraga Filho (HUCFF/UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The objective of this study is to evaluate the spatial resolution of the equipment SPECT/PET/CT animal to different reconstruction methods and the influence of this parameter in the mouse dosimetry C57BL6, aimed at development of new radiopharmaceuticals for use in humans. CT and SPECT images were obtained from a simulator composed of four spheres of different diameters (d), which simulate captating lesions by the equipment FLEX ™ Triumph ™ Pre-Clinical Imaging System used for preclinical studies in the Hospital Universitario (HU/UFRJ). In order to simulate a real study, the total volume of the simulator (body) was filled with a solution of {sup 99m}Tc diluted in water and the spheres were filled with concentrations four time higher than the body of the simulator. From the gross SPECT images it was used filtered backprojection method (FBP) with application of different filters: Hamming, Hann and Ramp, ranging the cutoff frequencies. The resolution of the equipment found in the study was 9.3 to 9.4 mm, very below the value provided by the manufacturer of 1.6mm. Thus, the protocol for mice can be optimized as being the FBP reconstruction method of Hamming filter, cutoff of 0.5 to yield a resolution from 9.3 to 9.4mm. This value indicates that captating regions of diameter below 9.3 mm are not properly quantified.

  5. Applications of cerebral SPECT

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, C., E-mail: claire.mcarthur@nhs.net [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Jampana, R.; Patterson, J.; Hadley, D. [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom)

    2011-07-15

    Single-photon emission computed tomography (SPECT) can provide three-dimensional functional images of the brain following the injection of one of a series of radiopharmaceuticals that crosses the blood-brain barrier and distributes according to cerebral perfusion, neurotransmitter, or cell density. Applications include differentiating between the dementias, evaluating cerebrovascular disease, preoperative localization of epileptogenic foci, diagnosing movement disorders, and evaluation of intracerebral tumours, while also proving a useful research tool. Unlike positronemission tomography (PET), SPECT imaging is widely available and can be performed in any department that has access to a rotating gamma camera. The purpose of this review is to demonstrate the utility of cerebral SPECT and increase awareness of its role in the investigation of neurological and psychiatric disorders.

  6. Quantitative Imaging in Cancer Clinical Trials.

    Science.gov (United States)

    Yankeelov, Thomas E; Mankoff, David A; Schwartz, Lawrence H; Lieberman, Frank S; Buatti, John M; Mountz, James M; Erickson, Bradley J; Fennessy, Fiona M M; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L; Linden, Hannah M; Kinahan, Paul E; Zhao, Binsheng; Hylton, Nola M; Gillies, Robert J; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L

    2016-01-15

    As anticancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. Although traditional, anatomic CT, and MRI examinations are useful in many settings, increasing evidence suggests that these methods cannot answer the fundamental biologic and physiologic questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients and to provide a more efficient path for the development of improved targeted therapies.

  7. Monte Carlo scatter correction for SPECT

    Science.gov (United States)

    Liu, Zemei

    The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accel