WorldWideScience

Sample records for quantitative single-molecule imaging

  1. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.

    Science.gov (United States)

    Palayret, Matthieu; Armes, Helen; Basu, Srinjan; Watson, Adam T; Herbert, Alex; Lando, David; Etheridge, Thomas J; Endesfelder, Ulrike; Heilemann, Mike; Laue, Ernest; Carr, Antony M; Klenerman, David; Lee, Steven F

    2015-01-01

    Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.

  2. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.

    Directory of Open Access Journals (Sweden)

    Matthieu Palayret

    Full Text Available Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.

  3. A programmable light engine for quantitative single molecule TIRF and HILO imaging.

    Science.gov (United States)

    van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin

    2008-10-27

    We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.

  4. Quantitative study of single molecule location estimation techniques.

    Science.gov (United States)

    Abraham, Anish V; Ram, Sripad; Chao, Jerry; Ward, E S; Ober, Raimund J

    2009-12-21

    Estimating the location of single molecules from microscopy images is a key step in many quantitative single molecule data analysis techniques. Different algorithms have been advocated for the fitting of single molecule data, particularly the nonlinear least squares and maximum likelihood estimators. Comparisons were carried out to assess the performance of these two algorithms in different scenarios. Our results show that both estimators, on average, are able to recover the true location of the single molecule in all scenarios we examined. However, in the absence of modeling inaccuracies and low noise levels, the maximum likelihood estimator is more accurate than the nonlinear least squares estimator, as measured by the standard deviations of its estimates, and attains the best possible accuracy achievable for the sets of imaging and experimental conditions that were tested. Although neither algorithm is consistently superior to the other in the presence of modeling inaccuracies or misspecifications, the maximum likelihood algorithm emerges as a robust estimator producing results with consistent accuracy across various model mismatches and misspecifications. At high noise levels, relative to the signal from the point source, neither algorithm has a clear accuracy advantage over the other. Comparisons were also carried out for two localization accuracy measures derived previously. Software packages with user-friendly graphical interfaces developed for single molecule location estimation (EstimationTool) and limit of the localization accuracy calculations (FandPLimitTool) are also discussed.

  5. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  6. Single Molecule Imaging in Living Cell with Optical Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Significance, difficult, international developing actuality and our completed works for single molecules imaging in living cell with optical method are described respectively. Additionally we give out some suggestions for the technology development further.

  7. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    OpenAIRE

    Vasdekis, Andreas E.; Laporte, Gregoire P.J.

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated ph...

  8. Incoherent x-ray scattering in single molecule imaging

    CERN Document Server

    Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

    2014-01-01

    Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

  9. Single molecule imaging with longer x-ray laser pulses

    CERN Document Server

    Martin, Andrew V; Caleman, Carl; Quiney, Harry M

    2015-01-01

    In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

  10. Synergizing superresolution optical fluctuation imaging with single molecule localization microscopy

    CERN Document Server

    Schidorsky, Shachar; Razvag, Yair; Golan, Yonatan; Weiss, Shimon; Sherman, Eilon

    2016-01-01

    Single molecule localization microscopy (SMLM) techniques enable imaging biological samples well beyond the diffraction limit of light, but they vary significantly in their spatial and temporal resolutions. High-order statistical analysis of temporal fluctuations as in superresolution optical fluctuation imaging (SOFI) also enable imaging beyond diffraction limit, but usually at a lower resolution as compared to SMLM. Since the same data format is acquired for both methods, their algorithms can be applied to the same data set, and thus may be combined synergistically to improve overall imaging performance. Here, we find that SOFI converges much faster than SMLM, provides additive information to SMLM, and can efficiently reject background. We then show how SOFI-assisted SMLM imaging can improve SMLM image reconstruction by rejecting common sources of background, especially under low signal-to-background conditions. The performance of our approach was evaluated using a realistic simulation of fluorescence imagi...

  11. Enhancing single molecule imaging in optofluidics and microfluidics.

    Science.gov (United States)

    Vasdekis, Andreas E; Laporte, Gregoire P J

    2011-01-01

    Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR) of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  12. Enhancing Single Molecule Imaging in Optofluidics and Microfluidics

    Directory of Open Access Journals (Sweden)

    Andreas E. Vasdekis

    2011-08-01

    Full Text Available Microfluidics and optofluidics have revolutionized high-throughput analysis and chemical synthesis over the past decade. Single molecule imaging has witnessed similar growth, due to its capacity to reveal heterogeneities at high spatial and temporal resolutions. However, both resolution types are dependent on the signal to noise ratio (SNR of the image. In this paper, we review how the SNR can be enhanced in optofluidics and microfluidics. Starting with optofluidics, we outline integrated photonic structures that increase the signal emitted by single chromophores and minimize the excitation volume. Turning then to microfluidics, we review the compatible functionalization strategies that reduce noise stemming from non-specific interactions and architectures that minimize bleaching and blinking.

  13. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2017-08-05

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Aptamer-based single-molecule imaging of insulin receptors in living cells

    Science.gov (United States)

    Chang, Minhyeok; Kwon, Mijin; Kim, Sooran; Yunn, Na-Oh; Kim, Daehyung; Ryu, Sung Ho; Lee, Jong-Bong

    2014-05-01

    We present a single-molecule imaging platform that quantitatively explores the spatiotemporal dynamics of individual insulin receptors in living cells. Modified DNA aptamers that specifically recognize insulin receptors (IRs) with a high affinity were selected through the SELEX process. Using quantum dot-labeled aptamers, we successfully imaged and analyzed the diffusive motions of individual IRs in the plasma membranes of a variety of cell lines (HIR, HEK293, HepG2). We further explored the cholesterol-dependent movement of IRs to address whether cholesterol depletion interferes with IRs and found that cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin reduces the mobility of IRs. The aptamer-based single-molecule imaging of IRs will provide better understanding of insulin signal transduction through the dynamics study of IRs in the plasma membrane.

  15. Quantitative single-molecule detection of protein based on DNA tetrahedron fluorescent nanolabels.

    Science.gov (United States)

    Ding, Yongshun; Liu, Xingti; Zhu, Jing; Wang, Lei; Jiang, Wei

    2014-07-01

    A highly sensitive method for single-molecule quantitative detection of human IgG is presented by the employment of a new fluorescent nanolabel. In this method, fluorescent nanolabels were assembled by inserting SYBR Green I into DNA tetrahedron nanostructure. The bio-nanolabels were attached to the streptavidin-antihuman antibody by a specific reaction between biotin and streptavidin. The antibody was combined with the target antigen, human IgG, which was immobilized on the silanized glass subtrate surface. Finally, epi-fluorescence microscopy (EFM) coupled with an electron multiplying charge-coupled device was employed for fluorescence imaging. The fluorescent spots corresponding to single protein molecule on images were counted and further used for the quantitative detection. It was found that the new nanolabel shows good photostability, biocompatiblity and exhibits no blinking compared to traditional labels like fluorescence dyes and quantum dot (QDs). In addition, the number of fluorescence spots on the images has a linear relationship with the concentration of human IgG in the range of 3.0×10(-14) to 1.0×10(-12)mol L(-1). What is more, this method showed an excellent specificity and a low matrix effect.

  16. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP.

    Directory of Open Access Journals (Sweden)

    Femke L Groeneweg

    Full Text Available Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR and the mineralocorticoid receptor (MR, two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (∼ 0.7 s and the other half for longer time periods (∼ 2.3 s. A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (≤ 1 ms interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.

  17. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    OpenAIRE

    Hirvonen, Liisa Maija; Barber, Matthew; Suhling, Klaus

    2016-01-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, w...

  18. Multicolour single molecule imaging in cells with near infra-red dyes.

    Directory of Open Access Journals (Sweden)

    Christopher J Tynan

    Full Text Available BACKGROUND: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. METHODOLOGY/PRINCIPAL FINDINGS: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470-1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.

  19. Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale.

    Science.gov (United States)

    Chen, Hung-Ying; Lin, Meng-Hsien; Wang, Chun-Yuan; Chang, Yu-Ming; Gwo, Shangjr

    2015-10-28

    Quantitative surface enhanced Raman spectroscopy (SERS) requires precise control of Raman enhancement factor and detection uniformity across the SERS substrate. Here, we show that alkanethiolate ligand-regulated silver (Ag) nanoparticle films can be used to achieve quantitative SERS measurements down to the single-molecule level. The two-dimensional hexagonal close-packed superlattices of Ag nanoparticles formed in these films allow for SERS detection over a large area with excellent uniformity and high Raman enhancement factor. In particular, the SERS signal from the thiolate ligands on Ag nanoparticle surfaces can be utilized as a stable internal calibration standard for reproducible quantitative measurements. We demonstrate the capability of quantitative SERS by measuring the areal densities of crystal violet molecules embedded in an ultrathin spin-on-glass detection "hot zone", which is a planar and uniformly enhanced region several nanometers above the Ag nanoparticles. The Raman measurement results exhibit a linear response over a wide dynamic range of analyte concentration.

  20. Imaging proteins at the single-molecule level

    Science.gov (United States)

    Longchamp, Jean-Nicolas; Rauschenbach, Stephan; Abb, Sabine; Escher, Conrad; Latychevskaia, Tatiana; Kern, Klaus; Fink, Hans-Werner

    2017-01-01

    Imaging single proteins has been a long-standing ambition for advancing various fields in natural science, as for instance structural biology, biophysics, and molecular nanotechnology. In particular, revealing the distinct conformations of an individual protein is of utmost importance. Here, we show the imaging of individual proteins and protein complexes by low-energy electron holography. Samples of individual proteins and protein complexes on ultraclean freestanding graphene were prepared by soft-landing electrospray ion beam deposition, which allows chemical- and conformational-specific selection and gentle deposition. Low-energy electrons do not induce radiation damage, which enables acquiring subnanometer resolution images of individual proteins (cytochrome C and BSA) as well as of protein complexes (hemoglobin), which are not the result of an averaging process. PMID:28087691

  1. Single-molecule imaging of protein adsorption mechanisms to surfaces.

    Science.gov (United States)

    Zareh, Shannon Kian; Wang, Yan Mei

    2011-07-01

    Protein-surface interactions cause the desirable effect of controlled protein adsorption onto biodevices as well as the undesirable effect of protein fouling. The key to controlling protein-surface adsorptions is to identify and quantify the main adsorption mechanisms: adsorptions that occur (1) while depositing a protein solution onto dry surfaces and (2) after the deposition onto wet surfaces. Bulk measurements cannot reveal the dynamic protein adsorption pathways and thus cannot differentiate between the two adsorption mechanisms. We imaged the interactions of single streptavidin molecules with hydrophobic fused-silica surfaces in real-time. We observed both adsorbed proteins on surfaces and diffusing proteins near surfaces and analyzed their adsorption kinetics. Our analysis shows that the protein solution deposition process is the primary mechanism of streptavidin adsorption onto surfaces at the subnanomolar to nanomolar protein concentrations. Furthermore, we found that hydrophilic fused-silica surfaces can prevent the adsorption of streptavidin molecules. Copyright © 2010 Wiley-Liss, Inc.

  2. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    Science.gov (United States)

    Moerner, W E William E

    2015-07-06

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

  3. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    Science.gov (United States)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  4. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  5. A general approach to break the concentration barrier in single-molecule imaging

    NARCIS (Netherlands)

    Loveland, Anna B.; Habuchi, Satoshi; Walter, Johannes C.; Oijen, Antoine M. van

    2012-01-01

    Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule’s signal. We solve this problem with a new imaging approach called PhADE (PhotoActivation, Diffusion and Excitation). A protein of intere

  6. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    Science.gov (United States)

    Laine, Romain F.; Kaminski Schierle, Gabriele S.; van de Linde, Sebastian; Kaminski, Clemens F.

    2016-06-01

    For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.

  7. Quantitative analysis of somatic mitochondrial DNA mutations by single-cell single-molecule PCR.

    Science.gov (United States)

    Kraytsberg, Yevgenya; Bodyak, Natalya; Myerow, Susan; Nicholas, Alexander; Ebralidze, Konstantin; Khrapko, Konstantin

    2009-01-01

    Mitochondrial genome integrity is an important issue in somatic mitochondrial genetics. Development of quantitative methods is indispensable to somatic mitochondrial genetics as quantitative studies are required to characterize heteroplasmy and mutation processes, as well as their effects on phenotypic developments. Quantitative studies include the identification and measurement of the load of pathogenic and non-pathogenic clonal mutations, screening mitochondrial genomes for mutations in order to determine the mutation spectra and characterize an ongoing mutation process. Single-molecule PCR (smPCR) has been shown to be an effective method that can be applied to all areas of quantitative studies. It has distinct advantages over conventional vector-based cloning techniques avoiding the well-known PCR-related artifacts such as the introduction of artificial mutations, preferential allelic amplifications, and "jumping" PCR. smPCR is a straightforward and robust method, which can be effectively used for molecule-by-molecule mutational analysis, even when mitochondrial whole genome (mtWG) analysis is involved. This chapter describes the key features of the smPCR method and provides three examples of its applications in single-cell analysis: di-plex smPCR for deletion quantification, smPCR cloning for clonal point mutation quantification, and smPCR cloning for whole genome sequencing (mtWGS).

  8. Photophysics of Fluorescent Probes for Single-Molecule Biophysics and Super-Resolution Imaging

    Science.gov (United States)

    Ha, Taekjip; Tinnefeld, Philip

    2012-05-01

    Single-molecule fluorescence spectroscopy and super-resolution microscopy are important elements of the ongoing technical revolution to reveal biochemical and cellular processes in unprecedented clarity and precision. Demands placed on the photophysical properties of the fluorophores are stringent and drive the choice of appropriate probes. Such fluorophores are not simple light bulbs of a certain color and brightness but instead have their own “personalities” regarding spectroscopic parameters, redox properties, size, water solubility, photostability, and several other factors. Here, we review the photophysics of fluorescent probes, both organic fluorophores and fluorescent proteins, used in applications such as particle tracking, single-molecule FRET, stoichiometry determination, and super-resolution imaging. Of particular interest is the thiol-induced blinking of Cy5, a curse for single-molecule biophysical studies that was later overcome using Trolox through a reducing/oxidizing system but a boon for super-resolution imaging owing to the controllable photoswitching. Understanding photophysics is critical in the design and interpretation of single-molecule experiments.

  9. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    Science.gov (United States)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  10. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis

    Science.gov (United States)

    Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.

    2015-03-01

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological

  11. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea

    2011-03-09

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  12. Synthesis and single-molecule imaging of highly mobile adamantane-wheeled nanocars.

    Science.gov (United States)

    Chu, Pin-Lei E; Wang, Lin-Yung; Khatua, Saumyakanti; Kolomeisky, Anatoly B; Link, Stephan; Tour, James M

    2013-01-22

    The synthesis and single-molecule imaging of two inherently fluorescent nanocars equipped with adamantane wheels is reported. The nanocars were imaged using 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as the chromophore, which was rigidly incorporated into the nanocar chassis via Sonogashira cross-coupling chemistry that permitted the synthesis of nanocars having different geometries. In particular, studied here were four- and three-wheeled nanocars with adamantane wheels. It was found that, for the four-wheeled nanocar, the percentage of moving nanocars and the diffusion constant show a significant improvement over p-carborane-wheeled nanocars with the same chassis. The three-wheeled nanocar showed only limited mobility due to its geometry. These results are consistent with a requisite wheel-like rolling motion. We furthermore developed a model that relates the percentage of moving nanocars in single-molecule experiments with the diffusion constant. The excellent agreement between the model and the new results presented here as well as previous single-molecule studies of fluorescent nanocars yields an improved understanding of motion in these molecular machines.

  13. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    Science.gov (United States)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  14. A state space based approach to localizing single molecules from multi-emitter images.

    Science.gov (United States)

    Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J

    2017-01-28

    Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.

  15. Irving Langmuir Prize Talk: Single-Molecule Fluorescence Imaging: Nanoscale Emitters with Photoinduced Switching Enable Superresolution.

    Science.gov (United States)

    Moerner, W. E.

    2009-03-01

    In the two decades since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. 62, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. The early years concentrated on high-resolution spectroscopy in solids, which provided observations of lifetime-limited spectra, optical saturation, spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. In the mid-1990's, much of the field moved to room temperature, where a wide variety of biophysical effects were subsequently explored, but it is worth noting that several features from the low-temperature studies have analogs at high temperature. For example, in our first studies of yellow-emitting variants of green fluorescent protein (EYFP) in the water-filled pores of a gel (Nature 388, 355 (1997)), optically induced switching of the emission was observed, a room-temperature analog of the earlier low-temperature behavior. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. Recent work has allowed measurement of the shape of single filaments in a living cell simply by allowing a single molecule to move through the filament (PNAS 103, 10929 (2006)). The additional use of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (superresolution) by several novel approaches proposed by different researchers. For example, using photoswitchable EYFP, a novel protein superstructure can now be directly imaged in a living bacterial cell at

  16. SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging.

    Science.gov (United States)

    Wieneke, Ralph; Raulf, Anika; Kollmannsperger, Alina; Heilemann, Mike; Tampé, Robert

    2015-08-24

    Protein labeling with synthetic fluorescent probes is a key technology in chemical biology and biomedical research. A sensitive and efficient modular labeling approach (SLAP) was developed on the basis of a synthetic small-molecule recognition unit (Ni-trisNTA) and the genetically encoded minimal protein His6-10 -tag. High-density protein tracing by SLAP was demonstrated. This technique allows super-resolution fluorescence imaging and fulfills the necessary sampling criteria for single-molecule localization-based imaging techniques. It avoids masking by large probes, for example, antibodies, and supplies sensitive, precise, and robust size analysis of protein clusters (nanodomains).

  17. A general approach to break the concentration barrier in single-molecule imaging

    KAUST Repository

    Loveland, Anna B.

    2012-09-09

    Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule\\'s signal. We solve this problem with a new imaging approach called PhADE (PhotoActivation, Diffusion and Excitation). A protein of interest is fused to a photoactivatable protein (mKikGR) and introduced to its surface-immobilized substrate. After photoactivation of mKikGR near the surface, rapid diffusion of the unbound mKikGR fusion out of the detection volume eliminates background fluorescence, whereupon the bound molecules are imaged. We labeled the eukaryotic DNA replication protein flap endonuclease 1 with mKikGR and added it to replication-competent Xenopus laevis egg extracts. PhADE imaging of high concentrations of the fusion construct revealed its dynamics and micrometer-scale movements on individual, replicating DNA molecules. Because PhADE imaging is in principle compatible with any photoactivatable fluorophore, it should have broad applicability in revealing single-molecule dynamics and stoichiometry of macromolecular protein complexes at previously inaccessible fluorophore concentrations. © 2012 Nature America, Inc. All rights reserved.

  18. Label-free single molecule imaging with numerical aperture-shaped interferometric scattering microscopy

    CERN Document Server

    Cole, Daniel; Weigel, Alexander; Kukura, P

    2016-01-01

    Our ability to optically interrogate nanoscopic objects is controlled by the difference between their extinction cross sections and the diffraction limited area to which light can be confined in the far field. We show that a partially transmissive spatial mask placed near the back focal plane of a high numerical aperture microscope objective enhances the extinction contrast of a scatterer near an interface by approximately $T^{-1/2}$, where T is the transmissivity of the mask. Numerical aperture based differentiation of background from scattered light represents a general approach to increasing extinction contrast and enables routine label free imaging down to the single molecule level.

  19. Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations.

    Science.gov (United States)

    Mivelle, Mathieu; Van Zanten, Thomas S; Manzo, Carlo; Garcia-Parajo, Maria F

    2014-07-01

    Over the last decade, we have witnessed an outburst of many different optical techniques aimed at breaking the diffraction limit of light, providing super-resolution imaging on intact fixed cells. In parallel, single-molecule detection by means of fluorescence has become a common tool to investigate biological interactions at the molecular level both in vitro and in living cells. Despite these advances, visualization of dynamic events at relevant physiological concentrations at the nanometer scale remains challenging. In this review, we focus on recent advancements in the field of nanophotonics toward nanoimaging and single-molecule detection at ultrahigh sample concentrations. These approaches rely on the use of metal nanostructures known as optical antennas to localize and manipulate optical fields at the nanometer scale. We highlight examples on how different optical antenna geometries are being implemented for nanoscale imaging of cell membrane components. We also discuss different implementations of self-standing and two-dimensional antenna arrays for studying nanoscale dynamics in living cell membranes as well as detection of individual biomolecular interactions in the µM range for sensing applications.

  20. Large tunable image-charge effects in single-molecule junctions.

    Science.gov (United States)

    Perrin, Mickael L; Verzijl, Christopher J O; Martin, Christian A; Shaikh, Ahson J; Eelkema, Rienk; van Esch, Jan H; van Ruitenbeek, Jan M; Thijssen, Joseph M; van der Zant, Herre S J; Dulić, Diana

    2013-04-01

    Metal/organic interfaces critically determine the characteristics of molecular electronic devices, because they influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers show molecule-dependent energy-level shifts as well as transport-gap renormalization, two effects that suggest that electric-field polarization in the metal substrate induced by the formation of image charges plays a key role in the alignment of the molecular energy levels with respect to the metal's Fermi energy. Here, we provide direct experimental evidence for an electrode-induced gap renormalization in single-molecule junctions. We study charge transport through single porphyrin-type molecules using electrically gateable break junctions. In this set-up, the position of the occupied and unoccupied molecular energy levels can be followed in situ under simultaneous mechanical control. When increasing the electrode separation by just a few ångströms, we observe a substantial increase in the transport gap and level shifts as high as several hundreds of meV. Analysis of this large and tunable gap renormalization based on atomic charges obtained from density functional theory confirms and clarifies the dominant role of image-charge effects in single-molecule junctions.

  1. Single-Molecule Imaging Reveals Topology Dependent Mutual Relaxation of Polymer Chains

    KAUST Repository

    Abadi, Maram

    2015-08-24

    The motion and relaxation of linear and cyclic polymers under entangled conditions are investigated by means of a newly developed single-molecule tracking technique, cumulative-area (CA) tracking. CA tracking enables simultaneous quantitative characterization of the diffusion mode, diffusion rate, and relaxation time that have been impossible with a widely used conventional single-molecule localization and tracking method, by analyzing cumulative areas occupied by the moving molecule. Using the novel approach, we investigate the motion and relaxation of entangled cyclic polymers, which have been an important but poorly understood question. Fluorescently labeled 42 kbp linear or cyclic tracer dsDNAs in concentrated solutions of unlabeled linear or cyclic DNAs are used as model systems. We show that CA tracking can explicitly distinguish topology-dependent diffusion mode, rate, and relaxation time, demonstrating that the method provides an invaluable tool for characterizing topological interaction between the entangled chains. We further demonstrate that the current models proposed for the entanglement between cyclic polymers which are based on cyclic chains moving through an array of fixed obstacles cannot correctly describe the motion of the cyclic chain under the entangled conditions. Our results rather suggest the mutual relaxation of the cyclic chains, which underscore the necessity of developing a new model to describe the motion of cyclic polymer under the entangled conditions based on the mutual interaction of the chains.

  2. Bayesian orientation estimate and structure information from sparse single-molecule x-ray diffraction images.

    Science.gov (United States)

    Walczak, Michał; Grubmüller, Helmut

    2014-08-01

    We developed a Bayesian method to extract macromolecular structure information from sparse single-molecule x-ray free-electron laser diffraction images. The method addresses two possible scenarios. First, using a "seed" structural model, the molecular orientation is determined for each of the provided diffraction images, which are then averaged in three-dimensional reciprocal space. Subsequently, the real space electron density is determined using a relaxed averaged alternating reflections algorithm. In the second approach, the probability that the "seed" model fits to the given set of diffraction images as a whole is determined and used to distinguish between proposed structures. We show that for a given x-ray intensity, unexpectedly, the achievable resolution increases with molecular mass such that structure determination should be more challenging for small molecules than for larger ones. For a sufficiently large number of recorded photons (>200) per diffraction image an M^{1/6} scaling is seen. Using synthetic diffraction data for a small glutathione molecule as a challenging test case, successful determination of electron density was demonstrated for 20000 diffraction patterns with random orientations and an average of 82 elastically scattered and recorded photons per image, also in the presence of up to 50% background noise. The second scenario is exemplified and assessed for three biomolecules of different sizes. In all cases, determining the probability of a structure given set of diffraction patterns allowed successful discrimination between different conformations of the test molecules. A structure model of the glutathione tripeptide was refined in a Monte Carlo simulation from a random starting conformation. Further, effective distinguishing between three differently arranged immunoglobulin domains of a titin molecule and also different states of a ribosome in a tRNA translocation process was demonstrated. These results show that the proposed method is

  3. Solution-based single molecule imaging of surface-immobilized conjugated polymers.

    Science.gov (United States)

    Dalgarno, Paul A; Traina, Christopher A; Penedo, J Carlos; Bazan, Guillermo C; Samuel, Ifor D W

    2013-05-15

    The photophysical behavior of conjugated polymers used in modern optoelectronic devices is strongly influenced by their structural dynamics and conformational heterogeneity, both of which are dependent on solvent properties. Single molecule studies of these polymer systems embedded in a host matrix have proven to be very powerful to investigate the fundamental fluorescent properties. However, such studies lack the possibility of examining the relationship between conformational dynamics and photophysical response in solution, which is the phase from which films for devices are deposited. By developing a synthetic strategy to incorporate a biotin moiety as a surface attachment point at one end of a polyalkylthiophene, we immobilize it, enabling us to make the first single molecule fluorescence measurements of conjugated polymers for long periods of time in solution. We identify fluctuation patterns in the fluorescence signal that can be rationalized in terms of photobleaching and stochastic transitions to reversible dark states. Moreover, by using the advantages of solution-based imaging, we demonstrate that the addition of oxygen scavengers improves optical stability by significantly decreasing the photobleaching rates.

  4. A highly specific gold nanoprobe for live-cell single-molecule imaging

    CERN Document Server

    Leduc, Cecile; Gautier, Jérémie; Soto-Ribeiro, Martinho; Wehrle-Haller, B; Gautreau, Alexis; Giannone, Gregory; Cognet, Laurent; Lounis, Brahim

    2013-01-01

    Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Due to these issues, long-term tracking of proteins in confined and crowded environments, such as intracellular spaces, remains challenging. We have developed a novel optical probe consisting of 5-nm gold nanoparticles functionalized with a small fragment of camelid antibodies that recognize widely used GFPs with a very high affinity, which we call GFP-nanobodies. These small gold nanoparticles can be detected and tracked using photothermal imaging for arbitrarily long periods of time. Surface and intracellular GFP-proteins were effectively labeled even in very crowded environments such as adhesion sites and cytoskeletal structures both in vitro and in live cell cultures. These nanobody-coated gold nanoparticles are probes with unparalleled capabilities; small size, perfect photostability, high specificity, and versatility afforded by combination with...

  5. Single-molecule imaging with longer X-ray laser pulses

    Directory of Open Access Journals (Sweden)

    Andrew V. Martin

    2015-11-01

    Full Text Available During the last five years, serial femtosecond crystallography using X-ray laser pulses has been developed into a powerful technique for determining the atomic structures of protein molecules from micrometre- and sub-micrometre-sized crystals. One of the key reasons for this success is the `self-gating' pulse effect, whereby the X-ray laser pulses do not need to outrun all radiation damage processes. Instead, X-ray-induced damage terminates the Bragg diffraction prior to the pulse completing its passage through the sample, as if the Bragg diffraction were generated by a shorter pulse of equal intensity. As a result, serial femtosecond crystallography does not need to be performed with pulses as short as 5–10 fs, but can succeed for pulses 50–100 fs in duration. It is shown here that a similar gating effect applies to single-molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of the average structure separately to the diffraction from statistical fluctuations of the structure due to damage (`damage noise'. The results suggest that sub-nanometre single-molecule imaging with 30–50 fs pulses, like those produced at currently operating facilities, should not yet be ruled out. The theory presented opens up new experimental avenues to measure the impact of damage on single-particle diffraction, which is needed to test damage models and to identify optimal imaging conditions.

  6. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    Science.gov (United States)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  7. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    Science.gov (United States)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  8. The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging.

    Science.gov (United States)

    Backlund, Mikael P; Lew, Matthew D; Backer, Adam S; Sahl, Steffen J; Moerner, W E

    2014-03-17

    Numerous methods for determining the orientation of single-molecule transition dipole moments from microscopic images of the molecular fluorescence have been developed in recent years. At the same time, techniques that rely on nanometer-level accuracy in the determination of molecular position, such as single-molecule super-resolution imaging, have proven immensely successful in their ability to access unprecedented levels of detail and resolution previously hidden by the optical diffraction limit. However, the level of accuracy in the determination of position is threatened by insufficient treatment of molecular orientation. Here we review a number of methods for measuring molecular orientation using fluorescence microscopy, focusing on approaches that are most compatible with position estimation and single-molecule super-resolution imaging. We highlight recent methods based on quadrated pupil imaging and on double-helix point spread function microscopy and apply them to the study of fluorophore mobility on immunolabeled microtubules.

  9. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  10. Single molecule dynamics in a virtual cell: a three-dimensional model that produces simulated fluorescence video-imaging data.

    Science.gov (United States)

    Mashanov, Gregory I

    2014-09-06

    The analysis of single molecule imaging experiments is complicated by the stochastic nature of single molecule events, by instrument noise and by the limited information which can be gathered about any individual molecule observed. Consequently, it is important to cross check experimental results using a model simulating single molecule dynamics (e.g. movements and binding events) in a virtual cell-like environment. The output of such a model should match the real data format allowing researchers to compare simulated results with the real experiments. The proposed model exploits the advantages of 'object-oriented' computing. First of all, the ability to create and manipulate a number of classes, each containing an arbitrary number of single molecule objects. These classes may include objects moving within the 'cytoplasm'; objects moving at the 'plasma membrane'; and static objects located inside the 'body'. The objects of a given class can interact with each other and/or with the objects of other classes according to their physical and chemical properties. Each model run generates a sequence of images, each containing summed images of all fluorescent objects emitting light under given illumination conditions with realistic levels of noise and emission fluctuations. The model accurately reproduces reported single molecule experiments and predicts the outcome of future experiments.

  11. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  12. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps.

    Science.gov (United States)

    Wang, J; Barnett, J T; Pollard, M R; Kad, N M

    2017-01-01

    Fluorescence imaging is one of the cornerstone techniques for understanding how single molecules search for their targets on DNA. By tagging individual proteins, it is possible to track their position with high accuracy. However, to understand how proteins search for targets, it is necessary to elongate the DNA to avoid protein localization ambiguities. Such structures known as "DNA tightropes" are tremendously powerful for imaging target location; however, they lack information about how force and load affect protein behavior. The use of optically trapped microstructures offers the means to apply and measure force effects. Here we describe a system that we recently developed to enable individual proteins to be directly manipulated on DNA tightropes. Proteins bound to DNA can be conjugated with Qdot fluorophores for visualization and also directly manipulated by an optically trapped, manufactured microstructure. Together this offers a new approach to understanding the physical environment of molecules, and the combination with DNA tightropes presents opportunities to study complex biological phenomena. © 2017 Elsevier Inc. All rights reserved.

  13. Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation.

    Science.gov (United States)

    Llorente-Garcia, Isabel; Lenn, Tchern; Erhardt, Heiko; Harriman, Oliver L; Liu, Lu-Ning; Robson, Alex; Chiu, Sheng-Wen; Matthews, Sarah; Willis, Nicky J; Bray, Christopher D; Lee, Sang-Hyuk; Shin, Jae Yen; Bustamante, Carlos; Liphardt, Jan; Friedrich, Thorsten; Mullineaux, Conrad W; Leake, Mark C

    2014-06-01

    Chemiosmotic energy coupling through oxidative phosphorylation (OXPHOS) is crucial to life, requiring coordinated enzymes whose membrane organization and dynamics are poorly understood. We quantitatively explore localization, stoichiometry, and dynamics of key OXPHOS complexes, functionally fluorescent protein-tagged, in Escherichia coli using low-angle fluorescence and superresolution microscopy, applying single-molecule analysis and novel nanoscale co-localization measurements. Mobile 100-200nm membrane domains containing tens to hundreds of complexes are indicated. Central to our results is that domains of different functional OXPHOS complexes do not co-localize, but ubiquinone diffusion in the membrane is rapid and long-range, consistent with a mobile carrier shuttling electrons between islands of different complexes. Our results categorically demonstrate that electron transport and proton circuitry in this model bacterium are spatially delocalized over the cell membrane, in stark contrast to mitochondrial bioenergetic supercomplexes. Different organisms use radically different strategies for OXPHOS membrane organization, likely depending on the stability of their environment. Copyright © 2014. Published by Elsevier B.V.

  14. Case studies in quantitative biology: Biochemistry on a leash and a single-molecule Hershey-Chase experiment

    Science.gov (United States)

    Van Valen, David

    2011-12-01

    The last 50 years of biological research has seen a marked increase in the amount of quantitative data that describes living systems. This wealth of data provides a unique opportunity to recast the pictorial level descriptions of biological processes in the language of mathematics, with the hope that such an undertaking will lead to deeper insights into the behavior of living systems. To achieve this end, we have undertaken three case studies in physical biology. In the first case study, we used statistical mechanics and polymer physics to construct a simple model that describes how flexible chains of amino acids, referred to as tethers, influence the information processing properties of signaling proteins. In the second case study, we studied the DNA ejection process of phage lambda in vitro. In particular, we used bulk and single-molecule methods to study the control parameters that govern the force and kinematics of the ejection process in vitro. In the last case study, we studied the DNA ejection process of phage lambda in vivo. We developed an assay that allows real-time monitoring of DNA ejection in vivo at the single-molecule level. We also developed a parallel system that allows the simultaneous visualization of both phage capsids and phage DNA at the single-cell level, constituting a true single-molecule Hershey-Chase experiment. The work described in this thesis outlines new tools, both in theory and experiment, that can be used to study biological systems as well as a paradigm that can be employed to mathematicize the cartoons of biology.

  15. Single Molecule Fluorescence Imaging as a Technique for Barium Tagging in Neutrinoless Double Beta Decay

    CERN Document Server

    Jones, B J P; Nygren, D R

    2016-01-01

    Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of $\\sim10^{28}$ years, backgrounds must be controlled to better than 0.1 count per ton per year, beyond the reach of any present technology. In this paper we propose a new method to identify the birth of the barium daughter ion in the neutrinoless double beta decay of $^{136}$Xe. The method adapts Single Molecule Fluorescent Imaging, a technique from biochemistry research with demonstrated single ion sensitivity. We explore possible SMFI dyes suitable for the problem of barium ion detection in high pressure xenon gas, and develop a fiber-coupled sensing system with which we can detect the presence of bulk Ba$^{++}$ ions remotely. We show that our sensor produces signal-to-background ratios as high as 85 in response to Ba$^{++}$ ions when operated in aqueous solution. We then describe the next stage of this R\\&D program, which will be to demonstrate chelation...

  16. Smart-aggregation imaging for single molecule localisation with SPAD cameras.

    Science.gov (United States)

    Gyongy, Istvan; Davies, Amy; Dutton, Neale A W; Duncan, Rory R; Rickman, Colin; Henderson, Robert K; Dalgarno, Paul A

    2016-11-23

    Single molecule localisation microscopy (SMLM) has become an essential part of the super-resolution toolbox for probing cellular structure and function. The rapid evolution of these techniques has outstripped detector development and faster, more sensitive cameras are required to further improve localisation certainty. Single-photon avalanche photodiode (SPAD) array cameras offer single-photon sensitivity, very high frame rates and zero readout noise, making them a potentially ideal detector for ultra-fast imaging and SMLM experiments. However, performance traditionally falls behind that of emCCD and sCMOS devices due to lower photon detection efficiency. Here we demonstrate, both experimentally and through simulations, that the sensitivity of a binary SPAD camera in SMLM experiments can be improved significantly by aggregating only frames containing signal, and that this leads to smaller datasets and competitive performance with that of existing detectors. The simulations also indicate that with predicted future advances in SPAD camera technology, SPAD devices will outperform existing scientific cameras when capturing fast temporal dynamics.

  17. Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay

    Science.gov (United States)

    Jones, B. J. P.; McDonald, A. D.; Nygren, D. R.

    2016-12-01

    Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of ~ 1028 years, backgrounds must be controlled to better than 0.1 count per ton per year, beyond the reach of any present technology. In this paper we propose a new method to identify the birth of the barium daughter ion in the neutrinoless double beta decay of 136Xe. The method adapts Single Molecule Fluorescent Imaging, a technique from biochemistry research with demonstrated single ion sensitivity. We explore possible SMFI dyes suitable for the problem of barium ion detection in high pressure xenon gas, and develop a fiber-coupled sensing system with which we can detect the presence of bulk Ba++ ions remotely. We show that our sensor produces signal-to-background ratios as high as 85 in response to Ba++ ions when operated in aqueous solution. We then describe the next stage of this R&D program, which will be to demonstrate chelation and fluorescence in xenon gas. If a successful barium ion tag can be developed using SMFI adapted for high pressure xenon gas detectors, the first essentially zero background, ton-scale neutrinoless double beta decay technology could be realized.

  18. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    Science.gov (United States)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  19. How to determine the handedness of single molecules using Coulomb explosion imaging

    Science.gov (United States)

    Pitzer, Martin

    2017-08-01

    This tutorial is based on a doctoral thesis that was shortlisted for the 2016 AMOP dissertation prize of the German Physical Society (DPG). The principal achievement of the thesis was to use Coulomb explosion imaging (CEI) to determine the microscopic handedness (‘chirality’) of molecular structures on a single-molecule level. It thus shows how a technique developed in atomic physics can address a long-standing problem in chemistry. Owing to these disparate backgrounds, the tutorial has two facets: on the one hand, the history of molecular chirality and recent developments are very briefly reviewed. On the other hand, an account is given of different experimental approaches to CEI, on the physical processes in light-induced Coulomb explosion and—most importantly—on the aspects that are relevant when designing and performing such an experiment. As structural chirality occurs only in polyatomic molecules, special attention will be given to multiple ionization and multi-coincidence measurements. A short discussion of the results presented in earlier papers is given, followed by an outlook on experiments that are under way or can realistically be performed within the next years.

  20. Superresolution Imaging of Clinical Formalin Fixed Paraffin Embedded Breast Cancer with Single Molecule Localization Microscopy

    Science.gov (United States)

    Creech, Matthew K.; Wang, Jing; Nan, Xiaolin; Gibbs, Summer L.

    2017-01-01

    Millions of archived formalin-fixed, paraffin-embedded (FFPE) specimens contain valuable molecular insight into healthy and diseased states persevered in their native ultrastructure. To diagnose and treat diseases in tissue on the nanoscopic scale, pathology traditionally employs electron microscopy (EM), but this platform has significant limitations including cost and painstaking sample preparation. The invention of single molecule localization microscopy (SMLM) optically overcame the diffraction limit of light to resolve fluorescently labeled molecules on the nanoscale, leading to many exciting biological discoveries. However, applications of SMLM in preserved tissues has been limited. Through adaptation of the immunofluorescence workflow on FFPE sections milled at histological thickness, cellular architecture can now be visualized on the nanoscale using SMLM including individual mitochondria, undulations in the nuclear lamina, and the HER2 receptor on membrane protrusions in human breast cancer specimens. Using astigmatism imaging, these structures can also be resolved in three dimensions to a depth of ~800 nm. These results demonstrate the utility of SMLM in efficiently uncovering ultrastructural information of archived clinical samples, which may offer molecular insights into the physiopathology of tissues to assist in disease diagnosis and treatment using conventional sample preparation methods. PMID:28098202

  1. Single-molecule imaging of electroporated dye-labelled CheY in live Escherichia coli

    Science.gov (United States)

    Di Paolo, Diana; Afanzar, Oshri; Armitage, Judith P.; Berry, Richard M.

    2016-01-01

    For the past two decades, the use of genetically fused fluorescent proteins (FPs) has greatly contributed to the study of chemotactic signalling in Escherichia coli including the activation of the response regulator protein CheY and its interaction with the flagellar motor. However, this approach suffers from a number of limitations, both biological and biophysical: for example, not all fusions are fully functional when fused to a bulky FP, which can have a similar molecular weight to its fused counterpart; they may interfere with the native interactions of the protein and the chromophores of FPs have low brightness and photostability and fast photobleaching rates. A recently developed technique for the electroporation of fluorescently labelled proteins in live bacteria has enabled us to bypass these limitations and study the in vivo behaviour of CheY at the single-molecule level. Here we show that purified CheY proteins labelled with organic dyes can be internalized into E. coli cells in controllable concentrations and imaged with video fluorescence microscopy. The use of this approach is illustrated by showing single CheY molecules diffusing within cells and interacting with the sensory clusters and the flagellar motors in real time. This article is part of the themed issue ‘The new bacteriology’. PMID:27672145

  2. Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology

    Directory of Open Access Journals (Sweden)

    Beth L. Haas

    2014-08-01

    Full Text Available Single-molecule fluorescence microscopy enables biological investigations inside living cells to achieve millisecond- and nanometer-scale resolution. Although single-molecule-based methods are becoming increasingly accessible to non-experts, optimizing new single-molecule experiments can be challenging, in particular when super-resolution imaging and tracking are applied to live cells. In this review, we summarize common obstacles to live-cell single-molecule microscopy and describe the methods we have developed and applied to overcome these challenges in live bacteria. We examine the choice of fluorophore and labeling scheme, approaches to achieving single-molecule levels of fluorescence, considerations for maintaining cell viability, and strategies for detecting single-molecule signals in the presence of noise and sample drift. We also discuss methods for analyzing single-molecule trajectories and the challenges presented by the finite size of a bacterial cell and the curvature of the bacterial membrane.

  3. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    Science.gov (United States)

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  4. Single-Molecule Imaging of DNAs with Sticky Ends at Water/Fused Silica Interface

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Slavica [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Total internal reflection fluorescence microscopy (TIRFM) was used to study intermolecular interactions of DNAs with unpaired (sticky) ends of different lengths at water/fused silica interface at the single-molecule level. Evanescent field residence time, linear velocity and adsorption/desorption frequency were measured in a microchannel for individual DNA molecules from T7, Lambda, and PSP3 phages at various pH values. The longest residence times and the highest adsorption/desorption frequencies at the constant flow at pH 5.5 were found for PSP3 DNA, followed by lower values for Lambda DNA, and the lowest values for T7 DNA. Since T7, Lambda, and PSP3 DNA molecules contain none, twelve and nineteen unpaired bases, respectively, it was concluded that the affinity of DNAs for the surface increases with the length of the sticky ends. This confirms that hydrophobic and hydrogen-bonding interactions between sticky ends and fused-silica surface are driving forces for DNA adsorption at the fused-silica surface. Described single-molecule methodology and results therein can be valuable for investigation of interactions in liquid chromatography, as well as for design of DNA hybridization sensors and drug delivery systems.

  5. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells.

    Science.gov (United States)

    Hensel, Zach; Weng, Xiaoli; Lagda, Arvin Cesar; Xiao, Jie

    2013-01-01

    DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R) and O(L) (separated by 2.3 kb), mediated by the λ repressor CI (accession number P03034), play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.

  6. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells.

    Directory of Open Access Journals (Sweden)

    Zach Hensel

    Full Text Available DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R and O(L (separated by 2.3 kb, mediated by the λ repressor CI (accession number P03034, play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.

  7. Single-molecule imaging reveals topological isomer-dependent diffusion by 4-armed star and dicyclic 8-shaped polymers

    KAUST Repository

    Habuchi, Satoshi

    2015-04-21

    Diffusion dynamics of topological isomers of polymer molecules was investigated at the single-molecule level in a melt state by employing the fluorophore-incorporated 4-armed star and the corresponding doubly-cyclized, 8-shaped poly(THF) chains. While the single-molecule fluorescence imaging experiment revealed that the diffusion of the 4-armed star polymer was described by a single Gaussian distribution, the diffusion of the 8-shaped polymer exhibited a double Gaussian distribution behaviour. We reasoned that the two 8-shaped polymeric isomers have distinct diffusion modes in the melt state, although ensemble-averaged experimental methods cannot detect differences in overall conformational state of the isomers. The single-molecule experiments suggested that one of the 8-shaped polymeric isomer, having the horizontally oriented form, causes an efficient threading with the linear matrix chains which leads to the slower diffusion compared with the corresponding 4-armed star polymer, while the other 8-shaped polymeric isomer, having the vertically oriented form, displayed faster diffusion by the suppression of effective threading with the linear matrix chains due to its contracted chain conformation.

  8. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    Science.gov (United States)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  9. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging*♦

    Science.gov (United States)

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M.; Johnson, Aaron M.; Ren, Xiaojun

    2015-01-01

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes. PMID:26381410

  10. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    Science.gov (United States)

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.

  11. Synthetic strategies for controlling inter- and intramolecular interactions: Applications in single-molecule fluorescence imaging, bioluminescence imaging, and palladium catalysis

    Science.gov (United States)

    Conley, Nicholas R.

    The field of synthetic organic chemistry has reached such maturity that, with sufficient effort and resources, the synthesis of virtually any small molecule which exhibits reasonable stability at room temperature can be realized. While representing a monumental achievement for the field, the ability to exert precise control over molecular structure is just a means to an end, and it is frequently the responsibility of the synthetic chemist to determine which molecules should actually be synthesized. For better or worse, there exists no competitive free market in academia for new molecules, and as a result, the decision of which compounds should be synthesized is seldom driven by the forces of supply and demand; rather, it is guided by the synthetic chemist's interest in an anticipated structure-function relationship or in the properties of a previously unstudied class of molecules. As a consequence, there exists a pervasive need for chemists with synthetic expertise in fields (e.g., molecular imaging) and subdisciplines of chemistry (e.g., physical chemistry) in which the identification of promising synthetic targets dramatically outpaces the synthetic output in that field or subdiscipline, and ample opportunities are available for synthetic chemists who choose to pursue such cross-disciplinary research. This thesis describes synthetic efforts that leverage these opportunities to realize applications in biological imaging and in palladium catalysis. In Part I, the synthesis and characterization of three novel luminophores and their imaging applications are discussed. The first is a molecular beacon that utilizes a fluorophorefluorophore pair which exhibits H-dimer quenching in the closed conformation. This probe offers several advantages over conventional fluorophore-quencher molecular beacons in the detection of oligonucleotides, both in bulk and at the single-molecule level. Secondly, a fluorescent, Cy3-Cy5 covalent heterodimer is reported, which on account of the

  12. Optofluidic single molecule flow proteometry

    Science.gov (United States)

    Jing, Nan; Chou, Chao-Kai; Hung, Mien-Chie; Kameoka, Jun

    2009-02-01

    A microfluidic single molecule fluorescence-based detection scheme is developed to identify target protein direct from cell lysate by using polyclonal antibody. Relative concentration of target protein in solution is determined by twodimensional (2D) photon burst analysis. Compared to conventional ensemble measurement assays, this microfluidic single molecule approach combines the advantages of higher sensitivity, fast processing time, small sample consumption and high resolution quantitative analysis.

  13. Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging.

    Science.gov (United States)

    Jung, Jaemyeong; Sethi, Anurag; Gaiotto, Tiziano; Han, Jason J; Jeoh, Tina; Gnanakaran, Sandrasegaram; Goodwin, Peter M

    2013-08-16

    The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate.

  14. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas.

    Science.gov (United States)

    Simoncelli, Sabrina; Roller, Eva-Maria; Urban, Patrick; Schreiber, Robert; Turberfield, Andrew J; Liedl, Tim; Lohmüller, Theobald

    2016-11-22

    DNA origami is a powerful approach for assembling plasmonic nanoparticle dimers and Raman dyes with high yields and excellent positioning control. Here we show how optothermal-induced shrinking of a DNA origami template can be employed to control the gap sizes between two 40 nm gold nanoparticles in a range from 1 to 2 nm. The high field confinement achieved with this optothermal approach was demonstrated by detection of surface-enhanced Raman spectroscopy (SERS) signals from single molecules that are precisely placed within the DNA origami template that spans the nanoparticle gap. By comparing the SERS intensity with respect to the field enhancement in the plasmonic hot-spot region, we found good agreement between measurement and theory. Our straightforward approach for the fabrication of addressable plasmonic nanosensors by DNA origami demonstrates a path toward future sensing applications with single-molecule resolution.

  15. High-Resolution Single-Molecule Fluorescence Imaging of Zeolite Aggregates within Real-Life Fluid Catalytic Cracking Particles**

    Science.gov (United States)

    Ristanović, Zoran; Kerssens, Marleen M; Kubarev, Alexey V; Hendriks, Frank C; Dedecker, Peter; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-01-01

    Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50–150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer accuracy by stochastic chemical reactions (NASCA) and super-resolution optical fluctuation imaging (SOFI) were used to study the catalytic activity of sub-micrometer zeolite ZSM-5 domains within real-life FCC catalyst particles. The formation of fluorescent product molecules taking place at Brønsted acid sites was monitored with single turnover sensitivity and high spatiotemporal resolution, providing detailed insight in dispersion and catalytic activity of zeolite ZSM-5 aggregates. The results point towards substantial differences in turnover frequencies between the zeolite aggregates, revealing significant intraparticle heterogeneities in Brønsted reactivity. PMID:25504139

  16. Understanding subcellular function on the nanometer scale in real time: Single-molecule imaging in living bacteria

    Science.gov (United States)

    Biteen, Julie

    It has long been recognized that microorganisms play a central role in our lives. By beating the diffraction limit that restricts traditional light microscopy, single-molecule fluorescence imaging is a precise, noninvasive way to sensitively probe position and dynamics, even in living cells. We are pioneering this super-resolution imaging method for unraveling important biological processes in live bacteria, and I will discuss how we infer function from subcellular dynamics (Tuson and Biteen, Analytical Chemistry 2015). In particular, we have understood the mechanism of membrane-bound transcription regulation in the pathogenic Vibrio cholerae, revealed an intimate and dynamic coupling between DNA mismatch recognition and DNA replication, and measured starch utilization in an important member of the human gut microbiome.

  17. Imaging and Intracellular Tracking of Cancer-Derived Exosomes Using Single-Molecule Localization-Based Super-Resolution Microscope.

    Science.gov (United States)

    Chen, Chen; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Zhu, Dan; Zhang, Yizhi; Cui, Yiping

    2016-10-05

    Exosomes are small membrane vesicles secreted by cells and enriched with plenty of proteins. Considering their significant roles in different physical activities and potential value for diagnostic drug delivery, researchers have put great efforts in in vitro tracking and content analysis of exosomes. Recently, the emergence of different kinds of super-resolution microscopy provides powerful tools for exosome study. Here, we demonstrate the application of single-molecule localization based super-resolution imaging technique in the imaging and tracking of cancer-derived exosomes. In the experiment, first, cancer-derived exosomes are extracted from the culture media of tumor cells. Then the exosome membrane receptors are labeled with photoswitchable probes, which allow super-resolution imaging of these membrane receptors via photoactivated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM). By using human breast cancer cell-derived exosomes, we demonstrated simultaneous dual-color PALM/STORM imaging of two kinds of membrane receptors on the exosome membrane. Moreover, the successful labeling and imaging of exosomes make it possible to observe the interaction between cancer-derived exosomes and normal cells. Meanwhile, we realized the colocalization of cancer-derived exosomes and lysosomes in recipient cells with PALM/STORM imaging. Since exosomes play a vital role in intercellular communications, we anticipate that the presented PALM/STORM-based imaging and tracking of exosomes holds a great potential in the investigation of the mechanism of exosome-mediated cancer metastasis.

  18. Single Molecule and Nanoparticle Imaging in Biophysical, Surface, and Photocatalysis Studies

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Won [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    A differential interference contrast (DIC) polarization anisotropy is reported that was successfully used for rotational tracking of gold nanorods attached onto a kinesin-driven microtubule. A dual-wavelength detection of single gold nanorods rotating on a live cell membrane is described. Both transverse and longitudinal surface plasmon resonance (SPR) modes were used for tracking the rotational motions during a fast dynamic process under a DIC microscope. A novel method is presented to determine the full three-dimensional (3D) orientation of single plasmonic gold nanorods rotating on live cell membranes by combining DIC polarization anisotropy with an image pattern recognition technique. Polarization- and wavelength-sensitive DIC microscopy imaging of 2- m long gold nanowires as optical probes in biological studies is reported. A new method is demonstrated to track 3D orientation of single gold nanorods supported on a gold film without angular degeneracy. The idea is to use the interaction (or coupling) of gold nanorods with gold film, yielding characteristic scattering patterns such as a doughnut shape. Imaging of photocatalytic activity, polarity and selectivity on single Au-CdS hybrid nanocatalysts using a high-resolution superlocalization fluorescence imaging technique is described.

  19. Raman scattering enhanced by plasmonic clusters and its application to single-molecule imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yasuike, Tomokazu [The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586 (Japan); ESICB, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); Nobusada, Katsuyuki [Institute for Molecular Science and SOKENDAI, Nishigonaka 38, Okazaki, 444-8585 (Japan); ESICB, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan)

    2015-12-31

    The optical response of the linear Au{sub 8} cluster is investigated by the linear response theory based on the density functional theory. It is revealed that the observed many peaks in the visible region originate from the interaction of the ideal plasmonic excitation along the molecular axis with the background d-electron excitations, i.e., the Landau damping. In spite of the existence of the damping, the Raman scattering is shown to be enhanced remarkably by the incident light resonant to the visible excitations. The novel imaging experiment with the atomic resolution is proposed by utilizing a plasmonic cluster as the probing tip.

  20. Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging.

    Directory of Open Access Journals (Sweden)

    Rachid Rezgui

    Full Text Available As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab on 5' and 3'-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5' or 3' extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.

  1. Location change method for imaging chemical reactivity and catalysis with single-molecule and -particle fluorescence microscopy.

    Science.gov (United States)

    Blum, S A

    2014-08-21

    In the last eight years, it has become possible to image chemical reactivity at the single-molecule and -particle level with fluorescence microscopy. This Perspective describes one of the imaging techniques that enabled this state-of-the-art application: imaging by the location change of molecules and particles. In this method, the microscope and experiment are configured to produce a signal when an individual molecule or particle changes location or changes mobility concurrently with a chemical change. This imaging technique has enabled observation of single chemical reactions and unraveled mechanisms of complex chemical and physical processes in transition metal and polymerization systems. This Perspective has three major goals: (1) to unify studies of different chemical processes or of different chemical questions, which, in spite of these differences, employ a similar microscopy detection method, (2) to explain the technique to nonexperts and those who might be interested in joining this nascent field, and (3) to highlight unique information available through this cross-disciplinary technique and the value this information has for chemical reaction development generally and catalysis specifically. To this end, application of the location change method to the investigation of polymerization reactions with radical initiators and separately with metal catalysts, and to ligand exchange reactions at platinum complexes are described.

  2. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  3. Automated Line Tracking of lambda-DNA for Single-Molecule Imaging

    CERN Document Server

    Guan, Juan; Granick, Steve

    2011-01-01

    We describe a straightforward, automated line tracking method to visualize within optical resolution the contour of linear macromolecules as they rearrange shape as a function of time by Brownian diffusion and under external fields such as electrophoresis. Three sequential stages of analysis underpin this method: first, "feature finding" to discriminate signal from noise; second, "line tracking" to approximate those shapes as lines; third, "temporal consistency check" to discriminate reasonable from unreasonable fitted conformations in the time domain. The automated nature of this data analysis makes it straightforward to accumulate vast quantities of data while excluding the unreliable parts of it. We implement the analysis on fluorescence images of lambda-DNA molecules in agarose gel to demonstrate its capability to produce large datasets for subsequent statistical analysis.

  4. Improved method for Mica functionalization used in single molecule imaging of DNA with atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Hana Zapletalová

    2016-07-01

    Full Text Available The modified procedure of 1-(3-aminopropylsilatrane (APS compound synthesis based on a new derivative (3‑aminopropyltrimethoxysilane for the purpose of DNA immobilization for AFM single imaging is described. New reaction pathway based on kinetically driven reaction approach is described. Necessity of two‑step purification process is proved; ability of purified APS to provide four times smoother surfaces in comparison with a crude product is demonstrated. Various analytical methods such mass spectroscopy and 1H NMR were used to show structure and enhanced purity of the APS product. APS mediates fixation of DNA molecules to mica substrates to be used for DNA imaging under Atomic Force Microscope. The use of an APS compound for simple and rapid silanization of mica surface is demonstrated. The advantages of APS‑based method are based mainly on low roughness of modified mica and homogeneous surface coverage by short sequence dsDNA (246 bp. The product obtained by the condensation reaction was purified in a two step process whose effectiveness was demonstrated not only by reduction of the silanized surface roughness, but also by mass spectroscopy (MS‑ESi, MALDI‑TOF method and proton magnetic resonance spectroscopy. Experiments demonstrate that 1‑(3‑aminopropylsilatrane can be used to fix dsDNA molecules to a mica surface to be visualized by either the tapping mode or the force‑volume mode of AFM microscopy, as demonstrated by experiments. Moreover, necessity of advanced purification protocol is demonstrated by AFM based roughness measurements – pure vs crude APS product. The kinetics of APS‑layer aging, caused by silicon oxide growth on silanized layers, was studied by water contact angle measurements and is discussed.

  5. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome.

    Science.gov (United States)

    Thompson, Colin D Kinz; Sharma, Ajeet K; Frank, Joachim; Gonzalez, Ruben L; Chowdhury, Debashish

    2015-08-27

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.

  6. Movies of molecular motions and reactions: the single-molecule, real-time transmission electron microscope imaging technique.

    Science.gov (United States)

    Nakamura, Eiichi

    2013-01-02

    "The truth is, the Science of Nature has been already too long made only a work of the Brain and the Fancy: It is now high time that it should return to the plainness and soundness of Observations on material and obvious things," proudly declared Robert Hooke in his highly successful picture book of microscopic and telescopic images, "Micrographia" in 1665. Hooke's statement has remained true in chemistry, where a considerable work of the brain and the fancy is still necessary. Single-molecule, real-time transmission electron microscope (SMRT-TEM) imaging at an atomic resolution now allows us to learn about molecules simply by watching movies of them. Like any dream come true, the new analytical technique challenged the old common sense of the communities, and offers new research opportunities that are unavailable by conventional methods. With its capacity to visualize the motions and the reactions of individual molecules and molecular clusters, the SMRT-TEM technique will become an indispensable tool in molecular science and the engineering of natural and synthetic substances, as well as in science education. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Direct observation ofλ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    Institute of Scientific and Technical Information of China (English)

    杨凤云; 王凯歌; 孙聃; 赵伟; 王海青; 何鑫; 王归仁; 白晋涛

    2016-01-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fl uidic channels are impor-tant in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties ofλ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fl uorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value;(ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the infl uence of electro-osmosis fl ow. These new findings will theoretically guide the practical application of fl uidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules.

  8. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Dragan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  9. Optical mapping of a rice B AC clone using restriction endonuclease and imaging with fluorescent microscopy at single molecule level

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method of constructing restriction map by optical mapping and single molecule fluorescent microscopy is described. DNA molecules were aligned and adsorbed on a glass coverslip surface by a mbdified "molecular combing"technique, and then the surface-immobilized DNAs were cleaved in situ with a restriction endonuclease. Individual DNA molecules digested by the endonuclease EcoR I were observable with fluorescent microscopy. Using optical mapping, a physical map of a rice bacterial artificial chromosome clone was constructed. This method will facilitate genomic mapping and tracing the dynamic process in real time at a single molecule level with fluorescence microscopy.

  10. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    Science.gov (United States)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  11. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Dragan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  12. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.

    Science.gov (United States)

    Endo, Masayuki; Sugiyama, Hiroshi

    2014-06-17

    CONSPECTUS: Direct imaging of molecular motions is one of the most fundamental issues for elucidating the physical properties of individual molecules and their reaction mechanisms. Atomic force microscopy (AFM) enables direct molecular imaging, especially for biomolecules in the physiological environment. Because AFM can visualize the molecules at nanometer-scale spatial resolution, a versatile observation scaffold is needed for the precise imaging of molecule interactions in the reactions. The emergence of DNA origami technology allows the precise placement of desired molecules in the designed nanostructures and enables molecules to be detected at the single-molecule level. In our study, the DNA origami system was applied to visualize the detailed motions of target molecules in reactions using high-speed AFM (HS-AFM), which enables the analysis of dynamic motions of biomolecules in a subsecond time resolution. In this system, biochemical properties such as the placement of various double-stranded DNAs (dsDNAs) containing unrestricted DNA sequences, modified nucleosides, and chemical functions can be incorporated. From a physical point of view, the tension and rotation of dsDNAs can be controlled by placement into the DNA nanostructures. From a topological point of view, the orientations of dsDNAs and various shapes of dsDNAs including Holliday junctions can be incorporated for studies on reaction mechanisms. In this Account, we describe the combination of the DNA origami system and HS-AFM for imaging various biochemical reactions including enzymatic reactions and DNA structural changes. To observe the behaviors and reactions of DNA methyltransferase and DNA repair enzymes, the substrate dsDNAs were incorporated into the cavity of the DNA frame, and the enzymes that bound to the target dsDNA were observed using HS-AFM. DNA recombination was also observed using the recombination substrates and Holliday junction intermediates placed in the DNA frame, and the

  13. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search.

    Science.gov (United States)

    Forget, Anthony L; Kowalczykowski, Stephen C

    2012-02-08

    DNA breaks can be repaired with high fidelity by homologous recombination. A ubiquitous protein that is essential for this DNA template-directed repair is RecA. After resection of broken DNA to produce single-stranded DNA (ssDNA), RecA assembles on this ssDNA into a filament with the unique capacity to search and find DNA sequences in double-stranded DNA (dsDNA) that are homologous to the ssDNA. This homology search is vital to recombinational DNA repair, and results in homologous pairing and exchange of DNA strands. Homologous pairing involves DNA sequence-specific target location by the RecA-ssDNA complex. Despite decades of study, the mechanism of this enigmatic search process remains unknown. RecA is a DNA-dependent ATPase, but ATP hydrolysis is not required for DNA pairing and strand exchange, eliminating active search processes. Using dual optical trapping to manipulate DNA, and single-molecule fluorescence microscopy to image DNA pairing, we demonstrate that both the three-dimensional conformational state of the dsDNA target and the length of the homologous RecA-ssDNA filament have important roles in the homology search. We discovered that as the end-to-end distance of the target dsDNA molecule is increased, constraining the available three-dimensional (3D) conformations of the molecule, the rate of homologous pairing decreases. Conversely, when the length of the ssDNA in the nucleoprotein filament is increased, homology is found faster. We propose a model for the DNA homology search process termed 'intersegmental contact sampling', in which the intrinsic multivalent nature of the RecA nucleoprotein filament is used to search DNA sequence space within 3D domains of DNA, exploiting multiple weak contacts to rapidly search for homology. Our findings highlight the importance of the 3D conformational dynamics of DNA, reveal a previously unknown facet of the homology search, and provide insight into the mechanism of DNA target location by this member of a

  14. Correlative atomic force and confocal fluorescence microscopy: single molecule imaging and force induced spectral shifts (Conference Presentation)

    Science.gov (United States)

    Basché, Thomas; Hinze, Gerald; Stöttinger, Sven

    2016-09-01

    A grand challenge in nanoscience is to correlate structure or morphology of individual nano-sized objects with their photo-physical properties. An early example have been measurements of the emission spectra and polarization of single semiconductor quantum dots as well as their crystallographic structure by a combination of confocal fluorescence microscopy and transmission electron microscopy.[1] Recently, the simultaneous use of confocal fluorescence and atomic force microscopy (AFM) has allowed for correlating the morphology/conformation of individual nanoparticle oligomers or molecules with their photo-physics.[2, 3] In particular, we have employed the tip of an AFM cantilever to apply compressive stress to single molecules adsorbed on a surface and follow the effect of the impact on the electronic states of the molecule by fluorescence spectroscopy.[3] Quantum mechanical calculations corroborate that the spectral changes induced by the localized force can be associated to transitions among the different possible conformers of the adsorbed molecule.

  15. Single molecule fluorescence image patterns linked to dipole orientation and axial position: application to myosin cross-bridges in muscle fibers.

    Directory of Open Access Journals (Sweden)

    Thomas P Burghardt

    Full Text Available BACKGROUND: Photoactivatable fluorescent probes developed specifically for single molecule detection extend advantages of single molecule imaging to high probe density regions of cells and tissues. They perform in the native biomolecule environment and have been used to detect both probe position and orientation. METHODS AND FINDINGS: Fluorescence emission from a single photoactivated probe captured in an oil immersion, high numerical aperture objective, produces a spatial pattern on the detector that is a linear combination of 6 independent and distinct spatial basis patterns with weighting coefficients specifying emission dipole orientation. Basis patterns are tabulated for single photoactivated probes labeling myosin cross-bridges in a permeabilized muscle fiber undergoing total internal reflection illumination. Emitter proximity to the glass/aqueous interface at the coverslip implies the dipole near-field and dipole power normalization are significant affecters of the basis patterns. Other characteristics of the basis patterns are contributed by field polarization rotation with transmission through the microscope optics and refraction by the filter set. Pattern recognition utilized the generalized linear model, maximum likelihood fitting, for Poisson distributed uncertainties. This fitting method is more appropriate for treating low signal level photon counting data than χ(2 minimization. CONCLUSIONS: Results indicate that emission dipole orientation is measurable from the intensity image except for the ambiguity under dipole inversion. The advantage over an alternative method comparing two measured polarized emission intensities using an analyzing polarizer is that information in the intensity spatial distribution provides more constraints on fitted parameters and a single image provides all the information needed. Axial distance dependence in the emission pattern is also exploited to measure relative probe position near focus. Single

  16. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores.

  17. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time.

    Science.gov (United States)

    Wollman, Adam J M; Leake, Mark C

    2015-01-01

    We present a single-molecule tool called the CoPro (concentration of proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrate its utility experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration at physiological expression levels in living S. cerevisiae cells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a ∼4-fold shift towards higher values in the concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, and which is almost exclusively localized in the nucleus under high and low external glucose levels. CoPro facilitates time-resolved quantification of

  18. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  19. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  20. Detection of the barium daughter in 136Xe →136Ba+2e- by in situ single-molecule fluorescence imaging

    Science.gov (United States)

    Nygren, David R.

    2016-07-01

    A robust technique for rejection of all γ-ray induced backgrounds in the search for the decay 136Xe→136Ba+2e- is needed to proceed to ton-scale detection systems. Efficient detection of the barium daughter would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging may offer a new way to detect the barium daughter atom in a naturally ionized state. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection would be automatic, and is accomplished within the active volume of a xenon gas Time Projection Chamber operating at high pressure.

  1. Shifting molecular localization by plasmonic coupling in a single-molecule mirage

    Science.gov (United States)

    Raab, Mario; Vietz, Carolin; Stefani, Fernando Daniel; Acuna, Guillermo Pedro; Tinnefeld, Philip

    2017-01-01

    Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA origami technique to both control a nanometric separation between emitters and a gold nanoparticle, and as a platform for super-resolution imaging based on single-molecule localization. This enables a quantitative comparison between the position retrieved from single-molecule localization, the true position of the emitter and full-field simulations. We demonstrate that plasmonic coupling leads to shifted molecular localizations of up to 30 nm: a single-molecule mirage.

  2. Cramér-Rao Lower Bound for Point Based Image Registration With Heteroscedastic Error Model for Application in Single Molecule Microscopy.

    Science.gov (United States)

    Cohen, E A K; Kim, D; Ober, R J

    2015-12-01

    The Cramér-Rao lower bound for the estimation of the affine transformation parameters in a multivariate heteroscedastic errors-in-variables model is derived. The model is suitable for feature-based image registration in which both sets of control points are localized with errors whose covariance matrices vary from point to point. With focus given to the registration of fluorescence microscopy images, the Cramér-Rao lower bound for the estimation of a feature's position (e.g., of a single molecule) in a registered image is also derived. In the particular case where all covariance matrices for the localization errors are scalar multiples of a common positive definite matrix (e.g., the identity matrix), as can be assumed in fluorescence microscopy, then simplified expressions for the Cramér-Rao lower bound are given. Under certain simplifying assumptions these expressions are shown to match asymptotic distributions for a previously presented set of estimators. Theoretical results are verified with simulations and experimental data.

  3. Nanoscience: Single-molecule instant replay

    Science.gov (United States)

    Camillone, Nicholas

    2016-11-01

    A nanoscale imaging method that uses ultrashort light pulses to initiate and follow the motion of a single molecule adsorbed on a solid surface opens a window onto the physical and chemical dynamics of molecules on surfaces. See Letter p.263

  4. Special Issue: Single Molecule Techniques

    Directory of Open Access Journals (Sweden)

    Hans H. Gorris

    2015-04-01

    Full Text Available Technological advances in the detection and manipulation of single molecules have enabled new insights into the function, structure and interactions of biomolecules. This Special Issue was launched to account for the rapid progress in the field of “Single Molecule Techniques”. Four original research articles and seven review articles provide an introduction, as well as an in-depth discussion, of technical developments that are indispensable for the characterization of individual biomolecules. Fluorescence microscopy takes center stage in this Special Issue because it is one of the most sensitive and flexible techniques, which has been adapted in many variations to the specific demands of single molecule analysis. Two additional articles are dedicated to single molecule detection based on atomic force microscopy.

  5. Toxicity of an α-pore-forming toxin depends on the assembly mechanism on the target membrane as revealed by single molecule imaging.

    Science.gov (United States)

    Subburaj, Yamunadevi; Ros, Uris; Hermann, Eduard; Tong, Rudi; García-Sáez, Ana J

    2015-02-20

    α-Pore-forming toxins (α-PFTs) are ubiquitous defense tools that kill cells by opening pores in the target cell membrane. Despite their relevance in host/pathogen interactions, very little is known about the pore stoichiometry and assembly pathway leading to membrane permeabilization. Equinatoxin II (EqtII) is a model α-PFT from sea anemone that oligomerizes and forms pores in sphingomyelin-containing membranes. Here, we determined the spatiotemporal organization of EqtII in living cells by single molecule imaging. Surprisingly, we found that on the cell surface EqtII did not organize into a unique oligomeric form. Instead, it existed as a mixture of oligomeric species mostly including monomers, dimers, tetramers, and hexamers. Mathematical modeling based on our data supported a new model in which toxin clustering happened in seconds and proceeded via condensation of EqtII dimer units formed upon monomer association. Furthermore, altering the pathway of EqtII assembly strongly affected its toxic activity, which highlights the relevance of the assembly mechanism on toxicity.

  6. A new and robust method of tethering IgG surrogate antigens on lipid bilayer membranes to facilitate the TIRFM based live cell and single molecule imaging experiments.

    Directory of Open Access Journals (Sweden)

    Shaosen Zhang

    Full Text Available Our understanding of cell-cell interactions has been significantly improved in the past years with the help of Total Internal Reflection Fluorescence Microscope (TIRFM in combination with an antigen presenting system supported by planar lipid bilayer (PLB membranes, which are used to mimic the extensive receptor and ligand interactions within cell-cell contact interface. In TIRFM experiments, it is a challenge to uniformly present ligand molecules in monomeric format on the surface of PLB membranes. Here, we introduce a new and robust method of tethering IgG surrogate antigen ligands on the surface of Ni(2+-containing PLB membranes. In this method, we use a modified D domain from staphylococcal protein A molecule that is fused with an N-terminus polyhistidine tag (H12-D-domain to tether IgG surrogate antigens on Ni(2+-containing PLB membranes. We systematically assessed the specificity and capability of H12-D-domain construct to capture IgG molecules from different species through live cell and single molecule TIRFM imaging. We find that these IgG surrogate antigens tethered by H12-D-domain show better lateral mobility and are more uniformly distributed on PLB membranes than the ones tethered by streptavidin. Neither IgM molecules, nor Fab or F(ab'2 fragments of IgG molecules can be tethered on PLB membranes by H12-D-domain construct. These tethered IgG surrogate antigens strongly induce the formation and accumulation of signaling active antigen receptor microclusters within the immunological synapse in B or T lymphocyte cells. Thus our method provides a new and robust method to tether IgG surrogate antigens or other molecules fused with IgG Fc portion on PLB membranes for TIRFM based molecule imaging experiments.

  7. Quantifying and optimizing single-molecule switching nanoscopy at high speeds.

    Directory of Open Access Journals (Sweden)

    Yu Lin

    Full Text Available Single-molecule switching nanoscopy overcomes the diffraction limit of light by stochastically switching single fluorescent molecules on and off, and then localizing their positions individually. Recent advances in this technique have greatly accelerated the data acquisition speed and improved the temporal resolution of super-resolution imaging. However, it has not been quantified whether this speed increase comes at the cost of compromised image quality. The spatial and temporal resolution depends on many factors, among which laser intensity and camera speed are the two most critical parameters. Here we quantitatively compare the image quality achieved when imaging Alexa Fluor 647-immunolabeled microtubules over an extended range of laser intensities and camera speeds using three criteria - localization precision, density of localized molecules, and resolution of reconstructed images based on Fourier Ring Correlation. We found that, with optimized parameters, single-molecule switching nanoscopy at high speeds can achieve the same image quality as imaging at conventional speeds in a 5-25 times shorter time period. Furthermore, we measured the photoswitching kinetics of Alexa Fluor 647 from single-molecule experiments, and, based on this kinetic data, we developed algorithms to simulate single-molecule switching nanoscopy images. We used this software tool to demonstrate how laser intensity and camera speed affect the density of active fluorophores and influence the achievable resolution. Our study provides guidelines for choosing appropriate laser intensities for imaging Alexa Fluor 647 at different speeds and a quantification protocol for future evaluations of other probes and imaging parameters.

  8. Single Molecule Electronics and Devices

    Directory of Open Access Journals (Sweden)

    Makusu Tsutsui

    2012-05-01

    Full Text Available The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule.

  9. Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Ifrim, Marius F; Williams, Kathryn R; Bassell, Gary J

    2015-05-06

    Fragile X syndrome (FXS) is caused by the loss of the fragile X mental retardation protein (FMRP), an RNA binding protein that regulates translation of numerous target mRNAs, some of which are dendritically localized. Our previous biochemical studies using synaptoneurosomes demonstrate a role for FMRP and miR-125a in regulating the translation of PSD-95 mRNA. However, the local translation of PSD-95 mRNA within dendrites and spines, as well as the roles of FMRP or miR-125a, have not been directly studied. Herein, local synthesis of a Venus-PSD-95 fusion protein was directly visualized in dendrites and spines using single-molecule imaging of a diffusion-restricted Venus-PSD-95 reporter under control of the PSD-95 3'UTR. The basal translation rates of Venus-PSD-95 mRNA was increased in cultured hippocampal neurons from Fmr1 KO mice compared with WT neurons, which correlated with a transient elevation of endogenous PSD-95 within dendrites. Following mGluR stimulation with (S)-3,5-dihydroxyphenylglycine, the rate of Venus-PSD-95 mRNA translation increased rapidly in dendrites of WT hippocampal neurons, but not in those of Fmr1 KO neurons or when the binding site of miR125a, previously shown to bind PSD-95 3'UTR, was mutated. This study provides direct support for the hypothesis that local translation within dendrites and spines is dysregulated in FXS. Impairments in the regulated local synthesis of PSD-95, a critical regulator of synaptic structure and function, may affect the spatiotemporal control of PSD-95 levels and affect dendritic spine development and synaptic plasticity in FXS. Copyright © 2015 the authors 0270-6474/15/357116-15$15.00/0.

  10. Dual Lifetimes for Complexes between Glutathione-S-transferase (hGSTA1-1) and Product-like Ligands Detected by Single-Molecule Fluorescence Imaging.

    Science.gov (United States)

    Pettersson, John R; Lanni, Frederick; Rule, Gordon S

    2017-08-08

    Single-molecule fluorescence techniques were used to characterize the binding of products and inhibitors to human glutathione S-transferase A1-1 (hGSTA1-1). The identification of at least two different bound states for the wild-type enzyme suggests that there are at least two conformations of the protein, consistent with the model that ligand binding promotes closure of the carboxy-terminal helix over the active site. Ligand induced changes in ensemble fluorescence energy transfer support this proposed structural change. The more predominant state in the ensemble of single molecules shows a significantly faster off-rate, suggesting that the carboxy-terminal helix is delocalized in this state, permitting faster exit of the bound ligand. A point mutation (I219A), which is known to interfere with the association of the carboxy-terminal helix with the enzyme, shows increased rates of interconversion between the open and closed state. Kinematic traces of fluorescence from single molecules show that a single molecule readily samples a number of different conformations, each with a characteristic off-rate.

  11. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  12. Computer systems for annotation of single molecule fragments

    Science.gov (United States)

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  13. Single-molecule magnet engineering

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Bendix, Jesper; Clérac, Rodolphe

    2014-01-01

    to delicately tune, for instance, the properties of molecules that behave as "magnets", the so-called single-molecule magnets (SMMs). Although many interesting SMMs have been prepared by a more or less serendipitous approach, the assembly of predesigned, isolatable molecular entities into higher nuclearity...... complexes constitutes an elegant and fascinating strategy. This Feature article focuses on the use of building blocks or modules (both terms being used indiscriminately) to direct the structure, and therefore also the magnetic properties, of metal ion complexes exhibiting SMM behaviour. This journal...

  14. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    Science.gov (United States)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  15. Single-molecule emulsion PCR in microfluidic droplets.

    Science.gov (United States)

    Zhu, Zhi; Jenkins, Gareth; Zhang, Wenhua; Zhang, Mingxia; Guan, Zhichao; Yang, Chaoyong James

    2012-06-01

    The application of microfluidic droplet PCR for single-molecule amplification and analysis has recently been extensively studied. Microfluidic droplet technology has the advantages of compartmentalizing reactions into discrete volumes, performing highly parallel reactions in monodisperse droplets, reducing cross-contamination between droplets, eliminating PCR bias and nonspecific amplification, as well as enabling fast amplification with rapid thermocycling. Here, we have reviewed the important technical breakthroughs of microfluidic droplet PCR in the past five years and their applications to single-molecule amplification and analysis, such as high-throughput screening, next generation DNA sequencing, and quantitative detection of rare mutations. Although the utilization of microfluidic droplet single-molecule PCR is still in the early stages, its great potential has already been demonstrated and will provide novel solutions to today's biomedical engineering challenges in single-molecule amplification and analysis.

  16. Quantitative Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Ted A.G. Steemers

    2008-09-01

    Full Text Available Hyperspectral imaging is a non-destructive optical analysis technique that can for instance be used to obtain information from cultural heritage objects unavailable with conventional colour or multi-spectral photography. This technique can be used to distinguish and recognize materials, to enhance the visibility of faint or obscured features, to detect signs of degradation and study the effect of environmental conditions on the object. We describe the basic concept, working principles, construction and performance of a laboratory instrument specifically developed for the analysis of historical documents. The instrument measures calibrated spectral reflectance images at 70 wavelengths ranging from 365 to 1100 nm (near-ultraviolet, visible and near-infrared. By using a wavelength tunable narrow-bandwidth light-source, the light energy used to illuminate the measured object is minimal, so that any light-induced degradation can be excluded. Basic analysis of the hyperspectral data includes a qualitative comparison of the spectral images and the extraction of quantitative data such as mean spectral reflectance curves and statistical information from user-defined regions-of-interest. More sophisticated mathematical feature extraction and classification techniques can be used to map areas on the document, where different types of ink had been applied or where one ink shows various degrees of degradation. The developed quantitative hyperspectral imager is currently in use by the Nationaal Archief (National Archives of The Netherlands to study degradation effects of artificial samples and original documents, exposed in their permanent exhibition area or stored in their deposit rooms.

  17. Deep learning for single-molecule science.

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, Masudur R

    2017-08-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in Machine Learning (ML), so-called Deep Learning (DL) offers an interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional Machine Learning strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the 'internal workings' of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a Convolutional Neural Network, may be used for base calling in DNA sequencing applications. We compare it with a Support Vector Machine as a more conventional ML method, and and discuss some of the strengths and weaknesses of the approach. In particular, a 'deep' neural network has many features of a 'black box', which has important implications on how we look at and interpret data. © 2017 IOP Publishing Ltd.

  18. Deep learning for single-molecule science

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  19. Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane

    CERN Document Server

    Lommerse, Piet H M; Cognet, Laurent; Harms, Gregory S; Snaar-Jagalska, B Ewa; Spaink, Herman P; Schmidt, Thomas

    2004-01-01

    In the last decade evidence has accumulated that small domains of 50-700 nm in diameter are located in the exoplasmic leaflet of the plasma membrane. Most of these domains supposedly consist of specific sets of lipids and proteins, and are believed to coordinate signal transduction cascades. Whether similar domains are also present in the cytoplasmic leaflet of the plasma membrane is unclear so far. To investigate the presence of cytoplasmic leaflet domains, the H-Ras membrane-targeting sequence was fused to the C-terminus of the enhanced yellow fluorescent protein. Using single-molecule fluorescence microscopy, trajectories of individual molecules diffusing in the cytoplasmic leaflet of the plasma membrane were recorded. From these trajectories, the diffusion of individual membrane-anchored enhanced yellow fluorescent protein molecules was studied in live cells on timescales from 5 to 200 ms. The results show that the diffusion of 30-40% of the molecules is constrained in domains with a typical size of 200 n...

  20. Single molecule FRET detection in CdSe-QD donor and Cy5-labeled molecular chaperone acceptor complex by imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Toshiro, E-mail: ttani@cc.tuat.ac.j [Division of Advanced Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Oda, Masaru [Division of Advanced Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Sakai, Hiroshi; Araki, Daisuke; Itoh, Yoshinori [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Ohtaki, Akashi; Yohda, Masafumi [Division of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan)

    2011-03-15

    We report single molecule spectroscopic evidence of FRET in CdSe quantum dot (QD) conjugated with Cy5-labeled molecular chaperone systems in buffer solutions. Donor QDs are core-shell type nanocrystals covered with organic surfactants on their outermost surfaces, i.e. CdSe/ZnS/TOPO's. As prototype molecular chaperones, we adopt prefoldins (PFDs), on which Cy5's are labeled as acceptors. Donor QDs possess two-fold degenerate emission dipoles perpendicular to the c-axis, due to their Wurtzite crystal structures, while acceptor Cy5's possess linear absorption and emission dipoles. Thus, their combination provides novel features to those in conventional FRET systems. PFDs are jellyfish-shaped hexameric co-chaperones of group II chaperonins, which recognize hydrophobic portions of denatured proteins and encapsulate them within their central cavities. Hence, PFDs will also capture the CdSe/ZnS/TOPO QDs due to its surface similarity to the denatured proteins. By introducing simple microscope setup for single QD-PFD-Cy5 spectroscopy, we have successfully captured the emission spectra in FRET regime. We also have observed peculiar features in time evolution profiles of single QD emissions conjugated with Cy5-labeled PFDs under polarization modulation measurements. Notable point of our hybrid conjugates is that they are biochemically in living action. We describe our present results in relation to possible protein reactions.

  1. Quantitative luminescence imaging system

    Science.gov (United States)

    Batishko, C. R.; Stahl, K. A.; Fecht, B. A.

    The goal of the Measurement of Chemiluminescence project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  2. Single Molecule Studies of Chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  3. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  4. Single-molecule stochastic resonance

    CERN Document Server

    Hayashi, K; Manosas, M; Huguet, J M; Ritort, F; 10.1103/PhysRevX.2.031012

    2012-01-01

    Stochastic resonance (SR) is a well known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively folding/unfolding transitions under the action of an applied oscillating mechanical force with optical tweezers. By varying the frequency of the force oscillation, we investigated the folding/unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measured several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that the signal-to-noise ratio (SNR) of the spectral density of measured fluctuations in molecular extension of the DNA hairpins is a good quantifier of the SR. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance match...

  5. Extending single-molecule microscopy using optical Fourier processing.

    Science.gov (United States)

    Backer, Adam S; Moerner, W E

    2014-07-17

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules.

  6. Synthesis of single-molecule nanocars.

    Science.gov (United States)

    Vives, Guillaume; Tour, James M

    2009-03-17

    p-carborane- and ruthenium-based wheels with greater solubility in organic solvents. Although fullerene wheels must be attached in the final synthetic step, p-carborane- and ruthenium-based wheels do not inhibit organometallic coupling reactions, which allows a more convergent synthesis of molecular machines. We also prepared functional nanotrucks for the transport of atoms and molecules, as well as self-assembling nanocars and nanotrains. Although engineering challenges such as movement over long distance and non-atomically flat surfaces remain, the greatest current research challenge is imaging. The detailed study of nanocars requires complementary single molecule imaging techniques such as STM, AFM, TEM, or single-molecule fluorescence microscopy. Further developments in engineering and synthesis could lead to enzyme-like manipulation and assembly of atoms and small molecules in nonbiological environments.

  7. Making "Operations" inside a Single Molecule

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Free and delicate manipulation of single molecules has long been expected by scientists so as to realize specific functions. In the 1990s, the laboratory led by Prof. Wison Ho from the University of California was successful in inducing chemical reactions at the single molecule level with scanning tunneling microscopy (STM), revealing the extensive potentials of "single molecule operation." However, until recently, researchers have failed to utilize the reaction to give rise to special physical properties.

  8. Single-molecule dynamics at variable temperatures

    NARCIS (Netherlands)

    Zondervan, Rob

    2006-01-01

    Single-molecule optics has evolved from a specialized variety of optical spectroscopy at low temperatures into a versatile tool to address questions in physics, chemistry, biology, and materials science. In this thesis, the potential of single-molecule (and ensemble) optical microscopy at variable t

  9. Study of protein stoichiometry by single-molecule imaging with total internal reflection fluorescence microscopy%应用全内反射单分子荧光成像研究蛋白复合物亚基组成

    Institute of Scientific and Technical Information of China (English)

    程茗; 李楠; 方晓红

    2012-01-01

    细胞的生化过程大都是由蛋白复合物完成的,研究蛋白复合物亚基的组成对于了解蛋白质的结构和生物学功能具有重要的意义,然而如何准确确定蛋白复合物中蛋白质亚基的数量(stoichiometry)仍然是一个挑战.近年来,活细胞体系单分子荧光成像技术的不断发展为原位实时动态地研究蛋白质的结构和性质提供了新的手段.本文主要介绍了应用活细胞全内反射单分子荧光成像技术表征细胞膜区蛋白复合物组成的3种方法,包括单分子漂白步数分析、荧光强度统计分布以及蛋白运动分析,并结合其基本原理介绍了这几种方法在活细胞体系膜蛋白研究中的应用.%Most of cellular processes are realized by protein complexes, and the study of subunits composition of protein complexes is very important for the understanding of protein structure and biological function. However, accurate determination of protein stoichiometry under the physiological conditions is still a challenge. In recent years, the development of single-molecule fluorescence imaging of living cells offers a new approach to characterize protein in real time. In this review, we first introduce the basic principle of imaging single-molecule in living cells by total internal reflection fluorescence microscopy (TIRFM) and then discuss the application of single-molecule TIRFM to study the plasma membrane protein complex in three ways, including the analysis of photobleaching step, the statistical distribution of fluorescence intensity and the dynamics of protein diffusion.

  10. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane

    CERN Document Server

    Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

    2015-01-01

    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

  11. Single-molecule choreography between telomere proteins and G quadruplexes.

    Science.gov (United States)

    Hopfner, Karl-Peter

    2014-06-10

    Telomeric DNA binds proteins to protect chromosome ends, but it also adopts G quadruplex (GQ) structures. Two new studies by Hwang and colleagues (in this issue of Structure) and Ray and colleagues (published elsewhere) use single molecule imaging to reveal how GQs affect the binding of different telomere associated proteins. The data suggest that GQs play important roles in regulating accessibility of telomeres.

  12. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  13. SINGLE MOLECULE ENZYMOLOGY FINDS ITS STRIDE.

    Science.gov (United States)

    Perkel, Jeffrey

    2015-10-01

    More techniques aimed at probing the nature of single molecules are being developed and advanced in biophysics labs. Jeffrey Perkel takes a look at the scientists leading the charge into the micro-world.

  14. 'Single molecule': theory and experiments, an introduction.

    Science.gov (United States)

    Riveline, Daniel

    2013-01-01

    At scales below micrometers, Brownian motion dictates most of the behaviors. The simple observation of a colloid is striking: a permanent and random motion is seen, whereas inertial forces play a negligible role. This Physics, where velocity is proportional to force, has opened new horizons in biology. The random feature is challenged in living systems where some proteins--molecular motors--have a directed motion whereas their passive behaviors of colloid should lead to a Brownian motion. Individual proteins, polymers of living matter such as DNA, RNA, actin or microtubules, molecular motors, all these objects can be viewed as chains of colloids. They are submitted to shocks from molecules of the solvent. Shapes taken by these biopolymers or dynamics imposed by motors can be measured and modeled from single molecules to their collective effects. Thanks to the development of experimental methods such as optical tweezers, Atomic Force Microscope (AFM), micropipettes, and quantitative fluorescence (such as Förster Resonance Energy Transfer, FRET), it is possible to manipulate these individual biomolecules in an unprecedented manner: experiments allow to probe the validity of models; and a new Physics has thereby emerged with original biological insights. Theories based on statistical mechanics are needed to explain behaviors of these systems. When force-extension curves of these molecules are extracted, the curves need to be fitted with models that predict the deformation of free objects or submitted to a force. When velocity of motors is altered, a quantitative analysis is required to explain the motions of individual molecules under external forces. This lecture will give some elements of introduction to the lectures of the session 'Nanophysics for Molecular Biology'.

  15. The optics inside an automated single molecule array analyzer

    Science.gov (United States)

    McGuigan, William; Fournier, David R.; Watson, Gary W.; Walling, Les; Gigante, Bill; Duffy, David C.; Rissin, David M.; Kan, Cheuk W.; Meyer, Raymond E.; Piech, Tomasz; Fishburn, Matthew W.

    2014-02-01

    Quanterix and Stratec Biomedical have developed an instrument that enables the automated measurement of multiple proteins at concentration ~1000 times lower than existing immunoassays. The instrument is based on Quanterix's proprietary Single Molecule Array technology (Simoa™ ) that facilitates the detection and quantification of biomarkers previously difficult to measure, thus opening up new applications in life science research and in-vitro diagnostics. Simoa is based on trapping individual beads in arrays of femtoliter-sized wells that, when imaged with sufficient resolution, allows for counting of single molecules associated with each bead. When used to capture and detect proteins, this approach is known as digital ELISA (Enzyme-linked immunosorbent assay). The platform developed is a merger of many science and engineering disciplines. This paper concentrates on the optical technologies that have enabled the development of a fully-automated single molecule analyzer. At the core of the system is a custom, wide field-of-view, fluorescence microscope that images arrays of microwells containing single molecules bound to magnetic beads. A consumable disc containing 24 microstructure arrays was developed previously in collaboration with Sony DADC. The system cadence requirements, array dimensions, and requirement to detect single molecules presented significant optical challenges. Specifically, the wide field-of-view needed to image the entire array resulted in the need for a custom objective lens. Additionally, cost considerations for the system required a custom solution that leveraged the image processing capabilities. This paper will discuss the design considerations and resultant optical architecture that has enabled the development of an automated digital ELISA platform.

  16. Evidence of excited state localization and static disorder in LH2 investigated by 2D-polarization single-molecule imaging at room temperature.

    Science.gov (United States)

    Tubasum, Sumera; Camacho, Rafael; Meyer, Matthias; Yadav, Dheerendra; Cogdell, Richard J; Pullerits, Tõnu; Scheblykin, Ivan G

    2013-12-01

    Two-dimensional polarization fluorescence imaging of single light harvesting complexes 2 (LH2) of Rps. acidophila was carried out to investigate the polarization properties of excitation and fluorescence emission simultaneously, at room temperature. In two separate experiments we excited LH2 with a spectrally narrow laser line matched to the absorption bands of the two chromophore rings, B800 and B850, thereby indirectly and directly triggering fluorescence of the B850 exciton state. A correlation analysis of the polarization modulation depths in excitation and emission for a large number of single complexes was performed. Our results show, in comparison to B800, that the B850 ring is a more isotropic absorber due to the excitonic nature of its excited states. At the same time, we observed a strong tendency for LH2 to emit with dipolar character, from which preferential localization of the emissive exciton, stable for minutes, is inferred. We argue that the observed effects can consistently be explained by static energetic disorder and/or deformation of the complex, with possible involvement of exciton self-trapping.

  17. Grafting single molecule magnets on gold nanoparticles.

    Science.gov (United States)

    Perfetti, Mauro; Pineider, Francesco; Poggini, Lorenzo; Otero, Edwige; Mannini, Matteo; Sorace, Lorenzo; Sangregorio, Claudio; Cornia, Andrea; Sessoli, Roberta

    2014-01-29

    The chemical synthesis and characterization of the first hybrid material composed by gold nanoparticles and single molecule magnets (SMMs) are described. Gold nanoparticles are functionalized via ligand exchange using a tetrairon(III) SMM containing two 1,2-dithiolane end groups. The grafting is evidenced by the shift of the plasmon resonance peak recorded with a UV-vis spectrometer, by the suppression of nuclear magnetic resonance signals, by X-ray photoemission spectroscopy peaks, and by transmission electron microscopy images. The latter evidence the formation of aggregates of nanoparticles as a consequence of the cross-linking ability of Fe4 through the two 1,2-dithiolane rings located on opposite sides of the metal core. The presence of intact Fe4 molecules is directly proven by synchrotron-based X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectroscopy, while a detailed magnetic characterization, obtained using electron paramagnetic resonance and alternating-current susceptibility, confirms the persistence of SMM behavior in this new hybrid nanostructure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantitative imaging methods in osteoporosis.

    Science.gov (United States)

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  19. Quantitative ultrasonic phased array imaging

    Science.gov (United States)

    Engle, Brady J.; Schmerr, Lester W., Jr.; Sedov, Alexander

    2014-02-01

    When imaging with ultrasonic phased arrays, what do we actually image? What quantitative information is contained in the image? Ad-hoc delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM) fail to answer these questions. We have shown that a new quantitative approach allows the formation of flaw images by explicitly inverting the Thompson-Gray measurement model. To examine the above questions, we have set up a software simulation test bed that considers a 2-D scalar scattering problem of a cylindrical inclusion with the method of separation of variables. It is shown that in SAFT types of imaging the only part of the flaw properly imaged is the front surface specular response of the flaw. Other responses (back surface reflections, creeping waves, etc.) are improperly imaged and form artifacts in the image. In the case of TFM-like imaging the quantity being properly imaged is an angular integration of the front surface reflectivity. The other, improperly imaged responses are also averaged, leading to a reduction in some of the artifacts present. Our results have strong implications for flaw sizing and flaw characterization with delay-and-sum images.

  20. Quantitative multiphoton imaging

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  1. Single-molecule fluorescence study of the inhibition of the oncogenic functionality of STAT3

    Science.gov (United States)

    Liu, Baoxu; Badali, Daniel; Fletcher, Steven; Avadisian, Miriam; Gunning, Patrick; Gradinaru, Claudiu

    2009-06-01

    Signal-Transducer-and-Activator-of-Transcription 3 (STAT3) protein plays an important role in the onset of cancers such as leukemia and lymphoma. In this study, we aim to test the effectiveness of a novel peptide drug designed to tether STAT3 to the phospholipid bilayer of the cell membrane and thus inhibit unwanted transcription. As a first step, STAT3 proteins were successfully labelled with tetramethylrhodamine (TMR), a fluorescent dye with suitable photostability for single molecule studies. The effectiveness of labelling was determined using fluorescence correlation spectroscopy in a custom built confocal microscope, from which diffusion times and hydrodynamic radii of individual proteins were determined. A newly developed fluorescein derivative label (F-NAc) has been designed to be incorporated into the structure of the peptide drug so that peptide-STAT3 interactions can be examined. This dye is spectrally characterized and is found to be well suited for its application to this project, as well as other single-molecule studies. The membrane localization via high-affinity cholesterol-bound small-molecule binding agents can be demonstrated by encapsulating TMR-labeled STAT3 and inhibitors within a vesicle model cell system. To this end, unilaminar lipid vesicles were examined for size and encapsulation ability. Preliminary results of the efficiency and stability of the STAT3 anchoring in lipid membranes obtained via quantitative confocal imaging and single-molecule spectroscopy using a custom-built multiparameter fluorescence microscope are reported here.

  2. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  3. Minimizing detection errors in single molecule localization microscopy.

    Science.gov (United States)

    Křížek, Pavel; Raška, Ivan; Hagen, Guy M

    2011-02-14

    Fluorescence microscopy using single molecule imaging and localization (PALM, STORM, and similar approaches) has quickly been adopted as a convenient method for obtaining multicolor, 3D superresolution images of biological samples. Using an approach based on extensive Monte Carlo simulations, we examined the performance of various noise reducing filters required for the detection of candidate molecules. We determined a suitable noise reduction method and derived an optimal, nonlinear threshold which minimizes detection errors introduced by conventional algorithms. We also present a new technique for visualization of single molecule localization microscopy data based on adaptively jittered 2D histograms. We have used our new methods to image both Atto565-phalloidin labeled actin in fibroblast cells, and mCitrine-erbB3 expressed in A431 cells. The enhanced methods developed here were crucial in processing the data we obtained from these samples, as the overall signal to noise ratio was quite low.

  4. Single-Molecule Studies in Live Cells

    Science.gov (United States)

    Yu, Ji

    2016-05-01

    Live-cell single-molecule experiments are now widely used to study complex biological processes such as signal transduction, self-assembly, active trafficking, and gene regulation. These experiments' increased popularity results in part from rapid methodological developments that have significantly lowered the technical barriers to performing them. Another important advance is the development of novel statistical algorithms, which, by modeling the stochastic behaviors of single molecules, can be used to extract systemic parameters describing the in vivo biochemistry or super-resolution localization of biological molecules within their physiological environment. This review discusses recent advances in experimental and computational strategies for live-cell single-molecule studies, as well as a selected subset of biological studies that have utilized these new technologies.

  5. Theoretical study on single-molecule spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SHAN Guang-cun; HUANG Wei

    2006-01-01

    The photon-by-photon approach for single molecule spectroscopy experiments utilizes the information carried by each detected photon and allows the measurements of conformational fluctuation with time resolution on a vast range of time scales,where each photon represents a data point.Here,we theoretically simulate the photon emission dynamics of a single molecule spectroscopy using the kinetic Monte Carlo algorithm to understand the underlying complex photon dynamic process of a single molecule.In addition,by following the molecular process in real time,the mechanism of complex biochemical reactions can be revealed.We hope that this theoretical study will serve as an introduction and a guideline into this exciting new field.

  6. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  7. Quantitative ultrasound in cancer imaging.

    Science.gov (United States)

    Feleppa, Ernest J; Mamou, Jonathan; Porter, Christopher R; Machi, Junji

    2011-02-01

    Ultrasound is a relatively inexpensive, portable, and versatile imaging modality that has a broad range of clinical uses. It incorporates many imaging modes, such as conventional gray-scale "B-mode" imaging to display echo amplitude in a scanned plane; M-mode imaging to track motion at a given fixed location over time; duplex, color, and power Doppler imaging to display motion in a scanned plane; harmonic imaging to display nonlinear responses to incident ultrasound; elastographic imaging to display relative tissue stiffness; and contrast-agent imaging with simple contrast agents to display blood-filled spaces or with targeted agents to display specific agent-binding tissue types. These imaging modes have been well described in the scientific, engineering, and clinical literature. A less well-known ultrasonic imaging technology is based on quantitative ultrasound (QUS), which analyzes the distribution of power as a function of frequency in the original received echo signals from tissue and exploits the resulting spectral parameters to characterize and distinguish among tissues. This article discusses the attributes of QUS-based methods for imaging cancers and providing improved means of detecting and assessing tumors. The discussion will include applications to imaging primary prostate cancer and metastatic cancer in lymph nodes to illustrate the methods. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Single-molecule analysis of DNA replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; van Oijen, Antoine M.; Walter, Johannes C.; Mechali, Marcel

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the

  9. Single-molecule analysis of DNA replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; van Oijen, Antoine M.; Walter, Johannes C.; Mechali, Marcel

    2012-01-01

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the d

  10. Resolving Single-Molecule Assembled Patterns with Superresolution Blink-Microscopy

    NARCIS (Netherlands)

    Cordes, Thorben; Strackharn, Mathias; Stahl, Stefan W.; Summerer, Wolfram; Steinhauer, Christian; Forthmann, Carsten; Puchner, Elias M.; Vogelsang, Jan; Gaub, Hermann E.; Tinnefeld, Philip

    2010-01-01

    In this paper we experimentally combine a recently developed AFM-based molecule-by-molecule assembly (single-molecule cut-and-paste, SMCP) with subdiffraction resolution fluorescence imaging. Using “Blink-Microscopy”, which exploits the fluctuating emission of single molecules for the reconstruction

  11. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  12. Electronic Single Molecule Identification of Carbohydrate Isomers by Recognition Tunneling

    CERN Document Server

    Im, JongOne; Liu, Hao; Zhao, Yanan; Sen, Suman; Biswas, Sudipta; Ashcroft, Brian; Borges, Chad; Wang, Xu; Lindsay, Stuart; Zhang, Peiming

    2016-01-01

    Glycans play a central role as mediators in most biological processes, but their structures are complicated by isomerism. Epimers and anomers, regioisomers, and branched sequences contribute to a structural variability that dwarfs those of nucleic acids and proteins, challenging even the most sophisticated analytical tools, such as NMR and mass spectrometry. Here, we introduce an electron tunneling technique that is label-free and can identify carbohydrates at the single-molecule level, offering significant benefits over existing technology. It is capable of analyzing sub-picomole quantities of sample, counting the number of individual molecules in each subset in a population of coexisting isomers, and is quantitative over more than four orders of magnitude of concentration. It resolves epimers not well separated by ion-mobility and can be implemented on a silicon chip. It also provides a readout mechanism for direct single-molecule sequencing of linear oligosaccharides.

  13. Near-field single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.S.; Dunn, R.C.

    1995-02-01

    The high spatial resolution and sensitivity of near-field fluorescence microscopy allows one to study spectroscopic and dynamical properties of individual molecules at room temperature. Time-resolved experiments which probe the dynamical behavior of single molecules are discussed. Ground rules for applying near-field spectroscopy and the effect of the aluminum coated near-field probe on spectroscopic measurements are presented.

  14. Single-molecule Michaelis-Menten equations.

    Science.gov (United States)

    Kou, S C; Cherayil, Binny J; Min, Wei; English, Brian P; Xie, X Sunney

    2005-10-20

    This paper summarizes our present theoretical understanding of single-molecule kinetics associated with the Michaelis-Menten mechanism of enzymatic reactions. Single-molecule enzymatic turnover experiments typically measure the probability density f(t) of the stochastic waiting time t for individual turnovers. While f(t) can be reconciled with ensemble kinetics, it contains more information than the ensemble data; in particular, it provides crucial information on dynamic disorder, the apparent fluctuation of the catalytic rates due to the interconversion among the enzyme's conformers with different catalytic rate constants. In the presence of dynamic disorder, f(t) exhibits a highly stretched multiexponential decay at high substrate concentrations and a monoexponential decay at low substrate concentrations. We derive a single-molecule Michaelis-Menten equation for the reciprocal of the first moment of f(t), 1/, which shows a hyperbolic dependence on the substrate concentration [S], similar to the ensemble enzymatic velocity. We prove that this single-molecule Michaelis-Menten equation holds under many conditions, in particular when the intercoversion rates among different enzyme conformers are slower than the catalytic rate. However, unlike the conventional interpretation, the apparent catalytic rate constant and the apparent Michaelis constant in this single-molecule Michaelis-Menten equation are complicated functions of the catalytic rate constants of individual conformers. We also suggest that the randomness parameter r, defined as )2> / t2, can serve as an indicator for dynamic disorder in the catalytic step of the enzymatic reaction, as it becomes larger than unity at high substrate concentrations in the presence of dynamic disorder.

  15. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  16. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones.

    Science.gov (United States)

    Rodriguez-Manzano, Jesus; Karymov, Mikhail A; Begolo, Stefano; Selck, David A; Zhukov, Dmitriy V; Jue, Erik; Ismagilov, Rustem F

    2016-03-22

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests.

  17. Quantitative imaging as cancer biomarker

    Science.gov (United States)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine

  18. The symmetry of single-molecule conduction.

    Science.gov (United States)

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-14

    We introduce the conductance point group which defines the symmetry of single-molecule conduction within the nonequilibrium Green's function formalism. It is shown, either rigorously or to within a very good approximation, to correspond to a molecular-conductance point group defined purely in terms of the properties of the conducting molecule. This enables single-molecule conductivity to be described in terms of key qualitative chemical descriptors that are independent of the nature of the molecule-conductor interfaces. We apply this to demonstrate how symmetry controls the conduction through 1,4-benzenedithiol chemisorbed to gold electrodes as an example system, listing also the molecular-conductance point groups for a range of molecules commonly used in molecular electronics research.

  19. Diamond based single molecule magnetic resonance spectroscopy

    CERN Document Server

    Cai, J -M; Plenio, M B; Retzker, A

    2011-01-01

    The detection of a nuclear spin in an individual molecule represents a key challenge in physics and biology whose solution has been pursued for many years. The small magnetic moment of a single nucleus and the unavoidable environmental noise present the key obstacles for its realization. Here, we theoretically demonstrate that a single nitrogen-vacancy (NV) center in diamond can be used to construct a nano-scale single molecule spectrometer that is capable of detecting the position and spin state of a single nucleus and can determine the distance and alignment of a nuclear or electron spin pair. In combination with organic spin labels, this device will find applications in single molecule spectroscopy in chemistry and biology, such as in determining protein structure or monitoring macromolecular motions and can thus provide a tool to help unravelling the microscopic mechanisms underlying bio-molecular function.

  20. Single molecule transcription profiling with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jason [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States); Mishra, Bud [Departments of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Pittenger, Bede [Veeco Instruments, Santa Barbara, CA 93117 (United States); Magonov, Sergei [Veeco Instruments, Santa Barbara, CA 93117 (United States); Troke, Joshua [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A [Department of Pathology and Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095 (United States); Gimzewski, James K [Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (United States)

    2007-01-31

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations.

  1. Single Molecule Data Analysis: An Introduction

    CERN Document Server

    Tavakoli, Meysam; Li, Chun-Biu; Komatsuzaki, Tamiki; Pressé, Steve

    2016-01-01

    We review methods of data analysis for biophysical data with a special emphasis on single molecule applications. Our review is intended for anyone, from student to established researcher. For someone just getting started, we focus on exposing the logic, strength and limitations of each method and cite, as appropriate, the relevant literature for implementation details. We review traditional frequentist and Bayesian parametric approaches to data analysis and subsequently extend our discussion to recent non-parametric and information theoretic methods.

  2. Trapping and manipulating single molecules of DNA

    Science.gov (United States)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  3. State space approach to single molecule localization in fluorescence microscopy.

    Science.gov (United States)

    Vahid, Milad R; Chao, Jerry; Kim, Dongyoung; Ward, E Sally; Ober, Raimund J

    2017-03-01

    Single molecule super-resolution microscopy enables imaging at sub-diffraction-limit resolution by producing images of subsets of stochastically photoactivated fluorophores over a sequence of frames. In each frame of the sequence, the fluorophores are accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Many methods have been developed for localizing fluorophores from the images. The majority of these methods comprise two separate steps: detection and estimation. In the detection step, fluorophores are identified. In the estimation step, the locations of the identified fluorophores are estimated through an iterative approach. Here, we propose a non-iterative state space-based localization method which combines the detection and estimation steps. We demonstrate that the estimated locations obtained from the proposed method can be used as initial conditions in an estimation routine to potentially obtain improved location estimates. The proposed method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix. The locations of the poles of the resulting system determine the peak locations in the frequency domain, and the locations of the most significant peaks correspond to the single molecule locations in the original image. The performance of the method is validated using both simulated and experimental data.

  4. Common fluorescent proteins for single-molecule localization microscopy

    Science.gov (United States)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  5. Synthesis of Cyclic Polymers and Characterization of Their Diffusive Motion in the Melt State at the Single Molecule Level

    KAUST Repository

    Habuchi, Satoshi

    2016-09-26

    We demonstrate a method for the synthesis of cyclic polymers and a protocol for characterizing their diffusive motion in a melt state at the single molecule level. An electrostatic self-assembly and covalent fixation (ESA-CF) process is used for the synthesis of the cyclic poly(tetrahydrofuran) (poly(THF)). The diffusive motion of individual cyclic polymer chains in a melt state is visualized using single molecule fluorescence imaging by incorporating a fluorophore unit in the cyclic chains. The diffusive motion of the chains is quantitatively characterized by means of a combination of mean-squared displacement (MSD) analysis and a cumulative distribution function (CDF) analysis. The cyclic polymer exhibits multiple-mode diffusion which is distinct from its linear counterpart. The results demonstrate that the diffusional heterogeneity of polymers that is often hidden behind ensemble averaging can be revealed by the efficient synthesis of the cyclic polymers using the ESA-CF process and the quantitative analysis of the diffusive motion at the single molecule level using the MSD and CDF analyses.

  6. Single molecule studies of solvent-dependent diffusion and entrapment in poly(dimethylsiloxane) thin films.

    Science.gov (United States)

    Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A

    2008-12-15

    Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly

  7. Single molecule and single cell epigenomics.

    Science.gov (United States)

    Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D

    2015-01-15

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Toward single-molecule microscopy on a smart phone.

    Science.gov (United States)

    Khatua, Saumyakanti; Orrit, Michel

    2013-10-22

    Thanks to fluorescence, single nano-objects down to individual fluorophores can now be imaged in optical microscopes. Fluorescence imaging is still restricted to laboratory facilities as it usually involves expensive and bulky instrumentation. A report by Wei et al. in this issue of ACS Nano, however, shows that a sensitive, cost-effective, and portable device can be developed to image individual nano-objects as small as large viruses. This work opens the fascinating prospects of single-molecule microscopy and spectroscopy on a smart phone. We speculate on the possible applications of such a portable imaging device and on the perspectives it may open in different fields of science and technology.

  9. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    Science.gov (United States)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar

  10. Quantitative analysis of qualitative images

    Science.gov (United States)

    Hockney, David; Falco, Charles M.

    2005-03-01

    We show optical evidence that demonstrates artists as early as Jan van Eyck and Robert Campin (c1425) used optical projections as aids for producing their paintings. We also have found optical evidence within works by later artists, including Bermejo (c1475), Lotto (c1525), Caravaggio (c1600), de la Tour (c1650), Chardin (c1750) and Ingres (c1825), demonstrating a continuum in the use of optical projections by artists, along with an evolution in the sophistication of that use. However, even for paintings where we have been able to extract unambiguous, quantitative evidence of the direct use of optical projections for producing certain of the features, this does not mean that paintings are effectively photographs. Because the hand and mind of the artist are intimately involved in the creation process, understanding these complex images requires more than can be obtained from only applying the equations of geometrical optics.

  11. GPC and quantitative phase imaging

    Science.gov (United States)

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson; Glückstad, Jesper

    2016-03-01

    Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical security, parallel laser marking and labelling and recently in contemporary biophotonics applications such as for adaptive and parallel two-photon optogenetics and neurophotonics. We will present our most recent GPC developments geared towards these applications. We first show a very compact static light shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging (QPI).

  12. Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics.

    Science.gov (United States)

    Park, Kyoung-Duck; Muller, Eric A; Kravtsov, Vasily; Sass, Paul M; Dreyer, Jens; Atkin, Joanna M; Raschke, Markus B

    2016-01-13

    Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule. We resolve intrinsic line widths of individual normal modes, allowing detailed and quantitative investigation of the vibrational modes. From temperature dependent line narrowing and splitting, we quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through statistical correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of the molecule. This work demonstrates single-molecule vibrational spectroscopy beyond chemical identification, opening the possibility for a complete picture of molecular motion ranging from femtoseconds to minutes.

  13. Low-temperature phonoemissive tunneling rates in single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun, E-mail: yl2192@gmail.com [University of Illinois, Department of Physics, 1110 W. Green St., Urbana, IL 61801 (United States); Garg, Anupam, E-mail: agarg@northwestern.edu [Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Rd., Evanston, IL 60208 (United States)

    2016-03-15

    Tunneling between the two lowest energy levels of single molecule magnets with Ising type anisotropy, accompanied by the emission or absorption of phonons, is considered. Quantitatively accurate calculations of the rates for such tunneling are performed for a model Hamiltonian especially relevant to the best studied example, Fe{sub 8}. Two different methods are used: high-order perturbation theory in the spin–phonon interaction and the non-Ising-symmetric parts of the spin Hamiltonian, and a novel semiclassical approach based on spin-coherent-state-path-integral instantons. The methods are found to be in good quantitative agreement with other, and consistent with previous approaches to the problem. The implications of these results for magnetization of molecular solids of these molecules are discussed briefly.

  14. Quantitative imaging with fluorescent biosensors.

    Science.gov (United States)

    Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B

    2012-01-01

    Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.

  15. Single Molecule Conductance of Oligothiophene Derivatives

    Science.gov (United States)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction

  16. High contrast single molecule tracking in the pericellular coat

    Science.gov (United States)

    Scrimgeour, Jan; McLane, Louis T.; Curtis, Jennifer E.

    2014-03-01

    The pericellular coat is a robust, hydrated, polymer brush-like structure that can extend several micrometers into the extracellular space around living cells. By controlling access to the cell surface, acting as a filter and storage reservoir for proteins, and actively controlling tissue-immune system interactions, the cell coat performs many important functions at scales ranging from the single cell to whole tissues. The cell coat consists of a malleable backbone - the large polysaccharide hyaluronic acid (HA) - with its structure, material properties, and ultimately its bio-functionality tuned by a diverse set of HA binding proteins. These proteins add charge, cross-links and growth factor-like ligands to the coat To probe the dynamic behavior of this soft biomaterial we have used high contrast single molecule imaging, based on highly inclined laser illumination, to observe individual fluorescently labeled HA binding proteins within the cell coat. Our work focuses on the cell coat of living chondrocyte (cartilage) cells, and in particular the effect of the large, highly charged, protein aggrecan on the properties of the coat. Through single molecule imaging we observe that aggrecan is tightly tethered to HA, and plays an important role in cell coat extension and stiffening.

  17. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  18. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices

    Science.gov (United States)

    Varela, Juan A.; Dupuis, Julien P.; Etchepare, Laetitia; Espana, Agnès; Cognet, Laurent; Groc, Laurent

    2016-03-01

    Single-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices. We propose a novel delocalized and non-inflammatory way of delivering nanoparticles (NPs) in vivo to the brain, which allowed us to label and track genetically engineered surface dopamine receptors in neocortical neurons, revealing inherent behaviour and receptor activity regulations. We thus propose a NP-based platform for single-molecule studies in the living brain, opening new avenues of research in physiological and pathological animal models.

  19. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  20. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...... as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...

  1. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    Science.gov (United States)

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  2. Single-molecule electronics: from chemical design to functional devices.

    Science.gov (United States)

    Sun, Lanlan; Diaz-Fernandez, Yuri A; Gschneidtner, Tina A; Westerlund, Fredrik; Lara-Avila, Samuel; Moth-Poulsen, Kasper

    2014-11-07

    The use of single molecules in electronics represents the next limit of miniaturisation of electronic devices, which would enable us to continue the trend of aggressive downscaling of silicon-based electronic devices. More significantly, the fabrication, understanding and control of fully functional circuits at the single-molecule level could also open up the possibility of using molecules as devices with novel, not-foreseen functionalities beyond complementary metal-oxide semiconductor technology (CMOS). This review aims at highlighting the chemical design and synthesis of single molecule devices as well as their electrical and structural characterization, including a historical overview and the developments during the last 5 years. We discuss experimental techniques for fabrication of single-molecule junctions, the potential application of single-molecule junctions as molecular switches, and general physical phenomena in single-molecule electronic devices.

  3. Rotation of a single molecule within a supramolecular bearing

    DEFF Research Database (Denmark)

    Gimzewski, J.K.; Joachim, C.; Schlittler, R.R.;

    1998-01-01

    Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One was ident......Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One...

  4. Next-Generation DNA Curtains for Single-Molecule Studies of Homologous Recombination.

    Science.gov (United States)

    Soniat, Michael M; Myler, Logan R; Schaub, Jeffrey M; Kim, Yoori; Gallardo, Ignacio F; Finkelstein, Ilya J

    2017-01-01

    Homologous recombination (HR) is a universally conserved DNA double-strand break repair pathway. Single-molecule fluorescence imaging approaches have revealed new mechanistic insights into nearly all aspects of HR. These methods are especially suited for studying protein complexes because multicolor fluorescent imaging can parse out subassemblies and transient intermediates that associate with the DNA substrates on the millisecond to hour timescales. However, acquiring single-molecule datasets remains challenging because most of these approaches are designed to measure one molecular reaction at a time. The DNA curtains platform facilitates high-throughput single-molecule imaging by organizing arrays of DNA molecules on the surface of a microfluidic flowcell. Here, we describe a second-generation UV lithography-based protocol for fabricating flowcells for DNA curtains. This protocol greatly reduces the challenges associated with assembling DNA curtains and paves the way for the rapid acquisition of large datasets from individual single-molecule experiments. Drawing on our recent studies of human HR, we also provide an overview of how DNA curtains can be used for observing facilitated protein diffusion, processive enzyme translocation, and nucleoprotein filament dynamics on single-stranded DNA. Together, these protocols and case studies form a comprehensive introduction for other researchers that may want to adapt DNA curtains for high-throughput single-molecule studies of DNA replication, transcription, and repair. © 2017 Elsevier Inc. All rights reserved.

  5. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation

    Science.gov (United States)

    Vera, Maria; Biswas, Jeetayu; Senecal, Adrien

    2016-01-01

    Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology. PMID:27893965

  6. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  7. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer

    Science.gov (United States)

    Holmstrom, Erik D.; Nesbitt, David J.

    2016-05-01

    Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.

  8. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer.

    Science.gov (United States)

    Holmstrom, Erik D; Nesbitt, David J

    2016-05-27

    Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.

  9. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives.

    Science.gov (United States)

    Aradhya, Sriharsha V; Meisner, Jeffrey S; Krikorian, Markrete; Ahn, Seokhoon; Parameswaran, Radha; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2012-03-14

    Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.

  10. Structure and mechanics of proteins from single molecules to cells

    Science.gov (United States)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  11. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  12. Single-Molecule FRET Study of DNA G-Quadruplex

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The DNA G-quadruplex formed by the human telomeric sequence is a potential target for novel anticancer drugs. We have investigated an intramolecular DNA G-quadruplex using single-molecule fluorescence resonance energy transfer and shown that individual folded quadruplexes can be identified. The mean proximity ratio measured at the single-molecule level was consistent with ensemble measurement.

  13. Single-molecule approaches to characterizing kinetics of biomolecular interactions

    NARCIS (Netherlands)

    van Oijen, Antoine M.

    2011-01-01

    Single-molecule fluorescence techniques have emerged as powerful tools to study biological processes at the molecular level. This review describes the application of these methods to the characterization of the kinetics of interaction between biomolocules. A large number of single-molecule assays ha

  14. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....

  15. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  16. Analyzing single-molecule time series via nonparametric Bayesian inference.

    Science.gov (United States)

    Hines, Keegan E; Bankston, John R; Aldrich, Richard W

    2015-02-03

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. White-light Quantitative Phase Imaging Unit

    CERN Document Server

    Baek, YoonSeok; Yoon, Jonghee; Kim, Kyoohyun; Park, YongKeun

    2016-01-01

    We introduce the white light quantitative phase imaging unit (WQPIU) as a practical realization of quantitative phase imaging (QPI) on standard microscope platforms. The WQPIU is a compact stand-alone unit which measures sample induced phase delay under white-light illumination. It does not require any modification of the microscope or additional accessories for its use. The principle of the WQPIU based on lateral shearing interferometry and phase shifting interferometry provides a cost-effective and user-friendly use of QPI. The validity and capacity of the presented method are demonstrated by measuring quantitative phase images of polystyrene beads, human red blood cells, HeLa cells and mouse white blood cells. With speckle-free imaging capability due to the use of white-light illumination, the WQPIU is expected to expand the scope of QPI in biological sciences as a powerful but simple imaging tool.

  18. Quantitative histogram analysis of images

    Science.gov (United States)

    Holub, Oliver; Ferreira, Sérgio T.

    2006-11-01

    A routine for histogram analysis of images has been written in the object-oriented, graphical development environment LabVIEW. The program converts an RGB bitmap image into an intensity-linear greyscale image according to selectable conversion coefficients. This greyscale image is subsequently analysed by plots of the intensity histogram and probability distribution of brightness, and by calculation of various parameters, including average brightness, standard deviation, variance, minimal and maximal brightness, mode, skewness and kurtosis of the histogram and the median of the probability distribution. The program allows interactive selection of specific regions of interest (ROI) in the image and definition of lower and upper threshold levels (e.g., to permit the removal of a constant background signal). The results of the analysis of multiple images can be conveniently saved and exported for plotting in other programs, which allows fast analysis of relatively large sets of image data. The program file accompanies this manuscript together with a detailed description of two application examples: The analysis of fluorescence microscopy images, specifically of tau-immunofluorescence in primary cultures of rat cortical and hippocampal neurons, and the quantification of protein bands by Western-blot. The possibilities and limitations of this kind of analysis are discussed. Program summaryTitle of program: HAWGC Catalogue identifier: ADXG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXG_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Mobile Intel Pentium III, AMD Duron Installations: No installation necessary—Executable file together with necessary files for LabVIEW Run-time engine Operating systems or monitors under which the program has been tested: WindowsME/2000/XP Programming language used: LabVIEW 7.0 Memory required to execute with typical data:˜16MB for starting and ˜160MB used for

  19. Single Molecule Screening of Disease DNA Without Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  20. Cancer detection by quantitative fluorescence image analysis.

    Science.gov (United States)

    Parry, W L; Hemstreet, G P

    1988-02-01

    Quantitative fluorescence image analysis is a rapidly evolving biophysical cytochemical technology with the potential for multiple clinical and basic research applications. We report the application of this technique for bladder cancer detection and discuss its potential usefulness as an adjunct to methods used currently by urologists for the diagnosis and management of bladder cancer. Quantitative fluorescence image analysis is a cytological method that incorporates 2 diagnostic techniques, quantitation of nuclear deoxyribonucleic acid and morphometric analysis, in a single semiautomated system to facilitate the identification of rare events, that is individual cancer cells. When compared to routine cytopathology for detection of bladder cancer in symptomatic patients, quantitative fluorescence image analysis demonstrated greater sensitivity (76 versus 33 per cent) for the detection of low grade transitional cell carcinoma. The specificity of quantitative fluorescence image analysis in a small control group was 94 per cent and with the manual method for quantitation of absolute nuclear fluorescence intensity in the screening of high risk asymptomatic subjects the specificity was 96.7 per cent. The more familiar flow cytometry is another fluorescence technique for measurement of nuclear deoxyribonucleic acid. However, rather than identifying individual cancer cells, flow cytometry identifies cellular pattern distributions, that is the ratio of normal to abnormal cells. Numerous studies by others have shown that flow cytometry is a sensitive method to monitor patients with diagnosed urological disease. Based upon results in separate quantitative fluorescence image analysis and flow cytometry studies, it appears that these 2 fluorescence techniques may be complementary tools for urological screening, diagnosis and management, and that they also may be useful separately or in combination to elucidate the oncogenic process, determine the biological potential of tumors

  1. Single-molecule analysis of fluorescent carbon dots towards localization-based super-resolution microscopy

    Science.gov (United States)

    Verma, Navneet C.; Khan, Syamantak; Nandi, Chayan K.

    2016-12-01

    The advancement of high-resolution bioimaging has always been dependent on the discovery of bright and easily available fluorescent probes. Fluorescent carbon nanodots, an interesting class of relatively new nanomaterials, have emerged as a versatile alternative due to their superior optical properties, non-toxicity, cell penetrability and easy routes to synthesis. Although a plethora of reports is available on bioimaging using carbon dots, single-molecule-based super-resolution imaging is rare in the literature. In this study, we have systematically characterized the single-molecule fluorescence of three carbon dots and compared them with a standard fluorescent probe. Each of these carbon dots showed a long-lived dark state in the presence of an electron acceptor. The electron transfer mechanism was investigated in single-molecule as well as in ensemble experiments. The average on-off rate between the fluorescent bright and dark states, which is one of the important parameters for single-molecule localization-based super-resolution microscopy, was measured by changing the laser power. We report that the photon budget and on-off rate of these carbon dots were good enough to achieve single-molecule localization with a precision of ~35 nm.

  2. Single-molecule analysis of DNA replication in Xenopus egg extracts.

    Science.gov (United States)

    Yardimci, Hasan; Loveland, Anna B; van Oijen, Antoine M; Walter, Johannes C

    2012-06-01

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the duplication of genome in eukaryotes. Here, we describe a single-molecule assay that allows replication of DNA attached to the functionalized surface of a microfluidic flow cell in a soluble Xenopus leavis egg extract replication system and subsequent visualization of replication products via fluorescence microscopy. We also explain a method for detection of replication proteins, through fluorescently labeled antibodies, on partially replicated DNA immobilized at both ends to the surface.

  3. Quantitative Imaging in Cancer Clinical Trials.

    Science.gov (United States)

    Yankeelov, Thomas E; Mankoff, David A; Schwartz, Lawrence H; Lieberman, Frank S; Buatti, John M; Mountz, James M; Erickson, Bradley J; Fennessy, Fiona M M; Huang, Wei; Kalpathy-Cramer, Jayashree; Wahl, Richard L; Linden, Hannah M; Kinahan, Paul E; Zhao, Binsheng; Hylton, Nola M; Gillies, Robert J; Clarke, Laurence; Nordstrom, Robert; Rubin, Daniel L

    2016-01-15

    As anticancer therapies designed to target specific molecular pathways have been developed, it has become critical to develop methods to assess the response induced by such agents. Although traditional, anatomic CT, and MRI examinations are useful in many settings, increasing evidence suggests that these methods cannot answer the fundamental biologic and physiologic questions essential for assessment and, eventually, prediction of treatment response in the clinical trial setting, especially in the critical period soon after treatment is initiated. To optimally apply advances in quantitative imaging methods to trials of targeted cancer therapy, new infrastructure improvements are needed that incorporate these emerging techniques into the settings where they are most likely to have impact. In this review, we first elucidate the needs for therapeutic response assessment in the era of molecularly targeted therapy and describe how quantitative imaging can most effectively provide scientifically and clinically relevant data. We then describe the tools and methods required to apply quantitative imaging and provide concrete examples of work making these advances practically available for routine application in clinical trials. We conclude by proposing strategies to surmount barriers to wider incorporation of these quantitative imaging methods into clinical trials and, eventually, clinical practice. Our goal is to encourage and guide the oncology community to deploy standardized quantitative imaging techniques in clinical trials to further personalize care for cancer patients and to provide a more efficient path for the development of improved targeted therapies.

  4. An optical nanofiber-based interface for single molecules

    CERN Document Server

    Skoff, Sarah M; Schauffert, Hardy; Rauschenbeutel, Arno

    2016-01-01

    Optical interfaces for quantum emitters are a prerequisite for implementing quantum networks. Here, we couple single molecules to the guided modes of an optical nanofiber. The molecules are embedded within a crystal that provides photostability and due to its inhomogeneous environment, a means to spectrally address single molecules. Single molecules are excited and detected solely via the nanofiber interface without the requirement of additional optical access. In this way, we realize a fully fiber-integrated system that is scalable and may become a versatile constituent for quantum hybrid systems.

  5. Stochastic single-molecule dynamics of synaptic membrane protein domains

    CERN Document Server

    Kahraman, Osman; Haselwandter, Christoph A

    2016-01-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  6. Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings

    Directory of Open Access Journals (Sweden)

    Biyan Chen

    2015-07-01

    Full Text Available We introduce nanogap-embedded silver plasmonic gratings for single-molecule (SM visualization using an epifluorescence microscope. This silver plasmonic platform was fabricated by a cost-effective nano-imprint lithography technique, using an HD DVD template. DNA/ RNA duplex molecules tagged with Cy3/Cy5 fluorophores were immobilized on SiO 2 -capped silver gratings. Light was coupled to the gratings at particular wavelengths and incident angles to form surface plasmons. The SM fluorescence intensity of the fluorophores at the nanogaps showed approximately a 100-fold mean enhancement with respect to the fluorophores observed on quartz slides using an epifluorescence microscope. This high level of enhancement was due to the concentration of surface plasmons at the nanogaps. When nanogaps imaged with epifluorescence mode were compared to quartz imaged using total internal reflection fluorescence (TIRF microscopy, more than a 30-fold mean enhancement was obtained. Due to the SM fluorescence enhancement of plasmonic gratings and the correspondingly high emission intensity, the required laser power can be reduced, resulting in a prolonged detection time prior to photobleaching. This simple platform was able to perform SM studies with a low-cost epifluorescence apparatus, instead of the more expensive TIRF or confocal microscopes, which would enable SM analysis to take place in most scientific laboratories.

  7. A single-molecule view of gene regulation in cancer

    Science.gov (United States)

    Larson, Daniel

    2013-03-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. Steroid receptors coordinate a diverse range of responses in higher eukaryotes and are involved in a wide range of human diseases, including cancer. Steroid receptor response elements are present throughout the human genome and modulate chromatin remodeling and transcription in both a local and long-range fashion. As such, steroid receptor-mediated transcription is a paradigm of genetic control in the metazoan nucleus. Moreover, the ligand-dependent nature of these transcription factors makes them appealing targets for therapeutic intervention, necessitating a quantitative understanding of how receptors control output from target genes. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single gene and follow dynamic synthesis of RNA from the activated locus. The response delay is a measure of time required for chromatin remodeling at a single gene.

  8. A theoretical justification for single molecule peptide sequencing.

    Directory of Open Access Journals (Sweden)

    Jagannath Swaminathan

    2015-02-01

    Full Text Available The proteomes of cells, tissues, and organisms reflect active cellular processes and change continuously in response to intracellular and extracellular cues. Deep, quantitative profiling of the proteome, especially if combined with mRNA and metabolite measurements, should provide an unprecedented view of cell state, better revealing functions and interactions of cell components. Molecular diagnostics and biomarker discovery should benefit particularly from the accurate quantification of proteomes, since complex diseases like cancer change protein abundances and modifications. Currently, shotgun mass spectrometry is the primary technology for high-throughput protein identification and quantification; while powerful, it lacks high sensitivity and coverage. We draw parallels with next-generation DNA sequencing and propose a strategy, termed fluorosequencing, for sequencing peptides in a complex protein sample at the level of single molecules. In the proposed approach, millions of individual fluorescently labeled peptides are visualized in parallel, monitoring changing patterns of fluorescence intensity as N-terminal amino acids are sequentially removed, and using the resulting fluorescence signatures (fluorosequences to uniquely identify individual peptides. We introduce a theoretical foundation for fluorosequencing and, by using Monte Carlo computer simulations, we explore its feasibility, anticipate the most likely experimental errors, quantify their potential impact, and discuss the broad potential utility offered by a high-throughput peptide sequencing technology.

  9. High-resolution optical tweezers for single-molecule manipulation.

    Science.gov (United States)

    Zhang, Xinming; Ma, Lu; Zhang, Yongli

    2013-09-01

    Forces hold everything together and determine its structure and dynamics. In particular, tiny forces of 1-100 piconewtons govern the structures and dynamics of biomacromolecules. These forces enable folding, assembly, conformational fluctuations, or directional movements of biomacromolecules over sub-nanometer to micron distances. Optical tweezers have become a revolutionary tool to probe the forces, structures, and dynamics associated with biomacromolecules at a single-molecule level with unprecedented resolution. In this review, we introduce the basic principles of optical tweezers and their latest applications in studies of protein folding and molecular motors. We describe the folding dynamics of two strong coiled coil proteins, the GCN4-derived protein pIL and the SNARE complex. Both complexes show multiple folding intermediates and pathways. ATP-dependent chromatin remodeling complexes translocate DNA to remodel chromatin structures. The detailed DNA translocation properties of such molecular motors have recently been characterized by optical tweezers, which are reviewed here. Finally, several future developments and applications of optical tweezers are discussed. These past and future applications demonstrate the unique advantages of high-resolution optical tweezers in quantitatively characterizing complex multi-scale dynamics of biomacromolecules.

  10. Quantitative imaging of turbulent and reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  11. Direct Characterization of Amyloidogenic Oligomers by Single-Molecule Fluorescence

    National Research Council Canada - National Science Library

    Angel Orte; Neil R. Birkett; Richard W. Clarke; Glyn L. Devlin; Christopher M. Dobson; David Klenerman

    2008-01-01

    .... We describe here the application of a two-color single-molecule fluorescence technique to examine the assembly of oligomeric species formed during the aggregation of the SH3 domain of PI3 kinase...

  12. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  13. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  14. Massively parallel single-molecule manipulation using centrifugal force

    CERN Document Server

    Halvorsen, Ken

    2009-01-01

    Precise manipulation of single molecules has already led to remarkable insights in physics, chemistry, biology and medicine. However, widespread adoption of single-molecule techniques has been impeded by equipment cost and the laborious nature of making measurements one molecule at a time. We have solved these issues with a new approach: massively parallel single-molecule force measurements using centrifugal force. This approach is realized in a novel instrument that we call the Centrifuge Force Microscope (CFM), in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force-field while their micro-to-nanoscopic motions are observed. We demonstrate high-throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Additionally, we verify the force accuracy of the instrument by measuring the well-est...

  15. Quantitative Measurements using Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    Duplex Vector Flow Imaging (VFI) imaging is introduced as a replacement for spectral Doppler, as it automatically can yield fully quantitative flow estimates without angle correction. Continuous VFI data over 9 s for 10 pulse cycles were acquired by a 3 MHz convex probe connected to the SARUS......L/stroke (true: 1.15 mL/stroke, bias: 12.2%). Measurements down to 160 mm were obtained with a relative standard deviation and bias of less than 10% for the lateral component for stationary, parabolic flow. The method can, thus, find quantitative velocities, angles, and volume flows at sites currently...

  16. Probing molecular choreography through single-molecule biochemistry.

    Science.gov (United States)

    van Oijen, Antoine M; Dixon, Nicholas E

    2015-12-01

    Single-molecule approaches are having a dramatic impact on views of how proteins work. The ability to observe molecular properties at the single-molecule level allows characterization of subpopulations and acquisition of detailed kinetic information that would otherwise be hidden in the averaging over an ensemble of molecules. In this Perspective, we discuss how such approaches have successfully been applied to in vitro-reconstituted systems of increasing complexity.

  17. Quantitative Imaging with a Mobile Phone Microscope

    Science.gov (United States)

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  18. Quantitative imaging with a mobile phone microscope.

    Directory of Open Access Journals (Sweden)

    Arunan Skandarajah

    Full Text Available Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.

  19. Uncovering hierarchical data structure in single molecule transport

    Science.gov (United States)

    Wu, Ben H.; Ivie, Jeffrey A.; Johnson, Tyler K.; Monti, Oliver L. A.

    2017-03-01

    Interpretation of single molecule transport data is complicated by the fact that all such data are inherently highly stochastic in nature. Features are often broad, seemingly unstructured and distributed over more than an order of magnitude. However, the distribution contains information necessary for capturing the full variety of processes relevant in nanoscale transport, and a better understanding of its hierarchical structure is needed to gain deeper insight into the physics and chemistry of single molecule electronics. Here, we describe a novel data analysis approach based on hierarchical clustering to aid in the interpretation of single molecule conductance-displacement histograms. The primary purpose of statistically partitioning transport data is to provide avenues for unbiased hypothesis generation in single molecule break junction experiments by revealing otherwise potentially hidden aspects in the conductance data. Our approach is generalizable to the analysis of a wide variety of other single molecule experiments in molecular electronics, as well as in single molecule fluorescence spectroscopy, force microscopy, and ion-channel conductance measurements.

  20. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  1. Quantitative image processing in fluid mechanics

    Science.gov (United States)

    Hesselink, Lambertus; Helman, James; Ning, Paul

    1992-01-01

    The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.

  2. A single molecule investigation of the photostability of quantum dots.

    Directory of Open Access Journals (Sweden)

    Eva Christensen Arnspang

    Full Text Available Quantum dots (QDs are very attractive probes for multi-color fluorescence imaging in biological applications because of their immense brightness and reported extended photostability. We report here however that single QDs, suitable for biological applications, that are subject to continuous blue excitation from a conventional 100 W mercury arc lamp will undergo a continuous blue-switching of the emission wavelength eventually reaching a permanent dark, photobleached state. We further show that β-mercaptoethanol has a dual stabilizing effect on the fluorescence emission of QDs: 1 by increasing the frequency of time that a QD is in its fluorescent state, and 2 by decreasing the photobleaching rate. The observed QD color spectral switching is especially detrimental for multi-color single molecule applications, as we regularly observe spectral blue-shifts of 50 nm, or more even after only ten seconds of illumination. However, of significant importance for biological applications, we find that even small, biologically compatible, concentrations (25 µM of β-mercaptoethanol has a significant stabilizing effect on the emission color of QDs, but that greater amounts are required to completely abolish the spectral blue shifting or to minimize the emission intermittency of QDs.

  3. Mapping Transcription Factors on Extended DNA: A Single Molecule Approach

    Science.gov (United States)

    Ebenstein, Yuval; Gassman, Natalie; Weiss, Shimon

    The ability to determine the precise loci and distribution of nucleic acid binding proteins is instrumental to our detailed understanding of cellular processes such as transcription, replication, and chromatin reorganization. Traditional molecular biology approaches and above all Chromatin immunoprecipitation (ChIP) based methods have provided a wealth of information regarding protein-DNA interactions. Nevertheless, existing techniques can only provide average properties of these interactions, since they are based on the accumulation of data from numerous protein-DNA complexes analyzed at the ensemble level. We propose a single molecule approach for direct visualization of DNA binding proteins bound specifically to their recognition sites along a long stretch of DNA such as genomic DNA. Fluorescent Quantum dots are used to tag proteins bound to DNA, and the complex is deposited on a glass substrate by extending the DNA to a linear form. The sample is then imaged optically to determine the precise location of the protein binding site. The method is demonstrated by detecting individual, Quantum dot tagged T7-RNA polymerase enzymes on the bacteriophage T7 genomic DNA and assessing the relative occupancy of the different promoters.

  4. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.

  5. Super-resolution Analysis of TCR-Dependent Signaling: Single-Molecule Localization Microscopy.

    Science.gov (United States)

    Barr, Valarie A; Yi, Jason; Samelson, Lawrence E

    2017-01-01

    Single-molecule localization microscopy (SMLM) comprises methods that produce super-resolution images from molecular locations of single molecules. These techniques mathematically determine the center of a diffraction-limited spot produced by a fluorescent molecule, which represents the most likely location of the molecule. Only a small cohort of well-separated molecules is visualized in a single image, and then many images are obtained from a single sample. The localizations from all the images are combined to produce a super-resolution picture of the sample. Here we describe the application of two methods, photoactivation localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM), to the study of signaling microclusters in T cells.

  6. Quantitative Techniques in PET-CT Imaging

    NARCIS (Netherlands)

    Basu, Sandip; Zaidi, Habib; Holm, Soren; Alavi, Abass

    2011-01-01

    The appearance of hybrid PET/CT scanners has made quantitative whole body scanning of radioactive tracers feasible. This paper deals with the novel concepts for assessing global organ function and disease activity based on combined functional (PET) and structural (CT or MR) imaging techniques, their

  7. Quantitative imaging features: extension of the oncology medical image database

    Science.gov (United States)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  8. Localization microscopy: mapping cellular dynamics with single molecules.

    Science.gov (United States)

    Nelson, A J; Hess, S T

    2014-04-01

    Resolution describes the smallest details within a sample that can be recovered by a microscope lens system. For optical microscopes detecting visible light, diffraction limits the resolution to ∼200-250 nm. In contrast, localization measures the position of an isolated object using its image. Single fluorescent molecules can be localized with an uncertainty of a few tens of nanometres, and in some cases less than one nanometre. Superresolution fluorescence localization microscopy (SRFLM) images and localizes fluorescent molecules in a sample. By controlling the visibility of the fluorescent molecules with light, it is possible to cause a sparse subset of the tags to fluoresce and be spatially separated from each other. A movie is acquired with a camera, capturing images of many sets of visible fluorescent tags over a period of time. The movie is then analysed by a computer whereby all of the single molecules are independently measured, and their positions are recorded. When the coordinates of a sufficient number of molecules are collected, an image can be rendered by plotting the coordinates of the localized molecules. The spatial resolution of these rendered images can be better than 20 nm, roughly an order of magnitude better than the diffraction limited resolution. The invention of SRFLM has led to an explosion of related techniques. Through the use of specialized optics, the fluorescent signal can be split into multiple detection channels. These channels can capture additional information such as colour (emission wavelength), orientation and three-dimensional position of the detected molecules. Measurement of the colour of the detected fluorescence can allow researchers to distinguish multiple types of fluorescent tags and to study the interaction between multiple molecules of interest. Three-dimensional imaging and determination of molecular orientations offer insight into structural organization of the sample. SRFLM is compatible with living samples and

  9. Single-molecule manipulation experiments to explore friction and adhesion

    Science.gov (United States)

    Pawlak, R.; Kawai, S.; Meier, T.; Glatzel, T.; Baratoff, A.; Meyer, E.

    2017-03-01

    Friction forces, which arise when two bodies that are in contact are moved with respect to one another, are ubiquitous phenomena. Although various measurement tools have been developed to study these phenomena at all length scales, such investigations are highly challenging when tackling the scale of single molecules in motion on a surface. This work reviews the recent advances in single-molecule manipulation experiments performed at low temperature with the aim of understanding the fundamental frictional response of single molecules. Following the advent of ‘nanotribology’ in the field based on the atomic force microscopy technique, we will show the technical requirements to direct those studies at the single-molecule level. We will also discuss the experimental prerequisites needed to obtain and interpret the phenomena, such as the implementation of single-molecule manipulation techniques, the processing of the experimental data or their comparison with appropriate numerical models. Finally, we will report examples of the controlled vertical and lateral manipulation of long polymeric chains, graphene nanoribbons or single porphyrin molecules that systematically reveal friction-like characteristics while sliding over atomically clean surfaces.

  10. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  11. Detailed analysis of complex single molecule FRET data with the software MASH

    Science.gov (United States)

    Hadzic, Mélodie C. A. S.; Kowerko, Danny; Börner, Richard; Zelger-Paulus, Susann; Sigel, Roland K. O.

    2016-04-01

    The processing and analysis of surface-immobilized single molecule FRET (Förster resonance energy transfer) data follows systematic steps (e.g. single molecule localization, clearance of different sources of noise, selection of the conformational and kinetic model, etc.) that require a solid knowledge in optics, photophysics, signal processing and statistics. The present proceeding aims at standardizing and facilitating procedures for single molecule detection by guiding the reader through an optimization protocol for a particular experimental data set. Relevant features were determined from single molecule movies (SMM) imaging Cy3- and Cy5-labeled Sc.ai5γ group II intron molecules synthetically recreated, to test the performances of four different detection algorithms. Up to 120 different parameterizations per method were routinely evaluated to finally establish an optimum detection procedure. The present protocol is adaptable to any movie displaying surface-immobilized molecules, and can be easily reproduced with our home-written software MASH (multifunctional analysis software for heterogeneous data) and script routines (both available in the download section of www.chem.uzh.ch/rna).

  12. Step detection in single-molecule real time trajectories embedded in correlated noise.

    Directory of Open Access Journals (Sweden)

    Srikesh G Arunajadai

    Full Text Available Single-molecule real time trajectories are embedded in high noise. To extract kinetic or dynamic information of the molecules from these trajectories often requires idealization of the data in steps and dwells. One major premise behind the existing single-molecule data analysis algorithms is the gaussian 'white' noise, which displays no correlation in time and whose amplitude is independent on data sampling frequency. This so-called 'white' noise is widely assumed but its validity has not been critically evaluated. We show that correlated noise exists in single-molecule real time trajectories collected from optical tweezers. The assumption of white noise during analysis of these data can lead to serious over- or underestimation of the number of steps depending on the algorithms employed. We present a statistical method that quantitatively evaluates the structure of the underlying noise, takes the noise structure into account, and identifies steps and dwells in a single-molecule trajectory. Unlike existing data analysis algorithms, this method uses Generalized Least Squares (GLS to detect steps and dwells. Under the GLS framework, the optimal number of steps is chosen using model selection criteria such as Bayesian Information Criterion (BIC. Comparison with existing step detection algorithms showed that this GLS method can detect step locations with highest accuracy in the presence of correlated noise. Because this method is automated, and directly works with high bandwidth data without pre-filtering or assumption of gaussian noise, it may be broadly useful for analysis of single-molecule real time trajectories.

  13. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states.

    Science.gov (United States)

    Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; DiAntonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J

    2014-08-18

    The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.

  14. Single-molecule mechanochemical sensing using DNA origami nanostructures.

    Science.gov (United States)

    Koirala, Deepak; Shrestha, Prakash; Emura, Tomoko; Hidaka, Kumi; Mandal, Shankar; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2014-07-28

    While single-molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single-molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7-tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet-derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single-molecule sensing with improved throughput.

  15. Single-Molecule Electronics: Chemical and Analytical Perspectives.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2015-01-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

  16. Probing the Conformations of Single Molecule via Photon Counting Statistics

    CERN Document Server

    Peng, Yonggang; Yang, Chuanlu; Zheng, Yujun

    2014-01-01

    We suggest an approach to detect the conformation of single molecule by using the photon counting statistics. The generalized Smoluchoswki equation is employed to describe the dynamical process of conformational change of single molecule. The resonant trajectories of the emission photon numbers $$ and the Mandel's $Q$ parameter, in the space of conformational coordinates $\\bm{\\mathcal{X}}$ and frequency $\\omega_L$ of external field ($\\bm{\\mathcal{X}}-\\omega_L$ space), can be used to rebuild the conformation of the single molecule. As an example, we consider Thioflavin T molecule. It demonstrates that the results of conformations extracted by employing the photon counting statistics is excellent agreement with the results of {\\it ab initio} computation.

  17. Single molecule detection using charge-coupled device array technology

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  18. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory

    CERN Document Server

    Malý, Pavel; van Grondelle, Rienk; Mančal, Tomáš

    2015-01-01

    We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlo...

  19. Metrology Standards for Quantitative Imaging Biomarkers.

    Science.gov (United States)

    Sullivan, Daniel C; Obuchowski, Nancy A; Kessler, Larry G; Raunig, David L; Gatsonis, Constantine; Huang, Erich P; Kondratovich, Marina; McShane, Lisa M; Reeves, Anthony P; Barboriak, Daniel P; Guimaraes, Alexander R; Wahl, Richard L

    2015-12-01

    Although investigators in the imaging community have been active in developing and evaluating quantitative imaging biomarkers (QIBs), the development and implementation of QIBs have been hampered by the inconsistent or incorrect use of terminology or methods for technical performance and statistical concepts. Technical performance is an assessment of how a test performs in reference objects or subjects under controlled conditions. In this article, some of the relevant statistical concepts are reviewed, methods that can be used for evaluating and comparing QIBs are described, and some of the technical performance issues related to imaging biomarkers are discussed. More consistent and correct use of terminology and study design principles will improve clinical research, advance regulatory science, and foster better care for patients who undergo imaging studies.

  20. Quantitative image analysis of celiac disease.

    Science.gov (United States)

    Ciaccio, Edward J; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H

    2015-03-07

    We outline the use of quantitative techniques that are currently used for analysis of celiac disease. Image processing techniques can be useful to statistically analyze the pixular data of endoscopic images that is acquired with standard or videocapsule endoscopy. It is shown how current techniques have evolved to become more useful for gastroenterologists who seek to understand celiac disease and to screen for it in suspected patients. New directions for focus in the development of methodology for diagnosis and treatment of this disease are suggested. It is evident that there are yet broad areas where there is potential to expand the use of quantitative techniques for improved analysis in suspected or known celiac disease patients.

  1. Quantitative image analysis of celiac disease

    Science.gov (United States)

    Ciaccio, Edward J; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H

    2015-01-01

    We outline the use of quantitative techniques that are currently used for analysis of celiac disease. Image processing techniques can be useful to statistically analyze the pixular data of endoscopic images that is acquired with standard or videocapsule endoscopy. It is shown how current techniques have evolved to become more useful for gastroenterologists who seek to understand celiac disease and to screen for it in suspected patients. New directions for focus in the development of methodology for diagnosis and treatment of this disease are suggested. It is evident that there are yet broad areas where there is potential to expand the use of quantitative techniques for improved analysis in suspected or known celiac disease patients. PMID:25759524

  2. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  3. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    Science.gov (United States)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  4. Effects of ionizing radiation on cell-matrix interactions at the single molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Florian

    2015-04-20

    Single molecule microscopy is a technology that allows for accurate assessment of the location and motion of single fluorescent molecules, even in the context of observations on living biological samples. In the present thesis, a flexible analysis tool for single molecule data as obtained in biological experiments was established. The development of a tool to faithfully detect and localize diffraction-limited images of individual fluorescent probes was necessary since data acquired under cell cultivation conditions that account for a three-dimensional microenvironment as experienced physiologically by cells in native tissue poses a challenge not faced ordinarily. After design, implementation, quantitative tests using simulations for comparisons and verification, and evaluation of the different steps of the analysis procedure including local background estimation, local noise estimation, de-noising approaches, detection, localization, and post-processing, analysis capabilities were utilized to evaluate the impact of x-ray irradiation on the plasma membrane architecture of U2OS human osteosarcoma cells as assessed by tracking individual fluorescent lipid-mimetic dye molecules diffusing in the outer membrane leaflet. It was shown that lateral diffusion in the plasma membrane is well described as two-phase anomalous subdiffusion and presence of 3D extracellular matrix leads to lower anomalous exponents of the fast fraction in comparison to monolayer cell culture. Interestingly, even high single-dose (25 Gy) treatments known to induce membrane-mediated apoptosis in tumor microvessel endothelium via membrane viscosity enhancing ceramide generation were not observed to alter membrane architecture in U2OS cells which can be related to amplifying, feedback-driven redox-signaling in the endothelium absent in U2OS. In summary, the sensitive and accurate framework developed in this thesis to assess minute changes of plasma membrane located dynamic processes did not uncover a

  5. Single-molecule chemistry and physics explored by low-temperature scanning probe microscopy.

    Science.gov (United States)

    Swart, Ingmar; Gross, Leo; Liljeroth, Peter

    2011-08-28

    It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level.

  6. Combining PALM and SOFI for quantitative imaging of focal adhesions in living cells

    Science.gov (United States)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Feletti, Lely; Lasser, Theo; Radenovic, Aleksandra

    2017-02-01

    Focal adhesions are complicated assemblies of hundreds of proteins that allow cells to sense their extracellular matrix and adhere to it. Although most focal adhesion proteins have been identified, their spatial organization in living cells remains challenging to observe. Photo-activated localization microscopy (PALM) is an interesting technique for this purpose, especially since it allows estimation of molecular parameters such as the number of fluorophores. However, focal adhesions are dynamic entities, requiring a temporal resolution below one minute, which is difficult to achieve with PALM. In order to address this problem, we merged PALM with super-resolution optical fluctuation imaging (SOFI) by applying both techniques to the same data. Since SOFI tolerates an overlap of single molecule images, it can improve the temporal resolution compared to PALM. Moreover, an adaptation called balanced SOFI (bSOFI) allows estimation of molecular parameters, such as the fluorophore density. We therefore performed simulations in order to assess PALM and SOFI for quantitative imaging of dynamic structures. We demonstrated the potential of our PALM-SOFI concept as a quantitative imaging framework by investigating moving focal adhesions in living cells.

  7. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes

    OpenAIRE

    Szczurek, Aleksander T; PRAKASH, KIRTI; Lee, Hyun-Keun; Żurek-Biesiada, Dominika J; Best, Gerrit; Hagmann, Martin; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2014-01-01

    Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA mino...

  8. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  9. Single-molecule detection in electrochemical nanogap devices

    NARCIS (Netherlands)

    Kang, Shuo

    2014-01-01

    This thesis presents results obtained during a research project aimed at realizing electrochemical single-molecule detection in water. By virtue of being inherently electrical in nature, electrochemical sensors are particularly well suited for integration with microelectronics compared to sensors ba

  10. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  11. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  12. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  13. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  14. Alternating-laser excitation : single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, Johannes; Craggs, Timothy D.; Cordes, Thorben

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Forster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  15. Photoemission of Mn6Cr single-molecule magnets

    Science.gov (United States)

    Heinzmann, U.; Merschjohann, F.; Helmstedt, A.; Gryzia, A.; Winter, A.; Steppeler, S.; Müller, N.; Brechling, A.; Sacher, M.; Richthofen, C.-G. Freiherr v.; Glaser, T.; Voss, S.; Fonin, M.; Rüdiger, U.

    2009-11-01

    We present the status of new experimental studies of X-ray absorption spectroscopy, magnetic circular dichroism in photoemission and spin-resolved photoelectron spectroscopy of Mn6Cr single-molecule magnet systems by use of circularly-polarized synchrotron radiation of the electron storage rings in Maxlab Lund, Sweden und BESSY, Berlin, Germany.

  16. Electron transfer dynamics of bistable single-molecule junctions

    DEFF Research Database (Denmark)

    Danilov, A.V; Kubatkin, S.; Kafanov, S. G.

    2006-01-01

    We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical ...

  17. Large negative differential conductance in single-molecule break junctions

    NARCIS (Netherlands)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulic, Diana; van der Zant, Herre S. J.

    2014-01-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks(1). To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport i

  18. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The g

  19. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  20. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  1. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  2. Time-Varying Triplet State Lifetimes of Single Molecules

    NARCIS (Netherlands)

    Veerman, J.A.; Garcia-Parajo, M.F.; Kuipers, L.; Hulst, van N.F.

    1999-01-01

    It is found that triplet state lifetimes and intersystem crossing yields of individual molecules embedded in a polymer host at room temperature are not constant in time. The range over which the triplet lifetime of a single molecule varies during long observation times shows a strong similarity with

  3. Assembling a single-molecule view on nucleosome dynamics

    NARCIS (Netherlands)

    Vlijm, R.

    2014-01-01

    The main focus of this thesis is a better understanding of the basic compaction mechanism of our DNA using multiple single-molecule techniques. The stretched-out length of our DNA is enormous compared with the dimensions of a cell. To make DNA fit within a cell it is systematically wrapped around pr

  4. Large negative differential conductance in single-molecule break junctions

    NARCIS (Netherlands)

    Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulic, Diana; van der Zant, Herre S. J.

    2014-01-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks(1). To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport i

  5. An RNA toolbox for single-molecule force spectroscopy studies

    NARCIS (Netherlands)

    Vilfan, I.D.; Kamping, W.; Van den Hout, M.; Candelli, A.; Hage, S.; Dekker, N.H.

    2007-01-01

    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNAenzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Su

  6. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.

    Science.gov (United States)

    Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A

    2009-12-15

    Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.

  7. Theoretical analysis of single molecule spectroscopy lineshapes of conjugated polymers

    Science.gov (United States)

    Devi, Murali

    Conjugated Polymers(CPs) exhibit a wide range of highly tunable optical properties. Quantitative and detailed understanding of the nature of excitons responsible for such a rich optical behavior has significant implications for better utilization of CPs for more efficient plastic solar cells and other novel optoelectronic devices. In general, samples of CPs are plagued with substantial inhomogeneous broadening due to various sources of disorder. Single molecule emission spectroscopy (SMES) offers a unique opportunity to investigate the energetics and dynamics of excitons and their interactions with phonon modes. The major subject of the present thesis is to analyze and understand room temperature SMES lineshapes for a particular CP, called poly(2,5-di-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (DEH-PPV). A minimal quantum mechanical model of a two-level system coupled to a Brownian oscillator bath is utilized. The main objective is to identify the set of model parameters best fitting a SMES lineshape for each of about 200 samples of DEH-PPV, from which new insight into the nature of exciton-bath coupling can be gained. This project also entails developing a reliable computational methodology for quantum mechanical modeling of spectral lineshapes in general. Well-known optimization techniques such as gradient descent, genetic algorithms, and heuristic searches have been tested, employing an L2 measure between theoretical and experimental lineshapes for guiding the optimization. However, all of these tend to result in theoretical lineshapes qualitatively different from experimental ones. This is attributed to the ruggedness of the parameter space and inadequateness of the L2 measure. On the other hand, when the dynamic reduction of the original parameter space to a 2-parameter space through feature searching and visualization of the search space paths using directed acyclic graphs(DAGs), the qualitative nature of the fitting improved significantly. For a more

  8. Treatment assessment of radiotherapy using MR functional quantitative imaging

    Institute of Scientific and Technical Information of China (English)

    Zheng; Chang; Chunhao; Wang

    2015-01-01

    Recent developments in magnetic resonance(MR) functional quantitative imaging have made it a potentially powerful tool to assess treatment response in radiation therapy. With its abilities to capture functional information on underlying tissue characteristics, MR functional quantitative imaging can be valuable in assessing treatment response and as such to optimize therapeutic outcome. Various MR quantitative imaging techniques, including diffusion weighted imaging, diffusion tensor imaging, MR spectroscopy and dynamic contrastenhanced imaging, have been investigated and found useful for assessment of radiotherapy. However, various aspects including data reproducibility, interpretation of biomarkers, image quality and data analysis impose challenges on applications of MR functional quantitative imaging in radiotherapy assessment. All of these challenging issues shall be addressed to help us understand whether MR functional quantitative imaging is truly beneficial and contributes to future development of radiotherapy. It is evident that individualized therapy is the future direction of patient care. MR functional quantitative imaging might serves as an indispensable tool towards this promising direction.

  9. Quantitative phase imaging through scattering media

    Science.gov (United States)

    Kollárová, Vera; Colláková, Jana; Dostál, Zbynek; Slabý, Tomas; Veselý, Pavel; Chmelík, Radim

    2015-03-01

    Coherence-controlled holographic microscope (CCHM) is an off-axis holographic system. It enables observation of a sample and its quantitative phase imaging with coherent as well as with incoherent illumination. The spatial and temporal coherence can be modified and thus also the quality and type of the image information. The coherent illumination provides numerical refocusing in wide depth range similarly to a classic coherent-light digital holographic microscopy (HM). Incoherent-light HM is characterized by a high quality, coherence-noise-free imaging with up to twice higher resolution compared to coherent illumination. Owing to an independent, free of sample reference arm of the CCHM the low spatial light coherence induces coherence-gating effect. This makes possible to observe specimen also through scattering media. We have described theoretically and simulated numerically imaging of a two dimensional object through a scattering layer by CCHM using the linear systems theory. We have investigated both strongly and weakly scattering media characterized by different amount of ballistic and diffuse light. The influence of a scattering layer on the quality of a phase signal is discussed for both types of the scattering media. A strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with model samples, as well as real biologic objects particularly then by time-lapse observations of live cells reactions to substances producing optically turbid emulsion.

  10. Theoretical and Experimental Exploration of the Structures and Electronic States of Single Molecules

    Institute of Scientific and Technical Information of China (English)

    HOU Jianguo; YANG Jinlong; WANG Haiqian; WANG Bing; ZHU Qingshi

    2007-01-01

    @@ The scanning tunnel microscopy/spectroscopy(STM/STS) is a powerful technique in probing the surface structures and the electronic states on a single molecular scale. Although a scanning tunneling microscope has a high spatial resolution in a topographic image, the image just reflects the spatial distribution of the electronic states, instead of the geometric structure of single molecules. Moreover, some additional factors,like the influence of the substrate and the STM tip, may also affect an STM image. So, it is still a challenge to determine the molecular conformation, molecular orientation, and intramolecular structure and electronic states on a single molecular scale.

  11. Detection of Single Molecules Illuminated by a Light-Emitting Diode

    CERN Document Server

    Gerhardt, Ilja; Lamas-Linares, Antia; Kurtsiefer, Christian

    2011-01-01

    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes.

  12. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy

    Science.gov (United States)

    Skaug, Michael J.; Faller, Roland; Longo, Marjorie L.

    2011-06-01

    Anomalous diffusion has been observed abundantly in the plasma membrane of biological cells, but the underlying mechanisms are still unclear. In general, it has not been possible to directly image the obstacles to diffusion in membranes, which are thought to be skeleton bound proteins, protein aggregates, and lipid domains, so the dynamics of diffusing particles is used to deduce the obstacle characteristics. We present a supported lipid bilayer system in which we characterized the anomalous diffusion of lipid molecules using single molecule tracking, while at the same time imaging the obstacles to diffusion with atomic force microscopy. To explain our experimental results, we performed lattice Monte Carlo simulations of tracer diffusion in the presence of the experimentally determined obstacle configurations. We correlate the observed anomalous diffusion with obstacle area fraction, fractal dimension, and correlation length. To accurately measure an anomalous diffusion exponent, we derived an expression to account for the time-averaging inherent to all single molecule tracking experiments. We show that the length of the single molecule trajectories is critical to the determination of the anomalous diffusion exponent. We further discuss our results in the context of confinement models and the generating stochastic process.

  13. Real-time single-molecule imaging of quantum interference

    CERN Document Server

    Juffmann, Thomas; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus

    2014-01-01

    The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and it differs from classical wave-physics in that it can even be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here we show how a combination of nanofabrication and nanoimaging methods allows us to record the full two-dimensional build-up of quantum diffraction patterns in real-time for phthalocyanine molecules PcH2 and their tailored derivatives F24PcH2 with a mass of 1298 amu. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence and the gratings were machined in 10 nm thick silicon nitride membranes to reduce the effect ...

  14. Single-Molecule Imaging of RNA Splicing in Live Cells.

    Science.gov (United States)

    Rino, José; Martin, Robert M; Carvalho, Célia; de Jesus, Ana C; Carmo-Fonseca, Maria

    2015-01-01

    Expression of genetic information in eukaryotes involves a series of interconnected processes that ultimately determine the quality and amount of proteins in the cell. Many individual steps in gene expression are kinetically coupled, but tools are lacking to determine how temporal relationships between chemical reactions contribute to the output of the final gene product. Here, we describe a strategy that permits direct measurements of intron dynamics in single pre-mRNA molecules in live cells. This approach reveals that splicing can occur much faster than previously proposed and opens new avenues for studying how kinetic mechanisms impact on RNA biogenesis.

  15. Electronic transport in benzodifuran single-molecule transistors

    Science.gov (United States)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule

  16. Ensemble and single-molecule studies on fluorescence quenching in transition metal bipyridine-complexes.

    Directory of Open Access Journals (Sweden)

    Dominik Brox

    Full Text Available Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer.

  17. Quantitative color analysis for capillaroscopy image segmentation.

    Science.gov (United States)

    Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Amorosi, Beatrice; D'Alessio, Tommaso; Palma, Claudio

    2012-06-01

    This communication introduces a novel approach for quantitatively evaluating the role of color space decomposition in digital nailfold capillaroscopy analysis. It is clinically recognized that any alterations of the capillary pattern, at the periungual skin region, are directly related to dermatologic and rheumatic diseases. The proposed algorithm for the segmentation of digital capillaroscopy images is optimized with respect to the choice of the color space and the contrast variation. Since the color space is a critical factor for segmenting low-contrast images, an exhaustive comparison between different color channels is conducted and a novel color channel combination is presented. Results from images of 15 healthy subjects are compared with annotated data, i.e. selected images approved by clinicians. By comparison, a set of figures of merit, which highlights the algorithm capability to correctly segment capillaries, their shape and their number, is extracted. Experimental tests depict that the optimized procedure for capillaries segmentation, based on a novel color channel combination, presents values of average accuracy higher than 0.8, and extracts capillaries whose shape and granularity are acceptable. The obtained results are particularly encouraging for future developments on the classification of capillary patterns with respect to dermatologic and rheumatic diseases.

  18. Single Molecule Junctions: Probing Contact Chemistry and Fundamental Circuit Laws

    Energy Technology Data Exchange (ETDEWEB)

    Hybertsen M. S.

    2013-04-11

    By exploiting selective link chemistry, formation of single molecule junctions with reproducible conductance has become established. Systematic studies reveal the structure-conductance relationships for diverse molecules. I will draw on experiments from my collaborators at Columbia University, atomic-scale calculations and theory to describe progress in two areas. First, I will describe a novel route to form single molecule junctions, based on SnMe3 terminated molecules, in which gold directly bonds to carbon in the molecule backbone resulting in near ideal contact resistance [1]. Second, comparison of the conductance of junctions formed with molecular species containing either one backbone or two backbones in parallel allows demonstration of the role of quantum interference in the conductance superposition law at the molecular scale [2].

  19. Coherent spectroscopy in the single molecule limit (Conference Presentation)

    Science.gov (United States)

    Potma, Eric O.; Crampton, Kevin; Fast, Alex; Alfonso García, Alba; Apkarian, Vartkess A.

    2016-10-01

    Surface enhanced Raman scattering (SERS) is a popular technique for detecting and analyzing molecules at very low concentrations. The sensitivity of SERS is high enough to detect single molecules. It has proven difficult, however, to perform similar measurements in the so-called nonlinear optical regime, a regime in which the molecule is responding to multiple light pulses. Nonetheless, recent experiments indicate that after careful optimization, it is possible to generate signals derived from nonlinear analogs of SERS. Such measurements make it possible to view molecular vibrations in real time, which amounts to the femto- to pico-second range. In this contribution, we discuss in detail under which conditions detectable surface-enhanced coherent Raman signals can be expected, provide experimental evidence of coherent Raman scattering of single molecules, and highlight the unique information that can be attained from such measurements.

  20. Directly measuring single molecule heterogeneity using force spectroscopy

    CERN Document Server

    Hinczewski, Michael; Thirumalai, D

    2016-01-01

    One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The structural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with random interconversions between states occurring only at macroscopic timescales, fractions of a second or longer. Though we now have proof of functional heterogeneity in a handful of systems---enzymes, motors, adhesion complexes---identifying and measuring it remains a formidable challenge. Here we show that evidence of this phenomenon is more widespread than previously known, encoded in data collected from some of the most well-established single molecule techniques: AFM or optical tweezer pulling experiments. We present a theoretical procedure for analyzing distributions of rupture/unfolding forces recorded at different pulling speeds. This re...

  1. Single molecule insights on conformational selection and induced fit mechanism

    DEFF Research Database (Denmark)

    Hatzakis, Nikos

    2014-01-01

    Biomolecular interactions regulate a plethora of vital cellular processes, including signal transduction, metabolism, catalysis and gene regulation. Regulation is encoded in the molecular properties of the constituent proteins; distinct conformations correspond to different functional outcomes...... of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance...... and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition....

  2. Tetraanionic biphenyl lanthanide complexes as single-molecule magnets.

    Science.gov (United States)

    Huang, Wenliang; Le Roy, Jennifer J; Khan, Saeed I; Ungur, Liviu; Murugesu, Muralee; Diaconescu, Paula L

    2015-03-02

    Inverse sandwich biphenyl complexes [(NN(TBS))Ln]2(μ-biphenyl)[K(solvent)]2 [NN(TBS) = 1,1'-fc(NSi(t)BuMe2)2; Ln = Gd, Dy, Er; solvent = Et2O, toluene; 18-crown-6], containing a quadruply reduced biphenyl ligand, were synthesized and their magnetic properties measured. One of the dysprosium biphenyl complexes was found to exhibit antiferromagnetic coupling and single-molecule-magnet behavior with Ueff of 34 K under zero applied field. The solvent coordinated to potassium affected drastically the nature of the magnetic interaction, with the other dysprosium complex showing ferromagnetic coupling. Ab initio calculations were performed to understand the nature of magnetic coupling between the two lanthanide ions bridged by the anionic arene ligand and the origin of single-molecule-magnet behavior.

  3. Single Molecule Detection in Solution: Methods and Applications

    Science.gov (United States)

    Zander, Christoph; Enderlein, Jorg; Keller, Richard A.

    2002-07-01

    The detection of single molecules opens up new horizons in analytical chemistry, biology and medicine. This discipline, which belongs to the expanding field of nanoscience, has been rapidly emerging over the last ten years. This handbook provides a thorough overview of the field. It begins with basics of single molecule detection in solution, describes methods and devices (fluorescense correlation spectroscopy, surface enhanced Raman scattering, sensors, especially dyes, screening techniques, especially confocal laser scanning microscopy). In the second part, various applications in life sciences and medicine provide the latest research results. This modern handbook is a highly accessible reference for a broad community from advanced researchers, specialists and company professionals in physics, spectroscopy, biotechnology, analytical chemistry, and medicine. Written by leading authorities in the field, it is timely and fills a gap - up to now there exists no handbook concerning this theme.

  4. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis

    Science.gov (United States)

    Hla, Saw-Wai; Rieder, Karl-Heinz

    2003-10-01

    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  5. Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    Science.gov (United States)

    2016-01-01

    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric α-hemolysin pore (αHL) has been engineered to form a nanoreactor to study covalent chemistry at the single-molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different αHL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic αHL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single-molecule level. PMID:27537396

  6. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    CERN Document Server

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  7. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  8. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    OpenAIRE

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling le...

  9. Density Functional Theory with Dissipation: Transport through Single Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kieron Burke

    2012-04-30

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  10. Quantum Chemical Characterization of Single Molecule Magnets Based on Uranium.

    Science.gov (United States)

    Spivak, Mariano; Vogiatzis, Konstantinos D; Cramer, Christopher J; Graaf, Coen de; Gagliardi, Laura

    2017-03-02

    Multiconfigurational electronic structure theory calculations including spin-orbit coupling effects were performed on four uranium-based single-molecule-magnets. Several quartet and doublet states were computed and the energy gaps between spin-orbit states were then used to determine magnetic susceptibility curves. Trends in experimental magnetic susceptibility curves were well reproduced by the calculations, and key factors affecting performance were identified.

  11. Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles

    Science.gov (United States)

    Takakura, T.; Yanagi, I.; Goto, Y.; Ishige, Y.; Kohara, Y.

    2016-03-01

    We developed a resistive-pulse sensor with a solid-state pore and measured the latex agglutination of submicron particles induced by antigen-antibody interaction for single-molecule detection of proteins. We fabricated the pore based on numerical simulation to clearly distinguish between monomer and dimer latex particles. By measuring single dimers agglutinated in the single-molecule regime, we detected single human alpha-fetoprotein molecules. Adjusting the initial particle concentration improves the limit of detection (LOD) to 95 fmol/l. We established a theoretical model of the LOD by combining the reaction kinetics and the counting statistics to explain the effect of initial particle concentration on the LOD. The theoretical model shows how to improve the LOD quantitatively. The single-molecule detection studied here indicates the feasibility of implementing a highly sensitive immunoassay by a simple measurement method using resistive-pulse sensing.

  12. Predicting single-molecule conductance through machine learning

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-10-01

    We present a robust machine learning model that is trained on the experimentally determined electrical conductance values of approximately 120 single-molecule junctions used in scanning tunnelling microscope molecular break junction (STM-MBJ) experiments. Quantum mechanical, chemical, and topological descriptors are used to correlate each molecular structure with a conductance value, and the resulting machine-learning model can predict the corresponding value of conductance with correlation coefficients of r 2 = 0.95 for the training set and r 2 = 0.78 for a blind testing set. While neglecting entirely the effects of the metal contacts, this work demonstrates that single molecule conductance can be qualitatively correlated with a number of molecular descriptors through a suitably trained machine learning model. The dominant features in the machine learning model include those based on the electronic wavefunction, the geometry/topology of the molecule as well as the surface chemistry of the molecule. This model can be used to identify promising molecular structures for use in single-molecule electronic circuits and can guide synthesis and experiments in the future.

  13. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

  14. Towards a quantitative OCT image analysis.

    Directory of Open Access Journals (Sweden)

    Marina Garcia Garrido

    Full Text Available Optical coherence tomography (OCT is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study.Spectral-Domain Optical Coherence Tomography (OCT, confocal Scanning-Laser Ophthalmoscopy (SLO, and Fluorescein Angiography (FA were performed in mice (Mus musculus, gerbils (Gerbillus perpadillus, and cynomolgus monkeys (Macaca fascicularis using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer. Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/.Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP, the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated.OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions. Our results highlight the

  15. Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis

    Science.gov (United States)

    Dhakal, Soma; Adendorff, Matthew R.; Liu, Minghui; Yan, Hao; Bathe, Mark; Walter, Nils G.

    2016-01-01

    The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational heterogeneity. Upon rational redesign of the Holliday junctions located at their hinge and arms, we found that the DNA tweezers could be more completely and uniformly closed. A novel single molecule enzyme assay was developed to demonstrate that our design improvements yield significant, independent enhancements in the fraction of active enzyme nanoreactors and their individual substrate turnover frequencies. The sequence-level design strategies explored here may aid more broadly in improving the performance of DNA-based nanodevices including biological and chemical sensors.The control of enzymatic reactions using nanoscale DNA devices offers a powerful application of DNA nanotechnology uniquely derived from actuation. However, previous characterization of enzymatic reaction rates using bulk biochemical assays reported suboptimal function of DNA devices such as tweezers. To gain mechanistic insight into this deficiency and to identify design rules to improve their function, here we exploit the synergy of single molecule imaging and computational modeling to characterize the three-dimensional structures and catalytic functions of DNA tweezer-actuated nanoreactors. Our analysis revealed two important deficiencies - incomplete closure upon actuation and conformational

  16. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    Science.gov (United States)

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  17. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  18. Quantitative imaging of coronary blood flow

    Directory of Open Access Journals (Sweden)

    Adam M. Alessio

    2010-04-01

    Full Text Available Adam M. Alessio received his PhD in Electrical Engineering from the University of Notre Dame in 2003. During his graduate studies he developed tomographic reconstruction methods for correlated data and helped construct a high-resolution PET system. He is currently a Research Assistant Professor in Radiology at the University of Washington. His research interests focus on improved data processing and reconstruction algorithms for PET/CT systems with an emphasis on quantitative imaging. Erik Butterworth recieved the BA degree in Mathematics from the University of Chicago in 1977. Between 1977 and 1987 he worked as a computer programmer/analyst for several small commercial software firms. Since 1988, he has worked as a software engineer on various research projects at the University of Washington. Between 1988 and 1993 he developed a real-time data aquisition for the analysis of estuarine sediment transport in the department of Geophysics. Between 1988 and 2002 he developed I4, a system for the display and analysis of cardic PET images in the department of Cardiology. Since 1993 he has worked on physiological simulation systems (XSIM from 1993 to 1999, JSim since 1999 at the National Simulation Resource Facility in Cirulatory Mass Transport and Exchange, in the Department of Bioengineering. His research interests include simulation systems and medical imaging. James H. Caldwell, MD, University of Missouri-Columbia 1970, is Professor of Medicine (Cardiology and Radiology and Adjunct Professor of Bioengineering at the University of Washington School of Medicine and Acting Head, Division of Cardiology and Director of Nuclear Cardiology for the University of Washington Hospitals, Seattle WA, USA. James B. Bassingthwaighte, MD, Toronto 1955, PhD Mayo Grad Sch Med 1964, was Professor of Physiology and of Medicine at Mayo Clinic until 1975 when he moved to the University of Washington to chair Bioengineering. He is Professor of Bioengineering and

  19. Quantitative bioluminescence imaging of mouse tumor models.

    Science.gov (United States)

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-01-05

    Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.

  20. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  1. Single molecule energetics of F1-ATPase motor.

    Science.gov (United States)

    Muneyuki, Eiro; Watanabe-Nakayama, Takahiro; Suzuki, Tetsuya; Yoshida, Masasuke; Nishizaka, Takayuki; Noji, Hiroyuki

    2007-03-01

    Motor proteins are essential in life processes because they convert the free energy of ATP hydrolysis to mechanical work. However, the fundamental question on how they work when different amounts of free energy are released after ATP hydrolysis remains unanswered. To answer this question, it is essential to clarify how the stepping motion of a motor protein reflects the concentrations of ATP, ADP, and P(i) in its individual actions at a single molecule level. The F(1) portion of ATP synthase, also called F(1)-ATPase, is a rotary molecular motor in which the central gamma-subunit rotates against the alpha(3)beta(3) cylinder. The motor exhibits clear step motion at low ATP concentrations. The rotary action of this motor is processive and generates a high torque. These features are ideal for exploring the relationship between free energy input and mechanical work output, but there is a serious problem in that this motor is severely inhibited by ADP. In this study, we overcame this problem of ADP inhibition by introducing several mutations while retaining high enzymatic activity. Using a probe of attached beads, stepping rotation against viscous load was examined at a wide range of free energy values by changing the ADP concentration. The results showed that the apparent work of each individual step motion was not affected by the free energy of ATP hydrolysis, but the frequency of each individual step motion depended on the free energy. This is the first study that examined the stepping motion of a molecular motor at a single molecule level with simultaneous systematic control of DeltaG(ATP). The results imply that microscopically defined work at a single molecule level cannot be directly compared with macroscopically defined free energy input.

  2. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  3. Electronic Single Molecule Measurements with the Scanning Tunneling Microscope

    Science.gov (United States)

    Im, Jong One

    Richard Feynman said "There's plenty of room at the bottom". This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with

  4. Single molecule studies of RNA polymerase II transcription in vitro.

    Science.gov (United States)

    Horn, Abigail E; Goodrich, James A; Kugel, Jennifer F

    2014-01-01

    Eukaryotic mRNA transcription by RNA polymerase II (RNAP II) is the first step in gene expression and a key determinant of cellular regulation. Elucidating the mechanism by which RNAP II synthesizes RNA is therefore vital to determining how genes are controlled under diverse biological conditions. Significant advances in understanding RNAP II transcription have been achieved using classical biochemical and structural techniques; however, aspects of the transcription mechanism cannot be assessed using these approaches. The application of single-molecule techniques to study RNAP II transcription has provided new insight only obtainable by studying molecules in this complex system one at a time.

  5. Single Molecule Study of Photoconversion and Spectral Heterogeneities of Fluorophores

    DEFF Research Database (Denmark)

    Liao, Zhiyu

    and mass spectrometry. Upon illumination, A3-TOTA+ degrades in a step-wise manner by de-ethylation on the periphery. The unusual red-shifted fluorescence from the photoproducts is not as intense as the original emission, but the photostability is improved. The acquired knowledge about photoconversion can...... stimulate new pathways in engineering and designing photoconvertible fluorophores, based on the reaction with oxygen or other chemicals. Besides, this results show that dyes that convert into other emissive species could give problems when interpreting single molecule FRET systems. The revealed mechanism...

  6. Electrochemical proton relay at the single-molecule level

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Medvedev, I. G.; Ulstrup, Jens

    2009-01-01

    A scheme for the experimental study of single-proton transfer events, based on proton-coupled two-electron transfer between a proton donor and a proton acceptor molecule confined in the tunneling gap between two metal leads in electrolyte solution is suggested. Expressions for the electric current...... are derived and compared with formalism for electron tunneling through redox molecules. The scheme allows studying the kinetics of proton and hydrogen atom transfer as well as kinetic isotope effects at the single-molecule level under electrochemical potential control....

  7. Theoretical investigation on single-molecule chiroptical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, M. [Tokyo Institute of Technology, School and Graduate School of Bioscience and Biotechnology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa (Japan); Yokojima, S. [Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachiouji-shi, Tokyo (Japan); Fukaminato, T. [Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020 (Japan); Ogata, K.; Nakamura, S. [Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-12-10

    Some experimental results of chiroptical response of single molecule have already reported. In those experiments, dissymmetry parameter, g was used as an indicator of the relative circular dichroism intensity. The parameter for individual molecules was measured. For the purpose of giving an interpretation or explanation to the experimental result, the dissymmetry parameter is formulated on the basis of Fermi’s golden rule. Subsequently, the value of individual molecules is evaluated as a function of the direction of light propagation to the orientationary fixed molecules. The ground and excited wavefunction of electrons in the molecule and transition moments needed are culculated using the density functional theory.

  8. Hybrid photodetector for single-molecule spectroscopy and microscopy.

    Science.gov (United States)

    Michalet, X; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon

    2008-02-15

    We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications.

  9. Single Molecule Studies on Dynamics in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Daniela Täuber

    2013-09-01

    Full Text Available Single molecule (SM methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC. Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.

  10. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule......Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...

  11. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips....... Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells....

  12. A new multiplexing single molecule technique for measuring restriction enzyme activity

    Science.gov (United States)

    Harbottle, Allison; Cavanaugh, Jillian; Gordon, Wendy; Loparo, Joseph; Price, Allen

    2012-02-01

    We present a new multiplexing single molecule method for observing the cleavage of DNAs by restriction enzymes. DNAs are attached to a surface at one end using a biotin-streptavidin link and to a micro bead at the other end via a digoxigenin-antidigoxigenin link. The DNAs are stretched by applying a flow. After introduction of the restriction enzyme, the exact time of cleavage of individual DNAs is recorded with video microscopy. We can image hundreds to thousands of DNAs in a single experiment. We are using our technique to search for the signature of facilitated diffusion in the measured rate dependence on ionic strength.

  13. Single-molecule enzymology à la Michaelis-Menten.

    Science.gov (United States)

    Grima, Ramon; Walter, Nils G; Schnell, Santiago

    2014-01-01

    Over the past 100 years, deterministic rate equations have been successfully used to infer enzyme-catalysed reaction mechanisms and to estimate rate constants from reaction kinetics experiments conducted in vitro. In recent years, sophisticated experimental techniques have been developed that begin to allow the measurement of enzyme-catalysed and other biopolymer-mediated reactions inside single cells at the single-molecule level. Time-course data obtained using these methods are considerably noisy because molecule numbers within cells are typically quite small. As a consequence, the interpretation and analysis of single-cell data requires stochastic methods, rather than deterministic rate equations. Here, we concisely review both experimental and theoretical techniques that enable single-molecule analysis, with particular emphasis on the major developments in the field of theoretical stochastic enzyme kinetics, from its inception in the mid-20th century to its modern-day status. We discuss the differences between stochastic and deterministic rate equation models, how these depend on enzyme molecule numbers and substrate inflow into the reaction compartment, and how estimation of rate constants from single-cell data is possible using recently developed stochastic approaches. © 2013 FEBS.

  14. From single molecules to life: microscopy at the nanoscale.

    Science.gov (United States)

    Turkowyd, Bartosz; Virant, David; Endesfelder, Ulrike

    2016-10-01

    Super-resolution microscopy is the term commonly given to fluorescence microscopy techniques with resolutions that are not limited by the diffraction of light. Since their conception a little over a decade ago, these techniques have quickly become the method of choice for many biologists studying structures and processes of single cells at the nanoscale. In this review, we present the three main approaches used to tackle the diffraction barrier of ∼200 nm: stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM). We first present a theoretical overview of the techniques and underlying physics, followed by a practical guide to all of the facets involved in designing a super-resolution experiment, including an approachable explanation of the photochemistry involved, labeling methods available, and sample preparation procedures. Finally, we highlight some of the most exciting recent applications of and developments in these techniques, and discuss the outlook for this field. Graphical Abstract Super-resolution microscopy techniques. Working principles of the common approaches stimulated-emission depletion (STED) microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM).

  15. Surface passivation for single-molecule protein studies.

    Science.gov (United States)

    Chandradoss, Stanley D; Haagsma, Anna C; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-04-24

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation.

  16. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  17. Single molecule study of a processivity clamp sliding on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  18. Large negative differential conductance in single-molecule break junctions.

    Science.gov (United States)

    Perrin, Mickael L; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S; Gil, Jose A Celis; Valkenier, Hennie; Hummelen, Jan C; Renaud, Nicolas; Grozema, Ferdinand C; Thijssen, Joseph M; Dulić, Diana; van der Zant, Herre S J

    2014-10-01

    Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks. To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport is mainly determined by the alignment of the molecular orbital levels with respect to the Fermi energies of the electrodes and the electronic coupling with those electrodes. Particularly appealing exceptions include molecules in which two moieties are twisted with respect to each other and molecules in which quantum interference effects are possible. Here, we report the experimental observation of pronounced negative differential conductance in the current-voltage characteristics of a single molecule in break junctions. The molecule of interest consists of two conjugated arms, connected by a non-conjugated segment, resulting in two coupled sites. A voltage applied across the molecule pulls the energy of the sites apart, suppressing resonant transport through the molecule and causing the current to decrease. A generic theoretical model based on a two-site molecular orbital structure captures the experimental findings well, as confirmed by density functional theory with non-equilibrium Green's functions calculations that include the effect of the bias. Our results point towards a conductance mechanism mediated by the intrinsic molecular orbitals alignment of the molecule.

  19. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction

    Science.gov (United States)

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J.; Hirjibehedin, Cyrus F.

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.

  20. Probing Protein Channel Dynamics At The Single Molecule Level.

    Science.gov (United States)

    Lee, M. Ann; Dunn, Robert C.

    1997-03-01

    It would be difficult to overstate the importance played by protein ion channels in cellular function. These macromolecular pores allow the passage of ions across the cellular membrane and play indispensable roles in all aspects of neurophysiology. While the patch-clamp technique continues to provide elegant descriptions of the kinetic processes involved in ion channel gating, the associated conformational changes remain a mystery. We are using the spectroscopic capabilities and single molecule fluorescence sensitivity of near-field scanning optical microscopy (NSOM) to probe these dynamics at the single channel level. Using a newly developed cantilevered NSOM probe capable of probing soft biological samples with single molecule fluorescence sensitivity, we have begun mapping the location of single NMDA receptors in intact rat cortical neurons with <100 nm spatial resolution. We will also present recent results exploring the conformational changes accompanying activation of nuclear pore channels located in the nuclear membrane of Xenopus oocytes. Our recent NSOM and AFM measurements on single nuclear pore complexes reveal large conformational changes taking place upon activation, providing rich, new molecular level details of channel function.

  1. Quantitative phase imaging using hard x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.A.; Paganin, D.; Barnea, Z. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cookson, D. F. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Gureyev, T.E. [Melbourne Univ., Parkville, VIC (Australia). School of Physics]|[CSIRO, Clayton, VIC (Australia). Div. of Forestry and Forest Products

    1997-06-01

    The quantitative imaging of a phase object using 16 keV x-rays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. It is found that the phase image is in quantitative agreement with independent measurements of the object. 13 refs., 5 figs.

  2. Methodology for Quantitative Characterization of Fluorophore Photoswitching to Predict Superresolution Microscopy Image Quality

    Science.gov (United States)

    Bittel, Amy M.; Nickerson, Andrew; Saldivar, Isaac S.; Dolman, Nick J.; Nan, Xiaolin; Gibbs, Summer L.

    2016-07-01

    Single-molecule localization microscopy (SMLM) image quality and resolution strongly depend on the photoswitching properties of fluorophores used for sample labeling. Development of fluorophores with optimized photoswitching will considerably improve SMLM spatial and spectral resolution. Currently, evaluating fluorophore photoswitching requires protein-conjugation before assessment mandating specific fluorophore functionality, which is a major hurdle for systematic characterization. Herein, we validated polyvinyl alcohol (PVA) as a single-molecule environment to efficiently quantify the photoswitching properties of fluorophores and identified photoswitching properties predictive of quality SMLM images. We demonstrated that the same fluorophore photoswitching properties measured in PVA films and using antibody adsorption, a protein-conjugation environment analogous to labeled cells, were significantly correlated to microtubule width and continuity, surrogate measures of SMLM image quality. Defining PVA as a fluorophore photoswitching screening platform will facilitate SMLM fluorophore development and optimal image buffer assessment through facile and accurate photoswitching property characterization, which translates to SMLM fluorophore imaging performance.

  3. Single molecule Michaelis-Menten equation beyond quasistatic disorder.

    Science.gov (United States)

    Xue, Xiaochuan; Liu, Fei; Ou-Yang, Zhong-Can

    2006-09-01

    The classic Michaelis-Menten equation describes the catalytic activities for ensembles of enzyme molecules very well. But recent single-molecule experiments showed that the waiting time distribution and other properties of single enzyme molecules were not consistent with the prediction based on the ensemble viewpoint. They have contributed to the slow conformational changes of a single enzyme in the catalytic processes. In this work, we study the general dynamics of single enzymes in the presence of dynamic disorder. We find that, within the time separation regimes, i.e., the slow reaction and nondiffusion limits, the Michaelis-Menten equation holds exactly. In particular, by employing the decoupling approximation we demonstrate analytically that the classic Michaelis-Menten equation is still an excellent approximation in the presence of general dynamic disorder.

  4. Non-linear irreversible thermodynamics of single-molecule experiments

    CERN Document Server

    Santamaria-Holek, I; Hidalgo-Soria, M; Perez-Madrid, A

    2015-01-01

    Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a mechanical nature is presented. Extending Onsager's formalism to the non-linear case of systems under non-equilibrium external constraints, we are able to calculate the entropy production and the general non-linear kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols obtaining critical oscillations between di?erent con?gurational states when forced by external means to remain in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy produced during these hopping events, and show how resonant phenomena in stretching experiments of single RNA macromolecules may arise. We also calculate the hopping rates using Kramer's approach obtaining a good comparison with experiments.

  5. Linear trinuclear cobalt(II) single molecule magnet.

    Science.gov (United States)

    Zhang, Yuan-Zhu; Brown, Andrew J; Meng, Yin-Shan; Sun, Hao-Ling; Gao, Song

    2015-02-14

    The introduction of NaBPh(4) into a methanolic solution of CoCl(2)·(6)H(2)O and 2-[(pyridine-2-ylimine)-methyl]phenol (Hpymp) afforded {[Co(II)(3)(pymp)(4)(MeOH)(2)][BPh(4)](2)}·(2)MeOH (1) with a centro-symmetrically linear trinuclear structure. Magnetic analysis of 1 exhibited significant intracluster ferromagnetic exchange (2.4 cm(-1)) and slow relaxation of magnetization in both zero and non-zero static fields below 5 K, giving the first [Co(II)(3)] single molecule magnet with an effective energy barrier of 17.2(3) cm(-1) under a 500 Oe dc field.

  6. A Single-Molecule Hershey-Chase Experiment

    CERN Document Server

    Van Valen, David; Chen, Yi-Ju; Tuson, Hannah; Wiggins, Paul; Phillips, Rob

    2012-01-01

    Ever since Hershey and Chase used phages to establish DNA as the carrier of genetic information in 1952, the precise mechanisms of phage DNA translocation have been a mystery. While bulk measurements have set a time scale for in vivo DNA translocation during bacteriophage infection, measurements of DNA ejection by single bacteriophages have only been made in vitro. Here, we present direct visualization of single bacteriophages infecting individual Escherichia coli cells. For bacteriophage lambda, we establish a mean ejection time of roughly 5 minutes with significant cell-to-cell variability, including pausing events. In contrast, corresponding in vitro single-molecule ejections take only 10 seconds to reach completion and do not exhibit significant variability. Our data reveal that the velocity of ejection for two different genome lengths collapses onto a single curve. This suggests that in vivo ejections are controlled by the amount of DNA ejected, in contrast with in vitro DNA ejections, which are governed...

  7. Few-photon coherent nonlinear optics with a single molecule

    CERN Document Server

    Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid

    2015-01-01

    The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...

  8. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  9. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...

  10. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  11. Electronic transport in benzodifuran single-molecule transistors.

    Science.gov (United States)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-05-07

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.

  12. Single-molecule optomechanics in “picocavities”

    Science.gov (United States)

    Benz, Felix; Schmidt, Mikolaj K.; Dreismann, Alexander; Chikkaraddy, Rohit; Zhang, Yao; Demetriadou, Angela; Carnegie, Cloudy; Ohadi, Hamid; de Nijs, Bart; Esteban, Ruben; Aizpurua, Javier; Baumberg, Jeremy J.

    2016-11-01

    Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer (“picocavities”), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106 enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.

  13. Tracking Electrons in Biological Macromolecules: From Ensemble to Single Molecule

    Directory of Open Access Journals (Sweden)

    Leandro C. Tabares

    2014-08-01

    Full Text Available Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/protons to create a potential gradient that is used to energize redox reactions. There has been a consistent struggle by researchers to estimate the electron transfer rate constants in physiologically relevant processes. This review provides a brief background on the measurements of electron transfer rates in biological molecules, in particular Cu-containing enzymes, and highlights the recent advances in monitoring these electron transfer events at the single molecule level or better to say, at the individual event level.

  14. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  15. Exploring single-molecule dynamics with fluorescence nanoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ringemann, Christian; Harke, Ben; Von Middendorff, Claas; Medda, Rebecca; Leutenegger, Marcel; Schoenle, Andreas; W Hell, Stefan; Eggeling, Christian [Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen (Germany); Honigmann, Alf; Wagner, Richard [Biophysik, University Osnabrueck, FB Biologie/Chemie, Osnabrueck (Germany)], E-mail: ceggeli@gwdg.de

    2009-10-15

    The study of molecular dynamics at the single-molecule level with fluorescence correlation spectroscopy (FCS) and far-field optics has contributed greatly to the functional understanding of complex systems. Unfortunately, such studies are restricted to length scales of >200 nm because diffraction does not allow further reduction of the measurement volume. This sets an upper limit on the applicable concentration of fluorescently labeled molecules and even more importantly, averages out details of nanoscale dynamics. By combining FCS and fluorescence intensity distribution analysis (FIDA) with sub-diffraction-resolution stimulated emission depletion (STED) nanoscopy, we remove this restriction and obtain open measurement volumes of nanoscale dimensions which are tunable in size. As a consequence, single-molecule studies can now be extended to nanoscale dynamics and may be applied to much larger, often endogenous concentrations. In solution, low-brightness signal from axial out-of-focus volume shells was taken into account by using both FCS and FIDA in conjunction to analyze the data. In two-dimensional systems, such as lipid membranes, the background is greatly reduced and measurements feature excellent signal-to-noise ratios. Measurement foci of down to 30 nm in diameter directly reveal anomalous diffusion of lipids in the plasma membrane of living cells and allow for the determination of on/off rates of the binding of lipids to other membrane constituents. Such important insight into the prominent biological question of lipid membrane organization or 'lipid rafts' shows that combining fluctuation analysis with STED-engineered ultra-small measurement volumes is a viable and powerful new approach to probing molecular dynamics on the nanoscale.

  16. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  17. Limits of single-molecule super-resolution microscopy in thin polymer films

    Science.gov (United States)

    Wang, Muzhou; Davanco, Marcelo; Marr, James M.; Liddle, J. Alexander; Gilman, Jeffrey W.

    Structural characterization by super-resolution microscopy has become increasingly widespread, particularly in the biological community. The technique is powerful because it can produce real-space images with resolutions of tens of nanometers, while sample preparation is relatively non-invasive. Previous studies have applied these techniques to important scientific problems in the life sciences, but relatively little work has explored the attainable limit of resolution using samples of known structure. In this work, we apply photo-activated localization microscopy (PALM) to polymer films that have been nanopatterned using electron-beam lithography. Trace amounts of a rhodamine spiroamide dye are dispersed into nanostructured poly(methyl methacrylate), and UV-induced switching of the fluorophores enables nanoscale localization of single molecules to generate a final composite super-resolution image. Features as small as 50 nm are clearly resolvable. To determine the ultimate resolution limit, we investigate sources of error in the system, particularly from systematic mislocalizations due to the effect of fluorophore orientation on the single-molecule point-spread function.

  18. Morphological investigation of Mn12 single-molecule magnets adsorbed on Au(111).

    Science.gov (United States)

    Otero, Gonzalo; Evangelio, Emi; Rogero, Celia; Vázquez, Luis; Gómez-Segura, Jordi; Gago, José Angel Martín; Ruiz-Molina, Daniel

    2009-09-01

    We report on the adsorption of Mn(12) single-molecule magnets bearing external biphenyl groups on Au(111) surfaces after a simple dipping procedure. Topographic AFM images confirm that the biphenyl groups favor the adsorption of the molecules without the need of functionalization with thiols or thioether groups. The first formed molecular layer covers homogenously the whole surface, whereas further growth takes place mostly in the form of molecular wires (or aggregates) and, occasionally, as molecular islands. Interestingly, the Mn(12) core is preserved for all the cases, although its aggregation state appears to influence significantly the rigidity of the molecular aggregates. Force-volume imaging experiments have demonstrated that molecules at the second layer are stiffer, that is, more rigid, than the molecules lying at the background layer. This fact clearly reveals that the interplay of attractive and repulsive forces between molecules and the molecule-surface interaction modulate the mechanical properties of the Mn(12) single-molecule magnets upon grafting. These results are very important to understand how surface-induced morphological deformations can modify the magnetic properties of these molecular systems on the translation from the macroscopic to a surface.

  19. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi

    2013-08-06

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  20. Electron diffraction of CBr4 in superfluid helium droplets: A step towards single molecule diffraction

    Science.gov (United States)

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-07-01

    We demonstrate the practicality of electron diffraction of single molecules inside superfluid helium droplets using CBr4 as a testing case. By reducing the background from pure undoped droplets via multiple doping, with small corrections for dimers and trimers, clearly resolved diffraction rings of CBr4 similar to those of gas phase molecules can be observed. The experimental data from CBr4 doped droplets are in agreement with both theoretical calculations and with experimental results of gaseous species. The abundance of monomers and clusters in the droplet beam also qualitatively agrees with the Poisson statistics. Possible extensions of this approach to macromolecular ions will also be discussed. This result marks the first step in building a molecular goniometer using superfluid helium droplet cooling and field induced orientation. The superior cooling effect of helium droplets is ideal for field induced orientation, but the diffraction background from helium is a concern. This work addresses this background issue and identifies a possible solution. Accumulation of diffraction images only becomes meaningful when all images are produced from molecules oriented in the same direction, and hence a molecular goniometer is a crucial technology for serial diffraction of single molecules.

  1. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection

    Science.gov (United States)

    Potara, Monica; Baia, Monica; Farcau, Cosmin; Astilean, Simion

    2012-02-01

    Surface-enhanced Raman spectroscopy (SERS) is a technique that has become widely used for identifying and providing structural information about molecular species in low concentration. There is an ongoing interest in finding optimum particle size, shape and spatial distribution for optimizing the SERS substrates and pushing the sensitivity toward the single-molecule detection limit. This work reports the design of a novel, biocompatible SERS substrate based on small clusters of anisotropic silver nanoparticles embedded in a film of chitosan biopolymer. The SERS efficiency of the biocompatible film is assessed by employing Raman imaging and spectroscopy of adenine, a significant biological molecule. By combining atomic force microscopy with SERS imaging we find that the chitosan matrix enables the formation of small clusters of silver nanoparticles, with junctions and gaps that greatly enhance the Raman intensities of the adsorbed molecules. The study demonstrates that chitosan-coated anisotropic silver nanoparticle clusters are sensitive enough to be implemented as effective plasmonic substrates for SERS detection of nonresonant analytes at the single-molecule level.

  2. Single-molecule visualization of ROS-induced DNA damage in large DNA molecules.

    Science.gov (United States)

    Lee, Jinyong; Kim, Yongkyun; Lim, Sangyong; Jo, Kyubong

    2016-02-07

    We present a single molecule visualization approach for the quantitative analysis of reactive oxygen species (ROS) induced DNA damage, such as base oxidation and single stranded breaks in large DNA molecules. We utilized the Fenton reaction to generate DNA damage with subsequent enzymatic treatment using a mixture of three types of glycosylases to remove oxidized bases, and then fluorescent labeling on damaged lesions via nick translation. This single molecule analytical platform provided the capability to count one or two damaged sites per λ DNA molecule (48.5 kb), which were reliably dependent on the concentrations of hydrogen peroxide and ferrous ion at the micromolar level. More importantly, the labeled damaged sites that were visualized under a microscope provided positional information, which offered the capability of comparing DNA damaged sites with the in silico genomic map to reveal sequence specificity that GTGR is more sensitive to oxidative damage. Consequently, single DNA molecule analysis provides a sensitive analytical platform for ROS-induced DNA damage and suggests an interesting biochemical insight that the genome primarily active during the lysogenic cycle may have less probability for oxidative DNA damage.

  3. Fluorescence spectroscopy of single molecules at room temperature and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Taekjip [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  4. Quantitative photoacoustic image reconstruction improves accuracy in deep tissue structures.

    Science.gov (United States)

    Mastanduno, Michael A; Gambhir, Sanjiv S

    2016-10-01

    Photoacoustic imaging (PAI) is emerging as a potentially powerful imaging tool with multiple applications. Image reconstruction for PAI has been relatively limited because of limited or no modeling of light delivery to deep tissues. This work demonstrates a numerical approach to quantitative photoacoustic image reconstruction that minimizes depth and spectrally derived artifacts. We present the first time-domain quantitative photoacoustic image reconstruction algorithm that models optical sources through acoustic data to create quantitative images of absorption coefficients. We demonstrate quantitative accuracy of less than 5% error in large 3 cm diameter 2D geometries with multiple targets and within 22% error in the largest size quantitative photoacoustic studies to date (6cm diameter). We extend the algorithm to spectral data, reconstructing 6 varying chromophores to within 17% of the true values. This quantitiative PA tomography method was able to improve considerably on filtered-back projection from the standpoint of image quality, absolute, and relative quantification in all our simulation geometries. We characterize the effects of time step size, initial guess, and source configuration on final accuracy. This work could help to generate accurate quantitative images from both endogenous absorbers and exogenous photoacoustic dyes in both preclinical and clinical work, thereby increasing the information content obtained especially from deep-tissue photoacoustic imaging studies.

  5. Tunneling spectroscopy of organic monolayers and single molecules.

    Science.gov (United States)

    Hipps, K W

    2012-01-01

    Basic concepts in tunneling spectroscopy applied to molecular systems are presented. Junctions of the form M-A-M, M-I-A-M, and M-I-A-I'-M, where A is an active molecular layer, are considered. Inelastic electron tunneling spectroscopy (IETS) is found to be readily applied to all the above device types. It can provide both vibrational and electron spectroscopic data about the molecules comprising the A layer. In IETS there are no strong selection rules (although there are preferences) so that transitions that are normally IR, Raman, or even photon-forbidden can be observed. In the electronic transition domain, spin and Laporte forbidden transitions may be observed. Both vibrational and electronic IETS can be acquired from single molecules. The negative aspect of this seemingly ideal spectroscopic method is the thermal line width of about 5 k(B)T. This limits the useful measurement of vibrational IETS to temperatures below about 10 K. In the case of most electronic transitions where the intrinsic linewidth is much broader, useful experiments above 100 K are possible. One further limitation of electronic IETS is that it is generally limited to transitions with energy less than about 20,000 cm(-1). IETS can be identified by peaks in d(2) I/dV (2) vs bias voltage plots that occur at the same position (but not necessarily same intensity) in either bias polarity.Elastic tunneling spectroscopy is discussed in the context of processes involving molecular ionization and electron affinity states, a technique we call orbital mediated tunneling spectroscopy, or OMTS. OMTS can be applied readily to M-I-A-M and M-I-A-I'-M systems, but application to M-A-M junctions is problematic. Spectra can be obtained from single molecules. Ionization state results correlate well with UPS spectra obtained from the same systems in the same environment. Both ionization and affinity levels measured by OMTS can usually be correlated with one electron oxidation and reduction potentials for the

  6. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  7. Single-molecule studies of DNA transcription using atomic force microscopy

    Science.gov (United States)

    Billingsley, Daniel J.; Bonass, William A.; Crampton, Neal; Kirkham, Jennifer; Thomson, Neil H.

    2012-04-01

    Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA-protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome.

  8. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes.

    Science.gov (United States)

    Szczurek, Aleksander T; Prakash, Kirti; Lee, Hyun-Keun; Zurek-Biesiada, Dominika J; Best, Gerrit; Hagmann, Martin; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2014-01-01

    Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA minor groove binding dyes, such as Hoechst 33258, Hoechst 33342, and DAPI, can be effectively employed in single molecule localization microscopy (SMLM) with high optical and structural resolution. Upon illumination with low intensity 405 nm light, a small subpopulation of these molecules stochastically undergoes photoconversion from the original blue-emitting form to a green-emitting form. Using a 491 nm laser excitation, fluorescence of these green-emitting, optically isolated molecules was registered until "bleached". This procedure facilitated substantially the optical isolation and localization of large numbers of individual dye molecules bound to DNA in situ, in nuclei of fixed mammalian cells, or in mitotic chromosomes, and enabled the reconstruction of high-quality DNA density maps. We anticipate that this approach will provide new insights into DNA replication, DNA repair, gene transcription, and other nuclear processes.

  9. Single-molecule kinetics and footprinting of DNA bis-intercalation: the paradigmatic case of Thiocoraline

    Science.gov (United States)

    Camunas-Soler, Joan; Manosas, Maria; Frutos, Silvia; Tulla-Puche, Judit; Albericio, Fernando; Ritort, Felix

    2015-01-01

    DNA bis-intercalators are widely used in molecular biology with applications ranging from DNA imaging to anticancer pharmacology. Two fundamental aspects of these ligands are the lifetime of the bis-intercalated complexes and their sequence selectivity. Here, we perform single-molecule optical tweezers experiments with the peptide Thiocoraline showing, for the first time, that bis-intercalation is driven by a very slow off-rate that steeply decreases with applied force. This feature reveals the existence of a long-lived (minutes) mono-intercalated intermediate that contributes to the extremely long lifetime of the complex (hours). We further exploit this particularly slow kinetics to determine the thermodynamics of binding and persistence length of bis-intercalated DNA for a given fraction of bound ligand, a measurement inaccessible in previous studies of faster intercalating agents. We also develop a novel single-molecule footprinting technique based on DNA unzipping and determine the preferred binding sites of Thiocoraline with one base-pair resolution. This fast and radiolabelling-free footprinting technique provides direct access to the binding sites of small ligands to nucleic acids without the need of cleavage agents. Overall, our results provide new insights into the binding pathway of bis-intercalators and the reported selectivity might be of relevance for this and other anticancer drugs interfering with DNA replication and transcription in carcinogenic cell lines. PMID:25690887

  10. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes

    Science.gov (United States)

    Szczurek, Aleksander T; Prakash, Kirti; Lee, Hyun-Keun; Żurek-Biesiada, Dominika J; Best, Gerrit; Hagmann, Martin; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2014-01-01

    Several approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure. In this report, we demonstrate that DNA minor groove binding dyes, such as Hoechst 33258, Hoechst 33342, and DAPI, can be effectively employed in single molecule localization microscopy (SMLM) with high optical and structural resolution. Upon illumination with low intensity 405 nm light, a small subpopulation of these molecules stochastically undergoes photoconversion from the original blue-emitting form to a green-emitting form. Using a 491 nm laser excitation, fluorescence of these green-emitting, optically isolated molecules was registered until “bleached”. This procedure facilitated substantially the optical isolation and localization of large numbers of individual dye molecules bound to DNA in situ, in nuclei of fixed mammalian cells, or in mitotic chromosomes, and enabled the reconstruction of high-quality DNA density maps. We anticipate that this approach will provide new insights into DNA replication, DNA repair, gene transcription, and other nuclear processes. PMID:25482122

  11. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy.

    Science.gov (United States)

    Yi, Jason; Manna, Asit; Barr, Valarie A; Hong, Jennifer; Neuman, Keir C; Samelson, Lawrence E

    2016-11-07

    Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM. © 2016 Yi et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy

    Science.gov (United States)

    Yi, Jason; Manna, Asit; Barr, Valarie A.; Hong, Jennifer; Neuman, Keir C.; Samelson, Lawrence E.

    2016-01-01

    Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and <0.01% cross-talk. Combining these technical advances affords the ability to move beyond obtaining superresolved structures to defining spatial relationships among constituent molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM. PMID:27708141

  13. Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule Spectroscopy

    KAUST Repository

    Yoo, Hyejin

    2012-10-25

    Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.

  14. Correlating Anomalous Diffusion with Membrane Obstacle Structure Using Single Molecule Tracking and AFM

    Science.gov (United States)

    Skaug, Michael; Longo, Marjorie; Faller, Roland

    2011-03-01

    Anomalous diffusion has been observed abundantly in the plasma membrane, but the underlying mechanisms are still unclear. In general, it has not been possible to directly image the obstacles to diffusion in membranes, so the dynamics of diffusing particles are used to deduce the obstacle characteristics. We present a supported lipid bilayer system in which we characterized the anomalous diffusion of lipid molecules using single molecule tracking, while at the same time imaging the obstacles to diffusion with atomic force microscopy. To explain our experimental results, we performed lattice Monte Carlo simulations of tracer diffusion in the presence of the experimentally determined obstacle configurations. We correlate the observed anomalous diffusion with obstacle area fraction, fractal dimension and correlation length. We further discuss our results in the context of confinement models and the generating stochastic process. Supported by NSF grant CBET 0506602.

  15. Quantitative photoacoustic imaging of nanoparticles in cells and tissues.

    Science.gov (United States)

    Cook, Jason R; Frey, Wolfgang; Emelianov, Stanislav

    2013-02-26

    Quantitative visualization of nanoparticles in cells and tissues, while preserving the spatial information, is very challenging. A photoacoustic imaging technique to depict the presence and quantity of nanoparticles is presented. This technique is based on the dependence of the photoacoustic signal on both the nanoparticle quantity and the laser fluence. Quantitative photoacoustic imaging is a robust technique that does not require knowledge of the local fluence, but a relative change in the fluence. This eliminates the need for sophisticated methods or models to determine the energy distribution of light in turbid media. Quantitative photoacoustic imaging was first applied to nanoparticle-loaded cells, and quantitation was validated by inductively coupled plasma mass spectrometry. Quantitative photoacoustic imaging was then extended to xenograft tumor tissue sections, and excellent agreement with traditional histopathological analysis was demonstrated. Our results suggest that quantitative photoacoustic imaging may be used in many applications including the determination of the efficiency and effectiveness of molecular targeting strategies for cell studies and animal models, the quantitative assessment of photoacoustic contrast agent biodistribution, and the validation of in vivo photoacoustic imaging.

  16. Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton

    Science.gov (United States)

    Lai, Queenie T. K.; Lau, Andy K. S.; Tang, Anson H. L.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2016-03-01

    Comprehensive quantification of phytoplankton abundance, sizes and other parameters, e.g. biomasses, has been an important, yet daunting task in aquatic sciences and biofuel research. It is primarily because of the lack of effective tool to image and thus accurately profile individual microalgae in a large population. The phytoplankton species are highly diversified and heterogeneous in terms of their sizes and the richness in morphological complexity. This fact makes time-stretch imaging, a new ultrafast real-time optical imaging technology, particularly suitable for ultralarge-scale taxonomic classification of phytoplankton together with quantitative image recognition and analysis. We here demonstrate quantitative imaging flow cytometry of single phytoplankton based on quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM) - a new time-stretch imaging modality for label-free quantitative phase imaging without interferometric implementations. Sharing the similar concept of Schlieren imaging, Q-ATOM accesses multiple phase-gradient contrasts of each single phytoplankton, from which the quantitative phase profile is computed. We employ such system to capture, at an imaging line-scan rate of 11.6 MHz, high-resolution images of two phytoplankton populations (scenedesmus and chlamydomonas) in ultrafast microfluidic flow (3 m/s). We further perform quantitative taxonomic screening analysis enabled by this technique. More importantly, the system can also generate quantitative phase images of single phytoplankton. This is especially useful for label-free quantification of biomasses (e.g. lipid droplets) of the particular species of interest - an important task adopted in biofuel applications. Combining machine learning for automated classification, Q-ATOM could be an attractive platform for continuous and real-time ultralarge-scale single-phytoplankton analysis.

  17. Magnetic and optical bistability in tetrairon(III) single molecule magnets functionalized with azobenzene groups.

    Science.gov (United States)

    Prasad, Thazhe Kootteri; Poneti, Giordano; Sorace, Lorenzo; Rodriguez-Douton, Maria Jesus; Barra, Anne-Laure; Neugebauer, Petr; Costantino, Luca; Sessoli, Roberta; Cornia, Andrea

    2012-07-21

    Tetrairon(III) complexes known as "ferric stars" have been functionalized with azobenzene groups to investigate the effect of light-induced trans-cis isomerization on single-molecule magnet (SMM) behaviour. According to DC magnetic data and EPR spectroscopy, clusters dispersed in polystyrene (4% w/w) exhibit the same spin (S = 5) and magnetic anisotropy as bulk samples. Ligand photoisomerization, achieved by irradiation at 365 nm, has no detectable influence on static magnetic properties. However, it induces a small but significant acceleration of magnetic relaxation as probed by AC susceptometry. The pristine behaviour can be almost quantitatively recovered by irradiation with white light. Our studies demonstrate that magnetic and optical bistability can be made to coexist in SMM materials, which are of current interest in molecular spintronics.

  18. Qualitative and quantitative imaging in microgravity combustion

    Science.gov (United States)

    Weiland, Karen J.

    1995-01-01

    An overview of the imaging techniques implemented by researchers in the microgravity combustion program shows that for almost any system, imaging of the flame may be accomplished in a variety of ways. Standard and intensified video, high speed, and infrared cameras and fluorescence, laser schlieren, rainbow schlieren, soot volume fraction, and soot temperature imaging have all been used in the laboratory and many in reduced gravity to make the necessary experimental measurements.

  19. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    S Ramasesha; Shaon Sahoo; Rajamani Raghunathan; Diptiman Sen

    2009-09-01

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the and values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of and by rotating the single-ion anisotropies in the case of Mn12Ac and Fe8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe8 SMM. We also find that the value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.

  20. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten

    2015-04-16

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  1. DONOR-ACCEPTOR CONJUGATED COOLIGOMERS FOR SINGLE MOLECULE SOLAR CELLS

    Institute of Scientific and Technical Information of China (English)

    Jian-fei Qu; Jian Liu; Si-da Li; Zhi-yuan Xie; Yan-hou Geng

    2013-01-01

    Five novel donor-acceptor (D-A) conjugated cooligomers (F4B-hP,F5B-hP,F5B2[1,2]-hP,F5B2[1,3]-hP and F7B2[1,2]-hP) were synthesized.The absorption spectra of the cooligomers cover a wide range from 300 nm to 630 nm.The cooligomers could form films featured by alternating D-A lamellar nanostructures with the periods relative to the molecular lengths after thermal annealing or solvent vapor annealing.Single molecule solar cells were fabricated,and F5B-hP exhibited the best device performance.When the film of F5B-hP was thermally annealed,a power conversion efficiency (PCE) of 1.56% was realized.With solvent vapor annealing,the PCE could be further improved to 1.72% with a short-circuit current (Jsc) of 5.76 mA/cm2,an open-circuit voltage (VoC) of 0.87 V and a fill factor (FF) of 0.34.

  2. Chapter 15: Live-cell single-molecule force spectroscopy.

    Science.gov (United States)

    Dobrowsky, Terrence M; Panorchan, Porntula; Konstantopoulos, Konstantinos; Wirtz, Denis

    2008-01-01

    We describe a method to measure the kinetics and micromechanical properties of individual receptor-ligand bonds formed between two living cells. Using living cells rather than recombinant proteins ensures that the orientation, surface density, and posttranslational modifications of the probed receptors are physiological and that their regulated attachment to the cytoskeleton can occur. A cell is tethered to a flexible cantilever and brought into contact with cells adherent to a substratum before being pulled at a controlled retraction velocity. Measurements of bond rupture forces and associated bond loading rates over an extended range of retraction velocities allow us to compute precisely the tensile strength, reactive compliance, lifetime, and dissociation rate of individual intercellular receptor-ligand bonds. We also describe tests of specificity and Monte Carlo simulations, which ensure that measurements obtained by this method correspond to a single type of intercellular adhesion bond. We illustrate this live-cell single molecule force spectroscopy assay by characterizing homotypic bonds composed of vascular endothelial -cadherin pairs formed between living endothelial cells. This versatile assay could be used to establish the molecular principles that drive a wide range of important physiological processes involving receptor-mediated intercellular adhesion, such as the immunological synapse between a lymphocyte and an antigen-presenting cell and synaptic interactions between neuron cells, and pathological processes resulting in altered intercellular adhesion.

  3. Experimental demonstration of a single-molecule electric motor.

    Science.gov (United States)

    Tierney, Heather L; Murphy, Colin J; Jewell, April D; Baber, Ashleigh E; Iski, Erin V; Khodaverdian, Harout Y; McGuire, Allister F; Klebanov, Nikolai; Sykes, E Charles H

    2011-09-04

    For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

  4. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    Science.gov (United States)

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.

  5. Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots

    Science.gov (United States)

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra

    2011-03-01

    For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.

  6. Ferromagnetic manganese "cubes": from PSII to single-molecule magnets.

    Science.gov (United States)

    Inglis, Ross; Stoumpos, Constantinos C; Prescimone, Alessandro; Siczek, Milosz; Lis, Tadeusz; Wernsdorfer, Wolfgang; Brechin, Euan K; Milios, Constantinos J

    2010-05-28

    The reaction of Mn(O₂CMe)₂·2H₂O with Me-saoH₂ (Me-saoH₂ = 2-hydroxyphenylethanone oxime) in MeCN forms the complex [Mn(III)₄(Me-sao)₄(Me-saoH)₄] (1) in good yields. Replacing Me-saoH₂ with Naphth-saoH₂ (Naphth-saoH₂ = 2-hydroxy-1-napthaldoxime) in the presence of CH₃ONa forms the complex [Mn(III)₄(Naphth-sao)₄(Naphth-saoH)₄] (2) in low yields, while the reaction between Mn(ClO₄)₂·6H₂O, Et-saoH₂ (Et-saoH₂= 2-hydroxypropiophenone oxime) and NBu₄OH in MeCN gives the complex [Mn(III)₄(Et-sao)₄(Et-saoH)₄] (3) in moderate yields. All three tetrametallic cages exclusively contain Mn(III) centres arranged in a "cube"-like topology, in which the metal centres are connected by -N-O(oximate) groups. The magnetic properties of 1-3 are near identical, revealing the presence of only ferromagnetic interactions between the metal ions leading to high-spin ground states of S = 8. The complexes display frequency dependent out-of-phase signals in ac susceptibility studies and, in the case of 1 single-molecule magnetism has been observed by means of single-crystal hysteresis loop measurements.

  7. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  8. Optical microcavity: sensing down to single molecules and atoms.

    Science.gov (United States)

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  9. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions

    Science.gov (United States)

    Cordes, Thorben; Blum, Suzanne A.

    2013-12-01

    In recent years, single-molecule and single-particle fluorescence microscopy has emerged as a tool to investigate chemical systems. After an initial lag of over a decade with respect to biophysical studies, this powerful imaging technique is now revealing mechanisms of 'classical' organic reactions, spatial distribution of chemical reactivity on surfaces and the phase of active catalysts. The recent advance into commercial imaging systems obviates the need for home-built laser systems and thus opens this technique to traditionally trained synthetic chemists. We discuss the requisite photophysical and chemical properties of fluorescent reporters and highlight the main challenges in applying single-molecule techniques to chemical questions. The goal of this Perspective is to provide a snapshot of an emerging multidisciplinary field and to encourage broader use of this young experimental approach that aids the observation of chemical reactions as depicted in many textbooks: molecule by molecule.

  10. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions.

    Science.gov (United States)

    Cordes, Thorben; Blum, Suzanne A

    2013-12-01

    In recent years, single-molecule and single-particle fluorescence microscopy has emerged as a tool to investigate chemical systems. After an initial lag of over a decade with respect to biophysical studies, this powerful imaging technique is now revealing mechanisms of 'classical' organic reactions, spatial distribution of chemical reactivity on surfaces and the phase of active catalysts. The recent advance into commercial imaging systems obviates the need for home-built laser systems and thus opens this technique to traditionally trained synthetic chemists. We discuss the requisite photophysical and chemical properties of fluorescent reporters and highlight the main challenges in applying single-molecule techniques to chemical questions. The goal of this Perspective is to provide a snapshot of an emerging multidisciplinary field and to encourage broader use of this young experimental approach that aids the observation of chemical reactions as depicted in many textbooks: molecule by molecule.

  11. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  12. Quantitative real-time imaging of glutathione

    Science.gov (United States)

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  13. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers.

    Science.gov (United States)

    Chung, Jaeyoon; Kushner, Aaron M; Weisman, Adam C; Guan, Zhibin

    2014-11-01

    For rational design of advanced polymeric materials, it is critical to establish a clear mechanistic link between the molecular structure of a polymer and the emergent bulk mechanical properties. Despite progress towards this goal, it remains a major challenge to directly correlate the bulk mechanical performance to the nanomechanical properties of individual constituent macromolecules. Here, we show a direct correlation between the single-molecule nanomechanical properties of a biomimetic modular polymer and the mechanical characteristics of the resulting bulk material. The multi-cyclic single-molecule force spectroscopy (SMFS) data enabled quantitative derivation of the asymmetric potential energy profile of individual module rupture and re-folding, in which a steep dissociative pathway accounted for the high plateau modulus, while a shallow associative well explained the energy-dissipative hysteresis and dynamic, adaptive recovery. These results demonstrate the potential for SMFS to serve as a guide for future rational design of advanced multifunctional materials.

  14. Monitoring Cellular Interactions during T Cell Activation at the Single Molecule Level Using Semiconductor Quantum-Dots

    Science.gov (United States)

    2005-05-10

    shift in the absorption and emission spectra for one of the tested shells, suggesting that exciton-molecular orbital (X-MO) coupling might take place...different bioconjugated qdots were compared. Testing the lipid raft hypothesis by single molecule imaging of targeted peptide-coated qdots: GPI- (lipid...The Rank Prize in opto-electronics The 2001 Michael and Kate Barany Biophysical Society Award Fellow of the Optical Society of America (1999).

  15. Chromatic Image Analysis For Quantitative Thermal Mapping

    Science.gov (United States)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  16. Single-molecule magnet Mn12 on graphene

    Science.gov (United States)

    Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2014-09-01

    We study energetics, electronic and magnetic structures, and magnetic anisotropy barriers of a monolayer of single-molecule magnets (SMMs), [Mn12O12(COOR)16](H2O)4 (abbreviated as Mn12, with R=H, CH3, C6H5, and CHCl2), on a graphene surface using spin-polarized density-functional theory with generalized gradient corrections and the inclusion of van der Waals interactions. We find that Mn12 molecules with ligands -H, -CH3, and -C6H5 are physically adsorbed on graphene through weak van der Waals interactions, and a much stronger ionic interaction occurs using a -CHCl2 ligand. The strength of bonding is closely related to the charge transfer between the molecule and the graphene sheet and can be manipulated by strain in the graphene; specifically, tension enhances n doping of graphene, and compression encourages p doping. The magnetic anisotropy barrier is computed by including the spin-orbit interaction within density-functional theory. The barriers for the Mn12 molecules with ligands -H, -CH3 and -C6H5 on graphene surfaces remain unchanged (within 1K) from those of isolated molecules because of their weak interaction, and a much larger reduction (10K) is observed when using the -CHCl2 ligand on graphene due to a substantial structural deformation as a consequence of the much stronger interaction. Neither strain in graphene nor charge transfer affects the magnetic anisotropy barrier significantly. Finally, we discuss the effect of strong correlation in the high-spin state of a Mn12 SMM and the consequence of SMM-surface adsorption.

  17. Lab-on-a-chip technologies for single-molecule studies.

    Science.gov (United States)

    Zhao, Yanhui; Chen, Danqi; Yue, Hongjun; French, Jarrod B; Rufo, Joseph; Benkovic, Stephen J; Huang, Tony Jun

    2013-06-21

    Recent developments on various lab-on-a-chip techniques allow miniaturized and integrated devices to perform on-chip single-molecule studies. Fluidic-based platforms that utilize unique microscale fluidic behavior are capable of conducting single-molecule experiments with high sensitivities and throughputs, while biomolecular systems can be studied on-chip using techniques such as DNA curtains, magnetic tweezers, and solid-state nanopores. The advances of these on-chip single-molecule techniques lead to next-generation lab-on-a-chip devices, such as DNA transistors, and single-molecule real-time (SMRT) technology for rapid and low-cost whole genome DNA sequencing. In this Focus article, we will discuss some recent successes in the development of lab-on-a-chip techniques for single-molecule studies and expound our thoughts on the near future of on-chip single-molecule studies.

  18. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    OpenAIRE

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the ...

  19. Single-molecule microscopy reveals heterogeneous dynamics of lipid raft components upon TCR engagement.

    Science.gov (United States)

    Drbal, Karel; Moertelmaier, Manuel; Holzhauser, Christa; Muhammad, Arshad; Fuertbauer, Elke; Howorka, Stefan; Hinterberger, Maria; Stockinger, Hannes; Schütz, Gerhard J

    2007-05-01

    The existence of lipid rafts and their importance for immunoreceptor signaling is highly debated. By non-invasive single molecule imaging, we analyzed the dynamics of the T-cell antigen receptor (TCR), the lipid raft-associated glycosylphosphatidylinositol (GPI) proteins CD48 and CD59 and the major leukocyte phosphatase CD45 in living naive T lymphocytes. TCR triggering induced the immobilization of CD45 and CD48 at different positions within the T-cell interface. The second GPI protein, CD59, did not co-immobilize indicating lipid raft heterogeneity in living T lymphocytes. A novel biochemical approach confirmed that lipid raft components are not associated in the plasma membrane of resting cells, and variably associate with specific receptors to distinct lipid rafts upon activation.

  20. Biophysics of DNA-Protein Interactions From Single Molecules to Biological Systems

    CERN Document Server

    Williams, Mark C

    2011-01-01

    This book presents a concise overview of current research on the biophysics of DNA-protein interactions. A wide range of new and classical methods are presented by authors investigating physical mechanisms by which proteins interact with DNA. For example, several chapters address the mechanisms by which proteins search for and recognize specific binding sites on DNA, a process critical for cellular function. Single molecule methods such as force spectroscopy as well as fluorescence imaging and tracking are described in these chapters as well as other parts of the book that address the dynamics of protein-DNA interactions. Other important topics include the mechanisms by which proteins engage DNA sequences and/or alter DNA structure. These simple but important model interactions are then placed in the broader biological context with discussion of larger protein-DNA complexes . Topics include replication forks, recombination complexes, DNA repair interactions, and ultimately, methods to understand the chromatin...

  1. Single-molecule synthesis and characterization of metal-ligand complexes by low-temperature STM.

    Science.gov (United States)

    Liljeroth, Peter; Swart, Ingmar; Paavilainen, Sami; Repp, Jascha; Meyer, Gerhard

    2010-07-14

    We present scanning tunneling microscopy (STM)-based single-molecule synthesis of linear metal-ligand complexes starting from individual metal atoms (iron or nickel) and organic molecules (9,10-dicyanoanthracene) deposited on an ultrathin insulating film. We directly visualize the frontier molecular orbitals by STM orbital imaging, from which, in conjunction with detailed density functional theory calculations, the electronic structure of the complexes is inferred. Our studies show how the order of the molecular orbitals and the spin-state of the complex can be engineered through the choice of the metal atom. The high-spin iron complex has a singly occupied delocalized orbital with a large spin-splitting that points to the use of these engineered complexes as modular building blocks in molecular spintronics.

  2. Quantitative Morphological and Biochemical Studies on Human Downy Hairs using 3-D Quantitative Phase Imaging

    CERN Document Server

    Lee, SangYun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  3. From nanofabrication to self-fabrication--tailored chemistry for control of single molecule electronic devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2010-01-01

    as alternatives to the dominant top-down nanofabrication techniques. One example is solution-based self-assembly of a molecule enclosed by two gold nanorod electrodes. This article will discuss recent attempts to control the self-assembly process by the use of supramolecular chemistry and how to tailor......Single molecule electronics is a field of research focused on the use of single molecules as electronics components. During the past 15 years the field has concentrated on development of test beds for measurements on single molecules. Bottom-up approaches to single molecule devices are emerging...

  4. Partial Volume Correction in Quantitative Amyloid Imaging

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M.; Snyder, Abraham Z.; Raichle, Marcus E.; Marcus, Daniel S.; Ances, Beau M.; Bateman, Randall J.; Cairns, Nigel J.; Aldea, Patricia; Cash, Lisa; Christensen, Jon J.; Friedrichsen, Karl; Hornbeck, Russ C.; Farrar, Angela M.; Owen, Christopher J.; Mayeux, Richard; Brickman, Adam M.; Klunk, William; Price, Julie C.; Thompson, Paul M.; Ghetti, Bernardino; Saykin, Andrew J.; Sperling, Reisa A.; Johnson, Keith A.; Schofield, Peter R.; Buckles, Virginia; Morris, John C.; Benzinger, Tammie. LS.

    2014-01-01

    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition. PMID:25485714

  5. Quantitative spectrally resolved imaging through a spectrograph

    NARCIS (Netherlands)

    Tolboom, RAL; Sijtsema, NM; ter Meulen, JJ; Dam, N.J.

    2003-01-01

    A grating spectrograph can be used for spectrally selective two-dimensional imaging if it is operated with a broad entrance slit. The resulting intensity distribution in its exit plane is a one-dimensional convolution of the spatial and spectral distributions of incident light. We present a dedicate

  6. Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy.

    Directory of Open Access Journals (Sweden)

    Campion K P Loong

    Full Text Available α-Tropomyosin (αTm is the predominant tropomyosin isoform in adult human heart and constitutes a major component in Ca²+-regulated systolic contraction of cardiac muscle. We present here the first direct probe images of WT human cardiac αTm by atomic force microscopy, and quantify its mechanical flexibility with three independent analysis methods. Single molecules of bacterially-expressed human cardiac αTm were imaged on poly-lysine coated mica and their contours were analyzed. Analysis of tangent-angle (θ(s correlation along molecular contours, second moment of tangent angles (, and end-to-end length (L(e-e distributions respectively yielded values of persistence length (L(p of 41-46 nm, 40-45 nm, and 42-52 nm, corresponding to 1-1.3 molecular contour lengths (L(c. We also demonstrate that a sufficiently large population, with at least 100 molecules, is required for a reliable L(p measurement of αTm in single molecule studies. Our estimate that L(p for αTm is only slightly longer than L(c is consistent with a previous study showing there is little spread of cooperative activation into near-neighbor regulatory units of cardiac thin filaments. The L(p determined here for human cardiac αTm perhaps represents an evolutionarily tuned optimum between Ca²+ sensitivity and cooperativity in cardiac thin filaments and likely constitutes an essential parameter for normal function in the human heart.

  7. Single-molecule conformational dynamics of a biologically functional hydroxocobalamin riboswitch.

    Science.gov (United States)

    Holmstrom, Erik D; Polaski, Jacob T; Batey, Robert T; Nesbitt, David J

    2014-12-03

    Riboswitches represent a family of highly structured regulatory elements found primarily in the leader sequences of bacterial mRNAs. They function as molecular switches capable of altering gene expression; commonly, this occurs via a conformational change in a regulatory element of a riboswitch that results from ligand binding in the aptamer domain. Numerous studies have investigated the ligand binding process, but little is known about the structural changes in the regulatory element. A mechanistic description of both processes is essential for deeply understanding how riboswitches modulate gene expression. This task is greatly facilitated by studying all aspects of riboswitch structure/dynamics/function in the same model system. To this end, single-molecule fluorescence resonance energy transfer (smFRET) techniques have been used to directly observe the conformational dynamics of a hydroxocobalamin (HyCbl) binding riboswitch (env8HyCbl) with a known crystallographic structure.1 The single-molecule RNA construct studied in this work is unique in that it contains all of the structural elements both necessary and sufficient for regulation of gene expression in a biological context. The results of this investigation reveal that the undocking rate constant associated with the disruption of a long-range kissing-loop (KL) interaction is substantially decreased when the ligand is bound to the RNA, resulting in a preferential stabilization of the docked conformation. Notably, the formation of this tertiary KL interaction directly sequesters the Shine-Dalgarno sequence (i.e., the ribosome binding site) via base-pairing, thus preventing translation initiation. These results reveal that the conformational dynamics of this regulatory switch are quantitatively described by a four-state kinetic model, whereby ligand binding promotes formation of the KL interaction. The results of complementary cell-based gene expression experiments conducted in Escherichia coli are highly

  8. Single-molecule dynamics reveals cooperative binding-folding in protein recognition.

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2006-07-01

    Full Text Available The study of associations between two biomolecules is the key to understanding molecular function and recognition. Molecular function is often thought to be determined by underlying structures. Here, combining a single-molecule study of protein binding with an energy-landscape-inspired microscopic model, we found strong evidence that biomolecular recognition is determined by flexibilities in addition to structures. Our model is based on coarse-grained molecular dynamics on the residue level with the energy function biased toward the native binding structure (the Go model. With our model, the underlying free-energy landscape of the binding can be explored. There are two distinct conformational states at the free-energy minimum, one with partial folding of CBD itself and significant interface binding of CBD to Cdc42, and the other with native folding of CBD itself and native interface binding of CBD to Cdc42. This shows that the binding process proceeds with a significant interface binding of CBD with Cdc42 first, without a complete folding of CBD itself, and that binding and folding are then coupled to reach the native binding state. The single-molecule experimental finding of dynamic fluctuations among the loosely and closely bound conformational states can be identified with the theoretical, calculated free-energy minimum and explained quantitatively in the model as a result of binding associated with large conformational changes. The theoretical predictions identified certain key residues for binding that were consistent with mutational experiments. The combined study identified fundamental mechanisms and provided insights about designing and further exploring biomolecular recognition with large conformational changes.

  9. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  10. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  11. The development of a single molecule fluorescence standard and its application in estimating the stoichiometry of the nuclear pore complex.

    Science.gov (United States)

    Tie, Hieng Chiong; Madugula, Viswanadh; Lu, Lei

    2016-09-30

    We report here an image-based method to quantify the stoichiometry of diffraction-limited sub-cellular protein complexes in vivo under spinning disk confocal microscopy. A GFP single molecule fluorescence standard was first established by immobilizing His-tagged GFP molecules onto the glass surface via nickel nitrilotriacetic acid functionalized polyethylene glycol. When endogenous nucleoporins were knocked down and replaced by the exogenously expressed and knockdown-resistant GFP-nucleoporins, the stoichiometry of the nucleoporin was estimated by the ratio of its fluorescence intensity to that of the GFP single molecules. Our measured stoichiometry of Nup35, Nup93, Nup133 and Nup88 is 23, 18, 14 and 9 and there are possibly16 copies of Nup107-160 complex per nuclear pore complex.

  12. Single Molecule Fluorescence Detection and Tracking in Mammalian Cells: The State-of-the-Art and Future Perspectives

    Directory of Open Access Journals (Sweden)

    David T. Clarke

    2012-11-01

    Full Text Available Insights from single-molecule tracking in mammalian cells have the potential to greatly contribute to our understanding of the dynamic behavior of many protein families and networks which are key therapeutic targets of the pharmaceutical industry. This is particularly so at the plasma membrane, where the method has begun to elucidate the mechanisms governing the molecular interactions that underpin many fundamental processes within the cell, including signal transduction, receptor recognition, cell-cell adhesion, etc. However, despite much progress, single-molecule tracking faces challenges in mammalian samples that hinder its general application in the biomedical sciences. Much work has recently focused on improving the methods for fluorescent tagging of target molecules, detection and localization of tagged molecules, which appear as diffraction-limited spots in charge-coupled device (CCD images, and objectively establishing the correspondence between moving particles in a sequence of image frames to follow their diffusive behavior. In this review we outline the state-of-the-art in the field and discuss the advantages and limitations of the methods available in the context of specific applications, aiming at helping researchers unfamiliar with single molecules methods to plan out their experiments.

  13. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes

    Science.gov (United States)

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong

    2013-10-01

    The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to

  14. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  15. Single molecule studies of DNA packaging by bacteriophages

    Science.gov (United States)

    Fuller, Derek Nathan

    The DNA packaging dynamics of bacteriophages φ29, gamma, and T4 were studied at the single molecule level using a dual trap optical tweezers. Also, a method for producing long DNA molecules by PCR for optical tweezers studies of protein DNA interactions is presented and thoroughly characterized. This DNA preparation technique provided DNA samples for the φ29 and T4 studies. In the studies of φ29, the role of charge was investigated by varying the ionic conditions of the packaging buffer. Ionic conditions in which the DNA charge was highly screened due to divalent and trivalent cations showed the lowest resistance to packaging of the DNA to high density. This confirmed the importance of counterions in shielding the DNA interstrand repulsion when packaged to high density. While the ionic nature of the packaging buffer had a strong effect on packaging velocities, there was no clear trend between the counterion-screened charge of the DNA and the maximum packaging velocity. The packaging studies of lambda and T4 served as systems for comparative studies with φ29. Each system showed similarities to the φ29 system and unique differences. Both the lambda and T4 packaging motors were capable of generating forces in excess of 50 pN and showed remarkably high processivity, similar to φ29. However, dynamic structural transitions were observed with lambda that are not observed with φ29. The packaging of the lambda genome showed capsid expansion at approximately 30 percent of the genome packaged and capsid rupture at 90 percent of the genome packaged in the absence of capsid stabilizing protein gpD. Unique to the T4 packaging motor, packaging dynamics showed a remarkable amount of variability in velocities. This variability was seen both within individual packaging phages and from one phage to the next. This is possibly due to different conformational states of the packaging machinery. Additionally, lambda and T4 had average packaging velocities under minimal load of 600

  16. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  17. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image.

  18. Imaging Performance of Quantitative Transmission Ultrasound

    Directory of Open Access Journals (Sweden)

    Mark W. Lenox

    2015-01-01

    Full Text Available Quantitative Transmission Ultrasound (QTUS is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound.

  19. Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells.

    Science.gov (United States)

    Chang, Melissa I; Panorchan, Porntula; Dobrowsky, Terrence M; Tseng, Yiider; Wirtz, Denis

    2005-12-01

    A quantitative description of the binding interactions between human immunodeficiency virus (HIV) type 1 envelope glycoproteins and their host cell surface receptors remains incomplete. Here, we introduce a single-molecule analysis that directly probes the binding interactions between an individual viral subunit gp120 and a single receptor CD4 and/or chemokine coreceptor CCR5 in living cells. This analysis differentiates single-molecule binding from multimolecule avidity and shows that, while the presence of CD4 is required for gp120 binding to CCR5, the force required to rupture a single gp120-coreceptor bond is significantly higher and its lifetime is much longer than those of a single gp120-receptor bond. The lifetimes of these bonds are themselves shorter than those of the P-selectin/PSGL-1 bond involved in leukocyte attachment to the endothelium bonds during an inflammation response. These results suggest an amended model of HIV entry in which, immediately after the association of gp120 to its receptor, gp120 seeks its coreceptor to rapidly form a new bond. This "bond transfer" occurs only if CCR5 is in close proximity to CD4 and CD4 is still attached to gp120. The analysis presented here may serve as a general framework to study mechanisms of receptor-mediated interactions between viral envelope proteins and host cell receptors at the single-molecule level in living cells.

  20. Single-molecule studies of complex systems : the replisome

    NARCIS (Netherlands)

    Oijen, Antoine M. van

    2007-01-01

    A complete, system-level understanding of biological processes requires comprehensive information on the kinetics and thermodynamics of the underlying biochemical reactions. A wide variety of structural, biochemical, and molecular biological techniques have led to a quantitative understanding of the

  1. Quantitative imaging biomarker ontology (QIBO) for knowledge representation of biomedical imaging biomarkers.

    Science.gov (United States)

    Buckler, Andrew J; Liu, Tiffany Ting; Savig, Erica; Suzek, Baris E; Ouellette, M; Danagoulian, J; Wernsing, G; Rubin, Daniel L; Paik, David

    2013-08-01

    A widening array of novel imaging biomarkers is being developed using ever more powerful clinical and preclinical imaging modalities. These biomarkers have demonstrated effectiveness in quantifying biological processes as they occur in vivo and in the early prediction of therapeutic outcomes. However, quantitative imaging biomarker data and knowledge are not standardized, representing a critical barrier to accumulating medical knowledge based on quantitative imaging data. We use an ontology to represent, integrate, and harmonize heterogeneous knowledge across the domain of imaging biomarkers. This advances the goal of developing applications to (1) improve precision and recall of storage and retrieval of quantitative imaging-related data using standardized terminology; (2) streamline the discovery and development of novel imaging biomarkers by normalizing knowledge across heterogeneous resources; (3) effectively annotate imaging experiments thus aiding comprehension, re-use, and reproducibility; and (4) provide validation frameworks through rigorous specification as a basis for testable hypotheses and compliance tests. We have developed the Quantitative Imaging Biomarker Ontology (QIBO), which currently consists of 488 terms spanning the following upper classes: experimental subject, biological intervention, imaging agent, imaging instrument, image post-processing algorithm, biological target, indicated biology, and biomarker application. We have demonstrated that QIBO can be used to annotate imaging experiments with standardized terms in the ontology and to generate hypotheses for novel imaging biomarker-disease associations. Our results established the utility of QIBO in enabling integrated analysis of quantitative imaging data.

  2. Informatics methods to enable sharing of quantitative imaging research data.

    Science.gov (United States)

    Levy, Mia A; Freymann, John B; Kirby, Justin S; Fedorov, Andriy; Fennessy, Fiona M; Eschrich, Steven A; Berglund, Anders E; Fenstermacher, David A; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L; Brown, Bartley J; Braun, Terry A; Dekker, Andre; Roelofs, Erik; Mountz, James M; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-11-01

    The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Quantitative performance assessments for neuromagnetic imaging systems.

    Science.gov (United States)

    Koga, Ryo; Hiyama, Ei; Matsumoto, Takuya; Sekihara, Kensuke

    2013-01-01

    We have developed a Monte-Carlo simulation method to assess the performance of neuromagnetic imaging systems using two kinds of performance metrics: A-prime metric and spatial resolution. We compute these performance metrics for virtual sensor systems having 80, 160, 320, and 640 sensors, and discuss how the system performance is improved, depending on the number of sensors. We also compute these metrics for existing whole-head MEG systems, MEGvision™ (Yokogawa Electric Corporation, Tokyo, Japan) that uses axial-gradiometer sensors, and TRIUX™ (Elekta Corporate, Stockholm, Sweden) that uses planar-gradiometer and magnetometer sensors. We discuss performance comparisons between these significantly different systems.

  4. Applications of a single-molecule detection in early disease diagnosis and enzymatic reaction study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiangwei [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Various single-molecule techniques were utilized for ultra-sensitive early diagnosis of viral DNA and antigen and basic mechanism study of enzymatic reactions. DNA of human papilloma virus (HPV) served as the screening target in a flow system. Alexa Fluor 532 (AF532) labeled single-stranded DNA probes were hybridized to the target HPV-16 DNA in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell and had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, fluorescence resonance energy transfer (FRET) was employed to achieve zero false-positive count. We also showed that DNA extracts from Pap test specimens did not interfere with the system. A surface-based method was used to improve the throughput of the flow system. HPV-16 DNA was hybridized to probes on a glass surface and detected with a total internal reflection fluorescence (TIRF) microscope. In the single-probe mode, the whole genome and target DNA were fluorescently labeled before hybridization, and the detection limit is similar to the flow system. In the dual-probe mode, a second probe was introduced. The linear dynamic range covers 1.44-7000 copies/cell, which is typical of early infection to near-cancer stages. The dual-probe method was tested with a crudely prepared sample. Even with reduced hybridization efficiency caused by the interference of cellular materials, we were still able to differentiate infected cells from healthy cells. Detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1(HIV-1) was chosen to be the target in this study. The target was sandwiched between a monoclonal capture antibody and a

  5. Quantitative and qualitative analysis and interpretation of CT perfusion imaging.

    Science.gov (United States)

    Valdiviezo, Carolina; Ambrose, Marietta; Mehra, Vishal; Lardo, Albert C; Lima, Joao A C; George, Richard T

    2010-12-01

    Coronary artery disease (CAD) remains the leading cause of death in the United States. Rest and stress myocardial perfusion imaging has an important role in the non-invasive risk stratification of patients with CAD. However, diagnostic accuracies have been limited, which has led to the development of several myocardial perfusion imaging techniques. Among them, myocardial computed tomography perfusion imaging (CTP) is especially interesting as it has the unique capability of providing anatomic- as well as coronary stenosis-related functional data when combined with computed tomography angiography (CTA). The primary aim of this article is to review the qualitative, semi-quantitative, and quantitative analysis approaches to CTP imaging. In doing so, we will describe the image data required for each analysis and discuss the advantages and disadvantages of each approach.

  6. Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.

    Science.gov (United States)

    Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F

    2014-08-13

    Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.

  7. Quantitative multimodality imaging in cancer research and therapy.

    Science.gov (United States)

    Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad

    2014-11-01

    Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.

  8. Novel High-Activity Organic Piezoelectric Materials - From Single-Molecule Response to Energy Harvesting Films

    Science.gov (United States)

    2015-08-24

    Mirman, B.; Karapetian, E. “Relationship between Direct and Converse Piezoelectric Effect in a Nanoscale Electromechanical Contact,” Physical Review B...response of organic hydrogen-bonded crystals and single-molecule electromechanical response. Using the known piezoelectric response of crystalline 2...Using computational exploration of the electromechanical response other molecular scaffolds, we explored single-molecule ferroelectrics based on

  9. Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet

    NARCIS (Netherlands)

    Burzuri, E.; Zyazin, A.S.; Cornia, A.; Van der Zant, H.S.J.

    2012-01-01

    We study three-terminal charge transport through individual Fe4 single-molecule magnets. Magnetic anisotropy of the single molecule is directly observed by introducing a spectroscopic technique based on measuring the position of the degeneracy point as a function of gate voltage and applied magnetic

  10. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Science.gov (United States)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  11. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders;

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  12. Direct Observation of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet

    NARCIS (Netherlands)

    Burzuri, E.; Zyazin, A.S.; Cornia, A.; Van der Zant, H.S.J.

    2012-01-01

    We study three-terminal charge transport through individual Fe4 single-molecule magnets. Magnetic anisotropy of the single molecule is directly observed by introducing a spectroscopic technique based on measuring the position of the degeneracy point as a function of gate voltage and applied magnetic

  13. Single molecules in soft matter : a study of biomolecular conformation, heterogeneity and plasmon enhanced fluorescence

    NARCIS (Netherlands)

    Yuan, Haifeng

    2013-01-01

    We study the dynamics of single molecules and individual gold nanorods in glycerol at variable temperatures. We demonstrate temperature-cycle microscopy on FRET-labeled polyproline and double-stranded DNA molecules to access micro-second dynamics of single molecules, and reveal the influences of dye

  14. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.

    2017-09-12

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  15. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2017-07-18

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  16. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy

    NARCIS (Netherlands)

    Hashemi Shabestari, M; Meijering, A E C; Roos, W H; Wuite, G J L; Peterman, E J G

    2017-01-01

    Over the past two decades, single-molecule techniques have evolved into robust tools to study many fundamental biological processes. The combination of optical tweezers with fluorescence microscopy and microfluidics provides a powerful single-molecule manipulation and visualization technique that

  17. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    Science.gov (United States)

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    Single-molecule magnets (SMMs) are highly sought after for their potential application in high-density information storage, spintronics, and quantum computing. SMMs exhibit slow relaxation of the magnetization of purely molecular origin, thus making them excellent candidates towards the aforementioned applications. In recent years, significant focus has been placed on the rare earth elements due to their large intrinsic magnetic anisotropy arising from the near degeneracy of the 4f orbitals. Traditionally, coordination chemistry has been utilized to fabricate lanthanide-based SMMs; however, heteroatomic donor atoms such as oxygen and nitrogen have limited orbital overlap with the shielded 4f orbitals. Thus, control over the anisotropic axis and induction of f-f interactions are limited, meaning that the performance of these systems can only extend so far. To this end, we have placed considerable attention on the development of novel SMMs whose donor atoms are conjugated hydrocarbons, thereby allowing us to perturb the crystal field of lanthanide ions through the use of an electronic π-cloud. This approach allows for fine tuning of the anisotropic axis of the molecule, allowing this method the potential to elicit SMMs capable of reaching much larger values for the two vital performance measurements of an SMM, the energy barrier to spin reversal (Ueff), and the blocking temperature of the magnetization (TB). In this Account, we describe our efforts to exploit the inherent anisotropy of the late 4f elements; namely, Dy(III) and Er(III), through the use of cyclooctatetraenyl (COT) metallocenes. With respect to the Er(III) derivatives, we have seen record breaking success, reaching blocking temperatures as high as 14 K with frozen solution magnetometry. These results represent the first example of such a high TB being observed for a system with only a single spin center, formally known as a single-ion magnet (SIM). Our continued interrelationship between theoretical

  18. Quantitative image quality evaluation for cardiac CT reconstructions

    Science.gov (United States)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  19. Accuracy of Image Analysis in Quantitative Study of Cement Paste

    Directory of Open Access Journals (Sweden)

    Feng Shu-Xia

    2016-01-01

    Full Text Available Quantitative study on cement paste especially blended cement paste has been a hot and difficult issue over the years, and the technique of backscattered electron image analysis showed unique advantages in this field. This paper compared the test results of cement hydration degree, Ca(OH2 content and pore size distribution in pure pastes by image analysis and other methods. Then the accuracy of qualitative study by image analysis was analyzed. The results showed that image analysis technique had displayed higher accuracy in quantifying cement hydration degree and Ca(OH2 content than non-evaporable water test and thermal analysis respectively.

  20. Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging

    Science.gov (United States)

    Washko, George R.; Parraga, Grace; Coxson, Harvey O.

    2011-01-01

    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490

  1. Directional Raman scattering from single molecules in the feed gaps of optical antennas.

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D; Camden, Jon P; Crozier, Kenneth B

    2013-05-08

    Controlling light from single emitters is an overarching theme of nano-optics. Antennas are routinely used to modify the angular emission patterns of radio wave sources. "Optical antennas" translate these principles to visible and infrared wavelengths and have been recently used to modify fluorescence from single quantum dots and single molecules. Understanding the properties of single molecules, however, would be advanced were one able to observe their vibrational spectra through Raman scattering in a very reproducible manner but it is a hugely challenging task, as Raman scattering cross sections are very weak. Here we measure for the first time the highly directional emission patterns of Raman scattering from single molecules in the feed gaps of optical antennas fabricated on a chip. More than a thousand single molecule events are observed, revealing that an unprecedented near-unity fraction of optical antennas have single molecule sensitivity.

  2. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents.

    Science.gov (United States)

    Black, Jacob; Kamenetska, Maria; Ganim, Ziad

    2017-10-03

    Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.

  3. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    Science.gov (United States)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  4. Prior image constrained compressed sensing: a quantitative performance evaluation

    Science.gov (United States)

    Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong

    2012-03-01

    The appeal of compressed sensing (CS) in the context of medical imaging is undeniable. In MRI, it could enable shorter acquisition times while in CT, it has the potential to reduce the ionizing radiation dose imparted to patients. However, images reconstructed using a CS-based approach often show an unusual texture and a potential loss in spatial resolution. The prior image constrained compressed sensing (PICCS) algorithm has been shown to enable accurate image reconstruction at lower levels of sampling. This study systematically evaluates an implementation of PICCS applied to myocardial perfusion imaging with respect to two parameters of its objective function. The prior image parameter α was shown here to yield an optimal image quality in the range 0.4 to 0.5. A quantitative evaluation in terms of temporal resolution, spatial resolution, noise level, noise texture, and reconstruction accuracy was performed.

  5. Integration of biological ion channels onto optically addressable micro-fluidic electrode arrays for single molecule characterization.

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan Marie; Frink, Laura J. Douglas; Bachand, George David; Keller, David J. (University of New Mexico, Albuquerque, NM); Patrick, Elizabeth L.; Marshall, Jason A. (University of New Mexico, Albuquerque, NM); Ortiz, Theodore P. (University of New Mexico, Albuquerque, NM); Meyer, Lauren A. (University of New Mexico, Albuquerque, NM); Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Flemming, Jeb Hunter

    2004-12-01

    The challenge of modeling the organization and function of biological membranes on a solid support has received considerable attention in recent years, primarily driven by potential applications in biosensor design. Affinity-based biosensors show great promise for extremely sensitive detection of BW agents and toxins. Receptor molecules have been successfully incorporated into phospholipid bilayers supported on sensing platforms. However, a collective body of data detailing a mechanistic understanding of membrane processes involved in receptor-substrate interactions and the competition between localized perturbations and delocalized responses resulting in reorganization of transmembrane protein structure, has yet to be produced. This report describes a systematic procedure to develop detailed correlation between (recognition-induced) protein restructuring and function of a ligand gated ion channel by combining single molecule fluorescence spectroscopy and single channel current recordings. This document is divided into three sections: (1) reported are the thermodynamics and diffusion properties of gramicidin using single molecule fluorescence imaging and (2) preliminary work on the 5HT{sub 3} serotonin receptor. Thirdly, we describe the design and fabrication of a miniaturized platform using the concepts of these two technologies (spectroscopic and single channel electrochemical techniques) for single molecule analysis, with a longer term goal of using the physical and electronic changes caused by a specific molecular recognition event as a transduction pathway in affinity based biosensors for biotoxin detection.

  6. Single-molecule microscopy using silicone oil immersion objective lenses

    NARCIS (Netherlands)

    M. Hink

    2012-01-01

    Microscopy techniques capable of detecting individual molecules and providing quantitative data have the potential to offer great biological insight; however, such approaches require the efficient capture of light. Here, Mark Hink explains how the use of new silicone oil immersion objective lenses c

  7. Bridging the gap between single molecule and ensemble methods for measuring lateral dynamics in the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Eva C Arnspang

    Full Text Available The lateral dynamics of proteins and lipids in the mammalian plasma membrane are heterogeneous likely reflecting both a complex molecular organization and interactions with other macromolecules that reside outside the plane of the membrane. Several methods are commonly used for characterizing the lateral dynamics of lipids and proteins. These experimental and data analysis methods differ in equipment requirements, labeling complexities, and further oftentimes give different results. It would therefore be very convenient to have a single method that is flexible in the choice of fluorescent label and labeling densities from single molecules to ensemble measurements, that can be performed on a conventional wide-field microscope, and that is suitable for fast and accurate analysis. In this work we show that k-space image correlation spectroscopy (kICS analysis, a technique which was originally developed for analyzing lateral dynamics in samples that are labeled at high densities, can also be used for fast and accurate analysis of single molecule density data of lipids and proteins labeled with quantum dots (QDs. We have further used kICS to investigate the effect of the label size and by comparing the results for a biotinylated lipid labeled at high densities with Atto647N-strepatvidin (sAv or sparse densities with sAv-QDs. In this latter case, we see that the recovered diffusion rate is two-fold greater for the same lipid and in the same cell-type when labeled with Atto647N-sAv as compared to sAv-QDs. This data demonstrates that kICS can be used for analysis of single molecule data and furthermore can bridge between samples with a labeling densities ranging from single molecule to ensemble level measurements.

  8. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features.

    Science.gov (United States)

    Gevaert, Olivier; Mitchell, Lex A; Achrol, Achal S; Xu, Jiajing; Echegaray, Sebastian; Steinberg, Gary K; Cheshier, Samuel H; Napel, Sandy; Zaharchuk, Greg; Plevritis, Sylvia K

    2014-10-01

    To derive quantitative image features from magnetic resonance (MR) images that characterize the radiographic phenotype of glioblastoma multiforme (GBM) lesions and to create radiogenomic maps associating these features with various molecular data. Clinical, molecular, and MR imaging data for GBMs in 55 patients were obtained from the Cancer Genome Atlas and the Cancer Imaging Archive after local ethics committee and institutional review board approval. Regions of interest (ROIs) corresponding to enhancing necrotic portions of tumor and peritumoral edema were drawn, and quantitative image features were derived from these ROIs. Robust quantitative image features were defined on the basis of an intraclass correlation coefficient of 0.6 for a digital algorithmic modification and a test-retest analysis. The robust features were visualized by using hierarchic clustering and were correlated with survival by using Cox proportional hazards modeling. Next, these robust image features were correlated with manual radiologist annotations from the Visually Accessible Rembrandt Images (VASARI) feature set and GBM molecular subgroups by using nonparametric statistical tests. A bioinformatic algorithm was used to create gene expression modules, defined as a set of coexpressed genes together with a multivariate model of cancer driver genes predictive of the module's expression pattern. Modules were correlated with robust image features by using the Spearman correlation test to create radiogenomic maps and to link robust image features with molecular pathways. Eighteen image features passed the robustness analysis and were further analyzed for the three types of ROIs, for a total of 54 image features. Three enhancement features were significantly correlated with survival, 77 significant correlations were found between robust quantitative features and the VASARI feature set, and seven image features were correlated with molecular subgroups (P < .05 for all). A radiogenomics map was

  9. Quantitative amyloid imaging using image-derived arterial input function.

    Directory of Open Access Journals (Sweden)

    Yi Su

    Full Text Available Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD. Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB PET imaging and MR imaging including a time-of-flight (TOF MR angiography (MRA scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80. The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference

  10. Quantitative amyloid imaging using image-derived arterial input function.

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M; Snyder, Abraham Z; Raichle, Marcus E; Hornbeck, Russ C; Aldea, Patricia; Morris, John C; Benzinger, Tammie L S

    2015-01-01

    Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD). Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB) PET imaging and MR imaging including a time-of-flight (TOF) MR angiography (MRA) scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT) was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic) without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80). The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference normalization may

  11. Genome-Wide Analysis of Protein and mRNA Copy Numbers in Single Escherichia coli Cells with Single-Molecule Sensitivity.

    Science.gov (United States)

    Taniguchi, Yuichi

    2015-01-01

    Single-cell proteomic and transcriptomic analysis is an emerging approach for providing quantitative and comprehensive characterization of gene functions in individual cells. This analysis, however, is often hampered by insufficient sensitivity for detecting low copy gene expression products such as transcription factors and regulators. Here I describe a method for the quantitative genome-wide analysis of single-cell protein and mRNA copy numbers with single molecule sensitivity for the model organism Escherichia coli.

  12. Stochastic models of transcription: from single molecules to single cells.

    Science.gov (United States)

    Sanchez, Alvaro; Choubey, Sandeep; Kondev, Jane

    2013-07-15

    Genes in prokaryotic and eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a variety of transcription factors leading to a specific functional dependence between regulatory inputs and transcriptional outputs. With increasing regularity, the transcriptional outputs from different promoters are being measured in quantitative detail in single-cell experiments thus providing the impetus for the development of quantitative models of transcription. We describe recent progress in developing models of transcriptional regulation that incorporate, to different degrees, the complexity of multi-state promoter dynamics, and its effect on the transcriptional outputs of single cells. The goal of these models is to predict the statistical properties of transcriptional outputs and characterize their variability in time and across a population of cells, as a function of the input concentrations of transcription factors. The interplay between mathematical models of different regulatory mechanisms and quantitative biophysical experiments holds the promise of elucidating the molecular-scale mechanisms of transcriptional regulation in cells, from bacteria to higher eukaryotes. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Generalized PSF modeling for optimized quantitation in PET imaging

    Science.gov (United States)

    Ashrafinia, Saeed; Mohy-ud-Din, Hassan; Karakatsanis, Nicolas A.; Jha, Abhinav K.; Casey, Michael E.; Kadrmas, Dan J.; Rahmim, Arman

    2017-06-01

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUVmean and SUVmax, including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUVmean bias in small tumours. Overall, the results indicate that exactly matched PSF

  14. Quantitative Comparison of Y-90 and Ge-68 PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sangkeun; Kwak, Shin Hye; Lee, Jeong A; Song, Han Kyeol; Kang, Joo Hyun; Lim, Sang Moo; KIm, Kyeong Min [Korea Institute of Raiological and Medical Sciences, Seoul (Korea, Republic of); Jeong, Su Young [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2014-05-15

    The purpose of this study was to assess statistical characteristics and to improve count rate of image for enhancing Y-90 image quality by using non-parametric bootstrap method. The results showed that Y-90 PET image can be improved using non-parametric bootstrap method. PET data was able to be improved using non-parametric bootstrap method and it was verified with showing improved prompts rate. Y-90 PET image quality was improved and bias indicated that the bootstrapped image was more similar to the gold standard than other images. The non-parametric bootstrap method will be useful tool for enhancing Y-90 PET image and it will be expected to reduce time for acquisition and to elevate performance for diagnosis and treatment. Yttrium-90 (Y-90) radioembolization is one of the treatment methods unrespectable stage of hepatocellular carcinoma (HCC) and metastatic colon cancer to the liver. However, Y-90 radioembolization is a catheter-based therapy that delivers internal radiation to tumors, it results in greater radiation exposure to the tumors than using external radiation. Also, unlike other current therapies for the treatment of unresectable liver tumors, Y-90 radioembolization is much less often associated with toxicities such as abdominal pain, fever, nausea, and vomiting. Therefore Y-90 has been received much interest and studied by many researchers. Imaging of Y-90 has been conducted using most commonly gamma camera but quantitative PET imaging is required due to low sensitivity and resolution. Y-90 imaging is generally performed with SPECT by Bremsstrahlung photons. Unfortunately, the low image quality due to the nature of the Bremsstrahlung photon limits the quantitative accuracy of Y-90 SPECT. To overcome this limitation in SPECT imaging, Y-90 PET has been suggested as an alternative.

  15. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research

    Directory of Open Access Journals (Sweden)

    Alexander Gust

    2014-09-01

    Full Text Available Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  16. A starting point for fluorescence-based single-molecule measurements in biomolecular research.

    Science.gov (United States)

    Gust, Alexander; Zander, Adrian; Gietl, Andreas; Holzmeister, Phil; Schulz, Sarah; Lalkens, Birka; Tinnefeld, Philip; Grohmann, Dina

    2014-09-30

    Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET) experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  17. When is a single molecule heterogeneous? A multidimensional answer and its application to dynamics near the glass transition

    Science.gov (United States)

    Verma, Sachin Dev; Vanden Bout, David A.; Berg, Mark A.

    2015-07-01

    Even for apparently simple condensed-phase processes, bulk measurements of relaxation often yield nonexponential decays; the rate appears to be dispersed over a range of values. Taking averages over individual molecules is an intuitive way to determine whether heterogeneity is responsible for such rate dispersion. However, this method is in fundamental conflict with ergodic behavior and often yields ambiguous results. This paper proposes a new definition of rate heterogeneity for ergodic systems based on multidimensional time correlation functions. Averages are taken over both time and molecules. Because the data set is not subdivided, the signal-to-noise ratio is improved. Moment-based quantities are introduced to quantify the concept of rate dispersion. As a result, quantitative statements about the fraction of the dispersion due to heterogeneity are possible, and the experimental noise is further averaged. The practicality of this approach is demonstrated on single-molecule, linear-dichroism trajectories for R6G in poly(cyclohexyl acrylate) near its glass transition. Single-molecule averaging of these data does not provide useful conclusions [C. Y. Lu and D. A. Vanden Bout, J. Chem. Phys. 125, 124701 (2006)]. However, full-ensemble, two- and three-dimensional averages of the same data give clear and quantitative results: the rate dispersion is 95% ± 5% due to heterogeneity, and the rate exchange is at least 11 times longer than the mean rotation time and possibly much longer. Based on these results, we suggest that the study of heterogeneous materials should not focus on "ensemble" versus "single-molecule" experiments, but on one-dimensional versus multidimensional measurements.

  18. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    Science.gov (United States)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  19. Semiconductor defect metrology using laser-based quantitative phase imaging

    Science.gov (United States)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford

    2015-03-01

    A highly sensitive laser-based quantitative phase imaging tool, using an epi-illumination diffraction phase microscope, has been developed for silicon wafer defect inspection. The first system used a 532 nm solid-state laser and detected 20 nm by 100 nm by 110 nm defects in a 22 nm node patterned silicon wafer. The second system, using a 405 nm diode laser, is more sensitive and has enabled detection of 15 nm by 90 nm by 35 nm defects in a 9 nm node densely patterned silicon wafer. In addition to imaging, wafer scanning and image-post processing are also crucial for defect detection.

  20. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    Science.gov (United States)

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. CMOS APS detector characterization for quantitative X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Endrizzi, Marco, E-mail: m.endrizzi@ucl.ac.uk [Dipartimento di Fisica, Università di Siena, Via Roma 56, 53100 Siena (Italy); Istituto Nazionale di Fisica Nucleare INFN, sezione di Pisa, 56127 Pisa (Italy); Oliva, Piernicola [Dipartimento di Chimica e Farmacia, Università di Sassari, via Piandanna 4, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Cagliari, 09042 Cagliari (Italy); Golosio, Bruno [Sezione di Matematica, Fisica e Ingegneria dell' Informazione, Università di Sassari, via Piandanna 4, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Cagliari, 09042 Cagliari (Italy); Delogu, Pasquale [Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare INFN, sezione di Pisa, 56127 Pisa (Italy)

    2013-03-01

    An X-ray Imaging detector based on CMOS Active Pixel Sensor and structured scintillator is characterized for quantitative X-ray imaging in the energy range 11–30 keV. Linearity, dark noise, spatial resolution and flat-field correction are the characteristics of the detector subject of investigation. The detector response, in terms of mean Analog-to-Digital Unit and noise, is modeled as a function of the energy and intensity of the X-rays. The model is directly tested using monochromatic X-ray beams and it is also indirectly validated by means of polychromatic X-ray-tube spectra. Such a characterization is suitable for quantitative X-ray imaging and the model can be used in simulation studies that take into account the actual performance of the detector.

  2. Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors.

    Science.gov (United States)

    Elting, Mary Williard; Spudich, James A

    2012-12-11

    Single-molecule analysis is a powerful modern form of biochemistry, in which individual kinetic steps of a catalytic cycle of an enzyme can be explored in exquisite detail. Both single-molecule fluorescence and single-molecule force techniques have been widely used to characterize a number of protein systems. We focus here on molecular motors as a paradigm. We describe two areas where we expect to see exciting developments in the near future: first, characterizing the coupling of force production to chemical and mechanical changes in motors, and second, understanding how multiple motors work together in the environment of the cell.

  3. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.

    2017-01-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular...... junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance...

  4. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.

    Science.gov (United States)

    Zhu, Zhi; Yang, Chaoyong James

    2017-01-17

    Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single

  5. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2017-02-01

    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS, and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles.

  6. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    Science.gov (United States)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  7. Single-Molecule Analysis of Protein Large-Amplitude Conformational Transitions

    Science.gov (United States)

    Yang, Haw

    2011-03-01

    Proteins have evolved to harness thermal fluctuations, rather than frustrated by them, to carry out chemical transformations and mechanical work. What are, then, the operation and design principles of protein machines? To frame the problem in a tractable way, several basic questions have been formulated to guide the experimental design: (a) How many conformational states can a protein sample on the functionally important timescale? (b) What are the inter-conversion rates between states? (c) How do ligand binding or interactions with other proteins modulate the motions? (d) What are the structural basis of flexibility and its underlying molecular mechanics? Guided by this framework, we have studied protein tyrosine phosphatase B, PtpB, from M. tuberculosis (a virulence factor of tuberculosis and a potential drug target) and adenylate kinase, AK, from E. coli (a ubiquitous energy-balancing enzyme in cells). These domain movements have been followed in real time on their respective catalytic timescales using high-resolution single-molecule Förster resonance energy transfer (FRET) spectroscopy. It is shown quantitatively that both PtpB and AK are capable of dynamically sampling two distinct states that correlate well with those observed by x-ray crystallography. Integrating these microscopic dynamics into macroscopic kinetics allows us to place the experimentally measured free-energy landscape in the context of enzymatic turnovers.

  8. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.

    Science.gov (United States)

    Götz, M; Wortmann, P; Schmid, S; Hugel, T

    2016-01-01

    Single-molecule Förster resonance energy transfer (smFRET) is a versatile tool for studying biomolecules in a quantitative manner. Multiple conformations within and interactions between biomolecules can be detected and their kinetics can be determined. Thus, smFRET has become an essential tool in enzymology. Ordinary two-color smFRET experiments can provide only limited insight into the function of biological systems, which commonly consist of more than two components. A complete understanding of complex multicomponent biological systems requires correlated information on conformational rearrangements on the one hand and transient interactions with binding partners on the other. Multicolor smFRET experiments enable the direct observation of such correlated dynamics and interactions. Here we demonstrate the power and limitations of multicolor smFRET experiments including the description of a multicolor smFRET setup and data analysis. A general analytical procedure for multicolor smFRET data is presented and applied to the multicomponent heat shock protein 90 system. This allows us to identify microscopic states in transient complexes. Conformational dynamics and nucleotide binding are simultaneously detected, which is impossible using two-color smFRET. Additionally, their correlation is quantified using 3D ensemble hidden Markov analysis, in and out of equilibrium. This method is perfectly suited for protein systems that are much more sophisticated than previously studied DNA-based systems. By extending the application to biologically relevant systems, multicolor smFRET comes of age and provides a unique mechanistic insight into protein machines.

  9. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome.

    Science.gov (United States)

    Yue, Hongjun; Fang, He; Wei, Sijie; Hayes, Jeffrey J; Lee, Tae-Hee

    2016-04-12

    Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin.

  10. Assessing the Reliability of Quantitative Imaging of Sm-153

    Science.gov (United States)

    Poh, Zijie; Dagan, Maáyan; Veldman, Jeanette; Trees, Brad

    2013-03-01

    Samarium-153 is used for palliation of and recently has been investigated for therapy for bone metastases. Patient specific dosing of Sm-153 is based on quantitative single-photon emission computed tomography (SPECT) and knowing the accuracy and precision of image-based estimates of the in vivo activity distribution. Physical phantom studies are useful for estimating these in simple objects, but do not model realistic activity distributions. We are using realistic Monte Carlo simulations combined with a realistic digital phantom modeling human anatomy to assess the accuracy and precision of Sm-153 SPECT. Preliminary data indicates that we can simulate projection images and reconstruct them with compensation for various physical image degrading factors, such as attenuation and scatter in the body as well as non-idealities in the imaging system, to provide realistic SPECT images.

  11. Studying DNA translocation in nanocapillaries using single molecule fluorescence

    CERN Document Server

    Thacker, Vivek V; Hernández-Ainsa, Silvia; Bell, Nicholas A W; Keyser, Ulrich F; 10.1063/1.4768929

    2013-01-01

    We demonstrate simultaneous measurements of DNA translocation into glass nanopores using ionic current detection and fluorescent imaging. We verify the correspondence between the passage of a single DNA molecule through the nanopore and the accompanying characteristic ionic current blockage. By tracking the motion of individual DNA molecules in the nanocapillary perpendicular to the optical axis and using a model, we can extract an effective mobility constant for DNA in our geometry under high electric fields.

  12. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    Science.gov (United States)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  13. Time resolved single molecule spectroscopy of semiconductor quantum dot/conjugated organic hybrid nanostructures

    Science.gov (United States)

    Odoi, Michael Yemoh

    Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(tau) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2) (0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering , blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the Cd

  14. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    Science.gov (United States)

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively.

  15. Multiparametric Quantitative Ultrasound Imaging in Assessment of Chronic Kidney Disease.

    Science.gov (United States)

    Gao, Jing; Perlman, Alan; Kalache, Safa; Berman, Nathaniel; Seshan, Surya; Salvatore, Steven; Smith, Lindsey; Wehrli, Natasha; Waldron, Levi; Kodali, Hanish; Chevalier, James

    2017-04-13

    To evaluate the value of multiparametric quantitative ultrasound imaging in assessing chronic kidney disease (CKD) using kidney biopsy pathologic findings as reference standards. We prospectively measured multiparametric quantitative ultrasound markers with grayscale, spectral Doppler, and acoustic radiation force impulse imaging in 25 patients with CKD before kidney biopsy and 10 healthy volunteers. Based on all pathologic (glomerulosclerosis, interstitial fibrosis/tubular atrophy, arteriosclerosis, and edema) scores, the patients with CKD were classified into mild (no grade 3 and quantitative ultrasound parameters included kidney length, cortical thickness, pixel intensity, parenchymal shear wave velocity, intrarenal artery peak systolic velocity (PSV), end-diastolic velocity (EDV), and resistive index. We tested the difference in quantitative ultrasound parameters among mild CKD, moderate to severe CKD, and healthy controls using analysis of variance, analyzed correlations of quantitative ultrasound parameters with pathologic scores and the estimated glomerular filtration rate (GFR) using Pearson correlation coefficients, and examined the diagnostic performance of quantitative ultrasound parameters in determining moderate CKD and an estimated GFR of less than 60 mL/min/1.73 m(2) using receiver operating characteristic curve analysis. There were significant differences in cortical thickness, pixel intensity, PSV, and EDV among the 3 groups (all P quantitative ultrasound parameters, the top areas under the receiver operating characteristic curves for PSV and EDV were 0.88 and 0.97, respectively, for determining pathologic moderate to severe CKD, and 0.76 and 0.86 for estimated GFR of less than 60 mL/min/1.73 m(2) . Moderate to good correlations were found for PSV, EDV, and pixel intensity with pathologic scores and estimated GFR. The PSV, EDV, and pixel intensity are valuable in determining moderate to severe CKD. The value of shear wave velocity in

  16. Quantitative analysis of in vivo confocal microscopy images: a review.

    Science.gov (United States)

    Patel, Dipika V; McGhee, Charles N

    2013-01-01

    In vivo confocal microscopy (IVCM) is a non-invasive method of examining the living human cornea. The recent trend towards quantitative studies using IVCM has led to the development of a variety of methods for quantifying image parameters. When selecting IVCM images for quantitative analysis, it is important to be consistent regarding the location, depth, and quality of images. All images should be de-identified, randomized, and calibrated prior to analysis. Numerous image analysis software are available, each with their own advantages and disadvantages. Criteria for analyzing corneal epithelium, sub-basal nerves, keratocytes, endothelium, and immune/inflammatory cells have been developed, although there is inconsistency among research groups regarding parameter definition. The quantification of stromal nerve parameters, however, remains a challenge. Most studies report lower inter-observer repeatability compared with intra-observer repeatability, and observer experience is known to be an important factor. Standardization of IVCM image analysis through the use of a reading center would be crucial for any future large, multi-centre clinical trials using IVCM.

  17. From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy.

    Science.gov (United States)

    Wang, Bowen; Durantini, Javier; Decan, Matthew R; Nie, Jun; Lanterna, Anabel E; Scaiano, Juan C

    2016-12-22

    Single molecule spectroscopy (SMS) inspired the optimization of a heterogeneous 'click' catalyst leading to enhanced yields of the Cu-catalyzed reaction of azides with terminal alkynes. Changes in SMS data after optimization confirm the improvements in catalyst performance.

  18. Single Molecule Photobleaching Probes the Exciton Wavefunction in a Multichromophoric System

    NARCIS (Netherlands)

    Hernando, J.; Hoogenboom, J.P.; Dijk, van E.M.H.P.; Garcia-Lopez, J.J.; Crego Calama, M.; Reinhoudt, D.N.; Hulst, van N.F.; Garcia-Parajo, M.F.

    2004-01-01

    The exciton wave function of a trichromophoric system is investigated by means of single molecule spectroscopy at room temperature. Individual trimers exhibit superradiance and loss of vibronic structure in emission spectrum, features proving exciton delocalization. We identify two distinct photodeg

  19. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience

    DEFF Research Database (Denmark)

    Christensen, Andreas Lauge; Lohr, Christina; Christensen, Sune M.;

    2013-01-01

    , their fabrication via controlled self-assembly, and their characterization using fluorescence microscopy. We also highlight their applications in selected fields such as nanofluidics and single molecule bioscience. Despite their great potential for improved biocompatibility, extreme miniaturization and high...

  20. Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets

    National Research Council Canada - National Science Library

    Schwöbel, Jörg; Fu, Yingshuang; Brede, Jens; Dilullo, Andrew; Hoffmann, Germar; Klyatskaya, Svetlana; Ruben, Mario; Wiesendanger, Roland

    2012-01-01

    A key challenge in the field of molecular spintronics, and for the design of single-molecule magnet-based devices in particular, is the understanding and control of the molecular coupling at the electrode interfaces...

  1. Single-molecule detection at high concentrations with optical aperture nanoantennas

    Science.gov (United States)

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-01

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  2. Summary of Quantitative Interpretation of Image Far Ultraviolet Auroral Data

    Science.gov (United States)

    Frey, H. U.; Immel, T. J.; Mende, S. B.; Gerard, J.-C.; Hubert, B.; Habraken, S.; Span, J.; Gladstone, G. R.; Bisikalo, D. V.; Shematovich, V. I.; hide

    2002-01-01

    Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from thc magnetosphere into the atmosphere. This paper describes provides the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial and temporal resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman alpha emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman alpha images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy fluxun-. To accomplish this reliable modeling emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.

  3. Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

    Science.gov (United States)

    2013-11-18

    Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect Hu Cang,†,‡ Yongmin Liu,†,§,∥ Yuan Wang,† Xiaobo Yin,†,⊥ and...Information ABSTRACT: We report giant suppression of photobleaching and a prolonged lifespan of single fluorescent molecules via the Purcell effect in... Purcell effect to manipulate photochemical reactions at the subwavelength scale. KEYWORDS: Nano-optics, single-molecule fluorescence spectroscopy

  4. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    OpenAIRE

    Murphy, Rebecca R.; Jackson, Sophie E.; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely...

  5. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    OpenAIRE

    2009-01-01

    Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten ...

  6. Modulation of homochiral Dy(III) complexes: single-molecule magnets with ferroelectric properties.

    Science.gov (United States)

    Li, Xi-Li; Chen, Chun-Lai; Gao, Yu-Liang; Liu, Cai-Ming; Feng, Xiang-Li; Gui, Yang-Hai; Fang, Shao-Ming

    2012-11-12

    Homochiral Dy(III) complexes: by changing the ligand-to-metal ratio, enantiomeric pairs of a Dy(III) complex of different nuclearity could be obtained. The mono- and dinuclear complexes exhibit characteristics of single-molecule magnets and different slow magnetic relaxation processes. In addition, the dinuclear complexes exhibit ferroelectric behavior, thus representing the first chiral polynuclear lanthanide-based single-molecule magnets with ferroelectric properties.

  7. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing

    Science.gov (United States)

    Shah, Sheel; Lubeck, Eric; Schwarzkopf, Maayan; He, Ting-Fang; Greenbaum, Alon; Sohn, Chang Ho; Lignell, Antti; Choi, Harry M. T.; Gradinaru, Viviana; Pierce, Niles A.

    2016-01-01

    Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas – from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH. PMID:27342713

  8. Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking.

    Science.gov (United States)

    Smith, Carlas S; Stallinga, Sjoerd; Lidke, Keith A; Rieger, Bernd; Grunwald, David

    2015-11-01

    Single-molecule detection in fluorescence nanoscopy has become a powerful tool in cell biology but can present vexing issues in image analysis, such as limited signal, unspecific background, empirically set thresholds, image filtering, and false-positive detection limiting overall detection efficiency. Here we present a framework in which expert knowledge and parameter tweaking are replaced with a probability-based hypothesis test. Our method delivers robust and threshold-free signal detection with a defined error estimate and improved detection of weaker signals. The probability value has consequences for downstream data analysis, such as weighing a series of detections and corresponding probabilities, Bayesian propagation of probability, or defining metrics in tracking applications. We show that the method outperforms all current approaches, yielding a detection efficiency of >70% and a false-positive detection rate of <5% under conditions down to 17 photons/pixel background and 180 photons/molecule signal, which is beneficial for any kind of photon-limited application. Examples include limited brightness and photostability, phototoxicity in live-cell single-molecule imaging, and use of new labels for nanoscopy. We present simulations, experimental data, and tracking of low-signal mRNAs in yeast cells.

  9. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  10. Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches.

    Science.gov (United States)

    Musser, Siegfried M; Grünwald, David

    2016-05-22

    Due to its central role in macromolecular trafficking and nucleocytoplasmic information transfer, the nuclear pore complex (NPC) has been studied in great detail using a wide spectrum of methods. Consequently, many aspects of its architecture, general function, and role in the life cycle of a cell are well understood. Over the last decade, fluorescence microscopy methods have enabled the real-time visualization of single molecules interacting with and transiting through the NPC, allowing novel questions to be examined with nanometer precision. While initial single-molecule studies focused primarily on import pathways using permeabilized cells, it has recently proven feasible to investigate the export of mRNAs in living cells. Single-molecule assays can address questions that are difficult or impossible to answer by other means, yet the complexity of nucleocytoplasmic transport requires that interpretation be based on a firm genetic, biochemical, and structural foundation. Moreover, conceptually simple single-molecule experiments remain technically challenging, particularly with regard to signal intensity, signal-to-noise ratio, and the analysis of noise, stochasticity, and precision. We discuss nuclear transport issues recently addressed by single-molecule microscopy, evaluate the limits of existing assays and data, and identify open questions for future studies. We expect that single-molecule fluorescence approaches will continue to be applied to outstanding nucleocytoplasmic transport questions, and that the approaches developed for NPC studies are extendable to additional complex systems and pathways within cells.

  11. The Quantitative Science of Evaluating Imaging Evidence.

    Science.gov (United States)

    Genders, Tessa S S; Ferket, Bart S; Hunink, M G Myriam

    2017-03-01

    Cardiovascular diagnostic imaging tests are increasingly used in everyday clinical practice, but are often imperfect, just like any other diagnostic test. The performance of a cardiovascular diagnostic imaging test is usually expressed in terms of sensitivity and specificity compared with the reference standard (gold standard) for diagnosing the disease. However, evidence-based application of a diagnostic test also requires knowledge about the pre-test probability of disease, the benefit of making a correct diagnosis, the harm caused by false-positive imaging test results, and potential adverse effects of performing the test itself. To assist in clinical decision making regarding appropriate use of cardiovascular diagnostic imaging tests, we reviewed quantitative concepts related to diagnostic performance (e.g., sensitivity, specificity, predictive values, likelihood ratios), as well as possible biases and solutions in diagnostic performance studies, Bayesian principles, and the threshold approach to decision making. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. 3D quantitative phase imaging of neural networks using WDT

    Science.gov (United States)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  13. Novel method for ANA quantitation using IIF imaging system.

    Science.gov (United States)

    Peng, Xiaodong; Tang, Jiangtao; Wu, Yongkang; Yang, Bin; Hu, Jing

    2014-02-01

    A variety of antinuclear antibodies (ANAs) are found in the serum of patients with autoimmune diseases. The detection of abnormal ANA titers is a critical criterion for diagnosis of systemic lupus erythematosus (SLE) and other connective tissue diseases. Indirect immunofluorescence assay (IIF) on HEp-2 cells is the gold standard method to determine the presence of ANA and therefore provides information about the localization of autoantigens that are useful for diagnosis. However, its utility was limited in prognosing and monitoring of disease activity due to the lack of standardization in performing the technique, subjectivity in interpreting the results and the fact that it is only semi-quantitative. On the other hand, ELISA for the detection of ANA can quantitate ANA but could not provide further information about the localization of the autoantigens. It would be ideal to integrate both of the quantitative and qualitative methods. To address this issue, this study was conducted to quantitatively detect ANAs by using IIF imaging analysis system. Serum samples from patients with ANA positive (including speckled, homogeneous, nuclear mixture and cytoplasmic mixture patterns) and negative were detected for ANA titers by the classical IIF and analyzed by an image system, the image of each sample was acquired by the digital imaging system and the green fluorescence intensity was quantified by the Image-Pro plus software. A good correlation was found in between two methods and the correlation coefficients (R(2)) of various ANA patterns were 0.942 (speckled), 0.942 (homogeneous), 0.923 (nuclear mixture) and 0.760 (cytoplasmic mixture), respectively. The fluorescence density was linearly correlated with the log of ANA titers in various ANA patterns (R(2)>0.95). Moreover, the novel ANA quantitation method showed good reproducibility (F=0.091, p>0.05) with mean±SD and CV% of positive, and negative quality controls were equal to 126.4±9.6 and 7.6%, 10.4±1.25 and 12

  14. Quantitative imaging of complex samples by spiral phase contrast microscopy.

    Science.gov (United States)

    Bernet, Stefan; Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Ritsch-Marte, Monika

    2006-05-01

    Recently a spatial spiral phase filter in a Fourier plane of a microscopic imaging setup has been demonstrated to produce edge enhancement and relief-like shadow formation of amplitude and phase samples. Here we demonstrate that a sequence of at least 3 spatially filtered images, which are recorded with different rotational orientations of the spiral phase plate, can be used to obtain a quantitative reconstruction of both, amplitude and phase information of a complex microscopic sample, i.e. an object consisting of mixed absorptive and refractive components. The method is demonstrated using a calibrated phase sample, and an epithelial cheek cell.

  15. Quantitative colorimetric-imaging analysis of nickel in iron meteorites.

    Science.gov (United States)

    Zamora, L Lahuerta; López, P Alemán; Fos, G M Antón; Algarra, R Martín; Romero, A M Mellado; Calatayud, J Martínez

    2011-02-15

    A quantitative analytical imaging approach for determining the nickel content of metallic meteorites is proposed. The approach uses a digital image of a series of standard solutions of the nickel-dimethylglyoxime coloured chelate and a meteorite sample solution subjected to the same treatment as the nickel standards for quantitation. The image is processed with suitable software to assign a colour-dependent numerical value (analytical signal) to each standard. Such a value is directly proportional to the analyte concentration, which facilitates construction of a calibration graph where the value for the unknown sample can be interpolated to calculate the nickel content of the meteorite. The results thus obtained were validated by comparison with the official, ISO-endorsed spectrophotometric method for nickel. The proposed method is fairly simple and inexpensive; in fact, it uses a commercially available digital camera as measuring instrument and the images it provides are processed with highly user-friendly public domain software (specifically, ImageJ, developed by the National Institutes of Health and freely available for download on the Internet). In a scenario dominated by increasingly sophisticated and expensive equipment, the proposed method provides a cost-effective alternative based on simple, robust hardware that is affordable and can be readily accessed worldwide. This can be especially advantageous for countries were available resources for analytical equipment investments are scant. The proposed method is essentially an adaptation of classical chemical analysis to current, straightforward, robust, cost-effective instrumentation. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer.

    Science.gov (United States)

    Thiel, L; Rohner, D; Ganzhorn, M; Appel, P; Neu, E; Müller, B; Kleiner, R; Koelle, D; Maletinsky, P

    2016-08-01

    Microscopic studies of superconductors and their vortices play a pivotal role in understanding the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray fields enable access to fundamental aspects such as nanoscale variations in superfluid densities or the order parameter symmetry of superconductors. However, experimental tools that offer quantitative, nanoscale magnetometry and operate over large ranges of temperature and magnetic fields are still lacking. Here, we demonstrate the first operation of a cryogenic scanning quantum sensor in the form of a single nitrogen-vacancy electronic spin in diamond, which is capable of overcoming these existing limitations. To demonstrate the power of our approach, we perform quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBa2Cu3O7-δ. With a sensor-to-sample distance of ∼10 nm, we observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, and find excellent quantitative agreement with Pearl's analytic model. Our experiments provide a non-invasive and unambiguous determination of the system's local penetration depth and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning nitrogen-vacancy magnetometry.

  17. Characterization of cellular traction forces at the single-molecule level

    Science.gov (United States)

    Dunn, Alexander

    2013-03-01

    The ability of cells to generate and respond to mechanical cues is an essential aspect of stem cell differentiation, embryonic development, and our senses of touch and hearing. However, our understanding of the roles of mechanical force in cell biology remains in its infancy, due largely to a lack of tools that measure the forces generated by living cells at the molecular scale. Here we describe a new technique termed Molecular Force Microscopy (MFM) that visualizes the forces exerted by single cellular adhesion molecules with nm, pN, and sub-second resolutions. MFM uses novel FRET-based molecular tension sensors that bind to a glass coverslip and present a binding site for integrins, a ubiquitous class of cell adhesion proteins. Cell-generated forces stretch the MFM sensor molecules, resulting in decreased FRET with increasing load that can be imaged at the single-molecule level. Human foreskin fibroblasts adhere to surfaces functionalized with the MFM probes and develop robust focal adhesions. FRET values measured using MFM indicate forces of between 1 and 4 pN per integrin, thus providing the first direct measurement of the tension per integrin molecule necessary to form stable adhesions. The relatively narrow force distribution suggests that mechanical tension is subject to exquisite feedback and control at the molecular level.

  18. Preparation of zinc sulfide nanocrystallites from single-molecule precursors

    Science.gov (United States)

    Palve, Anil M.; Garje, Shivram S.

    2011-07-01

    Zinc sulfide nanocrystallites were prepared using Zinc(II) thiosemicarbazone complexes of the types Zn(L) 2 and ZnCl 2(LH) 2 (where, LH=thiosemicarbazones of cinnamaldehyde, 4-chlorobenzaldehyde, indol-3-carboxaldehyde and thiophene-2-carboxaldehyde) as single source precursors by solvothermal decomposition in ethylene glycol and ethylene diamine in few cases. The materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction, energy dispersive X-ray analysis and UV-vis and IR spectroscopy. Solvothermal decomposition in ethylene glycol resulted in the formation of hexagonal ZnS (JCPDS: 36-1450) as evident from the XRD patterns. However, XRD shows formation of hybrid material, ZnS 0.5EN in case of solvothermal decomposition in ethylenediamine. Infrared spectra authenticate the capping of ethylene glycol and ethylenediamine on ZnS and ZnS 0.5EN, respectively. TEM images showed formation of spherical nanoparticles for the materials obtained from ethylene glycol, whereas plate-like morphology is observed in case of materials obtained from ethylene diamine. The blue shift of absorption bands compared to bands of bulk materials in the UV-vis spectra supports the formation of smaller particles.

  19. A Single Molecule Study of Two Bacteriophage Epigenetic Switches

    Science.gov (United States)

    Wang, Haowei

    Epigenetic switches allow organisms to evolve into different states by activating/repressing different sets of genes without mutations of the underlying DNA sequence. The study of epigenetic switches is very important to understand the mechanism of human development, the origin of cancer, mental illness and fundamental processes such as gene regulation. The coliphage lambda epigenetic switch, which allows switching from lysogeny to lysis, has been studied for more than 50 years as a paradigm, and has recently received renewed attention. Atomic force microscopy (AFM) was used here to show that the lambda repressor oligomerizes on DNA, primarily as a dodecamer, to secure a DNA loop, which is the basis of the lambda switch. This study also provides support for the idea that specifically bound repressor stabilizes adjacent, non-specifically bound repressor molecules, which confers robustness to the switch. 186 is a member of a different coliphage family. One of the major differences between the two coliphage families is that lambda phages can be induced to switch from the lysogenic to the lytic state by UV radiation, but most coliphages of P2 family, to which 186 belongs, cannot. Interaction between coliphage 186 repressor and DNA is characterized by AFM and tethered particle motion (TPM). To expedite analysis of the AFM data, MatLab codes were written to automate the laborious, manual tracing procedures. The programs automatically recognize DNA segments and protein particles in an image, in order to measure the DNA length and position of bound particles as well as their height, diameter and volume. Application of these algorithms greatly improved the efficiency of AFM analysis. It was showed that 186 CI dimers form heptameric wheels, which induce DNA wrapping and different kinds of DNA looping producing various conformations of nucleoprotein complexes. Information about the dynamics of DNA wrapping and looping on 186 CI particles was also obtained by TPM.

  20. Quantitative 7T phase imaging in premanifest Huntington disease.

    Science.gov (United States)

    Apple, A C; Possin, K L; Satris, G; Johnson, E; Lupo, J M; Jakary, A; Wong, K; Kelley, D A C; Kang, G A; Sha, S J; Kramer, J H; Geschwind, M D; Nelson, S J; Hess, C P

    2014-09-01

    In vivo MR imaging and postmortem neuropathologic studies have demonstrated elevated iron concentration and atrophy within the striatum of patients with Huntington disease, implicating neuronal loss and iron accumulation in the pathogenesis of this neurodegenerative disorder. We used 7T MR imaging to determine whether quantitative phase, a measurement that reflects both iron content and tissue microstructure, is altered in subjects with premanifest Huntington disease. Local field shift, calculated from 7T MR phase images, was quantified in 13 subjects with premanifest Huntington disease and 13 age- and sex-matched controls. All participants underwent 3T and 7T MR imaging, including volumetric T1 and 7T gradient recalled-echo sequences. Local field shift maps were created from 7T phase data and registered to caudate ROIs automatically parcellated from the 3T T1 images. Huntington disease-specific disease burden and neurocognitive and motor evaluations were also performed and compared with local field shift. Subjects with premanifest Huntington disease had smaller caudate volume and higher local field shift than controls. A significant correlation between these measurements was not detected, and prediction accuracy for disease state improved with inclusion of both variables. A positive correlation between local field shift and genetic disease burden was also found, and there was a trend toward significant correlations between local field shift and neurocognitive tests of working memory and executive function. Subjects with premanifest Huntington disease exhibit differences in 7T MR imaging phase within the caudate nuclei that correlate with genetic disease burden and trend with neurocognitive assessments. Ultra-high-field MR imaging of quantitative phase may be a useful approach for monitoring neurodegeneration in premanifest Huntington disease. © 2014 by American Journal of Neuroradiology.

  1. Motion tracking in infrared imaging for quantitative medical diagnostic applications

    Science.gov (United States)

    Cheng, Tze-Yuan; Herman, Cila

    2014-01-01

    In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas-Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography.

  2. PCA-based groupwise image registration for quantitative MRI.

    Science.gov (United States)

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  3. Image based quantitative reader for Lateral flow immunofluorescence assay.

    Science.gov (United States)

    Chowdhury, Kaushik Basak; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Fluorescence Lateral flow immunoassays (LFIA) have wide range of applications in point-of-care testing (POCT). An integrated, motion-free, accurate, reliable reader that performs automated quantitative analysis of LFIA is essential for POCT diagnosis. We demonstrate an image based quantitative method to read the lateral flow immunofluorescence test strips. The developed reader uses line laser diode module to illuminate the LFIA test strip having fluorescent dye. Fluorescence light coming from the region of interest (ROI) of the LFIA test strip was filtered using an emission filter and imaged using a camera following which images were processed in computer. A dedicated control program was developed that automated the entire process including illumination of the test strip using laser diode, capturing the ROI of the test strip, processing and analyzing the images and displaying of results. Reproducibility of the reader has been evaluated using few reference cartridges and HbA1c (Glycated haemoglobin) test cartridges. The proposed system can be upgraded to a compact reader for widespread testing of LFIA test strips.

  4. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging. Although we did not accomplish the original goal of detecting single-molecule by CARS, our quest for high sensitivity of nonlinear optical microscopy paid off in providing the two brand new enabling technologies. Both techniques were greatly benefited from the use of high frequency modulation for microscopy, which led to orders of magnitude increase in sensitivity. Extensive efforts have been made on optics and electronics to accomplish these breakthroughs.

  5. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    Science.gov (United States)

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of Ensemble and Single Molecule Methods for Particle Characterization and Binding Analysis of a PEGylated Single-Domain Antibody.

    Science.gov (United States)

    Schneeweis, Lumelle A; Obenauer-Kutner, Linda; Kaur, Parminder; Yamniuk, Aaron P; Tamura, James; Jaffe, Neil; O'Mara, Brian W; Lindsay, Stuart; Doyle, Michael; Bryson, James

    2015-12-01

    Domain antibodies (dAbs) are single immunoglobulin domains that form the smallest functional unit of an antibody. This study investigates the behavior of these small proteins when covalently attached to the polyethylene glycol (PEG) moiety that is necessary for extending the half-life of a dAb. The effect of the 40 kDa PEG on hydrodynamic properties, particle behavior, and receptor binding of the dAb has been compared by both ensemble solution and surface methods [light scattering, isothermal titration calorimetry (ITC), surface Plasmon resonance (SPR)] and single-molecule atomic force microscopy (AFM) methods (topography, recognition imaging, and force microscopy). The large PEG dominates the properties of the dAb-PEG conjugate such as a hydrodynamic radius that corresponds to a globular protein over four times its size and a much reduced association rate. We have used AFM single-molecule studies to determine the mechanism of PEG-dependent reductions in the effectiveness of the dAb observed by SPR kinetic studies. Recognition imaging showed that all of the PEGylated dAb molecules are active, suggesting that some may transiently become inactive if PEG sterically blocks binding. This helps explain the disconnect between the SPR, determined kinetically, and the force microscopy and ITC results that demonstrated that PEG does not change the binding energy.

  7. High ionic strength narrows the population of sites participating in protein ion-exchange adsorption: a single-molecule study.

    Science.gov (United States)

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P; Dominguez-Medina, Sergio; Kulla, Eliona; Kang, Marci K; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Dhamane, Sagar; Willson, Richard C; Landes, Christy F

    2014-05-23

    The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins.

  8. Quantitative perfusion imaging in magnetic resonance imaging; Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, F.G.; Gaa, T.; Zimmer, F. [Universitaet Heidelberg, Computerunterstuetzte Klinische Medizin, Medizinische Fakultaet Mannheim, Mannheim (Germany); Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M. [Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Mannheim (Germany)

    2016-02-15

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [German] Die Magnetresonanztomographie (MRT) zeichnet sich durch einen ueberlegenen Gewebekontrast aus, waehrend sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik koennen u. a. Gewebeperfusion und Kapillarpermeabilitaet aus dynamischen Bilddaten bestimmt werden. Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansaetze, naemlich ''arterial spin labeling'' (ASL) und dynamische kontrastverstaerkte (DCE-)MRT durchgefuehrt werden. Waehrend die erste Methode magnetisch

  9. Quantitative imaging of heterogeneous dynamics in drying and aging paints.

    Science.gov (United States)

    van der Kooij, Hanne M; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris

    2016-09-29

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail.

  10. Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application.

    Science.gov (United States)

    Wozniak, A; van Mameren, J; Ragona, S

    2009-08-01

    Since the development of detection and analysis techniques for optical tweezers setups, there has been an ever-increasing interest in optical tweezers as a quantitative method, shifting its applications from a pure manipulation tool towards the investigation of motions and forces. With the capability of manipulation and detection of forces of a few hundred picoNewtons down to a fraction of a picoNewton, optical tweezers are perfectly suitable for the investigation of single molecules. Accordingly, the technique has been extensively used for the biophysical characterization of biomolecules, ranging from the mechanical and elastic properties of biological polymers to the dynamics associated with enzymatic activity and protein motility. Here, the use of state-of-the-art optical tweezers on the elasticity of single DNA molecules is presented, highlighting the possibilities this technique offers for the investigation of protein-DNA interaction, but also for other single molecule applications. Technical in nature, design aspects of the NanoTracker optical tweezers setup are addressed, presenting the recent advances in the development of optical tweezers, ranging from noise reduction to detection and calibration methodology.

  11. Central benzodiazepine receptor imaging and quantitation with single photon emission computerised tomography

    DEFF Research Database (Denmark)

    Okocha, C I; Kapczinski, F; Lassen, N

    1995-01-01

    This review discusses the current use of single photon emission computerised tomography (SPECT) for central benzodiazepine receptor imaging and quantitation. The general principles underlying SPECT imaging and receptor quantitation methods such as the kinetic, pseudo-equilibrium and steady...

  12. Mri: Selected Topics in Quantitation and Image Processing.

    Science.gov (United States)

    Yi, Yun

    1990-10-01

    This research has focused on four areas of MRI with the objectives being a critical evaluation of the factors both visually and instrumentation that effect the quantitative indices of MRI. The following four areas of MRI were investigated:. Project #1. In both of the r.f. transmitter and receiver, many non-linearities exist which produce image distortions and loss of quantitative information. Key factors in spin echo (SE) imaging involve phase and gain adjustment of the quadrature phase detectors. To compensate for these nonlinearities, NMR spectroscopist developed techniques involving phase rolling of the rf pulses for dealing with one dimensional spectra. In this project, the effect of these nonlinearities were investigated for MR imaging on a 2.0T small bore system in respect to image uniformity and artifacts. Project #2. In the presence of surface coils, image artifacts are generated which oftentimes produce large signal intensities and suppress the image gray scale in clinically useful regions. In this study, eight image renormalization algorithms were evaluated for their effects on image contrast, suppression of artifacts, and texture. In addition, images were evaluated independently by four radiologists. Project #3. The use of MRI to follow and characterize serial changes in vertebral marrow, as a function of therapy, age or sex, has produced inconsistent results. Systematic examinations were made of the effects of RF tuning and tip angles as well as RF coil response on both T1 and T2 relaxation times. Using calibration phantoms, algorithms were developed which reduce the instrumental variation in MR signal to less than 10% from the cervical (C7) to the lumbar (L2) vertebral bodies. These algorithms were evaluated by use of serial MRI on volunteers and a few patients receiving radiation therapy (RT) of the chest and abdomen for lymphoma. Project #4. Evaluation of sensitivity of chemical shift RF pulse sequences for water/lipid separation were evaluated on a

  13. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  14. Automatic quantitative analysis of cardiac MR perfusion images

    Science.gov (United States)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  15. Designing a Single-Molecule Biophysics Tool for Characterising DNA Damage for Techniques that Kill Infectious Pathogens Through DNA Damage Effects.

    Science.gov (United States)

    Miller, Helen; Wollman, Adam J M; Leake, Mark C

    2016-01-01

    Antibiotics such as the quinolones and fluoroquinolones kill bacterial pathogens ultimately through DNA damage. They target the essential type IIA topoisomerases in bacteria by stabilising the normally transient double-strand break state which is created to modify the supercoiling state of the DNA. Here we discuss the development of these antibiotics and their method of action. Existing methods for DNA damage visualisation, such as the comet assay and immunofluorescence imaging can often only be analysed qualitatively and this analysis is subjective. We describe a putative single-molecule fluorescence technique for quantifying DNA damage via the total fluorescence intensity of a DNA origami tile fully saturated with an intercalating dye, along with the optical requirements for how to implement these into a light microscopy imaging system capable of single-molecule millisecond timescale imaging. This system promises significant improvements in reproducibility of the quantification of DNA damage over traditional techniques.

  16. DNA origami as biocompatible surface to match single-molecule and ensemble experiments.

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-08-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements.

  17. Blinking effect and the use of quantum dots in single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Domingo, M.P. [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Pardo, Julian [Grupo Apoptosis, Inmunidad y Cancer, Departamento Bioquimica y Biologia Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza (Spain); Fundacion Aragon I-D (ARAID), Gobierno de Aragon, Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain); Graeber, P. [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Galvez, E.M., E-mail: eva@icb.csic.es [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  18. Single-molecule electrical contacts on silicon electrodes under ambient conditions

    Science.gov (United States)

    Aragonès, Albert C.; Darwish, Nadim; Ciampi, Simone; Sanz, Fausto; Gooding, J. Justin; Díez-Pérez, Ismael

    2017-04-01

    The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current-voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits.

  19. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  20. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements. PMID:22523083